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Abstract

In this paper, we study the class of linear elastodynamic problems with affine parameter dependence
using a goal-oriented approach by finite element (FE) and reduced basis (RB) methods. The
main contribution of this paper is the “goal-oriented” proper orthogonal decomposition (POD)–
Greedy sampling strategy within the RB approximation context. The proposed sampling strategy
looks for the parameter points such that the output error approximation will be minimized by
Greedy iterations. In estimating such output error approximation, the standard POD–Greedy
algorithm is invoked to provide enriched RB approximations for the FE outputs. We propose a
so-called “cross-validation” process to choose adaptively the dimension of the enriched RB space
corresponding with the dimension of the RB space under consideration. Numerical results show
that the new goal-oriented POD–Greedy sampling procedure with the cross-validation process
improves significantly the space-time output computations in comparison with the ones computed
by the standard POD–Greedy algorithm. The method is thus ideally suited for repeated, rapid
and reliable evaluations of input-output relationships in the space-time setting.

Keywords: reduced basis method; goal-oriented POD–Greedy algorithm; wave equation; goal-
oriented asymptotic error; cross-validation

1 Introduction

The design, optimization and control procedures of engineering problems often require several forms of
performance measures or outputs – such as displacements, heat fluxes or flowrates. Generally, these
outputs are functions of field variables such as displacements, temperature or velocities which are
usually governed by a partial differential equation (PDE). The parameter or input will frequently
define a particular configuration of the model problem. Therefore, the relevant system behavior will
be described by an implicit input-output relationship; where its computation requires the solution of
the underlying parameter-PDE (or µPDE). We pursue model order reduction (MOR) methods (i.e.,
snapshots-POD [1, 2, 3, 4, 5, 6] and RB [7, 8]) which permits the efficient and reliable evaluation of
this PDE-induced input-output relationship in many query and real-time contexts.

The RB method was first introduced in the late 1970s for nonlinear analysis of structures and
has been investigated and developed more broadly [9]. Recently, the RB method was well developed
for various kinds and classes of parametrized PDEs such as: the eigenvalue problems [10], the
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coercive/non-coercive affine/non-affine linear/nonlinear elliptic PDEs [7, 11], the coercive/non-coercive
affine/non-affine linear/nonlinear parabolic PDEs [12, 13], the coercive affine linear hyperbolic PDEs
[14, 8], and several highly nonlinear problems such as Burger’s equation [15, 16] and Boussinesq equation
[17]. For the linear wave equation, the RB method and associated a posteriori error estimation was
developed successfully with some levels [14, 18, 19]; however, in the RB context none of these works
have focused on constructing optimally goal-oriented RB basis functions.

Goal-oriented error estimates in the context of FE analysis have been investigated deeply and
widely [20, 21, 22, 23, 24, 25, 26, 27] (we only cite some typical works as there many on this topic).
For the wave equation, the most well-known method is the dual-weighted residual (DWR) one which
was proposed by Rannacher and co-workers [28, 29, 30, 31]. In those works, the authors quantified the
a posteriori error of the interest output in order to finer locally the finite element mesh in an adaptive
manner. The final goal is to minimize computational efforts and maximize the accuracy of the interest
output in an adaptive and controllable manner. In particular, the DWR method makes use of an
auxiliary dual (or sensitivity) equation to derive an a posteriori error expression for the interest output
from the primal residual and the dual solution of that dual equation in space-time setting.

Goal-oriented error estimates in the context of MOR is currently an active research topic and has
been investigated by several authors. In this regard, the construction procedure of these goal-oriented
MOR basis functions is the key issue. For instance, Liu et al. [32] used a Greedy algorithm to construct
goal-oriented RB basis functions based on asymptotic output errors [33]; the surrogate RB model was
then used in an inverse analysis. Chen et al. [34] developed hybrid and goal-oriented Greedy sampling
algorithms to compute failure probability for PDEs with random input data. In another work, Urban et
al. [35] developed a goal-oriented sampling strategy which consists of solving an optimization problem
and a goal-oriented Greedy sampling to find the optimal parameter samples to best approximate
interest outputs. We note that the representative works mentioned above are for stationary and steady
problems.

For dynamic problems, goal-oriented sampling strategy for MOR were also addressed by several
authors. Meyer and Matthies [36] combined the DWR with the snapshots-POD method to solve
a nonlinear dynamics problem. They quantified the a posteriori error approximation from the
contributions of all POD snapshots; then the MOR basis functions are built (based on these POD
snapshots) by keeping only the snapshots that caused large errors and removing all the ones which
caused smaller errors. In another well-known approach by Bui [37] and Willcox [38], they solved
a PDE-constrained optimization problem to find the optimally goal-oriented set of basis functions.
In this way, the optimally goal-oriented basis functions are found such that they minimize the true
output errors (with appropriate regularization techniques) and subject to equilibrium PDE-constraints
[39, 40].

In general, those two above approaches are optimal. However, their computational cost are very
expensive since one has to compute all the FEM solutions/outputs over the entire parameter domain
(all POD snapshots – for the former approach), and in every iteration within optimization solvers (for
the latter approach); and hence, it would limit the number of input parameters in comparison with
the RB approach.

In this work, we aim to build an optimally goal-oriented set of MOR basis functions without
computing and storing all the POD snapshots as the aforementioned approaches. The best way to do
that is by using the RB method with Greedy sampling strategy (see, for instance [11, 7, 8]). Thanks
to the Greedy iterations, the proposed algorithm now looks for the parameter points such that the
output error approximation will be minimized. For the linear wave equation, this idea is novel and
further develops the idea of the standard POD–Greedy sampling procedure currently used [41, 17, 8],
where the algorithm will pick up optimally all parameter points such that the error (or error indicator)
of the field variable is minimized. By this way, we expect to improve significantly the accuracy of the
RB output functional computations; but consequently, we might lose the rapid convergence rate of the
field variable as in the standard POD–Greedy algorithm. In fact, as we can see later in the numerical
results section, the convergent rate of the field variable by the two algorithms are quite similar; while
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the convergent rate of the output by the goal-oriented POD–Greedy algorithm is faster than that of
the standard POD–Greedy one∗.

In particular, the output error approximation used in this work is a kind of the asymptotic output
error (such as in [32, 33]) where the FE outputs will be approximated by the enriched RB outputs. The
standard POD–Greedy algorithm will be invoked to compute such enriched RB outputs. Heuristically,
the dimension of the enriched RB space will be usually set to two times larger than that of the RB space
under consideration (see [32, 33]). In this work, however, we devise a simple yet efficient algorithm
called “cross-validation” process to find out adaptively the enriched RB dimension corresponding with
each RB dimension under consideration. That process is performed within the offline stage of the
proposed goal-oriented algorithm. We also note that this output error approximation will be used as
both offline and online error indicators in the offline and online computational stages, respectively.

The potential context for the proposed goal-oriented algorithm is described as follows. Suppose
that one considers the linear parametrized wave equation with several different quantities of interest,
and one wants to estimate the RB approximations of these quantities of interest. Note that these
quantities of interest (or some of them) might be a priori unknown, i.e., they may exist at the time
of consideration, or they can appear afterwards depending on one’s needs. Clearly, the standard
POD–Greedy algorithm is not sufficient for this situation as it only provides the best approximations
for the solution (or field variable) – and not for these quantities of interest. Our proposal is as follows.
The standard algorithm is implemented first and only once to create standard RB spaces† to be used
in the output error estimation of the proposed goal-oriented algorithm afterwards. Then, for each
particular quantity of interest, the proposed goal-oriented algorithm will be performed once to build
goal-oriented RB spaces corresponding to that quantity. By this way, the goal-oriented RB spaces
are optimal for the quantity of interest under consideration (or in other words, best approximate this
quantity of interest); and thus are much better than the standard RB spaces created by the standard
algorithm.

The paper is organized as follows. In Section 2, we introduce necessary definitions, concepts and
notations and then state the problem using a semidiscrete approach: fully discretizing in space using
Galerkin FEM and marching in time using Newmark’s trapezoidal rule. In Section 3, we describe
various topics related to the RB methodology: approximation, the standard versus goal-oriented
algorithms, error estimations and offline-online computational procedure. In Section 4, we verify
the performance of the proposed algorithm by investigating numerically two problems: a 2D linear
elastodynamic problem and a 3D dental implant simulation problem [8]. Finally, we provide some
concluding remarks in Section 5.

2 Problem statement

2.1 Abstract formulation

We consider a spatial domain Ω ∈ Rd (d = 1, 2, 3) with Lipschitz continuous boundary ∂Ω. We denote
the Dirichlet portion of the boundary by ΓD,i, 1 ≤ i ≤ d. We then introduce the Hilbert spaces

Y e = {v ≡ (v1, . . . , vd) ∈ (H1(Ω))d | vi = 0 on ΓD,i, i = 1, . . . , d}, (1a)

Xe = (L2(Ω))d. (1b)

Here, H1(Ω) = {v ∈ L2(Ω) | ∇v ∈ (L2(Ω))d} where L2(Ω) is the space of square-integrable
functions over Ω. We equip our spaces with inner products and associated norms (·, ·)Y e ((·, ·)Xe) and
‖ · ‖Y e =

√
(·, ·)Y e (‖ · ‖Xe =

√
(·, ·)Xe), respectively; a typical choice is

∗In subsequent sections, for simplicity we shall call the “standard algorithm” to mention the standard POD–Greedy
algorithm [41], and the “goal-oriented algorithm” to mention the proposed goal-oriented POD–Greedy algorithm,
respectively.
†We will see later that these standard RB spaces have quite high dimensions (higher than that of the goal-oriented

RB spaces) but are still very small compared to the FE space dimension.
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(w, v)Y e =
∑
i,j

∫
Ω

∂wi
∂xj

∂vi
∂xj

+ wivi, (2a)

(w, v)Xe =
∑
i

∫
Ω

wivi, (2b)

where the summation over spatial dimensions 1 ≤ i, j ≤ d is assumed throughout this paper.
We define an input parameter set D ∈ RP , a typical point in which shall be denoted µ ≡ (µ1, . . . , µP ).

