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Fig.12 Optimal distribution of reinforcing ingredients considering area of interest #2 (a), objective 

function versus iterations (b)  

 

 
Fig.13 Shear stress profile for area #2 considering homogeneous and optimal distribution of 

reinforcements 

 

In the next case, area of interest #3 is defined on the core of the beam and includes central 

elements of the core as illustrated in Fig.9.  The same types of results are presented in Fig.14 

(a) and 14(b).  

 
Fig.14 Optimal distribution of reinforcing ingredients considering area of interest #3 (a), objective 

function versus iterations (b)  
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• Modelled	
  by	
  a	
  network	
  of	
  Euler-­‐Bernouilli	
  beams	
  

	
  

• Proper$es	
  of	
  resul$ng	
  numerical	
  problem:	
  
§  Damage	
  depends	
  on	
  deforma$on	
  -­‐>	
  Nonlinear	
  
§  Irreversibility	
  of	
  damage	
  -­‐>	
  pseudo-­‐$me	
  dependent	
  

Damageable	
  elas$c	
  material	
  

localised	
  
damage	
  

where t is the depth of the continuous structure, which is not necessarily equal to the depth of the
beams t(b).

Unfortunately, this theory, as far as the authors know, has not been extended to damage mechanics.
It su↵ers the limitation of classical homogenisation to non-softening behaviours. In the literature, the
elastic constants are used as a starting point for a phenomenological damage model, whose parameters
then need to be fitted to experimental results. We follow the same approach. The damage model used
in our simulations is described in the next subsection.

2.2.3 Elastic-damage law

The model presented here is based on classical damage mechanics [37], applied to lattice structures.
We introduce two di↵erent damage mechanisms, one acting in traction and the other one acting in
bending. This assumption is consistent with the model used in [5], where it is argued that damage
in traction corresponds to damage due to hydrostatic deformations, while damage due to bending
corresponds to shear damage.

We postulate the following Helmholtz free energy per unit length of beam (b):

 (✏̄, d) =
1

2

✓

E(b)S(b)(1 � d
n

)
< v

,⇠

>
+

v
,⇠

v
,⇠

2 +E(b)I(b)(1 � d
t

)✓
,⇠

2

⌘

. (21)
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and d
t

are two damage variables ranging from 0 to 1. They account for the non-reversible softening
of the beam with increasing load, in respectively tension and bending. Compression in this model does
not dissipate energy, which is mathematically introduced by making use of the positive part extractor
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This state law is the nonlinear counterpart of the linear state law (19).
The second state law, which links the damage variables to dual driving thermodynamic forces,

reads:
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At last, an evolution law is defined to fully define the damage evolution:
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This damage law is inspired by the model described in [1] for composite laminates. We refer to
this work for a comprehensive interpretation of the di↵erent parameters. We will just notice that Y
is an equivalent damage energy release rate which governs the evolution of damage with traction and
banding. The critical value Y

c

is therefore the “strength” of the beam section.

2.3 Randomly distributed material properties

The damageable lattice model is used to derive a three-phase model for concrete. Such models consider
three di↵erent entities: matrix (cement), inclusions (hard particles, assumed spherical) and an interface
between these two entities (see [6] for an evidence of the existence of such interface). Plane (O, x, y)
is a section of the three dimensional particulate composite structure. A projection of the material
properties onto the lattice model is performed as follows:
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  localisa$on	
  problem	
  

U(t) = Ū(t) + eU(t) such	
  that:	
  

Fluctua$on,	
  
vanishes	
  on	
  
boundary	
  

=	
  +	
  

Full	
  micro	
  solu$on,	
  used	
  to	
  
extract	
  average	
  stress	
  

8 t 2 {t1, t2, ... , tN}, U? T Fint

⇣
eU(t);

�
Ū(⌧)

�
⌧t

⌘
= 0

prescribed	
  

✏M11(t)⇥

✏M22(t)⇥

✏M12(t)⇥
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•  Surrogate	
  for	
  the	
  displacement	
  vector:	
  

• Galerkin:	
  

• Hyper-­‐reduc$on	
  with	
  Gappy-­‐POD:	
  

Galerkin-­‐ROM	
  

Generalised	
  coordinates	
  

8i

U(t) ⇡ Ur(t) :=

n�X

i=1

�
i
↵i(t) + Ū(t)

Basis	
  func$ons	
  for	
  fluctua$on	
  

�T
i
Fint

⇣
↵(t);

�
Ū(⌧)

�
⌧t

⌘
= 0

�T
i
PFint

⇣
↵(t);

�
Ū(⌧)

