. )

UNIVERSITE DU il‘lpl

LUXEMBOURG

Université du Luxembourg Ecole doctorale IAEM Lorraine
PhD-FSTC-2011-10
The Faculty of Science, Technology and Communication

DISSERTATION

Defense held on 286/2011 in Luxembourg
to obtain the degree of

DOCTEUR DE L'UNIVERSITE DU LUXEMBOURG
EN INFORMATIQUE

ET

DOCTEUR DE L’INSTITpT NATIQNAL POLYTECHNIQUE DE LORRAINE
SFECIALITE: INFORMATIQUE
by
Geéerard WAGENER

Born on 18 March 1982 in Luxembourg (Luxembourg)

Self-Adaptive Honeypots Coercing and Assessing Attacker
Behaviour

Dissertation defense committee

Prof. Dr. Ulrich Sorget Chairman
Professor, Université du Luxembourg

Prof. Dr. Marc Dacier, Deputy chairman and reviewer
Senior Director at Symantec

Prof. Dr. Thomas EngeSupervisor
Professor, Université du Luxembourg

Dr. Hab. Radu StateMember
Researcher, Université du Luxembourg

Prof. Dr. Eric Filiol, Member and reviewer
Directeur du laboratoire de virologie et de cryptologiegiionnelles ESIEA Ouest

Dr. Hab. Olivier Festor 2nd supervisor
Research Director at the INRIA Nancy - Grand Est



Abstract

Information security communities are always talking abattiackers” or “blackhats”, but in reality very little

is known about their skills. The idea of studying attackemndsors was pioneered in the early nineties. In the
last decade the number of attacks has increased expoheatidlhoneypots were introduced in order to gather
information about attackers and to develop early-warnygiesns. Honeypots come infidirent flavors with
respect to their interaction potential. A honeypot can bg kestrictive, but this implies only a few interactions.
However, if a honeypot is very tolerant, attackers can duiekhieve their goal. Choosing the best tradie-o
between attacker freedom and honeypot restrictions isecttahg. In this dissertation, we address the issue of
self-adaptive honeypots that can change their behavioluaadattackers into revealing as much information
as possible about themselves. Rather than being allowaaystmcarry out attacks, attackers are challenged
by strategic interference from adaptive honeypots. Themhsion of the attackers’ reactions is particularly
interesting and, using derived measurable criteria, ttaeler's skills and capabilities can be assessed by the
honeypot operator. Attackers enter sequences of inputscomaromised system which is generic enough to
characterize most attacker behaviors. Based on theségiesonve formally model the interactions of attackers
with a compromised system. The key idea is to leverage ghemrdtic concepts to define the configuration
and reciprocal actions of high-interaction honeypots. \Akehalso leveraged machine learning techniques for
this task and have developed a honeypot that uses a variaginédrcement learning in order to arrive at the
best behavior when facing attackers. The honeypot is capdtadopting behavioral strategies that vary from
blocking commands or returning erroneous messages, rghd insults that aim to irritate the intruder and
serve as a reverse Turing Test distinguishing human atmél@m machines. Our experimental results show
that behavioral strategies are dependent on contextuahygders and can serve as advanced building blocks
for intelligent honeypots. The knowledge obtained can leel @bther by the adaptive honeypots themselves or
to reconfigure low-interaction honeypots.



Acknowledgements

At first and foremost | want to thank the people who enabletingetip this PhD framework. | want to thank
Prof. Dr. Thomas Engel and Dr. Hab. Olivier Festor acting §sRhD supervisors. This framework is inte-
grated in an industrial context and would not have been plesgiithout the continuous support of Alexandre
Dulaunoy and Thomas Schneider of the satellite operatodraednet Service Provider SES. An essential fi-
nancial role was played by the FNR and | want to thank the wRbIR team for their help. Besides the strong
industrial partner, two universities have been involvethia project namely the university of Luxembourg and
INPL Nancy. | also had the opportunity to interact with the BPANES team headed by Olivier Festor of the
Loria laboratory. | want to thank all the organizationalffeom each entity for helping me in this complex
setup. The results of these research activities are stronfjfienced by the fruitful and endlessly long dis-
cussions with Radu State and Alexandre Dulaunoy to hear dlgglitional scientific and technical advice. |
also want to thank myf&ice colleagues at SES, the university of Luxembourg and thia ladboratory for their
constructive discussions. | want especially thank Doninialop of the university of Luxembourg for his thor-
ough proof reading of my documents. | also want to thank thieweers Eric Filiol and Marc Dacier for their
useful suggestions. Besides strong professional sugdpiap benefited from a devoted social support during
my professional activities. | want to thank my mother, my twothers and my sister for their encouragement.
| am also in debt to my friends during this period, and esgpigcmy girlfriend, for unstinting understanding
and patience.

"The present project is supported by the National Reseauncid JEuxembourg”

aides a la Fonds National de la
formation
recherche Luxembourg



In honor of my father who died in 2001.






Contents

1 Reésunt en francais

1.1 Introduction . . . . . . . . e e e e e e
1.2 EBtatdelart . . . ... .. o
1.2.1 Potsdemiel . . . . . . . e
1.2.2 Apprentissage danslesjeux . . . . . . . . . .. e
1.3 Contributions . . . . . . . . e e e e e
1.3.1 Modélisation du comportement des attaquants . . . . . . . .. ... ... ....
1.3.2 Apprentissage dans les jeuxde potdemiel . .. ... ... ... ........
1.3.3 Opérationdespotsdemiel . . . . .. .. .. .. . . . ...
1.3.4 \Validation expérimentale . . . . . . . . . . ... e e
1.4 Conclusion ettravaux futures . . . . . . . . . . . L e

2 Introduction

2.1 Context . . . . . e e e e
2.2 Problem Statement . . . . . . .. e e e
2.3 Contributions . . . . . . .. e e e e e e e e e

| State of the art

3 Honeypots

3.1 HoneypotEvolution . . . . . . . . . . . . e e e
3.2 Honeypot Classifications . . . . . . . . . . . . . . e e
3.3 Honeypot Research Activities . . . . . . . . . . . e e
3.3.1 Attacker Observation and Information Gathering e
3.3.2 Honeypot Management . . . . . . . . ... e e e
3.3.3 Distributed Honeypot Operation . . . . . . . . . . . . . . . uu. ...,
3.3.4 Honeypot Data Analysis . . . . . . . . . . . . . . . e e
3.4 Detecting Honeypots . . . . . . . . . . e e e e
3.5 Summary ... e e
3.6 Limitations . . . . . . . .. e e e

4 Learning in Games

4.1 GameTheory . . . . . . o e
4.2 ReinforcementLearning . . . . . . . .. e
4.2.1 Markov Decision Process . . . . . . . . . e
4.2.2 Learning Agents . . . . . . ... e e e
4.3 Multi-Agent Learning Founded on Game Theory . . . . . . . ... o 0 0 L.
4.4 SUMMAIY . . . o ot e e e e e e e e e

© o UlWwwpRHF

=R
N R O



Vi

CONTENTS

5

Contributions

Modeling Adaptive Honeypots
5.1 Modeling Attacker Behavior
5.1.1 Hierarchical Probabilistic Automaton
5.1.2 Attacker Responses
5.2 Honeypot Behaviors
5.3 Summary

Learning in Honeypot Games

6.1 Game Theory and High-Interaction Honeypots
6.1.1 Defining Payfls
6.1.2 Computing Payfs with Simulations
6.1.3 Leveraging Optimal Strategy Profiles

6.2 Learning Honeypots Operated by Reinforcement Learning
6.2.1 Environment
6.2.2 Honeypot Actions
6.2.3 Rewards
6.2.4 Learning Agents

6.3 Fast Concurrent Learning Honeypot
6.3.1 Attacker and Honeypot Rewards
6.3.2 Learning Honeypot and Attackers

6.4 Summary

6.5 Limitations

Honeypot Operation
7.1 Netflow Analysis
7.2 Network Activity Identification
7.3 Full Network Capture Analysis
7.3.1 Network Forensic Tool Analysis
7.4 User Mode Linux Tests
7.5 Invivo Malware Analysis
7.5.1 Tree- and Graph-based kernels
7.5.2 The Process Tree Model
7.5.3 The Process Graph Model
7.6 Implementation of Adaptive Honeypots
7.6.1 Adaptive Honeypot - Framework
7.6.2 Component Description
7.7 Conclusions
7.8 Limitations

Experimental Evaluations

8.1 Recovering High-Interaction Honeypot Traces
8.2 Recovering Low-Interaction Honeypot Traces
8.3 Computing Nash Equilibria
8.4 Reinforcement Learning Driven Honeypots
8.5 Honeypot Comparison
8.6 Fast Concurrent Learning
8.7 Conclusions

61



CONTENTS

Vii

9 Conclusions and Perspectives
9.1 Summaryofthethesis . . . . . . . . . . . . e
9.2 Insights . . . . . . e e e e e e
9.3 Limitations . . . . . . . . e e e e e
9.3.1 SystemAtacks . . . . . . . e e e
9.3.2 Behavioralattacks . . . . . .. . ... e
9.4 Future Work . . . . . . L e
9.4.1 Alternative Honeypot Designs and Feature Extensions. . . . . . ... ... ...
9.4.2 Additional Honeypot - Attacker SystemGames . . . . . ...... . . .. ... ...

A Vulnerability Measurements

B Quantitative Publication Analysis
B.1 Trend Analysis . . . . . . . . . @ . e e e e e
B.2 Publication Measurements . . . . . . . . . e e e

C Honeypot Operation
C.1 Forensic Tool Exploits . . . . . . . . . . . . . . e

D Experimental Evaluations
D.1 Modification of the Linux Authentication Modules . . . . ... .. . ... ... ......
D.2 Kernel Modifications . . . . . . . . . . . e e e e
D.3 Message Exchange . . . . . . . . . . . . . .. e

133
133
134
135
135
136
136

137
137

155

157
157
157

159
159



viii CONTENTS




List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

Vulnerability Reports Published by MITRE . . . . . . . ... ... ... .. ....... 19
System Attack Hierarchy . . . . . . . . . . . e e 19
Chapter Organization . . . . . . . . . . 0 e e 25
SearchiIndex Trend . . . . . . . . . . . . e 31
Scientific Publications about Honeypots . . . . . . . .. . ... .. .. .. .. .. ... 31
Scientific Publications about Low- and High-interaatidoneypots . . . . . ... ... ... 38
Extensive Form Game . . . . . . . . . . . e e 49
Reinforcement Learning Problem . . . . . . . . . . ... 53
Full Backup Representation . . . . . . . . . . . . . . e 55
Adaptive Heuristic Critic . . . . . . . . . . e e e 57
Overview of the Model Structure of Adaptive Honeypots .. ... . . . . .. .. ... .... 65
Honeypot Hierarchical Probabilistic Automaton . . . . . .. . ... ... ... ...... 68
Recovering Transition Frequencies . . . . . . . . . . . . i e 68
Process Tree . . . . . . . e e e e 70
Process Vectors Recovery . . . . . . . . . o e e e 71
Learning in Games - Structure . . . . . . . . . . . e e 75
Honeypot Game . . . . . . . . . . . e e e 77
Reinforcement Learning Overview . . . . . . . . . . e e 81
Overview of Honeypot Operation . . . . . . . . . . . o 0 i e e 92
Aguri Profile Representation . . . . . . . . . . . e 93
PeekKernelFlow - Architecture . . . . . . . . . . . ... 95
Visualization of Aguri Profile Similarities . . . . . . . . ... ... ... ... ... .... 96
Polar Attack Representation . . . . . . . . . . . . . e e e 97
Detecting Corrupted Streams . . . . . . . . . . . . e e e 101
Fragroute - Attacks - Setup . . . . . . . . . e e 103
PCAPBomb-Design . . . . . . . . . . e e 105
PCAP Bomb - Proof of ConceptinBash . . . . . ... .. ... ... . ... ...... 105
System Call of Death - Proof-of-Concept . . . . . . . . . . .. . . .. .. .. 106
Kernel Qutput . . . . . . . . . e e e e 106
Example of aProcess Tree . . . . . . . . i i i e e e e 110
ExampleofaGraph Model . . . . . . . . . . e 111
AHA - Architecture . . . . . . . . . e e e e 113
Reply Message Structure . . . . . . . . . . e 114
Recovering Attacker SESSIONS . . . . . . . . . e e e 117



