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Abstract

In electronic devices solder joints form a mechanical as well as an electrical
connection between the circuit board and the component (e.g. a chip or
a resistor). Temperature variations occurring during field use cause crack
initiation and crack growth inside the joints. Accurate prediction of the
lifetime requires a method to simulate the damage process based on mi-

crostructural properties.

Numerical simulation of developing cracks and microstructural entities
such as grain boundaries and grain junctions gives rise to several problems.
The solution contains strong and weak discontinuities as well as weak sin-
gularities. To obtain reasonable solutions with the finite element method
(FEM) the element edges have to align with the cracks and the grain bound-
aries, which imposes geometrical restrictions on the mesh choice. Addition-
ally, a large number of elements has to be used in the vicinity of the sin-
gularities which increases the computational effort. Both problems can be
circumvented with the extended finite element method (X-FEM) by using

appropriate enrichment functions.

In this thesis the X-FEM will be developed for the simulation of complex
microstructural geometries. Due to the anisotropy of the different grains
forming a joint and the variety of different microstructural configurations it
is not always possible to write the enrichment functions in a closed form. A
procedure to determine enrichment functions numerically is explained and
tested. As a result, a very simple meshing scheme, which will be introduced
here, can be used to simulate developing cracks in solder joint microstruc-

tures. Due to the simplicity of the meshing algorithm the simulation can



be automated completely. A large number of enrichment functions must be
used to realize this. Well-conditioned equation systems, however, cannot be
guaranteed for such an approach. To improve the condition number of the
X-FEM stiffness matrix and thus the robustness of the solution process a

preconditioning technique is derived and applied.

This approach makes it possible to develop a new and fully automated
procedure for addressing the reliability of solder joints numerically. The
procedure relies on the random generation of microstructures. Performing
crack growth calculations for a series of these structures makes it possible
to address the influence of varying microstructures on the damage process.
Material parameters describing the microstructure are determined in an
inverse procedure. It will be shown that the numerical results correspond

well with experimental observations.
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1. Introduction

1.1. Numerical simulation in industrial
applications and the extended finite
element method

Numerical simulation has an increasing impact in many areas of science
and engineering. The ability to make predictions about the behavior of
physical systems brings several advantages. In industrial applications the
performance of a product can be addressed before it is actually built. If
planes or ships are considered it is absolutely crucial to decide whether a
certain design performs well because of the immense costs associated with
its fabrication.

But also for smaller products numerical simulation can bring significant ad-
vantages to a company. In order to guarantee a certain quality, the lifetime
in the field must be estimated. A possible approach would be to expose the
products to experimental conditions that are close to the ones in the field.
In that case the expected lifetime is a direct result of the experiments.
But some products have a life expectancy of several years. Conducting
the corresponding experiments would be very time-consuming. In that case
accelerated reliability tests can be performed. The conditions are much
harsher in these tests than the ones in the field, which causes the product
to fail earlier. The expected lifetime in the field is obtained by extrapola-
tion.

But even those tests might take too much time. The production of test
samples involves a lot of planning and the tests can only be accelerated by

a certain factor, otherwise the failure mode might change and extrapolation
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to field conditions is meaningless. Therefore, numerical simulation is often
combined with experimental testing: Once a certain numerical method for
lifetime prediction is validated experimentally, it can be used for similar
designs and testing conditions as well.

Lifetime prediction by numerical simulation is used to decide whether a
product design should be produced or not, but also in the process of design
optimization. In order to find a reasonable balance between production
costs and quality, repeated design changes have to be performed and eval-
uated. The quality of an altered design in terms of lifetime is evaluated by
numerical simulation. Since the results are usually available in a shorter
amount of time, the design process becomes much more efficient.

In order to make predictions about a physical system a model is needed.
The true behavior of the system is approximated by a mathematical de-
scription. Partial differential equations (PDEs) are often employed. The
analytical solution of general PDEs is only possible in special cases. Nu-
merical methods, however, make it possible to determine approximations to
the exact solution for a much greater class of problems. The accuracy and
the efficiency of these approximations depend on the method itself and how
it is applied.

This thesis will only deal with physical problems that can be described in
the framework of continuum mechanics. In this context the method that
is most widely used is the finite element method (FEM). An overview of
its basic features is given in section 2.3. Often the displacements of the
structure in question are the primary unknowns. The approximation space
is chosen implicitly by defining a mesh which covers the structural domain.
For two-dimensional structures the mesh may for example consist of trian-
gles and quadrilaterals. The triangles and quadrilaterals are called elements.
The possible approximations are all functions that are continuous through-
out the structural domain and formed by polynomials of some order inside
each element. The quality of the approximation is mainly determined by
the ability of this function space to reproduce the exact solution. The ap-
proximation error can be decreased by refining the mesh. Small elements,
however, increase the computational effort because the overall number of
elements is higher and thus the dimension of the corresponding equation

systems. In some situations even a very fine mesh produces unacceptable
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solutions, because the space of piecewise polynomial functions is not appro-
priate to approximate certain characteristic features of the exact solution.

The idea of enrichment is to add functions to the function space which are
able to model these features. By understanding the physics, special en-
richment functions can be tailored for a particular problem. The extended
finite element method (X-FEM) provides a framework for introducing these
functions into the FEM function space. Often the approximation properties
of the FEM function space can be enhanced significantly. The X-FEM was
developed mainly during the last ten years. There are only a few commer-
cial implementations and the method is an active field of research. A review
of the current status of the method is given in section 2.4.

X-FEM is especially useful if complicated geometries are considered. To
obtain acceptable solutions via FEM, the element edges have to align with
geometrical features such as the boundary of the structure, material inter-
faces and cracks. Additionally, the meshes must be particularly fine in the
vicinity of crack tips and re-entrant corners to resolve the high strain gradi-
ents appearing in these areas. Automatic meshing algorithms can be used
to generate meshes that fulfill these geometric conditions while maintain-
ing a good mesh quality. But there is no guarantee that these algorithms
generate any mesh at all. The more complicated the geometry becomes,
the more likely it is that the meshing algorithms fail. Using X-FEM the
enrichment functions can be chosen to represent the geometrical features
mentioned above. Very simple meshes that are independent of the geometry
may therefore be used in combination with the X-FEM to avoid problems

during mesh generation.

1.2. Lifetime prediction for solder joints

This thesis is a joint project between the Robert Bosch GmbH and the
University of Glasgow. Next to a series of other products, Bosch produces
electronic devices for cars. In the application part of this thesis we will
therefore be concerned with the reliability of automotive electronics. To
produce these devices, electric components such as resistors, chips etc. are

soldered onto a circuit board. The solder joints form a mechanical as well
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as an electrical connection. The lifetime of these devices is determined by
many factors. The most important damage mechanism is thermomechani-
cal fatigue.

If the car is used, the motor heats up. Elevated temperatures in the vicinity
of the motor cause the different components of the device to expand. The
electronic components expand much less than the circuit board. This gen-
erates an expansion mismatch. Since the solder joints connect both, they
have to accommodate this mismatch. Stresses are generated inside the joint
and plastic deformation occurs. After the motor is turned off, the temper-
ature decreases. This causes the solder joints to deform in the opposite
direction. The repeated plastic deformation causes cracks to initiate and to
propagate. Once the crack propagated through the whole joint the device
fails. A short discussion of solder joints in electronic devices and thermo-
mechanical fatigue is given in section 4.1.

Automotive electronics are expected to last several years. Performing actual
field tests is therefore not feasible. Accelerated tests still may take several
months. This constitutes the necessity for a lifetime prediction methodol-
ogy based on simulation.

The lifetime prediction methodology currently used at Bosch and other
companies follows a simple scheme. All the materials of an electronic de-
vice are characterized by experimentally determined material parameters
and a continuum mechanical description involving elastic and creep defor-
mation coupled with thermal expansion. The solder joint is assumed to be a
homogeneous isotropic material without cracks or damage. The creep that
accumulates over time is extracted from the FEM simulation and correlated
with the experimentally determined lifetime for a given temperature pro-
file by fitting constants in a statistical approach called the Coffin-Manson
equation.

For slight changes in the temperature profile or the geometry the constants
in this equation might still be valid and the lifetime can be predicted without
conducting new experiments. But for greater changes in design, tempera-
ture profile etc. new experiments have to be conducted. This results in a
large database of Coffin-Manson constants. Such a database has been devel-
oped for the lead-containing solder SnPb over the last 50 years. But due to

environmental concerns and health issues the European Union has banned
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lead-containing solders. SnAgCu has replaced SnPb in most applications.
However, for SnAgCu this database is missing. Instead of developing a
new database in numerous expensive and time-consuming experiments, the
problem could be resolved by using more advanced simulation techniques.
The main problem with the current methodology is that the actual damage
mechanisms are not included in the model and therefore it is not realis-
tic. Only a few attempts have been made to simulate the damage in solder
joints. A review of the literature available on the topic of lifetime prediction
for solder joints is given in section 4.2.

The discussion in section 4.3 constitutes that the damage in solder joints is
closely related to the microstructure. The joint is formed by several crys-
tals. Areas in which the same crystal orientation can be observed are called
grains. Most of them are relatively large compared to the joint measure-
ments. The crystals have an anisotropic elastic behavior. Their stiffness
can vary up to a factor of three depending on the orientation. Because
the plastic deformation and hence also the damage mechanism depend on
the elastic deformation, the crystal orientations have a large impact on the
lifetime of the joints. Thus, to model the damage mechanisms accurately,
the polycrystalline structure has to be a part of the solder model.

In this thesis a new lifetime prediction methodology is proposed based on a
solder model that incorporates the microstructural properties of the joint.
The novelties introduced to the field of solder joint lifetime prediction by

this methodology can be summarized as follows:

e In section 4.3 it is explained how random computer models of realistic
solder joint microstructures can be generated artificially. A procedure
to calculate crack growth for these structures is explained. This is the
first model that couples crack growth in solder joints with realistic

microstructures.

e To describe the different grains forming the joint mechanically, consti-
tutive laws for the grains are determined in section 4.4.1 by an inverse

procedure.

e To capture the variety of possible microstructures in electronic de-
vices it is proposed to generate a series of random microstructures.

By performing crack growth calculations for each of these structures,
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the influence of varying microstructures on the reliability can be ad-
dressed. In contrast to the classical semi-empirical methods which
only predict an average lifetime, much more reliable conclusions could
be drawn from such an approach in industrial applications. Numerical
examples are given in section 4.4.2. The results are compared with

experimental data.

1.3. Development of X-FEM towards the
simulation of complex polycrystalline
structures

To realize the lifetime prediction methodology mentioned above it is crucial
to automate the crack growth simulations. The main problem in automating
these simulations is to guarantee a successful mesh generation. Due to the
complexity of the randomly generated microstructures conventional mesh
generators may fail. In that case user intervention is necessary. However,
in an industrial application a large number of random microstructures must
be generated to get a reliable failure probability. To use the lifetime pre-
diction methodology efficiently it must therefore be guaranteed that mesh
generation can be performed by an algorithm completely without user in-
tervention.

The enrichment functions of the X-FEM enable engineers to use meshes
which are less dependent on geometrical features. As a result the meshing
procedure can be simplified and automated. X-FEM may be interpreted as
a framework of several methods and ideas that are based on a common prin-
ciple. Several approaches can be found in the literature that can simplify
the task of simulating the complex microstructure of solder joints. What is
missing is a technique to determine enrichment functions which represent
general strain singularities in linear elastic polycrystalline structures. These
singularities can occur at junctions formed by several grain boundaries, at
crack tips or at re-entrant corners.

The corresponding enrichments would help to realize a fully automated
crack growth calculation in solder joints. Their shape is dependent on the

orientation of the surrounding grains and their shape. Due to the large
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number of possible microstructural configurations it is not possible to write
these functions in a closed form.

Another problem which occurs during the simulation of microstructures
with the X-FEM is the ill-conditioning of the stiffness matrix. Ill-conditioned
stiffness matrices can slow down the solution process significantly. In the
FEM several criteria for evaluating the mesh quality exist, which guarantee
well-conditioned stiffness matrices. For the X-FEM such criteria do not ex-
ist. In fact in section 3.3.1 it will be shown that currently used enrichment
schemes can result in arbitrarily ill-conditioned matrices in special cases.
In order to make the X-FEM applicable to the lifetime prediction method-

ology the following ideas and novelties are put forward in this thesis:

e A numerical procedure to determine enrichment functions that rep-
resent arbitrary strain singularities in polycrystalline structures de-
scribed by plane strain linear elasticity is explained and tested in sec-
tion 3.2. The enrichments have been combined with other currently
used enrichment types (cf. section 2.4) to arrive at a method which
is able to restore optimal convergence rates in the presence of weak

singularities.

e An efficient preconditioning technique which guarantees well-conditio-
ned stiffness matrices with the X-FEM and arbitrary enrichments is

introduced in section 3.3.

e A meshing strategy for the X-FEM simulation of grain structures gen-
erated by a Voronoi-tessellation is introduced in 3.4. Due to its sim-
plicity the strategy can be automated completely. Meshing has to be
performed only once at the beginning of a crack growth calculation.

The growing crack is accounted for by introducing new enrichments.

e This is the first application of X-FEM to thermomechanical fatigue of

solder joints.

These features have been implemented in a Matlab code. To simulate the
transient behavior of solder joints undergoing thermal cycling, an approach
to calculate thermal expansion and creep deformation has additionally been

implemented. A penalty method was used to prevent crack faces from over-
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lapping. The final version of the code was used to calculate the examples

n section 4.4.2.



2. Theoretical background

This chapter aims to provide the theoretical background for the methods
and ideas discussed in the other chapters. In section 2.1 the equations nec-
essary to describe the structural problems considered in this thesis in the
framework of continuum mechanics are listed and explained. In section 2.2
a brief introduction to the mathematical background is given. In section
2.3 the FEM and its approximation error is discussed. This will help us
to understand the idea of the X-FEM and its enrichment functions as in-
troduced in section 2.4. The MINRES iterative solver and its numerical
properties are discussed in section 2.5 since this solver will be used to solve
the equation systems in this thesis. Furthermore the relationship between
the condition number of an equation system and the number of iterations
will be discussed. This will help us to understand the preconditioning tech-

nique developed in section 3.3.

2.1. Material description and constitutive
relations

The equations introduced in this section can be derived in the framework
of continuum mechanics. However, this will be omitted here, the interested
reader is referred to the work of Liu [1] and Braess [2].

If u is a vector field describing the displacements of a structure  C R3, we

define the linearized strain tensor by:

€= %(w + (V)" (2.1)
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Using € to develop constitutive laws is appropriate if the displacements con-
sidered are small.

We will be concerned with three different phenomena materials can exhibit:
Elasticity, creep and thermal expansion.

Elastic behavior can be characterized as follows. Assume that a load is
applied to the structure. In a purely elastic material, if the load is reversed,
the structure returns to its original state. Physically this means that the
atomic structure is deformed but not rearranged.

This is different if a structure shows creep behavior. Creep is a form of
plasticity. Plastic behavior is physically characterized by a rearrangement
of the atomic structure. The term creep is used for time-dependent plastic
processes. Because the atomic structure is rearranged during creep, defor-
mation energy is transformed to heat. Therefore, the structure does not
return to its original state if an applied load is reversed.

Thermal expansion of the structure happens due to an increase in tem-
perature. The temperature in a structure is roughly speaking the average
vibration of the atoms making up the structure. If the kinetic energy of the
atoms increases, this causes the structure macroscopically to expand.

We assume that all the deformations that have just been described can be

superimposed to obtain €:

€=¢€'+ e+ € (2.2)

! are the elastic strains, € are the creep strains and € are the thermal

66
strains.

The problems considered in this thesis are either static problems or time-
dependent problems in which the structure deforms slowly. In the latter
case the structure can be modeled as quasi-static (i.e. no inertia effects).

Therefore, the equation of motion becomes:
divie) +b=0 (2.3)

o is the symmetric stress tensor and b is a body force distribution.
A relation between o and the elastic strains € is given by the fourth-order
stiffness tensor D:

ow = DijueE; (2.4)
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Summation over repeated indices is understood here. The stress tensor must
be symmetric such that conservation of angular momentum is fulfilled, € is
symmetric by definition and therefore D must also obey certain symmetry

relations:

D,y = Djir (2.5)
D,y = D;ji, (2.6)
Dji; = Dyyij (2.7)

This leaves a total of 21 independent components of D.

Creep deformation will be modeled by:

t He’"
= dt 2.8
= (25)
er 0 if 0y, =0
Ot _ / (2.9)
ot f(oum, T);=  otherwise

The function f(o,mn,T) is a nonnegative smooth scalar function determining
the creep rate. f(oym,T) is assumed to be zero if 0., = 0. Furthermore,
it should be a monotonically increasing function of T" and o,,,. 0., are the
von Mises stresses and o’ is called the stress deviator. The stress deviator

is defined by:
o =g Tt ";2 oy (2.10)

If 01, 09 and o3 are the three eigenvalues of the stress tensor, then the von

Mises stresses can be defined by:

Tom 1= \/% (01 — 09)% 4 (02 — 03)% + (03 — 071)?] (2.11)

Thermal expansion will be modeled by:
€' = a(T — Tyey) (2.12)

Tey is a reference temperature and o is the symmetric tensor of thermal co-
efficients chosen such that €' are the strains measured due to a temperature

increase of (1" — Ty.y).
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2.2. Functional analysis

To simplify the discussion we will assume homogeneous displacement bound-
ary conditions. We will use I" to label the boundary of a domain Q C R3.
The boundary is divided into two parts 'y and I'p. Zero displacements are
prescribed at ['p and a traction ¢ is applied to the structure at the boundary
'y with m being the unit normal along I'y.

The boundary value problem then becomes:

div(e) +b=0 ifxeQ (2.13)
on=t ifxely (2.14)
u=0 ifzxelp (2.15)

The relationship between stresses, strains and displacements is given by
(2.1) and (2.4).

To reformulate the problem we multiply equation (2.13) with a vector-valued
smooth function v’ that vanishes at I'p. Integrating the new expression

over the whole domain results in:

/QUT(VO'(U))dU-l—/’Ude’U =0 (2.16)

Q

Applying integration by parts to the first term and exploiting the symmetry

of the stress tensor gives:

/Qe('v) : cJ'('u)dU:/Q'vaal'U—i—/F v tda (2.17)

The weak formulation of the problem is known as:
Find w such that (2.17) holds for all (sufficiently smooth) functions v.

Equation (2.13) is called the strong form. Obviously a solution to the strong
problem formulation (which also fulfills the boundary conditions) is a solu-
tion to (2.17) for any (sufficiently smooth) v. But on the other hand if a
function w solves (2.17) for every wv, it is not necessarily a solution of the
strong problem formulation.

To address the existence and the uniqueness of the solution of the weak

formulation, we need to work in the appropriate function spaces. But first
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some tools from functional analysis are needed. For a good introduction to

this topic the book by Kreyszig [3] could be considered.

Theorem 2.1 (Projection theorem) Let H be a Hilbert space and S a
non-empty closed subspace. Then for anyu € H there exist a unique element
v € S such that:
— || = inf [Jw — 2.1
lu = vl = inf [jw — ull (2.18)

Proof cf. [4]. O

In other words for every v € H there is a unique element v € S which is
closest to w in the induced norm. This is also called the projection of u
onto S. This theorem makes it possible to use the notion of orthogonality
in general Hilbert spaces. The fact that Hilbert spaces are by definition
complete is important since generalized projections are defined by a limit
process.

Using the projection theorem one can make a very powerful statement about
bounded linear functionals on Hilbert spaces. A bounded linear functional
f(+) on a Hilbert space H is a linear mapping H — R such that there is a
positive constant ¢ with f(u) < c||u|| for all v € H. It is worth mentioning
that the boundedness of a linear functional is equivalent to its continuity [4].

This fact is used in the proof of the following theorem.

Theorem 2.2 (Riesz representation theorem) Let H be a Hilbert space
and f(-) a bounded linear functional. Then there exists a unique element
w € H such that:

f(v) = (u,v) YveH (2.19)

Proof If f = 0 for all v € H choose u = 0. So let us assume f # 0 for
some v. Then we define:

S:={veH|f(v)=0} (2.20)

At least 0 is in S.
S is a subspace of H, for v, v, € S and X € R:

f(vr) + f(va) = f(v1 + v2)

=0
AM(vr) = f(Avr) =0
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Because boundedness of the functional implies continuity, the space S is
closed and thus complete: A Cauchy sequence in S has a limit in H, due to
the continuity of f the function value of this limit will also be zero. Thus,
the limit is in S.

Therefore, we can define the orthogonal space S*. By assumption this space

does not only contain 0. Pick an arbitrary u # 0 and set:

u = 7’“];(’/‘? (2.23)

Then:
(u,v) =0=f(v) YveX (2.24)
(u,v) = f(v) Vv € span() (2.25)

It remains to show that any v € S* is in span(a).
So assume that there are two linearly independent (non-zero) elements u,
and us in S*. Then:

flur) — flus) U Us

0= T~ Flw) ! Far) ~ Flun) (2.26)

Thus, a linear combination of u; and us is an element of S, which leads to

a contradiction. [

We can define variational problems on Hilbert spaces using bilinear forms.
A bounded coercive symmetric bilinear form defined on a Hilbert space H

is a mapping a(-,-) : H x H — R with:

1) a(u,v) =a(v,u) Yu,v€ H (Symmetry) (2.27)
2) 3C >0 a(u,v) < Clull||v] Yu,v € H (Boundedness)  (2.28)
3) Je>0|alv,v)>c|v||* YveH (Coercivity) (2.29)

The next theorem proves existence and uniqueness for variational problems

on general Hilbert spaces:

Theorem 2.3 (Lax-Milgram Lemma) Let H be a Hilbert space, af-,-)

a bounded coercive symmetric bilinear form and f(-) a bounded linear func-
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tional. Then there exists a unique element uw € H such that:
a(u,v) = f(v) Yve H (2.30)

Proof From the Riesz representation theorem it follows due to the bound-

edness of a(+,-) that we have for some bounded linear operator A:
a(u,v) = (Au,v) (2.31)

Also for some w € H:
F(0) = (w,v) (2.32)

We have to show that the operator A is a bijective mapping, then we can
set u := Alw and the proof is finished. Assume A is not injective, then
there are two distinct uy,us € H with Au; = Aus. But then we get a
contradiction to (2.29) by:

a(uy — ug,uy — ug) = (A(ug — ug),u; —ug) =0 (2.33)

To show surjectivity we first have to show that the range R4 of A is closed.
Assume that this is not true, then there exists a Cauchy sequence w; = Au;
such that u; is not a Cauchy sequence (please note that boundedness of A4
implies that the limit of any sequence u; is the limit of Au;). But then we
have a sequence of elements u; — u;,1 whose norm does not tend to zero.
Thus, we have:

[A(u; = i) || = [lwi — wis]| (2.34)

—0

Then by using (2.31) we get a contradiction from:

(A(us = wig), i = wigr) > cflu; — i (2.35)
U; — Uy
(Al = ), 22 > s~ i (236)
. [t — v | T
=0

The fact that the left-hand side vanishes is a consequence of the Cauchy-
Schwarz inequality.

Therefore, we are allowed to construct RY. If R4 = {0} we have shown
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surjectivity. Assume that this is not true, then there is a non-zero v € R7.

But then we get a contradiction to (2.29) by:
(Av,v) = a(v,v) =0 (2.37)
U

Therefore, we can show existence and uniqueness of a solution of the struc-
tural problem in its weak form if we can formulate it in terms of a bilinear
form a(-,-) and a linear functional f(-) such that the assumptions in theo-
rem 2.3 are fulfilled.

The idea is to interpret the solution of the structural problem as a vec-
tor in a Hilbert space. An appropriate Hilbert space whose elements are
scalar functions on 2, is the Sobolev space H'(2). For a good introduction
to these spaces the reader is referred to the book by Alt [4]. The space
H} () contains the subset of functions which vanish in the vicinity of I'p.

