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Abstract. We address in this paper the problem of handling topologi-
cal changes and contact in surgical simulation in real time. We propose
an implicit scheme able to simulate cutting and contact of heteroge-
neous solids undergoing large displacements and rotations interactively.
The method relies on a hybrid CPU/GPU implementation with an asyn-
chronous computation of the preconditioner. We tackle various academic
examples as well as the simulated resection of a brain tumour. The salient
points of the method are: (1) its insensitivity to the size of stiffness ra-
tios in the model; (2) the ability to use relatively large time steps even in
the presence of heterogeneous structures; (3) stability during topological
modifications driven by user interaction.

1 Introduction

A series of worldwide directives, such as the "European Working Time Direc-
tives”, imply that surgeon trainees participate in 30−40% fewer operations than
before. This decrease in training time may lead to inadequate preparation for un-
supervised practice as consultants. Beyond training, expert surgeons themselves
would like to be able to rehearse a complex intervention on simulators. In this
paper, surgical simulators are meant as computer-based tools used to simulate
a surgeon’s interaction with the body.

Developing surgical simulators poses major challenges, including: (i) The
need to be patient specific both in the geometric description of the organs and
in their physical behaviour. Patient specificity compounds the already signifi-
cant difficulties associated with robust and automatic medical image segmen-
tation and mesh generation especially when substructures such as capillaries,
nerve tracts, fibres, are of interest. (ii) Handling realistically, in real-time and
with haptic feedback, the surgeon’s interactions with the virtual body: push-
ing, prodding, palpation, needle insertion, cutting, burning, etc. (iii) A realistic
model of the boundary conditions, which usually involve contact, between mul-
tiple heterogenous deformable bodies, of variable stiffness, each undergoing large
displacements, rotations, or even strains. (iv) Controlling the error, validating
the results and evaluating the practical impact of simulators.

In this paper, we focus on (ii) and (iii), whilst the method we propose offers
the prospect of error control during simulations (iv). Specifically, we are inter-
ested in simulating surgical procedures involving significant topological changes
and contact, such as those occurring when performing the resection of a tumour.
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2 Background

2.1 Requirements An accepted requirement for realistic soft tissue simu-
lation is to model both geometric and material non-linearities. Material non-
linearities are expressed through the non-linearity of the constitutive law relat-
ing the strain tensor to the stress tensor, characteristic of soft tissues. Geometric
non-linearities are associated with large geometrical transformations, for exam-
ple, large displacements, large rotations but small strains. Compared to spring-
mass and spring-tensor methods, weighted-residual methods are best suited to
handle material non-linearities as the constitutive law can be used explicitly. We
use here the corotational FEM, introduced by [8] in the graphics community,
which is restricted to large displacements and rotations, but only small strains.

Beyond the need to handle non-linearities, our additional working hypoth-
esis is that realistic surgical simulation also requires to interactively compute
significant topological modifications of heterogeneous organs, e.g. cutting, and
to model faithfully the boundary conditions to which the organs are subjected.
These boundary conditions involve contact with both neighbouring anatomical
structures and with the surgical instruments. Performing this in real-time is
complicated by the fact that the organs have complex geometries and are both
geometrically and materially non-linear.
2.2 Formulation Once the spatial discretization is settled, a time integration
scheme must be chosen. Most prototype surgical simulators use explicit time
integrators, since they require no matrix inversion and are thus computationally
cheap and naturally parallelizable [6]. The inherent difficulty in explicit methods
however is the choice of the mesh size and time step ∆t to guarantee stability.
This difficulty is exacerbated in the presence of large stiffness ratios, contact and
topological changes. Additionally, the residual of the governing equations cannot
be directly controlled and the usual assumption is that if the method is stable,
then the error on the satisfaction of equilibrium is “sufficiently low”.

We choose a backward Euler implicit time integrator, which is uncondition-
ally stable and offers the possibility of equilibrium error control. The nodal
velocities u̇ and nodal positions u are updated based on the nodal accelerations
ü at the end of the time step: u̇t+∆t = u̇t+∆t üt+∆t ut+∆t = ut+∆t u̇t+∆t.
Letting M be the mass matrix obtained from the spatial discretisation, and f
the force function, ü can be computed by solving M· üt+∆t = f(ut+∆t, u̇t+∆t).