�
⌧t

⌘
= 08i

Closely	
  related	
  work:	
  EIM,	
  DEIM	
  and	
  GNAT	
  [Barrault	
  et	
  al.	
  ’04]
[Chaturantabut	
  et	
  al.	
  ’10]	
  [Carlberg	
  et	
  al.	
  ’11],	
  hyper-­‐reduc-on	
  
[Ryckelynck	
  ‘05][Kerfriden	
  et	
  al.	
  ‘10],	
  MPE	
  [Astrid	
  et	
  al.	
  ’08]	
  

Macro	
  displacment	
  
vector	
  (known)	
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  Snapshot:	
  QR	
  propor$onal	
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5.2 POD basis

The basis � is selected using the POD method explained in section 3.2. The first few modes are
displayed in Figure 7. We will test the results using various number of basis vectors. Procedures to
select the optimal number of modes according to a robust cross-validation procedures can be found in
[11].

(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 7: First 3 modes obtained through the POD. The damage localises between pairs of inclusions.

5.3 System approximation

We follow the procedure described in 4. The basis  is extracted from the same snapshot space
as used for the displacement basis �. The set of controlled elements is selected using the DEIM
[18]. The amount of vectors in the basis  is chosen so that the system approximation does not
increase the global error of the reduced order model. The error ⌫tot between the exact solution and
the reduced model solution with system approximation can be decomposed in the following way (with
uex(t) the exact solution, ur(t;�), the reduced order solution without the system approximation using
the dynamic basis �, and ur,sa(t;�, ) the complete reduced order model with system approximation
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• POD-­‐Greedy	
  itera$ons	
  

§  Look	
  for	
  the	
  load	
  of	
  worst	
  predic$on	
  
	
  
	
  	
  
→  Out	
  if	
  error	
  small	
  enough	
  

	
  	
  	
  	
  and	
  TSVD	
  of	
  order	
  Mi	
  

	
  
§  TSVD	
  order	
  Ni	
  (	
  Ni-­‐1	
  <	
  Ni	
  <=	
  Ni-­‐1	
  +	
  Mi	
  )	
  	
  
on	
  all	
  available	
  RB	
  	
  func$ons	
  to	
  	
  
avoid	
  duplicated	
  info	
  

Reliable	
  selec$on	
  of	
  non-­‐propor$onal	
  loadings	
  

S(0)

S(1)

✏M
xx

✏M
xy

S0 ⌘
⇣
✏M,(0)(t) | t 2 J0, tntK

⌘

S̃(i) ⌘
⇣
✏M,(i)(t) | t 2 J0, tntK

⌘

Related	
  methods:	
  POD-­‐Greedy	
  
[Haasdonk	
  et	
  al.	
  ‘08],	
  
op-misa-on-­‐based	
  Greedy	
  [Bui-­‐
Thanh	
  et	
  al.	
  ‘08]	
  op-mal	
  snaphot	
  
loca-on	
  [Kunisch	
  et	
  al.	
  ‘10]	
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Reliable	
  selec$on	
  of	
  non-­‐propor$onal	
  loadings	
  

S(0)

✏M
xx

✏M
xy

✏M,(1)(t1)

✏M,(1)(t2) ?	
  

S0 ⌘
⇣
✏M,(0)(t) | t 2 J0, tntK

⌘

S̃(i) ⌘
⇣
✏M,(i)(t) | t 2 J0, tntK

⌘

Time-­‐sequence	
  of	
  indendent	
  3D	
  
op-misa-on	
  problems:	
  gradient	
  
descent	
  with	
  numerical	
  perturba$on	
  
and	
  bissec$on-­‐type	
  line	
  search	
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• RBM	
  is	
  ideal	
  to	
  build	
  virtual	
  charts	
  and	
  reduced	
  models	
  in	
  
computa$onal	
  homogenisa$on:	
  significant	
  reduc$on	
  of	
  the	
  costs	
  
associated	
  with	
  RVEs	
  with	
  control	
  of	
  errors	
  

→  Next	
  step:	
  integra$on	
  in	
  FE2	
  

• New	
  parameter-­‐free	
  RBM	
  for	
  ellip$c	
  problems,	
  should	
  be	
  applicable	
  to	
  
parabolic	
  problems	
  

→  Next	
  step:	
  parametrised	
  geometry	
  of	
  inclusions	
  

•  Efficient	
  snapshot	
  selec$on	
  procedure	
  for	
  $me-­‐dependent	
  parameters	
  
→  Extension	
  to	
  stability	
  control?	
  

Conclusions	
  


