Real-time simulation of contact and cutting of
heterogeneous soft-tissues.

Hadrien Courtecuisse®”, Jérémie Allard®, Pierre Kerfriden?,
Stéphane P. A. Bordas®, Stéphane Cotin®, Christian Duriez”

@ Institute of Mechanics and Advanced Materials, Cardiff University, UK
YSHACRA Project, INRIA, France

Abstract

This paper presents a numerical method for interactive (real-time) simula-
tions, which considerably improves the accuracy of the response of heteroge-
neous soft-tissue models undergoing contact, cutting and other topological
changes. We provide an integrated methodology able to deal both with
the ill-conditioning issues associated with material heterogeneities, contact
boundary conditions which are one of the main sources of inaccuracies, and
cutting which is one of the most challenging issues in interactive simulations.
Our approach is based on an implicit time integration of a non-linear finite
element model. To enable real-time computations, we propose a new precon-
ditioning technique, based on an asynchronous update at low frequency. The
preconditioner is not only used to improve the computation of the deforma-
tion of the tissues, but also to simulate the contact response of homogeneous
and heterogeneous bodies with the same accuracy. We also address the prob-
lem of cutting the heterogeneous structures and propose a method to update
the preconditioner according to the topological modifications. Finally, we
apply our approach to three challenging demonstrators: i) a simulation of
cataract surgery ii) a simulation of laparoscopic hepatectomy iii) a brain
tumor surgery.

Keywords: Finite element method, Interactive, Cutting, Real-time,
Contact, Preconditioner, GPU, Collision response, Topological
modifications

Preprint submitted to Elsevier June 23, 2013

1. Introduction

Interactive numerical simulation of surgical procedures, to provide realis-
tic surgical simulators for the training of surgeons and to guide them during
specific interventions, could open avenues leading to improved patient care
and reduced risks.! The main requirement to be able to construct useful
surgical simulators is to be able to simulate the mechanical response of or-
gans. This requires generating geometrical and mechanical simplifications of
these organs, adapted for simulations. The most widely used method to do
so today is the finite element method (FEM).

Thus, building surgical simulators involves at least four major challenges:

e it is difficult to characterize the material properties of living tissues,
which are patient-specific and to predict their mechanical behavior;

e organ models must be acquired from medical images, and this process
is still not automatic, requiring difficult segmentation and mesh genera-
tion. These meshes, which are geometrical simplifications of the organs
are heavily constrained by the imposition of boundary conditions and
the incompressibility of most tissues;

e significant numerical issues must be overcome, as most organs have an
heterogeneous stiffness (which leads to ill-conditioned problems), are
composed of multiple tissue types (which may lead to difficulties in
defining boundary conditions) and are mostly incompressible (which
leads to locking for most widely used finite elements);

e most importantly, the response must be computed in real-time to allow
user interactions with the virtual body: pushing, prodding, palpation,
needle insertion and cutting. .. In this sense, a simulation which would
be mechanically realistic, but not interactive would not be fit for pur-
pose and it can be claimed that lack of interactivity be the main error
source.

Most of previous work has focused on producing accurate models for
the deformations of soft tissues, but real-time simulations are still mainly
composed of a single homogeneous organ with simple boundary conditions.

'Surgical simulators are meant here as computer-based tools used to simulate a sur-
geon’s intervention in a virtual environment.

(a) Camera view during a hepatic surgery. (b) Constraints from the environment.

Figure 1: Real and simulated hepatectomy in laparoscopy.

However, we believe that it is also fundamental to take into account the
deformable environment of the tissues to obtain a realistic global behavior.
For instance, even if during a hepatectomy the view of the camera is focused
on a small part of the liver tissues (see fig 1) the human body is composed
of multiple organs which play an important role in the resulting deformation
and motion of the liver (breathing, contact with neighboring organs, etc.).
Indeed, if we look closely at the boundary conditions of the liver: the upper
part is compressed by the diaphragm on which it is attached through several
ligaments including the falciform ligament. Moreover, the liver is in contact
with the vena cava and the stomach and linked to it by the hepatogastric
ligament. Therefore, when studying the motion and deformation of the liver,
it cannot be considered as an isolated organ.

Beyond the importance of boundary conditions, our additional working
hypothesis is that realistic surgical simulation also requires to interactively
compute significant topological modifications of the organs, e.g. cutting. In
this case, boundary conditions are also fundamental because stiff interac-
tions with the tool (controlled by the user) as well as complex deformable—
deformable interactions between the lips of the cut must be solved during
the cut. Performing this at interactive rate is complicated, in particular with
heterogeneous structures.

The contribution of this paper is to propose a consistent framework to ad-
dress the aforementioned requirements for surgical simulations. This frame-
work relies on an implicit time integration of the non-linear set of equations
coming from the finite element models of the deformation. The core of the
method is the use of an original preconditioning technique which is updated

asynchronously at low frequency. This preconditioner reduces the conver-
gence issues appearing when computing the deformation of nonlinear het-
erogeneous structures, and provides a very good estimate of the compliance?
operator associated with the coupling between the solids in contact. We also
extend the method to cut these heterogeneous organs at an interactive rate
whilst resolving existing or new contact surfaces emanating from these topo-
logical modifications. Our solution is based on the Sherman Morison Formula
to update the asynchronous preconditioner in case of topological modifica-
tions. Finally the generic nature of the method is demonstrated through
three very different kinds of applications: a simulation of cataract surgery, a
simulation of a hepatectomy using laparoscopy procedure, and a simulation
of cerebral tumor removal.

The paper is organized as follows: In section 2, we briefly review the
real-time simulation of deforming bodies. In section 3 we define the prob-
lem at hand and provide notations and key concepts necessary to build our
method. Section 4 is dedicated to the description of the asynchronous pre-
conditioner. In section 5 we propose to use the asynchronous preconditioner
to solve the constraints associated with the multi-deformable-body contact
problem under consideration. This section also provides details on a GPU
implementation to achieve real-time results. In section 6, we extend the
method to handle the topological modifications, whereas in section 7, we
evaluate our method in terms of accuracy and computation time. Finally, in
Section 8 we exercise the methodology in three practical problems involving
complex heterogeneous structures in interaction.

2. Literature review

Biomechanical simulation with user interactions involves many challenges
such as real-time computation of the deformation of soft tissues, collision
detection, contact modeling, topological modification and haptic feedback
(see Nealen et al. (2006); Payan (2012) for a broad survey).

2.1. Simulation of deformable bodies

The first methods proposed to simulate the deformation of soft tissues
in real-time relied on mass-spring systems, e.g. Kiihnapfel et al. (2000).

2inverse of the stiffness

Although such discrete methods are simple to implement and very fast, they
are difficult to parameterize with material properties such as the Young’s
modulus. Moreover, they introduce anisotropy through the choice of the
mesh which gives rise to stability and accuracy issues (node flipping, difficulty
to preserve the volume).

Finite element methods (FEM) provide high bio-mechanical realism
Zienkiewicz and Taylor (1991), mainly because the very complex non-linear
behavior of soft-tissue is directly accounted for through constitutive rela-
tions. Real-time computations were first achieved for linear elastic material
models (see Bro-Nielsen and Cotin (1996); Cotin et al. (1999) or James and
Pai (1999)). In linear elasticity, precomputations (offline) can be used to ac-
celerate the online simulations, which can drastically decrease computational
expenses.® Additionally, the solution can be obtained with a single matrix
inversion and no iterative process is required.

However, the small strain assumption is incorrect in practice, and pro-
duces erroneous results when the solids undergo large deformations.

Moreover, soft tissues do not behave linearly, i.e. the stress field is non-
linearly related to the strain field, through the constitutive relation.

The co-rotational method is a very old method, which originated in
continuum mechanics Freund (1970) and was introduced by Felippa (2000)
within the field of numerical methods. In this formulation, the stiffness of
each element is assumed linear within the local frame described by its ro-
tated state, which enables to simulate geometric non-linearities (i.e. large
displacements, large rotations but small strains). This enables to produce
realistic simulations, while maintaining the algorithmic complexity at a min-
imum Felippa and Haugen (2005).

Later, other methods were proposed to model both geometric and mate-
rial non-linearities. Material non-linearities are expressed through the non-
linearity of the constitutive law relating the strain tensor to the stress tensor,
characteristic of soft tissues. Real time models were recently proposed Co-
mas et al. (2008); Joldes et al. (2009); Marchesseau et al. (2010), but these
models remain in general complex and expensive, and the simulation of re-
alistic boundary conditions such as interactions between deformable organs

3The use of precomputed solutions for highly non-linear problems is intensively pursued,
e.g. in Niroomandi et al. (2008) for hyper elasticity, and Kerfriden et al. (2011); Kerfriden
et al. (2012) for damage problems.

and surgical instruments is still an issue.

2.2. Time discretization

Explicit integration schemes are most widely adopted Miller et al. (2007);
Taylor et al. (2008) in surgical simulation. The main advantage is that the
solution process only involves the mass matrix, which can be lumped (diag-
onalised). The equations of motion are thus decoupled and each degree of
freedom can be solved independently, making the solution process very fast,
and inherently well-suited to parallelization Comas et al. (2008). The major
drawback of explicit dynamics is the need to satisfy the Courant-Friedrichs-
Lewy stability condition, which forces a strict upper bound on the time step
used for integration. This means that the time step must be chosen to be less
than a critical value, equal to the traversal time of an elastic wave through an
element. Explicit methods are consequently particularly well-suited to very
soft tissues such as the brain Joldes et al. (2009), but very small time steps
(which prevent real-time computations) must be chosen for stiffer structures.
Moreover, in explicit simulations, it is assumed that if the formulation is sta-
ble, it is accurate. This, however, does not guarantee that, at each time step,
the residual vector is minimized, and hence, that the external and internal
forces balance.

This is the major reason for developing implicit time integration tech-
niques for real time simulations, which is one of our goals. Providing flex-
ibility in the choice of the time step, even for very stiff objects Baraff and
Witkin (1998), is required to achieve our aim: simulate user-controlled in-
teractions between arbitrarily stiff anatomical structures or tools. Of course,
the advantages of such methods come at the cost of having to solve a set of
linear equations at each time step. Yet, this paper aims to show that implicit
integration schemes can offer a reasonable tradeoff between robustness, sta-
bility, convergence and computation time, in particular when combined with
a GPU implementation.

2.3. Solving the set of nonlinear equations

Using implicit integration, a non-linear set of equations must be solved
at each load step. This set of equations is usually solved using an itera-
tive method based on the Newton-Raphson method which solves the set of
nonlinear equations through a sequence of solutions of linear equations.

The set of linear equations can either be solved by direct solvers or it-
erative solvers. Direct solvers provide the solution by computing the actual

inverse of the system matrix Bro-Nielsen and Cotin (1996), or by creating
a factorization that can then be used to compute the solution Barbi¢ and
James (2005).

These methods are often too costly to be applied at each iteration, and are
often used in combination with an approach to reduce the number of degrees
of freedom of the model, either using condensation on surface nodes Bro-
Nielsen and Cotin (1996), or reduced-coordinate models Barbi¢ and James
(2005). Recently, Hecht et al. (2012) proposed a method to incrementally
update a sparse Cholesky factorization. They obtain fast performance by
making only partial changes to the simulation’s linearized system matrices,
but the method is closely related to the co-rotational formulation and cannot
take into account topological modifications.