Vector-valued functions can be constructed by using the product space:
(HE () = HE (Q) x HE (Q) x HE(Q) (2.38)
I'p ‘ I'p I'p I'p ’

(HE, (Q))3 is again a Hilbert space. Using the body forces b from (2.17) we

set:

~

b:=D: (" +€e”)+b (2.39)

We define the linear functional as:
flv) = / v bdv + / v'tda (2.40)
Q Iy

Using equation (2.2) and equation (2.4) we see that (2.17) can be written in
the form of equation (2.30) where f(-) is defined by (2.40) and the bilinear
form is defined by:

a(u,v) = /Qe(u) : D e(v)dv (2.41)

Using equations (2.41) and (2.40) we can now restate the weak problem as:

Find u € (H}, (2))” such that a(u, v) = f(v) holds for all v € (H}_(2))”.
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Due to the definition of the Sobolev spaces this only makes sense if the
integration in (2.41) and (2.40) is interpreted as the Lebesgue integration
and the differentiation is interpreted as the weak differentiation.

One can show that the bilinear form in (2.41) fulfills all necessary condi-
tions if I'p has a positive measure, that is, all rigid body motions are sup-
pressed [2]. In that case, assuming that f(v) is bounded, the weak problem

formulation has a unique solution.

2.3. Finite element method

To solve the weak formulation of our structural problem numerically we
consider finite-dimensional subspaces S" of (H{ (£2))®. Since finite dimen-
sional subspaces of Hilbert spaces are again Hilbert spaces [3], the weak
formulation can be solved uniquely in this subspace too. Using (2.41) and

(2.40) the weak formulation becomes:

Find u”" € S" such that for all v" € S":
a(v",u") = f(v") (2.42)
If uy, ..., u, is a basis of S the element u" can be written as:
u = ayuy + ...+ ayu, (2.43)

To determine the unknown coefficients ay, ..., a,, we insert (2.43) in (2.42)

and postulate that the equation holds for all basis functions:

a(u',aiut + ... + a,u) = f(u')
(2.44)
a(u™, ayu' + ... + a,u”) = f(u")

If these equations hold, then certainly a(v", a;u' +... +a,u") = f(v") holds

for every v € S".
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Due to the linearity of a(-,-) we can rewrite (2.44) as:

a(ut,u') ... a(ul,u)| |a f(ub)
—| (2.45)

a(u™,u') ... a(um,u)| |a, flum)

Therefore, to determine the unknown coefficients one has to solve a linear
equation system:
Ka=Ff (2.46)

If the functions u', ..., u" are linearly independent, the equation system has
a unique solution.

This is also known as the Ritz-Galerkin method. The matrix K is called
the stiffness matrix. The question how the result is related to the exact

solution immediately arises. The answer is given by the following theorem.

Theorem 2.4 (Cea’s Lemma) Let H be a Hilbert space and S" a finite-
dimensional subspace. Let a(-,+) be a bounded, coercive, symmetric bilinear

form and f(-) a bounded linear functional defined on H. The solution u of

the corresponding variational problem on H is related to the solution u" on

St by:

C
|u—u"|| <= inf ||u—o" (2.47)
C vhesh

C' and c are the constants in equations (2.29) and (2.28).

Proof For any v" € S"* we have:
alu —u", v") = a(u,v") — a(u,v") = f(") - f(") =0 (2.48)

Since u”" — v" € S" and by the definition of a(-,-) we obtain:
cu —u"|?

<a(u —u",u —u")

h h)

(2.49)

(2.50)

=a(u —u", u —u") +a(u" —v" u —u") (2.51)
=a(u —v",u—u (2.52)
(2.53)

<Cllu —v"|[|lw — "]
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Division by c||u — u"|| proves the lemma. [J

Thus, the approximation error of u” obtained by the Ritz-Galerkin method
is bounded by the approximation error of the best possible solution in
Sp.  Another interpretation is possible. af(-,-) defines an inner product
on (Hf (2))* if meas(I'p) > 0. In the proof it is shown that the approx-
imation error is orthogonal to S), with respect to a(-,-). Therefore, the
Ritz-Galerkin approximation minimizes the error in the norm induced by
a(+,-). This norm is also called the energy norm.

Different choices for S” are possible. One could for instance choose poly-
nomials up to a certain order. However, this is not advantageous from a
computational point of view. If polynomials are used the entries in K will
generally be non-zero. Therefore, the memory requirements grow quadrat-
ically with n. It is much easier to deal with sparse matrices, in which most
of the entries are zero. Zero entries do not have to be stored, for sparse
matrices it suffices to store the indices of the non-zero entries together with
its numerical value.

Sparse matrices are also advantageous when iterative methods are used to
solve the equation systems. Iterative solvers will be explored in section 2.5.
An iterative solver multiplies in every step a vector with the matrix K. Zero
elements can be neglected in this multiplication. The computation time for
one solution step of the solver therefore depends mainly on the number of
non-zero entries.

Finite element methods are a subclass of Ritz-Galerkin methods. They are
characterized by a special choice of the space S and its basis. The basis
functions result in sparse matrices, and therefore the FEM has all the ad-
vantages mentioned above. Furthermore, the integration that is necessary
to evaluate the matrix K can be done in a very simple and effective manner.
The function space S" is constructed implicitly by covering the structure
with a mesh of polygonal elements such as triangles and quadrilaterals. A
two-dimensional example of such a mesh formed by triangles is shown in fig-
ure 2.1. The points at which the element edges terminate are called nodes.
The triangles have to obey certain rules: They have to be chosen such that
no node is located at the interior of the edge of another element. Such a
node would be called a hanging node. Furthermore, the triangles should

cover the whole structural domain. Also the boundary I'p is formed by a
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Finite element

Figure 2.2.: Visualization of the functions N;

set of exterior element edges. Only in that case the following construction
of S" is useful: Assuming that an index is assigned to each of the nodes
which do not coincide with I'p, we define the functions NV;(x) to be the

functions which
e take the value 1 at the i-th node;
e take the value 0 at all other nodes;

e are a linear interpolation inside each element between the function

values defined at the three nodes of that element.

An example of such a function is shown in figure 2.2. The space S" is

constructed using the following basis:

Nl(a:)

Uy = , U3z = (254)

N2<w>]

0 0
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Other element choices are possible, although we will only be concerned
with triangular elements in this thesis. The key feature here is that they
are defined as piecewise polynomial functions, and that they vanish almost
everywhere. This ensures that a(u;, u;) is zero for almost all combinations
of indices and therefore sparse matrices are obtained.

Instead of evaluating the stiffness matrix globally, one usually evaluates
the stiffness matrix for each element and assembles the global matrix from
these element stiffness matrices. This simplifies the algorithmic procedure
and zero entries are automatically neglected.

Using piecewise polynomial functions also makes it possible to employ a
simple integration scheme. Gauss integration of order one inside each ele-
ment is sufficient to perform the integration of the element stiffness matrices
exactly. The algorithm can further be simplified by using the well-known
concept of isoparametric elements. The idea of isoparametric elements is to
evaluate the derivative of the shape functions for each element on a com-
mon reference element. Thus, the shape of each element has not to be taken
into account. The element stiffness matrices for the original elements are
obtained by exploiting the properties of the corresponding integral trans-
formation.

Theorem 2.4 is a rather abstract result. One is usually interested in the
behaviour of the error during a sequence of mesh refinements. The con-
vergence during mesh refinement is closely related to the regularity of the

solution. We define:

Mu = Zu(mZ)NZ (2.55)

i
Let h be the maximum length of the element edges, we are interested in how
the error behaves if h — 0. Convergence can usually only be guaranteed
for meshes which are quasi-uniform. A series of meshes is called a quasi-
uniform triangulation if the angles of all triangles are bounded from below
by a positive constant.
A general statement about convergence properties is possible if the space
H?(Q) is considered. This space is a subset of H'(£2) containing functions
which have additional smoothness properties (cf. [4]). For instance these
functions do not contain weak singularities.

Using the projector II we can state the most important result about the
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FEM-approximation for functions in H?(2):

Theorem 2.5 For a quasi-uniform triangulation and a function u € H*(S2)

there exists a constant ¢ independent of h such that:
Ju — ul|z2 < ch®|ul g2 (2.56)

Proof cf. [5]. O

| - |lz2 is the L*norm and |- [g2(q) is a semi-norm on H?(Q) [5]. Together
with Cea’s Lemma we get quadratic convergence in the L?-norm for quasi-
uniform triangulations if the components of w are in H?*(€2). This raises
the question under which circumstances one can guarantee this additional
smoothness of the solution. The exact solution is for instance in H?(2) if the
domain is polygonal and convex and zero displacements are prescribed at
the boundary [6]. However, for mixed boundary conditions and non-convex
domains such statements cannot be made in general. This is especially true

for structures containing cracks.

2.4. Extended finite element method

Often the approximation properties of the piecewise polynomial functions of
the FEM are not sufficient to approximate the exact solution. Although the
numerical solution converges for h — 0 if the element angles are bounded
from below, unreasonably small element sizes have to be used to obtain an
acceptable solution. Examples for such problems are for instance structures
containing re-entrant corners or cracks as discussed in the previous section.
The stress and strain singularities cannot be resolved very well by piecewise
polynomial ansatz functions. In the case of piecewise linear ansatz func-
tions the stresses and strains of the numerical solution are constant inside
each element. To reproduce a singularity with piecewise constant functions
a very fine discretization must be used. Since the displacement components
are not functions of H?, the previous result about quadratic convergence
does not hold any more.

But even if the displacement components are functions of H? the conver-
gence can be slow. Imagine a smooth function which is a good approxima-

tion of a singular function. Although quadratic convergence is guaranteed
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by theorem 2.5 and theorem 2.4, this convergence may only be experienced
for extremely small values of h.

There are often situations in which it is possible to predict certain features
of the exact solution solely based on the geometry of the structure and the
boundary conditions. This a-priori knowledge about the solution can be
used to improve the approximation properties of the ansatz space. Func-
tions that are assumed to be a good approximation to the exact deformation
of a structure can simply be added to the space if they are elements of H%D.
It is obvious from equation (2.47) that adding new functions can only in-
crease the approximation properties.

The partition of unity finite element method (PUFEM) introduced by Me-
lenk and Babuska [7] is a special technique to enrich the FEM space using
such a-priori knowledge about the solution. Let us say that a function ¢
which can be determined a-priori is assumed to have a good approximation
property to the exact displacements of a structure in a certain area. In-
stead of adding ¢ directly to the ansatz space it is multiplied by a subset
of the shape functions /N;. Each of the products is then used to enrich the
function space. The shape functions N; posses what is called the partition
of unity property. That is, their sum is equal to 1 everywhere in {2 (to be
fully precise, everywhere except inside those elements that are connected to
I'p, but let us assume that shape functions N; are defined for all nodes, in

that case >, N; = 1 everywhere in 2). Therefore, we have:
Y Np=(0_Ni)p=16=¢ (2.57)

Hence, if ¢ is multiplied by all the shape functions the new space is able to
reproduce the function ¢.

Usually the approximation properties of ¢ are of a local character and only
needed in a certain area of the structure. Therefore, if one uses those shape
functions N; whose support is close to the area of interest to calculate the
products N;¢, ¢ can still be reproduced in that area.

The products N;¢ are called the nodal enrichments and ¢ is called the en-
richment function. The corresponding nodes are called enriched nodes and
the elements containing these nodes are called enriched elements. The nodal

enrichments can be added as basis functions to the FEM ansatz space to
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enhance the approximation properties.

There are several advantages to this approach if compared to the idea of
adding ¢ directly to the FEM space. One advantage is that the support
of the functions N;¢ is restricted and therefore the sparsity of the stiffness
matrix is preserved. Another advantage is that the shape of ¢ can be ad-
justed locally.

Belytschko et al. [8] were the first ones to use this approach to reduce the
burden of remeshing during the calculation of crack growth in elastic struc-
tures and named the new method X-FEM.

In crack growth calculations with the FEM, remeshing at each stage of crack
growth is a necessary obstacle. Due to the singularities at the crack tip the
mesh has to be refined several times depending on the location of the crack
tip. Furthermore, element edges should align with the crack faces, otherwise
the ansatz space is not able to reproduce the displacement jump along the
crack.

But these are geometric restrictions on the mesh choice. If the crack ge-
ometry is complicated this may cause automatic mesh generators to break
down.

In the X-FEM the structure can be meshed neglecting the presence of the
crack. Therefore, the numerical solution of the FEM would not be able to
represent the displacement jump along the crack. But in the X-FEM ad-
ditional enrichment functions are used to compensate for this. A function
¢ that is discontinuous along the crack is defined. Each of the resulting
products is used as an additional function in the FEM space. All nodes
belonging to elements that are cut by the crack are enriched, except those
of the element containing the crack tip.

A different type of enrichment is chosen to represent the displacement fields
at the crack tip. As mentioned earlier the strains in the vicinity of the tip
are singular. The problem of a two-dimensional crack in an infinite plane
can be solved analytically. The analytical solution provides suitable enrich-
ment functions for the area around the crack tip which are also called crack
tip enrichments.

The partition of unity property of the shape functions can also be used to
model cohesive cracks as demonstrated by Wells and Sluys [9].

In the first versions of X-FEM only the nodes of the element containing the
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crack tip were enriched by the crack tip enrichments. Chahine et al. [10]
however were able to show that optimal convergence rates could only be re-
stored if all nodes inside an area around the crack tip which is independent
of the element size are enriched. This is also called geometric enrichment.
Another class of problems for which remeshing is cumbersome are struc-
tures in which material interfaces are present. Generally the strains are
discontinuous at the interface. The element edges have to align with the
material interface, otherwise the strain jump cannot be reproduced exactly.
If the geometry of the material interface is complicated, similar problems
during mesh generation are experienced as in the presence of cracks. These
problems can be circumvented by using an enrichment which has a discon-
tinuous derivative [11]. As in the case of a crack, all nodes belonging to
elements that are cut by the interface are enriched.

However, using such enrichments could not restore optimal convergence
rates as it was achieved by the X-FEM in conjunction with cracks and geo-
metric enrichments. The elements whose nodes are only partially enriched
by a certain enrichment function are called blending elements. If the nu-
merical solution is formed partially by the nodal enrichments, error terms
are present in the blending elements. Fries [12] proposed to multiply the
enrichment with a function called the ramp function. The ramp function is
formed by adding the shape functions of all those nodes that usually would
be enriched. Thus, the resulting ramp function takes values smaller or equal
to one and greater or equal to zero. Fries then proposed to enrich all nodes
whose shape functions have a support that coincides with the ramp function.
Therefore, the number of enriched nodes increases if compared to standard
X-FEM. This was called the corrected X-FEM. Optimal convergence rates
could be achieved for structures containing material interfaces.

The corrected X-FEM can also be applied to the enrichments representing
the crack tip combined with the geometric enrichment procedure. But the
convergence rates cannot be improved any further. However, the error for
a given mesh is significantly smaller.

We will use the methods mentioned above to obtain accurate numerical so-
lutions for problems involving polycrystalline structures. This will simplify
the meshing procedure significantly. As a consequence we are able to guar-

antee a successful mesh generation at each stage of crack growth. Therefore,
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the crack growth simulations in section 4.4.2 can be automated completely.
Please note that a successful mesh generation for complicated geometries
can generally not be guaranteed if the mesh should meet the requirements
mentioned above (i.e. alignment of the element edges with certain geomet-
ric features and refined meshes in certain areas). Furthermore, numerically
determined enrichment functions will help us to represent strain singulari-
ties appropriately in the numerical solution.

X-FEM has been used in the context of polycrystalline structures and mi-
crostructural geometries before. Sukumar et al. [13] simulated crack growth
in a polycrystalline structure using X-FEM. The same isotropic elastic mate-
rial properties were assumed for each crystal, such that the standard crack
tip enrichments for cracks in isotropic materials were appropriate enrich-
ments. Moés et al. [14] used an enrichment with a discontinuous derivative
to describe the non-smooth behavior of the solution at material interfaces in
microstructural geometries. Simone et al. [15] described a method in which
a Heaviside function was used to describe grain boundaries. Traction forces
at the boundaries holding the grains together were added to the formula-
tion.

Throughout this thesis plane strain conditions are assumed for the poly-
crystalline structures. Thus, the problem can be posed in two dimensions.
A polycrystalline structure consists of different grains, where ; C R? de-
notes the open domain covered by the i-th grain. Those domains do not
overlap, but their closures cover €2 completely. Two neighboring grains are
separated either by a grain boundary or by a crack. A crack may also be
inside a grain. The situation is depicted in figure 2.3.

While a crack is a part of the boundary I'y, a grain boundary is part of
the structural domain 2. Points at which two or more grain boundaries
terminate are called junctions. Cracks might also terminate there.

The constitutive relationship for the i-th grain is then given by:

o=2D,: € (2.58)
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Grain /

Cracks

Figure 2.3.: Fxample of a polycrystalline structure

D; is the fourth order elasticity tensor. The indicator function is defined
by:
I, (x) = (2.59)
0 otherwise
The elasticity tensor D(x) for the whole structure can be defined by using

indicator functions:

D(z) = Z DI (x) (2.60)

In the following sections structural problems are not always interpreted as
polycrystalline structures. However, the framework developed here makes
it possible to treat those structures as special cases of a polycrystalline
structure. For instance a structure formed by two isotropic materials can
be interpreted as a polycrystalline structure formed by two grains with a
special isotropic elasticity tensor.

To solve the problem numerically the structure is discretized by a set of
finite elements. These elements do not need to conform with cracks or grain
boundaries because appropriate enrichment functions are used. The X-FEM

space used throughout this work is given by all displacement functions w”
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with components of the form:

- ZSNZ( alk—l_ZZN ¢Zj Uk (261)

= J=1 ice;
——— ~ o
FEM part X-FEM enrichment
ke {1,2) (2.62)
e; C{1,...,ns} (2.63)

The a;, and the af](-k are unknown coefficients. The first term in equation
(2.61) contains the standard finite element shape functions N;. The second
term contains the enrichment functions ¢;; multiplied by a subset of the
polynomial shape functions. nj is the number of polynomial shape functions
and n, is the number of enrichment functions. The set of nodal indices ¢;
is chosen individually for each enrichment.

By using different types of enrichment functions, the numerical solution is

able to represent the following features of the exact solution appropriately:

e Displacement discontinuities along the crack;
e Strain discontinuities along the grain boundaries;

e Strain singularities at crack tips, junctions and re-entrant corners.

An enrichment scheme for each of the features mentioned above is now ex-

plained.

Crack interior enrichment

Let one of the cracks be denoted by I'c and the domains at the different
sides of this crack by €, and Q_. We define the enrichment by using the
Heaviside function [16]. If the j-th enrichment in equation (2.61) is chosen
to represent the displacement jump along the crack interior, then it can be

written as:

¢ij(x) = Hr(x) — Hre () (2.64)

+lifx e
Hr(x) = " (2.65)
—1lifxe_
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x; are the coordinates of the node associated with the i-th polynomial shape
function. The subtraction of the value of H(«;) is called shifting or nodal
subtraction. This has several advantages. For example Dirichlet boundary
conditions can be prescribed in the usual way, without being affected by the
enrichments. Furthermore, the coefficients a;. describe the displacements
at the i-th node directly (without shifting, a summation of different coef-
ficients would have to be performed to obtain this value). Shifting will be
used for the other enrichments too.

Please note that there is no need to take special care of the blending ele-
ments for this type of enrichment, since the Heaviside function is piecewise
constant. Therefore, an error introduced in the blending elements can be
compensated by the polynomial shape functions.

Let the crack tip be denoted by J. The set e; is chosen depending on the
support (supp(+)) of the shape functions:

e; ={i: supp(N;) NTc #0 A supp(N;) N J =0} (2.66)

The situation is shown for a regular finite element mesh with a crack in
figure 2.4(a). For branching cracks some adjustments have to be made. An
approach different from the one used in this thesis was used by Daux et
al. [17]. A special discontinuous junction function was introduced. The
approach used in this thesis is slightly simpler to implement since only the
definition of Heaviside functions is involved.

A situation in which three cracked grain boundaries join is shown in figure

2.5. Three different Heaviside functions can be defined by:

+1 ifxe;
H; = ’ (2.67)

—1  otherwise

All nodes of the element are enriched (e; = {1,2,3}). The displacement

field for such an element is then:
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Node 1

.......................... (1'/ Qs Node 2

Node 3

Figure 2.5.: Three cracks joining at a common junction in an element

If the kinematics of this element are represented correctly by the enrichment
strategy, it should be possible to represent arbitrary displacement fields that
are constant inside each domain €2;, but discontinuous along the cracks. In
that case the domains €2; would be effectively disconnected.

By reordering the coefficients we can define:
Air = Qi — Z af](-kHj(zci) (2.69)
J
Thus, the displacement field becomes:
Zasz + ZZ@W Hj(x) (2.70)
ice; j

The discussion is simplified by assuming:

Qi = Qo = A3y (2.71)
aig.k = aggk = agg.k Vj (2.72)

Since the shape functions form a partition of unity, the displacement field

inside the element becomes:

ur(®) = an+ Y apHy(w) (2.73)

J
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Furthermore, let us assume that an arbitrary piecewise constant displace-
ment field is given by constants c;i, where cjj is the value of the k-th com-
ponent inside the domain €2;. Due to the definition of H}, one has to solve

the following equation system to represent this field accurately by (2.73):

Qg

1 1 -1 -1 C1j
X

aq1k

1 -1 1 -1 = |cop (2.74)
X

A1k

X
13k

Obviously there are infinitely many solutions. Neglecting one of the Heavi-
side functions H; in the enrichment procedure would result in an equation
system with one less column, which would be non-singular for any choice
of H;. Hence, we may delete any of the last three columns. From this we
can conclude that the kinematics of an element containing a cracked triple
junction are represented correctly if we use two of the three Heaviside func-
tions defined above. Please note that this result is independent of the angles
between the cracks and the position of the junction. Similar conclusions can
be made for an element in which four or two cracks terminate at a common

junction.

Grain boundary enrichment

Let one of the grain boundaries be denoted by I'g and the junction to which
this grain boundary is connected by J. The solution will in general have a
discontinuous derivative along the boundary. Therefore, we use a function
for the construction of the enrichment, which has the same property. The

distance function [11] for the grain boundary I'g can be defined by:

Dr,(x) = min || — x| (2.75)
zel'p

To avoid problems in blending elements the distance function is multiplied

by a ramp function [12]. If the j-th enrichment in equation (2.61) is chosen
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to represent this grain boundary, then it can be written as:

¢ij(x) = [Dry(®) — Dry(z:)] R(x) (2.76)
R(zx) = Z N;(x) (2.77)
r; ={i: supp(N;) NT'p # DA supp(N;) N (J) =0} (2.78)

The nodes associated with the set r; are called ramp nodes. The set e; for

the grain boundary enrichment is given by:
e; = {i : supp(N;) Nsupp(R) # 0 A supp(N;) N (J) = 0} (2.79)

The situation is depicted in figure 2.4(b).

Enrichment at crack tips, junctions and re-entrant corners

In the case of a junction, a crack tip or a re-entrant corner the enrichment
is determined numerically. The procedure is described in section 3.2. The
enrichment is written in polar coordinates with radius r and angle 8, where
the pole of the coordinate system is located at the junction, the corner or the
crack tip respectively. The enrichments considered here can be decomposed

in a term depending on the radius and a term depending on the angle:
P(z) = R [r(x)*v(0(x)] MreC (2.80)

The enrichments are again generated by shifting and using a ramp function.
If the j-th enrichment in equation (2.61) is chosen to represent a junction,
a re-entrant corner or a crack tip at coordinates J, then it can be written

as:

¢i(x) = [P(x) — P(x;)] R(z) (2.81)
R(zx) = Z Ni(x) (2.82)
ri={i: |l@i = J| < ronas} (2.83)

e; = {i : supp(N;) Nsupp(R) # 0 } (2.84)
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Tmae 1S @ radius independent of the mesh size, therefore, the enriched area
does not decrease during mesh refinement. Since this is necessary to obtain
optimal convergence in the case of a crack [10], it is an important require-
ment for the more general case discussed here. The situation is shown in
figure 2.4(c).

2.5. lterative solvers

If the equation systems become large a direct solution is not efficient any
more. The computational effort involved in solving equation systems di-
rectly via matrix decomposition grows cubically. This is also true for sparse
matrices, since generally the sparsity pattern is not preserved during a ma-
trix decomposition. Iterative solvers improve the solution stepwise. The
solver stops if the residual becomes sufficiently small.

