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Abstract

In isogeometric analysis (IGA), the same spline representation is employed for both the geom-

etry of the domain and approximation of the unknown fields over this domain. This identity of

the geometry and field approximation spaces was put forward in the now classic 2005 paper [20] as

a key advantage on the way to the integration of Computer Aided Design (CAD) and subsequent

analysis in Computer Aided Engineering (CAE). [20] claims indeed that any change to the geom-

etry of the domain is automatically inherited by the approximation of the field variables, without

requiring the regeneration of the mesh at each change of the domain geometry. Yet, in Finite Ele-

ment versions of IGA, a parameterization of the interior of the domain must still be constructed,

since CAD only provides information about the boundary. The identity of the boundary and field

representation decreases the flexibility in which this parameterization can be generated and some-

what constrains the modeling and simulation process, because an approximation able to represent

the domain geometry accurately need not be adequate to also approximate the field variables ac-

curately, in particular when the solution is not smooth. We propose here a new paradigm called

Geometry-Independent Field approximaTion (GIFT) where the spline spaces used for the geome-

try and the field variables can be chosen and adapted independently while preserving geometric

exactness and tight CAD integration. GIFT has the following features: (1) It is possible to flexibly
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Preprint submitted to Computer Methods in Applied Mechanics and Engineering May 30, 2014



choose between different spline spaces with different properties to better represent the solution of

the problem, e.g. the continuity of the solution field, boundary layers, singularities, whilst retaining

geometrical exactness of the domain boundary. (2) For multi-patch analysis, where the domain is

composed of several spline patches, the continuity condition between neighboring patches on the

solution field can be automatically guaranteed without additional constraints in the variational

form. (3) Refinement operations by knot insertion and degree elevation are performed directly

on the spline space of the solution field, independently of the spline space of the geometry of the

domain, which makes the method versatile. GIFT with PHT-spline solution spaces and NURBS

geometries is used to show the effectiveness of the proposed approach.

Keywords: Super-parametric methods, Isogeometric analysis (IGA), Geometry-independent

Spline Space, PHT-splines, local refinement, adaptivity

1. Introduction

In Computer Aided Engineering (CAE), Computational Biomechanics, discretization of com-

plex geometries through mesh generation for subsequent numerical analysis is, still today and

despite recent fulgurant progress, costly in terms of human intervention. It was argued, e.g. in

[20] that the geometrical information available from the Computer Aided Design (CAD) data is

typically discarded when the mesh is generated.

A number of methods have been proposed over the past decade to use geometry information to

build field approximations when solving partial differential equations (PDEs): subdivision surfaces

[15], implicit surfaces and non-fitted meshes [28], [29] and isogeometric analysis (IGA) [20]1.

In all these cases, geometrical information has to be passed to the numerical approximation

used to discretize the field variables. Isogeometric analysis was proposed by Hughes et al. in 2005

and focuses on enabling the seamless integration from Computer-Aided Design (CAD) to analysis.

Current work on isogeometric analysis can be classified into six main categories:

1. mathematical foundations of IGA [6, 7, 8, 46];

2. isogeometric applications in multi-field problems [2, 14, 19];

1[25] proposes a relatively recent review on attempts to integrate CAD and Analysis
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3. application of different spline models in isogeometric analysis [3, 9, 30, 26, 22, 21];

4. improving the accuracy and efficiency of IGA framework by refinement operations and parallel

computing [1, 11, 13, 52];

5. constructing analysis-suitable parameterization of computational domain from given bound-

ary data [47, 52, 53, 54].

6. isogeometric boundary element methods [34, 35, 36, 10].

For a detailed review of isogeometric analysis, readers can refer to [12][25].

In IGA, the same spline representation is employed for both the geometry and the field ap-

proximation. This has the potential to provide closer integration between geometric design and

numerical analysis since any change in the CAD model is directly inherited by the field approxima-

tion. On the other hand, using the same spline spaces for both geometry and field approximation

creates a constraint which may be unwanted, for example when the geometry spline space is not

well-suited to approximate the solution of the Partial Differential Equation (PDE), in particu-

lar when local mesh refinement is required to capture the solution with limited computational

resources. In isogeometric analysis with NURBS geometry, in order to use spline models with

properties allowing local refinement, such as T-splines [3], PHT-splines [17, 30], LR B-splines[22]

and Powell-Sabin splines [38], an effective method to convert the given NURBS geometry into the

specified spline model is required as presented in [39]. However, in most cases, the exact conversion

between different spline models is impossible.

In this paper, as a generalization of the isogeometric analysis method, a new discretization

scheme is proposed where the spline spaces used for the geometry and the field solution can be

chosen independently. We call the resulting method Geometry-Independent Field approximaTion

(GIFT). This work is built upon the principle of “super-parameteric” or “generalized” IGA incepted

in [27, 5] and presented in [50].

In the proposed method, for a given computational domain with spline form, the solution

field can have a different spline representation, such as B-splines of different degree, PHT-splines,

T-splines and generalized B-splines. Importantly, the geometry of the computational domain has

the same spline representation as that of the given CAD boundary, which allows the method to

preserve the potential to realize seamless integration of CAD and analysis. Our method therefore

addresses three shortcomings of IGA, by enabling:

3



1. flexibility of solution representation;

2. straightforward treatment of multi-patch configurations;

3. independent field refinement.

