Problem statement: parametrized weak form

• Exact parametrized elastodynamic problem

$$m\left(\frac{\partial^2 u^e(x,t;\underline{\mu})}{\partial t^2},v;\underline{\mu}\right) + c\left(\frac{\partial u^e(x,t;\underline{\mu})}{\partial t},v;\underline{\mu}\right) + a\left(u^e(x,t;\underline{\mu}),v;\underline{\mu}\right) = g(t)f(v;\underline{\mu}),$$

$$\forall v \in \left(H_0^1(\Omega)\right)^d, t \in [0,T], \underline{\mu} \in \mathcal{D}$$

- Initial conditions: $u_i^e(x,0;\underline{\mu}) = 0; \frac{\partial u_i^{\circ}}{\partial t}(x,0;\underline{\mu}) = 0$
- Boundary conditions: $u_i^e(x,t;\underline{\mu}) = 0, \ \forall x \in \partial \Omega_D$

$$\sigma_{ij}^{e}\left(x,t;\underline{\mu}\right)\hat{n}_{j}=\mathbf{t}_{i}, \ \forall x\in\partial\Omega_{N}$$

• Space-time quantity of interest:

$$s^{e}(\boldsymbol{\mu}) = \int_{0}^{T} \int_{\Gamma_{o}} u^{e}(x,t;\boldsymbol{\mu}) \Sigma(x,t) \, dx dt = \int_{0}^{T} \ell \left(u^{e}(x,t;\boldsymbol{\mu}) \right) dt$$
$$\underline{\boldsymbol{\mu}} \left(\to u^{e}(\underline{\boldsymbol{\mu}}) \right) \to s^{e}(\underline{\boldsymbol{\mu}})?$$

Problem statement...

• Bi/linear forms

$$\begin{split} m\left(w,v;\underline{\mu}\right) &= \sum_{i} \int_{\Omega} \rho v_{i} \frac{\partial^{2} w_{i}}{\partial t^{2}} d\Omega \\ c\left(w,v;\underline{\mu}\right) &= \sum_{i} \int_{\Omega} \alpha \rho v_{i} w_{i} d\Omega + \sum_{i,j,k,l} \int_{\Omega} \beta \frac{\partial v_{i}}{\partial x_{j}} C_{ijkl} \frac{\partial w_{k}}{\partial x_{l}} d\Omega \\ a\left(w,v;\underline{\mu}\right) &= \sum_{i,j,k,l} \int_{\Omega} \frac{\partial v_{i}}{\partial x_{j}} C_{ijkl} \frac{\partial w_{k}}{\partial x_{l}} d\Omega \\ f\left(v;\underline{\mu}\right) &= \sum_{i} \int_{\Omega} b_{i} v_{i} \, d\Omega + \sum_{i} \int_{\partial \Omega_{N}} v_{i} \mathbf{t}_{i} \, d\Gamma \end{split}$$

- Bilinear forms *m*,*a* are continuous and coercive.
- Assume affine parameter dependence of the bi/linear forms

Finite element discretization

Trapezoidal scheme

- "Method of Lines": spatial discretize (FE) + temporal discretize (Newmark)
 - -Discretize the time span [0,T] into $[t^k, t^{k+1}], 0 \le k \le K-1$

-Solve (K-1) following elliptic systems

 $\underbrace{\underline{\mathcal{A}}\left(\underline{u}^{k+1}(\underline{\mu}),\underline{v};\underline{\mu}\right) = \underline{\mathcal{F}}(\underline{v}), \qquad \forall \underline{v} \in Y^{\mathrm{h}}, \underline{\mu} \in \mathcal{D}, \quad 1 \leq k \leq K-1$ $\underbrace{\underline{\mathcal{A}}\left(\underline{u}^{k+1}(\mu),\underline{v};\underline{\mu}\right) = \frac{1}{\Delta t^{2}}m(\underline{u}^{k+1}(\underline{\mu}),\underline{v};\underline{\mu}) + \frac{1}{2\Delta t}c(\underline{u}^{k+1}(\underline{\mu}),\underline{v};\underline{\mu}) + \frac{1}{4}a(\underline{u}^{k+1}(\underline{\mu}),\underline{v};\underline{\mu})$ $\underline{\mathcal{F}}(\underline{v}) = -\frac{1}{\Delta t^{2}}m(\underline{u}^{k-1}(\underline{\mu}),\underline{v};\underline{\mu}) + \frac{1}{2\Delta t}c(\underline{u}^{k-1}(\underline{\mu}),\underline{v};\underline{\mu}) - \frac{1}{4}a(\underline{u}^{k-1}(\underline{\mu}),\underline{v};\underline{\mu})$ $+\frac{2}{\Delta t^{2}}m(\underline{u}^{k}(\underline{\mu}),\underline{v};\underline{\mu}) - \frac{1}{2}a(\underline{u}^{k}(\underline{\mu}),\underline{v};\underline{\mu}) + g^{eq}(t^{k})f(\underline{v};\underline{\mu})$ $u(\underline{\mu},t^{0}) = 0; \quad \frac{\partial \underline{u}(\underline{\mu},t^{0})}{\partial t} = 0$ $\underbrace{\underline{\mu}\left(\rightarrow \underline{u}(\underline{\mu})\right) \rightarrow s(\underline{\mu}\right)?$