Different iterative solvers are available. One of them is the minimal residual
method (MINRES). This method can be applied to symmetric indefinite
matrices. Generally the stiffness matrix in the FEM and the X-FEM is
symmetric positive definite, which would allow to use other solvers like the
conjugate gradient method (CG) too. But the preconditioning technique
in section 3.3 results in symmetric indefinite matrices. This is due to the
addition of constraints in the equation systems. Therefore the MINRES
solver was chosen for the examples considered in this thesis.

We will start the discussion with the generalized minimal residual method
(GMRES). Simplifications of this method can be made if the matrix is sym-
metric. These simplifications will lead us to the MINRES solver.

We want to solve:

Ka=f (2.85)

The task can be interpreted as minimizing the norm of the residual in R™:
in [|[Ka — 2.
min |[Ka — f| (2.86)

In the i-th step of the GMRES solver the residual is minimized over an

i-dimensional subspace of R™. Assume that the columns of the matrix
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Q; € R™ form an orthogonal basis of this space:

Qi = [ql, ...,qz} (2.87)
Then the problem becomes:
a; R

A solution can be obtained by solving:

QIKQia; = Q] f (2.89)

The space that the GMRES method uses is called the Krylov space. For its

definition a vector and a matrix is needed:

Definition 2.1 The i-th Krylov space for a matriz K and a vector f is
defined by:
K(K, f) = span{f, Kf,... K" f} (2.90)

In the i-th step the equations of the GMRES solver can be written as:
KQ;=Qi,qi] T (2.91)

@i+1 is a column vector and the matrix T} is an element of Ri™1¢  The
vector g;,1 is orthogonal to the columns of Q;. To obtain the equations in
the ¢ + 1-th step we set:

Qi1 = [Qi, qit1] (2.92)
We obtain g, by:
i+1
gir2 = Kqip1 — Z (quKQi+1> q; (2-93)
j=1
Qi+2
Qiv2 = T (2.94)
1Gi+2|l

Please note that the matrix-vector product Kg;.; in (2.93) should be cal-

culated only once.
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We define:
(hTK(IiH

QZHK(IH—l

Then the matrix T}, is obtained by:

T: t
T = o (2.96)

0 |2

Therefore, all the matrices and vectors in (2.91) are defined for the step
© + 1 by using quantities from step 1.

Assume we start the process with:

£
Then Q; is a basis of the Krylov-space K(K, f)’ for every i (except for
the case g¢; = 0 for some ¢, which is known as a break down). This can
be shown by induction: If Q;,; is a basis of K(K, f)* then g;o is an
element of (K, f)"™ which follows from the definition of the Krylov-space
and equations (2.93) and (2.94).
Q; for every i forms an orthogonal basis of K(K, f)" because equation
(2.93) basically describes a Gram-Schmidt procedure applied to the new
basis vectors of the Krylov space.
Multiplication of equation (2.91) with Q7 from the left results in:

Q'KQ, =T (2.98)

T; contains the first ¢ rows of T}. The approximate solution a; in (2.89) can

therefore be obtained by solving:

Ta = Q f (2.99)
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By the definition of the algorithm the matrix T: looks like:

*
0O ... 0 = =x

Matrices of this structure are also known as Hessenberg matrices. Looking
at equation (2.98) we see that symmetry of K would imply symmetry of 7T
for every i. Therefore, the Hessenberg matrix becomes a tridiagonal matrix
for symmetric K. But in that case the number of inner products that have
to be calculated in (2.93) can be reduced significantly since most of them
are zero by default. Leaving out those operations in the GMRES procedure
would effectively be the MINRES solver for symmetric indefinite matrices
in its simplest form.

The residual in the i-th step is defined by:

The relationship of the residual to the spectrum of the matrix K is stated

in the next theorem:

Theorem 2.6 Let Qg be an orthogonal set of eigenvectors of the symmet-
ric matriz K. Furthermore, let Ay, ..., \, be the eigenvalues of K. If P is
the space of polynomials of order i, then the norm of the residual r; in the
i1-th step of the MINRES-solver is bounded by:

|75l < min mjaxp(Aj)HQ%}fH (2.102)

pePt | p(0)=1

Proof Due to the definition of the Krylov space we can write the residual
in the i-th step of the MINRES solver as:

K (pif + 02K f +ps K2 f +...) — £ (2.103)

p1, ..., p; are some coefficients. If Qg is a set of orthogonal eigenvectors of
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K and A is with diagonal matrix with eigenvalues Ay, ..., A\,, on its diagonal,

the residual can be written as:

1QxAQk (01 f + P2QrkAQLS + ps(QxAQL)’f+..) — fIl )
=[|QkAQ% (01 f + P2QrAQK f + psQr AN’ Qi f + ...) — f| ( )
=[[AQk (11 f + P2 QK AQL S + psQr A’ Qi f + ..) — Qi f| ( )
=[P AQK S + P2 A’ Qi f + psA° Qi f + ... — QK S| (2.107)
=[|(pA + p2 A + psA® + .. = DQK F| ( )
=[|(I = pr1A — p2A® — psA® — ) QS (2.109)
<maxp(\)| @S| 2.110)

We set py := 1 to obtain the polynomial p. This proves the theorem since

the MINRES iterates minimize the residual norm over the i-th Krylov space.

t

According to this theorem, the distribution of eigenvalues on the real axis
plays an important role if the convergence of the MINRES solver is dis-
cussed. If we consider symmetric positive definite matrices only, we can
interpret the theorem as follows: The MINRES convergence will be fast if
the interval on the real axis which contains all eigenvalues is small and its
distance to zero is large. It is easy to imagine a parabola with function
value 1 at x = 0 and function value 0 somewhere inside that interval. The
polynomial p in (2.102) would take small values for all \;, thus, the ex-
pression on the right would be small. Therefore, in the second step of the
solution process a good approximation would be obtained already. Similar
statements can be made for indefinite matrices.

We may conclude that the eigenvalue with the smallest magnitude and the
one with the largest magnitude are more important than the other eigenval-
ues since they determine the interval mentioned above. The eigenvalue with
the smallest magnitude should have a large magnitude, while the eigenvalue
with the largest magnitude should be of a small magnitude. Both properties

of the spectrum are reflected in the condition number:

Definition 2.2 Let A\, and \,;, be the eigenvalues with the largest and

the smallest magnitude of a symmetric matriz K. The condition number
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k(K) of K is defined by:

K(K) = (2.111)

The following theorem relates the condition number to the convergence
behavior of the MINRES solver:

Theorem 2.7 The norm of the residual r; in the i-th step of the MINRES
solver for a symmetric matrix K is bounded by

lrsll < [1 — w(E) 2% || (2.112)

Proof In a more general form the theorem was proven by Eisenstat et
al. [18]. O

Therefore, if the condition number is big, the expression in brackets is only

slightly smaller than 1 and the convergence is slow.



3. X-FEM for polycrystalline
structures

In section 2.4 we collected several concepts and ideas from the X-FEM liter-
ature which were put together to form a general framework for solving me-
chanical problems involving cracked polycrystalline structures numerically.
This framework, however, is not yet capable of performing the lifetime pre-
diction procedure in chapter 4 in an efficient manner. In this chapter several
methods are proposed and tested to further develop it.

The core of this chapter is formed by section 3.2, section 3.3 and section 3.4.
In section 3.2 a methodology to determine weakly singular enrichment func-
tions for arbitrary two-dimensional structures will be presented. In section
3.3 a preconditioning technique is developed which enables a fast solution
of X-FEM equation systems for arbitrary enrichment strategies. In section
3.4 a meshing strategy is described and tested which, in combination with
the X-FEM, makes a complete automation of the crack growth calculations
in chapter 4 possible.

We start this chapter with a discussion of the numerical integration proce-
dure employed throughout this thesis. Although the influence of the numer-
ical integration scheme is not directly visible in the numerical experiments
performed in this chapter, this topic has to be discussed first, since all the
other concepts are built on it.

Towards the end of this chapter an implementation of the penalty method
for X-FEM which prevents crack faces from overlapping is explained. This
is done in section 3.5, the main challenge is to combine the penalty method
with the preconditioning technique developed earlier.

Finally, the combination of the X-FEM procedure explained so far with
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an explicit solver for transient problems involving creep deformation is dis-

cussed.

3.1. Numerical integration

The necessity to modify the standard Gauss integration employed for finite
elements for the X-FEM was realized early. Moés et al. [16] decomposed
the finite elements into smaller triangles and performed Gauss integration
of a higher order for each of them. A similar approach will be used here.
More advanced integration procedures were proposed by Béchet et al. [10].
An integral transformation was used to integrate weakly singular functions.
The number of function evaluations in the integration procedure could be
reduced significantly.

Other approaches were discussed by Natarajan et al. [19]. One of these
approaches transforms the integral onto the boundary of the finite element.
This eliminates the need for subdividing the elements into integration do-
mains.

Numerical integration of a function f over some area A starts with placing
a number of integration points g; inside the area. A weight w; is assigned

to each point. An approximation to the exact integral is then:

/Afda ~ Zwif(gl-) (3.1)

If A is a triangle the w; and the g; can be chosen such that (3.1) holds
exactly for polynomials of a certain order. In Gaussian quadrature the in-
tegration points and weights are chosen such that the polynomial order is
maximal.

The entries of the element stiffness matrices of standard finite elements can
be integrated exactly (at least if round-off errors are neglected). For trian-
gular elements and piecewise linear shape functions one integration point is
sufficient since the integration has to be performed over a constant function.
Thus, the weight is simply the area of the triangle. Generally a Gaussian
quadrature of order n integrates polynomials up to an order of 2n — 1 ex-
actly. In one dimension the order of the quadrature is equal to the number

of integration points. In two dimensions the number of integration points
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is generally larger than the order (order one is the exception). A good in-
troduction to Gaussian quadrature was given by Schwarz and Kockler [20].
The enrichments however may not be polynomials. Therefore, numerical
integration by Gaussian quadrature will only be an approximation. But we
may hope for a small integration error if we increase the order of integra-
tion. The error is dependent on the smoothness of the function that is to
be integrated [21]. The enrichments will be non-smooth across the grain
boundaries and junctions. Thus, the accuracy of the numerical integration
will be higher if the elements are split in integration domains which do not
contain junctions, boundaries or cracks in their interior.

In the applications in section 4.4.2 the structures are formed by grains and
cracks will only appear at the grain boundaries. The element domain is
decomposed into integration subdomains formed by the intersection with

the neighboring grains. As a result we obtain polygonal domains which do

Grain

<— Flement

(a) Element cut by grain boundaries

(b) Decomposition of the element
and a crack

domain into subtriangles

Figure 3.1.: Decomposition of the element domain into integration do-
mains

not contain cracks or boundaries in their interior. The situation is shown
in figure 3.1(a).

The polygonal domains are then decomposed into subtriangles as shown in
figure 3.1(b). Inside these subtriangles we can assume that the enrichments
are sufficiently smooth.

Gaussian integration is performed for each subtriangle. The integration or-
der for the subtriangles is shown in table 3.1. If the enrichment functions

stem from a junction enrichment and the junction is in the interior of the
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Subtriangles in an element containing | 15

an enriched junction

Subtriangles in an enriched element 10

Table 3.1.: Integration order for the subtriangles in the enriched elements

corresponding element, the integration order is increased.

In the applications in section 4.4.2 some elements are not fully part of the
structural domain. In that case the integration is only performed over the
interior part.

In some of the following sections (straight) cracks appear not only at grain
boundaries, but also in the interior of a grain. In that case an element cut
by the crack is either cut completely, or it contains the crack tip. If it is
cut completely, the elements domain can be decomposed into two polygonal
domains which are then further decomposed into subtriangles as already

discussed. If the element contains a crack tip, the elements domain is split

-~
-~
-~

Crack tip

(a) Element with a crack  (b) Decomposition in inte-
tip in its interior gration domains

Figure 3.2.: Decomposition of the element domain into integration do-
mains if a crack is in the grain interior

as shown in figure 3.2. The crack forms a straight line inside the element
domain. Other straight lines can be drawn from the crack tip to each of the
elements nodes. All of these lines are used to decompose the element into
triangular integration domains.

This integration procedure works well if grain boundaries and cracks are

straight lines. For polycrystalline structures obtained by a Voronoi-tessellation



Chapter 3 63

as in chapter 4 this is true.

3.2. Numerically determined enrichment
functions

In this section it is explained how enrichment functions can be used to en-
hance the approximation properties of the FEM if weak singularities are
present in the exact solution. Weak singularities may arise at crack tips,
junctions or re-entrant corners. The standard enrichment functions at the
crack tip used by Belytschko et al. [22] are examples of such enrichments.
They can be determined analytically, but they are only a good representa-
tion of the asymptotic fields in the vicinity of the crack tip if the material is
isotropic. In the case of general strain singularities it is not always possible
to determine suitable enrichment functions analytically. The asymptotic
fields are dependent on the surrounding materials and the geometry of the
structure.

In this section the asymptotic fields are determined numerically and used
in equation (2.81). This idea was first published by Menk and Bordas [23].
Numerical experiments are performed to show that these enrichments are
able to restore optimal convergence rates if weak singularities are present
in the exact solution. This will complete the enrichment strategy described
in section 2.4.

Other enrichment strategies for situations in which the explicit form of the
asymptotic fields is not known analytically exist in the literature. The Spi-
der-X-FEM developed by Chahine et al. [24] is one of them. However, the
order of the singularity has to be known in advance.

A method to use the idea of enrichment if only very little a-priori knowledge
is available was proposed by Waismann and Belytschko [25]. The idea is
to enrich with functions called parametric enrichments, which depend on
unknown parameters. Those parameters are adjusted during the course of
the algorithm by minimizing an a-posteriori error estimate from a previous
calculation. This idea could also be used to model weak singularities in
polycrystalline structures by enrichments, but the equation systems have to

be solved several times to obtain a solution which minimizes the error.
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3.2.1. Determination of the enrichment functions

General linear elastic problem description at crack tips, j unctions
and re-entrant corners

Li et al. [26] describe a way to determine the singular stress distribution
in the vicinity of a notch formed by different anisotropic materials. The

situation is depicted in figure 3.3. The equations (3.2)-(3.17) are reproduced

Material n

Y
\ Material 1
z

Figure 3.3.: Notch formed by different anisotropic material wedges

here from the original work for two reasons. The first one is to motivate
the choice for a certain discretization parameter m used in the numerical
experiments. The second reason is to explain how this approach can be
used if the angle of the notch in figure 3.3 vanishes and all interfaces are
perfectly bonded, which was not discussed in the original paper.

The displacements and the stresses are written in cylindrical coordinates,
the origin being located at the tip of the notch. The equations governing

the plane strain problem can then be written in terms of the variable vector

¢:

¢=1[¢ ¢ (3.2)
C1 = [ug vy ] (3.3)

Co = [ogr TroT Too] (3.4)
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r, @ and z are the radial, the angular and the out-of-plane component of
the cylindrical coordinate system. wug, u, and u, are the corresponding dis-
placement components in cylindrical coordinates. Transforming the stress
tensor from euclidean to cylindrical coordinates gives the normal stress for
the radial component oy and the shear stresses 7,9 and 7y..

The solution is assumed to be of the form:

¢(r,0) = r'9p(0) (3.5)

The exponent A and the function (6), which we will call angular function,
are unknown. A must be greater than zero, otherwise the elastic energy
would be infinite.
Using this assumption the equilibrium equations depend on # and A in the
following way:

Oy (0)

g = H(O.N$(0) (3.6)

H (6, )\) is a matrix whose entries depend nonlinearly on # and A. The
derivation of H (0, \) is rather technical and can be found in Appendix A.
In the case of a polycrystalline structure, the different materials in figure
3.3 would be grains. A crack terminating at a junction would be described
in this framework simply by a notch with a zero angle.

The entries of the matrix H (0, \) are different in the plane stress and the

plane strain case, however, we are only interested in the plane strain case.

Determination of the order of the singularity

The order of the singularity A is obtained as follows. Suppose that for the
i-th material the interfaces to the neighboring materials are located at 6;
and 0;,1. The vectors 1(6;) and 1(0;11) can be related by using equation
(3.6). Assume the interval [0;,0;,,] is divided into m smaller intervals and
let the j-th of these intervals be given by [67,67""] and h = ¢! — ¢/ be the

interval angle. By using the trapezoidal rule the following approximation

can be made for small intervals:

B0 —p(B]) ~ [HE (@) + HE Ng@ ] 5 (37
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Solving this equation for 1,0(05“) yields:

V(6 = Blyp(#) (3.8)
h

B’ = [I —H(, )\)g} B [I +H(¥, )\)5} (3.9)

Thus, one obtains for ¥ (0;11) and ¥ (6;):

Y(0iy1) = Bip(0:) (3.10)
B, = ﬁB;”j (3.11)

The vector ¢ is continuous across interfaces [26]. Thus, the vectors 1 (6p)

and 1(0,,) can be related by:

Y(0,) = B(A\)v(6o) (3.12)
B()\) = f[ B, (3.13)

By using the definition of { we can write:

aen] _ [Buy Ba] [Gi@) 818

G2(0n) Bo1(A) Baa(A)| [ C2(6)

The submatrices By1,B12,B21 and Byy are complex 3 X 3-matrices.

Choosing zero-traction boundary conditions at the free edges yields:

C2(00) = p(6n) = 0 (3.15)

Of course the equation (3.14) is fulfilled if {;(6y) = ¢1(6,,) = 0. But to ob-
tain non-trivial solutions fulfilling the boundary conditions, we are looking
for a non-zero vector that combines the columns of By, to zero. Thus, a

nonlinear eigenvalue-problem in A has to be solved:
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The solutions with 0 < R[A] < 1 are the ones describing a singular strain
state, which is obvious from differentiating equation (3.5) with respect to

r. If an eigenpair (), ;) is found, then by using equation (3.15) the vector
P(0,) is:

G

0
¥(0,) = (3.17)
0

0

To solve the eigenvalue problem a Newton-type method has to be used
because of the non-linearity. The difficulty is to choose appropriate start
values. To describe a singular behavior in the structure correctly, all eigen-
values have to be found. Complex eigenvalues might appear. But since
the computational effort to solve this eigenvalue problem is usually small,
a random distribution of start values in the complex plane between 0 and

1 can be used.

Case where no notch or crack is present

If the notch angle is zero and no crack is present (i.e. all the material inter-
faces are perfectly bonded), the boundary conditions have to be changed. As
a consequence of the continuity of { across material interfaces the solution
now has to fulfill:

¢(o) = ¢(0,) (3.18)
or equivalently:

STCH R TSTCH (3.19)

p(0h) p(0,)

In that case finding a suitable A from equation (3.14) results in the eigen-
value problem:
det(B(A\) —I)=0 (3.20)

Determination of the angular function

It is important to notice, that once A is known, equation (3.6) can be treated

as an ordinary differential equation for the function (). Depending on
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the problem one can either construct the vector (6,) in equation (3.17)
or one can obtain an eigenvector of equation (3.20). Each of these vectors
may directly be used as an initial value for the solution of equation (3.6).
For the solution of the resulting initial value problem any ODE-solver can

be used.

Determination of the enrichment functions by coordinate
transformation

Combining the eigenvalue A and the solution of equation (3.6) in equation
(3.5), a solution of the linear elasticity problem is at hand. The first two
components of ¢ are the ones describing the displacement in the plane. To
obtain the displacements in cartesian coordinates, they have to be trans-

formed:
U (7, 0) _ sin(f)  cos(@)| |ua(r,0) (3.21)
wy (1, 0) —cos(0) sin(0) | |u.(r,0)
Please note that this transformation should be applied only to the angular
components of uy and u,, since r* appears in both components and therefore
remains unchanged in the transformation. This simplifies the implementa-
tion, since otherwise the transformation would have to be calculated at
every GGauss point.
Each one of the displacement components obtained from this procedure can
be used as an enrichment function. Although the explicit form of the an-
gular part is unknown, the function values can be obtained approximately
by linear interpolation using the values calculated by the ODE-solver. The

derivatives can be calculated using numerical differentiation.

3.2.2. Numerical experiments

First we will justify a choice for the discretization parameter m (equation
(3.11)) which will be used throughout this thesis. To do this, numerically
determined asymptotic fields are compared to exact solutions. Afterwards
numerically determined enrichment functions are applied to different prob-
lems in linear elasticity. The results of the X-FEM and the FEM applied

to these problems are compared afterwards on several meshes to obtain
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convergence rates.

Convergence of the asymptotic behavior of the enrichment
functions

To test whether the determination of the enrichment functions described
above results in approximations that represent the asymptotic displacement

fields of a certain structure, we consider three examples. The first structure

P

Perfect bond
Material 1

P

Crack

Material 1

E=10,v=03

E=10,v=03

(a) Structure 1: Structure
with kinked material inter-
face between two isotropic

(b) Structure 2: Kinked ma-
terial interface with crack be-
tween two isotropic materials

materials

(c) Structure 3: Crack in

1sotropic material

Figure 3.4.: Different structures with known asymptotic fields used to test
the enrichment procedure

can be seen in figure 3.4(a). Two isotropic materials with different Young’s
modulus E and Poisson’s ratio v are bonded together. The material inter-

face separating the two materials represents a perfect bond. In the center
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Structure 1 Structure 2
Aref 0.73448 0.61597 F 0.0688741
A,m =25 | 0.74096 — 4.38775e-11i | 0.61819 F 0.069630i
A,m =50 |0.73609 — 9.03411e-11i | 0.61652 F 0.069071i
A,m =75 |0.73519 — 3.29964e-11i | 0.61621 F 0.0689621
A,m =100 | 0.73488 — 1.10312e—11i | 0.61610 F 0.0689231
A,m =125 | 0.73473 + 3.23075e-11i | 0.61605 F 0.0689051
A,m =150 | 0.73465 + 4.53164e-11i | 0.61603 F 0.0688961
A,m =175 | 0.73461 + 2.45964e—11i | 0.61601 F 0.0688901
A,m = 200 | 0.73458 + 5.44040e—12i | 0.61600 F 0.0688861
A,m =225 | 0.73456 — 2.20928e-11i | 0.61599 F 0.0688841i
A,m =300 | 0.73452 — 1.90981e-11i | 0.61598 F 0.068879i

Table 3.2.: Different discretizations used to calculate A

of the structure the interface is kinked and a 125° angle is formed. Since
the Young’s modulus is ten times higher in the first material, singularities
might occur in the center when the structure is loaded.

The second structure in figure 3.4(b) is the same as the first one, but the
material interface is partially cracked. Also in this case singularities can be
expected under certain loading conditions.

Vroonhoven [27] states that for these type of problems the displacements in
the center of the structure behave asymptotically like . He derives equa-
tions from which A can be determined for different material parameters and
angles in the case of a crack as well as in the case of a perfectly bonded
interface. We will use the solution obtained from these equations as a ref-
erence solution labeled A\"¢f. The solution procedure described previously
should be able to determine a good approximation to A"¢/.

The quality of the approximation depends mainly on the number of inter-
vals m chosen for the discretization of each material. The approximation A
for different levels of discretization is shown in table 3.2. Because it is not
known a-priori whether the exact solution is complex or not, complex start
values for the Newton method were chosen as discussed previously. There-
fore, even if A"/ is real, the numerical result contains a small imaginary

part. As expected, the approximation improves when the discretization pa-
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rameter m is increased. The three leading digits of A, for the first problem
are reproduced if each material wedge is discretized by 100 intervals. For
the second structure 225 intervals per material are necessary to reproduce
the three leading digits.

To test the convergence of the angular part of the enrichment functions, we
consider the structure shown in figure 3.4(c). An isotropic material contains
a crack whose tip is located in the center of the structure. The asymptotic
fields are well-known [16] and the components of the displacement fields are

often used in X-FEM to describe cracks in isotropic materials:

0= 52 T (8) [ 15200 (3)]
()] o

et () po1-2 ()
Al ()] o

K is the Kolosov constant and p is the shear modulus. To obtain a reference
solution, the stress intensity factors K;, K;; and the radius r are set to
1. The result is a displacement along a circle of unit radius around the
crack tip with components u"¢/ and u;ef . The angular functions calculated
by solving equation (3.6) and performing the transformation in equation
(3.21) should be able to reproduce the displacement field along this circle
for sufficiently large values of m. Of course this is only possible if the
ODE-solver calculated a reasonable solution of equation (3.6), but the error
introduced by this solver is neglected in the further discussion.