As in any implicit scheme, computing f requires the positions and velocities
at the end of the time step, that are unknown. We use a first-order approximation
as described in [1], which provides the final linearized system:(

M−∆tB−∆t2K
)

∆v = ∆t f(ut, u̇t) +∆t2 K u̇t,︸ ︷︷ ︸
A

︸ ︷︷ ︸
x

︸ ︷︷ ︸
b

(1)

where ∆v = ∆t üt+∆t = u̇t+∆t − u̇t, and K,B are the stiffness and damping
matrices. This set of equations must be solved at each time-step, since K,B
continuously evolve due to geometrical and material non-linearities. The Conju-
gate Gradient Method (CGM) is a popular iterative method for this. However,
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the condition number of the system matrix A determines the convergence rate
of the CGM and is strongly affected by large ratios in element size or in stiffness
through the domain. Both cases potentially occur when simulating heteroge-
neous materials and when subdividing elements to handle topological changes.
A common solution is to precondition A with a preconditioner, i.e. an approxi-
mation of A which is easier to inverse. Such Preconditioned CGMs improve the
conditioning of the system, decreasing the number of iterations to convergence.

Our method relies on a preconditioning technique similar to [2] which updates
at a lower frequency, an exact factorization A = LDLT. Such a factorization
provides a reasonable approximation of the system matrix at all times during the
simulation, so that the CGM only requires a few (2-5) iterations to converge. The
method of [2] is further improved by rotating the preconditioning operator with
a rotation matrix Rt→tu , defined as the average nodal rotation matrix computed
between the current state and tu the time of the last factorization

(
LDLT

)
tu
.

P = R
T

t→tu
(
LDLT

)
tu

Rt→tu . (2)

2.3 Simulation of the interactions Following [5], we use Lagrange multipli-
ers to enforce no-penetration at the end of each time step. Defining δ0 the initial
interpenetration of the time step, C = ( 1

∆t2
M + 1

∆tB + K)−1 the compliance
matrix, H the contact Jacobian and W = HCHT the Delasus operator. δ and
λ being respectively the contact-free interpenetration vector and the associated
contact forces are related by a Linear Complementary Problem (LCP):

find (δ,λ) such that δ = Wλ+δ0 subject to the Kuhn-Tucker conditions (3)

For accuracy and stability it is crucial to employ a realistic compliance ma-
trix accounting for the global rotation and displacement of the bodies, but the
computation of C in real-time remains an open problem. It was proposed in [4],
to precompute C from the initial position, and to update it with the Sherman
Morrison Formula (SMF) in case of topological modifications, which creates in-
stabilities after a “large” number of modifications, and leads to inaccuracies for
large displacements/rotations. Recently, [3] proposed to use the asynchronous
preconditioner described in equation (2) to build an approximation of W:

W ≈ 1

∆t2
H
(
R LDLTRT

)−1HT, (4)

where the updates of the preconditioner prevent the divergence of the system,
and more importantly, the method enables to use large time steps for the contact
response. However, no solution was provided to handle topological modifications.
Our contribution overcomes this difficulty.

3 Simulation of cutting

3.1 Topological modifications, cutting Cutting or other topological mod-
ifications occur locally in the domain. So, rather than reconstructing the overall
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mesh, we incrementally update it within 3 steps: first we remove the intersected
elements from the current mesh; second we subdivide the removed elements as
described in [7]; third, we add the subdivided elements. However, the method is
general and can be used to simulate interactively any other topological modifica-
tion occurring in surgery simulation such as burning and ultrasonic aspiration.
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Fig. 1. Incremental update of the mesh structure for the cut.