The rest of the paper is organized as follows. The main idea and features of the GIFT method

are described in Section 2. In Section 3, we present a general framework for geometry-independent

field approximation method to general elliptical PDEs. The applications of GIFT method for

two-dimensional heat conduction problems using different spline spaces is also presented in this

section to show the effectiveness of GIFT by two numerical examples. With an emphasize on local

refinement, we study the adaptive GIFT approach by using PHT-splines in Section 4. That is,

the computational domain is represented by a NURBS model, while the solution field is formed

in a PHT-spline space. Several examples are also presented to illustrate the effectiveness of the

proposed GIFT method using PHT-splines. Finally, we conclude the paper and outline some future

work in Section 5.

2. Main principles behind GIFT

In this section, we describe the main idea of the GIFT method.

Suppose that the computational domain Ω ∈ R
d, d ≥ 2, defined on parametric domain P has

the following spline representation:

Ω = {x : x = F (ξ), ξ ∈ P} , F (ξ) =
N
∑

α=1

CαNα(ξ)

where Cα ∈ R
d are control points, Nα(ξ) are tensor product spline basis functions defined over d

given knot vectors.

The key idea of IGA is to represent the solution field U I(ξ) in the parametric domain using

the same spline representation as that of the computational domain (see Fig. 1), i.e.

U I(ξ) =

N
∑

α=1

U I
αNα(ξ),

where U I
α, α = 0, 1, ..., N are the control variables to be solved for. Note that when h-refinement

and p-refinement are performed, the solution field will have the same parameterization as that of

the refined computational domain.
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Fig. 1. The main idea of isogeometric analysis.

In the proposed geometry-independent field approximation method, the solution field UG(ξ)

can have different spline representation as shown in Fig. 2:

UG(ξ) =
M
∑

β=1

UG
β Mβ(ξ),

where UG
β , β = 0, 1, ...,M are the control variables to be solved for and Mβ(ξ) are the basis

functions of the specified spline space defined on the parametric domain P, such as B-splines of

different degree, PHT-splines, T-splines and generalized B-splines.

In GIFT, the computational domain Ω has the same spline representation as that of the given

CAD boundary, hence it preserves the potential to realize a seamless integration of CAD and CAE.

If Mα(ξ) = Nα(ξ), GIFT becomes IGA or, in other words, IGA is a subset of GIFT.

IGA and GIFT are compared in Table 1. The advantages of GIFT are summarized below:

• Flexibility for solution representation: It is possible to flexibly choose between different spline

spaces with different properties to better represent the solution of the PDE, e.g. the continuity

of the solution field, local strong gradient, etc.

• Independent control of continuity conditions: In case of multi-patches, the continuity con-

dition between neighboring patches in the solution field can be automatically guaranteed

without setting additional continuity constraints in the linear system.
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Fig. 2. The main idea of geometry-independent field approximation (GIFT).

IGA GIFT

Solution field Same spline space as the geometry Geometry-independent spline space

Computational domain Varies during h/p-refinements Fixed during h/p-refinement

Integration element
Knot span of the parametric domain

of the computational domain

Knot span of the parametric domain

of the solution field

Degree of freedom Fixed by the computational domain Flexible

Continuity of solution field Fixed by the computational domain Flexible

Table 1: Comparison of IGA and GIFT.

• Independent field refinement: Refinement operations by knot insertion and degree elevation

are performed directly on the spline space of the solution field, independently of the spline

space of the domain geometry, i.e. the parameterization of the given geometry is not altered

during the refinement process. Hence, the initial design can be optimized in the subsequent

shape optimization iterations without constraining the geometry discretization space to con-

form to the field approximation space, which is limiting [25].

• Efficient processing with pre-computing: The Jacobian of the transformation from the compu-

tational domain to the parametric domain, which is needed in setting up the stiffness matrix,

can be pre-computed to save computational expense in GIFT.
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3. A general framework for GIFT

3.1. The mathematical foundations of GIFT

In what follows we consider an open domain Ω ∈ R
d, d ≥ 2 with boundary Γ = ∂Ω, consisting

of two parts ΓD and ΓN , such that: Γ = ΓD

⋃

ΓN , ΓD

⋂

ΓN = ∅. The boundary value problem

(strong form) for an elliptical partial differential operator of the second order A consists in finding

the function u : Ω → R such that:

Au = f, x ∈ Ω

u = 0, x ∈ ΓD

∂u

∂nA
= g, x ∈ ΓN ,

(1)

where A is given by

Au = −∂j (aij(x)∂iu) + bj(x)∂ju+ c(x)u (2)

and Neumann boundary condition
∂u

∂nA
is defined by

∂u

∂nA
= njaij(x)∂iu (3)

and n is a unit outward normal to ΓN .