To perform a comparison, the angular functions determined by the ODE-
solver were used in a least squares fit to obtain approximations @, and 4,
to the reference solutions u"¢/ and u;ef . The error was evaluated in the Lo-
norm for each component. The results are shown in table 3.3. The quality of
the approximation can be controlled by the choice of m and the numerical
results indicate that for sufficiently large values of m, both displacement
components converge. Throughout the remainder of this thesis the value

m = 300 will be used. We may expect a reasonable representation of the
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Ve — i o /s | Ny — iy N/ [0 s
m=10 |0.01286 0.01677
m =20 |0.00353 0.00461
m =230 |0.00162 0.00212
m =40 | 0.00095 0.00124
m =50 | 0.00065 0.00084
m = 300 | 0.00002 0.00004

Table 3.3.: Different levels of discretization used to approzimate the angu-
lar part of the asymptotic displacement fields in structure 3

asymptotic fields by the enrichment functions for this choice with regard to

the results obtained so far.

Convergence for several problems in linear elasticity

Three linear elasticity problems have been chosen to demonstrate the ef-
fect of the numerically determined enrichment functions on the convergence
rate.

The numerical error |le||, of a method was evaluated in terms of the dis-

placements in the Lo-norm:

Vo lwre! = uh(?da)
Vo llwref |[2da)

(3.24)

lellz, =

u” is the numerical solution and u™/ is a reference solution. The reference
solutions that were used here are either exact solutions or results obtained
by the FEM on a very fine mesh.
For both methods the meshes were chosen in the same manner as they were
chosen in figures 2.4(a)-2.4(c): A set of equally sized regular squares covers
the structure. Each square is then divided in two triangular elements.
It was assumed that the error can be related to the degrees of freedom
(DOFs) by:

le||z, = ¢(DOFs)' (3.25)
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c is a positive constant. [ can be determined approximately if the error is
calculated for a series of refined meshes. In the following numerical experi-
ments the two finest meshes will be used for this.

For piecewise linear shape functions used in the FEM [ = —1 is known as
the optimal convergence rate. Since the number of degrees of freedom grows
cubically with the inverse of the longest element edge h, [ = —1 would cor-
respond to an error bound of the form ch? (we already guaranteed this for
the FEM and functions with components in H?(2), cf. equation (2.56)).
However, due to the presence of weak singularities optimal convergence can-
not be expected if the FEM is used.

By relating the error to the degrees of freedom we are able to compare the
FEM with the X-FEM, since the computational effort for solving the equa-
tion systems is roughly the same. However, additional effort has to be made
in the X-FEM to calculate the enrichment functions numerically. But this
effort is neglected in the comparison.

There is no general rule on how to choose the enrichment radius 7,4,
Reasonable choices were made such that the enriched area always includes
several elements but is still small compared to the rest of the structure.
The relation of the enrichment radius to the convergence rate was further
discussed by Béchet et al. [10]. Based on this discussion we might expect
convergence rates close to the optimal rate of [ = —1 if the non-smooth be-

havior of the exact solution is represented adequately by the enrichments.

L-shaped structure  The first structure is an L-shaped structure as shown
in figure 3.5(a). Zero displacements are prescribed at the boundary at z = 0.
Constant tractions are applied along the boundary at x = 2 in the negative
y-direction. Due to these boundary conditions a singular stress distribution
is formed at the notch.

In the X-FEM the notch at (1.0,1.0) was enriched with functions obtained
by the previously explained procedure. The enrichment radius was chosen

as Tmee = 0.3. One eigenvalue of equation (3.16) was found:

A = 0.5445 (3.26)
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w e e [
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2.0
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Material 2
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(0,0) (0,0)
(a) Structure 1: Clamped L- (b) Structure 2: Bi-material struc-
shaped structure with traction ture with prescribed displacements at
forces at the boundary the boundary
Grain 1 Yy
NEREI T
1.0
Uu u

RTINS
Grain 2 Grain 3
(c) Structure 3:  Polycrystalline

structure with prescribed displace-
ments at the boundary

Figure 3.5.: Different structures used to compare the convergence rate of
X-FEM and FEM for linear elasticity problems
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C @l | —B—X-FEM (I~ -1.03)
10 ponnnme o™ —6—TFEM (I ~ —0.61)

Relative error

10 10° 10

Degrees of freedom

Figure 3.6.: Displacement error in the Lo-norm for the L-shaped domain

The multiplicity of this eigenvalue was 1, therefore, two additional enrich-
ments were used in the X-FEM calculation.

A reference solution for this problem was calculated by the FEM on a very
fine mesh (375000 DOFs). The relative error for different discretizations is
shown in figure 3.6. The error is in general lower if enrichments are used.
The convergence rate for the X-FEM is higher than the one for the FEM.
The X-FEM convergence rate is as expected close to [ = —1, from which
we can conclude that the singularity is represented very well by the enrich-
ments.

The von Mises stresses are shown in figure 3.7(a) and 3.7(b). The singular-
ity is resolved much better if enrichments are used. In particular we note
that X-FEM provides a smoother stress distribution, although less degrees
of freedom have been used. Figure 3.6 shows that this stress distribution is
associated with a higher accuracy. The stress distribution calculated with
the FEM contains large discontinuities at the element edges. Those stress

jumps indicate that the exact solution is not represented very well.

Bi-material crack between orthotropic materials The second struc-
ture is shown in figure 3.5(b). The two materials are orthotropic. Their in-

terface is partially cracked. A displacement u is prescribed at the boundary.
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(a) von Mises stress distribution using FEM (2090 DOF's)
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(b) von Mises stress distribution using X-FEM (1850 DOFs)

Figure 3.7.: von Mises stresses for the L-shaped domain
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Material 1 | Material 2

E, |50 20

E, |30 10

E. | 10 D

Vey | 0.4 0.3

Vy. | 0.3 0.2

Voe | 0.2 0.1

Hay | O 10

Table 3.4.: Elastic constants for the orthotropic materials in the bi-
material crack problem

The material parameters characterizing the elastic behavior of the structure
are given in table 3.4. In the X-FEM the crack tip at (1.0,1.0) was enriched.

Two complex-conjugate solutions of equation (3.16) were found at:
A =0.5+£0.0291 (3.27)

Each one of the eigenvalues provides two additional enrichments. Thus,
four additional enrichments were used at the crack tip. The asymptotic
field associated with the eigenvalue A = 0.5 4+ 0.029i was evaluated at the
boundary of the structure to obtain displacements . The exact solution
to the corresponding boundary value problem is then the asymptotic field
itself and was used to calculate the error.

To test the convergence rate of the FEM, only meshes were chosen where
the element edges conformed to the crack and the interface geometry. To
model the crack those element edges simply had to be disconnected. The
strain jump along the interface and the displacement jump along the crack
can therefore be represented by the shape functions.

To test the convergence rate of the X-FEM, only meshes were chosen where
the element edges did not conform to the crack geometry, to stress the fact
that this geometric constraint is not an issue in X-FEM. The value for the
enrichment radius was again 7,,,, = 0.3.

The convergence behavior is shown in figure 3.8. Also for this example
the use of enrichments improved the convergence rate and decreased the

error. While the convergence rate of the X-FEM is close to [ = —1, the one
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—8— X-FEM (I ~ —0.99)
—6—FEM (I ~ —0.47)
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—
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Figure 3.8.: Displacement error in the Lo-norm for the bi-material crack
problem

obtained by the FEM is close to [ = —0.5. It is a well-known result that
the convergence rate of the FEM for cracks in isotropic materials is lowered
to l = —0.5.

The von Mises stress distribution for the two methods can be compared in
figure 3.9(a) and figure 3.9(b). A higher number of degrees of freedom was
used to generate the stress plot for the FEM. Clearly the stress distribution
is not very smooth in that case. This is a result of the inability to reproduce
the correct deformation behavior at the crack tip. If X-FEM is used, the
problem disappears and a much smoother stress distribution is obtained.
The stress jump at the material interface is also reproduced very well by

the X-FEM.

Polycrystalline structure The third structure that was used to test the
convergence was a polycrystalline structure as shown in figure 3.5(c). Three
different grains meet at a common junction, at which their boundaries form
angles of 120 degrees. Each of these grains represents a copper crystal. A
displacement w is prescribed at the boundary of the structure. The elas-
tic constants describing a copper crystal are shown in table 3.5, all other
components of the elasticity tensor are zero. This description is only valid

if the crystal inside a grain has a certain orientation (i.e. [100]-,[010]- and
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(a) von Mises stress distribution using FEM (2774 DOFs)
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(b) von Mises stress distribution using X-FEM (2098 DOFs)

Figure 3.9.: von Mises stresses for the bi-material crack problem

Dh111, Dagaa, D33as 168.4 GPa
D122, D133, D33, Dagi1, D331, Daseo | 121.4 GPa
Do3a3, D3131, D212 75.4 GPa

Table 3.5.: Elastic constants for a copper grain
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Grain 1 | Grain 2 | Grain 3
Os | 0° 0° 36°
Oy | 45° 120° 0°
o, | 0° —22.5° | 22.5°

Table 3.6.: Euler angles describing crystal rotations for the different grains
in the polycrystalline structure

[001]-axis of the crystal align with the x-,y- and z-axes).

For other crystal orientations the entries of the elasticity tensor change.
Those can easily be calculated by applying the correct tensor transforma-
tion. The transformation is fully described by a rotation matrix, or equiv-
alently by Euler angles ¢,, ¢, and ¢.. The Euler angles for each grain are
listed in table 3.6. Copper crystals are known to have an anisotropic be-
havior. The strain field might contain singularities at the junction in the
center due to the different grain orientations. In fact if the junction in the

center is considered, equation (3.20) has the solution:
A = 0.8738 (3.28)

The multiplicity of this eigenvalue was 1, and therefore two additional en-
richment functions were obtained from the numerical enrichment procedure.
The strains that are formed by the x-component of the asymptotic field are
shown in figures 3.10(a) and 3.10(b), the ones that are formed by the y-
component in figures 3.10(c) and 3.10(d).

The asymptotic field was evaluated at the boundary of the structure to
obtain displacements w. If these are imposed as boundary conditions the
exact solution of the problem is the asymptotic field itself. But in the case
of general anisotropy, the asymptotic field has an anti-plane component.
To reproduce the asymptotic field the anti-plane component must also be
imposed. But imposing such displacements is not possible when standard
plane strain elements are used. Therefore, only the x- and the y-component
of the asymptotic field were prescribed at the boundary of the structure. But
in that case the solution might show a non-smooth behavior at the points
where the grain boundaries coincide with the boundary of the structure.

This might influence the convergence rate. The problem can be resolved
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Figure 3.10.: Strain fields calculated from the enrichment functions used
for the polycrystalline structure
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Figure 3.11.: Displacement error in the Lo-norm for the polycrystalline
structure

by introducing a body force term that eliminates the stresses & from the
problem which arise in the plane due to the anti-plane component.

The body force term is then singular at the junction in the center and one
might argue that such body forces are not very realistic. Therefore, the
stresses were multiplied with a cutoff function y that vanishes in an area

around the center of the structure:

0 if r<01
X(r) = =1 (cos (775%1) —1) if 0.1<r<04 (3.29)
1 if r>04

r is the radial component of the polar coordinate system used to describe

the enrichments. The body force term in (2.40) was then chosen as:

/Q (ax(r)) : eda (3.30)

A reference solution was calculated for this problem using the FEM (500000
DOFs). The convergence are shown in figure 3.11. The convergence rate
achieved by the X-FEM is close to the optimal one, while the FEM performs

worse.
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The von Mises stresses for the FEM and the X-FEM are compared in figure
3.12(a) and figure 3.12(b). A visualization of the meshes that have been
chosen to calculate these von Mises stresses is shown in figure 3.13(a) and
figure 3.13(b). The singularity is resolved very well if X-FEM is used. As
in the previous examples, the stress distribution obtained from the FEM
calculation contains large discontinuities at the element edges. The stress
jumps at the grain boundaries are not reproduced appropriately. Although

the grain boundaries do not align with the element edges, those jumps are
reproduced by the X-FEM.

3.3. Preconditioning

If the equation systems become large, a direct solution is not efficient any
more. Iterative solvers should be used instead. Especially for sparse ma-
trices the solution time can be reduced significantly, since matrix-vector
products (which are the basic operations used by iterative solvers, cf. sec-
tion 2.5) are cheap from a computational point of view. But as discussed
previously for the MINRES solver, their performance is highly dependent
on the condition number of the stiffness matrix.

For the FEM several criteria to evaluate the quality of a mesh exist. Fol-
lowing these criteria, one can hope for good approximation properties, but
also for well-conditioned stiffness matrices. For instance it is known that
the condition number grows to infinity if the element size tends to zero.
Therefore, one would try to omit extremely small elements in the finite el-
ement mesh, at least if they are not necessary to resolve the exact solution
appropriately.

For the X-FEM such criteria do not exist. In fact it will be shown that the
enrichment schemes explained so far can result in arbitrarily ill-conditioned
matrices.

Generally this happens if the enrichments become almost linearly depen-
dent. Béchet et al. [10] proposed a preconditioner specially tailored to the X-
FEM, which stabilizes the enrichments by applying Cholesky-decompositions
to certain submatrices of the stiffness matrix. These submatrices are formed
by the degrees of freedom associated with each enriched node. This can be

understood as a local stabilization, because the problem of almost linearly
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(a) von Mises stress distribution using FEM (2312 DOFs)
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(b) von Mises stress distribution using X-FEM (2106 DOFs)

Figure 3.12.: von Mises stress distribution for the polycrystalline structure
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(a) Mesh for the FEM (2312 DOF's)
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(b) Mesh for the X-FEM (2106 DOFs)

Figure 3.13.: Meshes used to discretize the polycrystalline structure
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dependent enrichment functions is eliminated for each node. But there are
situations in which enrichment functions associated with several nodes be-
come almost linearly dependent. In that case another strategy is needed.
In this section a general technique is described which, applied to the X-FEM,
results in well-conditioned stiffness matrices. Their condition number is al-
ways close to the one of the corresponding FEM stiffness matrices without
any enrichment. The idea was first published and tested by Menk and Bor-
das [28].

The method can be applied to any sort of enrichment. It is related to
the finite element tearing and interconnecting method (FETI) proposed by
Farhat and Roux [29]. Both methods employ a domain decomposition. In
the FETI-method the subdomains are treated as independent structures. A
Cholesky-decomposition is applied to the stiffness matrix associated with
each subdomain. Continuity of the solution along the subdomain bound-
aries is ensured by using additional constraints.

The method proposed here applies the idea of domain decomposition only to
the submatrix associated with the enriched degrees of freedom. Similarly as
in the FETI-method, Cholesky-decompositions are used together with ad-
ditional continuity constraints. The method differs from the FETI-method
in the way the preconditioner is constructed. To ensure well-conditioned
matrices for general enrichments the continuity constraints are transformed
and an LQ-decomposition is applied to them.

The FETI-method was used in a different context in connection with X-
FEM before by Wyart et al. [30].

3.3.1. Problems in current enrichment schemes

In this section we will discuss one-dimensional problems in which the previ-
ously described enrichments can result in extremely ill-conditioned systems.
The first example involves a material interface and similar examples are pos-
sible in two-dimensional settings.

In the second example a special type of enrichment was chosen to give an
explanation of what happens in two dimensions if the enrichment radius
around the crack tip is large.

To interpret these examples correctly some linear algebra tools are needed.
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By equation (2.112) the equation system is ill-conditioned if the smallest
eigenvalue approaches zero. An upper bound for the smallest eigenvalue of
a symmetric positive definite matrix K € R™*" is given by the Rayleigh-
quotient gg(a) for any non-zero vector a € R™:

B a’'Ka

QR(G’) = ala > )\min >0 (331)

If the matrix stems from a discretization of a one-dimensional structural
problem the vector a contains the coefficients for a function u” from the dis-
crete space S”. Using the bilinear form from equation (2.17) the Rayleigh-
quotient can equivalently be written as:

a(u®, u

h
QR(a’) - ala ) > )\min >0 (332)

Material Interface

The one-dimensional problem is depicted in figure 3.14. A material interface

Ramp nodes
Node 3

Node 1 Node 4

v
| | | |

—7 ' « Interface
Node 2 €

| | |
0 1 2 3

| | | | o o
I

Figure 3.14.: One-dimensional interface problem

is at distance € from node 2.

All four nodes are enriched. The enrichment functions developed in section
2.4 for € = 0.1 are shown in figure 3.15. An interesting phenomena can be
observed here. The enrichment functions form little “hills” and “valleys”.

Just by looking at the functions one might guess that they almost cancel
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Figure 3.15.: Nodal enrichments for the material interface with € = 0.1

out if they are summed up.

This is exactly what happens as we can see in figure 3.16. For smaller

0.1
0

-0.1

-0.2

-0.3

-0.4
0 0.5 1 1.5 2 2.5 3

Figure 3.16.: Sum of the enrichment functions for the material interface
problem evaluated for different values of €

e-values the sum approaches the zero function. We can observe the same
effect for the derivative of the sum. This is shown in figure 3.17.

Thus, in our example a linear combination of enrichment functions has
a derivative which approaches the zero function for ¢ — 0. In this one-

dimensional case the bilinear form from equation (3.32) is simply:

a(u”, u) :AE(C;—ZL)QM (3.33)
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Figure 3.17.: Sum of the derivative of the enrichment functions for the
material interface problem evaluated for different values of €

FE is Young’s modulus and €2 is the interval (0,3). The bilinear form van-
ishes for this sum if the interface approaches node 2, but the corresponding
vector of coefficients a remains unchanged (a contains ones and zeros such
that the nodal enrichments are summed up). By (3.32) we can conclude
that the smallest eigenvalue of the discretized problem therefore also van-
ishes. This results in an ill-conditioned equation system.

A corresponding two-dimensional example would be an interface approach-
ing a line of element edges. This problem is investigated in the numerical

experiments in section 3.3.3.

Crack tip enrichment

To investigate the situation in the case of weakly singular enrichment func-
tions and large enrichment radii, we first enrich a 1-dimensional problem
with a linear function, say P(z) = x, using (2.81). The discretized structure
is depicted in figure 3.18. The structural domain is discretized by 5 finite
elements. The whole domain is enriched and the interior nodes are the ramp
nodes.

The nodal enrichments that are obtained by a linear enrichment function
are shown in figure 3.19. The situation is similar to the one observed in
the case of a material interface. The nodal enrichments form “hills” and
“valleys”. The “hill” of an enrichment function seems to be similar to the

“valley” of the neighboring nodal enrichment, only the sign differs. And in
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Figure 3.18.: One-dimensional problem used for the enrichment with a lin-
ear function

Node 1
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Figure 3.19.: Nodal enrichments obtained from linear function enrichment
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Figure 3.20.: Sum of nodal enrichments for a linear enrichment function

fact the sum of all the enrichments is the zero function shown in figure 3.20.
Thus, the derivative also vanishes. Therefore, the left hand side of the
estimate in equation (3.32) is zero (again by evaluating the expression in
equation (3.33)) and so is the smallest eigenvalue of the stiffness matrix.

Of course it is not useful to enrich the FE-space with a linear function, since
linear functions can be reproduced by the polynomial shape functions. But
there may be situations in the 2-dimensional case, in which the enrichment
function is close to a linear function in a certain area. Let us define the

following function:

CT(x) = +/r(x)cos (@) (3.34)
r(r) = Vd? + 22 (3.35)
0(r) = tan™* <§> (3.36)

If the arguments 6 and r were independent variables, then C'T'(r, ) would
be one of the standard crack tip enrichment functions [22]. But here 6 and
r depend on z in a special manner. Evaluation of C'T'(x) is an evaluation
of that enrichment function along a straight line perpendicular to a crack
with distance d to its crack tip. By changing the value d we are able to see
how the enrichment function behaves further away from the crack tip. The
situation is depicted in figure 3.21.

For different values of d the function CT'(x) is shown in figure 3.22. Clearly,
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Restriction of a
crack tip enrichment to

this line yields CT'(x) \ '

Crack tip

Crack

Figure 3.21.: Fvaluation of a crack tip enrichment function along a line
in front of the crack tip at distance d

Figure 3.22.: Fvaluation of the function CT(x) for different values of d
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for increasing values of d the function CT'(z) is well approximated by a
linear function.

We can conclude that in this situation the smallest eigenvalue of the stiffness
matrix is close to zero and the system is ill-conditioned. In the 2-dimensional
case the nodal enrichments of elements ahead of the crack tip will, at some
distance, show a similar behavior as the functions in figure 3.19. The numer-
ical experiments in section 3.3.3 show that in the case of a large enrichment

radius the stiffness matrix indeed becomes extremely ill-conditioned.

3.3.2. Calculation of the preconditioner
General form of the preconditioner

Instead of solving the equation system (2.46) we attempt to solve:

P'KPP 'a=P'f (3.37)
K a f

Once this equation system is solved to obtain a one can calculate the solu-

tion of equation (2.46) simply by:
a = Pa (3.38)

The matrix P is a preconditioner. It should be chosen such that the condi-
tion number of the transformed stiffness matrix K is smaller than the one of
K. Furthermore, the effort necessary for its computation should be small.
The advantage is that an iterative solver would need a smaller number of
iterations to get an acceptable result. This can justify the additional effort,
especially if several solutions for different vectors f have to be calculated.

The explicit form of K is not calculated. When iterative solution algorithms
are used the explicit form is not needed, in every iteration step it suffices
to calculate a matrix-vector product with each of the matrices forming K
(cf. section 2.5).

Domain decomposition

Domain decomposition methods are used in many contexts to deal with

numerical difficulties encountered in the simulation of complex structures
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(cf. [31,32]). In this thesis domain decompositions will be used to develop
a robust preconditioner for the X-FEM.

The problems described in section 3.3.1 are a result of the enrichment pro-
cedure. They could be resolved if a matrix decomposition, such as the
Cholesky-decomposition, is applied to the submatrix formed by the enriched
degrees of freedom. The inverse of the Cholesky-factor could then be used
to form a preconditioner. The disadvantage of such matrix decomposition
algorithms is that the computation time as well as the memory consumption
depends cubically on the matrix size.

Although in most applications the number of enriched degrees of freedom
is much smaller than the number of standard degrees of freedom, there are
a lot of situations in which the number of enriched degrees of freedom is
still very large (e.g. polycrystalline structures [15], multiple cracks [33] and
geometric enrichment [10]).

If the structure would be decomposed into several smaller disconnected do-
mains, the submatrix associated with the enriched degrees of freedom would
be a block diagonal matrix. In that case a Cholesky-decomposition has to
be applied only to each one of these smaller blocks. This would decrease the
numerical effort. But how to apply this idea to a structure that is actually
connected?

In that case the structure has to be split into several subdomains and con-
tinuity conditions must be added. To resolve the problems encountered in
section 3.3.1, it suffices to apply this idea only to the enrichment functions.
In the following a possible implementation is described more precisely.
The degrees of freedom of the X-FEM stiffness matrix can be ordered such
that:

K- Krpvrevm Kxrpeum (3.39)

Kreux Kx x
K gy peis the submatrix formed by the standard degrees of freedom and
K x x the one formed by the enriched degrees of freedom.
Let us assume that the domain €2 is decomposed into several non-overlapping
subdomains €2;. Each subdomain is formed by a union of elements. The
matrix Kx x is evaluated as if these domains were disconnected. The ma-

trix Krpy rpeym is evaluated as usual, that is, treating the domain 2 as
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one connected domain. An example is given in figure 3.23. A domain is

=
=

03

Standard DOF's Enriched DOFs

Figure 3.23.: Ezample of a domain decomposition, the nodal enrichments
are split in the domain decomposition, the FEM shape func-
tions remain unchanged

decomposed into three domains. Each of the subdomains is formed by a
union of elements. The number of standard degrees of freedom does not
change, since the decomposition has no effect on the corresponding part of
the stiffness matrix. The number of enriched degrees of freedom increases
due to the nodes at the boundary of the subdomains.

Since the domains are disconnected, the submatrix of enriched degrees of

freedom can be written as a block-diagonal matrix:

Ky, 0
Kxx=| 0 K@ (3.40)

K%X are the enriched degrees of freedom of all the enrichments that are
non-zero inside the domain §2;.