LIST OF FIGURES

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Al

Cl1l
C.2

D.1
D.2
D.3

Evaluation of the SmoothingFactor . . . . . . .. .. ... ... ... ... ....... 121
Hali Deployment Architecture . . . . . . . . . . . . e 122
Process Vector Length Distribution . . . . . . . . . .. .. . . ... . o 124
Inputs Entered by Attackers afteraninsult . . . . . .. . ... oo 125
Action-value Evolution forthe Statewget . . . . . . .. .. ... ... .. ... ..., 127
Action-value Evolution for Statesudo . . . . . . . . ... ... L o 127
Honeypot CompariSons . . . . . . . . o . i e e e e e e 128
Q-value Evolution forthe Stafles . . . . . . . . .. .. .. . .. .. .. . 131
Q-value Evolution forthe Stateget . . . . . . . . . . . . . ... ... 131
Impact when the Honeypot Blocks or Substitutes Prodgggetutions . . . . . .. .. .. .. 131
Example ofaCVE Record . . . . . . . . . . . e 155
Triggering the PCAP bomb . . . . . . . . . . . . . e e 159
Hiding a Stream in Wireshark . . . . . . . . . . . ... e 159
PAMpatch . . . . . e e e e 162
Sysexecve HOOK . . . . . . . . e 163

ExportMessage . . . . . . . .. e e 164



List of Tables

3.1
3.2

4.1
4.2

51
5.2

6.1

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4

9.1

Honeypot Evaluation Grid . . . . . . . . . . . .. . . e 43
Codifications . . . . . . . . e e 44
Prisoner's Dilemma-Pafis . . . . . . . . . . . e 48
Reinforcement Learning - Operation Example . . . . . . . ...... . . .. .. .. .. ... 52
Attack Scenario on a High-Interaction Honeypot . . . . ...... . . . .. ... ... ... 66
Smoothed Transition Probabilities . . . . . . ... ... .. . ... ... . o 72
Sample Attacker Session . . . . . .. L e 83
Aguri Visualization Data Set . . . . . . . . . . . .. e 96
Valgrind Tests . . . . . . . . e e 103
Fragroute TEStS . . . . . . . . e e 104
Forensic Tool Versions . . . . . . . . . . . . e e 104
Vulnerable LinuxKernels . . . . . . . . . . . 107
Modified Kernel Files . . . . . . . . . . e e 114
Gambit Simulation Results . . . . . . . . . .. e e 123
Attacker Insult Analysis . . . . . . . . e e e e e 125
Final ActionValues . . . . . . . . . . . . e e e 126
Dataset Description . . . . . . . . . . e e e 129
Reported Vulnerabilities . . . . . . . . . .. e 141

Xi



Xii LIST OF TABLES




Chapter 1

Réesune en francais

1.1 Introduction

Dans la derniere décade le nombre des rapports de vhllig&s des logiciels a explosé. Ce phénoméne a été
décrit par Frei et al. [54] et nous avons pu confirmer ce ph@&ne dans le chapitre 2. La prévalence d’'une
nouvelle technologie est suivie par une nouvelle famillesgigort de vulnérabilités. Les vulnérabilités dési
dans ces rapports sont exploitées par des attaquantsgusgoment de la stabilisation de la technologie. Ce
phénomene est méme accéléré par l'interconnexiobal des systemes. Dans le début des années 2000,
Spitzner [154] a découvert gu'une machine a été com@m®muelques minutes apres avoir été connectée
a Internet. Sept années plus tard Provos et al. [130] dnufe expérience similaire ce qui confirme la
persistance du probleme. La plupart des internautes ctamteleurs systemes a n’'importe quel réseau et
exposent tous les services selon le paradigme prét agoukes internautes ne veulent pas passer du temps
a configurer leurs systéemes ayant comme objectif un maxirda sécurité. Ce comportement de masse a
menée a la propagation des vers informatiques qui inérdtaes milliers d’'ordinateurs en trés peu de temps.
Provos et al. [130] ont constaté que la naissance des pnogea malicieux ne cessent pas de croitre et que les
réactions manuelles sont iifieaces. Les constructeurs de systemes d’exploitatiores éblirnisseurs Internet
ont fait des €orts énormes pour sécuriser leurs solutions. Des ongesissiiciels chargés d’'assurer des
services de prévention des risques et d'assistance atentemts d’incidents ont fait desferts pour éduquer

les utilisateurs en vue de combattre les attaques contsystsmes informatiques. Dans les débuts des années
quatre-vingt dix, Cheswick [27] a recommandé de diminesrdervices exposés a I'extérieur afin de réduire
le risque de se faire attaquer. Cette approche pragmaticté formalisée par Howard et al. [72]. Les
auteurs ont formalisé la surface d’attaque qui est derpér protocoles de communications et les droits d’acces
au sein d’un systeme d’exploitationA coté du rdle d’éducation les organismeiiciels chargés d’assurer
des services de prévention des risques et d’'assistanceadt@xnents d’incidents mesurent les attaques et ils
étudient le comportement des attaquants. Dans ces trawaug nous concentrons sur les attaques contre des
victimes arbitraires qui sont recherchées par des méthadtomatiques. L'objectif d'un attaquant est d'utiliser
leurs ressources. Ces attaques sont particulieremearegsaintes car elles peuvent étre mesurées de fagon
automatique. Les attaquants balaient des plages d’adréagmubliques. Un hdte qui répond a une tentative
de connexion est une victime potentielle. Les attaquaniseee aussi monter un serveur auguel ont acces des
utilisateurs légitimes et qui se font compromettre dutteat visite. Par contre, ces types d’attaques ne font
pas l'objectif de nos travaux. Apres avoir découvert uilidec les attaquants essaient d'y accéder. Ensuite,
ils essaient d’avoir acces a la machine. lls peuvent sié fune attague de dictionnaire contre un service
légitime, soit utiliser un code d’exploit. Ramsbrock et[dl35] ont étudié le comportement des attaquants qui
ont réussi a pénétrer la cible. lls ont modélisé ce portement avec une machine a état. Un état représente
un type de comportement des attaquants. Un attaquant peabhanger le mot de passe, soit faire I'inventaire
des logiciels installes ou du matériel utilisé soigtlarger des logiciels supplémentaires et les instaiar
integrant les modeles de découverte de cible, le prasefgxploitation de la cible, et les activités par la cible

1



2 CHAPTER 1. RESUME EN FRANCAIS

nous aboutissons a un modele d’'anneau présenté damputa £.2. Chaque anneau correspond a un type
d’activité d’'un attaguant ou type d’information sur lesaguants. Par exemple, I'anneau, nBtcontient
toutes les activités de découverte de la cible. L'anneatgR; décrit tous les processus d’exploitation. Apres
avoir pénétré un systeme, les attaquants entrent denphase de reconnaissance ou ils inspectent le systeme.
Cette phase est représentée par I'anfealDans l'anneatr; les attaquants modifient le systeme. Un exemple
est de garantir des acces aux futures attaquants facke les traces de pénétration. Finalement, les attaques
entrent dans I'anneaR" modélisant les objectifs de I'attaquant. Le modele deseanx est hiérarchique et
correspond a la profondeur des attaquants sur le systeast eelié au niveau de contrdle de I'attaquant. Sur
'anneauRy ils n'ont pas de contrdle sur le systeme par contre sunéanR* ils contrdlent le systéeme. La
technologie des pots de miel est utilisée pour observetugii€r les attaquants. Un pot de miel est un systeme
sans objectif légitime et toute activité sur un tel syseest par défaut suspect. Chaque anneau représente
un type de connaissance sur les attaquantsfi&relints types de pots de miel ont été proposés pour tallec
des informations sur des attaquants. Les pots de miel @sstiour I'anneaur, collectent des informations
sur la source des attaquants comme leur adresse sourceeetite slemandé. Les exploits utilisés par les
attaquants sont identifies avec des pots de miel opéresldamnealR;. Les connaissances sur les attaquants
contenues dans les annedix et R; peuvent étre collectées avec les pots de miel a faibkrantion. Par
contre les observations d'attaques reliees aux anneauR; et R* sont collectées avec les pots de miel a forte
interaction. L'avantage de la technologie des pots de nést gu'il N’y a pas de faux positifs comme c’est

le cas pour les systemes de détection d’intrusion. Paritién, toute observation sur un pot de miel di a une
attaque peut étre considéré comme attaque. La techiaaegot de miel est une technologie complémentaire
aux systémes de détection d'intrusion et permet d'etudis actions des attaquants.

Les pots de miel sont soit utilisés pour mesurer des attaspiepour apprendre les méthodologies d'attaques
implémentées par les attaquants. Dans nos travaux, russaoncentrons sur le deuxieme objectif. Dans le
début des années 2000, Spitzner [154] a défendu la dadse laquelle les attaquants peuvent apprendre a la
communauté des chercheurs en sécurité informatique teohniques d’attaques, leurs outils utilisés et leur
stratégies employées. En observant la décennie deuraerecherche sur les pots de miel, nous constatons
gu’une partie des travaux ont participé dans la course aksde miel. Dans une telle course, un nouveau pot de
miel est suivi par des technigues de détection ou d’émagiohen [31] a présenté les techniques d'illusion dans
le contexte des attaques informatiques. Par contre, léssseachniques d'illusion utilisées dans le contexte des
pots de miel est d’@muler des faux services. Ces technispmtsadaptées a collecter les outils utilisés par les
attaquants et les prédécesseurs des attaques. Les poid dat été déployés de fagon distribué et les taet
et stratégies des attaquants ont été dérivées gracdannées collectées par lestéients pots de miel. Par
contre, les pots de miel eux mémes ne sont pas capableiderdés stratégies des attaquants de facon automa-
tique et les pots de miel en eux-mémes ont un comportemesroies statiques. Nicomette et al. [112] ont
découvert qu'il existe des attaques automatiques et thgugis manuelles ce qui esfiilement distinguable.
Les pots de miels sont classifies comme pot de miel a forbedotion et pot de miel a faible interaction. Cette
classification est assez rudimentaire et ne prend pas entedespcapacités des attaquants. L'objectif de ces
travaux est de déterminer les capacités des attaquarsnetruisant des pots de miel qui résistent de fagon
stratégigue aux attaques. Ainsi une réaction d’'un astagpeut &tre déclenchée. Afin d’aboutir a cet objectif
les dfets de bord des observations doivent étre examinésspraent. Comme détaillée dans le chapitre 3, il y
a une course entre opérateurs de pots de miel et les attaq@artes, les pots de miel ont des faiblesses qui
peuvent étre prises en compte en utilisant des technidillesidn lors des attaques. Les attaquants peuvent
mal interpréter les réeponses recues des pots de mighstieurs comportements peuvent mieux étre étudiés.
Le but est de modéliser cedidirents objectifs et d'aboutir & ces objectifs de facaiomatique.

Dans nos travaux, nous €élaborons des pots de miel adapgaiifsont capables de changer de maniere
continue leur comportement avec le but de découvrir ledlenegs actions. Ce manuscrit est divisé en deux
parties. La premiére partie contient un résumé desurasta recherche antérieurs. La deuxieme partie contient
une description de nos travaux de modélisation ainsi quexpérimentations des nos pots de miel adaptatifs.



1.2. ETAT DE UART 3

1.2 Etat de l'art

Cette partie est divisée en deux chapitres. Nous commerigesumer les activités antérieures dans le domaine
des pots de miel et nous identifions leurs limites. Ensuitesrdonnons un apergu sur les théories que nous
utiliserons dans nos contributions.