Next, the following functional space is defined:

H1
0 (Ω) = {u ∈ H1(Ω), u|ΓD

= 0} (4)

The weak form of the problem (1) consists in finding u ∈ H1
0 (Ω), such that for any v ∈ H1

0 (Ω)

a(u, v) = l(v), (5)

where

a(u, v) =

∫

Ω

{(aij(x)∂iu∂jv + bj(x)∂juv + c(x)uv)} dΩ,

l(v) =

∫

Ω

f(x)v(x)dΩ+

∫

ΓN

g(x)v(x)dΓ
(6)

Next we introduce the parameterization of the physical domain Ω on a parametric domain P:

F : P → Ω, x = F (ξ) (7)
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Typically, geometrical map F is given by a set of spline basis functions Ni1,i2,...id(ξ) and a set of

control points Ci1,i2,...id as

F (ξ) =

n1
∑

i1=1

n2
∑

i2=1

...

nd
∑

id=1

Ci1,i2,...idNi1,i2,...id(ξ), (8)

where Ni1,i2,...id(ξ) can be a tensor product of NURBS, B-splines, T-splines, PHT-splines, etc. For

brevity eq.(8) is written as

F (ξ) =
N
∑

α=1

CαNα(ξ), N = n1n2 · · ·nd. (9)

In what follows we will need the Jacobian matrix J of the transform F given by

J(ξ) =
N
∑

α=1

Cα
∂Nα(ξ)

∂ξ
(10)

The main idea of the GIFT method is to seek for a solution in an independent on geometry spline

space

V = {u ∈ span{Mi1,i2,...id(ξ)} ◦ F
−1, u|ΓD

= 0}, (11)

where i1 = 1..m1, i2 = 1..m2, ...id = 1..md and Mi1,i2,...id(ξ) can be a tensor product of NURBS,

B-splines, T-splines, PHT-splines, etc.

The problem then consists in finding uG ∈ V such that for any vG ∈ V

a(uG, vG) = l(vG) (12)

The solution is sought in the form

uG(x) =

M
∑

β=1

UG
β Mβ(x), (13)

where Mβ(x) = Mi1,i2,...id(ξ) ◦ F−1, M = m1m2 · · ·md and UG
β are unknown control variables.

Then eq.(12) is transformed into a linear system

Ku = f , (14)

where the stiffness matrix K and the force vector f are given by:

Kγβ = a(Mγ(x),Mβ(x)) (15)

fγ = l(Mγ(x)) (16)

and vector u consists of all unknown control variables UG
β .
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3.2. GIFT for Poisson’s equation.

In this section, we demonstrate applications of GIFT method for two-dimensional heat conduc-

tion problems, in which the computational domain is parameterized by a planar NURBS surface,

and the solution is sought in a different spline space. Although the presentation is done in the

bivariate case, the trivariate case follows identical principles.

We consider a two-dimensional Poisson’s equation with the homogeneous Dirichlet boundary

condition assigned on the entire boundary, i.e.

−∆u = f in Ω

u = 0 on ∂Ω
(17)

where Ω ∈ R
2, f(x) ∈ L2(Ω) : Ω → R is a given source term, and u(x) : Ω → R represents

the unknown solution. The boundary value problem (17) corresponds to the boundary value

problem described by eq.(1) if in eq.(2) aij(x) = δij , bj(x) = 0, c(x) = 0 i.e. A = −∆, and the

corresponding weak form is given by eq.(5),(6) as:

a(u, v) =

∫

Ω

∇u · ∇vdΩ,

l(v) =

∫

Ω

f(x)v(x)dΩ

(18)

The solution is sought in the form (13). Substituting u = Mγ(x), v = Mβ(x) into (18) we arrive

to the matrix equation:

Ku = f , (19)

where the stiffness matrix Kγβ and force vector fγ are given by:

Kγβ =

∫

Ω

∇Mγ(x) ∇Mβ(x) dΩ

=

∫

P

B(ξ)T ∇ξ Mγ(ξ)∇ξ Mβ(ξ)B(ξ)det|J(ξ)|dξ

(20)

fγ =

∫

Ω

f(x) Mγ(x) dΩ =

∫

P

f(ξ) Mγ(ξ) det|J(ξ)|dξ, γ, β = 1, ...,M

The Jacobian J(ξ) corresponds to the parameterization of domain Ω, as given by eq.(10) and

B(ξ) = J−1(ξ). Note, that these two matrices fully depend on the parameterization of the domain

and h-refinement, p-refinement and k-refinement are performed only on the solution space.
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In the following numerical examples we consider NURBS geometries, i.e. computational domain

Ω, consisting of points x = (x, y), is represented by a planar NURBS surface defined by a set of

control points Cα = cij and a set of N = nm basis functions:

Nα(ξ) =
wijNi(ξ)Nj(η)

∑n
i=1

∑m
j=1wij Ni(ξ)Nj(η)

, i = 1, 2, ...n, j = 1, 2, ...m, (21)

where ξ = (ξ, η) ∈ P and

F (ξ) = (x(ξ, η), y(ξ, η)) =

∑n
i=1

∑m
j=1 wijcijNi(ξ)Nj(η)

∑n
i=1

∑m
j=1wij Ni(ξ)Nj(η)

,

where Ni(ξ), Nj(η) are classical B-spline basis functions associated with two knot-vectors:

Ξ = {ξ1, ξ2, ...ξn+p+1}, H = {η1, η2, ...ηm+p+1}

and wij are the weights of the corresponding control points cij .

In the following subsections, we demonstrate various numerical examples of (17), where repre-

sentation of the temperature field in various geometry-independent spline space leads to the better

accuracy of the solution.