But without further restrictions on the function space this new system would
give an erroneous solution, since the enrichment functions might be discon-
tinuous at the boundaries of the subdomains. We therefore use an additional

matrix Y to ensure continuity of the displacements (at least in the absence
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of cracks):

Krevren Kxren 0
K = Krewmx Kx x Y’ (3.41)
0 Y 0

To demonstrate how Y is constructed we consider again figure 3.23. Assume
that the i-th node is at the boundary of two subdomains (e.g. it is connected
to € and €y but not €23). Also assume that there is one enriched degree
of freedom associated with this node in the standard X-FEM formulation
described in section 2.4. Then due to the domain decomposition there would
be two enriched degrees of freedom associated with this node in the stiffness
matrix in equation (3.41), one associated with €y, the other one with . If
the vector a™ contains those degrees of freedom, then a condition for the

continuity of the nodal enrichment can be written as:
1 —1)et = (3.42)

If the node is the one in figure 3.23 which is connected to all three domains,

then the condition becomes:
a’i =0 (3.43)

The whole matrix Y is then constructed by ensuring such conditions for
all enriched nodes that are connected to two or more subdomains. More
precisely, for every nodal enrichment whose support is contained in n dis-
tinct subdomains n — 1 rows must be added to the matrix Y. They are

constructed using the (n — 1) x n matrix:

-1 -1 0 0 |
0 1 -1 0 0
(3.44)
0 0 1 -1 0
0 0 1 -1
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To construct the new rows of Y the columns of (3.44) are placed in an
empty matrix. Their position is determined by the degrees of freedom that
are assigned to the nodal enrichment after performing the domain decom-

position.

The new preconditioner

Each block K 2 + in (3.40) can be decomposed by a Cholesky-decomposition
with Cholesky factor C;:
K¢y =C/"C (3.45)

We define the preconditioner for Kx x as:

C;' 0
Py=|0 C;' (3.46)

This preconditioner transforms K x x to the unit matrix and therefore would

remove the small eigenvalues:
PIKxxPx=1 (3.47)

Please note, that the inverse of the Cholesky-factors should not be calcu-
lated. It suffices to provide a routine for the iterative solver that calculates
the matrix-vector product with P and Py. Therefore, in each iteration
step several small equation systems with the Cholesky-factors can be solved
instead by performing forward and backward substitution.

A preconditioner for the whole system could then be:

PFEM O
P=| 0 Py 0O (3.48)
0o I

Pr ) can be any preconditioner for the standard degrees of freedom. The fi-
nal equation system may however still be ill-conditioned because K contains

the matrix Y Px whose rows can be almost linearly dependent. Applying
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an LQ-decomposition to Y Py we see that:
Q=L"'YPx (3.49)

L is a lower triangular matrix and @ is a matrix with orthogonal rows. The

final preconditioner then takes the form:

PFEM O
P = 0 Py 0 (3.50)
0 L!

Thus, the transformed equation system becomes:

K FEM,FEM K xrem 0
K = KFEM,X I Q" (3.51)
0 Q 0

A comment must be made about the Cholesky decomposition in equation
(3.45). When using domain decomposition in combination with the FEM
the stiffness matrix of a subdomain may become indefinite if appropriate
boundary conditions are missing for this particular subdomain. In the ab-
sence of displacement boundary conditions the substructures are able to
perform rigid body motions which results in zero eigenvalues. The Cholesky-
decomposition is likely to fail in that case.

However, in the examples considered here the matrices K% « in (3.45) have
always been positive definite. The reason is that nodal shifting is applied
to the enrichments as described in section 2.4. Due to this nodal shifting
the enrichments are zero at all nodes. Thus, it is not possible to describe
rigid body motions using the enrichments.

But in certain situations zero eigenvalues still may occur. Consider for in-
stance figure 3.15. If the domain is decomposed into two domains at x = 1,
the enrichment functions of node 1 and node 2 in the left domain would be
linearly dependent. In that case the eigenvectors corresponding to the zero
eigenvalues must be identified (e.g. by using a Krylov-type method).

Assume that the columns of Z contain an orthogonal basis of the null space.
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A simple way to deal with the problem of indefiniteness would be to perform

the Cholesky-decomposition for a stabilized version of K% Pt
KV +X\ZZ" with A>0 (3.52)

In an algorithm one would always try to do a Cholesky-decomposition first.
If the decomposition fails or if extremely small entries appear on the diag-
onal, the matrix Z must be determined.

However, such cases were not encountered in the calculations performed in

this thesis and therefore this aspect is neglected in the further discussion.

Relationship to the FETI-method

The preconditioning technique was inspired by the FETI-method [29]. In
the following it is explained what modifications have to be made to obtain
the FETI-method in its original form. First we will assume that all degrees
of freedom are labeled as enriched. This enables us to reuse the previously

introduced notation. The equation system then becomes:

K Y?"| |a®
K=| """ _ |7 (3.53)
Y 0] |a" 0

To simplify the explanation we will assume that displacement boundary
conditions are prescribed for each subdomain such that each K%  1s non-

singular. The main part of the FETI-method consists of solving:
YK \Y'a" =YK\ f (3.54)
The equation system is solved iteratively using the preconditioner:
Prpri=YKxxY" (3.55)

The equation system (3.54) is multiplied only from the left with this pre-
conditioner.

The missing part a* of the solution is calculated afterwards by solving a
small problem on each subdomain. For FEM discretizations this results in

well-conditioned equation systems if an appropriate domain decomposition
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is used. However, in the case of a general enrichment this cannot be guar-
anteed.

The difference to the FETI-method can be summarized as follows:

e Domain decomposition is applied only to the enriched degrees of free-

dom;
e The matrix Y is transformed using the Cholesky-decompositions;
e An LQ-decomposition is applied to the transformed matrix Y Pyx;

e The resulting preconditioner is applied from the left and from the

right to the stiffness matrix.

A comment on the computational effort

The main part of the computational effort in section 3.3.2 consists of com-
puting the Cholesky-decompositions for each subdomain and the LQ-de-
composition of Y Py. Evaluating Y Py itself involves solving small equation
systems with the Cholesky-factors. But the sparsity of Y can be exploited
such that the calculation of Y Py is negligible when the overall computa-
tional effort is addressed.

A Cholesky-decomposition of a fully populated matrix K%X € R™™ takes
%3 [34] floating point operations (flops). An LQ-decomposition of a fully
populated matrix Y Px € R™*™ with m > n takes about 3n*m [34] flops.
The matrices that have to be decomposed are usually sparse matrices.
Therefore, one should apply sparse versions of the matrix decomposition
algorithms. But the estimates given above will serve as a rule of thumb to
evaluate a certain domain decomposition in the numerical experiments in
section 3.3.3.

The effort for the matrix decompositions can be kept small in most X-FEM

applications because:

e The matrix decompositions are only applied to enriched degrees of
freedom. The number of enriched degrees of freedom in most industry
applications is much smaller than the number of standard degrees of

freedom.
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e By choosing an appropriate domain decomposition the overall effort
for the matrix decompositions can be minimized.
A large subdomain with many enriched degrees of freedom will re-
sult in a computationally expensive Cholesky-decomposition. A large
number of subdomains will result in a computationally expensive LQ-
decomposition.
If the number of enriched degrees of freedom is roughly the same for
each subdomain, the same holds for each Cholesky-decomposition.
The number of subdomains can be chosen such that the effort for
the LQ-decomposition is balanced against the average effort for the

Cholesky-decompositions.

e The computation of the Cholesky-decompositions for each subdomain
can be done simultaneously on different processors. Px can therefore
be computed fully in parallel. The same is true for the matrix-vector
product with Px and its transpose that has to be evaluated in each

iteration step.

3.3.3. Numerical experiments

The effect of the preconditioner on the condition number was evaluated
using two structures which can be interpreted as two-dimensional gener-
alizations of the problems discussed in section 3.3.1. A third structure
containing multiple cracks was used to address the performance in more
practical situations.

The following Matlab-routines were used in the experiments: chol() was
used to calculate the Cholesky-decompositions and qr() to calculate the
LQ-decomposition. minres() is an implementation of the MINRES iter-
ative solver and was used to solve the equation systems. Forward and
backward substitution to solve triangular equation systems was done using
mldivide(). The condition number was evaluated using eigs().

The presentation of each example will be followed by a short discussion
about the computational effort. In section 3.3.3 and 3.3.3 this discussion
will only be based on the simple rules developed in section 3.3.2. The pur-
pose is to give an idea about how the domain decomposition affects the

computational effort.
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The example in section 3.3.3 is considered to be more closely related to
standard applications of X-FEM. To address the usefulness of the precon-
ditioner actual computation times are presented and discussed.

The preconditioner for the standard degrees of freedom was chosen as:

Prpy = \/di?bg(KUP«“EM,JP«“EM)*1 (3.56)

diag(-) denotes the diagonal of a matrix. This is known as the Jacobi pre-
conditioner or as diagonal scaling.

The equation systems obtained from the procedure in section 3.3.2 will sub-
sequently be referred to as the preconditioned version of X-FEM.

The results are compared with those of the standard X-FEM as described
in section 2.4. For these equation systems diagonal scaling was applied to
the whole stiffness matrix. They will subsequently be referred to as the
standard version of X-FEM.

Material interface

The first structure is shown in figure 3.24. It contains a material interface

0.5

1.0

. Material 1
D Material 2

Figure 3.24.: Structure with slanting material interface

separating material 1 and material 2. A vertical line through the center
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of the structure is also shown in the figure. The material interface is not
quite vertical, its distance towards the vertical line at the boundary of the
structure is characterized by the distance e.

The materials are both isotropic materials with material constants shown

in table 3.7. Zero displacements are prescribed at the boundary on the left

Material 1 | Material 2
E | 10 20
v |03 0.3

Table 3.7.: Material constants for structure with slanting material inter-
face

and a constant traction ¢t on the right.

A simple mesh was used to discretize this structure consisting of 1800 equally
sized elements. The mesh and different domain decompositions are shown in
figure 3.25. The mesh around the center of the structure is shown in figure
3.26. The blending elements and the fully enriched elements are indicated.
The condition number of the stiffness matrices has been evaluated for differ-
ent values of €. The results are shown in figure 3.27. The condition number
of the standard finite element matrices (i.e. the diagonally scaled submatrix
Krp . rem) s slightly below the ones obtained for the preconditioned ver-
sion. For the preconditioned version the choice of domain decomposition as
well as the value of € has no effect on the condition number. The condition
number of the standard version, however, grows for decreasing values of
€. If e = 1077 the difference between the standard and the preconditioned
version is three orders of magnitude.

The relative error of the equation systems after different iteration steps and
€ = 1077 is shown in figure 3.28. Clearly, the solver converges much faster
if the preconditioned version is used. The difference between the standard
and the preconditioned version is due to the different condition numbers
observed in figure 3.27.

To conclude this example we analyze the numerical effort based on the val-
ues given in table 3.8. The number of enriched degrees of freedom increases
slightly for the preconditioned version. If the domain is decomposed into

5 subdomains the number of enriched degrees of freedom is higher because
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(a) Mesh used to discretize the material interface
problem

(b) Domain decomposed into 3 subdomains

(¢) Domain decomposed into 5 subdomains

Figure 3.25.: Mesh used to discretize the material interface problem and
different domain decompositions
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Figure 3.26.

Condition number

Material

interface

I:l Blending element
x .
I:l Fully enriched element

: Mesh in the center of the structure with the material inter-
face

—8— Standard

—©— Precond. (3 Dom.)
—%— Precond. (5 Dom.)

Figure 3.27

.+ Condition number evaluated for different values of € (mate-
rial interface problem)
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Figure 3.28.: Relative error of the MINRES solver after different iteration
steps (material interface problem, ¢ = 1077)

Standard | Preconditioned | Preconditioned

(3 Dom.) (5 Dom.)
Number of enriched | 376 392 408
DOFs
Number of DOFs | - 131 82
K)S}fX(avg.)
Number of DOFs | - 136 88
K)S}fX(max.)
Size of Y Py - 16x392 32x392

Table 3.8.: Comparison of submatrices of the stiffness matrices for differ-
ent versions of X-FEM (material interface problem, e = 1077)
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more enrichments have been split. Both domain decompositions result in
domains which have approximately the same number of enriched degrees
of freedom. Using the equations for the numerical effort discussed in sec-
tion 3.3.2 we can estimate the computational effort in flops for each of the

matrix decompositions. The result can be seen in table 3.9. Based on

Preconditioned | Preconditioned

(3 Dom.) (5 Dom.)
Flops LQ ~ 3Je+H ~ 1.2e+6
Flops Chol. (avg.) | &~ 7.4e+5 ~ 1.7e+5
Total flops ~ 2.5e+6 ~ 2e+6

Table 3.9.: Estimates for the overall computational effort to calculate the
preconditioner (material interface problem, e = 1077)

these estimates we can guess that the decomposition into 5 subdomains is
slightly more efficient. Please note that following this reasoning, both do-
main decompositions are more efficient than the naive approach of treating
the whole structure as one large subdomain. The estimated number of flops

would in that case be @ ~ 18 +7.

Cracked structure

The second structure considered here is an isotropic material with the same
material constants as material 1 in table 3.7. The structure contains a ver-
tical crack with its tip at the center of the structure as shown in figure
3.29. Zero displacements are prescribed at the boundary on the left and a
constant traction ¢ on the right.

Again a simple mesh was used to discretize the structure consisting of 1458
equally sized elements. The mesh and different domain decompositions are
shown in figure 3.30. The mesh and the enriched elements around the crack
tip are shown in figure 3.31 and figure 3.32. Figure 3.31 shows the elements
enriched by the crack tip enrichments and figure 3.32 the elements enriched
by the Heaviside function. The choice of subdomains is independent of the
enrichment radius, therefore, if the enrichment radius is small, some of the
subdomains may contain no enrichments.

The condition number of the equation system was evaluated for different
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1.0
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Enrichment radius

)
|— L
Figure 3.29.: Structure with crack

enrichment radii. The results are shown in figure 3.33. Again the condition
number of the preconditioned version is only slightly higher than the con-
dition number of the FEM equation system without any enrichment. No
difference can be observed due to the different domain decompositions or
enrichment radii. The equation systems of the standard version however
become ill-conditioned for large enrichment radii.

The relative error of the MINRES solver depending on the number of itera-
tions for an enrichment radius of 0.4 is shown in figure 3.34. No significant
difference in the convergence behavior can be observed due to the different
domain decompositions in the preconditioned version. But the difference
between the preconditioned and the standard version is even more apparent
than in the previous example.

The properties of the submatrices of the stiffness matrices are compared in
table 3.10. The effort for each Cholesky-decomposition decreases if more
subdomains are used, but the computational effort for the LQ-decomposition
increases.

The estimates for the total number of floating point operations are compared
in table 3.11. Based on these estimates we can guess that the decomposition
into 3 subdomains should be preferred if the enrichment radius is 0.4.

We can estimate the overall computational effort for treating the whole do-

main as one large subdomain to be @ ~ 1.7e + 10.
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(a) Mesh used to discretize the cracked structure

(b) Domain decomposed into 3 Subdomains

(¢) Domain decomposed into 9 subdomains

Figure 3.30.: Mesh used to discretize the cracked structure and different
domain decompositions
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Crack tip

I:l Blending element

t I:l Fully enriched element

Figure 3.31.: Elements enriched by the crack tip enrichment functions

| Crack
Ve Crack
tip

I:l Blending element
I:l Fully enriched element

Figure 3.32.: Elements enriched by the Heaviside-function
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Figure 3.33.: Condition number evaluated for different enrichment radii
(cracked structure)
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Figure 3.34.: Relative error of the MINRES solver after different iteration
steps (cracked structure, Tpma=0.4 )
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Standard | Preconditioned | Preconditioned

(3 Dom.) (9 Dom.)
Number of enriched | 3686 4058 4458
DOFs
Number of DOFs | - 1352 495
K%X(avg.)
Number of DOFs | - 1534 612
K%X(max.)
Size of Y Px - 268x4058 556x4458

Table 3.10.: Comparison of submatrices of the stiffness matrices for differ-
ent preconditioned versions of the X-FEM (cracked structure,

T'maz=0.4)
Preconditioned | Preconditioned
(3 Dom.) (9 Dom.)
Flops LQ ~ 8.7e+8 ~ 4.1e+9
Flops Chol. (avg.) | ~ 8.2e+8 ~ de+T7
Total flops ~ 3.3e+9 ~ 4.4e+9

Table 3.11.: Estimates for the overall computational effort to calculate the
preconditioner (cracked structure, rya.=0.4)
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Estimates of these kind are as mentioned in section 3.3.2 only a rule of
thumb to estimate the real computational effort. But neglecting this, one
may conclude that the domain decomposition really is a useful tool to max-
imize efficiency.

A big advantage is that these estimates can also be used to compare differ-
ent domain decompositions before the procedure outlined here is actually

applied.

Multiple cracks

The performance of the preconditioner is now addressed in a situation that
is more likely to occur in everyday applications of X-FEM than the pre-
vious examples. In fracture mechanics there are often situations in which
the interaction of multiple cracks is of particular interest. Therefore, the
preconditioner is tested in such a situation.

The structure shown in figure 3.35 contains three vertical cracks originating

from the upper and the lower boundary of the structure. Zero displacements

1.0
. B ———
Crack 2

LO

o
g -— ¢ —p t

0.2 0.2 .
N N
\

Y (0,0) \ \
Crack 1 Crack 3

T

Figure 3.35.: Structure containing multiple cracks

are prescribed at x = 0 and a constant traction in positive z-direction is
applied at x = 1. The values in table 3.7 associated with material 1 have
been used to describe the elastic properties of the structure.

The structure was discretized using the mesh shown in figure 3.36(a) which
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consists of 2178 triangular elements. A domain decomposition was per-

(a) Mesh

(b) Domain decomposition

Figure 3.36.: Discretization of the structure containing multiple cracks

formed, the result is shown in figure 3.36(b). The enriched areas that have
been used in combination with the crack tip enrichments are shown in figure
3.37(a)-3.37(c). They are chosen to overlap between the cracks in order to
obtain a smooth representation of the stresses in the center of the structure.
The areas in which the enrichments of different cracks overlap are shown in
figure 3.38.
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(¢) Crack 3: Enriched area around the tip
Figure 3.37.: Areas enriched by the crack-tip enrichments (blending ele-

ments are colored in light grey, cracks are indicated by dashed
red lines)
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Figure 3.38.: Overlap of the enriched areas (overlap indicated by solid red
lines, cracks indicated by dashed red lines)

The von Mises stress distribution resulting from an X-FEM calculation is
depicted in figure 3.39. Although the overlap of the enriched areas allows for
a smooth stress representation, it may cause ill-conditioning of the stiffness
matrix. The underlying mechanisms, however, are much harder to identify
since several enrichment functions associated with different cracks are in-
volved.

The equation systems have been solved using the preconditioned and the
standard version of X-FEM and computation times have been measured
(Intel Core 2 Duo, 2 Ghz, 1GB Ram). The performance of a Matlab code
is highly dependent on the way it is written and on its complexity. To
make the measurements less dependent on a particular implementation of
the preconditioner only the important substeps have been measured.

For the computation of the preconditioner these substeps are the Cholesky-
decompositions, the LQ-decomposition and the evaluation of Y Py. Each
of the substeps has been repeated several times in a row and the total time
was measured. The computation time for one particular substep was esti-
mated to be the total time divided by the number of computations.

If function handles (a structure in Matlab) are passed to minres() the per-
formance of the solver decreases. But since the matrix K is not explicitly

available function handles have to be used. To be able to make a reasonable
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Figure 3.39.: von Mises stresses for the structure containing multiple
cracks

comparison we therefore assumed that the main part of the computational
effort in one iteration step of the MINRES solver consists of evaluating the
matrix-vector product with K or K respectively. A time estimate for one
matrix-vector product was again obtained by repeating the computation
several times and dividing the total time by the number of computations. If
the preconditioned version was used this involved solving several equation
systems with triangular matrices due to the structure of P. The time to
solve the equations was then estimated to be the number of iterations the
minres ()-function uses to calculate an approximate solution with a rela-
tive error of 1078 multiplied by the time estimate that was obtained for one
calculation of the matrix-vector product with K or K.

The results of the time measurements are shown in table 3.12. Due to the
difference in matrix conditioning the solver needs much more iterations if
the standard version of X-FEM is used. Although almost twice as much
time is spent to calculate the matrix-vector product in the preconditioned
version, the small number of iterations decreases the solution time signif-

icantly if compared to the standard version. As a result the total time
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Standard Preconditioned
Condition number 1.0550e4-007 | 4.6055e4-005
Preconditioner calculation [s] | - 6.69
Matrix-vector product s 0.0018 0.0032
Iterations 11562 1041
Solution time [s] 20.81 3.24
Total time [s] 20.81 9.93

Table 3.12.: Time measurements

to obtain the result is significantly lower. The difference between the two
methods would be even greater if different right-hand sides f are used, since

the preconditioner has to be calculated only once.

3.4. Meshing

The grain structures in chapter 4 will be generated by a Voronoi tessellation.
The result is a structure consisting of several convex grains. The Voronoi
tessellation is especially useful for our purposes since it will make a random
generation of grain structures possible. We therefore need an efficient strat-
egy to generate meshes for these structures.

The meshing procedure will exploit the advantages of the X-FEM. Because
the element edges do not have to align with grain boundaries and cracks
in the X-FEM, the meshing procedure can be simplified significantly. This
allows for a fully automated mesh generation which is still able to adapt to
the complex geometries of a polycrystalline structure. The idea was first
proposed by Menk and Bordas [35].

Duarte et al. [36] presented a method where adaptive meshing is performed
around a crack tip in combination with Heaviside-enrichment. Bordas et
al. [37] discussed an error estimator which could be used to control mesh
adaptation in future applications. In most other applications of the X-FEM
the mesh is not adapted.
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3.4.1. Refinement

Grain structures generated by a Voronoi tessellation contain grains of dif-
ferent sizes. Although the enrichment functions enable us to superimpose
geometric features onto existing meshes, the mesh should be refined in those
areas in which short grain boundaries or small grains are present. A simple
meshing algorithm is described here which can be used in combination with
the X-FEM. Due to its simple implementation the algorithm will always
produce a mesh. It is therefore well suited for applications in which crack
growth calculations for several grain structures should be performed in par-
allel without user intervention.

Suppose a grain structure is given and a background mesh as shown in figure
3.40(a) has been generated. The background mesh is now refined at certain
locations. To refine a particular element, it is split along the line formed
by the center of the longest element edge and the node opposite to this
edge. This introduces two new elements. If the element splitting produces
a hanging node in a neighboring element, the neighboring element is also
refined by splitting the longest edge. This is done recursively to eliminate
all hanging nodes. Please note, that by using this scheme we always obtain
elements with a good aspect ratio.

The idea can be implemented efficiently if a refinement level is defined for
each element. For equally sized elements as in figure 3.40(a) this level is
initially set to 1 for each element. For two new elements obtained by el-
ement splitting, the refinement level is defined as the refinement level of
the original element increased by 1. Thus, the coarsest elements in a set of
elements are the ones with the smallest refinement level.

The code example 3.1 demonstrates the implementation using recursive
function calls and a refinement level. The function refineElement () takes
the element that should be refined as an input argument. findE1Attached()
determines the element which is attached to the longest element edge of
element. This element is stored in elAttached. If the two elements have
the same refinement level, splitting both elements will not introduce hang-
ing nodes, since both elements are connected via their longest edge. In
that case the first part of the if-statement is executed and the element
is successfully refined. Otherwise the function refineElement () is called

recursively for both elements again.
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(a) Initial Mesh

NN

(b) Mesh refined inside the grains

Z

(c) Mesh refined along the boundaries

NN

!

Z

(d) Mesh refined inside the grains and around the
boundaries

Figure 3.40.: Mesh generation for a grain structure (grain boundaries are
indicated by blue lines)
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Code example 3.1 Element refinement implemented using recursive func-
tion calls and the idea of a refinement level
refineElement (element)
elAttached=findElAttached(element)
if refinementLevel (element)=refinementlLevel (elAttached)
split(element)
split(elAttached)
else
refineElement (elAttached)
refineElement (element)
end
return

For every grain, the coarsest element (i.e. the one with the smallest re-
finement level) is refined until a certain number of elements ny, possesses
nodes located inside that grain. The number ng, should be dependent on

the shape of the grain. We define the ratio:

Area of smallest circle enclosing grain
r= : (3.57)
Area enclosed by the grain

The number ng, is then chosen as:
Ngr = fgyr? (3.58)

Setting n, = 4 and applying the procedure to the grain structure in 3.40(a)
produces the mesh shown in figure 3.40(b). Clearly, the mesh is refined
particularly inside the small grains and inside those grains that contain
sharp edges. This strategy will be called grain refinement.