We then define the parametrized bilinear forms a in Y e, a : Y e×Y e×D → R; m, c, f, ` are parametrized
continuous bilinear and linear forms in Xe, m : Xe×Xe×D → R, c : Xe×Xe×D → R, f : Xe×D → R
and ` : Xe → R.

The “exact” continuous problem is stated as follows: given a parameter µ ∈ D ⊂ RP , the field
variable ue(x, t;µ) ∈ Y e satisfies the weak form of the µ-parametrized hyperbolic PDE (assume
Rayleigh damping)

m

(
∂2ue(x, t;µ)

∂t2
, v;µ

)
+ c

(
∂ue(x, t;µ)

∂t
, v;µ

)
+ a (ue(x, t;µ), v;µ) = g(t)f(v;µ),

∀v ∈ Y e, t ∈ [0, T ], µ ∈ D, (3)

with initial conditions: ue(x, 0;µ) = 0, ∂u
e(x,0;µ)
∂t = 0.

In the above equation, x denotes the coordinate of a point in the domain Ω, t is the time
variable, [0, T ] is a finite time interval and the explicit forms of a, m, c and f could be defined as:
∀w, v ∈ Y e, µ ∈ D,

m(w, v;µ) =
∑
i

∫
Ω

ρviwi, (4a)

c(w, v;µ) =
∑
i

∫
Ω

αρviwi +
∑
i,j,k,l

∫
Ω

β
∂vi
∂xj

Cijkl
∂wk
∂xl

, (4b)

a(w, v;µ) =
∑
i,j,k,l

∫
Ω

∂vi
∂xj

Cijkl
∂wk
∂xl

, (4c)

f(v;µ) =
∑
i

∫
Ω

bivi +
∑
i

∫
ΓN

viφi. (4d)

Where, ρ is the mass density; α is the mass-proportional Rayleigh damping coefficient; β is the
stiffness-proportional Rayleigh damping coefficient; Cijkl is the material elasticity tensor; b is a body
force and φ is a surface traction applied to a region of the domain Ω; g(t) is the time history associated
with the external loading f(v;µ); ΓD and ΓN are the Dirichlet and Neumann boundaries, respectively.
We note that the input parameter µ could appear in (not limited to) either ρ(µ), α(µ), β(µ), Cijkl(µ)
and even b(µ), φ(µ) and g(t;µ).

We then evaluate a quantity of interest (output) from

se(µ) =

∫ T

0

∫
Γo

ue(x, t;µ) Σ(x, t) dx dt,=

∫ T

0

`(ue(x, t;µ)) dt. (5)

Here, Γo are some (output) spatial regions of interest and Σ(x, t) is an extractor which depends on the
view position of an “observer” in the space-time domain; and `(ue(x, t;µ)) =

∫
Γo
ue(x, t;µ) Σ(x, t)dx.

We shall assume that the bilinear forms a(·, ·;µ) and m(·, ·;µ) are continuous,

a(w, v;µ) ≤ γ‖w‖Y e‖v‖Y e ≤ γ0‖w‖Y e‖v‖Y e , ∀w, v ∈ Y e,∀µ ∈ D, (6a)
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m(w, v;µ) ≤ %‖w‖Xe‖v‖Xe ≤ %0‖w‖Xe‖v‖Xe , ∀w, v ∈ Y e,∀µ ∈ D, (6b)

coercive,

0 ≤ α0 ≤ α(µ) ≡ inf
v∈Y e

a(v, v;µ)

‖v‖2Y e

, ∀µ ∈ D, (7a)

0 ≤ σ0 ≤ σ(µ) ≡ inf
v∈Y e

m(v, v;µ)

‖v‖2Xe

, ∀µ ∈ D; (7b)

and symmetric a(v, w;µ) = a(w, v;µ),∀w, v ∈ Y e,∀µ ∈ D and m(v, w;µ) = m(w, v;µ),∀w, v ∈
Y e,∀µ ∈ D. (We (plausibly) suppose that γ0, %0, α0 and σ0 may be chosen independent of N .) In
addition, the linear forms f(v) : Y e → R and `(v) : Y e → R are assumed to be bounded with respect
to ‖ · ‖Y e and ‖ · ‖Xe , respectively. Under these conditions, there exists a unique so-called “weak” (or
“variational”) solution ue(x, t;µ) ∈ Y e of the equation (3) [31, 42].

We shall make an important assumption, that is, a, m, c and f depend affinely on the parameter µ
and thus can be expressed as

m(w, v;µ) =

Qm∑
q=1

Θq
m(µ)mq(w, v), ∀w, v ∈ Y e, µ ∈ D, (8a)

c(w, v;µ) =

Qc∑
q=1

Θq
c(µ)cq(w, v), ∀w, v ∈ Y e, µ ∈ D, (8b)

a(w, v;µ) =

Qa∑
q=1

Θq
a(µ)aq(w, v), ∀w, v ∈ Y e, µ ∈ D, (8c)

f(v;µ) =

Qf∑
q=1

Θq
f (µ)fq(v), ∀v ∈ Y e, µ ∈ D, (8d)

for some (preferably) small integers Qm,c,a,f . Here, the smooth functions Θq
m,c,a,f (µ) : D → R depend

on µ, but the bilinear and linear forms mq, cq, aq and fq do not depend on µ.

2.2 Finite element discretization

We shall use the “method of lines” approach: fully discretize in space using Galerkin FE and discretize
in time using Newmark’s trapezoidal scheme

(
γN = 1

2 , β
N = 1

4

)
. We introduce a reference finite

element approximation space Y ⊂ Y e(⊂ Xe) of dimension N ; we further define X ≡ Xe. Note that Y
and X shall inherit the inner product and norm from Y e and Xe, respectively. For time integration: we
divide I = [0, T ] into K subintervals of equal length ∆t = T

K and define tk = k∆t, 0 ≤ k ≤ K. Recall
that the Newmark’s trapezoidal scheme is implicit and unconditionally stable. Furthermore, ∆t and
the FE mesh size will be chosen such that they satisfy the solvability, stability and accuracy conditions
following [43] (Chapter 9.4.4) or [44] (Chapter 9.1). Thus, our “true” finite element approximation
u(x, tk;µ)

(
≡ uk(µ)

)
∈ Y to the “exact” problem is equivalent to solving (K − 1) following elliptic

problems [44]:

A
(
uk+1(µ), v;µ

)
= F (v) , ∀v ∈ Y, µ ∈ D, 1 ≤ k ≤ K − 1, (9)

where [45]
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

A
(
uk+1(µ), v;µ

)
=

1

∆t2
m(uk+1(µ), v;µ) +

1

2∆t
c(uk+1(µ), v;µ) +

1

4
a(uk+1(µ), v;µ),

F (v) = − 1

∆t2
m(uk−1(µ), v;µ) +

1

2∆t
c(uk−1(µ), v;µ)− 1

4
a(uk−1(µ), v;µ)

+
2

∆t2
m(uk(µ), v;µ)− 1

2
a(uk(µ), v;µ) + geq(tk)f(v;µ),

geq(tk) =
1

4
g(tk−1) +

1

2
g(tk) +

1

4
g(tk+1),

(10)

with initial conditions‡: u0(µ) = 0, ∂u
0(µ)
∂t = 0; we then evaluate the output of interest from (using the

trapezoidal rule for integral approximation)

s(µ) =

K−1∑
k=0

∫ tk+1

tk
`(u(x, t;µ)) dt ≈

K−1∑
k=0

∆t

2

(
`(uk(µ)) + `(uk+1(µ))

)
. (11)

Clearly, with the well-conditions (i.e., symmetric positive definiteness) of the FE mass and stiffness
matrices as well as of the initial values, the linear system (10) possesses a unique solution.

The RB approximation shall be built upon our reference finite element approximation, and the
RB error will thus be evaluated with respect to uk(µ) ∈ Y . Clearly, our methods must remain
computationally efficient and stable as N →∞.

Finally, note that our linear and bilinear forms are independent of time – the system is thus linear
time-invariant (LTI) [12]. We shall point out that one application which satisfies this property is the
dental implant problem [8, 46].

2.3 Dealing with unknown loading

In many dynamical systems, generally, the applied force to excite the system (e.g., g(tk) in (10) or
g(t) in (3)) is not known in advance and thus we cannot solve (9) for uk+1(µ). In such situations,
fortunately, we may appeal to the LTI property to justify an impulse approach as described now [12].
We note from the Duhamel’s principle that the solution of any LTI system can be written as the
convolution of the impulse response with the control input: for any control input gany(tk), we can
obtain its corresponding solution ukany(µ), 1 ≤ k ≤ K from

ukany(µ) =

k∑
j=1

uk−j+1
unit (µ) gany(tj), 1 ≤ k ≤ K, (12)

where ukunit(µ) is the solution of (9) for a unit impulse control input gunit(t
k) = δ1k, 1 ≤ k ≤ K (δ is

the Kronecker delta symbol). Therefore, it is sufficient to build the RB basis functions for the problem
based on this impulse response.