3.3. Example of GIFT with polynomial B-splines: annulus.

The first example is an annulus region bounded by two concentric circles as shown in Fig. 3(a).

Here the source function is

f(x) =
8− 9

√

x2 + y2

x2 + y2
sin(2 arctan(y/x)),

and the corresponding exact solution for problem (17) is

u(x) = (x2 + y2 − 3
√

x2 + y2 + 2) sin(2 arctan(y/x))

as shown in Fig. 3(c).

3.3.1. Pre-processing: construction of the solution spline space.

We consider an annulus region bounded by two concentric circles, described by a quadratic C1

NURBS surface as shown in Fig.3(a) with 6×6 control points and knot vectors Ξ = [0, 0, 0, 0.04, 0.2, 0.36,

1, 1, 1] and H = [0, 0, 0, 0.04, 0.2, 0.36, 1, 1, 1] on the parametric domain presented in Fig. 3(d).

The corresponding knot lines on the NURBS patch are shown in Fig. 3(b), which leads to a non-

uniform sub-patch structure. In order to improve the accuracy and efficiency, we adopt the GIFT
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Annulus example with different knot line structures: (a) NURBS computational domain with control

mesh; (b) knot elements; (c) exact solution; (d) IGA parametric domain; (e) IGA solution with NURBS; (f) error

color-map of IGA solution; (g) parametric domain of the solution field in GIFT; (h) GIFT solution with polynomial

B-spline; (i) error color-map of the GIFT solution with the same scale as that in (f).
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method, in which the solution is sought in the quadratic polynomial tensor-product B-spline space,

formed by uniform knot vectors Ξ = [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1] and H = [0, 0, 0, 0.25, 0.5, 0.75, 1,

1, 1] as shown in Fig. 3(g). That is, the solution and the computational domain are parameterized

on P = [0, 1]× [0.1] but the knot structures are different.

3.3.2. Post-processing: visualization and error comparison

In the proposed GIFT method, the visualization of the simulation results is performed by

combining the geometrical map F (ξ) with the GIFT solution UG(ξ). That is, for a sampling point

ξ in the parametric domain, we compute the 3D coordinates (F (ξ), UG(ξ)), and the color-map

over the computational domain F (ξ) is rendered according to the physical attribute UG(ξ).

In what follows we consider numerical results obtained by GIFT with those, obtained by

quadratic NURBS-based IGA. From the error color-map shown in Fig. 3(f) and Fig. 3(i) , we can

find that by using uniform partition of the parametric domain, GIFT method leads to improved

accuracy than IGA for the same parameterization of the computational domain.

Quantitative data of the solution field for the annulus example in Fig. 3 is summerized in Table.

2. The quantitative data for the computational domain is the same as the solution information

in the IGA method. Fig. 4 shows the comparison of the convergence results between the IGA

method using quadratic NURBS and GIFT method using quadratic B-spline field with different

knot structure during h−refinement.

3.4. Example of GIFT with NUAT B-splines: L-shaped plate.

The second example is the classical L-shape problem, in which the source function is defined

as

f(x) = 2π2 sin(πx) sin(πy),

and the exact solution for problem (17) is

u(x) = sin(πx) sin(πy)

as shown in Fig. 5(c).

3.4.1. Pre-processing: construction of the solution spline space.

Here the L-shape computational domain in Fig. 5(a) is represented as a planar C1 quadratic

B-spline surface with 6× 10 control points, which is a particular case of NURBS parameterization
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Table 2: Quantitative data of solution field for annulus example shown in Fig. 3. SSSF: spline space of solution field

; # DegF.: degree of the solution field; # ConF.: number of control variables in the solution field; Ξ: knot vector in

ξ-direction of the solution space; H: knot vector in η-direction of the solution space; MeanErr: mean value of error

at sampling points; MaxErr: maximum value of error at sampling points.

IGA GIFT

SSSF NURBS polynomial B-spline

# DegF. 2× 2 2× 2

# ConF. 6× 6 6× 6

Ξ [0, 0, 0, 0.04, 0.2, 0.36, 1, 1, 1] [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1]

H [0, 0, 0, 0.04, 0.2, 0.36, 1, 1, 1] [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1]

MeanErr 0.0022 0.001

MaxErr 0.0141 0.0065

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

 

 

 IGA  with quadratic NURBS
 GIFT with  quadratic B−spline field

Degree of freedom

1

3

L2

error

Fig. 4. Comparison of the convergence results with the IGA method using quadratic NURBS and GIFT method

using cubic B-spline spaces during h−refinement in Fig. 3.
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Table 3: Quantitative data of solution field in the L-shape example illustrated in Fig. 5. SSSF: spline space of

solution field; # DegF.: degree of the solution field; # ConF.: number of control variables in the solution field ; Ξ:

knot vector in ξ-direction of the solution space; H: knot vector in η-direction of the solution space; MeanErr: mean

value of error at sampling points; MaxErr: maximum value of error at sampling points.