-FE quantity of interest: $s(\mu) = \sum_{k=0}^{K-1} \int_{t^k}^{t^{k+1}} \ell(\underline{u}(x,t;\mu)) dt$

RB approximation: Galerkin projection

• Introduce $S_* = \{\underline{\mu}_1 \in \mathcal{D}, \underline{\mu}_2 \in \mathcal{D}, ..., \underline{\mu}_N \in \mathcal{D}\}, \ 1 \le N \le N_{\max}$; and nested Lagrangian RB spaces

$$Y_N = \operatorname{span}\{\underline{\zeta}_n, 1 \le n \le N\}, \ 1 \le N \le N_{\max}$$

-Galerkin projection:

$$\underline{u}_{N}(\underline{\mu}, t^{k}) = \sum_{n=1}^{N} u_{Nn}(\underline{\mu}, t^{k}) \underline{\zeta}_{n}, \quad \forall \underline{\zeta}_{n} \in Y_{N}, \ 1 \leq k \leq K$$

-Solve the following elliptic systems

$$\underline{\underline{\mathcal{A}}}\left(\underline{u}_{N}^{k+1}(\underline{\mu}), \underline{v}; \underline{\mu}\right) = \underline{\mathcal{F}}(\underline{v}), \quad \forall \underline{v} \in Y_{N}, \underline{\mu} \in \mathcal{D}, \ 1 \le k \le K-1$$

-RB quantity of interest:

$$\underline{\mu} \Big(\to \underline{u}_N(\underline{\mu}) \Big) \to s_N(\underline{\mu})?$$

$$s_N(\underline{\mu}) = \sum_{k=0}^{K-1} \int_{t^k}^{t^{k+1}} \ell\left(\underline{u}_N(x,t;\underline{\mu})\right) dt$$

Approaches to build goal-oriented basis functions?

• Dual Weighted Residual (DWR) method

[Meyer *et al*. 2003] [Grepl *et al*. 2005] [Bangerth *et al*. 2001] [Bangerth *et al*. 2010]

- -Solve additionally an adjoint problem
- Remove the snapshots cause small error keep the ones cause large error
- Build optimal goal-oriented basis functions based on all POD snapshots [Bui et al. 2007] [Willcox et al. 2005]
 - Use adjoint technique to build optimally basis functions based on all POD snapshots
- We want to build optimally goal-oriented basis functions <u>without computing/storing all the snapshots</u>?

RB + Greedy sampling strategy

Standard POD-Greedy algorithm

[Haasdonk et al. 2008] [Hoang et al. 2013]

(a) Set $Y_N^{\rm st} = 0$ (b) Set $\mu_*^{\rm st} = \mu_0$ (c) While $N \leq N_{\text{max}}^{\text{st}}$ (d) $\mathcal{W}^{\mathrm{st}} = \left\{ \underline{e}^{\mathrm{st}}_{\mathrm{proj}}(\underline{\mu}^{\mathrm{st}}_{*}, t^{k}), 0 \le k \le K \right\}$ (e) $Y_{N+M}^{\mathrm{st}} \leftarrow Y_N^{\mathrm{st}} \bigoplus \mathrm{POD}(\mathcal{W}^{\mathrm{st}}, M)$ $N \leftarrow N + M$ (f) (r) (g) (h) $\mu_*^{\text{st}} = \arg \max_{\mu \in \Xi_{\text{train}}} \left\{ \frac{\Delta_u(\underline{\mu})}{\sqrt{\sum_{k=1}^K \left\| \underline{u}_N^{\text{st}}(\underline{\mu}, t^k) \right\|_Y^2}} \right\}$ $S_*^{\mathrm{st}} \leftarrow S_*^{\mathrm{st}} \bigcup \left\{ \mu_*^{\mathrm{st}} \right\}$ (i) (j) end.