1.2.1 Pots de miel

L'idee d'observer des attaquants sur des systeme infayoes grace a des leurres est née dans les années
guatre-vingt. Stoll [158] a observé une attaque dans ler&bire Berkeley. Il a pris la décision de distribuer
des faux documents et il a surveillé les acces a celleqmies un certain temps, il a pu identifier I'attaquant.
Un peu plus tard dans les années quatre vingt-dix, Cheg@tika eu l'idée de déployer des faux services
accessibles depuis Internet afin d’observer des attaquass IBs années 2000, Spitzner [154] a introduit la
terminologie des pots de miel qui est de nos jours accemés h majorité des communautés de sécurité
informatique. Un pot de miel est une ressource dédieaead&couverte, exploitée et attaquée. Les pots
de miel sont frequemment utilisés pour collecter des @earsur les attaquants. La plupart des travaux se
concentre a collecter des données techniques des aitageamme leur adresse source, leurs logiciels et
les répertoires des logiciels malicieux. D’autres travaa concentrent sur les études de comportement des
attaquants qui ont réussi a compromettre un systeme cbimdition essentielle d’'un pot de miel ayant comme
but d’étudier le comportement des attaquants est que-ciedaiit attractif pour les attaquants et qu'il imite un
systeme réel. Dans le cas contraire, les attaquants denenompte qu'il ne s’agit pas d’'un systeme réel,
et en conséquence ne l'attaquent pas ou se déconnegiaiemeent. Dans le chapitre 3, nous étudions les
tendances sur les pots de miel grace aux données de Gdagimoteur de recherche Google a accés a des
milliards de requétes des utilisateurs. Google a cr&éraiices par mot clef. Une synthése de ces indices est
publiguement accessible, de I'année 2004 jusqu’a ptésdn indice plus élevé que son prédécesseur indique
gue le mot clef est devenu plus populaire. Si l'indice essplatit que son antécédent le mot clef a perdu
de popularite. En 2004, Provos et al. [128] ont publié Hohain pot de miel a faible interaction. Le code
source de ce pot de miel a été publié et le pot de miel el facitiliser. Ceci avait comme conségquence que de
nombreux utilisateurs ont commencé a utiliser cet oHtil. 2006, les réseaux de programmes malicieux appelés
botnets étaient une menace omniprésente sur Internes @bts de miel ont &té utilisés afin de les étudier et
de les combattre, ce qui explique la croissance de l'indEEr.comparant les pots de miel récents utilisant
la technologie d'introspection des machines virtuellescdes pots de miel de type Honeyd, nous constatons
que la complexité logicielle est beaucoup plus élevag pes nouveaux types de pot de miel. Ceci a comme
conséquence gu'ils sont opérés par des communautésgsiieintes et plus par le grand public. Pour confirmer
cette dirmation nous avons étudié les nombres de publicationsuaties scientifiques sur les pots de miel.
Bien que le indices de Google incluent toutes les commuasadititilisateurs, le moteur de recherche Google
Scholar se concentre sur les bases de données scientifldaralyse détaillée est décrite dans le chapitre 3.
Dans I'année 2008, I'introspection des machines virasedist a la mode pour construire des pots de miel ce qui
exige des connaissances systemes poussées et impligisguem plus élevé que celui relié aux pots de miel a
faible interaction.

Différents types de classifications ont été proposés psyrdes de miel. Seifert et al.[147] les classifient
selon six critéres qui sont énumérés de facon infokmat_e premier critere est le niveau d'interaction avec
les attaquants. Le niveau d'interaction est dérivé dubrende fonctionnalités exposées aux attaguants. Le
deuxieme critere de classification est le niveau de captier données. Un pot de miel peut collecter des
évenements, des attaques et des intrusions. Le trasigitére est le niveau de confinement du pot de miel.
Le quatrieme critere distingue des pots de miel disg#hdés pots de miel autonomes. Le cinquieme critere
est dérivé des moyens de communications avec le pot de kreetixieme critere distingue les pots de miel
ayant un rble de serveur avec les pots de miel qui prétéddenun client. Malgré cette fine classification nous
utiliserons dans la suite la classification élaborée |pitzBer [154] prenant en compte le niveau d'interaction
avec les attaquants car elle nous permet le mieux de sitgdran@ux.



4 CHAPTER 1. RESUME EN FRANCAIS

Un pot de miel a faible interaction est un systeme qui @ntds faux services. Selon notre modeéle des
anneaux, des informations reliés aux anneBgxet R; peuvent &tre recueillies comme I'adresse source des
attaquants, le service demandé. Un attaquant se conhaatartel service recoit un contenu préfabriqué. Les
attaquants n’ont ni le droit de stocker ni d’exécuter letoppes programmes. Cette contrainte assez stricte
permet de réduire le risque d'opération de pot de miel. &erlsque permet d'opérer ces pots de miel a large
échelle. Fin des années quatre-vingt-dix, Cohen [31bpgsé un outil d’illusion (Deception Tool Kit (DDK)).
L'idéee est de mélanger sur un hote des services réelssesetvices émulés. Dans un scénario d'attaque d'un
tel hbte un attaquant doit distinguer les vrais servicesfdex ce qui implique une augmentation de charge de
travail. Le pot de miel a faible interaction le plus poptdagst Honeyd. Ce pot de miel est capable d’émuler
des piles réseaux. Ainsi un seul hote peut émuler plusiedtes émulant fferents systemes d’exploitations.
Avec un seul hote des topologies entieres de réseauxepeéire émulées ce qui est facile a gérer. Honeyd
contourne la pile réseau de son hote réel et réepondtagdes requétes émulées. Honeyd permet de définir
plusieurs personnalités qui correspondent a une pil&skaux et une collection de programmes qui peuvent
étre rattachés aux services demandés. Chaque prograstmesponsable d’émuler un service dédié ce qui
peut étre vu comme un désavantage de cette approche.eteitg91] ont proposé une approche pour dériver
ces faux services a partir des traces réseaux.

Cette approche est assez puissante car elle permet agssildt’de faux programmes malveillants pour
lesquels le code source n'est pas disponible. Les pots deanfable interaction permettent de gérer les
premieres interactions avec les attaquants et sont ddigesus pour quantifier et mesurer les attaques. Par con-
tre, ils ne permettent pas d’'étudier le comportement dasj@nts qui ont reussi a compromettre un systéeme.
Dans notre modele avec les anneaux, les attaquants d¢sdaiguioiter le systeme, ce qui est modélisé avec
'anneauR;. Ceci est fait grace a un code d’exploit. Un tel code estsntencodé dans un message mal-formé.
Lors de la phase de décomposition de ce message dans kesaiteiqué, une partie de celui-ci est exécutée par
erreur. Une interruption du service est la conséquencett& partie contient des données aléatoires. Cepen-
dant, les attaquants encodent du code machine dans ceteeqarest exécuté sur I'hdte. L'exécution de ce
dernier donne le contrble d’exécution aux attaguants.c@k machine est appelé shell code car, pour des
raisons historiques, ce code donnait normalement acoés éigne de commande. Souvent ce code machine
telecharge un programme malveillant qui prend le releiattaque. Si un tel message arrive a un pot de miel
décrit precédemment, le code d’exploit peut étre oliseBaecher et al. [7] ont proposé un pot de miel qui est
capable d’emuler des vulnérabilites connues et géictirge les programmes malveillants complémentaires.
Malgré cette interaction supplémentaire, les auteudifignt de faible interaction ce type de pot de miel.
D’autres propositions de faux services capable d’émudsnaiinérabilites connues ont été suggérées [6, 60].
Une hypothése de ces approches est que la vulnéralslitéoanue et peut étre émulée. Les attaques qui
exploitent des vulnérabilités inconnues ne peuvenigpascollectées avec les pots de miel précédemment dis-
cutés. De plus, les activités des attaquants apresldi(anneauxR,, Rz, R*) ne sont pas prises en compte
avec les pots de miel a faible interaction.

Par contre, ces activiteés sont observées avec les potalarforte interaction. Historiguement, ces pots
de miel sont les plus anciens. En fait, des ressourceeséslint exposées aux attaquants. Ceux-ci peuvent
utiliser toutes les fonctionnalités du systeme obser@eswick [26] a baptisé ces ressources comme des
machines jetables ayant des failles de sécurité réellescommande de capturer tout le trafic réeseau déedié
a ces machines afin d’'observer les activités des attagjuAntette époque cette approche était parfaitement
valide car la majorité des protocoles de communicatiofiség par les attaguants étaient nonfigks. De
nos jours, avec l'utilisation des réseaux sans fil publigeet accessibles, les protocoles de communications
chiffrées sont devenus trés populaires. Siun attaquaneutiéigels protocoles, ces commandes ne peuvent pas
étre observées, ce qui n'est pas acceptable pour untepéde pot de miel. Souvent, celui-ci est legalement
responsable de ses ressources et quand ifflesades attaquants, il peut participer a des attaquesleertiers
[2]. Un contrdle strict est nécessaire durant I'op@matile pots de miel pour éviter les dégats collatérawes D”
gue des attaques sont lancées vers des tiers, I'opéidéysouvoir intervenir et deconnecter les attaquants.
Spitzner [154] recommande d’avoir plusieurs points de viobskrvation afin de garantir un contrdle des



1.2. ETAT DE UART 5

attaquants. Il a proposé d'observer les attaquants a@aunikeseau mais aussi au niveau systeme. Comme
exemple de contrble du systeme, il a donné I'exemplealligne de commande modifiée qui exporte toutes les
commandes vers un autre hote. Les attaquants ont chamgégramme et leurs actions passaient inapergues.
La réaction de la communauté des opérateurs de pot deestiBbbservation d’'une couche plus basse dans le
noyau du systeme d’exploitation [9]. Balas et al. [9] oragwsé un module noyau dans cet objectif. Un peu
plus tard, McCarty [101] a publié une méthode pour déteet désactiver ces techniques d’observation. La
communauté des opérateurs est alors descendu a un pivesaas et a ainsi choisi le point d’observations a
l'intérieur d’'une machine virtuelle.

Parmi les activités de recherche se concentrant sur faraon systeme des pots de miel, des activités
connexes se sont créées comme la gestion des pots deartielldboration des opérateurs de pots de miel et
des nouvelles approche d’analyse de données dans lesepuiigld Les pots de miel servent principalement de
source de données sur les attaguants. Nous avons sgathétmodele a anneaux ou chagque anneau représente
une couche d’'information sur les attaquants. Nous avonstatinque les informations relatives aux anneaux
Ry etR; peuvent étre collectées avec les pots de miel a faibdedntion et les informations relevant Bg 3 et
R* peuvent étre collectées avec les pots de miel a forteaictien. Les pots de miel a forte interaction couvrent
plus d’'information sur les attaquants que les pots de nfi@lde interaction. Par contre, la gestion des pots de
miel a faible interaction est plus facile et le risque déogtion est plus faible. De ce fait, les pots de miel a basse
interaction passent mieux a I'échelle. Les opératearpats de miel sont souvent légalement responsables de
leurs pots de miel et ils doivent éviter que les attaquarganent le contrdle absolu du pot de miel en attaquant
des tiers. Cohen [31] a discuté dans le contexte des attemjdas techniques d'illusion. Les pots de miel a
faible interaction émulent des faux services et utilisegme technique d'illusion. De plus, les pots de miel a
forte interaction essaient de ressembler le plus a desshfiirmaux (de systemes de production). Les deux
types de pots de miel utilisent des techniques de décegtitigue et tres peu de travaux ont éfeeués pour
rendre les pots de miel eux-mémes plus intelligents ettatilgp Dans le contexte des pots de miel a forte
interaction, un attaquant peut compromettre le systeenmaddifier, installer et lancer ses propres outils. Sile
but de l'attaquant était d’exécuter ses outils, il abo@rtson objectif d’ attaque sans aucune résistance venant
du pot de miel. L'attaquant n'a pas été défié car toutesatdions ont été permises. Dans le cas ou le pot de
miel aurait interferé de maniéere stratégique avecdéiss de I'attaquant, des comportements supplémestaire
auraient pu étre observés. Ceci permettrait de déragchpacités des attaquants confrontés a la résolution
d’'un probleme. Les pots de miel pourraient utiliser defitégques de déception dynamiques avec I'objectif
d’apprendre les capacités des attaquants ainsi que lawenet leur bagage linguistique. Afin de modéliser
des pots de miel intelligents et adaptatifs, nous donnorapercu des fondations théoriques utilisées dans nos
contributions.