IGA GIFT

SSSF polynomial B-spline NUAT B-spline

# DegF. 2× 2 2× 2

# ConF. 10× 6 10× 6

Ξ [0, 0, 0, 0.02, 0.1, 0.12, 0.2, 0.22, 0.3, 0.44, 1, 1, 1] [0, 0, 0, 0.01, 0.07, 0.1, 0.2, 0.25, 0.38, 0.64, 1, 1, 1]

H [0, 0, 0, 0.04, 0.2, 0.36, 1, 1, 1] [0, 0, 0, 0.02, 0.2, 0.46, 1, 1, 1]

MeanErr 0.0321 0.0209

MaxErr 0.1475 0.1107

(3.2) with all weights wij = 1. As the expression for the source function involves the trigonometric

functions, we propose to seek the GIFT-solution in the spline space of NUAT B-splines [49] spanned

by {1, t, ..., tk−3, cos t, sin t} in which k is an arbitrary integer larger than or equal to 3. For the

definition of NUAT B-splines with degree n, please refer to Appendix I. In this example we have

chosen NUAT B-splines of degree 2 in the space spanned by {1, cos t, sin t} with the knot structure

shown in Fig. 5(g), which is different from the knot structure of B-spline parameterization of the

computational domain illustrated in Fig. 5(d).

3.4.2. Post-processing: visualization and error comparison.

The solution obtained by IGA method using polynomial B-splines is presented in Fig. 5(e),

and the solution obtained by GIFT method using NUAT B-splines is shown in Fig. 5(g). Improved

accuracy is achieved by GIFT method from the error colormap shown in Fig. 5(f) and Fig. 5(i).

Table. 3 shows the quantitative data of the solution field for the L-shape example in Fig. 5.

The comparison of the convergence results between the IGA using B-spline solution space and

GIFT with NUAT B-spline solution space during h−refinement is presented in Fig. 6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. L-shape example: (a) B-spline computational domain with control mesh; (b) knot elements; (c) exact

solution; (d) IGA parametric domain; (e) IGA solution with B-spline form; (f) error color-map of IGA solution; (g)

parametric domain of the solution field in GIFT; (h) GIFT solution with NUAT B-spline; (i) error color-map of the

GIFT solution with the same scale as that in (f).
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 IGA with polynomial B−splines
 GIFT with NUAT B−splines

3
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Degree of freedom

L2

error

Fig. 6. Comparison of the convergence results with the IGA method using quadratic B-spline and GIFT method

using quadratic NUAT B-spline field during h−refinement in Fig. 5.

4. Adaptive GIFT with PHT-splines

In this chapter we study adaptive GIFT approach with NURBS geometry and PHT-splines

solution space.

4.1. PHT-splines

PHT-splines proposed by Deng et al. [17] are piecewise bicubic polynomials over a hierarchical

T-mesh, which inherit the advantageous properties of T-splines. Unlike T-splines, PHT-splines are

non-rational polynomial splines, and the refinement algorithm of PHT-splines is local and simple.

The blending functions of PHT splines are linearly independent, an important property needed for

finite element approximations.

A T-mesh is a rectangular partition of a planar domain with grid lines parallel to the boundary

of the domain which allows T-junctions. In T-meshes, the end points of each grid line must lie on

two other grid lines, and each cell or facet in the grid must be a rectangle. If a vertex is inside of

the domain, it is called an interior vertex, otherwise, it is called a boundary vertex. There are two

types of interior vertices, namely crossing vertices(i.e., it possesses valency 4) and T-vertices with

valency 3, respectively.
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Let Ω ∈ R
m be a rectangular domain with boundary ∂Ω. Denote by T = ∪K a hierarchical

T-mesh over domain Ω, where K is a cell of the mesh. We further define a spline space

S(p, q, α, β,T) := {s(ξ, η) ∈ Cα,β(Ω)|s(ξ, η) ∈ Ppq for any element K ∈ T},

where Ppq is the space of all the bivariate polynomials with degree (p, q), and the space Cα,β(Ω)

consists of all continuous bivariate spline functions up to order α in the ξ-direction and order β

in the η-direction. The dimension formula for the spline space S(p, q, α, β,T), with p ≥ 2α + 1

and q ≥ 2β + 1, has already been provided in [17]. For the cubic PHT-spline space, the dimension

formula can be written as

Dim S(3, 3, 1, 1,T) = 4(V b + V +)

where V b stands for boundary vertices and V + stands for interior crossing vertices. From the

dimension formula, four basis functions are associated with each basis vertex (boundary vertex or

crossing vertex), and they can be built with a hierarchical approach.

For the initial level, i.e., level 0 denoted as T0, the standard bi-cubic tensor-product B-splines

are used as basis functions. For simplicity, we set the initial mesh to be a uniform rectangu-

lar grid. Suppose that the grid is [ξ1, ξ2, ξ3, ..., ξs] × [η1, η2, η3, ..., ηt]. Since all the vertices are

either crossing vertices or boundary vertices, there are four basis functions to be defined on

any vertex (ξi, ηj). Each basis function at (ξi, ηj) has support [ξi−1, ξi+1] × [ηj−1, ηj+1]. These

four basis functions are defined to be B-spline basis functions with knots [ξi−1, ξi−1, ξi, ξi, ξi+1]

× [ηj−1, ηj−1, ηj , ηj , ηj+1], [ξi−1, ξi, ξi, ξi+1, ξi+1] × [ηj−1, ηj−1, ηj , ηj , ηj+1], [ξi−1, ξi, ξi, ξi+1, ξi+1] ×

ηj−1, ηj , ηj , ηj+1, ηj+1], [ξi−1, ξi−1, ξi, ξi, ξi+1] × [ηj−1, ηj , ηj , ηj+1, ηj+1], respectively, such that their

function values and derivatives vanish outside [ξi−1, ξi+1]× [ηj−1, ηj+1].