It is also important to refine the mesh along small grain boundaries. To
refine the mesh along grain boundaries we refine the coarsest element that
is cut by a certain boundary in the same way as previously explained. This
refinement is done until a number n;, of elements is totally cut by a boundary.
This will be called grain boundary refinement. Setting n;, = 4 produces the
mesh shown in figure 3.40(c). Clearly the mesh is well adapted especially
around the short boundaries. If both refinement strategies are performed
consecutively, the mesh shown in figure 3.40(d) is obtained.

Since refinement should be done for the grains as well as for the grain
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boundaries, we will employ the latter strategy (i.e. the combination of grain
refinement and grain boundary refinement) for the numerical examples in

chapter 4.

3.4.2. Element clustering

The remeshing scheme explained in section 3.4.1 can result in a high com-
putational effort if a large number of elements and grains is involved. It
is necessary to determine which elements are cut by which boundaries and
which elements are inside a certain grain. These geometric operations are
extremely time-consuming. The naive approach of testing each element and
each boundary or grain for possible intersections is therefore not very effi-
cient.

An efficient scheme is needed to determine which elements are in the vicin-
ity of a certain boundary or grain. The mesh is therefore subdivided into
several element clusters. Clustering is performed at different levels. At each
level the element clusters of the previous level are split. At level 1 the mesh

is split into four (possibly empty) element clusters. Using the maximum

Tmin Tmax

-
X

ymax

Ymin K

y E ' Level 1 clustering
T Level 2 clustering

Figure 3.41.: Visualization of the clustering scheme

and minimum values for the x and y-coordinates of th structure one can
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determine center coordinates by:

Tmin — L
L= min maz 3.59
g i T e (3.59)
Yo 1= Ymin ; Ymazx (360)
(3.61)

Using these center coordinates one can split the structural domain in an up-
per left, an upper right, a lower left and a lower right area. The upper right
area for instance would be formed by all points with x > x. and y > v..
The mesh is then subdivided into four element clusters. All elements whose
center is located in the same area form a cluster. This is called level 1
clustering.

Each element cluster is divided into four smaller clusters. This is done by
treating the cluster as a new mesh and applying the clustering idea again.
We will call this level 2 clustering.

The idea is visualized in figure 3.41. Four areas obtained from level 1 clus-
tering cover the structural domain. Each of these areas can again be split
into four areas as shown for the lower left area. Performing element clus-
tering for the initial mesh in figure 3.40(a), we obtain the first level element
clusters as shown in figure 3.42(a). Performing element clustering at the
second level, we obtain for the upper right cluster in figure 3.42(a) four new
clusters, as shown in figure 3.42(b). This way a tree structure is generated.
In this example we refine ourselves to two levels, although the scheme can
be extended to clustering on more than two levels.

To determine which elements intersect with a grain boundary or a grain,
one can use this tree structure very efficiently: For each element cluster we
can determine a bounding box. The bounding box of a cluster is a rectan-
gle which contains all elements inside that cluster. It can be determined by
finding the minimal and the maximal values of the - and the y-coordinates
of all element nodes inside the cluster. Starting with all the level 1 element
clusters, one detects possible intersections of elements with grains or grain
boundaries by determining intersections with this bounding box. Only if
possible intersections are detected for a certain element cluster, the clusters
obtained by splitting this particular cluster on level 2 are checked for pos-

sible intersections. This is performed recursively at all levels. If the lowest
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(a) Initial Mesh split into four element clusters

(b) Element cluster of the initial mesh in the up-
per right split into four smaller clusters

Figure 3.42.: Subdivision of the initial mesh in a cluster structure
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level is reached, all elements that are forming the clusters for which possible
intersections were detected are considered. The number of elements that
possibly intersect with a grain or a grain boundary is at the lowest level
significantly smaller than the total number of elements.

If elements are refined, the tree structure has to be updated. This can
simply be done by replacing each refined element by the two new elements

in each cluster in which it appears. The resulting clustering for grain re-

(a) Final Mesh split into four element clusters

2

4

(b) Element cluster in the upper right of the final
mesh split into four smaller clusters

Figure 3.43.: Cluster structure after mesh refinement

finement and grain boundary refinement for the mesh in figure 3.40(a) is
visualized in figures 3.43(a) and 3.43(b).

Subsequent element refinements for the same boundary or grain can be done
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Naive | Clustering
Grain boundary refinement 13069 | 3574
Grain refinement 6164 | 1600
Grain and grain boundary refinement | 40808 | 8077

Table 3.13.: Number of geometric operations needed to perform mesh re-
finement with and without element clustering

by considering all the previously determined elements and the refined ele-
ments in addition. Therefore, for each boundary or grain, the tree structure
has to be used only once.

To address how much of the costly geometric operations can be avoided by
the clustering approach, we consider the refinements performed in section
3.4.1 in figure 3.40(b), 3.40(c) and 3.40(d). We compare the naive approach
of checking every element with possible grain or grain boundary intersec-
tions with the element clustering approach on two levels.

In the clustering approach a geometric operation is either the test for the
intersection of a grain boundary or a grain with an element, or the test for
a possible intersection with the bounding box of an element cluster.

The results are compared in table 3.13. Obviously the number of geometric
operations can be significantly reduced by using the clustering approach.
Generally, it was found that for the more complex examples in this thesis a

clustering approach on three levels was an efficient alternative.

3.5. Contact Modeling

When applying the algorithmic procedure developed here so far to solder
joints we are mainly interested in the deformation behavior under cyclic
loading. If cracks are present in the structure it is likely that the crack
faces overlap in the simulation. To prevent this, we have to add constraints
to our problem.

In this thesis the constrained problem is solved by using a penalty method.
More sophisticated approaches for dealing with contact problems in com-
bination with the X-FEM were discussed by Ribeaucourt et al. [38] and
Dolbow et al. [39].
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Due to the positive definiteness of K the numerical solution of the struc-
tural problem can be interpreted as finding a vector a such that the elastic

energy of the system is minimized:
1
min |§aTKa —a’ f| (3.62)

We assume that the constraints are given by a sufficiently smooth function

n which is characterized by:

= 0 if the crack faces do not overlap
n(a) (3.63)

> () if the crack faces overlap

We want to minimize (3.62) subject to the condition n(a) = 0. We therefore

add an additional term to the minimization problem with € > 0:
min \5(1 Ka+ -n(a) —a f] (3.64)
€

For € — 0 the minimum of (3.64) converges to the minimum of (3.62) subject
ton(a) = 0. The idea of the penalty method is to use a small positive value
for e.

For non-zero values of € and a sufficiently smooth function 7, the expression

(3.64) can be minimized using a Newton method. We define:

on(a)

day
Vi(a) = | : (3.65)

on(a)

Oan

A local minimum of (3.64) is found if the gradient vanishes, that is:

Ka+ Vy(a)= f (3.66)
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Linearizing (3.66) around a, we obtain:

K la+ Aa] + %Vn(a) + Kp(a)Aa = f (3.67)

d*n(a) 9%n(a)
0x10x1 * " Ox10xTn
Kp(a) = - P (3.68)

9*n(a) 9*n(a)
Oxndxr1 ~ " " 0xndy

We can easily put this in the form of an iterative method where a; denotes
the i-th iterate:

Aa = [K + Kp(a)] " | f %Vﬁ(ai) _ Ka, (3.69)

A; 1 = Q; + Aa (370)

Thus, in each iteration step one has to calculate Kp and solve a linear
equation system with K + Kp.
An approximation 1" of 7 can be constructed as follows. Assume that an

element is completely cut by a crack as shown in figure 3.44. n denotes the

Figure 3.44.: Element cut by a crack

unit vector perpendicular to the crack. In the center of the crack segment
we can obtain the points £~ and x* by making an infinitesimal step in the
positive and the negative direction of n. Crack faces inside the element
overlap if:

(u(z?) —u(z"))'n >0 (3.71)
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This is however just a sufficient but not a necessary condition. To obtain a
necessary condition for small deformations (3.71) has to be evaluated for all
points along the crack. However, the evaluation in the center of the crack
segment in an element can be interpreted as a numerical approximation to
a necessary condition.

It is easy to construct matrices N+ and IN~ such that:

u(z")=Nta (3.72)
u(x”)=Na (3.73)

The entries of these matrices are obtained by evaluating the enrichment
functions at ™ and x~. Since cracks are introduced only by enrichment
functions it suffices to evaluate the enrichment functions of the correspond-

ing element. For the j-th element cut by a crack we can construct:
N)=N"—-N~ (3.74)
1if n” Nia >0

= | (3.75)
0 otherwise

The matrix Np is constructed by:

VN

Np = (3.76)

Vi Np

Depending on whether the crack faces in a certain element overlap, several
of the lines in INp maybe zero.

We obtain K% (which is the numerical approximation to Kp) by:
K= NINp (3.77)

Although the function %nh (the approximation to the penalty term in (3.64))

is not actually calculated, its explicit form would be:

1
Enh = aTKIIE(a)a, (3.78)



130 Section 3.5

The solution of K + K% for varying K% can be coupled efficiently with
the preconditioner introduced in section 3.3. The preconditioner enables us
to solve equation systems with K, since the preconditioned version of K
is well-conditioned. But for the Newton method we have to solve equation
systems with K + K%. Applying the same preconditioner may not result
in well-conditioned equation systems. Calculating a new preconditioner for
K + K% at each time step of a transient calculation and at each subsequent
step of the Newton method would not be efficient.

But since the rank of the matrix K% is usually much lower than the rank of
the matrix K, we can solve an equation system with K instead of K + K7
and update the solution afterwards. The Woodbury matrix identity [34]

can be formulated for our problem as (cf. Appendix B):
[K+ NZNp| ' =K'= K 'NE [T+ NoK'NS] ' NpK™' (3.79)

Assume that we already solved Ka = f. By multiplying equation (3.79)
from the right with f we obtain:

a=a— K 'NL[I+NpK 'NF] ™' Npa (3.80)

a is the solution of [K + K%] a = f. The factor K~'INJ appears twice.
If this factor is known in advance, calculating a with (3.80) reduces to
solving an equation system with K, solving a small equation system with
[I + NpK~'N]], evaluating a small number of matrix vector products
and a vector addition.

There is a simple way to obtain K 'NL. We can calculate the matrix
K'NE with N} given by:

Np
Np=| : (3.81)

Sl

Ny
Only a small number of equation systems have to be solved additionally
since the rank of N% is determined by the number of cracked elements.

From this we can obtain K !N} by setting those rows to zero which cor-



Chapter 3 131

respond to elements in which n; is zero.

Hence, the calculation of K _1N]§ has to be performed only once before the
application of the Newton method. In the case of a transient calculation
with a fixed crack geometry, it even suffices to calculate the matrix once
before the whole calculation.

If calculations have been performed for a previous time step (cf. section
4.4.2), then the corresponding displacements have been used as a starting
value for the Newton method in the current time step. A tolerance of 10~
was found to be a good compromise between accuracy and the number of

iterations.

3.6. Transient simulations and creep with the
X-FEM

In this section it is explained how the methods described so far can be ap-
plied to transient problems involving plastic material behavior described by
a creep law. An explicit solution procedure is used based on the work of
Zienkiewicz and Cormeau [40]. The main challenge in using the concepts
explained so far for creep problems is to eliminate numerical difficulties
which occur due to the use of the weakly singular enrichments.

Another application of the X-FEM to transient problems was described by
Menouillard et al. [41]. A dynamic linear elastic problem was solved us-
ing the Newmark method combined with the X-FEM. Due to the use of
a lumped mass matrix they were able to calculate the solution without
solving equation systems. The method can also be classified as an explicit
approach.

For plastic-elastic fracture mechanics appropriate enrichment functions to
describe the weakly singular fields in front of the crack tip were discussed
by Elguej et al. [42]. Time-independent plasticity for isotropic materials
was considered.

Liang et al. [43] used the X-FEM in combination with a creep law before.
They used an implicit solver to solve their equation systems. The numerical
difficulties discussed in this section were not discussed in their paper, it is

possible that they did not appear because of the implicit solution process.
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An explicit approach as it is used here, is simpler to implement than an
implicit one. Furthermore, convergence problems, which may appear if im-
plicit solvers are used, cannot occur if explicit solvers are used.

It must be mentioned that, although the numerically determined enrichment
functions (cf. section 3.2) are able to represent arbitrary strain singularities
for two-dimensional linear elastic problems appropriately, this may not be
true any more if a creep law is used additionally to describe the transient
behavior. The order of the strain singularity and its shape may change in
that case.

However, the numerically determined enrichment functions will still be use-
ful to introduce crack tips and re-entrant corners onto meshes that do not
conform to the geometry. Thus, the main advantage of using them in chap-
ter 4 is that they will allow us to realize the automatic meshing as described
in section 3.4 procedure for solder joints containing cracks.

We are interested in performing thermomechanical transient simulations.
Assume that a temperature profile T'(¢) together with appropriate displace-
ment boundary conditions are given for a structure. Using (2.17) and the
strain representation in equation (2.2) we obtain the weak formulation at
time ¢ as:

2

Find u(t) € (H} () such that for all v € (H} ()%

/Qe('v) : D e(u(t))da = / e(v): D : (é"(t) + € (t))da (3.82)

Q

If the thermal strains and the creep strains on the right hand side are
known we can solve the problem numerically with the previously described
techniques.

To perform a transient calculation the time axis must be discretized. We
do this by choosing a fixed time step At. Assume that a calculation at time
t has already been performed. The creep and the thermal strains at time
t+ At are needed to evaluate the right hand side of (3.82) for the subsequent
time step. The thermal strains are obtained by evaluating the temperature
profile T" at ¢ + At and using equation (2.12). An approximation for the

creep strains is given by:

aecr

€7(t+ At) & € (1) + —

(o), T, t) At (3.83)
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This approach was proposed by Zienkiewicz and Cormeau [40] for viscoelas-

tic materials. The stresses in (3.83) are given by:
o(t)=D: (e(t) — €(t) — € (t)) (3.84)

A numerical approximation to €(t) can be calculated using the displacement
vector a(t) describing the numerical solution at time t.

If the time step is too large the solution becomes unstable. Zienkiewicz
and Cormeau [40] proposed time steps depending on the maximum value
of 262 (o (t),T,t) in the structural domain. But in combination with the X-
FEM this approach is problematic. Because the numerical solution is able

to display infinite stresses and strains, the creep rates may theoretically also
become infinite. Therefore, we would have to choose an infinitely small time
step to compensate this.

In practice the creep rates are only evaluated at the Gauss points, but still,
the maximum creep rate would be dependent on the location of the Gauss
point. Therefore, the time step and the progress of the algorithm would be
dependent on the location of the Gauss points and thus on the order of the
Gaussian quadrature. Since the enriched elements are usually integrated
with a high order a very small time step may be necessary to guarantee a
stable algorithm.

Equation (3.83) is only an approximation to the true value of the creep

strain at time t + At given by:

t+AL e
€7 (t + At) = €. (t) + / acr (o(7), T, 7)dr (3.85)
T

t

The approximation in equation (3.83) can be motivated as follows: Assume
that the total strains €(t), the thermal strains €"(t), the temperature T'(t)
and the creep strains € (t) are known. If all these quantities would remain
unchanged for all times between t and ¢+ At, then equation (3.85) simplifies
to equation (3.83).

We will use a simple approach to guarantee the stability of the solution for all
time steps. From all the assumptions mentioned above, only the assumption
of constant total strains €(t) for all times between ¢ and ¢ + At is needed.

This assumption enables us to evaluate the integral in (3.85) numerically
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using a step size A7 << At, but without considering the global behavior
of the structure (i.e. without solving another equation system).

To explain this more precisely we consider the code example 3.2. The code

Code example 3.2 Stabilized evaluation of the creep strain
deltaTau=deltaT/n
for i=1:n
Tmp=temp (t)
sigma=stress(Gpt,a,epsCr,Tmp,t)
epsCr=crStrain(epsCr,Tmp,sigma,deltaTau)
t:=t+deltaTau
end for

demonstrates the numerical integration of the creep strain for one Gauss
point Gpt. The displacements obtained from a solution at time t are stored
in a. The time step At is stored in deltaT, the small time step A7 := %
is stored in deltaTau, n is some integer stored in n. The function temp ()
evaluates the temperature at time t. The numerical integration of (3.85)
is performed by the for-loop. The function stress() is an evaluation of
(3.84). The function crStrain() is an evaluation of equation (3.83) but
the small time step A7 is used instead of At.

The effect on the stability of the simulation can be interpreted as follows: If
the creep rates are extremely high at some point, evaluation of (3.83) may
lead to unreasonably high creep strains, because it is only an approximation
of (3.85). The implementation discussed here allows for a relaxation of the
stresses within a time step At. Thus, the creep rate also decreases within
At. Hence, at time t + At the creep strain is generally lower than the one
obtained by evaluating (3.83).

In the numerical experiments conducted in chapter 4 this approach is used
with a value A7 = % for all elements for which the value f(oy,,T)At
exceeds 0.1 at one or more Gauss points. f(0u,,T) is the function used
to define the creep strain. For all other elements the approach in equation
(3.83) is used.

No statement was made about how the choice of A7 and At is related to
the numerical error. But it is obvious that for a given choice of At, the
approach discussed here is an improvement of the approach proposed by

Zienkiewicz and Cormeau [40].



4. Application of X-FEM to
solder joints in electronic
devices

In this chapter the methods previously explained are applied to the calcu-
lation of crack growth in solder joints during thermal cycling. This is the
first application of X-FEM to this problem.

Section 4.1 gives a short introduction to solder joints in electronic devices,
the soldering process and thermomechanical fatigue. The methods currently
employed to predict the lifetime of solder joints are discussed in section 4.2.
A new methodology is motivated and introduced in 4.3. This includes a
discussion about the influence of microstructural features on the damage
process. The discussion is based on the literature that is currently available
on that subject. The new methodology enables crack growth calculations in
solder joints based on microstructural features of the joint. It employs the
random generation of microstructures which is explained in section 4.3.2.
Constitutive equations describing the mechanical properties of the joint mi-
crostructure are determined in section 4.4.1. Crack growth simulations in
solder joints have been performed and the results are presented in section
4.4.2.

The idea for the solder joint model, the grain structure generation and the

crack growth criterion was first presented by Menk and Bordas [35].
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4.1. Solder joints in electronic devices

In order to realize electronic devices (e.g. control units for cars) different
components such as resistors, chips etc. are needed. These components are
connected such that the desired functionality of the final device is achieved.
The connections are formed by soldering the components on a circuit board
with copper wirings on its surface. Therefore, the solder joints form a me-
chanical as well as an electrical connection. The mechanical connection
ensures the attachment of the components to the board while the electrical
connection enables the functionality of the device.

Before the actual soldering, the solder paste is printed onto those locations
on the board to which the components should be attached. The components
are placed on top of the paste. During soldering the surrounding tempera-
ture is increased such that the metal components of the solder paste liquefy
completely. Afterwards the surrounding temperature is decreased and the
solder solidifies to form the joints.

The solder paste contains different powdered metals mixed with a flux. The

Figure 4.1.: Wetting capabilities of the solder

flux is a chemical which removes oxidations from the metal contacts that
are to be joined. The contacts are often made from copper. At elevated
temperatures oxidations form easily at the copper surface. Oxidations im-
pair the wetting capabilities of the liquid solder. This is visualized in figure
4.1. The wetting capability is good if the contact area between the solder
and the copper is big compared to the solder volume. If the wetting prop-
erties of the solder are poor, the final joint will be of a poor quality since
the contact area between the component and the board is narrow. The

conductivity may therefore be impaired and the connection is likely to fail
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if mechanical loads are applied. The flux vaporizes completely during the
soldering process.

The composition of the different metals forming the powder in the solder
paste is chosen such that the alloy has certain manufacturing and reliabil-
ity properties. An important property is the liquidus temperature. The
liquidus temperature is the lowest temperature at which the solder is com-
pletely liquid. To form a good connection by soldering, the solder paste
should be completely liquid at some point of the soldering process. If the
liquidus temperature is too high, the components may be damaged in the
soldering process. If it is too low, the solder will be less resistant to me-
chanical loads if the device is used in a high temperature environment such
as the vicinity of a cars engine.

For a long time the SnPb solder alloy has been successfully used in the elec-
tronics industry. It consists of roughly 60 wt% tin and 40 wt% lead. Since

Temperature
A

A liquid, B liquid

A solid, B liquid A liquid, B solid

A solid B solid

A solid, B solid

0 100

Figure 4.2.: Example of a phase diagram for a two-component alloy

July 2006 lead-containing electronics are banned in the Furopean union due
to environmental concerns and health issues. The new solder alloy is the
SnAgCu alloy which consists of roughly 95-96 wt% tin, 3-4 wt% silver and
a small percentage of copper (0.5-0.8 wt%). Both alloys are known as near-

eutectic alloys.
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Near-eutectic alloys have good manufacturing properties. To motivate this
we imagine an alloy formed by two different metals. A phase diagram for
this alloy could look like the one in figure 4.2. In fact, this phase diagram
has all the characteristics of the SnPb phase diagram. Phase diagrams de-
scribe the aggregate state of the alloy components at different temperatures.
If for some alloy composition and temperature a component is solid, it may
contain small amounts of the other component. Thus, “A solid” in figure
4.2 should be interpreted as a crystal formed by component “A” with atoms
of “B” dissolved in it.

From figure 4.2 we can see that there is one particular composition which
has a very low liquidus temperature. At this temperature all other alloy
compositions contain solid components, i.e. their liquidus temperature is
higher. This particular alloy composition is known as the eutectic compo-
sition. A direct transition from the solid state to a liquid state is possible.
For three-component alloys, such as SnAgCu, phase diagrams also exist, but
they cannot be displayed that simple since three components are involved.
Several factors determine the lifetime of electronic devices. In automotive
electronics the most important damage mechanism is thermomechanical fa-
tigue. Often the electronic devices are placed close to the engine of the car.
The heat generated by the engine causes the materials to expand. Both
are made from different materials, generally the circuit board expands more
than the components. This causes a thermal mismatch. The situation is
shown schematically in figure 4.3. The solder joints attach the component
(e.g. a chip) to the board. If the board expands more than the chip, the
joints have to deform to accommodate this mismatch. This causes stresses
and plastic deformation inside the joints. Due to the high homologous tem-
peratures the plastic deformation is mostly time-dependent creep.
Temperature variations occur frequently in cars. The temperature increases
if the engine is running, the temperature decreases if the car is parked. The
repeated creep deformation causes crack initiation, crack growth and ulti-
mately results in the failure of the device because the electrical connection
are interrupted. To guarantee a certain performance, car manufacturers
demand that the electronic devices used in their vehicles can withstand
a certain amount of temperature cycles of a given profile without loosing

their functionality. The electronics industry performs thermal cycling tests
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Chip

Solder joints

(a) Joint deformation at room temperature

Chip

Solder joints

(b) High temperature joint deformation

Figure 4.3.: Solder joint deformation due to temperature variations
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to ensure that these requirements are met. However, since these test are
time consuming and expensive, a reliable lifetime prediction methodology

is desirable.

4.2. Standard methods for predicting the
lifetime of solder joints

The lifetime prediction methodology currently employed in most industry

applications can be divided into the following substeps:

e The material properties of the solder joint, the component and the
board are determined experimentally. Suitable material laws are de-

veloped.

e A finite element model of the critical component including the joints
and the board is generated. The temperature profile used in the ac-
celerated tests is chosen as a boundary condition in the simulation
and the stress-strain behavior of the joints during a thermal cycle is
calculated. A quantity which is assumed to be related to the solder

fatigue is extracted from the simulation.

e The lifetime of the solder joints undergoing accelerated thermal cy-

cling is determined experimentally.

e The experimentally determined lifetime is correlated with the quantity

extracted from the simulations using an empirical approach.

To perform the last step, experimental results involving the assembly in
question are needed. The idea is of course to determine the correlation once
and then to use it for different assemblies and temperature profiles, other-
wise lifetime prediction would be pointless.