1.2.2 Apprentissage dans les jeux

Dans le chapitre 4, nous nous concentrons sur la théoriggde®t sur I'apprentissage par renforcement dans
le contexte théorique des processus de décision Markainesi que des processus stochastiques. De plus, nous
mettons en évidence des liens entre c&&dintes théories. La théorie des jeux permet de medélis jeux
entre joueurs oll chacun d’entre eux a ses propres istét&epend des autred. chaque joueur est associé
un ensemble d’'actions et chacune d’elle est associée avegain ou une perte. Donc, chaque jouer a une
fonction de gain. Dans le cas ou le gain d’'un joueur cormrad@une perte de l'autre, le jeu est dis@mme
nulle. Dans le cas ou la magnitude de gain d’un joueur eftminte de celle d’'un autre joueur le jeu est dit
asomme généraleLes jeux peuvent étre représentés soit sous forme hersoé sous forme extensive. La
forme extensive est plus appropriée pour modéliser desrjepétitifs. La forme normale permet de calculer
des équilibres de Nash qui définissent les meilleuresegiies pour chaque joueur dans le contexte des jeux
simples. Pour les jeux sous forme extensive, les jeux soosefoormale doivent &tre dérivés afin de calculer un
equilibre de Nash. Les stratégies calculées a padiv dguilibre de Nash ne sont pas forcément Pareto-optimal
Une stratégie d'un joueur peut détériorer le gain d’'utr@joueur. Dans le contexte d'un équilibre de Nash
dans un jeu simple, il est supposé que tous les joueursrididie rationnels, c’est a dire visant a maximiser



6 CHAPTER 1. RESUME EN FRANCAIS

leurs gains. Un non-respect de cette condition résulteesmyédins erronés. Le probléme des gains erronés peut
étre analysé avec une analyse d’'équilibre quantal erdewteterminer les impacts sur les équilibres de Nash.
La théorie des jeux a déja été employée dans le cadrpate de miel. Par contre, la majorité des contributions
se concentrent sur des jeux joués au niveau infrastruguirest composée de machines de production et de
pots de miel. Les pots de miel frequemment utilisés sosipiés de miel a faible interaction. Garg et al. [108]

a modelisé un jeu entre deux joueurs. Le premier est lendelur et le deuxiéme un attaquant omniprésent. Le
défenseur posséde une infrastructure qui est compasésadhines réelles et de pots de miel. Un attaquant
peut attaquer soit une machine réelle soit un pot de mie$ mharéféere attaquer le premier type. |l recgoit
donc un gain positif s'il attaque une machine réelle et uim gé&gatif s'il attaque un pot de miel. Pour le
défenseur, les gains sont distribués de fagon inverss.auteurs ont défini les gains de fagon manuelle. Lye
et al. [98] ont défini un jeu similaire. Par contre ils ontidé les gains a partir d'un questionnaire qui a été
rempli par les administrateurs de leur université. Cex aeodélisations exigent que les comportements et les
gains soient connus a I'avance et donc soient statiqguesu&de résoudre ces problemes, nous avons envisagé
l'utilisation d’apprentissage par renforcement. Dansalrcas, un agent est capable de faire des actions dans
un environnement. Chaque action est soit punie, soit rén@en L'objectif d’'un agent est de maximiser son
gain. Les bases théoriques dans I'apprentissage parcenient sont les processus de décisions Markovien.
Un tel processus est composé d'un ensemble d’états quepe@étre visités par un agent. Dans chaque état
I'agent peut choisir une action parmi un ensemble d’actidhse fonction définit les gains qui sont distribués
apres chaque action. Un agent recherche une politiqueiggfar une relation entre les états et les actions.
L'objectif de I'agent est de trouver la politique en maxiams le gain a court, moyen, ou long terme. Si un
tel probleme est modélisé avec un processus de déd¥aokovien et si tous les parameétres sont connus alors
cette politique optimale peut étre déterminée gracecguiations de Bellmann comme décrit dans le chapitre 4.
En pratique, quelques parameétres demeurent inconnus agqur conséquence de rendre impossible le calcul
des équations de Bellmann. Habituellement, la fonctiotratesition dans le processus de décision Markovien
ainsi que la fonction de gain sont inconnues. De plus la cexitgl de calcul des équations de Bellmann est trés
éleveée. Ces deux problemes nous ont menés vers l'dpgzage par renforcement (“model-free methods”),
qui nous permet d’'approximer les politiques optimales. Esadantage majeur d’'une telle approche est le
compromis entre exploration et exploitation. Un agentipas censé connaitre son environnement.

Dans un tel cas, il doit explorer des actions dans des étaiséd et en observer leffets. Ceci est fait
dans une phase d'exploration. Dans la phase d’exploitatioagent exploite les connaissances apprises au-
paravant. Les décisions sont prises par une regle d'efipsage. Une exigence est que I'environnement doit
étre stationnaire ce qui entraine que les probabilitesrahsition entre états et les gains ne changent pas au
cours du temps. Dans un contexte avec plusieurs agentsroenisyl ce prérequis n'est pas toujours respecté.
Les processus Markoviens de décision ont été étendpee@ant en compte ces contraintes, ce qui a mené a la
définition de jeux de Markov stochastiques. Fink [50] a fellement prouvé I'existence des points d’équilibre
dans les jeux stochastiques. Ce résultat permet de cond@seapproches d'apprentissage avec la théorie des
jeux.

1.3 Contributions

1.3.1 Mocklisation du comportement des attaquants

Dans les années quatre-vingt dix, Cheswick a étudiérgootement des attaquants en interagissant manuelle-
ment avec eux. Grace a une expérience similaire, noussasanstaté qu’en interférant avec un attaquant nous
pouvons étendre nos connaissances a propos de lui. titdhje nos travaux est de modéliser, implémenter
et d’évaluer des pots de miel intelligents qui s’adaptant attaquants en vue de les défier et d’apprendre
plus de connaissances sur eux. Dans le chapitre 5, un mgéeérique de comportement des attaquants a
eté présenté et les possibilités d’adaptation. Neoss focalisé notre travail sur les attaquants qui penét

les serveurs SSH, car ce type d'attaque est trés populaimestet, derriere ces serveurs se cachent souvent



1.3. CONTRIBUTIONS 7

des systemes puissants et attractifs pour les attaquamteodele de comportement doit étre assez générique
pour gu'il puisse également étre adapté a d'autresstgfmtaques. Une fois que les attaquants ont pénétré un
systeme, deux types de comportement sont envisagealdgseimier est appelé comportement d’avancement
et le deuxieme se nomme comportement de réponse ouaalds attaquants. Des que les attaquants ont
pénétré un systeme, ils exécutent une successionndmandes en vue de réaliser une attaque. Le fait d’entrer
successivement des commandes définit le comportemerand@ment qui correspond a des transitions dans
un automate hiérarchique probabiliste. Cet automateoesposé de macro-états représentant des programmes
installés sur le systeme. Chaque macro-état se défissi @omme un automate probabiliste ou chaque état est
équivalent a un argument transmis au programme. Larcl@imest nécessaire car la sémantique des arguments
est diférente selon les programmes. L'alphabet de 'automatasssicié aux chaines de caracteres entrées
par les attaquants. Parmi les commandes ou les argumengsaggammes, les attaquants ont la possibilité
d’entrer des informations non valides comme des commanades gxécuter leurs propres programmes, des
erreurs typographiques, des insultes ou des tests de ibdjperde la ligne de commande. Pour cette raison
nous avons introduit trois états spécifiques nommsslt, custom empty Chaque chaine de caractere entrée
par un attaquant est associée a une des quatre catégaviastes:

Commande systeme
Commande relative a un programme installé par un aitaqu

Commande vide

A wo DM P

Insulte ou erreur typographique

Un attaquant peut entrer une commande systeme, ce quia@idjd I'exécution d’'un programme installé
par défaut sur le systeme. Cependant, si la commandecuexpas un programme installé par I'opérateur
du pot de miel, une transition dans I'étatstomest déclenchée. L'observation d’une entrée vide nodigire
que l'attaquant a testé la réeponse de la ligne de commandares un tel cas, une transition vers I'éatpty
est dfectuée. Si une entrée ne correspond a aucun cas pnéceshd décrit, I'attaquant est considéré comme
ayant tapé une insulte dans son terminal. Cette défindimsulte comprend les erreurs typographiques des
attaquants. Dans le chapitre 6, nous utiliserons la distded_evenshtein afin de classer lealentes entrées
qui sont responsables d’une transition dans I'etstilt. D’'un premier point de vue, cette modélisation semble
assez abstraite mais elle permet d’étre implémentéagmfsystématique. En vue d’'observer les commandes
entrées par un attaguant, nous observons les appelsnggst#ans le noyau. Pour chaque appel associé a
I'exécution d'un programme, l'identifiant du processugjentifiant du processus pere ainsi que le nom du
programme avec ses arguments sont mémorisés. Ces itifomsypermettent la reconstruction de la structure
arborescente des processus qui sont actifs dans le systenserveur SSH crée un processus responsable de
gérer la connexion d’'un attaquant. Ce processus est laera@diin sous-arbre de I'arbre global des processus
du systeme. Tous les nceuds de ce sous-arbre sont donésau& exécutions de programmes d’un attaquant.
L'analyse des arbres de processus permet de gérer plisitaguants simultanés tout erffglienciant les
processus invoqués par le systeme lui-méme. Chaquetiea nceuds dans un sous arbre est étiqueté de la
difference de temps entre le pere et le fils. Ainsi nous pouvermnstruire I'ordre des commandes exécutées
et nous pouvons transformer les sous-arbres en des suitesrsheandes entrées par un attaquant. Cette suite
de processus est qualifié de vecteur de processus. De plus,pnoposons une méthode pour recueillir les
probabilités de transition entre commandes.

Quand un attaquant a pénétré un systéme, il exécuteatemandes pour atteindre son objectif. Un pot
de miel défie I'attaquant en interferant avec l'attaqueoudl définissons quatre actions pour un pot de miel
adaptatif dans le but de déclencher une réaction cheadiaant:

permettre I'exécution d’'une commande. Si un pot de miel adaptatif permet I'exécution d’'une comdwnl
se comporte comme un pot de miel a forte interaction tiatikelle. Cette commande est nécessaire pour
permettre 'avancement dans la réalisation de I'attaque.



8 CHAPTER 1. RESUME EN FRANCAIS

bloquer I'exécution d’'une commande. Lors de cette action, le pot de miel adaptatif retourne walioement
une erreur a l'attaguant indiguant que I'exécution dugpamme désiré a échoué. Un attaquant est bloqué
durant son avancement et doit réagir s'il veut aboutirracigjectif.

substituer I'exécution d’'une commande. Un pot de miel adaptatif exécute un autre programme a tzepla
celui qui a été désiré par l'attaquant. Cela est unenigcie d'illusion qui déclenche également une
réaction chez l'attaquant. Son défi consiste alors a centse le comportement du systeme.

insulter I'attaquant. Dans un tel cas le pot de miel &crit une insulte dans le texhda I'attaquant. Cette
approche est une technique d’illusion qui déclenche aussiéaction de I'attaquant. Elle doit permettre
de distinguer si I'attaquant est un &tre humain ou un rddats le contexte d’un humain cette technique
permet d’augmenter le niveau de stress pour le pousser @netire des erreurs et pour déterminer son
origine linguistique.