The second class of methods are iterative Saad (1996), and start from
an initial estimate and iteratively refine it to approach the exact solution.
One of the most popular methods is the Conjugate Gradient (CG) algorithm.
Although in theory up to n iterations are necessary to achieve convergence
for n equations in the system, in practice it is possible to stop the algorithm
much sooner depending on the required accuracy. Parallel implementations
on CPU are now well-mastered and optimized: see for example Parker and
O’Brien (2009); Hermann et al. (2009) and start to appear on GPU Bolz
et al. (2003); Buatois et al. (2009); Allard et al. (2011). Iterative solvers are
often faster than direct methods, and require less memory storage, but they
converge slowly for ill-conditioned problems, i.e. when the ratio of the largest
and smallest eigenvalues is large. This is the case when solving linear systems
of equations associated with the discretization of heterogeneous structures,
as is the case in this paper.

Another intense area of research aims to improve the performance of the
CG algorithm with the use of preconditioners to speed-up its convergence. In
the context of interactive simulation, Baraff and Witkin (1998) proposed to
use a diagonal inverse, often called a Jacobi preconditioner. More advanced
preconditioners such as Cholesky factorizations have also been studied Hauth
et al. (2003). However, the performance improvement remains limited since
the preconditioner itself is expensive to compute. Domain decomposition
preconditioners are popular, for example in multi-scale parallel simulations
Dryja and Widlund (1989) and for extended (enriched) finite element meth-
ods Menk and Bordas (2011b). Multi-grid pre conditioners, e.g. Braess
(1986) were developed for real-time simulations for example in Dick et al.
(2011b) and to simulate cuts in deformable objects in Dick et al. (2011a) and

7

for fracture problems in Hiriyur et al. (2012); Berger-Vergiat et al. (2012);
Gerstenberger and Tuminaro (2012).

2.4. Simulation of the interactions

A key requirement for realistic surgical simulators is to treat contact be-
tween deformable-deformable, deformable-“stiff” and “stiff”™-‘stiff” objects. A
common solution to deal with contact consists of using a penalty method,
which modifies the variational principle and solves the contact condition only
approximately. A didactic review of constraint enforcement in a variational
context is provided in Hughes (2000) and a review of error estimates as-
sociated with this enforcement of variational inequalities in finite element
methods can be found in the seminal paper Brezzi et al. (1977). In penalty
methods, a contact force f = adn is added at each contact point, where ¢ is
a measure of the interpenetration, n is the contact normal and « is a stiff-
ness factor known as penalty coefficient. The constraint is satisfied exactly
only when « is infinite. The higher « the better the constraint is imposed.
However, the higher the value of «, the worse the condition number of the sys-
tem is, the higher the spurious oscillations in contact forces, and the smaller
the time step. The selection of « is also problem-dependent, and depends
particularly strongly on the stiffness ratio between the contacting objects.
Consequently, the penalty method, although extremely simple is limited for
the applications we have in mind, i.e. contacting heterogenous objects.

Lagrange multipliers or augmented Lagrangian techniques Hughes (2000);
Renard (2012); Jean (1999); Jourdan et al. (1998); Wriggers and Pana-
tiotopoulos (1999) are usually preferred to penalty methods to treat contact
constraints accurately and robustly.

Nitsche’s method Nitsche (1971) offers a consistent constraint imposition
method which was used in the context of contact mechanics in Wriggers and
Zavarise (2008) and frictional contact Heintz and Hansbo (2006).

In graphics, methods used to solve contact equations can be classified into
two categories which are numerically equivalent: Quadratic Programming
(QP) methods and Complementary Problem methods that could be linear
(LCP) or non-linear (NLCP). QP methods define the constraints directly
into the mechanical system. They can be used to treat the inequality of the
contact Redon et al. (2002); Pauly et al. (2004), and also to simulate friction
using a discretized pyramidal cone Kaufman et al. (2008). However, these
publications address the case of rigid bodies in contact, where the number of
degree of freedom (DOF) is smaller than the number of contact constraint

8

freedoms. Indeed, the resulting number of equations with QP methods is
of the same order of magnitude as the number of DOFs of the interacting
objects. Therefore, these methods are difficult to adapt to the simulation of
the interaction between finely meshed deformable bodies in real-time.

An important advantage of (N)LCP methods is that the number of con-
straint equations is proportional to the number of contacts, which is often
much smaller than the number of DOF in the context of deformable models.
LCP can be used to simulate frictionless contact between deformable mod-
els Duriez et al. (2003) in real-time whereas NLCP methods can be used to
simulate friction contacts with the exact friction cone Duriez et al. (2006).
The main limitation of these methods is that the solution process involves
the compliance matriz, which is the inverse of a large system composed of
the mass, the damping and the stiffness of the deformable objects. Although
the evaluation of this inverse in real-time is crucial to define the boundary
conditions of the deformable structures, very few methods addressed this is-
sue. Duriez et al. (2004) proposed to precompute the compliance matriz, but
the solution is limited to linear elastic deformation. Otaduy et al. (2009),
proposed to evaluate the compliance matrix using additional Gauss-Seidel
iterations on the deformable models, but the method was not presented in
a real-time context. Saupin et al. (2008) proposed a method, named com-
pliance warping, which is dedicated to co-rotational models. It consists of
pre-computing the compliance matriz from the rest position, and updating
it using a local estimation of the nodal rotations. However, this approx-
imation can become inaccurate for large deformations, and the method is
limited to relatively coarse meshes. A prediction-correction scheme is intro-
duced in Peterlik et al. (2011) to mitigate the inaccuracies and the method
extends the formulation to haptic feedback with generic constraints between
the deformable models.

To our knowledge, it was never demonstrated that any of the above meth-
ods are adequate to enforce contact constraints between geometrically com-
plex deformable objects represented by moderately fine meshes (thousands
of DOFs), both accurately and at interactive rates (30-50 frames per second).
Nevertheless, this problem is particularly relevant for medical applications,
since all the organs in a human body are subjected to interactions from
other tissues, and resolving accurately these interactions between organs can
be construed as more critical than the accuracy of the deformation of each
individual organ itself. An important contribution of this article is to propose
a generic solution to address this problem.

2.5. Simulation of topological modifications

When cutting through a finite element mesh, discontinuities in the dis-
placement field must be introduced. This can be done through local re-
meshing. Several approaches were proposed to maintain a relatively good
mesh quality Ganovelli and O’Sullivan (2001); Bielser et al. (2003); Molino
et al. (2007); Sifakis et al. (2007). The main difficulty is to preserve the
quality and the density of the mesh during the subdivision process, in order
to avoid distorted elements, which lead to convergence difficulties during the
simulation. Alternatives to generating finite element meshes, in particular
to handle topological changes are extended finite element methods Nicolas
et al. (1999). These methods allow cuts, material interfaces, and domain
boundaries to be described independently of a background mesh, which may
also be progressively adapted using a posteriori error estimators Bordas and
Duflot (2007); Duflot and Bordas (2008); Bordas et al. (2008); Rodenas et al.
(2008) or local heuristics Menk and Bordas (2011a). However, such methods
are not yet developed in the real-time context, and the simulation of colli-
sions and interactions remains unsolved, in particular because the geometry
of the discontinuities is known implicitly.

Considering the mechanical aspect, handling topological changes essen-
tially requires the update of the stiffness matrix. As most recent real-time
deformation methods are based on non-linear models (geometrical and/or
material), topological changes often add little overhead to the process. How-
ever, the treatment of the interactions in case of topological modifications
remains an open problem. Few methods were proposed solutions to handle
collision detection with the new triangles of the modified topology (where
the quality and the density of the triangulation of the surface around the cut
is difficult to control). Allard et al. (2010) proposed a GPU-based collision
detection that provides intersection volumes without any pre-computation
and regardless of the density of the mesh. On the other hand, the treat-
ment of the interactions during the cut is also problematic. Indeed, although
penalty-based solutions could be used with a limited overhead, we saw that
these methods are not adapted to our purpose. Courtecuisse et al. (2011)
proposed to extend the compliance warping technique using the Sherman
Morrison formula to update the precomputed inverse in case of topologi-
cal modifications. However, numerical errors accumulate over time and the
method suffers from instabilities after a large number of modifications. In
this paper, we propose a solution that enables to significantly decrease the
numerical issues caused by the cuts, and to preserve the accuracy of the

10

contact response during the cut.

3. Background

In this section we introduce some of the necessary background on which
we build our method.

3.1. Deformable model and time-stepping implicit integration

Let us consider a generic dynamic deformable model. Equations used
to model the dynamic behavior of bodies can be written within a synthetic
formulation, given by Newton’s second law:

M(q)q =P(t) = F (q,q) + H(q)" A (1)

where q € R™ is the vector of generalized degrees of freedom (here, the mesh
node positions), M(q) : R® +— M"™ " is the inertia matrix. [represents
internal forces applied to the simulated object depending on the current state
and P gathers external forces. H(q)” is a function that gives the constraint
directions depending on the position of the objects, and A is the associated
the vector of Lagrange multipliers containing the constraint force intensities
(see details below).

M(q) and F (q, q) are derived from the physics-based deformable model.
In this paper, we use the co-rotational formulation as a tradeoff between ac-
curacy and computation time. In this formulation, the stiffness stiffness of
the material depends on the current rotation (and thus on the current posi-
tions), which results in a geometrically non-linear elastic formulation Felippa
(2000). After discretization, the mass matrix noted M in the following, is
considered as constant and lumped (we obtain a diagonal matrix).

Collision response on mechanical objects leads to discontinuities in the
velocities of the colliding points. For such discontinuous events, the accelera-
tion is not defined: the problem belongs to the field of non-smooth mechanics.
To integrate the mechanics and the non-smooth events due to contact over
time, we use a time-stepping method based on an implicit scheme: The time
step is fixed and there is no limitation on the number of discontinuities that
could take place during a time step (Anitescu et al. (1999)), but low-order
integration schemes should be used. This could lead to excessive dissipation
if the time step is too large but it provides stable simulations. This is par-
ticularly relevant for interactive simulations involving contact with virtual

11

devices controlled by an operator. With or without haptic feedback, the mo-
tion of the user will not be completely constrained and could lead to excessive
energy input in the simulation. This is why the stability and the robustness
of these types of simulations are crucial.

Let’s consider the time interval [t;,t;] which length is h = t; —¢;. We
have:

M@ -4) = [BO-Fa@)d + hEQTA @)
qr = qi+[det (3)

To evaluate integrals f:zf (P(t) — F(q,q,t)) dt and ftif q dt we chose the fol-
lowing implicit Euler integration scheme:

M(qy — ;) = h(P(ty) —F(as,qr)) + b H(q)" A (4)
qf = q;+hqy (5)

[F is a non-linear function, we apply a Taylor series expansion to F and make
a first order approximation:

oF oF
F (q;+dq.q;, +dq) = f, + —dq + ——dc 6
(a; +dq,q; +dq) = f 5q"+ 5q%d (6)
This linearization is actually the first iteration of the Newton-Raphson
algorithm. This single iteration is done under the assumption of a temporal
coherency of the mechanical behavior; it may lead to small numerical errors
in the dynamic behavior, but these errors tend to decrease at equilibrium

oF oF

or with null velocity. After discretization B = 5q and K = — are known
respectively as the damping and stiffness matrices. Replacing (6) in (4) and

using dq = qf — q; = hqy and dq = qy — q;, we obtain:

\(M +hB + h2K)J\dE'1/ = :hQin —h(fi+ps)+ hH@ ™Ay (7)

J/

A X b

where p; is the value of function P at time t;. The only unknown values are
the Lagrange multipliers A but their computation is now detailed.