(k) $\Delta_u(\underline{\mu}) = \sqrt{\sum_{k=1}^{K} \left\| \mathcal{R}^{\mathrm{st}}(\underline{v};\underline{\mu},t^k) \right\|_{W'}^2}$

1) Where: given a set of snapshots $\{\underline{\xi}_k\}_{k=1}^{M_{\text{max}}}$ the POD space W_M is defined as:

$$W_{M} = \arg\min_{V_{M} \subset \operatorname{span}\{\underline{\xi}_{1}, \dots, \underline{\xi}_{M_{\max}}\}} \left(\frac{1}{M_{\max}} \sum_{k=1}^{M_{\max}} \inf_{\underline{\alpha}^{k} \in \mathbb{R}^{M}} \left\| \underline{\xi}_{k} - \sum_{m=1}^{M} \alpha_{m}^{k} \underline{v}_{m} \right\|^{2} \right)$$

or, written as:

$$W_{M} = \mathrm{POD}\Big(\{\underline{\xi}_{1}, \dots, \underline{\xi}_{M_{\mathrm{max}}}\}, M\Big)$$

2) Projection error:

$$\underline{e}_{\text{proj}}^{k}(\underline{\mu}) = \underline{u}^{k}(\underline{\mu}) - \text{proj}_{Y_{N}} \underline{u}^{k}(\underline{\mu})$$

3) Residual

$$\begin{split} \underline{\mathcal{R}}(\underline{v};\underline{\mu},t^k) &= \underline{\mathcal{F}}(\underline{v}) - \underline{\underline{\mathcal{A}}}\Big(\underline{u}_N^{k+1}(\underline{\mu}),\underline{v};\underline{\mu}\Big), \\ 1 \leq k \leq K-1 \end{split}$$

Goal-oriented vs. standard POD-Greedy algorithm

(a)	Set $Y_N^{\text{go}} = 0$	
(b)	Set $\underline{\mu}_*^{\mathrm{go}} = \underline{\mu}_0$	
(c)	While $N \leq N_{\max}^{\text{go}}$	
(d)	$\mathcal{W}^{\text{go}} = \left\{ \underline{e}_{\text{proj}}^{\text{go}}(\underline{\mu}_{*}^{\text{go}}, t^{k}), 0 \le k \le K \right\}$	
(e)	$Y_{N+M}^{\mathrm{go}} \leftarrow Y_N^{\mathrm{go}} \bigoplus \mathrm{POD}(\mathcal{W}^{\mathrm{go}}, M)$	
(f)	$N \leftarrow N + M$ CV p	rocess
(g)	$ \begin{split} & \operatorname{Find} \tilde{N} \operatorname{s.t.} \forall \underline{\mu} \in \Xi_n^{\operatorname{st}} \subset \Xi_{n+1}^{\operatorname{st}} \Big(\subset S_*^{\operatorname{st}} \Big) \\ & \eta_T \leq \left \frac{\Delta_s(\underline{\mu})}{s(\underline{\mu}) - s_N^{\operatorname{go}}(\underline{\mu})} \right \leq 2 - \eta_T \end{split} $	
(h) (i)	$ \begin{split} \underline{\mu}^{\text{go}}_* &= \arg \max_{\mu \in \Xi_{\text{train}}} \left\{ \left \frac{\Delta_s(\underline{\mu})}{s_{\tilde{N}}^{\text{st}}(\underline{\mu})} \right \right\} \\ S^{\text{go}}_* &\leftarrow S^{\text{go}}_* \bigcup \left\{ \underline{\mu}^{\text{go}}_* \right\} \end{split} $	
(j)	end. A	sympt
(k)	$\Delta_{s}(\underline{\mu}) = s^{\rm st}_{\tilde{N}}(\underline{\mu}) - s^{\rm go}_{N}(\underline{\mu})$	