Grace a ces interactions supplémentaires avec l'atagla réaction des attaquants est particulierement
intéressante et se caractérise par une des cing caggoivantes :

répéter la commandeécholge. D’un coté, I'echec d’'une commande peut étre dii a unvaiguargument ce
qui résulte en une erreur syntaxique. L'attaquant peut @bwisir des autres arguments ou réutiliser les
mémes. D’un autre cdté, I'échec peut étre causé pteraps de débouclement émergé durant I'exécution
du programme.

chercher une commande alternative.Apres avoir observé I'eéchec d’'une commande, un attaoueut tenter
d’en déterminer la cause. Il a la possibilité par exem@daghcer un outil de tracage comrmeerace
en parallele du programme qu'il désire exécuter. Uneeaaption est de vérifier ou de modifier la
configuration du programme. En pratique, hous avons obsiesg attaquants ayant téléchargé le code
source du programme en vue de le transformer en programegit@ble sur le pot de miel lui-méme.
Grace a cette intervention, nous avons pu récupérende source habituellement non disponible. Ce
type de comportement est significatif d'un attaquant charthne solution alternative pour aboutir a son
but.

insulter le pot de miel. Toute commande ne correspondant ni a un programme, ni aammandes vide est
considérée comme une insulte. L'observation d’erreypedraphique ou d’insultes est fortement syn-
onyme de la nature humaine, et donffé@tience celle d'un robot de l'attaquant. Durant nos pressié
interactions avec les attaguants, nous avons remarquati@desiants tapant des insultes dans leur ter-
minal. Ceci était souvent le cas quand ils ont recu uneltgiu pot de miel. Une des hypotheses
ameéne a penser que les attaquants supposent que d’autiest @éja compromis la machine et sont la
source des insultes. Une supposition alternative esttlgdailes administrateurs ont configuré les mes-
sages d’erreurs de leur systeme en se servant d'un langéggEre. Les insultes sont particulierement
intéressantes car on peut en déduire des aspects sot@utueels des attaquants et dans certain cas, par
recherche dans des dictionnaires, nous pouvons détartaitengage utilisé. Durant nos expériences,
nous avons pu constater que le pays de 'adresse IP ne aomckpps au langage utilisé. Par exemple,
beaucoup d’insultes roumaines provenaient d’adressefelRamdes. |l est alors facilement imaginable
gue les hdtesfiectés a ces adresses ont été compromis et servent aelnebor les attaquants.

quitter le pot de miel. Suite a une intervention d'un pot de miel les attaquanty@atpenser gu'ils sont sur
un pot de miel a basse interaction et se déconnectent dlosysteme. D’autres ne trouvent pas de
solution au défi imposé et ils quittent le systeme.

La réaction des attaquants informe sur leurs capacitéssidution de problemes. Afin de mesurer la réaction
d’'un attaquant, nous utilisons le temps de réaction ertx dommandes successives ainsi que les chaines de
caracteres entrées par I'attaquant suite a cette griéion. La distance de Levenshtein permet quant a elle de



1.3. CONTRIBUTIONS 9

déterminer des erreurs typographique ou des insultes fdilsle distance indique une erreur typographique et
une grande distance une insulte.

Ce modele de comportement des attaquants et des intemveigfun pot de miel nous permet de construire
des pots de miel adaptatif. Nous proposons un pot de mietaifaqui apprend le meilleur comportement avec
des traces d'un pot-de miel a forte interaction. Ensuitgsmroposons deux pots de miel apprenant le meilleur
comportement de fagon autonome.

1.3.2 Apprentissage dans les jeux de pot de miel

Dans le chapitre 6 nous décrivons ces trois pots de mietta foteraction. Linteraction entre I'attaquant
et le pot de miel est modélisé par un jeu en se basant suedmi¢hdes jeux. Dans un premier temps, nous
considérons qu'un pot de miel adaptatif peut soit permettre commande soit la bloquer. Comme réaction,
un attaquant peut réessayer la commande, chercher unearaamalternative ou quitter le pot de miel. Dans
ce jeu nous définissons deux joueurs: un attaquant et unepotiel. L'attaquant est considéré unique car
notre approche ne s’intéresse pas aux attaquants indlgiduais aux informations que le pot de miel adaptatif
peut apprendre. Chaque joueur a une fonction de gainédede I'automate probabiliste hiérarchique. Le
but d'un attaquant est d’aboutir a son objectif avec le mali®Tort possible et le but du pot de miel est de
garder l'attaquant connecté le plus longtemps possiblisiAleux types de jeux sont définis. Chaque jeu
a sa propre fonction de gain qui prend en entrée les transigfectuées par un attaquant dans l'automate.
Ensuite, nous proposons un simulateur capable d'utilissrtchces de pots de miel a forte interaction en vue
de calculer les gains pour chaque joueur. De cette maniéugs pouvons calculer les équilibres de Nash
afin de déterminer le meilleur comportement pour chaqueybsgelon la théorie des jeux en se concentrant
sur les jeux simples. Le désavantage d'une telle approshgueelle exige un jeu de données équilibré afin
d’estimer les probabilités de transition entre les ét&@tss probabilités peuvent a leur tour impacter les gains
de chaque joueur. Dans un second temps, nous avons étendaplacités d'interventions du pot de miel
pour augmenter son degré d’adaptabilite. Il peut alorsnpéire I'exécution d’'une commande, la bloquer, la
substituer ou insulter I'attaquant. Ce pot de miel est nisééar I'intermédiaire d’'un processus de décision
Markovien. Le pot de miel est représenté comme un agenbpgie dans un environnement composé de
plusieurs états. Dans notre cas, cet environnement pomdsa I'automate hiérarchique probabiliste présenté
dans le chapitre 5. Dans chaque état, I'agent a la possibiiTectuer des actions. Chaque action dans un
état est liee avec un gain défini par la fonction de gainus\avons créé deux fonctions de gain. La premiere
a comme objectif de collecter le plus d'informations polesitsur les attaquants comme leurs outils et leurs
insultes. La deuxieme fonction de gain vise a les gardenectés le plus long possible. Grace aux processus
Markovien de décision, un agent pourrait calculer lesoastioptimales pour chaque état et ne pas utiliser les
probabilités de blocage pour tous les états. Nous avons gio degré d’adaptabilité plus fin. Avec ces valeurs
optimales I'agent pourrait dériver une politique d’ogion optimale. Les actions des attaquants influencent
I'environnement enf@ectuant des transitions dans I'automate. D’un cdté nousrfpns utiliser une approche
par simulation a l'instar de celle utilisée dans le pranjgel. D'un autre cdté nous pouvons faire appel a la
famille des algorithmes d’apprentissage par renforcentéios particulierement nous nous concentrons sur les
algorithmes ne nécessitant pas de modéle exacts derbenament. L'avantage de tels algorithmes est qu'ils
sont robustes a de leégeres variations des probaldléésansitions et de la fonction de gain. Ces algorithmes se
decomposent en deux parties: I'explorateur et la regipptentissageEtant donné que I'environnement n’est
pas forcément connu par un agent, il doit tout d’abord kodérir. Cette tache est accomplie par le composant
d’explorateur. Nous avons choisi I'explorateurgreedy car il a été prouvé que la regle d’apprentissdugpeaitit

a des valeurs optimales pour chague état visité.

La modeélisation d’'un pot de miel comme agent et de considies attaquants dans I'environnement de
'agent néglige la nature compétitive entre attaquantspérateur de pot de miel ce qui petitegter la con-
vergence vers les valeurs optimales. En vue de résoudrb&me nous utilisons un jeu stochastique. Les
actions sont semblables a celles définies dans le pracdssiécision Markovien et les objectifs des fonctions
de gain sont les mémes. Dans un tel jeu chaque joueur apgesn@actions a chaque état en prenant compte



10 CHAPTER 1. RESUME EN FRANCAIS

les actions de son adversaire.

1.3.3 Ogeration des pots de miel

Dans le chapitre 7 nous décrivons nos contributions cemelitaires aux bonnes pratiques de I'opération des
pots de miel. Dans le cadre d'un pot de miel a forte inteoactil est conseillé d'utiliser des points d’observation
redondants. Un autre aspect important est le contrdle dedece d’observation. Une source d’observation
accessible par un attaquant n’est pas nécessairemest fisiblattaquant peut par exempfaeer ou modifier
ses traces. Une source robuste est la capture du trafiarééeat souvent supposé que 'attaquant ne puisse
pas prendre le contrble des équipements réseaux quicob@ectent le pot de miel. L'équipement qui connecte
le pot de miel avec les réseaux publiques est configuré gapiiquer I'intégralité du trafic permettant ainsi

a I'opérateur du pot de miel de I'analyser. Par ailleutautites sources d’observations, comme le noyau du
systeme ou la machine virtuelle qui opére le pot de miet sooconsidérer si I'attaquant utilise des canaux
de communications cfirés. L'opérateur est legalement responsable de soneatiel. Dans tous les cas
et a chaque instant I'opérateur du pot de miel doit &treé&me de voir toutes les activités sur son pot de
miel et, dés qu'il observe que son pot de miel participe @attaques vers des tiers, il se doit de prendre les
mesures nécessaires afin de minimiser les dégatsarallat” En cas de constatation d’activités préliminaires
gui peuvent mener a des attaques envers de tiers, noussdau@ter les expériences. Parmi, les bonnes
pratiques d’opération de pot de miel a forte interactmmirouve usuellement:

¢ Limitation de la bande passante

e Emulation d'internet pour les attaguants

e Déploiement des pare-feux

e Déploiement des systemes de détection d'intrusions

o Le fait de modifier du trafic vers des tiers afin de le rendre maisible (connection scrubbing)

Nous proposons des contributions additionnelles en natai$ant sur les méthodes de surveillance des ac-
tivites du pot de miel, ce qui inclut observations au niveauréseau mais également au niveau du systeme
d’exploitation. En fonction de la disponibilité de ces sms d’'information, nous proposons une implémentation
générique dédiée pour construire des pots de miel atigptCela se traduit par deux propositions de visuali-
sation de trafic réseau pour ensuite nous concentrerexalliation de la qualité des outils recommandés dans
le cadre des bonnes pratiques d’opération de pots de migelgxraire les informations. Ceux-ci proposent
de capturer et d’'analyser l'intégralité du trafic dédiepot de miel. Cependant, un pot de miel sous une ou
plusieurs attaques massives génere rapidement de graluises de données qui exigent un temps de traite-
ment important. Durant I'analyse, le pot miel risque d’emdoager des ressources des tiers. Afin de diminuer
le temps de réaction de I'opérateur de pot de miel, noesgmisons I'utilisation d’'une technique de visualisa-
tion. Parmi les travaux existants spécifiques a la visatifin des flux réseaux individuels, nous proposons de
visualiser des flux agrégés pour palier au probleme daesé&ls volumineuses et pour avoir un apercu global
sur les activités. Ensuite, notre méthode de visuatindibsée sur les coordonnées polaires est capable de:

e détecter des balayage de ports
e détecter des intrusions réussies
o détecter des attaques par recherche exhaustive

Dans le contexte d’'analyse des traces réseaux, un prebi@ndamental releve du niveau de définition
de lidentifiant d'un flux réseau. La majorité des outiladalyse de traces supposent qu'un flux réseau est
identifié avec un cing-uplet composé de I'adresse IP squhe port source, de I'adresse IP destination, du port



1.3. CONTRIBUTIONS 11

destination et du protocole utilisé. Lors des attaquesedbarche exhaustive sur un pot de miel un attaquant
génére beaucoup de connexion vers le pot de miel. L'agidsspot de miel ainsi que son port de service est
fixe. Le port source est variable. Due au nombre restreintodsilpilites de sélection de port source le méme
port source est réutilisé. Ceci entraine un fonctionenincorrect des outils d’analyse du a un mélange de
flux. Aprés une investigation de ce probléme nous pouvé@dsiitl un exploit de cette faille. Un attaquant peut
créer une bombe PCAP ayant comme but de faire un déni desew la machine de I'analyse. Elle consiste
en quelques paquets T@P. Cette bombe explose lors de I'analyse de ces paquetoeaim& conséquence un
effondrement des ressources de la machffezriant cette analyse. De plus, nous avons décrit unelattamr
cacher un flux dans un autre. Physiquement les paquets pondant ont été enregistrés mais ignorés par les
outils d'analyse que nous avons évalués. Ainsi un attatoest en mesure cacher le télechargement d’un outil.
Afin d'assurer la collecte des outils téléchargés, naopgsons une méthode dynamique in-vivo d’analyse de
programmes malveillants. En combinant cette approche lageméthodes traditionnelles il est possible de
prendre en compte les quelques cas pour lesquels les omsditiitiales garantissant le bon fonctionnent du
programme ne sont pas garanties durant une analyse in-as le cas des machines virtuelles utilisées dans
le contexte de pots de miel a forte interaction, une saiutgilement modifiable est souhaitée afin de proposer
une preuve de concept pour construire des pots de miel dfm@tdorte interaction. Notre choix s’est porté
sur User-Mode Linux (UML) qui est un systeme Linux ex&cdtns I'espace utilisateur d'un systeme Linux
traditionnel. Parmi ses défauts reportés dans des t&amtérieurs, nous avons mis en exergue une faille et une
preuve de concept de déni de service d'un tel systeme. &tmgs ces problemes d’opération de pot de miel,
nous proposons des techniques de limitation des risquesi@fiouvoir faire des expériences du pot de miel
adaptatif. Finalement, nous proposons une implantat@egque de ce type de pot de miel adaptatif. L'idée
principale est que chaque appel systeme relatif a liex@e d’'un programme doit étre confirmé par un démon.
L'opérateur de ne doit alors pas rechanger le noyau du potidiemais juste ajouter les modules nécessaires
d’apprentissage au démon.