12

3.2. Contact and friction models

Before enforcing solving the contact between soft tissues or with surgical
instruments (rigid or deformable), one needs to detect them. In our work,
we use two types of algorithms: the first is based on proximity queries?, and
provides the minimal distances between mesh (even concave meshes) ; the
second is based on detection of volume of interpenetration (details in Allard
et al. (2010)). The first algorithm have the advantage to "anticipate" the
contacts before they actually appears, the second algorithm needs unnatural
interpenetration between models but provide much faster results on complex
meshes thanks to GPU optimizations. For simplicity, in the following, we
consider that we use the algorithm based on proximities detection.

Whatever method is used for detection, the collision response is based on
the same model: Signorini’s law. This model is defined for each potential
contact point provided by the contact detection algorithm. It expresses that
there is a complementarity relation along the direction n of contact® between
the contact force A, and the distance §,, between the contacting object at
the point of contact, that is:

0<d8, LA,>0 (8)

This model has several physical justifications including non interpenetration
and no sticking force. Moreover the contact force vanishes if the points are
not strictly in contact. Using Signorini’s law, the contact space is along the
normal and creates a frictionless response.

Coulomb’s friction law describes the macroscopic behavior in the tangent
contact space. In this law, the reaction force is included in a cone whose
height and direction is given by the normal force. If the reaction force is
strictly included inside the cone, objects stick together, otherwise, the reac-
tion force is on the cone’s border and objects are slipping along the tangential
direction. In this last case, the friction force must be directed along the di-
rection of motion.

o1 = 0= || Axl| < p [l fall (stick)

; . 9
5170 = Ax = —p |Aall 5 = —pt [Al T (slip) ®)

4The implementation is available on SOFA using the component LocalMinDistance.
5Complementarity is noted L. It states that one of the two values &, or A, must be
null.

13

where g is the friction parameter, and T is the tangential plane to the
contact normal n.

During 3D slipping motion (also called dynamic friction), the tangential
direction is unknown. We only know that the tangential force and the tan-
gential velocity are opposite along a direction that is to be found. It creates a
non-linearity in addition to the complementarity state stick/slip. Signorini’s
law and Coulomb’s law are also valid in a multi-contact case. However, to
solve these laws at every contact point, we have to consider the coupling that
exists between these contact points. This coupling comes from the intrinsic
mechanical behavior of deformable objects.

3.3. Contact mapping

From collision or proximity detection, we have a set of potential contact
spots a = 1...n., which are defined on the surface of the deformable bodies
(triangles, lines, or points). In order to transfer the contact informations to
the Degrees of Freedom of the objects, we can build a mapping function A
that links the positions in the contact space to the motion space (see Saupin
et al. (2008) for details). For each contact point between two objects:

00 = Au(ar,t) — Au(ae, t) (10)

with A,(q,t) the mapping function which depends on contact a and the
positions q; and gz of the two colliding objects. To obtain a kinematic
relation between the two spaces (contact, motion), we use a linearization of
equation (10). If H,(q) = %, we obtain, at time ¢ for each contact:

da(t) = Halq)ai(t) — Ha(daz2)q2(t) (11)

where H is a non linear function where the dimension of the results (num-
ber of constraints) depends on its parameter q. To simplify the solution
process, we suppose that this matrix does not change during the contact
response H'A; = H(q)"A;. In the following, this matrix is noted H to
emphasize that it is constant during the time step.

3.4. Constraint-based solution

In the following, we present how the contact laws (8) and friction laws
(9) are enforced while taking into account the dynamic equation (7) between
2 contacting objects. To resolve these laws, we use a Lagrange Multiplier

14

approach and a single linearization by time step. For both interacting objects
we applied equation (7):

A1X1 = bl + h H{A

Asxs = by + h HIA (12)

In order to solve A we follow the following steps.

Step 1: interacting objects are solved independently while setting A = 0.
A set of independent linear systems of equations Ax = b must then be solved
for each object. For our purposes, this must be done in real-time and we use
a GPU-based Conjugate Gradient algorithm (CG) as described in Allard
et al. (2011). This method enables using meshes comprised of thousands
of elements in real-time on standard architectures, but tends to converge
very slowly for ill-conditioned matrices. This is particularly an issue for
the simulation of heterogeneous materials with large phase contrast or for
problems obtained from finite element meshes of non optimal quality (large
local difference in element size). We propose in section 4 a novel method to
simulate the heterogeneities in real-time. Finally, we obtain what we call the

free motion x"*® and xI*® for each object which corresponds to d¢™® and

dqiee. After integration, we obtain qf*® and q'r*°.

Step 2 : the constraint laws are linearized around the free position (i.e.
we process a the collision detection between the free position of the objects,
and we obtain the free interpenetration 6™ and the associated H, assumed

constant during the time step):

(S :i&a(qflree) _ Aa<q£ree) ‘I‘h H1 dq(ltor + hH2 dqgor (13>

5free

with dq{*" and dq$°" being the unknown corrective motions when solving
equation (12) with by = by = 0. When gathering equations (12) and (13),
we have:

§ = o + @2 [H;AT'HT + HoAJ'HI | A (14)

-~

w

With respect of the Signorini’s law (equation (8)), this equation describes
a LCP (Linear Complementarity Problem). If it is combined with Coulomb’s
law (equation (9)), we obtain a NLCP (Non-linear complementarity prob-
lem). This equation implies to evaluate the inverse of large matrices A; and
A, (same dimension as the number of DOFs). We propose in section 5 a
novel method to obtain an approximation in real-time.

15

Step 3 : We obtain the value of A using a Gauss-Seidel algorithm ded-
icated to the NLCP created by contact and friction equations. Considering
a contact a, among m instantaneous contacts, one can write the behavior of
the model in contact space:

a—1 m

0o = Waa Ao =Y Wag Ag+ > Wag A+ 85 (15)
—_———
unknown b=l j =atl _
frozen

where W, g is a compliance matrix that models the coupling between contact
points a and 3. For each contact «, this method solves the contact equations
by considering the others contact points (o # () as "frozen". The new value
of A, is given by solving Signorini’s law and the Coulomb’s law on this contact
(see Duriez et al. (2006) for details of implementation and performance).

Step 4 : When the value of A is available, the corrective motion is
computed:

Auern = A+ RAGE with AG™ = ATTHIA

. : . L 16
Qoirn = qF + hAGST with Ags™ = A;THEA (16)

We finally obtain q /4, and qg 44, the positions of object 1 and 2 that fulfils
the contact and friction laws.

In this section, we identified two important difficulties to achieve real-
time computations. (i) to compute the solution of the linear system defined
in equation (7), in particular for heterogeneous objects. (ii) to compute the
compliance matriz W in equation (14).

These two problems are addressed in the two following sections.

4. Asynchronous preconditioner

The condition number s of the matrix A, is the ratio of its largest and
smallest eigenvalues. For heterogeneous objects or ill-structured meshes, the
condition number k is often high which raises convergence issues for the
conjugate gradient algorithm used to solve equation (7). A common tech-
nique is to use a preconditioner to reduce the condition number, ensuring
a faster convergence of the algorithm. By definition, a preconditioner is an
approximation of the system matrix A, which is less costly to invert. Solving
equation (7) with a preconditioner P can be written:

P 'Ax =P 'b, suchthat s(P'A) < k(A) (17)

16

Use Pyt Use P! Use Py

0 Simulatio
Step

Compute Py Compute P, Compute P3

= Synchronizations

Figure 2: The preconditioner is updated asynchronously within a dedicated CPU thread.
We use the last preconditioner available to advance the simulation so that the simulation
never needs to wait for the computation of the current preconditioner to be complete.

In the real-time context, one strong limitation of this technique is the
computational overhead added to the simulation: first, during the computa-
tion of the preconditioner itself, and second, during its use at each iteration
of the CG (see Saad (2003) for details). Thus, the practical usefulness of
preconditioners depends on the ability to strike a balance between the com-
putational overheads and the time saved by decreasing the number of CG
iterations. Several preconditioners can be used, from simple diagonal matri-
ces Baraff and Witkin (1998) to precise but costly Cholesky factorizations.

We recently proposed a different approach Courtecuisse et al. (2010) that
relies on the assumption that A undergoes small perturbations between two
consecutive time steps. Indeed, if P, = A; ! is available at a specific time ¢,
it may remain a “good enough” approximation for the following time steps.
The preconditioner can then be updated at low frequency on a dedicated
CPU thread, and the last preconditioner available can be used to advance
the simulation (see fig 2). Therefore, the overhead in computing the pre-
conditioner is removed from the simulation loop, which allows using more
advanced and computationally costly preconditioners such as a factorization
of the system®:

P=A=LDL" (18)

where D is a diagonal matrix and L is a sparse lower-triangular matrix. In
our application, we rely on LDL? factorization since it produce more sta-
ble results than a Cholesky factorization. The factorization is performed by

SNote that even if we compute an exact factorization of A;_j, the preconditioner
remains an approximation since its computation is based on a previous configuration of
the objects, and we use it with delay in the simulation.

17

the cs_sparse library Davis (2006), using a single core on the CPU. Other
libraries Toledo et al. (2003) and Schenk et al. (2008) propose parallel fac-
torizations, but we found that cs sparse provides sufficiently fast updates,
and a sequential factorization enables to save CPU cores to compute the
preconditioners of other objects in parallel.

An important advantage of such a factorization is that the resulting L
matrix remains sparse, which makes the application of the preconditioner
faster within the CG. This operation consists in solving two Sparse Triangular
Systems (STS):

y= (L%)'b

x= L7 (D7Yy)
where L is stored in Compressed Row Storage (CRS) Barrett et al. (1994).
Solving the STS is equivalent to performing a Gaufl elimination, which is
difficult to parallelize as it involves many dependencies. Therefore, the STS
are solved on CPU" that can take advantage of caches and of the sparsity of
the matrix, to efficiently solve the system.

For large systems (see section 7.2.2), the computation of the LDLT fac-
torization can become prohibitively costly, and the resulting preconditioner
can diverge from the actual system. However, we note that an important
part of the error is associated with the rotations Saupin et al. (2008) which
can vary quickly between time steps. In order to limit the divergence of
the preconditioner, we estimate the nodal® rotations R,_;_,; that were intro-
duced since the last update of the preconditioner (i.e. between time t — h
and t). The most recent preconditioner P;_j, is then rotated with the current
rotation matrix R;_;_,; as follows:

(19)

P, =R (LipDipLp) Ryopoe (20)

where the “rotated preconditioner” P, is less sensible to geometrical non-
linearities. Finally, the method enables to simulate the deformation of ho-
mogeneous as well as heterogeneous tissues in real-time.