3 Reduced basis approximation

Two key properties of the RB methodology will be recalled as follows. First, our attention is restricted
to a smooth and low-dimensional manifold instead of the very high-dimensional FE space. Namely, the
field variable uk(µ), 1 ≤ k ≤ K does not belong to the very high-dimensional FE space; rather it resides,
or “evolves” on a much lower dimensional manifold which is induced by the parametric dependence over
the parameter domain [12]. Therefore, by restricting our attention to this manifold, we can adequately

‡In order to start the procedure (9), u1(µ) is computed as on page 491 of [44].
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approximate the field variable by a space of dimension N � N . Second, the parametric setting of
the PDE (3) enables to split the computational procedure into two stages: an extensive/expensive
Offline stage performed once to prepare all necessary data for numerous input-output calculations in
the Online stage afterwards. Details of these computations will be explained in subsequent sections.

3.1 Approximation

We introduce the set of samples S∗ = {µ1 ∈ D, µ2 ∈ D, . . . , µN ∈ D}, 1 ≤ N ≤ Nmax, and associated
nested Lagrangian RB spaces YN = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, where ζn ∈ YN , 1 ≤ n ≤
Nmax are mutually (·, ·)Y – orthogonal RB basis functions. The sets S∗ and YN shall be constructed
correspondingly by the standard and goal-oriented POD–Greedy algorithms described in Section 3.2
afterwards.

Our reduced basis approximation ukN (µ) to uk(µ) is then obtained by a standard Galerkin projection:
given µ ∈ D, we now look for ukN (µ) ∈ YN that satisfies

A
(
uk+1
N (µ), v;µ

)
= F (v) , ∀v ∈ YN , µ ∈ D, 1 ≤ k ≤ K − 1, (13)

where



A
(
uk+1
N (µ), v;µ

)
=

1

∆t2
m(uk+1

N (µ), v;µ) +
1

2∆t
c(uk+1

N (µ), v;µ) +
1

4
a(uk+1

N (µ), v;µ),

F (v) = − 1

∆t2
m(uk−1

N (µ), v;µ) +
1

2∆t
c(uk−1

N (µ), v;µ)− 1

4
a(uk−1

N (µ), v;µ)

+
2

∆t2
m(ukN (µ), v;µ)− 1

2
a(ukN (µ), v;µ) + geq(tk)f(v;µ),

(14)

with the initial conditions: u0
N (µ) = 0,

∂u0
N (µ)
∂t = 0; we then evaluate the output estimate, sN (µ), from

sN (µ) =

K−1∑
k=0

∫ tk+1

tk
`(uN (x, t;µ)) dt ≈

K−1∑
k=0

∆t

2

(
`(ukN (µ)) + `(uk+1

N (µ))
)
. (15)

3.2 Goal-oriented POD–Greedy sampling procedure

3.2.1 The proper orthogonal decomposition

We aim to generate an optimal (in the mean square error sense) basis set {ζm}Mm=1 from any given set
of Mmax(≥M) snapshots {ξk}Mmax

k=1 . To do this, let VM = span{v1, . . . , vM} ⊂ span{ξ1, . . . , ξMmax
} be

an arbitrary space of dimension M . We assume that the basis {v1, . . . , vM} is orthonormal such that
(vn, vm) = δnm, 1 ≤ n,m ≤M ((·, ·) denotes an appropriate inner product and δnm is the Kronecker
delta symbol). The POD space, WM = span{ζ1, . . . , ζM} is defined as

WM = arg min
VM⊂span{ξ1,...,ξMmax}

(
1

Mmax

Mmax∑
k=1

inf
αk∈RM

∥∥∥∥ξk − M∑
m=1

αkmvm

∥∥∥∥2
)
. (16)

In essence, the POD space WM which is extracted from the given set of snapshots {ξk}Mmax

k=1

is the space that best approximate this given set of snapshots and can be written as WM =
POD ({ξ1, . . . , ξMmax

},M). We can construct this POD space by using the method of snapshots§

which is presented concisely in the Appendix of [49].
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(T1a) Set Y go
N = 0 Set Y st

N = 0

(T1b) Set µgo
∗ = µ0 Set µst

∗ = µ0

(T1c) While N ≤ Ngo
max While N ≤ N st

max

(T1d) Wgo =
{
ego

proj(µ
go
∗ , t

k), 0 ≤ k ≤ K
}

; Wst =
{
est

proj(µ
st
∗ , t

k), 0 ≤ k ≤ K
}

;

(T1e) Y go
N+M ←− Y

go
N

⊕
POD(Wgo,M); Y st

N+M ←− Y st
N

⊕
POD(Wst,M);

(T1f) N ←− N +M ; N ←− N +M ;

(T1g) Find Ñ s.t. ∀µ ∈ Ξst
n ⊂ Ξst

n+1 (⊂ Sst
∗ ), µst

∗ = arg max
µ∈Ξtrain

{
∆u(µ)√∑K

k=1 ‖ust
N (µ,tk)‖2Y

}
;

ηT ≤
∣∣∣ ∆s(µ)
s(µ)−sgoN (µ)

∣∣∣ ≤ 2− ηT ; Sst
∗ ←− Sst

∗
⋃
{µst
∗ };

(T1h) µgo
∗ = arg max

µ∈Ξtrain

{∣∣∣∆s(µ)
sst
Ñ

(µ)

∣∣∣}; end.

(T1i) Sgo
∗ ←− Sgo

∗
⋃
{µgo
∗ };

(T1j) end.

(T1k) ∆s(µ) = sst
Ñ

(µ)− sgo
N (µ) ∆u(µ) =

√∑K
k=1 ‖Rst(v;µ, tk)‖2Y ′

Table 1: (Left) The proposed goal-oriented POD–Greedy sampling algorithm and (Right) the standard
POD–Greedy sampling algorithm. (The terms ∆u(µ) and ∆s(µ) are printed in boldface to highlight
the difference between the two algorithms.)

3.2.2 Goal-oriented POD–Greedy algorithm

Algorithm 1: The “cross-validation” process.

INPUT: Ξst
n , N

OUTPUT: Ξst
n , Ñn

1: while true do
2: Given Ξst

n ;
3: Compute Ñn from this Ξst

n ; (i.e., call the Algorithm 2 below)
4: Create Ξst

n+1;

5: Check (♣) with Ñn over Ξst
n+1:

6: if (♣) holds ∀µ ∈ Ξst
n+1 then . if (♣) holds

7: Get
{
Ñn,Ξ

st
n

}
;

8: Exit while loop;
9: else . if (♣) is violated

10: Ξst
n ← Ξst

n+1;
11: end if
12: end while

§Some books which investigate thoroughly this POD subject can be found in, for instance, [47, 48].
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Algorithm 2: Function to compute Ñ based on input Ξst and N .

INPUT: Ξst, N
OUTPUT: Ñ

1: Start with Ñ = 2N ;
2: while true do
3: Check (♣) with Ñ over Ξst:
4: if any µ ∈ Ξst violates (♣) then . if (♣) is violated
5: if Ñ < N st

max then
6: Ñ ← Ñ + 1;
7: else
8: Run the standard POD–Greedy algorithm to increase N st

max: N st
max ← N st

max + 1;
9: end if

10: end if
11: if (♣) holds ∀µ ∈ Ξst then . if (♣) holds
12: Get Ñ ;
13: Exit while loop;
14: end if
15: end while

We now discuss the POD–Greedy algorithms [41, 8, 50, 51] to construct the nested sets S∗ and
YN of interest. Let Ξtrain be a finite set of the parameters in D (Ξtrain ⊂ D); and S∗ denote the
set of greedily selected parameters in Ξtrain. Initialize S∗ = {µ0}, where µ0 is an arbitrarily chosen
parameter. Let eproj(µ, t

k) = uk(µ)−projYN
uk(µ), where projYN

uk(µ) is the YN -orthogonal projection
of uk(µ) into the YN space. Our proposed goal-oriented and the standard algorithms are presented
simultaneously in Table 1. Note that the superscript “st” denotes the standard and “go” denotes the
goal-oriented algorithms, respectively.

a) Let us first describe the standard POD–Greedy algorithm in the right column of Table 1. In particu-
lar, at each Greedy iteration, one first solves (9) to obtain the “true” FE solution

{
uk(µst

∗ ), 0 ≤ k ≤ K
}

;
then computes the projection error to form the snapshots setWst in (T1d). Next, one does snapshots-
POD analysis [49] on this set to build/extract M “new” basis functions and adds them to the
“current” RB basis functions set Y st

N (T1e). The RB dimension N is also updated correspondingly

in (T1f). Now, based on these newly updated bases Y st
N , the error indicator ∆u(µ)√∑K

k=1 ‖ust
N (µ,tk)‖2Y

will

be computed exhaustively for all µ ∈ Ξtrain to look for the worst sampling point µst
∗ and add it to

the set Sst
∗ (T1g). This whole procedure is iterated until it satisfies some stopping criteria. Note

in the computation of ∆u(µ) (T1k), the term ‖Rst(v;µ, tk)‖Y ′ is the dual norm of the associated
residual of equation (13), namely,

Rst(v;µ, tk) = F (v)−A
(
uk+1
N (µ), v;µ

)
, ∀v ∈ YN , µ ∈ D, 1 ≤ k ≤ K − 1. (17)

Detailed computation of the term ‖Rst(v;µ, tk)‖Y ′ can be found in, for instance, [8, 7, 12]. In

essence, the term ∆u(µ)√∑K
k=1 ‖ust

N (µ,tk)‖2Y
is the ratio of the dual norm of the residual to the norm of

the RB solution. Thus, this term is roughly considered as an error indicator for the error in the
solution (or field variable). This is one special choice of many ones and is usually used in the current
standard POD–Greedy algorithm [41, 17, 8].

b) We now consider the goal-oriented algorithm in the left column of Table 1. All the main steps of this
algorithm are exactly the same as that of the standard algorithm, except that the error indicator is

now defined as
∣∣∣∆s(µ)
sst
Ñ

(µ)

∣∣∣ in (T1h). Essentially, this term is an asymptotic error approximation for the

9



true output error (i.e., s(µ)− sN (µ) ≈ sst
Ñ

(µ)− sN (µ)). Thus, the main idea of this goal-oriented
algorithm is that the Greedy iterations now try to minimize the output error indicator rather than
the solution error indicator as in the standard algorithm above. From another viewpoint, we can
think of this goal-oriented algorithm as a special version of the standard algorithm using a relative
output error approximation as an error indicator.

c) In the goal-oriented algorithm, the computation of ∆s(µ) requires a good approximation sst
Ñ

(µ) for
the FE output s(µ). To cope with this situation, we use the asymptotic output error approximation
which makes use of an enriched RB output computation. Specifically, we propose to implement
the standard algorithm in advance to obtain enriched RB spaces Y st

Nmax
which are ready for the

computation of sst
Ñ

(µ) (Ñ ≥ N) in the goal-oriented algorithm afterwards. Hence, here sst
Ñ

(µ)

implies the enriched RB output computed by standard algorithm (“st”) using Ñ basis functions.