1.3.4 Validation exgerimentale

Aprés avoir modélisé le comportement deffé&ents intervenants ainsi que les méthodes d’opérations
avons réalisé des expériences avec des pot de miel qudgorites dans le chapitre 8. Dans une premiere
étape, deux pots de miel ont &té déployés dans le buwalperer des traces d’attaquants servant de base pour
les évaluations. Nous avons fait une expérience avec udemiel a basse interaction et un pot de miel a
forte interaction. L'automate probabilistes hiérarchdcest inferé a partir du pot de miel a forte interaction.
Cette instance nous sert de référence pour calculer las da chaque joueur et dériver les équilibres de Nash
pour chaque type de jeux. Ensuite, nous avons instanciépétye un pot de miel adaptatif avec les stratégies
résultantes des équilibre de Nash. Le résultat de cetilgse informe de la probabilité de bloquer les exécistion
des programmes relatifs aux attaguants. Il a ainsi ététatinque les attaquantf§extuent trois fois plus de
commandes comparé a un pot de miel a forte interactiamdatd en se basant sur la longueur des vecteurs
de processus. Cependant, cette approche a trois désgamntan premier lieu, la stratégie optimale dérivée
des équilibres Nash peut dépendre des traces que nous atitisees pour le calculer, ce qui implique que
les données d’entrée doivent bien étre équilibréas.déuxieme lieu, cela suppose des attaquants rationnels
alors que ce n'est pas toujours le cas. Finalement, le dégdaptabilité du pot de miel est faible. Le pot de
miel peut accepter ou bloguer une exécution d’'un prograreehen une probabilité de blocage sans prendre
en compte le contexte de I'exécution. Un attaquant pewi akécuter la méme commande plusieurs fois et se
rendre compte de la probabilité de blocage. Pour ces mistoen vue d’augmenter le degré d’adaptabilité nous
avons implémenté un pot de miel adaptatif qui est coatadkec I'apprentissage par renforcement. Il peut ainsi
permettre, bloquer, substituer une commande ou insudatjuant. Avec une telle approche, nous pouvons
estimer les meilleurs actions pour chaque état d’apresilet de vue du pot de miel. Cette information a été
recueillie sous forme d’'un tableau ou chaque ligne comed un état et chaque colonne a une action. Les
cellules avec le nombre le plus élevé est le choix pesfieel du pot de miel. Ainsi nous pouvons déterminer
les programmes qui doivent étre accessibles sur un poteélesirles programmes qui peuvent étre émulés. De



12 CHAPTER 1. RESUME EN FRANCAIS

cette fagcon nous pouvons alors améliorer les pot de niiglse interaction. Une comparaison en termes de
nombre de transitions vers des programmes installés pattiequants souligne un gain de 3 en faveur du pot
de miel adaptatif. Grace a la premiere approche d'apigsage par renforcement, le pot de miel opére dans un
environnement incluant les attaquants. Cette approchigeda nature compétitive établie entre attaquants et
pot de miel. Nous avons observé que cette simplificatiorattgla convergence des valeurs apprises. Afin de
palier a ce probleme, nous avons mis en ceuvre un jeu staph@slans une autre d’'implémentation de pot de

miel adaptatif.

1.4 Conclusion et travaux futures

Des les années quatre-vingt-dix, Cheswick [26] a a neoqtril est possible d'étudier le comportement des
attaquants en interagissant manuellement avec eux. Nons d&it une expérience similaire sur un pot de
miel a forte interaction au cours nous de laquelle un attata installée un outil de balayage de machine qui
a monopolisé les ressources du pot de miel. Ainsi aucure attaguant ne pouvait se pouvait plus connecter
au pot de miel. Nous avons injecté manuellement du code c&trsutil dans le but de provoquer une panne
de l'outil. Aprés un certain temps, I'attaquant est reveour inspecter les résultats de son outil, ce qui lui a
permis de se rendre compte de la panne. Il a alors relanaid Bmcore une fois pour qui tombera de nouveau
en panne. Apres cette deuxieme panne, I'attaquant a&esagxaminer la cause. Il n’a pas réussi et il a décidé
d’installer un autre outil fonctionnant correctementaGra cette intervention stratégique, le pot de miel a pu
récupérer deux outils de I'attaquant. Dans ces travauws Bons proposé un nouveau paradigme de pot de
miel adaptatif. Dans le contexte des pots de miel a foreraation un attaquant peut exécuter des commandes
qualifié d’étre arbitraires ce qui lui permet €ectuer les diérentes étapes de son attaque. Nous définissions
ce type de comportement comme I'avancement de l'attaquantpot de miel adaptatif intervient de fagon
stratégigue pendant les attaques. Dans un tel cas I'atta@st dévié de son chemin de maniere de déclencher
une réaction chez 'attaquant pour réaliser son attaljoes appelons cette réaction comportement de réponse.
Une attaquant peut soit reessayer la commande, soit @rancle commande alternative, soit se déconnecter
du pot de miel. En utilisant des criteres mesurables conembenhps de réaction ou les entrées de I'attaquant,
le pot de miel peut dériver les capacités de I'attaquaes &ttaques automatiques peuvent étffié@inciés des
attaques humaines. De I'un cdté si le pot de miel intetiers d’une attaque automatique alors ces attaques
frequemment échouent. De I'autre coté si I'attaquépbnd avec une insulte il est fortement probable que cet
attaquant est un attaguant humain. De plus les capacitésdieition de probleme peuvent étre estimées avec
les pot de miel adaptatifs. On peut voir la persistance d@tjaant. Par exemple si elle réessaie une commande
plusieurs fois ou si elle abandonne facilement. De plus ar peir si elle est assez intelligente de choisir
une chemin alternatif pour aboutir a son objectif. Les poinuel adaptatifs permettent aussi de déterminer
la quantité de résistance qu’ un attaguant peu subir ayabiandonner. Toutes ses connaissances sur les
attaquants ne peuvent guere étre déterminé avec leslpaobiel a basse interaction ou a forte interaction. Dans
les pots de miel & basse interaction il n’y a pas assez tdictien avec les attaquants et avec les pots de miel
a forte interaction la majorité des actions sont permitabn’y a pas de résistance aux actiorfieetuées par

les attaquants. Les pots de miel adaptatif peuvent sersindevelles sources d’'information sur les attaquants
permettant d'étudier leurs réactions. L'objectif de nrasaux est de construire des pots de miel adaptatifs qui
exploitent de fagon autonome ces caractéristiques ingr face a la large panoplie des attaques présentes sur
Internet. La théorie des jeux et I'apprentissage par reefoent permettent au pot de miel de se rapprocher de
comportements optimaux paramétrés par l'interméglidé fonctions de gains. Deux objectifs sont controlés
par les fonctions de gains:

e Maximiser les informations sur les attaquants comme lenir&es ou leurs outils.

e Maintenir les attaquants actifs le plus long temps possinle/ue d'étudier leur résistance face aux
interventions du pot de miel.



1.4. CONCLUSION ET TRAVAUX FUTURES 13

L'avancement des attaquants est modélisé avec un awddméarchique probabiliste qui contient deux
niveaux d’'états. Les attaquants communiquent des entféesont des chaines de caractéres. Ces entrées
sont associées a des états de I'automate. Les étaterhigpmiveau sont appelés macro-états et représentent
des programmes installés sur le pot de miel. Les programnstgllées par les attaquants sont représentés
par un état spécial appeteistom Les entrées des attaquants qui sont vides sont trarespasids un état
appeléeempty Les entrées ne pouvant étrffegtées a un état selon les regles précédentes sanupégs
dans un état spécifique nomnmsult Chagque macro état est un automate qui a des parametreghamme
comme états. Dans cet automate hiérarchique, les attexjpauvent faire des transitions ou chacune d’elle
corresponde a une étape d'une attaque. L'avantage deutmnate est qu'(i) il est possible de lintégrer
dans les pots de miel a forte interaction et (ii) qu'aucuneuae intervention humaine n’est nécessaire. Nous
avons proposé une méthode automatique qui prend degeermites comme entrée obtenues par le noyau
du systeme d’exploitation. Grace aux arbres de procetessisommandes exécutées par le systeme lui-méme
peuvent étre dierenciées de celles dedfdrentes attaquants. Cette distinction est nécessairel@fne pas
rendre instable le systeme d’exploitation. Hfeg la perturbation des processus vitaux pourrait induire u
panne du systeme d’exploitation. Les instances d’autesnai€rarchiques nous ont permis de construire des
pots de miel adaptatifs ayant des buts spécifiques. Untifljam pot de miel est contrdlé avec la fonction de
gain qui est construite a partir des composants mesurabiame les entrées données par les attaquants et le
temps écoulé entre deux entrées successives. Parnhijéegifs nous avons définis (i) la collecte des outils des
attaquants ou le déclenchement de nouvelles entrées pot te miel et (i) le fait de garder les attaquants le
plus actif possible.

Les outils des attaquants ainsi que leurs insultes soritpli@tement intéressants pour les opérateurs de
pot de miel. Les outils malveillants des attaquants peaneti’améliorer les logiciels anti-virus. De plus,
si un opérateur observe un tel outil sur une machine tagitil est fortement probable que cette machine
ait été compromise. En collectant des insultes, nos tesdaéeuvent prédire avec une certaine probabilité
gu'un attaquant est un étre humain réactif aux pannes.s Partains cas nous arrivons méme a identifier le
langage utilisé qui peut étre comparer avec le pays quurefant a I'adresse source de I'attaquant. L'objectif
de garder les attaquants le plus longtemps actif possilshagied’étudier leurs réactions et de se concentrer
sur les attaquants intéressants. Les attaques autoemitii de faibles capacités de gestion des erreurs et
échouent directement face aux interventions strateégigiu pot de miel. Les attaquants novices abandonnent
rapidement et les plus curieux restent. Les pots de mieltatisppermettent d’exploiter une nouvelle source
d’information sur les attaquants qui consiste en la réadfie ces derniers.