"Using a GPU-based CG with a CPU-based preconditioner, implies to transfer the
solution vector b between the CPU and the GPU at each iteration of the CG. But, since the
preconditioner is usually a good approximation of the actual system, only a few iterations
are necessary and the cost of such transfers remains limited.

8Note that nodal rotations give an approximation of the co-rotaitonal formulation where
rotations are computed per elements and sum in the global stiffness matrix. R;_;_,; is a
block diagonal matrix, easy to compute and easy to invert.

18

5. GPU-Based preconditioner for contact problems

Equation (14) requires the computation of A=, which is a large matrix
(same dimension as the number of DOF) and changes at each time step.
Although computing this inverse in real-time is not possible, the resulting
operator W plays an important role to enforce the constraints.

5.1. Compliance and mechanical coupling

In the following, the term “mechanical coupling” describes the coupling
between contact constraints applied on two subsets of the boundary of a
deformable body. This coupling occurs through the deformation of the body
itself. Indeed, even if the contact points are only defined on the boundary
of the deformable bodies, they are all influenced by each other through the
stiffness of the material. Consider for example figure 3 where, even if the
deformed shapes do not show any interpenetration, the behaviour computed
in figure 3(b) is not acceptable, since stiff and soft parts deform in the same
way. It shows that the contact force distribution is closely related to the
underlying heterogeneity of the material, which is represented by W.

adbbyy gl ogbii]

* _ 0 " _ 0
/%W/%%

\

Y T

a) homogeneous object (b) heterogeneous object (¢) heterogeneous object
without coupling with coupling

Figure 3: Contact force distribution in different scenarii and using different approximation
of the mechanical coupling. Contact forces are dependent on the stiffness areas (3(a) and
3(c)), but also on the mechanical coupling (3(b) and 3(c)).

In the context of explicit schemes matrix W would only be built from
a diagonal mass matrix. If penalty methods are used, the force distribu-
tion would mainly depend on the geometrical interpenetration, not on the
inhomogeneities. In both cases, it would lead to unrealistic configurations
such as in figure 3(b), at least during transient states. Precomputing the
inverse Ay at the initial step, and using it all along the simulation provides
better results, but is limited to linear, small displacements models. Another

19

approach adapted to the real-time context, is to use an approximation of
W. For instance, Saupin et al. (2008) proposed the compliance warping
technique, that consists in updating the precomputed Ay~! with the nodal
rotations, but this solution remains inaccurate for large deformations, and
requires storing a large dense matrix which makes the method unsuitable for
fine meshes.

In this paper, we propose to reuse the asynchronous preconditioner of the
previous section as an approximation of the compliance operator W, and
we detail our GPU-Based algorithm that allows real time computations. A
fundamental improvement of our technique is its ability to keep large time
steps even during contact enforcement. This point is particularly relevant
given our assumption in equation (6) that a single iteration of the Newton-
Raphson algorithm is performed at each time step (for the deformation as
well as for the contact response).

5.2. Optimized preconditioner for contacts

We propose to use the asynchronous preconditioner computed in section
4 as an approximation of A~

HA'HT ~ HP'H" (21)

Indeed, since P represents a close approximation of the factorization of
A, we propose to use it to compute W in equation (14). For each interacting
object, substituting equation (20) in (21) gives:

HA7'H" ~H(RLDL'R") "'H" (22)

The above equation requires computing the product of the inverse of the
preconditioner with the Jacobian of contacts H, which can be achieved by
computing columns independently of H:

LDL' X;=H;, < X;=(LDL") 'H; (23)

where X gives the result of the inverse of the preconditioner times the Ja-
cobian of the contact. Therefore, we obtain W within 4 steps as detail in
algorithm 1. Step 1 and 3 are inexpensive because H and J are sparse matri-
ces, D is a diagonal matrix, and R is a block-diagonal matrix. Step 4 involves

the product of two dense matrices, which can be parallelized efficiently on
GPU using the CUBLAS library. Step 2 requires the solution of a STS for

20

each column of J, composed of the lower triangular matrix L. This operation
remains the most expensive task and would quickly become too prohibitive
if it was processed sequentially on a traditional CPU. Therefore, we propose
to parallelize the computation of S on GPU.

1. J=HR (rotate constraints)

2. S=L1'JT (solve a single STS for each column of J)
3. T=D"1S (apply the diagonal)

4. W =W +STT (sum the contributions)

Algorithm 1: Optimized algorithm to accumulate the contributions
of a deformable on W wusing the asynchronous preconditioner (i.e.
W =W + H (RLDL'RT) 'HT).

5.8. Solution of multiple STS on GPU

Implementation-wise, the simplest solution to solve the multiple STS on
GPU is to use CUSPARSE library. Nevertheless, this library is optimized
for solving large and very sparse systems of equations (see Naumov (2011)),
but the range of size of the matrices compatible with the real-time constraint
is still much smaller. Therefore, to decrease the computational time of this
critical step, we propose a solution to parallelize the computation of S on
GPU. Our solution is based on a two level parallelization strategy which is
inspired from the method introduced in Courtecuisse and Allard (2009). The
main difference is that the underlying L matrix is stored in a sparse format,
which makes it difficult to load efficiently on the GPU processors.

5.8.1. GPU-based parallelization

The multiple right-hand side vectors stored in J can be computed inde-
pendently from each other. Therefore, we assign the computation of each
column of S to an independent multiprocessor on the GPU. Each group is
therefore fully processed by a single processor (see fig. 4) which enables to use
fast local synchronizations directly on the GPU. Then we use a second level
of parallelism where each STS is solved with several threads. Indeed, a lot of
data can potentially be treated in parallel during the solving process of each
STS. This two level strategy fits the GPU architectures where local synchro-
nizations within a group of threads are fast, whereas global synchronizations
over multiple groups are much more costly.

21

Thread Thread

((X0)] (0,1)
>+

Thread Thread

(1,0) (1,2)
> +
Thread Thread

(2,0) (2,0)

Figure 4: First level of parallelism achieved for solving a Sparse Triangular System with
multiple right hand side vector on GPU.

Nevertheless, as mentioned above, solving a STS involves a number of
dependencies. For instance, for the lower triangular system, the computation
of the solution s; of a given row j, requires the result of all previous solutions

s; such as i < j:

i<j

s;=b; — > (siLy) (24)

i=0
where b is the solution vector and s is the unknown. Therefore, each row
must be processed sequentially (i.e. a synchronization of each row is neces-
sary). However, the partial contributions Y ;~(s; Ly;) could be processed
simultaneously for any row k such as & > j. We propose a block-row” paral-
lelization strategy, that is inspired from the block-column scheme introduced
in Courtecuisse and Allard (2009): First we accumulate the contributions of
the block off-diagonal in parallel; Then we solve the block diagonal sequen-
tially (see fig. 5).

We use a group of ¢ X t threads to process ¢t rows simultaneously (each row
is therefore treated by t threads in parallel). Since L is sparse, it is difficult
to predict if a data is located on the bloc diagonal before actually reading
it in global memory. To avoid reading twice the CRS matrix, we propose
to use two buffers acc and diag stored in shared memory: acc is used to
accumulate the contributions off-digonal whereas diag is used to copy the
data located on the block-diagonal (see fig. 5). A first local synchronization
is then used to ensure that the ¢ rows are fully processed by all the threads.

9Block-row strategy instead of a block-column as in Courtecuisse and Allard (2009),
because with a block-column solution, writing conflict in memory cannot be predicted due
to the CRS format of L.

22

Shared memory // coordinates of the threads
di tx = threadld.col // correspond to the letters a,b,c,d
acg 29 ty = threadld.row // correspond to the colors

acc[ty][tx] = 0; diag[ty][tx] =0
row_begin =rowind[bx + ty]; row_end = rowind[bx +ty+ 1]

// get the contributions of t lines in shared memory
while (row_begin < row_end) do
col = colptr[row_begin + tx] // read in global memory

if (col < bx) then // accumulate the contributions

bx acc[ty][tx] -= value[row_begin + tx]*sol[bx+ty]
bx] else // copy the bloc diagonal
—E b dll 3 b diag[ty][tx] = value[row_begin + tx]
s fi
. b d - a row_begin +=t // next value on the line
* . od
t local_synchronization // wait all the threads
Global memory

Figure 5: Parallel accumulation of the contributions for solving a STS described by the
CRS matrix. t x ¢ threads (illustrated here with ¢t = 4) are used such that ¢ rows are pro-
cessed simultaneously (colours). Each being accumulated by ¢ threads in parallel (letters
a,b,c,d).

Then, a parallel reduction (see Martin et al. (2012)) is processed to sum per
row the contributions stored in acc (row 4 in algorithm 2), then a second
local synchronization is necessary (row 5). Finally, the off-diagonal block is
solved as a dense problem!® using diag in shared memory (row 5).

In our experiments we use ¢ = 16 and only 3 local synchronizations are
necessary to solve 16 rows with 256 GPU threads. Although this implementa-
tion may be slower than a CPU-based solver for a single STS, our GPU-based
strategy enables to solve the multiple right-hand side vectors simultaneously
(i.e with the same cost as a single STS).

10The block-diagonal is solved using a column-based strategy to avoid the need of parallel
reductions. This is possible since diag is stored in dense format.

23

bx = 0 repeat
accumulate _contributions(ace,diag) //see Fig. 5;
local synchronization;

N =

t
4 cont[ty] = Z acc(tyl[i] //Parallel reduction;
1=0

5 local synchronization;

6 solve_bloc_ diagonal(cont,diag) //sce Courtecuisse and Allard (2009);
7 local synchronization;
8

9

bx =bx +1 //We treat the next t rows in parallel;

until bx < dim;
Algorithm 2: Algorithm used to solve a Sparse Triangular System with
multiple right-hand side vectors on GPU.

6. Simulation of cutting

Simulation of cutting involves two main issues: First to re-mesh the FE
structure while keeping the consistency of the mesh i.e. split correctly the
domain in order to be able to separate the cut parts in the simulation, and
avoid degenerated elements such as sharp or thin elements. The second
issue is to update adequately the mechanical properties and the equation
systems of the deformable model when the mesh is cut. In this paper, we
only address this second aspect and we show how to update the asynchronous
preconditioner according to the topological changes.

6.1. Topological modifications, cutting

The method presented in this paper could be used with any re-meshing al-
gorithm, as far as the modifications remain local and only affect few elements
per time step. In our simulations, we use a re-meshing algorithm similar to
Mor and Kanade (2000), where, rather than reconstructing the overall mesh,
we incrementally update it within 3 steps: First we remove the intersected
elements from the current mesh; Second we subdivide the removed elements;
Third, we add back the subdivided elements.

The subdivision process affects the stiffness, mass and damping matrices
(see fig. 6), and the final linear system A (i.e. equations (7),(18) and (22)).
Nevertheless, the conjugate gradient (CG) used to solve equation (7) only re-
quires performing matrix vector products. Thus, A can be directly evaluated
from the finite element (FE) mesh to instantly take into account the modi-
fications in the solution. However, the preconditioner used in equations (18)

24

CH T W WA

T Tlg
1 1 1 1 r 1 1 r 1 1.
EM+BHK| — ZGE Mt B+ K)G ZGE Mo+ B +Ke |G = M+ B+K
e e
Initial system Contribution of Contribution of Modified system
matrix removed elements added elements matrix

Figure 6: Incremental update of the mesh structure for the cut.

and (22) is updated with delay, and the modifications significantly affect its
efficacy. Moreover, contrary to equation (18) where the preconditioned CG
ensures the convergence of the system, the preconditioner is directly used to
build an approximation of the contact problem in equation (22). Therefore,
the delay of the updates can lead to instabilities and inaccuracies, in partic-
ular when treating contact with the instruments and self-collisions between
different parts of the cut.