The materials forming the component and the circuit board are usually mod-
eled using a linear elastic material description in connection with thermal
expansion properties. The joints are assumed to be homogeneous materials
with isotropic mechanical properties. However, due to the high homologous

temperatures during thermal cycling creep deformation is known to occur
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in the solder joints. Different models can be used to describe the creep be-
havior of the joints. One commonly used law to describe the (steady-state)

creep is known as the double power law:

A, —h Ay o, —Q2
€ors = 7 0 eXp( T ) + 0 exp T (4.1)

k is the Boltzmann constant, ¢ is the stress and T the temperature in

Kelvin. The constants Ay, As, Q1, Q2, n1 and nsy have to be determined ex-
perimentally. The two exponential terms are often associated with different
creep mechanisms. A version with only one exponential term is also often
used.

Another possibility to describe the secondary creep is the hyperbolic sine
law:

écr,s = Al (Sinh (AQU))n eXp (_%)

Again A;, As, n and ) have to be determined experimentally.

(4.2)

Different strategies can be found in the literature to determine the creep
law. A very natural way to approach the task is to use SnAgCu bulk speci-
men and measure the deformation of the specimen if subjected to different
temperatures and loading conditions. Once the creep laws shown above
are fitted to the experimental data they can be generalized to the three-
dimensional case.

Wiese et al. [44] used, next to other specimens, a dog-bone specimen to
conduct creep tests. The dog-bone specimen is designed such that traction
forces can easily be applied. The elongated shape of this specimen guar-
antees a homogeneous stress distribution, which is important because the
data has to be fitted with respect to the stress state.

Other authors used specimens which were designed for applying shear forces
[45]. One might argue that shear forces are the forces that actually appear
in the field, and therefore the creep experiments should be based on them.
On the other hand due to their shape these specimens are likely to introduce
non-homogeneous stress states. Deplanque [46] realized this and designed
a specimen which minimizes unwanted effects by optimizing its shape.

But the material properties of the solder joints in the electronic device may
differ from those of the bulk specimen. The microstructure of SnAgCu is

dependent on the cooling condition. The temperature gradient inside the
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joints during solidification differs with the size of the sample and therefore
the microstructure of the joints is different than the one found in bulk spec-
imen. Knowing this, Wiese et al. [44] used actual flip chip solder joints to
develop their creep law. Since the stress state is highly non-homogeneous,
numerical simulation has to be used additionally in the process.

Several authors investigated the influence of primary creep [46,47] and found
that this influences the outcome of the simulation. For a fixed temperature
and stress state, primary creep is the initial creep behavior before a steady-
state creep rate is reached. However, this will be neglected in this thesis.
To determine the reliability of solder joints experimentally, special test spec-
imens are subjected to thermal cycling: The chips and circuit boards are
designed such that the solder joints are connected in a series circuit. The
resistance of the circuit is checked continuously during the experiments. A
failure of one of the joints is recognized as an instantaneously increasing
resistance. Schubert et al. [48] determined the lifetime of plastic ball grid
array (PBGA) assemblies this way using temperature cycles from —40 to
+150 degrees Celsius. Che and Pang [49] presented experimentally deter-
mined lifetimes of PBGA packages subjected to thermal cycles with a profile
ranging from —40 to +125 degrees Celsius.

Another method to determine failure in solder joints can be applied to chip
resistors. A shear force is applied to the resistor which is increased slowly.
The force necessary to tear the resistor from the board is measured. If this
force is significantly less than the force necessary to tear a freshly soldered
resistor from the board a failure is assumed. Resistors which have been
tested this way are of course not suitable for further thermal cycling. So
the experiments have to be conducted with many resistors and a certain
amount of them is removed at different times. Although this method is
used frequently at Bosch, no discussion could be found in the literature.
The FEM is used to determine the structural behavior during thermal cy-
cling. Data is gathered from a representative cycle. Due to the creep de-
formation of the joints the stress-strain curves show a hysteretic behavior.
The stress-strain curves stabilize after several cycles, a cycle with a stable
hysteresis loop is called a representative cycle.

Two different quantities are commonly used for correlation with experi-

mental results. The accumulated creep strain and the creep strain energy
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density.

The equivalent creep strain €. ., can be calculated from the creep strain
tensor. If the absolute value of its rate is integrated over time, this gives
the accumulated creep strain €,.. This is a measure for the cyclic creep
deformation at a certain point in the solder volume.

The creep strain energy density W, is calculated as follows. The equivalent
stresses and strains can be computed at every point of the solder volume.
The creep strain energy density is the area enclosed by the hysteresis loop
formed by the stress-strain curve of a representative cycle.

The quantity of interest is averaged over a solder joint which is assumed
to be critical or over a volume V' of a critical joint in which damage is

assumed. Constants ¢; and o are used to fit a lifetime law of one of the

1 2
Ny=q¢ (m/veacc d’u) (4.3)

1 2
Ny =c (W/\/Wﬂ d’u) (4.4)

Ny is the number of cycles to failure. Syed [50] used the accumulated creep

following forms:

strain and the creep strain energy density to determine fatigue laws for
SnAgCu joints. Schubert et al. [51] also used both quantities to determine
fatigue laws, which they used to predict the lifetime of SnAgCu solder joints
in flip-chips.

Zhang et al. [45] presented a fatigue law for SnAgCu in which they used an
energy-partitioning approach. In this approach not only quantities related
to creep were used in the fatigue law, but also quantities related to time-
independent plastic and elastic deformation. However, Syed [50] concluded
that time-independent plasticity can be neglected in the model if thermal

cycling is considered.

4.3. New methodology

To motivate a new methodology we will first discuss the shortcomings of
the standard lifetime prediction as discussed in section 4.2. Afterwards the

damage mechanisms are discussed from a physical point of view using the
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literature currently available on that subject. From this discussion we may
conclude, that in order to arrive at a better lifetime prediction the crack
growth and the grain structure of the joint should both be represented in

the simulation.

4.3.1. Motivation

The procedure outlined in section 4.2 has several disadvantages. The fatigue
laws that are determined for a certain joint geometry and temperature pro-
file may not be valid under different experimental conditions. Darveaux [52]
noted that the lifetime prediction can differ by a factor of seven from exper-
imental results if the fatigue law has not been determined under consistent
experimental conditions. Therefore, if significant changes are made to the
geometry or the temperature profile the lifetime prediction may give erro-
neous results.

But due to technological advances and changing customer demands the elec-
tronics industry constantly has to deal with changing components, different
circuit boards and other joint geometries (e.g. ongoing miniaturization of
electronics). Instead of continuously conducting new experiments the sim-
ulation methodology could be improved. If the damage mechanisms are
included in the model, the simulation is a better description of the exper-
imental reality. Therefore, one may hope that a simulation methodology
based on such a model, is transferable to a larger class of experimental con-
ditions once it is validated.

To understand the damage mechanism in solder joints we have to take a
closer look at the microstructure. Many authors have investigated the mi-
crostructure of lead-free solder joints after the soldering process [53-60].
The structure consists of a dendritic 5-Sn phase in which CuSn and AgSn
particles are dispersed. The dendrites are relatively small compared to the
joint size. The same is true for the CuSn and AgSn particles.

Tin has an anisotropic crystal structure. The mechanical behavior is there-
fore dependent on the crystal orientation. For pure tin the stiffness varies
up to a factor of three depending on the orientation [61]. The crystal ori-
entation of the dendrites is the same over large areas of the joint. These

regions are mostly referred to as dendrite colonies or grains. The dendritic
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structure of the tin matrix makes it hard to determine where different grain
boundaries are located if optical microscopy is used. But using technologies
like EBSD or polarized light microscopy, the solder joint can be subdivided
in only a few different regions [56,62] in which the crystal orientations are
the same.

In the as-soldered state the joints only consist of a few grains [63]. Although
recrystallization occurs in some areas [64-66] during thermal cycling, the
recrystallized grains are still large compared to the joint measurements.
The crack spreads in a web-like fashion [64] along the grain boundaries
[65,67] during thermal cycling. Due to the anisotropy of the grains par-
ticularly unfavorable grain structures are found in about 10% of the joints
which give rise to early failures [68].

Although the damage mechanism is not fully understood yet, these observa-
tions suggest that a crack growth simulation should be coupled with a model
for the grain structure. Damage is generally related to the stresses and the
plastic deformation inside a structure. The relative size of the grains and
the highly anisotropic behavior of tin does not justify a calculation of these
quantities based on a homogeneous joint description. Also, a homogeneous
joint model could not predict web-like crack patterns. Furthermore, the
early failures, which are a consequence of the non-homogeneity of the struc-
ture and its random nature, can only be reproduced if the highly anisotropic
mechanical behavior of the grains is included in the simulation.

Several authors realized this and used the FEM to simulate joints formed
by several grains. Gong et al. [69] simulated joints with two distinct grains
as well as joints with a finer grain structure. The fine grain structure was
modeled using cube-shaped finite elements of equal size, each element rep-
resenting a different grain. Erinc et al. [70] simulated more complex grain
shapes, but only two grains were used to model a joint. Damage was in-
cluded by using a cohesive zone approach at the grain boundaries. Menk
and Bordas [71] investigated the accumulated creep strain in the case of a
joint formed by six distinct grains.

Other approaches to simulate cracks in solder joints without modeling mi-
crostructural features can be found in the literature too. Ghavifekr and
Michel [72] calculated stresses in the vicinity of a crack tip which was arti-

ficially introduced to a homogeneous isotropic joint model with the FEM.
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However, crack growth was not simulated. Towashiraporn et al. [73] sim-
ulated crack growth in a BGA joint using a homogeneous isotropic solder
model and cohesive elements at the copper-solder interface. It was found
that the simulated crack growth corresponds well with the experimentally
determined crack growth. However, the solder alloy considered in their work
was SnPb.

The microstructures in actual solder joints arise from a stochastic process.
It is not possible to predict how the microstructure will form in a particular
joint before soldering. To capture the variety of possible grain structures
in a lifetime prediction it is proposed here to generate a set of random mi-
crostructures for the joint in question. Let us assume that the displacements
in some area around the joint are known. In section 4.4.2 these displace-
ments will be calculated from a global model of the device. The displace-
ments can be used as boundary conditions for a crack growth calculation
with a joint submodel. The lifetime of a particular joint, as determined by
those crack growth calculations, depends on the microstructure. If many
crack growth calculations for different microstructures but for the same joint
are performed, it might be possible to make a statement about the failure
probability. Such a statement would be much closer to the experimental
reality than an estimated number of cycles to failure as determined by the
standard methodology in section 4.2.

This idea raises several questions. One would have to find a way to generate
realistic random microstructures for solder joints. Furthermore, constitutive
laws describing the mechanical behavior of the microstructures are needed.
A crack growth criterion based on these constitutive laws must be devel-
oped. Finally, an algorithm is needed which can perform these calculations

for several thousand temperature cycles in a reasonable amount of time.

4.3.2. Grain structure generation

In section 4.4.2 joints in ball grid array (BGA) assemblies will be consid-
ered. Therefore, this section is concerned with the random generation of
grain structures for the corresponding joint shapes. We are particularly

interested in near eutectic SnAgCu BGA joints with a diameter of roughly
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600um, since detailed information about the crack growth is available [74].
The procedure may however be applied to other joint geometries as well.
As previously mentioned, it is known that near-eutectic solders form rela-
tively large grains compared to their size [63,65,67] right after solidification.
Sundelin et al. [65] found an average of 3 grains in joints with a diameter
of 350pm, while Henderson et al. [67] found an average of 8 grains in joints
with a diameter of 900um.

This initial microstructure is not stable during thermal cycling, the upper
part of the joint connected to the component recrystallizes [64-66] due to
the high thermal strains in this region. No detailed discussion about the
number of grains, their shape and the joint volume in which recrystalliza-
tion takes place could be found in the literature. But evaluating the pictures
published by Sundelin et al. [65] one notices that in their studies the recrys-
tallized area is found in the upper fourth of the joint and contains roughly
30 grains in the cross-sectioned area.

Since the dendrites and the intermetallic dispersions inside the grains are
small compared to the joint size [53-60], a homogeneous description of the
grains themselves will be used in the simulation. To be able to construct
joints with random grain structures we make the following assumptions for
BGA joints with a diameter of 600um:

1. Recrystallization occurs during the first few thermal cycles and hap-
pens instantaneously. The number of cycles until recrystallization

occurs is negligible compared to the total lifetime of the joint.
2. The joint contains 6 grains on average after solidification.

3. The area that recrystallizes is the upper fourth of the joint. The

recrystallized area contains 40 grains on average.

4. The initial as well as the recrystallized grain structure can be repre-
sented by a Voronoi tessellation applied to a random point distribution

in the corresponding area.

5. The orientation of each grain is random and not related to the other

grain orientations.

The first assumption is an idealization of the actual recrystallization pro-

cess. The idea that recrystallization happens mostly during the first cycles
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can be motivated by thermodynamical considerations, but its validity re-
mains to be tested.

The second and the third assumption are a rough guess about the number
of grains that was made based on the discussion at the beginning of this
section. These assumptions are reasonable simply because similar obser-
vations have been made for joints of similar sizes. However, it should be
mentioned that the number of grains may also depend on other factors like
the position of the joint in the assembly.

The fourth assumption can be motivated for the intial microstructure. The
Voronoi tessellation and related concepts are often used in materials science
to generate random grain structures [75-77]. It starts with a random source
point distribution. A polygon is generated for each source point containing
exactly those points in R? or R? which are closer to this particular source
point than to all the others. The tessellation can therefore be used to model
the grain structures of solidified metal alloys. Solidification also starts from
randomly distributed solidification sources in the liquid phase. Each solidifi-
cation source grows and consumes the liquid phase until it reaches another
source. However, recrystallization is based on other mechanisms and the
grain shapes may differ from the ones generated by Voronoi tessellations.
The fifth assumption is made because no detailed studies about the grain
orientations were found in the literature which allow further conclusions.
Twinning may sometimes occur [63], in these situations the orientation in
different grains would be related to each other.

Based on these assumptions the following procedure is proposed to generate

random grain structures:

1. Generate an as-solidified grain structure based on a Voronoi tessella-
tion using 6 randomly distributed source points in the solder volume.

Assign a random orientation to each of these grains.

2. Generate a recrystallized grain structure based on a Voronoi tessella-
tion using 40 randomly distributed source points in the upper fourth of

the solder joint. Assign a random orientation to each of these grains.

3. Superimpose the recrystallized structure onto the as-solidified struc-

ture.
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(a) Initial grain structure

(b) Recrystallized area in the upper joint region

(¢) Final model of the joint

Figure 4.4.: Generation of random recrystallized grain structures for a sol-
der joint
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As an example one may consider the structure shown in figure 4.4. The
boundary of the initial structure in 4.4(a) describes a two-dimensional model
of a solder joint which forms if BGA devices are soldered onto a circuit
board. The flat part on the top is attached to a copper pad. The cavity on
the lower part of the joint encloses another copper pad.

A recrystallized structure forming in the upper part of the joint is shown in
figure 4.4(b). The final joint model in 4.4(c) is obtained by superimposing

the recrystallized area onto the initial grain structure.

4.3.3. Crack growth criterion

The equivalent creep strain €. ., can be calculated from the creep strain
tensor. If the absolute value of its rate is integrated over time, this gives

the accumulated creep strain:

T
O€cr eq
€ace = ——|dt 4.5
| 1% (4.5

This is a measure for the creep that has taken place at a certain point in the
solder volume. The quantity is closely related to the solder fatigue process
and is often used for lifetime prediction as already discussed in section 4.2.
We will use it in a different way.

During thermomechanical fatigue the crack propagates along the grain bound-
aries [65,67]. Classical creep crack growth along grain boundaries starts with
small cavities which grow and coalesce to form a macroscopic crack [78]. The
cavity formation and growth is an accumulation of voids over time. Creep
generally involves void movement through the crystal or the grain. Thus,
the creep deformation in the vicinity of the boundary is related to the fail-
ure of the boundary.

A cracking criterion for a particular grain boundary can therefore be pro-
posed as follows. An area Ap surrounding the boundary B is determined
which is formed by all points with a distance smaller than dg to the bound-

ary B. The situation is shown in figure 4.5. The boundary cracks if:

1

€avg,B ‘= T €ace da > Cep (4.6)
Al Ja,
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Figure 4.5.: Area Ap around a boundary B used in the cracking criterion

| Ap| is the size of the area and the constant ¢, must be chosen appropriately.
Thus, in the implementation boundaries will always crack as a whole, which
is an approximation to the experimental situation.

The choice of dp is not easy to justify. The idea is to determine an area
Ap in which void movement inside the crystal significantly contributes to
cavity formation along the boundaries. In section 4.4.2 a value dg will be
chosen such that it is smaller than most of the grains, but such that Ag

still contains a reasonable area around each boundary.

4.3.4. Crack growth algorithm

The random generation of grain structures together with the crack growth
criterion and the constitutive laws for the grains can be used to predict
the crack growth in a particular joint. But performing this simulation for
all temperature cycles would be very time-consuming. However, one can
assume that if the geometry of the joint does not change, the creep strain
that accumulates during each cycle is the same if the system is in a steady
state (i.e. if the deformation of the joint in two subsequent cycles is roughly
the same).

Due to the nonlinearity of the creep law the stress-strain curves evaluated
for points inside the solder form hysteresis loops. For a fixed geometry
it takes several cycles until these loops stabilize. The first cycle in which

a steady-state behavior can be assumed is called a representative cycle.

1

ace 18 calculated at every Gauss point by

The accumulated creep strain e

evaluating (4.5) for such a cycle.
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If we are at the beginning of a crack growth calculation the crack criterion

(4.6) can be replaced by:

N

— €ace da > Cop 4.7
Aol (1)

Equating both sides, we can find the number of cycles N after which the
boundary cracks. This criterion is evaluated for every boundary. The num-
ber of cycles N} . after which the first boundary cracks is the number of
cycles during which €! . may be used to calculate the creep behavior. If the
first boundary is cracked the geometry has to be updated which changes
the creep behavior. The new criterion for a cracking of a boundary B after

determining €2 from another representative cycle becomes:

acc

1
Nmm|AB‘ fA acc da’

Niao Ja, €ace da > cor

(4.8)

Evaluating N for all boundaries gives another number of cycles N2. = after

which the second boundary fails. More generally in the i-th step for every

boundary B one has to evaluate:

i—1 J j
Zj:l Nmm|AB\ fAB 6acc da U

- ‘A|fA €. da > ¢y

(4.9)

The minimum over all values of N gives the number of cycles N . after
which the next boundary fails. Updating of the geometry is done until the
joint fails, i.e. until the crack has propagated through the whole joint. For
reasons of computational efficiency, cracks are introduced at all boundaries
that fulfill the criterion (4.9) with a value of 0.95¢., on the right hand side
and N := N! . . This ensures a reasonable progress for fine grain structures.
Furthermore, we prevent the grain boundaries at the copper-solder interface
from cracking. The copper dissolves into the solder [79] which results in an
interface that is tougher than the interface between different SnAgCu grains.
The algorithmic procedure for calculating crack growth in a solder joint with

a given grain structure is visualized in figure 4.6.
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Figure 4.6.: Algorithmic procedure to determine crack growth in solder
joints
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4.4. Numerical examples

In this section numerical examples are presented to demonstrate the appli-
cation of the concepts discussed so far to solder joints. To apply the crack
growth algorithm, constitutive laws for the grain structures are needed.
Those will be determined in section 4.4.1 in an inverse procedure. Using
these material parameters crack growth calculations for solder joints are
performed in section 4.4.2.

All of the strategies discussed so far have been used to solve the structural
problems in a fully automated procedure.

The numerically determined enrichment functions have only been applied
to crack tips and to the re-entrant corners which the joints in section 4.4.2
form with the substrate and the board.

In order to apply the preconditioning technique the structural domains were
decomposed into three (structures in section 4.4.1) and six (structures in
section 4.4.2) strips of equal width.

The thermal expansion in the z-direction was set to zero. Otherwise, due
to the plane strain assumption, an increased temperature would generate
stresses even if no forces or displacement boundary conditions are imposed
onto the structure. The reference temperature for all materials was set to
295 K.

Meshes were generated using the procedure described in section 3.4. ng,
was set to 4 and n; was set to 10. The boundaries or interfaces connected
to the re-entrant corners at the top and at the bottom of the joints in sec-
tion 4.4.2 have been refined with a value of n, = 20. The initial mesh for
the rectangular structures in section 4.4.1 was the same as the mesh in fig-
ure 3.40(a). For the examples in section 4.4.2 the initial mesh consisted of
equally sized triangles similar to those in figure 3.40(a) with an initial edge
length of about 20 pm.

To determine the displacement rates in section 4.4.1 a time step of At =1
s was chosen. For the crack growth simulations in section 4.4.2 time steps
of At =10 s were found to be a better balance between computation time
and accuracy.

For all grain boundaries the value dp = 0.0025 mm was chosen to obtain

an area Apg for the determination of the averaged accumulated creep strain
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A n | Q On R
[s71] [kJ/mol] | [MPa] | [kJ/mol]
le-11 | 12 | 74.8 1 0.008314

Table 4.1.: Creep constants as published by Wiese et al. [44]

as in figure 4.5.
Due to the complicated crack patterns which may form during crack propa-
gation, it is possible that some grains are completely disconnected from the

rest of the structure. Those grains have to be detected and removed.

4.4.1. Determination of material parameters

We are interested in modeling the mechanical behavior of SnAgCu grains
with an alloy composition of 95.5 wt% Sn, 4 wt% Ag and 0.5 wt% Cu
(SAC405). If a solder specimen contains a large number of grains one may
assume that the structure is homogeneous and that it can be modelled
using an isotropic material description. In that case the Young’s modulus
of SAC405 may be set to 41 GPa and the Poisson’s ratio to 0.3 [44]. A
reasonable coefficent of thermal expansion for such a model would be 20
ppm/K [48]. An appropriate creep law of the following form was determined
by Wiese et al. [44]:

(= A (U;:>nexp (—RT&[K]) (4.10)

T[K] is the temperature measured in Kelvin. The other parameters are

shown in table 4.1. The key idea in this section is that the material models
describing the mechanical behavior of the grains should represent the me-
chanical behavior of the homogeneous model on a large scale.

The situation is visualized in figure 4.7. If traction forces are applied to the
homogeneous solder model in figure 4.7(a), SnAgCu grain structures, such
as the one shown in figure 4.7(b), should on average react in the same way
to these tractions, that is, the displacement on the right-hand side should
be the same. This should also be true for the creep rate at different tem-

peratures.
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FTTITT]

L

(a) Homogeneous isotropic solder model

v

(b) Solder model formed by grains

Figure 4.7.: Deformation of a homogeneous isotropic solder model com-
pared to the deformation of a solder model formed by a num-
ber of SnAgCu grains
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Assume that the homogeneous structure in figure 4.7(a) has a length of
2 and a height of 1, the units themselves are not relevant. For different
temperature increases AT (with respect to the reference temperature) and
tractions, the displacements and displacement rates at the right-hand side

have been determined. The results are shown in table 4.2. The tractions

Elastic displacement 0.022195

0.5 GPa

Thermal expansion 0.0052

AT =100 K

Displacement rate, AT = 0 K | 4.0936e-10 s~!
20 MPa

Displacement rate, AT = 0 K | 1.6767¢-6 s~*

40 MPa

Displacement rate, AT = 40 K | 0.0002083 s~*
20 MPa

Table 4.2.: Deformation of the homogeneous solder model for different
loading conditions

used to determine the displacement rates are similar to the experimental
conditions for which the creep law was determined. The displacement rates
have been determined by calculating the displacements att =0 sandt =1 s
and dividing the difference by 1 s.

The material laws for the grains will be determined such that they match the
mechanical behavior of the homogeneous model for these loading conditions.
Since the creep deformation of any structure is dependent on the stresses
and the temperature, the elastic and thermal properties of the grains have
to be determined before the transient behavior is considered.

A series of grain structures was generated by Voronoi tessellations which
are shown in figure 4.8. The structures have the same proportions as the
homogeneous joint model used to determine the values in table 4.2. A ran-
dom orientation is assigned to each of the grains.