Les objectifs de nos travaux étaient d’eélaborer des potaigl adaptatifs qui déclenchent des réactions chez
les attaquants sans s’engager dans la course entre déseteple pots de miel et attaquants. Nous sommes
convaincus que la création des pots de miel adaptatifsi@gpendant de la technologie utilisée et nous avons
donné une preuve du concept ou nous avons identifié ypestd'attaques sur nos pots de miel adaptatifs.
Deux classes d’ attaques viennent des pots de miel a faeti@otion et une classe d'attaque est dédiée aux pots
de miel adaptatifs.

e Attaques du systeme
e Attaques du noyau

e Attaques comportementales

Nos pots de miel adaptatifs interviennent au niveau des ames exécutées par les attaquants. Ceci
nécessite une distinction claire de celles exécutéedeppot de miel et celles exécutés par le systeme lui-
méme. Ce probleme a été résolu en analysant les sbresalle processusiidié au processus d’entrée qui
est dans notre cas le serveur SSH. Une fois entré dans @systin attaquant peut exécuter des commandes
arbitraires. |l peut par exemple installer un programmeaguitinue la suite des opérations de fagon automa-
tique. Lattaquant peut aussi modifier ensuite le systeméetle facon que le systeme lui-méme exécute le
programme injecté. Le pot de miel adaptatif permet paautéfoutes les actions du systeme et donc aussi



14 CHAPTER 1. RESUME EN FRANCAIS

I'exécution de ce programme. Un attaquant pourrait aussaller un serveur de gestion de commandes local
sur le pot de miel. L'attaquant se connecterait ensuite #&lserveur a travers un tunnel SSH. Dans un tel cas
le sous-arbre de processus relié a cet attaguant a ureuhaet1 et le pot de miel adaptatif n’interfére pas avec
les commandes lancées par le serveur local. Une piste potrec ce probleme est I'analyse par marquage
[81]. Chaque donnée d’origine d’'un attaquant est margu@st surveillee tout au long de son existence sur le
systeme. Desfiorts supplémentaires doivent étre faits dans le con@rieservation du systeme de fichiers
du pot de miel. Enfet, en modifiant le systeme, un attaquant pourrait modifigrétats de celui-ci. Si un
attaquant se rend compte que quelques programmes soniropjermis di au mécanisme d’apprentissage,
il pourrait remplacer ces programmes par d'autres halbweint bloqués ou substitués. Une contre-mesure
a une telle attaque consiste a calculer des sommes déleodas programmes inclus lors de la création du
systeme. Ainsi, un remplacement d’'un programme aurait ponséquence une modification de la somme de
contrble. Le pot de miel peut soit prévenir de telles atéeen interdisant le remplacement des programmes
connus, soit arréter de fonctionner si un tel changemenbsgrve.

Les pots de miel adaptatifs que nous avons proposés dartsamasx interviennent au niveau noyau du
systeme. De ce fait, une menace potentielle serait dizdtag noyau du systeme. En vue d’accéder a celui-ci
l'attaquant dispose de plusieurs options comme par exemplastallant un module noyau. Ceci peut étre
évité en configurant un noyau monolithique lors de sa carditipn. L'attaquant pourrait aussi simplement
remplacer le noyau. Par contre, I'attaquant devrait red&sn le systeme. Sile pot de miel est implanté dans
une machine virtuelle, celle-ci peut étre instrumentéendiniere a substituer I'action de redémarrer le system
une mise a l'arrét de la machine. Si un opérateur d’'un pamndel observe un systéeme a l'arrét, il peut alors
vérifier son noyau et constater qu’il a été modifié gracdes sommes de contrdle pré-établies. L'opérateur
du pot de miel a ainsi la possibilité de remplacer le noyadlifieopar le noyau initial. Un attaquant pourrait
aussi directement modifier la mémoire du noyau initialeopErateur du pot de miel doit alors prévenir ces
acces. Enfin, l'attaquant a toujours la possibilité dlisgr un code d'exploit dédié pour le noyau. Dans ce
cas, I'opérateur du pot de miel devra donc veiller a méttjgur le noyau régulierement. Nous avons modifié
directement le code source du noyau afin d’éviter qu’urgatiat désactive nos fonctionnalités d’observation et
d’adaptation. Ceci a comme conséquence que les misesssdiocode source doivent étre réalisées avec notre
noyau modifié. Actuellement, les pots de miel tendent & fis observations a I'intérieure d’'une machine
virtuelle. Bien que cette technique soit plugfidile a tromper, il existe des attaques contre cette naaivell
technologie que nous avons discutées dans le chapitre 8uss duguel nous avons mis en évidence le fait
gue les pots de miel a forte interaction ne peuvent exchwerisque résiduel, ce qui doit étre accepté par I
opérateur du pot de miel.

Dans le chapitre 6, nous avons présenté un jeu entre unepoti@ et un attaquant omniprésent. Selon
la théorie des jeux, dans les jeux simples, les joueursedoitre rationnels ce qui n'est pas garanti pour les
attaquants. Les script kiddies sont utilisés par des eewviii essaient les attaques décrites par des experts. De
méme, la spécialisation des attaquants peut varier. Itlgsaattaquants présentant des connaissances solides
pour un systeme d’exploitation Windows mais foant de lacunes sur le systeme d’exploitation Linux [197].
De plus la discipline des attaquants est variable. Quelatiaguants sont plus rigoureux que d’autres. Afin de
contrer ces problemes, la théorie des jeux propose deanisgnes pour mesurer ces erreurs. Un pot de miel
adaptatif opéré avec I'apprentissage par renforcemagmtead son comportement lors de son opération. Par
contre, avec cette approche, la nature compétitive eetrattaquants et les pot de miel adaptatifs est ignorée
ce qui induit des problemes de stabilisation de I'appssatje. En modélisant un jeu stochastique prenant
en compte les actions de l'adversaire,la stabilisationvédsurs apprise est améliorée mais le probleme de
rationalité réapparait. Afin de mesurer la magnitudeadt=dncertitude, nous devrons suivre I'approche décrite
dans [74]. Il faut alors faire des simulations des attacugoi ne suivent pas I'eéquilibre de Nash et calculer
'impact sur les valeurs apprises.

En plus de ces problemes de stabilisation, un attaquaréges¢ment en mesure d’attaquer la méthode
d’apprentissage. Comme déja discuté precédemmeatfaguant pourrait changer les programmes du systéme
et ainsi influencer les transitions entre états afin que telpaniel apprenne des valeurs incorrectes. Dans un



1.4. CONCLUSION ET TRAVAUX FUTURES 15

tel cas, un attaquant visé a apprendre les détails duepotiel en sacrifiant ses objectifs initiaux. Une autre
condition dans les jeux simples stipule gu’un joueur ne ghauas de stratégie. Cependant, rien n'empéche
un attaquant de le faire en réalité afin d’obtenir des aged supplémentaires. Par exemple, un attaquant
peut abuser des commandes pour aboutir a son objectifreBiillister les fichier dans un répertoire, il peut soit
utiliser la commande légitime soit utiliser ufiet de bord d’une autre commande. Nous pourrions integres da
notre modele des super - états relatifs a la semantiggeedmmandes. Cette solution nécessiterait une inter-
vention manuelle de I'opérateur du pot de miel. Normalemles attaques comportementales précédemment
déecrites exigent que I'attaquant ait conscience de lagmée du pot de miel adaptati chaque exécution
d’'un programme déclenché par un attaquant, nos pots deadaptatifs décident d’intervenir ot non. Sur des
systemes Linux, il y a souvent des groupes de commandeoquiesécutées ensemble. Un attaquant peut
trouver suspect si une partie d’entre elles échoue et lessarteussissent. Afin de résoudre ce probleme, la
sémantique des commandes devrait étre inclus dans lelendd pot de miel adaptatif.

Dans nos travaux nous avons modélisé et évalué des poisials adaptatifs. Nous avons exploré la
théorie des jeux et 'apprentissage par renforcement ldacentexte des pots de miel a forte interaction. Nous
avons étudié les pots de miel adaptatifs dans le contexpots de miel SSHetendre le paradigme de pot de
miel adaptatif sur d'autres types de pots de miel est engadalg comme ceux dédiés a la voix sur IP ou la
messagerie. De plus, nous avons considéré uniqguemepbtiede miel de type serveur. Nous pourrions aussi
créer des pots de miels adaptatifs de type client qui &mielet des utilisateurs se faisant attaquer. Ce champ
d'utilisation donnerait lieu a I'utilisation des algdrines de renforcement plus complexes a l'instar d’agents
collaboratifs partageant les informations apprises. ki des jeux simples considérés dans cette these, une
approche alternative pour prendre en compte l'incertittiele joueurs est d’intégrer la théorie bayesienne en
modélisant des jeux dits bayesiens. Nous songeons égalenexplorer dférents types de jeux comme les
jeux de Stackleberg ou de multiples joueurs collaborentisthaque joueur a un role spécifique. Il faut aussi
considérer la possibilite de modéliser des jeux enttedpamiels collaboratifs hiérarchiques en exploitant les
théories d’apprentissage par renforcement qui sont ers cmudéveloppement.



16

CHAPTER 1. RESUME EN FRANCAIS




Chapter 2

Introduction

2.1 Context

Many organizations have extended their business capebiind rely on external providers to accomplish im-
portant missions and business functions [114]. Often, tiffgr services to external partners or they rely on
external services. These services are outside their aafonal boundaries and are not under the control of
the organization. Besides these complex business inimacthe complexity of software is continuously in-
creasing, resulting in an increase of implementation fladscording to Stefan Frei et al. [54] the number
and diversity of attacks has exploded: In the time periogvbenh 1996 and 2006, the number of software
vulnerability report$ steadily increased. After examining the publicly ava#abhtaset of vulnerabilities re-
ports from 1999 to 2010, we can confirm this trérfdee figure 2.1). The appearance of a new technology
is usually followed by a new class of vulnerabilities. Thesénerabilities are then exploited by attackers in
an exploitation process, until the technology maturess Thiclic phenomenon is accelerated by the fact that
more systems are globally interconnected and accessie dny country in the world[24]. In this century
the Honeynet community headed by Spitzner [154] made theraesison that an unprotected computer would
be compromised within a few minutes. Provos et al. [130] nmeadimnilar observation seven years later which
shows the persistence of the problem. They also found ft8reint malicious programs on a vulnerable ma-
chine that was directly connected to the Internet for 24 fio@wners of information systems simply follow
the plug-and-play paradigm, where they just connect theitesns to the Internet and expect that everything
works: they do not bother to identify the services they yeatted and shut them down or mitigate access to
risky services. This lazy behavior has led to self-propagatnalicious software, known as worms, which in-
fested the Internet following the turn of the century. Poebal. [130] reported that the birthrate of malicious
software known as malware is steadily increasing and humtanviention is too slow [130]. Operating system
vendors and Internet service providers have undertakeretrdous forts to secure their solutions in order to
mitigate these outbreaks. Computer Security Incident &espTeams (CSIRTS) and security researchers have
run large-scale compaigns to educate users and teach ttsiersbaurity practices [114].

Cheswick et al. [27] advise that an exposed system shouléisuiew programs as possible. A system
with a minimal number of exposed programs is easier to mpaitd to manage. This pragmatic approach was
formalized and extended by Howard et al. [72]. In order tdqren a risk analysis, they developed an attack
surface model with three abstract dimensions to Microsoftrating systems. They considered enablers, com-
munication protocols and access rights. If fewer serviceseaposed, fewer enablers are exposed, resulting
in a smaller attack surface. The larger a system’s attadeerthe more likely it is to be exploited. Thus,
software vendors and system administrators can reducetttiek asurface by exposing fewer services. Un-

The number of vulnerability reports is measurable. CVEgssa unique number to each report. However, a software rabiigy
is not in a one to one relation with a vulnerability report.n&osoftware vulnerabilities triggered multiple reportsda report can
addresses multiple systems. Hence it may describe muitiplances of the vulnerability.

2A detailed description of these measurements is presemtide iappendix section A.

17



18 CHAPTER 2. INTRODUCTION

fortunately, some systems caffay little space for reconfiguration and other systems araindéer control of
administrators. Proxy servers and firewalls have been gempto control outgoing and incoming connections
[44].

By the year 2000, the web presence of organizations had keeaarucial business factor. Unfortunately,
the developers of these solutions assumed a clean andosiedl inputs from external users. This presumption
led to a pandemic of cross-site scripting exploits [78] afilSnjection attacks. In addition to controlling or
hijacking visitors’ hosts, attackers can also control theatlases that feed the attached web applications. The
countermeasure developed by CSIRTs is the definition ofgrastices for web development with the intent of
education of web developers.