6.2. Low rank update of the “Asynchronus Preconditioner”

We propose to use the Sherman Morrison Formula (SMF) to compute the
correction of the preconditioner due to the topological changes:

P'= (P+GNG")"!

= P! —GP'(N!'4+GP'GT)'PIGT (25
HH NS ~~ >
Last factorization Correction due to the cut

where P is the modified preconditioner, G is a globalization matrix which
maps the rows/columns to the global system and N is the perturbation of
the preconditioner obtained as a difference between the modified system, and
the last preconditioner:

N =G"PG - G" <1; 2) G (26)

In order to keep a consistent formulation, P is padded with the identity for
all the added nodes during the subdivision process. This approach assumes

25

that the added degrees of freedom were present before the cut with a unitary
mass but not attached to the mechanical system, and N corresponds to the
correction of the padded system. N is fast to compute since it only involves
subtractions of small matrices associated with the nodes affected by the cut.

An important advantage of updating the preconditioner is that it helps
maintain the number of affected nodes by the perturbations minimum. In-
deed, each new factorization implicitly contains all anterior modifications to
the last update of the preconditioner. The SMF correction is therefore nec-
essary only for the perturbation that appeared since the updates, and the
correction only involves few affected nodes (see fig. 7).

P+

Pyt+ P+ 2
GP; YNy 4GPy 16T 16T Py

0 1
GPy NI +GP 6T) 6Py GPT (N7 +G PIGT) T GTPT!

Compute Py Compute P, Compute Py

= Synchronizations \ Topological modification

Figure 7: Correction of the preconditioner during topological modifications. When a
modification is performed on the mesh, we first compute the correction of the current
factorization. Then we compute the correction of the preconditioner which was being
calculated at the time of the cut. After two consecutive updates without topological
modification, the preconditioner does not need any additional correction.

Contrary to Courtecuisse et al. (2011), we do not store the dense inverse
of W. Instead we use the sparse LDLT factorization of A. The SMF cannot
be directly applied with such a factorization because it explicitly requires
the inverse of W. Thus, we proceed in two steps: First we compute the
correction for the preconditioner, which is only necessary when a new topo-
logical modification is performed; Then we apply the correction until the
next update of the preconditioner.

6.3. Computation of the correction

For each new topological modification, the correction is obtained by com-
puting the two following matrices:

U= (LDL") 'G" (27)
Q= (N'+GU)! (28)

26

The computation of U involves the product of the inverse of the pre-
conditioner with the globalization matrix G. This implies to solve equations
composed of the lower and upper triangular systems (see algorithm 3). Since,
the CRS format used to store L prevents access to matrix LT by columns,
and in order to use the same parallelization scheme as described in section
5.2, the transpose matrix LT is explicitly computed by the asynchronous
thread after the factorization of the preconditioner.

1. S=L"1'G"Y (solve the lower STS for each column of G)
2. T=D"1'S (apply the diagonal)
3. U=L"TT (solve the upper STS for each column of G)

Algorithm 3: Computation of U in the correction of the SMF.

Equation (28) requires to compute the inverse of two small matrices (IN
and N™! + GU) which are performed on CPU. As a difference between two
mechanical matrices, N is ill-conditioned. Its inverse is therefore ill-defined,
but contrary to Courtecuisse et al. (2011), our method does not lead to
the accumulation of subsequent round-off errors. Indeed, as soon as a new
factorization is released the perturbation is include in the new preconditioner,
and N is erased so that these numerical errors do not accumulate over time.

6.4. Application of the correction

Once U and Q are computed for a given modification, we use them to
correct the preconditioner until the next update. However, the local rota-
tions used in equation (20) and (22) vary at each time step, which prevents
including them in the formulation of the correction. In order to use the ro-
tations to improve the efficacy of the preconditioner, we apply them around
the corrected formulation. Substituting (25), (27), (28) in (18) gives:

P'~R (P -UTQU)R". (29)

The rotations are therefore applied around the final corrected solution.
To simplify notations we do not carry those rotations in the upcoming equa-
tions. For each iteration of the preconditioned CG, the application of the
preconditioner is corrected:

Px=b&x=(P'-UTQU)b

x=P b —UTQUD, (30)
a C

27

where x° is the correction of the solution, which involves 3 dense matrix—
vector products, and are performed on GPU using the CUBLAS library. x*
is equivalent to applying the preconditioner without correction as in equation
(18), except that if nodes are added during the subdivision process, P is
padded with the identity:

()= (0 1) (). 2

where subscripts m and a correspond to the modified and added nodes, re-
spectively.
For the contact response, the corrected Delasus operator W is obtained
with: B
HPHT = H(P! - UT QU) HT

= HP'H' - HUTQUHT", (32)
Wa We¢e

where W? is the asynchronous Delasus operator, and W€ its correction. As
in equation (31), H may involve constraints on the newly created degrees of
freedom, so that we pad P with the identity matrix, and W?* is computed
by:

. P! 0\ (H, H,P'H',, 0
W = (Hm Ha)(0 I> (Ha) - (0 HaHaT) (33)

H,,P~'H",, is solved using the GPU-based algorithm introduced section 5.2,
whereas H,H, T involves a sparse matrix product which is parallelized using
the CUSPARSE library. Finally, W€ is obtained by 3 small dense matrix
products which are performed on GPU using the CUBLAS library.

7. Results and evaluation

In this paper, we proposed a method to significantly improve the trade-
off between accuracy and computation time of an interactive simulation. In
the first part of this section, we compare the accuracy of our method versus
standard algorithms. In the second part of this section we measure the
performance of each aspects of our method.

28

7.1. Accuracy and validation
7.1.1. Comparaison with ABAQUS

Some comparisons of algorithms available in SOFA with analytical solu-
tions can be found in Nesme et al. (2005); Marchal et al. (2008). In order
to provide a more thorough comparison for our method, in particular in the
case of contacts, we produced a simulation involving a flexible beam attached
at one extremity and deforming under gravity until the beam contacts with
a plane. The dimension of the beam is 120 x 10 x 10 mm, the mesh is com-
posed of 10, 779 linear tetrahedral elements and 2,481 nodes. The constitu-
tive law is based on small strain with large displacement (co-rotational), the
mass density is set at 0.0001 Kg/mm?3, the young modulus is set at 10 Mpa
and the Poisson ration at 0.4.

vonMises = 3 vonMises

(c) Difference of stresses between ABAQUS (d) Scaled difference of stresses between
and SOFA ABAQUS and SOFA

Figure 8: Comparison of our SOFA implementation of a co-rotational model in contact
with the ABAQUS solution.

The same simulation was computed by both SOFA and ABAQUS (Simu-
lia, Dassault Systémes S.A.) using the same boundary conditions and as-

29

suming no friction during the contact. At equilibrium we computed the Von
Mises Stress of the ABAQUS solution (see fig 8(a)) and of our SOFA im-
plementation (see fig 8(b)). Then we measured the difference of the stresses
computed by the two approaches. Results are presented in figure 8(c) (using
the same scale as the initial stresses) and in figure 8(d) using a normalized
scale, i.e. where red parts correspond to the main difference (to emphasize
areas where even a small difference exists). Although a maximum error of
20% is found near the constrained part of the beam, the average stress er-
ror is equal to 0.017 (around 1.7%), which is almost negligible. Finally, the
positions of the beams match perfectly, and the maximum distance between
SOFA nodes and ABAQUS nodes, is less than 0.37 mm. However, ABAQUS
simulation required more than 20 minutes to be computed whereas our SOFA
simulation runs at 10 FPS, and require less than 1 minutes to reach the equi-
librium.

7.1.2. Preconditioner for the contact response

We now measure the error introduced when using our asynchronous pre-
conditioner as an approximation of the compliance matrix defined in equation
(14). We created a simulation involving an heterogeneous disk which is driven
by a sphere through the center of a torus (see Figure 9). This is a very good
test for measuring both the deformation process and the contact response.
We first produced a reference simulation where the exact compliance matrix
is computed by inverting A at each time step (which is obviously not real-
time), and we measured the distances between the nodal positions obtained
by using an "approximated compliance matrix" and the reference simulation.

Relying on the diagonal of A~! to build W (Diagonal), as done by
Dequidt et al. (2009) for the vessel wall compliance, the lens cannot be pushed
into the cavity. Indeed, the forces exerted by the ball are located at the center
(stiff part), while other forces are applied by the cylinder on the periphery
(soft part) and hold the object up. Without coupling, the contact forces
applied onto the stiff part are not transmitted to the periphery, and the lens
remains in equilibrium without being deformed. The precomputed inverse
of the compliance matrix (LDL no update), gives better results when the
object is in a similar configuration as the rest position (i.e. in the state
where the precomputed inverse has been computed). However, the rigidity
is not properly evaluated in case of large deformations, and a large error is
introduced in the behaviour.

When the preconditioner is updated periodically after a fixed number

30

0.4

0.35

0.3 t 1
= 0.25
o
-
=
M 02+t Diagonal
n LDL no update
2 0.15 + LDL update (20 steps)
ﬂ: LDL update (10 steps)

01t LDL update (async)

0.05

O 1 i 1 —T
0 0.2 0.4 0.6 0.8 1

Simulation Time (sec)
(a) Root Mean Square error by using different approximation as compliance
matrix.

Diagonal LDL no update LDL update LDL update LDL update
(20 steps) (10 steps) (async)
(b) Simulated soft disk (blue) with reference (green) after 0.8 second of simulation.

Figure 9: Distance of nodal positions by using different approximations of the compli-
ance matrix compared to a reference simulation. The reference simulation is obtained by
computing the compliance matrix as the exact inverse of the system matrix every time
step.

of time steps (LDL update 20 and LDL update 10), the error tends to
decrease with the frequency of the updates, and for the version where the
preconditioner is updated every 10 time steps there is no visible error (see
fig. 9(b)). Finally, using the asynchronous version (LDL update async),
the preconditioner is updated on average every 5 time steps and the error

31

introduced throughout the simulation is negligible.

7.2. Performance evaluation
7.2.1. Convergence rate and computation time

We produced a simulation where an heterogeneous beam composed of
6,500 elements and 1,470 nodes, is deform under gravity. We evaluated the
computational time and the convergence rate of standard solvers to solve
equation (7) (see fig. 10). In all our experiments we set the tolerance of the
preconditioned CG to 1077, and we use a time step h = 0.02.

Direct solvers must process a complete factorization of the matrix at
each time step, to take into account the non linearities of the model. This
operation is expensive but it can be parallelized using optimized libraries such
as Pardiso Schenk et al. (2008). However, due to the multiple dependencies
and the relatively small size of the system, a parallel version with 2 threads
(Pardiso-2) is only 1.5x faster than a sequential approach (Pardiso-1).
With 4 threads (Pardiso-4) only 2.2x faster, and with 8 threads version
(Pardiso-8) only 1.90x faster (and slower than Pardiso-4).