The elastic constants for tin grains were determined by Mason and Bom-
mel [80] and are shown in table 4.3. The elasticity tensor Dg, for arbitrary

grain orientations can be determined by applying the correct transforma-
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0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2
(c¢) Structure 3

Figure 4.8.: Different structures formed by grains with a random orienta-
tion used to determine constitutive laws for SnAgCu grains

Dy | Dia | D13 | D33 | Dag | Dss
73.5 | 44.2 | 28 87 22 22.65

Table 4.3.: Tin elastic constants ([GPa]) by Mason and Bommel [80] in
Voigt notation
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[100] | [010] | [001]
15.4 | 15.4 | 30.5

Table 4.4.: Tin thermal expansion ([ppm/K]) measured for different crys-
tal directions by Yang and Li [81]

tion. The same is true for the coefficients of thermal expansion which were
determined by Yang and Li [81] as shown in table 4.4. It is assumed that
the elastic behavior of the SnAgCu grains is similar to that of the tin grains

and that the elasticity tensor of a SnAgCu-grain can be approximated by:
DSnAgCu ~ CelDSn (411)

This assumption is reasonable since the SnAgCu-alloy consists mostly of
tin.
Setting c,; = 1, the displacements shown in table 4.5 are obtained for the

structures in figure 4.8. Comparing this with the displacement of the ho-

Structure 1 | 0.01563
Structure 2 | 0.01565
Structure 3 | 0.01574

Table 4.5.: Elastic deformation of the polycrystalline structures in figure
4.8 using a force of 0.5 GPa and cq =1

mogeneous solder model, we obtain an optimal value for ¢.; as:
cer = 0.7029 (4.12)

The right hand side displacement due to thermal expansion of the grain
structures is given in table 4.6. Comparing this with the thermal expan-
sion of the homogeneous model, we may conclude that the coefficients of
thermal expansion for the tin grains provide useful values to describe the
thermal expansion of the SnAgCu grains if the behavior on the large scale
is considered.

For each of the three load cases in table 4.2 in which displacement rates
are considered, a displacement rate for the structures in figure 4.8 can be

calculated if creep constants are known. Due to the non-homogeneity of the
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Structure 1 | 0.0051618
Structure 2 | 0.0052575
Structure 3 | 0.0051056

Table 4.6.: Displacement of the polycrystalline structures in figure 4.8 due
to thermal expansion using a temperature increase of AT =
100 K and the thermal expansion properties of tin grains

polycrystalline structures, the displacement rates should be averaged over
a time interval to obtain a representative value. A time interval of 10 s was
chosen here. For the same reason the displacement rates were also averaged
over all nodes along the free vertical edge of the structure.

Depending on the creep constants, the displacement rates calculated for the
structures in figure 4.8 will differ from those calculated for the isotropic
structure. This difference is a function of the constants determining the
creep law.

Summing up the absolute value of these differences for all structures and
load cases, we can define an error for given creep constants. A Newton-type
method was used to find creep constants which minimize this error. The

final constants are summarized in table 4.7. ¢,, and R were held constant

A n Q On R
[s71 [kJ/mol] | [MPa] | [kJ/mol]
1.08e-11 | 11.04 | 71.06 1 0.008314

Table 4.7.: Adjusted creep constants for SnAgCu grains

during the minimization. The corresponding displacement rates are summa-
rized in table 4.8. Deviations can be seen if the values are compared to the
creep rates of the isotropic structure in table 4.2, but taking into account
that the displacement rates range over several orders of magnitude one may

conclude that the creep law determined here is useful for our purposes.

4.4.2. Crack growth calculations

To demonstrate the functionality of the methodology outlined in this thesis,

crack growth calculations for a BGA assembly with a realistic geometry are
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AT=0 K | AT=0 K | AT=40 K
20 MPa | 40 MPa | 20 MPa
Structure 1 | 4.08e-10 | 8.6e-7 0.000208
Structure 2 | 1.9e-10 4.57e-7 0.00021
Structure 3 | 1.53e-10 | 3.2e-7 0.000192

Table 4.8.: Displacement rates of the polycrystalline structures in figure
4.8 using the creep law in table 4.7 ([s7)])

performed. A BGA is a flat quadratic package containing a chip. When
attached to the circuit board by soldering, the solder joints form little balls
below the package. The position of the balls below the chip in a PBGA

676 package assembly is shown in figure 4.9. To obtain a two-dimensional

S S
S S R A
SR A S
S S L
S S R A
SR A S
S S L
S S R A
SR A S
S S R
S I R A R
S S R Y S B

S S S LSS
S S
SIS S S
O P sy
LS L
SIS NS S S
O P sy
LS
SIS NS S S
O P e sy
S S
SIS NS S LSS

I
Figure 4.9.: Position of the solder balls below the chip in a PBGA 676

package and lines of symmetry (red ball positions are those
for which crack growth data was gathered by Tunga [74])

model of the assembly, we think of an either vertical or horizontal cut along
a line of balls close to the center (e.g. the line of balls above the horizontal
symmetry line). Exploiting the symmetry, the device can be modeled as
shown in figure 4.10(a). The third joint position from the left is magnified
in figure 4.10(b). Due to the symmetry of the device, this corresponds to
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] Solder joints

st I Copper pads

[ Printed circuit board
6l - Substrate

£ Bl Dic

el 4l Bl ould

(a) Global Model

1.5 2 2.5 3 3.5
[mm]

(b) Magnification of the third joint from the left which is used in a
submodel to calculate crack growth

Figure 4.10.: Model of the PBGA 676 package soldered onto a circuit board
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any of the ball positions in figure 4.9 marked in red.

Tunga [74] measured the crack growth in such an assembly for two solder
ball positions. The SAC405 solder alloy was used for soldering. The ball
magnified in figure 4.10(b) is one of the ball positions for which sufficient
experimental data was gathered by him (although the actual lifetime was
not determined for this ball position, we anticipate that if the simulation is
able to reproduce the crack growth appropriately, the same is true for the
lifetime).

The geometry in figure 4.10(a) will be used as a global model in the sim-
ulation. The corresponding material parameters are shown in table 4.9.

Calculations were done with the global model using homogeneous joint mod-

CTE [ppm/K] | E [GPa] | v
PCB 13 22.4 0.15
Substrate 15 28.5 0.3
Die 2.8 131 0.3
Mould 9 25 0.3
Copper pads | 17.3 121 0.3

Table 4.9.: Material properties of the PBGA 676 package assembly

els described by the corresponding material laws as already used in section
4.4.1. Zero displacements in the horizontal direction were prescribed at
x = 0 and in horizontal and vertical direction at (0,0). The displacements
along the upper boundary of the upper copper pad and along a line 30 ym
below the lower copper pad of the joint in figure 4.10(b) were used in a
submodel. Randomly generated grain structures were used to model the
solder joint in this submodel. They are shown in figure 4.11.

We want to address the effect of the enrichments without creep. Consider
the grain structure in figure 4.11(a). The stress state was evaluated in dif-
ferent areas of the structure for an instantaneously increased temperature
from 295K to 395K. Creep does not influence the deformation because the
stresses are evaluated at t = (. The areas which were examined more closely
are shown in figure 4.12. A crack was artificially introduced in the upper
right part of the structure.

The mesh generated for this structure contained 6803 finite elements. Parts
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(a) Structure 1 (b) Structure 2

(c) Structure 3 (d) Structure 4

(e) Structure 5 (f) Structure 6

Figure 4.11.: Grain structures used to model the BGA ball in the submodel
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of the mesh are shown in figure 4.13(b), figure 4.13(d) and figure 4.13(f).
The von Mises stresses in the area around the re-entrant corner in the up-

per left of the joint are shown in figure 4.13(a). The large stress gradients

m— (Crack

Investigated areas
| 4

Figure 4.12.: Areas investigated to address the effect of the enrichment
functions

expected in the vicinity of the re-entrant corner are well resolved by the en-
richments. Please note that the mesh around the re-entrant corner connects
the outer part of the copper pad and the outer part of the solder ball. Thus,
without the numerically determined enrichment functions, the deformation
of both boundaries would be coupled by the finite element mesh outside the
structural domain. The von Mises stresses around the second area closer
to the center of the joint are shown in figure 4.13(c). The discontinuous
stresses are well resolved although the grain boundaries do not align with
the element edges. The von Mises stresses around the crack tip are shown
in figure 4.13(e). The singular stresses around the crack tip are resolved
very well by the enrichments. The structural part on the right shows only
very low von Mises stresses. This indicates that the crack is accurately rep-
resented by the enrichments, since that part of the structure is relaxed by
the presence of the crack.

According to equation (4.7) there is a linear relation between c.. and the
number of cycles after which a certain boundary fails. Tunga [74] found
that crack growth for the joint in figure 4.10(b) generally starts after 810
thermal cycles. c¢.. will be chosen such that this experimental result is re-
produced on average.

Therefore, the deformation of each structure needs to be calculated during a

representative temperature cycle. The temperature profile used in the sim-
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Figure 4.13.: Meshing and von Mises stress distribution in different areas
of the polycrystalline solder joint model due to an instanta-
neous temperature increase



Chapter / 167

ulations is a reproduction of the temperature cycle used in the experiments

performed by Tunga [74] and is shown in table 4.10. We will assume that

Time [s] | Temp. [K]
0 295
100 395
700 395
1100 215
1700 215
1800 295

Table 4.10.: Temperature profile used in the simulation

the second temperature cycle is a representative cycle. Taking the max-

L dApg over all

. . 1
imum of the averaged accumulated creep strain 1) A Eace

grain boundaries of the structures in figure 4.11 we obtain the values shown

in table 4.11. A crack growth constant which ensures crack initiation after

Structure 1 | 0.006
Structure 2 | 0.003
Structure 3 | 0.0047
Structure 4 | 0.0037
Structure 5 | 0.0088
Structure 6 | 0.0046

Table 4.11.: Maximum value of the averaged accumulated creep strain in
the undamaged joint taken over all grain boundaries of the
polycrystalline joint models

810 cycles on average for the joint models considered here is therefore:
Cer = 4.158 (4.13)

The creep strain that accumulates during a representative cycle in structure
1 before crack initiation is shown in figure 4.14. The region in the upper
left corner of the joint is pictured. Clearly, the accumulated creep strain

distribution takes its highest values in the vicinity of the re-entrant corner.
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Figure 4.14.: Accumulated creep strain distribution for a representative
temperature cycle of structure 1 in figure 4.11 before crack
matiation

This is a consequence of the stress singularity that forms there. Another
apparent feature that can be observed is that the distribution is discon-
tinuous along some of the grain boundaries. Displaying this discontinuity
numerically is only possible because the enrichment functions enable us to
model discontinuous strains and stresses along the grain boundaries.

Since we assume that the interface between the copper pad and the solder
cannot break, a boundary in the solder bulk fails first. The boundary is
enclosed by a green line in figure 4.14. The line marks the area Ag used to
evaluate €4, p in equation (4.6). The crack growth patterns in structure 1
at different stages of crack growth are shown in figure 4.15. The patterns
form a web-like structure like those seen in actual solder joints after thermal
cycling [64]. The main crack initiates in the upper left part of the joint and
propagates along the upper solder-copper interface.

We want to compare the crack growth in all structures with experimen-
tally determined crack growth published by Tunga [74]. The comparison is
shown in figure 4.16. For each cycle number in figure 4.16 at which the crack

length has been determined experimentally, twelve different joints were in-
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(d) Crack pattern after 2698 Cycles

Figure 4.15.: Crack development in structure 1 from figure 4.11 (cracks
are marked by red lines)
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O  Tunga

Crack length [pm]
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)
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Figure 4.16.: Crack lengths calculated for the polycrystalline solder joint
models compared with data from the literature
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816 13 33 1.54 || 14 26 0.86
1315 || 56 51 0.09 || 52 33 0.37
1921 || 46 94 1.04 || 62 43 0.31
2618 || 97 126 0.3 90 57 0.37
3298 || 118 146 0.24 || 51 61 0.2
4000 || 168 | 160 0.05 || 126 | 69 0.45
4736 || 163 | 183 0.12 || 116 | 74 0.36
5421 || 210 | 213 0.01 || 79 80 0.01

Table 4.12.: Comparison of mean crack length and standard deviation in
experiment and simulation

vestigated to obtain the standard deviation and the mean value [74]. Due to
the different grain shapes and orientations used in the simulations for each
joint model, different crack lengths are obtained. The standard deviation in
crack length obtained from the experiments is visualized by the black bars in
figure 4.16. It should be noted that the bars reach below the horizontal axis
of the graph and that their length is not monotonically increasing with the
number of cycles. Furthermore, the mean value of the crack length is also
not monotonically increasing with the number of cycles. A possible reason
could be the number of measurements used to determine the crack lengths
in the experiments. We may conclude that additional measurements are
necessary to obtain more representative values for the mean crack length.
The same is true for the standard deviation.

The experimentally determined mean crack length and standard deviation
is listed in table 4.12 for different cycle numbers as published by Tunga [74].
The mean crack length and the standard deviation was also calculated for

the joint models used in the simulation. The mean crack length for the
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first 2000 cycles differs significantly in experiment and simulation. But for
increasing cycle numbers the mean crack length obtained by the simulation
is a good approximation of the experimentally determined value.

The standard deviation obtained by the simulation is roughly 30% lower
than the standard deviation obtained from the experiments for large cy-
cle numbers. Increasing the number of measurements could help to obtain
more representative values which may be closer to the ones determined by
the simulation.

One might also argue that the number of grain structures used in the sim-
ulation is not sufficient to obtain representative values. But note that from
the simulation we have obtained a mean crack length and a standard devi-
ation which are both monotonically increasing with the cycle number.
Another reason for the differences in experiment and simulation could be the
simplified description of the experimental reality in the model. Including
the development of the grain structure over time could improve the solder
model. Also the constitutive laws obtained by the inverse simulation are
acceptable from a global point of view, but we cannot guarantee that they
are a good description of the deformation process at the grain level.
However, the mean crack length and the standard deviation obtained by the
simulation are still a good guess for the experimental values. Thus, we may
conclude that the model proposed here is a good candidate to represent the

crack growth in real solder joints by simulation.



5. Conclusions

The X-FEM is a powerful tool to solve problems in structural mechanics.
Especially if the exact solution contains weak singularities, the approxi-
mation properties can significantly be enhanced by the use of enrichment
functions. The shape of these singularities is dependent on the surround-
ing materials. In this thesis the idea of enriching the function space with
weakly singular functions has been generalized to a wider class of problems
by using numerically determined enrichment functions.

The numerical experiments that have been performed indicate that opti-
mal convergence rates can be recovered for plane strain problems in linear
elasticity by using numerically determined enrichment functions to repre-
sent weak singularities. For transient problems involving creep, however,
a correct representation of the singularities cannot be expected. Further
research should be done to develop an enrichment procedure which results
in an accurate representation of weak singularities in creeping structures.
The numerically determined enrichment functions were used in combina-
tion with other enrichment functions to form a framework in which general
polycrystalline structures containing cracks can be simulated with elements
whose shape is independent of geometrical features. Due to the large num-
ber of enrichment functions that must be used, well-conditioned equation
systems cannot be guaranteed any more. It was shown in this thesis, that
in certain situations arbitrarily ill-conditioned equation systems can be the
result of an enrichment procedure.

To resolve this problem a preconditioning technique was developed and
tested. The technique employs a domain decomposition. Numerical exper-
iments were conducted to test the performance. They indicate that even

for extremely critical cases the preconditioner restores a condition number
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close to the condition number of the FEM-stiffness matrices without any
enrichment. As a result the equation systems for one of the example struc-
tures could be solved twice as fast.

It was furthermore discussed why the domain decomposition is a useful tool
to minimize the computational effort for the calculation of the precondi-
tioner.

The domain decomposition has another advantage. In a naive approach to
improve the condition number one might attempt to solve the problem by
applying a Cholesky-decomposition to the whole submatrix of enriched de-
grees of freedom. However, if the number of enriched degrees of freedom is
large, the Cholesky-decomposition might break down due to roundoff errors.
Because of the domain decomposition the Cholesky-decomposition has to
be applied only to smaller submatrices. The Cholesky-decomposition is less
likely to break down if the matrices are small because less floating point
operations have to be performed.

In the future it would be nice to have a mathematical theorem which guar-
antees for arbitrary enrichments that the preconditioner is able to restore
well-conditioned matrices. Such a theorem could exploit the fact that the
enrichment functions (as opposed to the FEM shape functions) are zero at
all nodes and that they are smooth inside the structural domain.

The enrichment procedure and the solution procedure by preconditioning
have been combined with an efficient meshing scheme for polycrystalline
structures. The advantage of this meshing procedure is that it can be au-
tomated completely. This is possible because the elements do not have to
conform to geometrical features of the structure. Meshing is often seen
as the bottleneck in the automation of simulation. However, the meshing
procedure introduced here allows for a completely automated simulation if
combined with the X-FEM. An element cluster was used to make the mesh
refinement more efficient.

A penalty method was used to prevent crack faces from overlapping. The
Woodbury matrix identity was used to combine the penalty method with
the preconditioner.

This methodology has been used to calculate crack growth in solder joints
based on microstructural phenomena. A special treatment of elements in

which high creep rates appeared was necessary.
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The grain structures for the solder joints have been randomly generated
using Voronoi-tessellations. This random procedure has been adjusted such
that experimental findings about the grain structures in solder joints are re-
produced to some extent. Therefore, to address the variety of possible grain
structures and its effect on the damage process, engineers and researchers
are now able to generate a series of grain structures and perform crack
growth calculations in parallel. The fact that this procedure can be auto-
mated completely is crucial for the industrial application. To fully capture
the failure probability, calculations for a large number of grain structures
must be done. Problems during mesh generation would prevent the method-
ology from becoming an industrial standard: Even if meshing problems are
encountered only for a small fraction of the randomly generated grain struc-
tures, much user effort would be necessary to correct the problem due to
the large overall number of grain structures.

The numerically determined enrichment functions, although they do not
represent the weak singularities in the case of creep correctly, still play an
important role. They allow us to represent crack tips and re-entrant corners
located in the interior of an element in the ansatz space. Without them, the
meshing strategy would not result in acceptable numerical solutions unless
a very high number of elements is used.

For a small number of grain structures crack growth calculations have been
performed and a comparison with experimental results has been done. The
simulation and the experimental results are in good agreement. Crack
growth as well as the crack patterns are captured well by the simulation.
The predicted mean crack length and the standard deviation can be used
to obtain a first estimate about the failure probability.

Further research has to be done to develop this method. The simulation
should be implemented for three-dimensional structures. Experimental in-
vestigations of solder joints should be performed in order to make more
precise statements about recrystallization, grain shapes and other charac-
teristic features of the grain structure. The recrystallization process and
the soldering process itself could be included in the simulation.

The procedure is a good candidate to capture phenomena such as statistical
outliers due to unfavorable microstructures as mentioned earlier. The basic

mechanisms of crack growth in solder joints undergoing thermal cycling are
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included in the simulation. Applying this procedure to different assemblies
and joint geometries may show that the crack growth constant c.,. is inde-
pendent of a particular joint shape and temperature profile. However, this

remains to be tested.



A. Stress-strain relation in
cylindrical coordinates

The stress-strain relationship in equation (3.6) will now be derived. The
derivation has been reproduced from the work of Li et al. [26]. In this section
stresses are generally written in cylindrical coordinates. The stiffness tensor
D is also assumed to be given in a cylindrical coordinate system and will
be written in Voigt notation. The plane strain equilibrium equations in

cylindrical coordinates are given by:

agrr 1807‘0 Orr — 090

=0 Al
or r 00 r (A1)
aO'rg 1 60'99 20’,«9
- =0 A2
or r 00 r (A.2)
agrz 1 aa@z Orz
— =0 A3
or r 00 r (A-3)
We perform the following variable changes:
E=1In(r), r=exp(), S =10, (A.4)
Srr Sro
Opp = ——, Spg =70p9, Org=——, etc
r

Using these variable changes the equilibrium equations can be rewritten as:

asr@ o asrr

90 — Spg — 8§ (A5)
Jsgg  0syrg

W = aé_ Sro (A6)
8892 _ _8sm — 8,0 (A?)

90 o€
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We define the following variable vectors:

Sp0 Srr
G = |sg|: €= |s.. (A.8)
S0z Srz

Thus, the equilibrium equations can be written as:

) ) o¢
% = E1C2 + E2a£§2 + E3a_§ (Ag)

The matrices Ey, E; and Es in equation (A.9) are defined by:

0 —1 0 0 —1 0
Ei:=|1 0 o0ol, Ex:=10 0 o0f, (A.10)
0 0 0 0 0 0
0 0 0
E;s:=1-10 0
0 0 —1

If the displacement components are independent of the z-axis, the relations

between the strain and the displacement components are:

ou
== A1l
e = 5 (A.11)
1 8u9
= - — A12
€00 , (UT —+ 90 ) ( )
€rr = (A.13)
10u, Oug ug
€rg ; 80 + —87“ - 7 (A14)
ou,
€ra = (A.15)
1 0u,

(A.16)
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Using equation (A.11) and the variable changes (A.4) results in the following

stress-strain relationship:

-Srr- -D12 Dry D16- -—D14 Daz 0-
S0 Doy Dy Dog Dug —Day Dz 0
Szz _ D3y D3y Dsg ;i n —D3y D3z 0
Sro Dys Das Dye ij —Dys Dy 0
Srz D5y D5y Dsg 0 —Dsy D5z 0
| 50 | | D2 Des Des | |—Des Dgz 0]
D Du Dy
Doy D2y Dos dup
N D3y D31 Dss ;jr
Dy Du Ds| |
D5y Dz Dss %
| Des De1 Des |
We define a displacement vector as:
Ug
¢ = Uy
Uy
We furthermore define the following matrices:
Doy Day De D1y Diy Dig
Ci:= |Dgp Dy Dg|, Ca:= |Ds D3y Dy
Dez  Dgs Deg D5y D5y Dsg

Up
w| (A7)
(A.18)
, (A.19)
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—Dyy Dy 0 —Dyy Dip 0
C.:=|-Dy Dy 0|, Ce:=|—-Dsy Ds 0
—Deys Dgz 0 —Dsy D5z 0
Doy D2 Dos Dy D1y Das
Cy:= |Dyu Dy Dys|, Cp:= |Dsy D3y Dss
Dey De1 Des

D54 D51 D55

9

By using these definitions we can rewrite the stress-strain relationship as:

o¢ o¢
G = Cda_el + CeC1 + Cfa—gl
. 0 0
¢ = Cdl% +Cai + C’f1a££1

Equivalently we can write:

0
% =C;! (C2 - C.C1 — Cfg_é)

¢ =CuCy'¢ + (Ca —CuCr'C.) G
+ (Cpn — CuCy'Cy

:CdlcczlcQ + (Cf1 - Cdlcglcf) g—é

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

The relationship Cj; — Cy1C;'C; = 0 was used in (A.23). The inversion

of the matrix Cj is permitted since the strain energy is always positive.

We define the following differential operators:

0
H,, = E, —-C;'C;,—
11 1 Cd Cf@f
H12 = Cd_l
62
H21 = E3 (Cfl — Cdlcglcf) a—é_Q
0

Hy = FE; + (E2 + Egcdlcd_l) 8_§

(A.25)
(A.26)

(A.27)

(A.28)



180 Appendiz A

Then we obtain the governing equations for the posed problem as:

0
% = H (i + Hi2¢ (A.29)
0
% = Hy (i + Hy»(, (A.30)

The relationship —C; 'C, = E, was used here. We define the vector ¢ as:

¢=lar o] (A31)

Then the equilibrium equations become:

¢ H,, H,

S ¢ = H¢ (A.32)
09 | Hy, Ho

Using the assumption (3.5) in equation (A.32) results in equation (3.6) with
a matrix H depending only on # and .



B. Woodbury matrix identity

We will now derive the Woodbury matrix identity as it is used in equation
(3.79). Multiplying the right-hand side in equation (3.79) from the left with
K + NLNp results in:

(K + NEN] [K*l ~ K 'NE[I+NoK'Nj] ™ NPK*} (B.1)

—T+ NJNpK ' — N} [T+ NoK'NE] 7 NpK ™! (B.2)
— NJNpK 'N} [T+ NpbK'NE] 7 NpK™

=I + N)NpK™! (B.3)
+ [N} — N)NpK'NE] [T+ NoK'NE] 7 NpK™!

=I + N)NpK™! (B.4)
— N} [I+NpK 'NE| [T+ NpK'NE] " NpK™!

=I + N)NpK '~ N)NpK™* (B.5)

=1 (B.6)

Since the left-hand side of equation (3.79) also becomes the identity if mul-
tiplied from the left with K + NZ Np, we can conclude that equation (3.79)

1S correct.
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