The use of asymptotic output error approximation ∆s(µ) is not new in the literature. For example,
in the works [32, 33] the authors used heuristically Ñ = 2N as an adequate choice for the output
error approximation. In this work, however, we propose a new algorithm called a “cross-validation”
process to choose adaptively Ñ for each particular N in the offline stage of the goal-oriented
algorithm. Note that these found pairs (N, Ñ) will also be used in the error approximation in
the online stage later. The “cross-validation” process is presented in line (T1g) and is detailed in
Algorithm 1; however, we postpone its explanation until point f) below.

d) The main idea of the “cross-validation” process is to find a sufficient Ñ (for an N under consideration)

such that the effectivity
∣∣∣ sstÑ (µ)−sgoN (µ)

s(µ)−sgoN (µ)

∣∣∣ satisfies: ∀µ ∈ Ξtry,

ηT ≤

∣∣∣∣∣sst
Ñ

(µ)− sgo
N (µ)

s(µ)− sgo
N (µ)

∣∣∣∣∣ ≤ 2− ηT , (♣)

where ηT is a user-prescribed effectivity (say, 0.8 or 0.9), and Ξtry is an arbitrary set of parameters
(sgo
N (µ) is a goal-oriented RB output using N basis functions). Because the FE output s(µ) appears

in (♣), we think of using Ξtry ⊂ Sst
∗ as all FE solutions/outputs are available for all µ ∈ Sst

∗
(recall that the standard algorithm was already implemented). Hence, we will use the notation
Ξst(≡ Ξtry) ⊂ Sst

∗ to reflect this idea.

e) We first explain the Algorithm 2 in detail. Essentially, algorithm 2 is an iteration process to find a
proper Ñ which satisfies (♣) for a given sample set Ξst and a given N . The iteration procedure
starts with Ñ = 2N ; and Ñ will be increased if (♣) is violated by any µ ∈ Ξst. The procedure
will stop when (♣) holds true ∀µ ∈ Ξst. Within Algorithm 2, if Ñ exceeds N st

max the standard
algorithm will be called and implemented to increase N st

max accordingly. Note that the standard
algorithm will continue to run from the previous N st

max; so in summary, it is deemed to run “once”
but continuously in different stages when necessary.

f) Let us now describe the “cross-validation” process in Algorithm 1. In fact, finding the proper size of
Ξst is not a trivial task: fixing Ξst = Sst

∗ is not an efficient way, and we also don’t want to use one
more parameter to tune this setting (the only one parameter for the GO algorithm is ηT ). We thus
propose an adaptive strategy to choose |Ξst| as follows (Algorithm 1). Suppose that at the Greedy
iteration N with a given set Ξst

n ⊂ Sst
∗ , we can find the corresponding Ñ thanks to Algorithm 2

above. We will request further that the currently found Ñ also needs to verify (♣) over Ξst
n+1,

where
∣∣Ξst
n+1

∣∣ = |Ξst
n |+ ∆nsample, and ∆nsample is a number of next sample points taken from the

set Sst
∗ . Otherwise, Ξst

n+1 is assigned to Ξst
n (i.e., Ξst

n is enriched now) and the procedure is repeated

until the found Ñ satisfies (♣) over both sets Ξst
n and Ξst

n+1 (⊂ Sst
∗ ). By this way, we can start the

sampling procedure with fairly small |Ξst
n | and let it “evolve” automatically without the necessity

of any control or adjustment. Following the same process, Ξst
n and Ξst

n+1 will also be used to find Ñ
at the next Greedy iteration N + 1; and they will be enriched appropriately when necessary.
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For example, the standard algorithm is implemented first and once for quite large N st
max, say,

N st
max = 200 and hence |Sst

∗ | = 200 (using M = 1). Then for an arbitrary quantity of interest, the
goal-oriented algorithm will be implemented accordingly. Consider the “cross-validation” process
at the first Greedy iteration Ngo = 1, we can choose Ξst

1 ⊂ Ξst
2 ⊂ Sst

∗ such that |Ξst
1 | = 10 and

|Ξst
2 | = 20 first sample points of Sst

∗ , respectively (hence, ∆nsample = 10). Based on this Ξst
1 set,

Algorithm 2 is invoked to find the corresponding Ñ1. Next, (♣) is checked with Ñ1 over Ξst
2 : if

it holds true ∀µ ∈ Ξst
2 , then

(
Ngo = 1, Ñ1

)
will be the necessarily found pair; the algorithm will

quit the “cross-validation” process and continue with step (T1h). Otherwise, the algorithm will
enrich Ξst

1 and Ξst
2 such that |Ξst

1 | = 20 and |Ξst
2 | = 30 first sample points from Sst

∗ , and repeat the

computational procedure until the right pair
(
Ngo = 1, Ñ

)
is found. Ξst

1 and Ξst
2 are also used to

check (♣) at the next Greedy iteration in a completely similar manner.

g) Finally, we close this subsection with one remark on the possible value range of ηT . In fact, we
cannot choose ηT to be too high, i.e., too close to 1. The reason is that the convergence of the GO
algorithm depends on the convergence of the standard one; and generally the standard algorithm
will stall/flat with some N ≥ N st

max (i.e., its error indicator and RB true error cannot decrease
further as it reaches machine accuracy ≈ 10−8). If ηT is too close to 1, say 0.95, the cross-validation
process will break down (infinite loop in Algorithm 1) since it cannot find the suitable Ñ to satisfy
(♣) over Ξst

n and Ξst
n+1; and there is no way to handle this situation. Therefore, it is practical to

choose a modest ηT , and in fact we can do that easily based on the convergence history of the
standard algorithm which is implemented in advance. Indeed, through two numerical experiments
in Section 4 later, ηT = 0.8 is the maximum possible choice and it gives the best performance
among all GO ηT algorithms. On the contrary, low ηT (i.e., close to 0) poses no difficulty for the
cross-validation process since its corresponding Ñ generally will be smaller than that of higher ηT ,
and hence low ηT is “safer” than high ηT regarding Ñ .

3.3 Error estimations

3.3.1 True errors

We use the true errors to validate the performance of the standard and goal-oriented algorithms in the
online computation stage. The relative true errors by the two algorithms for the solutions are defined
as

est
u (µ) =

√√√√∑K
k=1 ‖uk(µ)− ust,k

N (µ)‖2Y∑K
k=1 ‖uk(µ)‖2Y

, ego
u (µ) =

√√√√∑K
k=1 ‖uk(µ)− ugo,k

N (µ)‖2Y∑K
k=1 ‖uk(µ)‖2Y

; (18)

and for the outputs

est
s (µ) =

∣∣∣∣s(µ)− sst
N (µ)

s(µ)

∣∣∣∣ ≈
∣∣∣∣∣∣
∑K−1
k=0

∆t
2

(
`
(
uk(µ)− ust,k

N (µ)
)

+ `
(
uk+1(µ)− ust,k+1

N (µ)
))

∑K−1
k=0

∆t
2 (`(uk(µ)) + `(uk+1(µ)))

∣∣∣∣∣∣ , (19a)

ego
s (µ) =

∣∣∣∣s(µ)− sgo
N (µ)

s(µ)

∣∣∣∣ ≈
∣∣∣∣∣∣
∑K−1
k=0

∆t
2

(
`
(
uk(µ)− ugo,k

N (µ)
)

+ `
(
uk+1(µ)− ugo,k+1

N (µ)
))

∑K−1
k=0

∆t
2 (`(uk(µ)) + `(uk+1(µ)))

∣∣∣∣∣∣ , (19b)

respectively.
In the above expressions, uk(µ), ust,k

N (µ) and ugo,k
N (µ) are the FE, standard RB and goal-oriented RB

solutions; s(µ), sst
N (µ) and sgo

N (µ) are the FE, standard RB and goal-oriented RB outputs, respectively.
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3.3.2 Output error approximation

The true errors are good for validation purposes but are not of practical uses in the online stage,
where one requires fast and countless online calculations. In this work, we propose to use ∆s(µ) as an
error estimation for the output in the online computation stage (in short, ∆s(µ) is an error estimation
in both offline and online stages). Of course this error approximation is not a rigorous upper error
bound such as the a posteriori error bounds [7, 15, 17]; however, there are several good reasons for
using it in practice. First, the time-marching error bounds for the wave equation so far were shown to
be ineffective and pessimistic due to the instability of the wave equation: exponential growing with
respect to time [19, 52, 53]. (We also note that the space-time error bounds, although very promising,
are still not yet derived in the literature.) Second, this error approximation converges asymptotically
to the true error (thanks to Ñ chosen effectively by the proposed “cross-validation” process), and thus
can approximate relatively the accuracy of the RB outputs for various choices of µ. Thirdly – most
important, its computational cost is cheap: only O(N3) + O(Ñ3) as described in the next section
(N, Ñ � N ). The output error approximation ∆s(µ) in (T1k) and its associated effectivity are defined
as follows

∆go
s (µ) = sst

Ñ
(µ)− sgo

N (µ), ηgo
s (µ) =

∣∣∣∣ ∆go
s (µ)

s(µ)− sgo
N (µ)

∣∣∣∣ . (20)

Note that to compare the performance of output error approximation of the standard versus
the goal-oriented algorithms, here we also define the output error approximation and its associated
effectivity for the standard algorithm as

∆st
s (µ) = sst

Ñ
(µ)− sst

N (µ), ηst
s (µ) =

∣∣∣∣ ∆st
s (µ)

s(µ)− sst
N (µ)

∣∣∣∣ , (21)

where the superscript “st” implies the standard algorithm. The superscript “go” is thus added in
(20) to imply the goal-oriented algorithm, respectively.