Standard iterative solvers (standard) require a large number of itera-
tions, and thus a large computational time, due to the strong heterogeneity
of the material. Indeed, although our GPU-based CG does not need to as-
semble the matrix and provides fast iterations, an average of 493 iterations
are necessary to obtain a sufficient solution and the computation time is no
longer compatible with real-time. The Jacobi preconditioner is too simple
and does not manage to sufficiently reduce the number of iterations.

Pre-computing the LDLT factorization (no update) and using it
throughout the simulation, enables to remove the overhead of the factor-
ization while keeping a limited number of iterations. However in cases of
large deformations, the actual stiffness of the material may be very different
from the rest configuration, and a large number of iterations are necessary.
Indeed, when the beam undergoes large deformations, we measured a maxi-
mum of 121 iterations necessary to achieve convergence, and the application
time of the preconditioner was around 210 ms. Interestingly, applying the ro-
tation around the preconditioner (warping method) helps to sensibly reduce
the number of iteration with a limited overhead. Indeed, the unitary cost
of a single iteration with the warping method is only 11% higher whereas it
requires 3.5 times fewer iterations to converge.

When using our method where the LDL? factorization is updated asyn-
chronously (Async), the factorization time of the preconditioner is still neg-

32

Computational time (ms)

Method Iterations
Inverse | Solving | Total
Pardiso-1 1| 78.01 1.99 | 80.37
E g Pardiso-2 1] 5081 127 5242
AS Pardiso-4 1| 3534 1.05| 36.80
Pardiso-8 40.89 1.70 43.05
- CG 493.66 | 0.01| 64.17 | 64.41
L Jacobi 314.28 | 14.20 | 5343 | 67.85
ciz . LDLT 59.11| 0.02| 87.86| 88.16
-% ~ ”§ LDLT + warp 1512 | 024 | 2322 23.74
g g LDLT 9.16 | 0.03| 14.44| 15.27
- ;Zf LDLT + warp 6.85 | 0.29| 11.29| 12.56

(a) Average computational time for 200 simulation steps and convergence rate for
different preconditioners. Inverse corresponds to the inversion of the diagonal
matrix for the Jacobi preconditioner, and to the factorization of the system for
LDLT preconditioners. Solving is the time taken to solve the system. Total is
the total time of a single time step.

(b) Heterogeneous beam falling under gravity.

Red parts are 50x stiffer than bleu parts.

33

Figure 10: Simulation of an heterogeneous deformable object with different precondition-

ligible, and the number of iterations remains very low throughout the simu-
lation. For this preconditioner, the (warping method) provides only limited
improvements. Indeed, the preconditioner was updated on average every 8
time steps, and the rotations between two consecutive updates remained lim-

ited. The warping heuristic is therefore particularly beneficial if the precon-
ditioner cannot be updated sufficiently fast (for larger systems for instance).
Finally, the asynchronous solution is the only method which is compatible
with real-time computations. Indeed, the simulation runs at 45 FPS, and 1
second in the simulation is simulated in 1 second.

7.2.2. Factorization of the preconditioner

To test the scalability of our method, we evaluate the computational
time required to factorize the mechanical matrices with dimensions up to
10,000 x 10,000 (which corresponds to an object with 3,333 nodes with 3
dofs per node). This operation is very expensive, but since we process it
asynchronously it does not impact directly the performances of the simula-
tion.

0-25 T T T T T T T T
1 6
/(;J\ 0.2 Simulation steps
< Time to invert
g
g 2
B 015+ =)
+© 4 =3
5 5
> o
S o1t S
@] 02]
s 3
[} 2 Lo]
g 7
--E-; 0.05
0 1 1 1 1 1 1 1 O
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Size of the matrix

Figure 11: Time in (ms) to factorize the system depending on the dimension on the system.
Simulation steps gives the number of simulation steps that are necessary to update the
asynchronous preconditioner with a simulation running at 25 FPS.

We also evaluate the number of simulation steps necessary to update
the preconditioner with a simulation runing asynchronously at 25 FPS (see
fig. 11). Depending on the dimension of the matrix, the number of time

34

steps necessary to update the factorization varies between 1 to 6. With our
asynchronous version, this period can twice larger because a first period is
necessary to compute the factorization, and then it will be used until the next
update of the preconditioner. However, even for a 9,000 x 9,000 matrix, the
maximum delay due to the update the preconditioner is less than 0.5 seconds.

7.2.3. Computation of the compliance

We now focus on the computation time (see fig. 12) for solving a Sparse
Triangular System with multiple right hand side vectors. This operation is
necessary to set the contact problem in equation (14) and (23).

0.14 T T T T T

LDL CPU ——
LDL GPU
0.12 | CUSPARSE+A
CUSPARSE

01

0.08 |- .

0.06 1

0.04

Time (seconds)

0.02

0 50 100 150 200 250 300

Number of constraints

Figure 12: Computation time for solving a STS with multiple right-hand side vectors.

Solving the different ST'S on the GPU (LDL GPU) is much faster than
solving sequentially each STS on the CPU (LDL CPU). Indeed, the com-
putation time for the CPU version is linear according to the number of right-
hand side vectors, whereas the GPU can process them in parallel. Therefore,
for up to 78 constraints the computation time remains almost constant with
our GPU implementation. Indeed, below this limit the GPU computing
units are not fully utilized and the different STS are processed in parallel.
Beyond this number, some GPU processors will compute several STS suc-

35

cessively, and the computational time curve takes a staircase appearance.
Nevertheless, the GPU processors are able to overlay waiting times, due to
synchronizations and access in in memory, with computations for another
STS. Thus, solving the system for 140 constraints is only 1.8 times slower
than for 70 constraints.

We also compared our GPU implementation to the CUSPARSE library
where an implementation of solving a STS with multiple right-hand side
vector has recently been released in the procedure cusparseScsrsm _solve. This
procedure is implemented in two steps: first an analysis of the sparsity of the
matrix is process in order to determine the dependencies, then the analysis
information is used to solve the STS (see Naumov (2011) for details). As the
analysis is necessary only when the preconditioner is updated, we detailed
separately the cost with (CUSPARSE—+A) and without (CUSPARSE)
the analysis. For 78 constraints our solution is 4.2 times faster when the
analysis is not required (5.72 times with the analysis), and 2 times faster for
300 constraints (2.4 times with the analysis). Although the difference may
be less for larger systems, we have optimal performance for the scenarios
that are compatible with real-time constraint. Indeed, for 300 constraints
the computation time to build W with our optimized approach is around
0.04 seconds which is a limit for interactive rates.

7.2.4. Topological Modifications

Finally, we evaluate the influence of the cut on the convergence of the
standard CG, and using our method (SMF), on a simulation composed of
a beam cut lengthwise and falling under gravity (see table 13). Build is the
time to assemble A: For the CQG, the matrix is directly evaluated from the
mesh structure at each iteration, whereas the preconditioner is updated on
average every 4.30 simulation steps, each update requiring to fully assemble
A to perform the factorization in equation (18). Iterations and Solve are
respectively the number of iterations per time step, and the corresponding
time to solve the system with a tolerance at 10~7. The method significantly
decreases the number of iterations, and provides an average speed-up of 2.6 x
compared to the CG.

The main overhead of the SMF update is the computation U and Q
(see fig. 14), but these operations are performed only when a new topolog-
ical modification is detected (i.e. every 3.4 simulation steps on the beam
example). The computation of U is the most expensive, and its GPU par-
allelization is the key point to enable real-time computation, whereas the

36

Affected | Build || Itera- | Solve || Total

Nodes | Method Nodes | (ms) || tions | (ms) || (ms)
1200 CG NA 0.01 || 489.40 | 49.50 || 50.99

SMF 46.39 7.30 6.59 10.41 || 20.25

1600 CG NA 0.01 584 60.71 || 62.47

SMF 52.50 9.00 7.26 15.70 || 27.57

2000 CG NA 0.01 || 687.29 | 76.29 || 78.38

SMF 54.75 10.24 7.43 21 34.40

inversion of Q is inexpensive for small perturbations but quickly becomes
costly for large perturbations. In practice, the number of impacted nodes
remains very small since the preconditioner is updated several times per sec-
ond. Finally the application of the correction (i.e. applying x¢ in equation
(30) and W€ in (32)) is negligible since it represents less than 1% of the

Figure 13: Performances and convergence comparison.

computation time of a time step.

Figure 14: Overhead for the computation of the correction using the Sherman Morrison

Formula.

Time (seconds)

0.1

0.08

0.06

0.04

0.02

0 20

40

60

80

100

Impacted nodes

37

120

140

8. Applications

We now demonstrate that our method is generic enough to address several
kinds of simulation in a medical context. We use it to simulate a cataract
surgery, an hepatectomy in laparoscopie, and a cerebral tumor removal. We
show that our method can handle the requirements of such simulations in
real time.

8.1. Application to cataract surgery

The cataract is an opacification of lens of the eye, which prevents the
passage of light and results in partial or complete blindness. Millions of
people are affected by this pathology, particularly in third world countries.
A surgical treatment exists, which consists in extracting the diseased lens and
replacing it with by an implant. The standard surgical procedure is known as
Phacoemulsification Tsuneoka et al. (2002), where the lens is emulsified by an
ultrasonic tool. However, Phacoemulsification requires advanced technology
which is not available in many countries where the prevalence of cataract is
highest, and hence many patients can simply not be treated.

Another surgical procedure known as Manual Small Incision Cataract
Surgery (MSICS) Venkatesh et al. (2008) requires only basic technology and
leads to quasi-identical results when performed by an experienced specialist.
The cost of such surgical operations is significantly lower than phacoemulsi-
fication, but unfortunately only few surgeons in the world master this par-
ticular procedure. This technique requires a slightly larger incision (around
5 mm) so that the lens be extracted in a single piece. We believe that the
requirements for such a simulator cannot be addressed by existing methods.
Indeed, the eyeball as well as the lens must be simulated because they both
undergo large deformations and high stresses. The heterogeneity of anatom-
ical structures must also be taken into account since this heterogeneity has
an impact on the success of the surgical operation. In particular, the nucleus
of the lens is stiffer than its periphery which may require an adjustment of
the size of the incision made to extract the lens.

We aim at simulating the extraction of the lens with the MSICS technique
(see fig. 15). The incision and meshes of the organs has been generated off-
line using (CGAL) project. The lens is removed with the help of deformation
of the eyeball, and friction with the instrument. The lens is modeled with
1113 nodes and 4862 tetrahedra, whereas the eye contains 1249 nodes and
3734 tetrahedra. The center of the lens is 5 times stiffer than the periphery,

38

Figure 15: Simulation of the lens extraction with the MSICS technique.

and we used our asynchronous preconditioner to ensure the convergence of the
CG. The preconditioned CG required an average of 11.6 iterations to converge
to 107°, despite strong deformations and heterogeneity. Using our method,
we managed to simulate this application in real-time, and the performance
vary between 18 to 25 FPS. Within a single time step, the distribution of
the computation time was: 40.56% for the free motion and 44.69% for the
corrective motion.