In the GIFT framework with PHT-splines, the computational domain is in NURBS space

whereas the solution field is in PHT-spline form. Firstly, we construct the parametric domain of

the PHT-spline model to represent the solution field. We can then get the analytic expression

of the initial solution field, in which the unknown control variables can be solved by the method

presented in 3.2. By using an a-posteriori error estimation technique, the supporting cell with

large errors in the parametric domain of the solution field can be marked, and local h-refinement

is performed only on the solution field. Several local refinement steps can be performed until the

desired error level is achieved.
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(a) (b)

(c)

Fig. 7. Parametric T-mesh T construction for GIFT with PHT-splines: (a) case of a single NURBS patch; (b)

case of multi-patch in which the parametric domain of each patch forms a quad-mesh; (c) other cases in which

reparameterization is required.

4.2. Pre-processing

As a first step, we should construct a parametric domain of the solution field. This can be

seen a preprocessing stage. Depending on the parametric domain of the NURBS patches under

consideration, two kinds of operations are proposed in this step:

• If the computational domain is made of a single NURBS patch (Fig. 7(a)) or multi-patches

in which the parametric domain of each patch forms a quad-mesh as presented in Fig. 7(b),

then the parametric domain of the solution field is constructed as the partition-mesh formed

by the knot lines on the parametric domain of the NURBS patches.

• For other cases, such as the examples shown in Fig. 7(c), we should construct the initial para-

metric mesh T according to the topological connection information of the NURBS patches.

A reparameterization operation should be performed in this case as described below.
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Here we present an example to show the reparameterization method. Suppose that the patch

S1(u, v) in Fig. 7(c) has parametric domain P1 = [a1, b1]×[c1, d1], the patch S2(u, v) has parametric

domain P2 = [a1, b1]× [c2, d2], and the patch S3(u, v) has parametric domain P3 = [a3, b3]× [c1, d1].

Then according to the topological information of all three patches, the parametric domain for

the PHT-spline solution field should be constructed as shown in Fig. 7(c). In other words, the

parametric domain of S1(u, v) does not change, while the parametric domain of S2(u, v) changes

to [a1, b1] × [d1, d1 + (d2 − c2)], and the parametric domain of S3(u, v) changes to [b1, b1 + (b3 −

a3)]× [c1, d1].

In order to maintain the geometry of the patches during the transformation of parametric

domain, a reparameterization technique should be adopted to obtain the new parametric represen-

tation of each patch. Suppose that the initial parametric domain of S(u, v) is [a, b]× [c, d], we can

then use the following parameter transformation to achieve a new parameterization F (ξ, η) with

parametric domain [e, f ]× [g, h]

u(ξ, η) =
1

f − e
[(f − ξ)a+ (ξ − e)b] (22)

v(ξ, η) =
1

h− g
[(h− η)c+ (η − g)d] (23)

Remark. There is actually no need to derive the explicit parametric representation of the reparam-

eterized surface F (ξ, η). The derivative information required in the solving stage, as shown in (20),

can be evaluated from the original parameterization S(u, v) through the Jacobian transformation

matrix.

After the planar T-mesh T is constructed as the parametric domain of PHT-splines, we can

write the initial formula of the solution field in PHT-spline form as follows,

T (ξ) =
4n
∑

i=1

TiMi(ξ), (24)

where n is the number of basis vertices on T, Ti, i = 1, 2, · · · , 4n, are the control variables to be

solved.

4.3. Solving and local refinement

After constructing PHT-spline representation of the solution field, the control variables in (24)

is obtained by solving the heat-conduction problem as introduced in Section 3.2 .

19



Algorithm 1 Local refinement scheme in GIFT using PHT-splines

Input: Planar NURBS parameterization F (ξ, η) of computational domain Ω

Output: PHT-spline solution field

1: Compute the PHT-spline solution T (ξ, η) of model problem (17) over the given NURBS pa-

rameterization F (ξ, η) by GIFT .

2: Calculate the local error indicator eK patch by patch on the solution field (See Section 4.3.1)

3: Mark the parametric cells to be refined by a mean-value marking algorithm (See Section 4.3.2)

4: Subdivide the marked cells into four sub-celles on the parametric domain of the PHT-spline

field.

5: Construct the PHT-spline basis functions over the refined T-mesh of the parametric domain.

6: Compute the new solution field T (ξ, η) in the refined PHT-spline space.

7: Repeat the above refinement steps until the estimated error is less than a given threshold.

In order to obtain a solution with required accuracy, refinement operations are often needed to

increase the approximation power of the solution space locally and thereby optimize the computa-

tional expense required for a given accuracy level. Contrary to the classical isogeometric analysis,

the refinement operation in GIFT is only performed on the solution field, while the parameteri-

zation of the computational domain remains the same during the refinement process. Choosing a

PHT-spline approximation offers a natural local refinement. Local refinement is performed on the

sub-patches of the solution field on which the local error indicator is larger than a given marking

threshold. The corresponding working flow is summerized in Algorithm. 1.