3.4 Offline-online computational procedure

In this section, we develop offline-online computational procedures in order to fully exploit the dimension
reduction of the problem [12, 8, 15]. We note that both algorithms (standard and goal-oriented) have
the same offline-online computational procedures, they are only different in the ways to build the sets
S∗ and YN via Greedy iterations. We first express ukN (µ) as:

ukN (µ) =

N∑
n=1

ukN n(µ) ζn, ∀ζn ∈ YN . (22)

We then choose a test function v = ζn, 1 ≤ n ≤ N for the RB equation (13). It then follows that
ukN (µ) = [ukN 1(µ) ukN 2(µ) · · · ukN N (µ)]T ∈ RN satisfies

(
1

∆t2
MN (µ) +

1

2∆t
CN (µ) +

1

4
AN (µ)

)
uk+1
N (µ)

=

(
− 1

∆t2
MN (µ) +

1

2∆t
CN (µ)− 1

4
AN (µ)

)
uk−1
N (µ)

+

(
2

∆t2
MN (µ)− 1

2
AN (µ)

)
ukN (µ) + geq(tk)FN (µ), 1 ≤ k ≤ K − 1. (23)
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The initial condition is treated similar to the treatment in (9) and (13). Here, CN (µ), AN (µ),
MN (µ) ∈ RN×N are symmetric positive definite matrices¶ with entries CN i,j(µ) = c(ζi, ζj ;µ),
AN i,j(µ) = a(ζi, ζj ;µ), MN i,j(µ) = m(ζi, ζj ;µ), 1 ≤ i, j ≤ N and FN ∈ RN is the RB load vector
with entries FN i = f(ζi), 1 ≤ i ≤ N , respectively.

The RB output is then computed from

sN (µ) =

K−1∑
k=0

∆t

2
LTN

(
ukN (µ) + uk+1

N (µ)
)
. (24)

Invoking the affine parameter dependence (8), we obtain

MN i,j(µ) = m(ζi, ζj ;µ) =

Qm∑
q=1

Θq
m(µ)mq(ζi, ζj), (25a)

CN i,j(µ) = c(ζi, ζj ;µ) =

Qc∑
q=1

Θq
c(µ) cq(ζi, ζj), (25b)

AN i,j(µ) = a(ζi, ζj ;µ) =

Qa∑
q=1

Θq
a(µ) aq(ζi, ζj), (25c)

FN i(µ) = f(ζi;µ) =

Qf∑
q=1

Θq
f (µ) fq(ζi), (25d)

which can be written as

MN i,j(µ) =

Qm∑
q=1

Θq
m(µ) Mq

N i,j , CN i,j(µ) =

Qc∑
q=1

Θq
c(µ) Cq

N i,j ,

AN i,j(µ) =

Qa∑
q=1

Θq
a(µ) Aq

N i,j , FN i(µ) =

Qf∑
q=1

Θq
f (µ) FqN i, (26)

where the parameter independent quantities Mq
N , Cq

N , Aq
N ∈ RN×N , and FqN ∈ RN are given by

Mq
N i,j = mq(ζi, ζj), 1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Qm, (27a)

Cq
N i,j = cq(ζi, ζj), 1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Qc, (27b)

Aq
N i,j = aq(ζi, ζj), 1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Qa, (27c)

FqN i = fq(ζi), 1 ≤ i ≤ Nmax, 1 ≤ q ≤ Qf , (27d)

respectively.
The offline-online computational procedure is now described as follows. In the offline stage –

performed only once, we first implement the standard POD–Greedy algorithm [8]: we solve to find
Y st
N = {ζst

n , 1 ≤ n ≤ Nmax}; then compute and store the µ-independent quantities in (27) for the
estimation of the RB solution and output‖. Once these RB solution and output are available, we can
now implement the goal-oriented POD–Greedy algorithm. We consider each goal-oriented POD–Greedy

¶The proof of this property can be found in, for instance, Proposition 5.1, page 136 of [54]. Thanks to this property,
the stability of our proposed RB scheme will be guaranteed as a consequence.
‖There are still several terms related to the computation of the dual norm of the residual ‖Rst(v;µ, tk)‖Y ′ , we do

not show them here for simplicity. Detailed implementation of the standard POD–Greedy algorithm can be referred to,
for instance, [8, 17, 15].
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iteration (Table 1) in more details. We first need to solve (9) for the “true” FE solutions; then compute
the projection error in step (T1d) and solve the POD/eigenvalue problem in step (T1e). In addition, we
have to compute O(N2Q) N -inner products in (27) (we denote Q = Qm+Qc+Qa). By approximating
s(µ) via the enriched approximation sst

Ñ
(µ) in (T1k) through the standard algorithm, we can now

do an exhaustive yet cheap search over Ξtrain to look for the optimal µ in each Greedy iteration. In
summary, the offline stage of the goal-oriented algorithm also includes the offline stage of the standard
algorithm, and therefore it is more expensive than that of the standard algorithm. (We again emphasize
that the standard algorithm is implemented only once, and then the goal-oriented algorithm can be
implemented many times corresponding with various output functionals, respectively.)

The online stage of the goal-oriented algorithm is very similar to that of the standard algorithm [8].
In the online stage – performed many times, for each new parameter µ – we first assemble the RB
matrices in (25), this requires O(N2Q) operations. We then solve the RB governing equation (23),
the operation counts are O(N3 +KN2) as the RB matrices are generally full. Finally, we evaluate
the displacement output sN (µ) from (24) at the cost of O(KN). For the error approximation (i.e.,
∆s(µ) = sst

Ñ
(µ) − sgo

N (µ)), there is nothing more than computing one more output sst
Ñ

(µ) and then

performing the associated subtraction; the cost is O(Ñ3). Therefore, as required in the real-time
context, the online complexity to compute the output and its associated error approximation are
O(N3) +O(Ñ3) – independent of N ; and since N, Ñ � N we can expect significant computational
saving in the online stage relative to the classical FE approach.

4 Numerical examples

In this section, we will verify both POD–Greedy algorithms by investigating a simple 2D linear
elastodynamic problem and a 3D dental implant model problem in the time domain. The details are
described in the following.

4.1 A 2D linear elastodynamic problem

4.1.1 Finite element model and approximation

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.5

0

0.5

1

1.5

2

(b)

Figure 1: (a) The 2D model with its dimensionless parameters, and (b) its FE reference mesh.

We consider a 2D plane strain model problem as in Fig.1(a). It is assumed that the model
problem is scaled (or non-dimensionalized) from a real problem in practice and hence all the terms
are dimensionless. The details of the non-dimensionalization is briefly discussed in Appendix A. The
length and height of the model are L = 4 and H = 1, respectively. The model is composed of 2
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Figure 2: (a) Time history of impulse loading, and (b) corresponding FEM output displacement in
x−direction versus time with µtest = (1, 0.1).

subdomains Ω1 and Ω2 with two different materials: Young’s moduli E1 = 1 and E2 ∈ [0.1, 10]
and Poisson ratios ν1 = ν2 = 0.3, respectively. We assume Rayleigh damping for the model where
the mass-proportional damping coefficients α1 = α2 = 0, and the stiffness-proportional damping
coefficients β1 = β2 ≡ β ∈ [0.05, 0.5] such that Ci = βiAi, 1 ≤ i ≤ 2, where Ci and Ai are the FEM
damping and stiffness matrices of each subdomain, respectively. Isotropic and homogenous material
behavior is assumed for the model. We also note that the material mass densities will vanish from the
weak form of the PDE due to the non-dimensionalisation (eq.(34), Appendix A). A surface traction
which is opposite to the x−direction with the magnitude φ̄ = 0.01 is then applied to the right edge
of the model (Γl) as shown in Fig.1(a). As mentioned in Section 2.3, it is sufficient to perform all
calculations for the impulse loading case since the solutions associated with other loading cases can
be inferred by Duhamel’s convolution principle. Time history of the impulse loading is also shown
in Fig.2(a). Homogeneous Dirichlet boundary condition is enforced on the left edge (ΓD), while zero
initial conditions (i.e., zero displacement and velocity) are applied on the model. The output of interest
is defined as the time integral of the average x−displacement along the right edge (Γo ≡ Γl) of the
model.