8.2. Application to liver resection

In some cases, hepatectomy may be considered for the treatment of tu-
mors localized inside the liver. Simulators of this procedure has already been
developed in the past Bourquain et al. (2002); Lamadé et al. (2002). The
originality of our approach is that our simulation is based on patient specific
data. Indeed, the meshes of the organs are obtained from a semi-automatic
segmentation of a CT (see Soler et al. (2001) for details). We simulate 5
deformable bodies in interactions (liver, stomach, colon, intestines and di-
aphragm). Each organ is composed of several hundred of nodes and thousand
of elements with complex shapes composed of several thousand of triangles
(see fig. 16). An important issue to produce this application concern the
collision detection which is performed by the method introduced in Allard
et al. (2010).

This application is simulated at a frequency of 25 FPS, including during
cutting. The distribution of computing time in a time step is as follows:
27.77% for free movement, 11.01% for collision detection, 22.48% for the
constraint motion. The preconditioned CG requires an average need of 5.82
iterations to converge. During cutting, the number of iterations was slightly
higher but it quickly stabilizes when the cut stops. Finally, by taking into
account the mechanical coupling between the contacts, we managed to pro-

39

Nodes | Elements | Triangles
Liver 506 1607 3680
Stomach 306 756 594
Colon 347 819 702
Diaphragm 131 328 2162
Small Intestine 64 142 6192

Figure 16: dataset used for the simulation

Figure 17: Simulation of an hepatectomy with haptic feedback.

duce a consistent haptic feedback. For instance, users can feel the stiffness
of ribs behind the liver by applying contacts on the surface of the organ.

8.3. Application to brain tumor resection

Finally, we applied our method to the simulation of the resection of a
brain tumour. The brain is modeled as a heterogeneous deformable body,
composed of 1,734 nodes and 7,680 linear tetrahedral elements. The tumor
is 20x stiffer than the brain. During the simulation, the preconditioner is
updated every 5.6 steps, and a new topological modification appears every
5.5 simulation steps, affecting 24 nodes. A total of 553 modifications are
performed, and the method remains stable with an average of 5.70 iterations
to solve the linear system. The collisions and self-collisions are correctly
solved while processing the modifications, and cut parts can instantaneously
be separated upon contact with the instrument. Finally, we achieve between
20 and 40 FPS and the method remains interactive.

40

Figure 18: Real-time simulation of a brain tumor resection.

9. Conclusion

We presented a set of methods for the real-time simulation of deforming
structures of complex shape relying on an implicit time integration method.
The proposed paradigm relies on an asynchronous preconditioner that is up-
dated at low frequency, and used to significantly reduce the number of itera-
tions in the deformation solver, but also to set a contact problem which take
into account the mechanical coupling between contacts. We also extended
the approach to handle significant topological modifications at interactive
rate. The method is particularly beneficial for heterogeneous structures, and
enables to use large time steps to solve the contact problem, hence reduc-
ing significantly the computation time. We demonstrated the benefits of the
proposed method through a simulation of a cataract surgery, but also a sim-
ulation of an hepatectomy based on patient specific data, and a simulation
of a brain tumor removal involving topological modifications.

For future work, we plan to investigate algebraic model reduction tech-
niques (using the proper orthogonal decomposition, or multi scale methods)
to decrease the computational expense through pre computations, and to
allow a finer description of organs. We also plan to investigate the use of
enriched finite element methods in the real-time context to handle continus
cut with the elements. Finally, we will also focus on the estimation of the
spatial and temporal discretisation error and of the model error during our
simulations. An analysis of the model error will require addressing more real-
istic models including hyper-elastic materials, where the mechanical matrices
undergo ’faster’ modifications than for the co-rotational case. We will also
investigate the stability of the numerical schemes for nearly incompressible
materials.

41

10. Acknowledgements

The authors would like to thank Mouhamadou Diallo and Igor Peterlik
for their help and their assistance during the comparaison between SOFA
and ABAQUS.

We also would like to thank the financial support of the European Re-
search Council Starting Independent Research Grant (ERC Stg grant agree-
ment No. 279578) entitled “Towards real time multiscale simulation of cutting
in non-linear materials with applications to surgical simulation and computer
guided surgery

References

Allard, J., Courtecuisse, H., Faure, F.; 2011. Implicit fem solver on gpu
for interactive deformation simulation. In: GPU Computing Gems Vol. 2.
NVIDIA /Elsevier, to appear.

Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., Kry, P. G.,
aug 2010. Volume contact constraints at arbitrary resolution. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2010) 29 (3).

Anitescu, M., Potra, F., Stewart, D., 1999. Time-stepping for three-
dimensional rigid body dynamics. Computer Methods in Applied Mechan-
ics and Engineering, 183-197.

Baraff, D., Witkin, A., 1998. Large steps in cloth simulation. In: SIGGRAPH
'98: Proceedings of the 25th annual conference on Computer graphics and
interactive techniques. ACM, pp. 43-54.

Barbic, J., James, D. L., July 2005. Real-time subspace integration for st.
venant-kirchhoff deformable models. ACM Trans. Graph. 24, 982-990.

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., der Vorst, H. V., 1994. Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods,
2nd Edition. STAM.

Berger-Vergiat, L., Waisman, H., Hiriyur, B., Tuminaro, R., Keyes, D.,
2012. Inexact schwarz-algebraic multigrid preconditioners for crack prob-
lems modeled by extended finite element methods. International Journal
for Numerical Methods in Engineering 90 (3), 311-328.

42

Bielser, D., Glardon, P., Teschner, M., Gross, M., 2003. A state machine
for real-time cutting of tetrahedral meshes. In: Proceedings of the 11th
Pacific Conference on Computer Graphics and Applications. PG ’03. IEEE
Computer Society, Washington, DC, USA, pp. 377—.

Bolz, J., Farmer, 1., Grinspun, E., Schréoder, P., 2003. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. ACM Trans. Graph.
22 (3), 917-924.

Bordas, S., Duflot, M., 2007. Derivative recovery and a posteriori error esti-
mate for extended finite elements. Computer Methods in Applied Mechan-
ics and Engineering 196 (35), 3381-3399.

Bordas, S., Duflot, M., Le, P., 2008. A simple error estimator for extended
finite elements. Communications in Numerical Methods in Engineering
24 (11), 961-971.

Bourquain, H., Schenk, A., Link, F., Preim, B., Prause, G., Peitgen, H.,
2002. Hepavision?2 - a software assistant for preoperative planning in living-
related liver transplantation and oncologic liver surgery. Cancer Research,
1-6.

Braess, D., 1986. On the combination of the multigrid method and conjugate
gradients. In: Multigrid methods II. Springer, pp. 52-64.

Brezzi, F., Hager, W. W., Raviart, P.-A., 1977. Error estimates for the finite
element solution of variational inequalities. Numerische Mathematik 28 (4),
431-443.

Bro-Nielsen, M., Cotin, S., 1996. Real-time volumetric deformable models
for surgery simulation using finite elements and condensation. Comput.

Graph. Forum 15 (3), 57-66.

Buatois, L., Caumon, G., Lévy, B., 2009. Concurrent number cruncher -
a GPU implementation of a general sparse linear solver. Int. J. Parallel
Emerg. Distrib. Syst. 24 (3), 205-223.

Comas, O., Taylor, Z., Allard, J., Ourselin, S., Cotin, S., Passenger, J., 2008.
Efficient nonlinear FEM for soft tissue modelling and its GPU implemen-
tation within the open source framework SOFA. In: ISBMS. pp. 28-39.

43

Cotin, S., Delingette, H., Ayache, N., 1999. Real-time elastic deformations
of soft tissues for surgery simulation. IEEE Transactions on Visualization
and Computer Graphics 5 (1), 62-73.

Courtecuisse, H., Allard, J., jun 2009. Parallel dense gauss-seidel algorithm
on many-core processors. In: High Performance Computation Conference
(HPCC). IEEE CS Press.

Courtecuisse, H., Allard, J., Duriez, C., Cotin, S., nov 2010. Asynchronous
preconditioners for efficient solving of non-linear deformations. In: Pro-
ceedings of Virtual Reality Interaction and Physical Simulation (VRI-
PHYS).

Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D. Y., Cotin, S.,
2011. Gpu-based real-time soft tissue deformation with cutting and haptic
feedback. Progress in Biophysics and Molecular BiologySpecial Issue on
Soft Tissue Modelling.

Davis, T. A., 2006. CSparse. Society for Industrial and Applied Mathematics,
Philadephia, PA.

Dequidt, J., Duriez, C., Cotin, S., Kerrien, E., 2009. Towards interactive
planning of coil embolization in brain aneurysms. In: Yang, G.-Z., Hawkes,
D., Rueckert, D., Noble, A., Taylor, C. (Eds.), Medical Image Computing
and Computer-Assisted Intervention, MICCAI 2009. Vol. 5761 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 377-385.

Dick, C., Georgii, J., Westermann, R., 2011a. A hexahedral multigrid ap-
proach for simulating cuts in deformable objects. Visualization and Com-
puter Graphics, IEEE Transactions on 17 (11), 1663-1675.

Dick, C., Georgii, J., Westermann, R., 2011b. A real-time multigrid finite
hexahedra method for elasticity simulation using cuda. Simulation Mod-
elling Practice and Theory 19 (2), 801-816.

Dryja, M., Widlund, O. B., 1989. Towards a unified theory of domain decom-
position algorithms for elliptic problems. New York University, Courant
Institute of Mathematical Sciences, Division of Computer Science.

44

Duflot, M., Bordas, S., 2008. A posteriori error estimation for extended fi-
nite elements by an extended global recovery. International Journal for
Numerical Methods in Engineering 76 (8), 1123-1138.

Duriez, C., Andriot, C., Kheddar, A., 2003. Interactive haptic for virtual pro-
totyping of deformable objects: Snap-in tasks case. In. EUROHAPTICS.
Citeseer.

Duriez, C., Andriot, C., Kheddar, A., 2004. Signorini’s contact model for de-
formable objects in haptic simulations. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).

Duriez, C., Dubois, F., Kheddar, A., Andriot, C., 2006. Realistic haptic
rendering of interacting deformable objects in virtual environments. IEEE
Transactions on Visualization and Computer Graphics 12 (1), 36-47.

Felippa, C., Haugen, B., 2005. A unified formulation of small-strain corota-
tional finite elements: 1. theory. Computer Methods in Applied Mechanics
and Engineering 194 (21-24), 2285 — 2335.

Felippa, C. A., 2000. A systematic approach to the element independent coro-
tational dynamics of finite elements. Tech. Rep. CU-CAS-00-03, Center for
Aerospace Structures.

Freund, L., 1970. Constitutive equations for elastic-plastic materials at finite
strain. International Journal of Solids and Structures 6 (8), 1193-1209.

Ganovelli, F., O’Sullivan, C. A., 2001. Animating cuts with on-the-fly re-
meshing.

Gerstenberger, A., Tuminaro, R. S.; 2012. An algebraic multigrid approach
to solve xfem based fracture problems. Int. J. Numer. Meth. Eng.

Hauth, M., Etzmuf, O., Strafer, W., 2003. Analysis of numerical methods
for the simulation of deformable models. The Visual Computer 19 (7-8),
581-600.