4.3.1. Residual-based error indicator

Suppose that Th is the PHT-spline solution of the problem (17) by using the GIFT method,

and T is the exact solution. Let eh = T − Th be the error of the GIFT approximation Th. As

in GIFT the refinement operation is only performed on the solution field, in order to determine

the parametric cell to be refined, we should give an error indicator on each parametric cell of

the T-mesh in the parametric domain of the solution field rather than an error indicator on the

sub-patch with respect to the knot span on the NURBS parameterization F (ξ, η).
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Algorithm 2 Marking Algorithm. (Mean-value strategy)

Input: Parametric T-mesh T of solution field, error estimates eK for all parametric cells K ∈ T.

Output: A subset T̃ of marked parametric cells to be refined

1: Compute

eT,mean =

∑

K∈T
eK

N
,

where N is the number of parametric cells in T.

2: If

eK ≥ eT,mean

mark K for refinement and put it into the set T̃.

Suppose that K is the parametric cell on the T-mesh T of the parametric domain P for the PHT-

spline solution field Th. The residual-based a posteriori error estimate ‖eh‖
2
P

over the parametric

domain P proposed in [52] can be rewritten as follows:

‖eh‖
2
P ≤ C

∑

K∈T

h2K‖f(x) + ∆Th(x)‖
2
L2(K) (25)

where x = F (ξ, η) = (x(ξ, η), y(ξ, η)), C is a positive constant, and hK is the diameter of the

sub-patch in the NURBS parameterization F (ξ, η) of Ω with respect to the parametric cell K in

the parametric domain P.

From (25), we can obtain the local error indicator eK on each parametric cell K as follows

eK = h2K‖f(x) + ∆Th(x)‖
2
L2(K). (26)

If the parametric cell K is written as [ξ0, ξ1]× [η0, η1], we have then

hK =

∫ ξ1

ξ0

F (ξ, η0)dξ +

∫ ξ1

ξ0

F (ξ, η1)dξ +

∫ η1

η0

F (ξ0, η)dη +

∫ η1

η0

F (ξ1, η)dη. (27)

4.3.2. Marking strategies

The local refinement in GIFT requires a marking strategy to decide which elements should

be refined. That is, we should determine a subset T̃ of the parametric T-mesh T consisting of all

those parametric cells K that must be refined due to too large an eK value. We use the mean-value

strategy shown in Algorithm. 2 to determine the set T̃.

For some physical problems, wild distribution of estimated errors may be observed with (I)

very few cells having extremely large estimated errors, (II) some cells having extremely small
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estimated errors, and (III) other cells having estimated errors that are much smaller than that

of (I) while much larger than that of (II). We group the cells into three groups for (I), (II) and

(III), respectively. In this case, if only the parametric cells in the first group will be refined by

using the above marking algorithm, it would deteriorate the performance of the local h-refinement

method. In this paper, a simple modification is proposed. For a given small percentage ǫ, the

ǫ% parametric cells are firstly marked with largest estimated error for refinement and then the

mean-value marking approach is further applied to the remaining parametric cells.

4.3.3. Local refinement

In order to achieve accurate and efficient simulation results, local refinement should be per-

formed on the marked parametric cells. In this part, the refinement rules of PHT-splines will be

introduced.

Suppose that the T-mesh on the parametric domain at level k is denoted by Tk, and the PHT-

spline basis functions on Tk are constructed as Mk
j , j = 1, ..., dk, then the basis functions on Tk+1

can be constructed as follows: some basis functions are from the modifications of the former basis

functions on Tk, and others are from the new basis functions associated with the new basis vertices

of Tk+1. We represent a PHT-spline basis function by specifying 16 Bézier coefficients in each cell

within the compact support of the basis function. When a cross vertex is added in a cell, the cell

can be refined into four subcells. Each subcell supports the original basis function, and also has 16

Bézier coefficients. Five new vertices are obtained by adding a cross vertex, and some new basis

vertices are also introduced. Hence, for the old basis functions, all the Bézier coefficients associated

with the new basis vertices should be reset to zero. The new basis vertices are introduced from two

sources, i.e., some are crossing vertices while others are T-vertices from the previous level. The

later become basis vertices as the addition of cross points to the neighboring cells. The new basis

functions can be further constructed over their supporting cells as in the initial level. For further

details, the readers can refer to [17].

Note that in GIFT local refinement is only performed on the solution field, hence we only need

to update the PHT-spline basis functions on the local-refined T-mesh for the new solution field.

It is unnecessary to derive the updated control variables from the old control variables after local

refinement, and the new control variables for the refined solution field can be obtained by re-solving

the PDE in the new PHT-spline space over the refined T-mesh.
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Fig. 8. L-shape example with local refinement. The first row shows the C0 two-patch computational domain

(left) and IGA error color-map (right) on the computational domain. From the second row to the fifth row, we show

the T-mesh on parametric domain (left) of GIFT method using PHT-spline and the corresponding error color-map

(right) on parametric domain during local refinement. 23
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Fig. 9. Comparison of the convergence results with IGA method using NURBS and GIFT method using PHT-

splines in Fig. 8.