Specifically, the explicit forms of all linear and bilinear forms associated with the 2D model problem
are defined as follows

m(w, v) =

2∑
r=1

∑
i

∫
Ωr

wivi, (28a)

a(w, v;µ) =
∑
i,j,k,l

∫
Ω1

∂vi
∂xj

C1
ijkl

∂wk
∂xl

+ µ1

∑
i,j,k,l

∫
Ω2

∂vi
∂xj

C2
ijkl

∂wk
∂xl

, (28b)

c(w, v;µ) = µ2

∑
i,j,k,l

∫
Ω1

∂vi
∂xj

C1
ijkl

∂wk
∂xl

+ µ2µ1

∑
i,j,k,l

∫
Ω2

∂vi
∂xj

C2
ijkl

∂wk
∂xl

, (28c)

f(v) =
∑
i

∫
Γl

vi φ̄i, (28d)

`(v) =
1

|Γo|

∫
Γo

v1, (28e)
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for all w, v ∈ Y , µ ∈ D. Here, the parameter µ = (µ1, µ2) ≡ (E2, β), where E2 is the Young’s
modulus of the domain Ω2 and β is the stiffness-proportional damping coefficient of both domains
Ω1, Ω2. Crijkl is the constitutive elasticity tensor for isotropic materials and it is expressed in terms
of the Young’s modulus E and Poisson’s ratio ν of each region Ωr, 1 ≤ r ≤ 2, respectively. It
is obvious from (8) and (28) that the smooth functions Θ1

a(µ) = 1, Θ2
a(µ) = µ1; Θ1

c(µ) = µ2,
Θ2
c(µ) = µ1µ2 depend on µ — but the bilinear forms a1(w, v) = c1(w, v) =

∑
i,j,k,l

∫
Ω1

∂vi
∂xj

C1
ijkl

∂wk

∂xl
,

and a2(w, v) = c2(w, v) =
∑
i,j,k,l

∫
Ω2

∂vi
∂xj

C2
ijkl

∂wk

∂xl
do not depend on µ.

The finite element mesh consist of 215 nodes and 376 linear triangular elements as shown in
Fig.1(b). The FE space to approximate the 2D elastodynamic problem is of dimension N = 416.
For time integration, T = 50, ∆t = 0.2, K = T

∆t = 250. The parameter µ = (E2, β) ∈ D, where
the parameter domain D ≡ [0.1, 10]× [0.05, 0.5] ⊂ RP=2. The ‖ · ‖Y used in this work is defined as
‖w‖2Y = a(w,w; µ̄) +m(w,w; µ̄), where µ̄ = (1, 0.1); Qa = 2, Qc = 2. The entire work is performed
using the software Matlab R2012b. We finally show in Fig.2(b) the “unit” FEM output displacement
(i.e., under the unit impulse load) in the x−direction versus time at µtest, where µtest = µ̄ = (1, 0.1).

4.1.2 Numerical results

The impulse loading case For this 2D model problem, we aim to investigate the behavior of the
goal-oriented algorithms with various choices of ηT under the impulse loading regime. To start, a
training sample set Ξtrain is created by a equidistant distribution over D with ntrain(= 30× 30) = 900
samples. Note that we use M = 1 and Ngo

max = 60 (as in Table 1) to terminate the iteration procedures.
In the remaining sections, beside the standard and goal-oriented algorithms (ηT ), we also show the
results of the goal-oriented algorithm (Ñ = 2N) for comparison purpose.

a) First, we implement the standard POD–Greedy algorithm (i.e., the right column of Table 1)
[8]. The results are presented in Fig.3: Fig.3(a) shows the maximum error indicator ∆max,rel

u =

max
µ∈Ξtrain

{
∆u(µ)√∑K

k=1 ‖ust
N (µ,tk)‖2Y

}
as a function of N ; and Fig.3(b) shows the distribution of the sample

set Sst
∗ , respectively. As observe from Fig.3(a), the max error indicator ∆max,rel

u could not decrease
further when N st ≥ 140, hence we set N st

max = 150 for the implementation of the GO algorithms
afterwards. (Of course, N st

max is still able to be enriched automatically whenever Ñ > N st
max as

described in Algorithm 2 of the “cross-validation” process, Section 3.2.2.) For comparison purpose,
the results associated with the first N st

max = 60 basis functions were plotted using different markers
in Fig.3, respectively.

b) Once the sets Sst
∗ and Y st

N are available, the term sst
Ñ

(µ) (of ∆s(µ) in (T1k)) is now computable;
and hence, it is possible to implement the goal-oriented POD–Greedy algorithms (i.e., the left
column of Table 1). For comparison, we show the results of the goal-oriented algorithms using
(Ñ = 2N), (Ñ , ηT = 0.8), (Ñ , ηT = 0.5) and (Ñ , ηT = 0.1) in Fig.4, respectively. Note that there is
no “cross-validation” process for the first algorithm as we just fix Ñ = 2N for the computation
of sst

Ñ
(µ) in ∆s(µ). The latter algorithms use the proposed “cross-validation” process to choose

adaptively Ñ with the settings: |Ξst
1 | = 10 and ∆nsample = 10 corresponding with ηT = 0.8, 0.5

and 0.1, respectively. Fig.4(a) presents the maximum error indicators ∆max,rel
s = max

µ∈Ξtrain

{∣∣∣∆s(µ)
sst
Ñ

(µ)

∣∣∣}
as a function of N ; and Fig.4(b) shows the distribution of the sample sets Sgo

∗ . The results of
the “cross-validation” processes (Ñ , ηT = 0.8), (Ñ , ηT = 0.5) and (Ñ , ηT = 0.1) are also presented
in Fig.5. In particular, Fig.5(a) presents all the Ñ found adaptively for each N ; Fig.5(b) shows
the size of Ξst

n as a function of N ; Fig.5(c) and Fig.5(d) illustrate the maximum and minimum
effectivities in (♣) over Ξst

n , respectively. Fig.5 confirms the behavior of these GO algorithms: as
ηT increases close to 1, the range [ηT , 2− ηT ] shrinks around 1 (i.e., better test effectivities), hence
the algorithm would need larger Ñ to hold (♣) true.
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Figure 3: (a) Maximum of error indicator ∆max,rel
u over Ξtrain as a function of N , and (b) distribution

of sampling points by the standard POD–Greedy algorithm (N st
max = 150). Different markers were

used for the first N st
max = 60 basis functions.
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Figure 4: (a) Maximum of error indicator ∆max,rel
s over Ξtrain as a function of N , and (b) distribution of

sampling points by the goal-oriented POD–Greedy algorithms (Ñ = 2N), (Ñ , ηT = 0.8), (Ñ , ηT = 0.5)
and (Ñ , ηT = 0.1).

c) In order to evaluate the performance of the algorithms, we create a test sample set Ξtest ⊂ D
which is a coarse subset of D; then compute and compare mutually their RB true errors. This
set has ntest(= 10 × 10) = 100 sample points distributed equidistantly. We show, as functions
of N : emax

u = max
µ∈Ξtest

eu(µ) (defined in (18)) and emax
s = max

µ∈Ξtest

es(µ) (defined in (19)) in Fig.6,

respectively. Fig.6(a) shows quite similar true solution errors by the algorithms; while from Fig.6(b),
the goal-oriented algorithms give true output errors smaller than that computed by the standard
algorithm. The differences in the RB true output errors by the standard versus GO algorithms
can be up to 10 times. Therefore, we can conclude that the GO algorithms (with cross-validation
processes) give RB true output errors smaller than that provided by the standard algorithm (for
the same N basis functions under consideration).
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Figure 5: (a) Ñ , (b) the size |Ξst
n |, (c) max, and (d) min effectivities

∣∣∣ ∆s(µ)
s(µ)−sgoN (µ)

∣∣∣ in (♣) as functions

of N of the GO algorithms (Ñ , ηT = 0.8), (Ñ , ηT = 0.5) and (Ñ , ηT = 0.1).

d) Lastly, we evaluate the performance of the sampling algorithms via their (practical) output error
approximations. For comparison, the output error approximation (21) by the standard algorithm
with (Ñ , ηT = 0.8) is used. (Namely, the pairs (N, Ñ) in (21) is taken following and after
implementing the GO (Ñ , ηT = 0.8) algorithm∗∗.) In particular, Fig.7(b) shows the graphs of

∆̃max,rel
s = max

µ∈Ξtest

∣∣∣∆s(µ)
s(µ)

∣∣∣ (defined in (20), (21)) as functions of N by the algorithms: standard

(Ñ , ηT = 0.8), GO (Ñ = 2N), GO (Ñ , ηT = 0.8), GO (Ñ , ηT = 0.5) and GO (Ñ , ηT = 0.1),
respectively. Fig.7(a) is just a repetition of Fig.6(b) – which shows the max relative RB true
errors in order to compare with the max output error approximations in Fig.7(b). The associated
maximum/minimum effectivities of this error approximation (i.e., ηmax

s = max
µ∈Ξtest

ηs(µ), ηmin
s =

min
µ∈Ξtest

ηs(µ), defined in (20), (21)) are also shown in Fig.7(c) and Fig.7(d), respectively. As observed

from Fig.7(a) and Fig.7(b), the GO algorithms are superior to the standard algorithm in both RB
true error and output error approximation. Regarding effectivities, Fig.7(c) and Fig.7(d) show that
the GO (Ñ , ηT = 0.8) algorithm gives the best effectivities among all the algorithms. These results

∗∗The aim of this special test is that for the same online computational effort O(N3) +O(Ñ3), we want to compare
the error approximations and associated effectivities by the standard vs. the GO (Ñ, ηT = 0.8) algorithms.
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Figure 6: Comparison of maximum (relative) RB true errors by standard and all goal-oriented
POD–Greedy algorithms over Ξtest: (a) solution and (b) output.

confirm the good performance of the “cross-validation” process: the GO (Ñ , ηT = 0.8) algorithm
not only decreases the RB true error compared with the standard algorithm, but it also improves
significantly the output effectivity estimation compared with other GO algorithms (especially the
GO (Ñ = 2N) one).