Hecht, F., Lee, Y. J., Shewchuk, J. R., O’Brien, J. F., Oct. 2012. Updated
sparse cholesky factors for corotational elastodynamics. ACM Transactions
on Graphics 31 (5), X:1-13, presented at SIGGRAPH 2012.

45

Heintz, P., Hansbo, P., 2006. Stabilized lagrange multiplier methods for bilat-
eral elastic contact with friction. Computer methods in applied mechanics
and engineering 195 (33), 4323-4333.

Hermann, E., Raffin, B., Faure, F., mar 2009. Interative physics simulation
on multicore architectures. In: Proceedings of the 9th Eurographics Sym-
posium on Parallel Graphics and Visualization (EGPGV’09).

Hiriyur, B., Tuminaro, R., Waisman, H., Boman, E., Keyes, D., 2012. A
quasi-algebraic multigrid approach to fracture problems based on extended
finite elements. STAM Journal on Scientific Computing 34 (2), A603-A626.

Hughes, T., 2000. The finite element method: linear static and dynamic finite
element analysis. Dover Publications.

James, D., Pai, D., 1999. Artdefo: Accurate real time deformable objects.
In: 26th International Conference on Computer Graphics and Interactive
Techniques. Proceedings of SIGGRAPH, ACM. pp. 65-72.

Jean, M., 1999. The non-smooth contact dynamics method. Computer Meth-
ods in Applied Mechanics and Engineering 177 (3-4), 235 — 257.

Joldes, G. R., Wittek, A., Miller, K., 2009. Suite of finite element algorithms
for accurate computation of soft tissue deformation for surgical simulation.
Medical ITmage Analysis 13 (6), 912 — 919, includes Special Section on
Computational Biomechanics for Medicine.

Jourdan, F., Alart, P., Jean, M., 1998. A gauss-seidel like algorithm to solve
frictional contact problems. Comp. Meth. in Appl. Mech. and Engin., 33—
47.

Kaufman, D. M., Sueda, S., James, D. L., Pai, D. K., 2008. Staggered pro-
jections for frictional contact in multibody systems. ACM Transactions on
Graphics 27 (5), 1-11.

Kerfriden, P., Gosselet, P., Adhikari, S., Bordas, S., 2011. Bridging proper
orthogonal decomposition methods and augmented newton—krylov algo-
rithms: an adaptive model order reduction for highly nonlinear mechani-
cal problems. Computer Methods in Applied Mechanics and Engineering
200 (5), 850-866.

46

Kerfriden, P., Goury, O., Rabczuk, T., Bordas, S., 2012. A partitioned model
order reduction approach to rationalise computational expenses in non-
linear fracture mechanics. Computer Methods in Applied Mechanics and
Engineering.

Kiihnapfel, U., Cakmak, H., Maaf, H., 2000. Endoscopic surgery training us-
ing virtual reality and deformable tissue simulation. Computers & Graphics
24 (5), 671-682.

Lamadé, W., Vetter, M., Hassenpflug, P., Thorn, M., Meinzer, H.-P., Her-
farth, C., 2002. Navigation and image-guided hbp surgery: a review
and preview. Journal of Hepato-Biliary-Pancreatic Surgery 9, 592-599,
10.1007/s005340200079.

Marchal, M., Allard, J., Duriez, C., Cotin, S., jul 2008. Towards a framework
for assessing deformable models in medical simulation. In: Proceedings of
ISBMS 2008. Springer, pp. 176-184.

Marchesseau, S., Heimann, T., Chatelin, S., Willinger, R., Delingette, H.,
sep 2010. Multiplicative jacobian energy decomposition method for fast
porous visco-hyperelastic soft tissue model. MICCATI’10.

Martin, P., Ayuso, L., Torres, R., Gavilanes, A., 2012. Algorithmic strategies
for optimizing the parallel reduction primitive in cuda. In: Smari, W. W,
Zeljkovic, V. (Eds.), HPCS. IEEE, pp. 511-519.

Menk, A., Bordas, S., 2011a. Crack growth calculations in solder joints based
on microstructural phenomena with x-fem. Computational Materials Sci-
ence 50 (3), 1145-1156.

Menk, A., Bordas, S., 2011b. A robust preconditioning technique for the ex-
tended finite element method. International Journal for Numerical Meth-
ods in Engineering 85 (13), 1609-1632.

Miller, K., Joldes, G., Lance, D., Wittek, A., 2007. Total lagrangian explicit
dynamics finite element algorithm for computing soft tissue deformation.
Communications in numerical methods in engineering 23 (2), 121-134.

Molino, N., Bao, Z., Fedkiw, R., 2007. A virtual node algorithm for changing
mesh topology during simulation. Proceeding of Eurographics, 73-80.

47

Mor, A. B., Kanade, T., 2000. Modifying soft tissue models: Progressive
cutting with minimal new element creation. In: Proceedings of MICCAI
2000. pp. 598-607.

Naumov, M., 2011. Incomplete-lu and cholesky preconditioned iterative
methods using cusparse and cublas.

Nealen, A., Mueller, M., Keiser, R., Boxerman, E., Carlson, M., 2006. Phys-
ically based deformable models in computer graphics. Comput. Graph.
Forum 25.

Nesme, M., Marchal, M., Promayon, E., Chabanas, M., Payan, Y., Faure, F.,
2005. Physically realistic interactive simulation for biological soft tissues.
Recent Research Developments in Biomechanics 2, 1-22.

Nicolas, M., Dolbow, J., Belytschko, T., 1999. A finite element method for
crack growth without remeshing. Int. J. Numer. Meth. Engng 46, 131-150.

Niroomandi, S., Alfaro, 1., Cueto, E., Chinesta, F., 2008. Real-time de-
formable models of non-linear tissues by model reduction techniques. Com-
puter Methods and Programs in Biomedicine 91 (3), 223-231.

Nitsche, J., 1971. Uber ein variationsprinzip zur l6sung von dirichlet-
problemen bei verwendung von teilrdumen, die keinen randbedingungen
unterworfen sind. In: Abhandlungen aus dem Mathematischen Seminar
der Universitat Hamburg. Vol. 36. Springer, pp. 9-15.

NVIDIA Corporation, 2007a. CUBLAS library.
NVIDIA Corporation, 2007b. CUSPARSE library.

Otaduy, M. A., Tamstorf, R., Steinemann, D., Gross, M., 2009. Implicit
contact handling for deformable objects. Computer Graphics Forum (Pro-
ceedings of Eurographics) 28 (2), 559-568.

Parker, E. G., O’Brien, J. F., aug 2009. Real-time deformaton and
fracture in a game environment. In: Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animaton. pp. 156-166.

Pauly, M., Pai, D. K., Guibas, L. J., 2004. Quasi-rigid objects in contact.
In: SCA ’04: Proceedings of the 2004 ACM SIGGRAPH /Eurographics
symposium on Computer animation. pp. 109-119.

48

Payan, Y., 2012. Soft tissue biomechanical modeling for computer assisted
surgery 11.

Peterlik, I., Nouicer, M., Duriez, C., Cotin, S., Kheddar, A., Jul. 2011.
Constraint-based haptic rendering of multirate compliant mechanisms.
IEEE Trans. Haptics 4 (3), 175-187.

Redon, S., Kheddar, A., Coquillart, S., 2002. Gauss’ least constraints prin-
ciple and rigid body simulations. In: Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference on. Vol. 1. IEEE,
pp- H17-522.

Renard, Y., 2012. Generalized newton’s methods for the approximation and
resolution of frictional contact problems in elasticity.

Roédenas, J., Gonzélez-Estrada, O., Tarancoén, J., Fuenmayor, F., 2008. A
recovery-type error estimator for the extended finite element method based

on singular-+ smooth stress field splitting. International Journal for Numer-
ical Methods in Engineering 76 (4), 545-571.

Saad, Y., 1996. Iterative methods for sparse linear systems. Vol. 620. PWS
publishing company Boston.

Saad, Y., 2003. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

Saupin, G., Duriez, C., Cotin, S., Grisoni, L., 2008. Efficient contact modeling
using compliance warping. In: Computer Graphics International.

Schenk, O., Bollhofer, M., Romer, R. A., 2008. On large scale diagonalization
techniques for the Anderson model of localization. SIAM Review 50 (1),
91-112, sIGEST Paper.

Sifakis, E., Der, K. G., Fedkiw, R., 2007. Arbitrary cutting of deformable
tetrahedralized objects. Proceeding of Eurographics, 73-80.

Soler, L., Delingette, H., Malandain, G., Montagnat, J., Ayache, N., Koehl,
C., Dourthe, O., Malassagne, B., Smith, M., Mutter, D., Marescaux, J.,
2001. Fully automatic anatomical, pathological, and functional segmenta-
tion from CT scans for hepatic surgery. Computer Aided Surgery 6 (3),
131-42.

49

Taylor, Z., Comas, O., Cheng, M., Passenger, J., Hawkes, D., Atkinson, D.,
Ourselin, S., Sep. 2008. Modelling anisotropic viscoelasticity for real-time
soft tissue simulation. In: Proceedings of MICCAI 2008. pp. 703-710.

The CGAL Project, 2011. CGAL User and Reference Manual, 3.8 Edition.
CGAL Editorial Board.

Toledo, S., Chen, D., Rotkin, V., feb 2003. Taucs: A library of sparse linear
solvers version 2.2.

Tsuneoka, H., Shiba, T., Takahashi, Y., et al., 2002. Ultrasonic phacoemul-
sification using a 1.4 mm incision: clinical results. Journal of cataract and
refractive surgery 28 (1), 81-86.

Venkatesh, R., Tan, C., Singh, G., Veena, K., Krishnan, K., Ravindran,
R., 2008. Safety and efficacy of manual small incision cataract surgery for
brunescent and black cataracts. Eye 23 (5), 1155-1157.

Wriggers, P., Panatiotopoulos, P., 1999. New developments in contact prob-
lems. No. 384. Springer.

Wriggers, P., Zavarise, G., 2008. A formulation for frictionless contact prob-
lems using a weak form introduced by nitsche. Computational Mechanics
41 (3), 407-420.

Zienkiewicz, O., Taylor, R., 1991. The Finite Element Method, 4th Edition.
Vol. 1. McGraw-Hill.

50

	Introduction
	Literature review
	Simulation of deformable bodies
	Time discretization
	Solving the set of nonlinear equations
	Simulation of the interactions
	Simulation of topological modifications

	Background
	Deformable model and time-stepping implicit integration
	Contact and friction models
	Contact mapping
	Constraint-based solution

	Asynchronous preconditioner
	GPU-Based preconditioner for contact problems
	Compliance and mechanical coupling
	Optimized preconditioner for contacts
	Solution of multiple STS on GPU
	GPU-based parallelization

	Simulation of cutting
	Topological modifications, cutting
	Low rank update of the ``Asynchronus Preconditioner''
	Computation of the correction
	Application of the correction

	Results and evaluation
	Accuracy and validation
	Comparaison with ABAQUS
	Preconditioner for the contact response

	Performance evaluation
	Convergence rate and computation time
	Factorization of the preconditioner
	Computation of the compliance
	Topological Modifications

	Applications
	Application to cataract surgery
	Application to liver resection
	Application to brain tumor resection

	Conclusion
	Acknowledgements