The subdivision process affects the stiffness, mass and damping matrices (see
fig. 1), and the final linear system A (i.e. equations (1),(2) and (4)). The CGM
used to solve equation (1) only requires to perform matrix vector products.
Thus, A can be directly evaluated from the FE mesh to instantly take into
account the modifications in the solution. However, the preconditioner used in
equations (2) and (4) is updated with delay, and the modifications significantly
affect its efficacy. Moreover, contrary to equation (2) where the PCGM ensures
the convergence of the system, the preconditioner is directly used to build an
approximation of the contact problem in equation (4). Therefore, the delay of the
updates can lead to instabilities and inaccuracies, in particular when treating the
contact with the instruments or the self-collisions between different cut parts.
3.2 Low rank update of the Asynchronus preconditioner We propose
to use the Sherman Morrison Formula (SMF) to compute the correction of the
preconditioner due to the topological changes:

P̃−1 = (P + GNGT)−1

= P−1 − GP−1
(
N−1 + GP−1GT

)−1P−1GT︸ ︷︷ ︸
Last factorization

︸ ︷︷ ︸
Correction due to the cut

(5)

where P̃ is the modified preconditioner, G is a globalization matrix which maps
the rows/columns to the global system and N = GT(P̃−P)G is the perturba-
tion. N is fast to compute since it only involves subtractions of small matrices
associated only with the nodes affected by the cut. Indeed, each new factoriza-
tion implicitly contains all previous modifications, and an important advantage



Title Suppressed Due to Excessive Length 5

of updating the preconditioner is that this suppresses all previous perturbations.
The SMF correction is therefore necessary only between the updates of the pre-
conditioner, and the perturbation only involves only the few nodes affected since
the last two updates (see fig. 2).
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Fig. 2. Correction of the preconditioner during topological modifications. When a mod-
ification is performed on the mesh, we first compute the correction of the current
factorization. Then we compute the correction of the preconditioner which was being
calculated at the time of the cut. After two consecutive updates without topological
modification, the preconditioner does not need any additional correction.

Contrary to [4], we do not store the dense inverse of C. Instead we use
the sparse factorization of A. The SMF cannot be directly applied with such a
factorization because it explicitly requires the inverse of C. Thus, we proceed in
two steps: first we compute the correction for the preconditioner, which is only
necessary when a new topological modification is performed; then we apply the
correction until the next update of the preconditioner.
3.3 Computation of the correction For each new topological modification,
the correction is obtained by computing the two following matrices:

U =
(
LDLT

)−1 GT (6)

Q =
(
N−1 + GU

)−1 (7)

The computation of U involves the product of the inverse of the precondi-
tioner with the globalization matrix G. It can be achieved by solving column-
independently two sparse triangular systems with the columns of G (as described
in [3] for the contact problem). This operation is the most expensive task, and we
use a GPU algorithm similar to [3]. It can also be achieved using CUSPARSE.

Equation (7) requires to compute the inverse of two small matrices (N and
N−1 + GU) which are performed on CPU. N is the difference between two
mechanical matrices and is ill-conditioned. Its inverse is therefore ill-defined,
but contrary to [4], our method does not lead to the accumulation of subsequent
round off errors. Indeed, N is erased as soon as a new factorization is released
so that these numerical errors do not accumulate over time.
3.4 Application of the correction Once U and Q are computed for a given
modification, we use them to correct the preconditioner until the next update.
However, the local rotations used in equation (2) and (4) vary at each time step,
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which prevents including them in the formulation of the correction. In order to
use the rotations to improve the efficacy of the preconditioner, we apply them
around the corrected formulation. Substituting (5), (6), (7) in (2) gives:

P̃−1 ≈ R
(
P−1 −UTQU

)
RT. (8)

The rotations are therefore applied around the final corrected solution. To sim-
plify notations we do not carry those rotations in the upcoming equations. For
each iteration of the PCGM, the application of the preconditioner is corrected:

P̃x = b ⇔ x =
(
P−1 −UT Q U

)
b

x = P−1b − UT Q U b︸ ︷︷ ︸
xa

︸ ︷︷ ︸
xc

, (9)

where xc is the correction of the solution, which involves 3 dense matrix–vector
products, and are performed on GPU using the CUBLAS library. xa is equivalent
to applying the preconditioner without correction as in equation (2), except that
if nodes are added during the subdivision process, P is padded with the identity:(

xa
m

xa
a

)
=

(
P−1 0
0 I

)(
bm
ba

)
, (10)

where subscripts m and a correspond to the modified and added nodes. This
approach is equivalent to assuming that the added degrees of freedom were
present before the cut, but not attached to the mechanical system.