4.2 A 3D dental implant model problem

4.2.1 Finite element model and approximation

We now consider a simplified 3D dental implant-bone model in Fig.8(a). The geometry of the simplified
dental implant-bone model is constructed by using the software SolidWorks 2010. The physical domain
Ω consists of five regions: the outermost cortical bone Ω1, the cancellous bone Ω2, the interfacial
tissue Ω3, the dental implant Ω4 and the stainless steel screw Ω5. The 3D simplified model is then
meshed using the software ABAQUS/CAE version 6.10-1 (Fig.8(b)). A dynamic force opposite to
the x−direction is then applied to a prescribed area on the body of the screw as shown in Fig.9(a).
As mentioned in Sections 2.3 and 4.1.1, all computations and simulations will be performed for the
impulse loading case thanks to the Duhamel’s convolution principle (12). Fig.9(b) shows the time
history of both loading cases used in this work: the impulse load and an “arbitrary” load. The Dirichlet
boundary condition (∂ΩD) is specified in the bottom-half of the simplified model as illustrated in
Fig.9(a); while zero initial conditions (i.e., zero displacement and velocity) are applied on the model.
The output of interest is defined as the average x−displacement responses of a prescribed area on the
head of the screw (Fig.9(a)). The finite element mesh consists of 9479 nodes and 50388 four-node
tetrahedral solid elements. The coinciding nodes of the contact surfaces between different regions (the
regions Ω1, Ω2, Ω3, Ω4, Ω5) are assumed to be rigidly fixed, i.e. the displacements in the x−, y− and
z−directions are all set to be the same for the same coinciding nodes.

We assume that the regions Ωi, 1 ≤ i ≤ 5, of the simplified model are homogeneous and isotropic.
The material properties: the Young’s moduli, Poisson’s ratios and densities of these regions are
presented in Table 2 [55]. As similar to [8], we still use Rayleigh damping with stiffness-proportional
damping coefficient βi, 1 ≤ i ≤ 5 (Table 2) such that Ci = βiAi, 1 ≤ i ≤ 5, where Ci and Ai are the
FEM damping and stiffness matrices of each region, respectively. We also note in Table 2 that (E,β) –
the Young’s modulus and Rayleigh damping coefficient associated with the interfacial tissue are our
sole parameters.
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Figure 7: “Impulse load” case: comparison of (a) max relative RB true errors, (b) max relative
error approximations, (c) corresponding max effectivities and (d) corresponding min effectivities of all
sampling algorithms over Ξtest.

Domain Layers E (Pa) ν ρ(g/mm3) β

Ω1 Cortical bone 2.3162× 1010 0.371 1.8601× 10−3 3.38× 10−6

Ω2 Cancellous bone 8.2345× 108 0.3136 7.1195× 10−4 6.76× 10−6

Ω3 Tissue E 0.3155 1.055× 10−3 β
Ω4 Titan implant 1.05× 1011 0.32 4.52× 10−3 5.1791× 10−10

Ω5 Stainless steel screw 1.93× 1011 0.305 8.027× 10−3 2.5685× 10−8

Table 2: Material properties of the dental implant-bone structure.

With respect to our particular dental implant problem, the actual integral forms of the linear and
bilinear forms are defined as:

m(w, v) =

5∑
r=1

∑
i

∫
Ωr

ρrwivi, (29a)
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Figure 8: (a) The 3D simplified FEM model with sectional view, and (b) meshing in ABAQUS.
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Figure 9: (a) Output area, applied load F and boundary condition, and (b) time history of an impulse
and an “arbitrary” load.

a(w, v;µ) =

5∑
r=1,r 6=3

∑
i,j,k,l

∫
Ωr

∂vi
∂xj

Crijkl
∂wk
∂xl

+ µ1

∑
i,j,k,l

∫
Ω3

∂vi
∂xj

C3
ijkl

∂wk
∂xl

, (29b)

c(w, v;µ) =

5∑
r=1,r 6=3

βr
∑
i,j,k,l

∫
Ωr

∂vi
∂xj

Crijkl
∂wk
∂xl

+ µ2µ1

∑
i,j,k,l

∫
Ω3

∂vi
∂xj

C3
ijkl

∂wk
∂xl

, (29c)

f(v) =
∑
i

∫
Γl

vi φ̄i, (29d)

`(v) =
1

|Γo|

∫
Γo

v1, (29e)
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for all w, v ∈ Y , µ ∈ D. Here, the parameter µ = (µ1, µ2) ≡ (E, β) belongs to the region Ω3. Crijkl is
the constitutive elasticity tensor for isotropic materials and it is expressed in terms of the Young’s
modulus E and Poisson’s ratio ν of each region Ωr, 1 ≤ r ≤ 5, respectively. Γl is the prescribed
loading area (surface traction) and Γo is the prescribed output area as shown in Fig.9(a), respectively.
It is obvious from (8) and (29) that the smooth functions Θ1

a(µ) = 1, Θ2
a(µ) = µ1; Θ1

c(µ) = 1,

Θ2
c(µ) = µ1µ2 depend on µ — but the bilinear forms a1(w, v) =

∑5
r=1,r 6=3

∑
i,j,k,l

∫
Ωr

∂vi
∂xj

Crijkl
∂wk

∂xl
,

a2(w, v) = c2(w, v) =
∑
i,j,k,l

∫
Ω3

∂vi
∂xj

C3
ijkl

∂wk

∂xl
and c1(w, v) =

∑5
r=1,r 6=3 βr

∑
i,j,k,l

∫
Ωr

∂vi
∂xj

Crijkl
∂wk

∂xl
do

not depend on µ.
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Figure 10: (a) “Unit” FEM output displacement in x−direction versus time, and (b) comparison of
“arbitrary” FEM output displacements (under the applied load in Fig.9(b)) computed by Duhamel’s
convolution and direct computation, with µtest = (10× 106Pa, 1× 10−5).

The FE space to approximate the 3D dental implant-bone problem is of dimension N = 26343. For
time integration, T = 1× 10−3s, ∆t = 2× 10−6s, K = T

∆t = 500. The input parameter µ ≡ (E, β) ∈ D,
where the parameter domain D ≡ [1× 106, 25× 106]Pa× [5× 10−6, 5× 10−5] ⊂ RP=2. (Note that the
range of E of this parameter domain is nearly two times larger than that of [8].) The ‖ · ‖Y norm
used in this work is defined as ‖w‖2Y = a(w,w; µ̄) +m(w,w; µ̄), where µ̄ = (13× 106Pa, 2.75× 10−5)
is the arithmetic average of µ in D; Qa = 2, Qc = 2. The entire work is performed using the
software Matlab R2012b. Fig.10 presents some FEM results corresponding with the test parameter
µtest = (10× 106Pa, 1× 10−5). In particular, Fig.10(a) shows the “unit” FEM output displacement
(i.e., under the unit impulse load) in the x−direction versus time at µtest. In addition, Fig.10(b) shows
the FEM output displacements versus time under the “arbitrary” load (in Fig.9(b)) by direct FEM
computation and by Duhamel’s convolution. It is observed that these two results match perfectly well
with each other.

4.2.2 Numerical results

The impulse loading case We now discuss the POD–Greedy algorithms of interest. A training
sample set Ξtrain is created by a equidistant distribution over D with ntrain(= 30× 30) = 900 samples.
We still use M = 1 and Ngo

max = 60 (Table 1) to terminate the iteration procedures. In the remaining
sections, we only show the results of 3 typical algorithms which are the standard, the GO (Ñ , ηT = 0.8)
and the GO (Ñ = 2N) algorithms for comparison.

a) As similar to Section 4.1.2 above, the standard POD–Greedy algorithm is implemented first.
The results are presented in Fig.11: Fig.11(a) shows the maximum error indicator ∆max,rel

u =
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max
µ∈Ξtrain

{
∆u(µ)√∑K

k=1 ‖ust
N (µ,tk)‖2Y

}
as a function of N ; and Fig.11(b) shows the distribution of the sample

set Sst
∗ , respectively. N st

max is set to be 200 since the goal-oriented algorithms may need a quite
large N st

max afterwards. For comparison purpose, the results associated with the first N st
max = 60

basis functions were also plotted using different markers as in Fig.11, respectively.
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Figure 11: (a) Maximum of error indicator ∆max,rel
u over Ξtrain as a function of N , and (b) distribution

of sampling points by the standard POD–Greedy algorithm (N st
max = 200). Different markers were

used for the first N st
max = 60 basis functions.

b) Now, the goal-oriented POD–Greedy algorithms can be implemented since the term sst
Ñ

(µ) is

computable from the availability of the sets Sst
∗ and Y st

N . For comparison, we show the results
of the goal-oriented algorithms using (Ñ = 2N) versus (Ñ , ηT = 0.8) in Fig.12. The settings
|Ξst

1 | = 10 and ∆nsample = 10 are used for this GO (Ñ , ηT = 0.8) algorithm. Fig.12(a) presents the

maximum error indicators ∆max,rel
s = max

µ∈Ξtrain

{∣∣∣∆s(µ)
sst
Ñ

(µ)

∣∣∣} as a function of N ; and Fig.12(b) shows

the distribution of the sample sets Sgo
∗ , respectively. It is observed from Fig.12(a) that the GO

(Ñ , ηT = 0.8) algorithm is just a bit better than the GO (Ñ = 2N) one regarding maximum error
indicators. However, Fig.12(b) shows that these two algorithms are different from each other by
15/60 (=1/4) sample points. This is an important difference which will be reflected clearly in
the effectivity estimation by the two algorithms afterwards. The results of the “cross-validation”
process (Ñ , ηT = 0.8) are also presented in Fig.13. In particular, Fig.13(a) presents all the Ñ found
adaptively for each N ; Fig.13(b) illustrates the maximum and minimum effectivities in (♣) over
Ξst
n ; and Fig.13(c) shows the size of Ξst

n as a function of N , respectively.