(a) Set $Y_N^{\rm st}=0$
(b) Set $\underline{\mu}_{*}^{\mathrm{st}}=\underline{\mu}_{0}$
(c) While $N \leq N_{ m max}^{ m st}$
(d) $\mathcal{W}^{\mathrm{st}} = \left\{ \underline{e}^{\mathrm{st}}_{\mathrm{proj}}(\underline{\mu}^{\mathrm{st}}_{*}, t^{k}), 0 \le k \le K \right\}$
(e) $Y_{N+M}^{\mathrm{st}} \leftarrow Y_N^{\mathrm{st}} \bigoplus \mathrm{POD}(\mathcal{W}^{\mathrm{st}}, M)$
(f) $N \leftarrow N + M$
(g) $\mu_{\text{st}}^{\text{st}} = \arg \max \left\{ \frac{\Delta_u(\underline{\mu})}{\Delta_u(\underline{\mu})} \right\}$
(h) $\left\ \sqrt{\sum_{k=1}^{K} \left\ \underline{u}_{N}^{\mathrm{st}}(\underline{\mu}, t^{k}) \right\ _{V}^{2}} \right\ $
(i) $S_*^{\text{st}} \leftarrow S_*^{\text{st}} \bigcup \left\{ \underline{\mu}_*^{\text{st}} \right\}$
(j) end.

Asymptotic output error estimation

$$\Delta_u(\underline{\mu}) = \sqrt{\sum_{k=1}^K \left\| \underline{\mathcal{R}}^{\mathrm{st}}(\underline{v};\underline{\mu},t^k) \right\|_{Y'}^2}$$

Cross-validation process Algorithm 1 The "cross-validation" process. **INPUT**: Ξ_n^{st}, N **OUTPUT**: $\Xi_n^{\text{st}}, \tilde{N}_n$ 1: while true do Given $\Xi_n^{\rm st}$; 2: Compute N_n from this Ξ_n^{st} ; (i.e., call the Algorithm 2 below) 3: Create Ξ_{n+1}^{st} ; 4: Check (\clubsuit) with N_n over Ξ_{n+1}^{st} : 5:if (\clubsuit) holds $\forall \mu \in \Xi_{n+1}^{st}$ then \triangleright if (\clubsuit) holds 6: Get $\left\{\tilde{N}_n, \Xi_n^{\mathrm{st}}\right\};$ 7: Exit while loop; 8: \triangleright if (\clubsuit) is violated else 9: $\Xi_n^{\mathrm{st}} \leftarrow \Xi_{n+1}^{\mathrm{st}};$ 10:11: end if 12: end while

Algorithm 2 Function to compute \tilde{N} based on input Ξ^{st} and N.

INPUT: Ξ^{st} , N OUTPUT: \tilde{N} 1: Start with $\tilde{N} = 2N$; 2: while true do Check (\clubsuit) with \tilde{N} over Ξ^{st} : 3: if any $\mu \in \Xi^{st}$ violates (\clubsuit) then \triangleright if (\clubsuit) is violated 4:if $\tilde{N} < N_{\max}^{st}$ then 5: $\tilde{N} \leftarrow \tilde{N} + 1;$ 6: else 7: Run the standard POD-Greedy algorithm to increase $N_{\text{max}}^{\text{st}}$: $N_{\text{max}}^{\text{st}} \leftarrow N_{\text{max}}^{\text{st}} + 1$; 8: end if 9: end if 10:if (\clubsuit) holds $\forall \mu \in \Xi^{st}$ then \triangleright if (\clubsuit) holds 11: Get \tilde{N} ; 12:Exit while loop; 13:end if 14:5: end while

Numerical example: 3D dental implant model

3D Dental implant model problem...

Material properties

Domain	Layers	E (Pa)	ν	$ ho({ m g/mm^3})$	β
Ω_1	Cortical bone	2.3162×10^{10}	0.371	1.8601×10^{-3}	3.38×10^{-6}
Ω_2	Cancellous bone	8.2345×10^{8}	0.3136	7.1195×10^{-4}	6.76×10^{-6}
Ω_3	Tissue	E	0.3155	1.055×10^{-3}	β
Ω_4	Titan implant	1.05×10^{11}	0.32	4.52×10^{-3}	5.1791×10^{-10}
Ω_5	Stainless steel screw	1.93×10^{11}	0.305	8.027×10^{-3}	2.5685×10^{-8}

 $\mu = (E, \beta) \in \mathcal{D} \equiv [1 \times 10^6 \text{Pa}, 25 \times 10^6] \times [5 \times 10^{-6}, 5 \times 10^{-5}] \subset \mathbb{R}^{P=2}$

• Explicit bi/linear forms: $f(v) = \sum_{i} \int_{\Gamma_1} v_i \overline{\phi}_i d\Gamma$

 $\frac{1}{1} \int v_1 d\Gamma$

$$a(w,v;\mu) = \sum_{r=1,r\neq3}^{5} \sum_{i,j,k,l} \int_{\Omega_r} \frac{\partial v_i}{\partial x_j} C^r_{ijkl} \frac{\partial w_k}{\partial x_l} d\Omega + \mu_1 \sum_{i,j,k,l} \int_{\Omega_3} \frac{\partial v_i}{\partial x_j} C^3_{ijkl} \frac{\partial w_k}{\partial x_l} d\Omega$$