For the contact response, the corrected Delasus operator W is obtained with:

HP̃HT = H
(
P−1 − UT Q U

)
HT

= HP−1HT − H UT Q U HT︸ ︷︷ ︸
Wa

︸ ︷︷ ︸
Wc

, (11)

where Wa is the asynchronous Delasus operator, and Wc its correction. As
in equation (10), H may involve constraints on the newly created degrees of
freedom, so that we pad P with the identity matrix, and Wa is computed by:

Wa =
(
Hm Ha

)(P−1 0
0 I

)(
Hm

Ha

)
=

(
HmP−1HT

m 0
0 HaHa

T

)
(12)

HmP−1HT
m is solved using the GPU-based algorithm introduced in [3], whereas

HaHa
T involves a sparse matrix product which is parallelized using the CUS-

PARSE library. Finally, Wc is obtained by 3 small dense matrix products which
are performed on GPU using the CUBLAS library.

4 Results

We compare our method (SMF) with a standard CGM on a simulation com-
posed of a beam cut lengthwise and falling under gravity (see table 3). Build
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is the time to assemble A: For the CGM, the matrix is directly evaluated from
the mesh structure at each iteration, whereas the preconditioner is updated on
average every 4.30 simulation steps, each update requiring to fully assemble A to
perform the factorization in equation (2). Iterations and Solve are respectively
the number of iterations per time step, and the corresponding time to solve the
system with a tolerance at 10−7. The method significantly decreases the number
of iterations, and provides an average speed-up of 2.6× compared to the CGM.

Nodes Method Affected Build Itera- Solve Total
Nodes (ms) tions (ms) (ms)

1200 CGM NA 0.01 489.40 49.50 50.99
SMF 46.39 7.30 6.59 10.41 20.25

1600 CGM NA 0.01 584 60.71 62.47
SMF 52.50 9.00 7.26 15.70 27.57

2000 CGM NA 0.01 687.29 76.29 78.38
SMF 54.75 10.24 7.43 21 34.40

Time(sec)
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Fig. 3. Performances and convergence comparison. Fig. 4. Overhead of the SMF.

Computing U and Q is the main overhead of our method (see fig. 4) and
represents an average of 15% of the computation time of a typical time step on
the beam example in fig 3. However, these operations are performed only when
a new topological modification is detected (i.e. every 3.4 simulation steps on the
beam example). The computation of U is the most expensive task, and its GPU
parallelization1 is the key point to enable real-time computations. The inversion
of Q is inexpensive for small perturbations but quickly becomes costly for large
perturbations. In practice, the number of affected nodes remains very small since
the preconditioner is updated several times per second. The application of the
correction (i.e. applying xc in equation (9) and Wc in (11)) is negligible since it
represents less than 1% of the computation time of a time step.

Fig. 5. Real-time simulation of a brain tumor resection.

1 The staircase aspect of the curve is a consequence of the GPU parallelization where
up to 25 nodes can be processed simultaneously to compute the columns of U
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We applied our method to the simulation of the resection of a brain tumour.
The brain is modeled as a heterogeneous deformable body, composed of 1, 734
nodes and 7, 680 linear tetrahedral elements. The tumor is 20× stiffer than the
brain. During the simulation, the preconditioner is updated every 5.6 steps,
and a new topological modification appears every 5.5 simulation steps, affecting
24 nodes. A total of 553 modifications are performed, and the method remains
stable with an average of 5.70 iterations to solve the linear system. The collisions
and self-collisions are correctly solved while processing the modifications, and
cut parts can instantaneously be separated upon contact with the instrument.
Finally, we achieve between 20 and 40 FPS and the method remains interactive.

5 Conclusions and future work

We proposed an implicit method to simulate topological modifications at interac-
tive rates in heterogeneous solids whilst resolving existing or new contact surfaces
emanating from these modifications. The key point of this hybrid CPU/GPU
algorithm is an accurate update of the compliance matrix relying on an asyn-
chronous preconditioner and SM corrections. The method is stable and efficient
regardless of stiffness ratios as indicated by a simulated tumour resection. This
contribution is a way towards “ error control” at each step. To treat larger prob-
lems, mesh adaptivity, enrichment and model reduction are fruitful avenues.
Finally, material non-linearities should be considered, which is on-going work.
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