c) In order to evaluate the performance of the algorithms, we create a test sample set Ξtest ⊂ D
which is a coarse subset of D; then compute and compare mutually their RB true errors. This
set has ntest(= 10 × 10) = 100 sample points distributed equidistantly. We show, as functions
of N : emax

u = max
µ∈Ξtest

eu(µ) (defined in (18)) and emax
s = max

µ∈Ξtest

es(µ) (defined in (19)) in Fig.14,

respectively. We observe again from Fig.14(b) that the goal-oriented algorithms completely prevail
over the the standard algorithm as regards true output errors. The differences in the RB true
output errors by the standard versus GO algorithms can be up to 10 times. As expected from
Fig.14(b), the GO (Ñ , ηT = 0.8) algorithm is a bit better than the GO (Ñ = 2N) algorithm because
the former uses more RB basis functions (Ñ) than the latter with the same N (see Fig.13(a)).

d) Finally, we evaluate the performance of the sampling algorithms via their (practical) output
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Figure 12: (a) Maximum of error indicator ∆max,rel
s over Ξtrain as a function of N , and (b) distribution

of sampling points by the goal-oriented POD–Greedy algorithms (Ñ = 2N) v.s. (Ñ , ηT = 0.8).

error approximations. Again, the output error approximation (21) by the standard algorithm with
(Ñ , ηT = 0.8) is used. (Namely, the pairs (N, Ñ) in (21) is taken following and after implementing the

GO (Ñ , ηT = 0.8) algorithm.) Specifically, Fig.15(b) shows the graphs of ∆̃max,rel
s = max

µ∈Ξtest

∣∣∣∆s(µ)
s(µ)

∣∣∣
(defined in (20), (21)) as functions of N by 3 algorithms: standard (Ñ , ηT = 0.8), GO (Ñ , ηT = 0.8)
and GO (Ñ = 2N), respectively. Fig.15(a) is again a repetition of Fig.14(b) – which shows the max
relative RB true errors to compare with the max output error approximations in Fig.15(b). The
associated maximum/minimum effectivities of this error approximation (i.e., ηmax

s = max
µ∈Ξtest

ηs(µ),

ηmin
s = min

µ∈Ξtest

ηs(µ), defined in (20), (21)) are also shown in Fig.15(c) and Fig.15(d), respectively.

Fig.15(a) and Fig.15(b) again show that the GO algorithms give smaller RB true output errors
than that provided by the standard algorithm (for the same N basis functions). Fig.15(c) and
Fig.15(d) also show much better effectivities of the standard and GO (Ñ , ηT = 0.8) algorithms
compared with that of the GO (Ñ = 2N) one. These results again confirm the good performance
of the “cross-validation” process: the GO (Ñ , ηT = 0.8) algorithm decreases the RB true error
compared with the standard algorithm, and it also improves significantly the output effectivity
estimation compared with the GO (Ñ = 2N) algorithm.

An arbitrary loading case All the results shown so far are for the unit impulse load, which is
of very limited use in practice. Fortunately, as mentioned in Section 2.3, we can use the Duhamel’s
principle to convolute all the “unit” RB solutions with an “arbitrary” load to obtain correspondingly
“arbitrary” RB solutions/outputs. Here, we also test and present some results of our error approximation
∆s(µ) with the “arbitrary” load defined in Fig.9(b). We note that the error approximation (T1k)
is good only for the impulse load since we built the goal-oriented RB basis functions for this load.
For more complicated loadings, the error approximation might be much worse since there might be
error in the convolution. Similar to paragraph d) of Section 4.2.2 above, Fig.16(a) and Fig.16(b) show
the graphs of max relative RB true error and max relative error approximation; while Fig.16(c) and
Fig.16(d) show the corresponding max/min effectivities of the 3 algorithms: standard, GO (Ñ , ηT = 0.8)
and GO (Ñ = 2N) over Ξtest, respectively. Again, we obtain quite similar phenomena as in Fig.15:
the GO algorithms beat the standard one in RB true error and error approximation; and the GO
(Ñ , ηT = 0.8) algorithm provides the best effectivities among all algorithms. The results again prove
the preeminence of the proposed “cross-validation” process to choose adaptively and sufficiently Ñ for
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Figure 13: (a) Ñ , (b) max/min effectivities
∣∣∣ ∆s(µ)
s(µ)−sgoN (µ)

∣∣∣ in (♣), ∀µ ∈ Ξst
n , and (c) the size |Ξst

n | as

functions of N of the algorithm GO (Ñ , ηT = 0.8).

a particular N of interest.
Finally, regarding computational time, all computations were performed on a desktop Intel(R)

Core(TM) i7-3930K CPU @3.20GHz 3.20GHz, RAM 32GB, 64-bit Operating System. The computa-
tional time for the RB solver (tRB(online)), the CPU-time for the FEM solver by our code (tFEM) and
the CPU-time saving factor κ = tFEM/tRB(online) are listed on Table 3, respectively. We also provide
roughly the computational time for the error approximations (∆s(µ)) using both GO algorithms in
that Table. We see that the RB solver is approximately O(1000) times and the error approximation is
O(100) faster than the FEM solver; and thus it is clear that the RB is very efficient and reliable for
solving time-dependent dynamic problems [56, 57, 58, 59, 60].

5 Conclusion

A new goal-oriented POD–Greedy sampling algorithm was proposed. The proposed algorithm cooper-
ates and improves further the standard POD–Greedy algorithm by using the output error approximation
rather than the dual norm of residual as error indicator within the Greedy iterations. A cross-validation
process is proposed to choose adaptively the dimension of the larger-dimensional auxiliary RB space in
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Figure 14: Comparison of maximum (relative) RB true errors by standard and all goal-oriented
POD–Greedy algorithms over Ξtest: (a) solution and (b) output.

Table 3: Comparison of the CPU-time for a FEM and RB analysis.

N tRB(online) (sec) tFEM (sec) κ = tFEM/tRB(online) t∆s(µ) (sec) t∆s(µ) (sec)

(Ñ = 2N) (Ñ , ηT = 0.8)

10 0.006757 29 4291 0.008329 0.038035
20 0.008391 29 3456 0.014242 0.099046
30 0.011123 29 2607 0.031723 0.049015
40 0.014531 29 1996 0.042440 0.130987
50 0.024381 29 1189 0.061122 0.192829
60 0.031196 29 930 0.075049 0.328012

the output error approximation. The proposed strategy is verified by investigating a 2D linear plane
strain problem and a 3D dental implant problem in the time domain. It is demonstrated that this
type of error indicator will guide the Greedy iterations to select the parameter samples to optimize
the true output error. In comparison with the standard algorithm, we conclude that our proposed
algorithm performs better – in terms of output’s accuracy, and quite similar – in terms of solution’s
accuracy. The proposed algorithm is applicable to various (regular) output functionals and is thus
very suitable within the goal-oriented RB approximation context.
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STD (Ñ , ηT = 0.8)
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Figure 15: “Impulse load” case: comparison of (a) max relative RB true errors, (b) max relative
error approximations, (c) corresponding max effectivities and (d) corresponding min effectivities of all
sampling algorithms over Ξtest.
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GO (Ñ , ηT = 0.8)
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A Non-dimensionalization of damped wave equation (weak
form)

In the following, the physical and non-dimensional terms will be denoted as x̄ and x, respectively. With
all the terms defined as in (3)–(4) and assuming zero mass-proportional Rayleigh damping coefficients,
the weak form of the dimensional damped wave equation considered in this work has the following
form: ∀t̄ ∈ [0, T̄ ] and a test function v̄∫

Ω̄

ρ̄v̄i
∂2ūi
∂t̄2

+ β̄
∂

∂t̄

∫
Ω̄

∂v̄i
∂x̄j

C̄ijkl
∂ūk
∂x̄l

+

∫
Ω̄

∂v̄i
∂x̄j

C̄ijkl
∂ūk
∂x̄l

=

∫
Γ̄l

v̄iφ̄i on Ω̄, (30)

which subjects to the boundary conditions

ūi = ūd
i on Γ̄D, (31a)

σ̄ijnj = C̄ijkl

(
∂ūk
∂x̄l

+ β̄
∂

∂t̄

∂ūk
∂x̄l

)
nj = φ̄i on Γ̄l, (31b)

and initial conditions

ūi(t̄ = 0) = ūd,0
i on Ω̄, (32a)

∂ūi(t̄ = 0)

∂t̄
= v̄d,0

i on Ω̄. (32b)

Let L∗, ρ∗ and E∗ are correspondingly the characteristic length, mass density and stress of the
model and define the non-dimensional variables as

xi =
x̄i
L∗
, ui =

ūi
L∗
, φi =

φ̄i
E∗

, (33a)

Cijkl =
1

E∗
C̄ijkl, t =

√
E∗

ρ∗L∗2
t̄, β =

√
E∗

ρ∗L∗2
β̄. (33b)

Under this transformation, the non-dimensional weak form of (30) is defined as: ∀t ∈ [0, T ],

T =
√

E∗

ρ∗L∗2
T̄ and a test function v∫

Ω

vi
∂2ui
∂t2

+ β
∂

∂t

∫
Ω

∂vi
∂xj

Cijkl
∂uk
∂xl

+

∫
Ω

∂vi
∂xj

Cijkl
∂uk
∂xl

=

∫
Γl

viφi on Ω, (34)

with boundary conditions

ui =
ūd
i

L∗
on ΓD, (35a)
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σijnj = Cijkl

(
∂uk
∂xl

+ β
∂

∂t

∂uk
∂xl

)
nj =

φ̄i
E∗

on Γl, (35b)

and initial conditions

ui(t = 0) =
ūd,0
i

L∗
on Ω, (36a)

∂ui(t = 0)

∂t
=

√
ρ∗

E∗
v̄d,0
i on Ω. (36b)
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