 $c(w,v;\mu) = \sum_{r=1}^{3} \beta_r \sum_{i,j,k,l} \int_{\Omega_r} \frac{\partial v_i}{\partial x_j} C^r_{ijkl} \frac{\partial w_k}{\partial x_l} d\Omega + \mu_2 \mu_1 \sum_{i,j,k,l} \int_{\Omega_3} \frac{\partial v_i}{\partial x_j} C^3_{ijkl} \frac{\partial w_k}{\partial x_l} d\Omega$

Numerical results...

Standard POD-Greedy algorithm 10¹ $N_{
m max}^{
m st}$ = 600 $N_{\rm max}^{\rm st} = 200$ Damping coefficient β 4.5 10⁰ $\Delta_u^{\rm max,rel}$ 3.5 10 3 2.5 2 10-2 1.5 0.5 **-**0 10 0.5 $\stackrel{100}{N}$ 50 0 150 200 Young's modulus E (Pa) 10^7 GO POD-Greedy algorithm 5.5 × 10⁻⁵ 10⁰ $\begin{array}{c} \text{GO} \ (\tilde{N}=2N) \\ \text{GO} \ (\tilde{N},\eta_T=0.8) \end{array}$ GO $(\tilde{N} = 2N)$ 5 0 09 Damping coefficient β • GO $(\tilde{N}, \eta_T = 0.8)$ 10 4.5 10⁻² $\Delta^{\rm max, rel}_s$ 3.5 10 2.5 10 1.5 10⁻⁵ 10⁻⁶ 0.5 $\overset{\scriptscriptstyle{30}}{N}$ 10 20 40 50 60 Young's modulus E (Pa)× 10⁷

Numerical results...

Numerical results: Qol

Numerical results...

Computational time (online stage)

N	$t_{\rm RB(online)}$ (sec)	$t_{\rm FEM}$ (sec)	$\kappa = t_{\rm FEM} / t_{\rm RB(online)}$	$\begin{array}{l}t_{\Delta_s(\mu)} \;({\rm sec})\\ (\tilde{N}=2N)\end{array}$	$\begin{array}{l}t_{\Delta_s(\mu)} \; (\mathrm{sec})\\ (\tilde{N}, \eta_T = 0.8)\end{array}$
10 20 30	0.006757 0.008391 0.011123	29 29 29	4291 3456 2607	0.008329 0.014242 0.031723	$\begin{array}{c} 0.038035 \\ 0.099046 \\ 0.049015 \end{array}$
40	0.014531	29	1996	0.042440	0.130987
$\begin{array}{c} 50 \\ 60 \end{array}$	$0.024381 \\ 0.031196$	29 29	1189 930	$0.061122 \\ 0.075049$	$0.192829 \\ 0.328012$

 All calculations were performed on a desktop Intel(R) Core(TM) i7-3930K CPU @3.20GHz 3.20GHz, RAM 32GB, 64-bit Operating System.

References

- 1. Wang, S., Liu, G. R., **Hoang, K. C.**, & Guo, Y. (2010). Identifiable range of osseointegration of dental implants through resonance frequency analysis.*Medical engineering & physics*, *32*(10), 1094-1106.
- 2. Hoang, K. C., Khoo, B. C., Liu, G. R., Nguyen, N. C., & Patera, A. T. (2013). Rapid identification of material properties of the interface tissue in dental implant systems using reduced basis method. *Inverse Problems in Science and Engineering*, *21*(8), 1310-1334.
- **3.** Hoang, K. C., Kerfriden, P., Khoo, B. C., & Bordas, S. P. A. (2015). An efficient goal-oriented sampling strategy using reduced basis method for parametrized elastodynamic problems. *Numerical Methods for Partial Differential Equations*,*31*(2), 575-608.
- **4. Hoang, K. C.**, Kerfriden, P., & Bordas, S. (2015). A fast, certified and "tuning-free" two-field reduced basis method for the metamodelling of parametrised elasticity problems. *Computer Methods in Applied Mechanics and Engineering,* accepted.
- **5. Hoang, K. C.**, Fu, Y., & Song, J. H. (2015). An hp-Proper Orthogonal Decomposition-Moving Least Squares approach for molecular dynamics simulation. *Computer Methods in Applied Mechanics and Engineering,* accepted.