4.4. Examples

In this subsection, we present two examples on heat conduction (17) with source function

f(x) = 2π2 sin(πx) sin(πy)

to illustrate the effectiveness of the proposed GIFT method.

The multi-patch L-shape example with exact solution

u(x) = sin(πx) sin(πy)

over the computational domain is presented in Fig. 8. The first row shows the C0 computational

domain with two quadratic NURBS patches (left) and the IGA error color-map (right) on the

computational domain. From the second row to the fifth row, we show the T-mesh on the para-

metric domain (left) of GIFT method using C1 PHT-spline solution field and the corresponding

exact error color-map (right) on the parametric domain with different scales during local refine-

ment operations. Different from the IGA method, for this multi-patch example, GIFT method

with cubic PHT-spline can achieve C1 continuity automatically without special treatment on the

C1 constraint conditions. As shown in Fig. 9, it is seen that the convergence rate of GIFT with

PHT-spline is higher than that of isogeometric analysis using NURBS.
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Fig. 10. GIFT for an example where no exact solution is available using local refinement with PHT-splines. The

first row shows the computational domain with the control mesh (left) and knot patches (right). From the second

row to the fourth row, we show the T-mesh in the parametric domain (left) and the corresponding color-map of error

measurement (right) with different scales during local refinement operations.

The second example for which an exact solution is unavailable is shown in Fig. 10. The

computational domain with control mesh (left) and knot patches (right) are shown in the first

row. From the second row to the fourth row, the T-mesh in the parametric domain (left) and the

corresponding color-map of error measurement (right) with different scales during local refinement

operations are shown. As the exact solution is unavailable, we adapt the method proposed in [52]

to compute the error measurement.

5. Conclusion

In this paper, a new field approximation method called GIFT in which the spline spaces of the

solution field and the geometry can be chosen independently is proposed. In the proposed method,
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for a given computational domain with NURBS form, the solution field can have a different spline

representation, such as PHT-splines, T-splines and generalized B-splines. The main principle and

features of the proposed method is described, and adaptive GIFT with PHT-spline solution is also

proposed. Several examples are shown to illustrate the effectiveness of the proposed method.

This paper could be the basis for the following research directions:

• Detailed studies of the stability and convergence properties of the method for various types

of boundary and field approximation.

• Coupling of spline approximations for the geometry with non-spline approximation for the

field variables, including meshless methods. It would be particularly attractive to work with

Maximum Entropy Shape functions [43, 44, 45].

• In this paper, we assumed the field approximation spline space to be fixed, albeit indepen-

dently of the geometry approximation. It would be desirable for sensitivity analysis, e.g.

through adjoint methods to drive the automatic selection of the most suitable field spline

space based on goal-oriented error estimators, e.g. [41, 42].

• GIFT for isogeometric shape and topology optimisation [48], where the constraint of using

the same space for the geometry and the approximation is particularly undesired as described

in [23] and [24].

• Extension to other partial differential equations where the ability to locally enrich the field

approximation independently of the geometry is particularly important (crack growth or

other free boundary problems).

• Parallelization on GPUs is particularly attractive if the field and geometry approximations

can be built on a hierarchical oct-tree structure. Then Jacobians can be computed at selected

integration points, and pre-computing can be performed to accelerate the simulation.

• As implemented here, the proposed method based on a PHT-spline solution field is only

suitable for “regular” domains, in which the control structure formed by the control meshes

of each patch has no extraordinary inner vertices. The cases with complex computational

domains, will be discussed in the forthcoming paper.

• GIFT within an isogeometric boundary element framework.
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Appendix.I NUAT B-splines

In this part, we will review the definition of NUAT B-splines [49].

Let T be a given knot sequence {ti}
+∞

i=−∞
with ∆ti = ti+1 − ti ∈ [0, π). Let Ωk[T ] denote the

collection of all algebraic-trigonometric spline of order k in the span of {1, t, · · · , tk−3, cos t, sin t},

k ≥ 3. The basis of Ωk[T ] is called a non-uniform algebraic-trigonometric B-splines (NUAT B-

spline) basis of order k if the basis functions satisfy the properties of nonnegative, partition of

unity and linear independence.

To construct a NUAT B-spline basis of Ωk[T ] when k ≥ 3, we first define a set of functions

over Ω2[T ]

Ni,2(t) =



















sin(t− ti)/ sin(ti+1 − ti), ti ≤ t ≤ ti+1

sin(ti+2 − t)/ sin(ti+2 − ti+1), ti+1 ≤ t ≤ ti+2

0, otherwise

(28)

For k ≥ 3, Ni,k(t) are defined recursively by

Ni,k(t) =

t
∫

−∞

(δi,k−1Ni,k−1(s)− δi+1,k−1Ni+1,k−1(s)) ds, k ≥ 3, i = 0,±1, . . ., (29)

where δi,k :=





+∞
∫

−∞

Ni,k(t)dt





−1

.

After constructing NUAT B-spline basis function, the NUAT B-spline surfaces can be defined

as

S(u, v) =
n
∑

i=1

m
∑

j=1

Ni,k(u)Nj,h(v)Pi,j , u ∈ [tk, tn+1] , v ∈ [th, tm+1] ;n ≥ k,m ≥ h.

where Ni,k(u) and Nj,h(v) are NUAT B-spline basis functions, Pi,j are control points.
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