Besides their education mission, CSIRTs also study thevimisaand origins of attackers. Attackers ac-
tively look for vulnerabilities in new technologies and tryexploit them. A successful exploit usually leads
to a system being penetrated through an exposed serviceh vghi program that is remotely accessible [47].
Usually, the attackers’ the first step is to gather infororatabout the target. Attacks are divided into two
generic categories. In the first, when attackers have selecparticular victim, for instance a specific industry
or a given organization, the tertargeted attackis used [28]. Targeted attacks are often related to induistri
espionage or sabotage. In the second category, when ataltkaot care which victim they have selected, the
term of random attack is used [28]. In this case, an attack@rst interested in gain access to the resources
of the selected victim. A hijacked resource is called a zanand is used to attack other targets [201]. An
attacker who we call in thesis Eve, could simply probe aneskirange. If a host replies to the probes, she
has discovered the host. This behavior is usually definestasning[154]. Alternatively she could set up a
rogue publicly-available server or compromise a frequevitlited server such that users visiting this server are
infected. In this case, the terdnive-by malicious softwaris used [131]. Such attacks are out of the scope of
this thesis.

Attackers often distribute attacking tasks. For instageaips of attackers specialized in scanning activities
share or sell their results to other attackers [112]. Asagrttiat Eve has discovered a host, she has to exploit
it to get access. Sometimes, she could apply a ready-torosé-gf-concept code [53]. If this is not available
she can develop her own exploit code. If she decides to pulblisithout previously notifying the owners of
the system the termero-day exploiis used [125]. If the exploit is successful, she obtains sx¢e the host
and the host is compromised. Li et al. [93] used attack obsens and created attacker profiles based on the
characteristics of the selected target, the characterisfiobserved events, and the consequences of the events.
Ramsbrock et al. [135] observed attacker behaviors aftesticcessful take-over of a machine and modeled
attackers’ behaviors as a state machine having seven.states Eve had entered a machine, she could check
the hardware or software configuration, she could changanmads or change the overall configuration of the
compromised system. Following, these activities, Eve lisamwnloads and installs customized tools and
executes them for her malicious purpose.

A combination and simplification of the scanning activitiegploit process and attacker behaviors follow-
ing the penetration results in the ring hierarchy is presgbin figure 2.2. Each ring corresponds to a generic
activity by an attacker and also shows observation leveltatks. We defined five rings of attacker behav-
ior: discovery, exploit, reconnaissance, customizatang post-attack. The deeper (the higher the index of)
the ring, the nearer to success is the attack. Having disedwhe target, modeled with ririgy, Eve tries to
penetrate it via exploits grouped in the riRg. After penetrating the target, she enters a reconnaisgarase,
represented by rin&,. She tries to discover system details, such as the versitimeasperating system and
the installed software. Using this knowledge, she starfgrépare the system. In the rif} she often takes
steps to assure further logins and wipe traces of her breakén starts to abuse the system. An attacker has
a dedicated attack goal presented with HRig For instance, she may want to steal confidential informaaio
hijack the system in order to performing additional attacks

Each ring in figure 2.2 also represents a type of knowledgetadtackers. An attacker’'s source IP ad-
dress and source port can be observed in RagA lookup of the Internet service provider together with the
corresponding country of an attacker can be performed. Xpiés used are contained in the knowledge of



2.1. CONTEXT

19

# vulnerability reports

8000

7000

6000

5000

4000

3000

2000

1000

D D D Y Y
%, %, %0, %y %5 %,

time

Figure 2.1: Vulnerability Reports Published by MITRE

System

discovery
exploit

reconnaissance
customization

post attack

5

Figure 2.2: System Attack Hierarchy

2
(2



20 CHAPTER 2. INTRODUCTION

ring R;. An attacker’s strategy for system investigation can benfesl in ringR,. Some attackers do a careful
investigation while others attackers show little interastl simply try to proceed. If a system is not ready for
the intended malicious activities, attackers downloadauized tools. These downloads reveal malicious code
repositories and the tools themselves. This knowledgecisgmted in rindRz. Malicious code repositories can
be taken down and file signatures can be generated for ang-solutions. RingR, andR; include knowledge

of an attacker’s activities following break-in, reconrsgisce and customization. The presence of attackers is
detected by intrusion detection systems which raise am dlging an attack. However, indented knowledge
about attackers is currently assessed by deceptive syktems as honeypots. This knowledge is injected in
intrusion detection systems. A honeypot is a system to bbeor@nd attacked but which has no legitimate
purpose [154]. Oferent kinds of honeypots have been implemented and areatipedito populate one or
more rings of knowledge. One one hand, low-interaction hipats perform well in gathering information
belonging to ringRp or R;. An attacker’s source IP address, source ports and thenfiesaction with a service
are recorded. Some low-interaction honeypots are everbleapéhandling exploits (rindR,) [7], [60]. For
known exploits, they can even download the injected codghfifiteraction honeypots on the other hand are
used to get more information related to the rilggo R*. With high-interaction honeypots, it is also possible to
collect information concerned to the ringg to R;. High-interaction honeypots are particularly useful for o
serving attackers’ behavior after a successful penetrafigsets of interest are the tools used and the strategies
followed by attackers. Compared to classical intrusiorclin systems, honeypots do not have to distinguish
between legitimate and malicious events because theredegiitimate events by design. Hence, all activities
on a honeypot are suspicious by default and therefore nibinfege. False positives can also be present in the
context of honeypots. Such events are triggered by badkseatd misconfiguration [105]. Intrusion detection
systems must have a signature or an heuristic to detectaarkationeypots simply expose a vulnerable service
and so they respond to unknown attacks [4]. Hence, honegpets powerful technique for gathering malicious
software [7], [130], [139] or information about to attackg¢t38], [154]. The major advantage of honeypots is
that the threat collection process can be partially autedyanstead of collecting the malicious software from
compromised production machines [130]. Although, honéydo not prevent attacks, they are complementary
tools for detecting and studying attackers. Furthermoith the information gathered, they provide a means
for improving intrusion detection systems and anti-virakigons.

2.2 Problem Statement

Honeypots are praised as solution for learning from attackbe National Institute of Standards and Technol-
ogy even recommends honeypots as a security control mechghil4]. Early in this century, Spitzner [154],
claimed that most security professionals designing sgcproducts are ignorant attackers’ tools, motivation
and tactics. This fact is a strategic advantage for thelatgd54]. Spitzner [154] on page 2 propagates the
message that “Have the enemy teach us its own tools, tactitsnativations”. Looking back at the last ten
years (discussed in chapter 3) of honeypot development p@ichtion, this vision could be updated to “Have
the enemy teach us its own toolactics andnetivations”.

Honeypots are resources designed to be attacked. Theyldbmabmpletely passive without any legitimate
production purpose. Obviously, due to the legal constsagithoneypot operators, appropriate mitigation
techniques must be employed when facing real attackersolgalevel of operation at risks are used, ranging
from the emulation of services to the exposure of real sesvids discussed in chapter 3, honeypots have been
proposed for the emulation of dedicated services. Low-ation honeypots allow to study the first interactions
with attackers and high-interaction honeypots allow toepbs attacker activities after they have compromised
a system.

A variety of information levels are recorded according t@ dog model. Thus, honeypots focus on the
observation of attackers dependent of their interactiorlleThe interaction level is defined by the features
exposed to attackers, instead of actively interacting witackers in a strategic way. In the context of high-
interaction honeypots most research activities haveqgieatied in the arms race between attackers and honey-



2.3. CONTRIBUTIONS 21

pot operators. In this self-sustaining phenomenon, hasteyperators propose a new emulation technique or
monitoring method and attackers try to defeat it.

Cohen [31] discusses the utility of deception techniqudkercontext of attackers. Low-interaction honey-
pots emulate fake services and thus lure attackers. Howtbeetleception technique employed by state-of-the-
art honeypots is simplistic. A honeypot has quite a limiteskaal to respond to an attacker. Firstly, honeypot
can only dfer the emulated service to an attacker. Secondly, the imgrited deception technique is applied
in a deterministic way due to the fact that a honeypot can shamly this behavior. Hence, we deduce that
current honeypots are static observation devices insteiatetligent deception systems.

Despite, these limitations as has been previously disdusserent honeypots perform quite well in col-
lecting programs related to attackers. Also, pre-attadtepss like scanning activities can be assessed quite
efficiently. Security researchers have performed distribbtateypot operations [39] and the jointly observed
results can be analyzed. From these, researchers havéotidedive the tactics of attackers, for instance, the
existence of common attack patterns or behaviors. Thisassmnt is either done manually or partially auto-
mated based on the observation results. However, stateeadrt honeypots are not capable of revealing attack
patterns themselves, due to their fixed capabilities. Hathey lack additional capabilities which they could
select as a strategic response to attacks. Due to this lagkodde among dierent responses provided to at-
tackers only the default behavior of attackers such as tehipg of shellcode or the deploying of malicious
software can be observed.

Nicomette et al. [112] report that some attacks are comlatdomated. Instead of observing a human at-
tacker, the honeypot operator observes an attack scripinaliaious program that interacts with the honeypot.
Distinguishing between human and automated attackersaiteolying, because only théfects of operations
can be observed. In addition, it isfli¢ult to draw meaningful conclusions about the skills of aacker when
observing the fects of program executions on a passive honeypot which hettystieterministic behavior. If
additional knowledge should be learned about an attadkemeéw type of information has to be measurable
in order to draw meaningful conclusions. However, honeymatn observe only thefects of attack opera-
tions. Consequently, siddfects must be carefully inspected in order to derive thistafdil information. As
discussed in detail in chapter 3, there is an arms race betattgckers and honeypot operators. Attackers
try to avoid honeypots because they are monitored devicsnei legitimate purposes. From an economic
point of view such systems are unattractive for attackeles& systems are by definition designed to fool an
attacker and so generally prevent her from reaching heckagaal. From the arms race we can deduce that
emulation of fake services are an essential weakness ofpotse but attackers too have their weaknesses. For
instance, they may misinterpret theets of their actions. Therefore, honeypots having aduitifeatures to
challenge attackers should act more strategically anchdefeeir interests to so as reveal more information
from attackers.

2.3 Contributions

In this thesis we address autonomous and adaptive honayaotster graduated challenges to attackers with
the purpose of revealing their true nature, skills and lisiggibackground. The thesis is divided into two parts.
The first part describes the previous work and the secondtpatiins our contributions.

Chapter 3 presents the related work on honeypots. It starts with tbeggring activities of the late 1980s,
on the observation of attackers in information systeméovigdd by deception techniques in information
systems. At the start of the current century a commonly dedetgrminology on honeypots was intro-
duced, providing an enabler for the novel honeypot reseanimunities. Honeypot taxonomies are pre-
sented using the commonly accepted honeypot categorigglyndow-interaction and high-interaction
honeypots. A low-interaction honeypot provides fake smwithat try to mimic real ones whereas a high-
interaction honeypot is an actual vulnerable system, eegois attackers. Distinct communities work on
these diferent categories of honeypots following a risk managemgmtaach. The highest threat is that



22

CHAPTER 2. INTRODUCTION

loosing the control over a deployed honeypot, so gettinglidd in attacks against third parties. On one
hand, the risk in operating low-interaction honeypots igeglow and they are useful for detecting the
presence of attackers. On the other, the risk in operatigig-initeraction honeypots is quite high because
an actual vulnerable system is exposed to attackers, wHd bgack it. Hybrid solutions which allow
the operational risk to be mitigated are discussed. Sgawsearchers [39] use honeypots to measure at-
tack activities in a distributed large-scale manner. Ofleeurity researchers focus on the analysis of the
data that is collected via honeypots. In practice, honeypate been used to collect malicious software.
From an attacker perspective, malicious software is oft@neaious asset. It serves them as tool for
malicious activity and therefore they want to stop it fajlimto the hands of security researchers. Should
this happen, anti-virus industry can develop appropriat;ntermeasures resulting in a disruption of the
malicious business activities in which attackers are oftealved. Hence, the attackers point of view is
considered and the technical limits of state-of-the-artdypots are summarized. Besides, these techni-
cal limitations, neither systems are adaptive and act inadegfic manner such that these weaknesses are
compensated.

Chapter 4 presents theories dedicated to the conceptual designaf@ubus and adaptive honeypots capable

of defending their interests to obtain a given type of knalgke from attackers. We start by providing a
short evolution of game theory which is essential to forgnithme opponents in a competitive environ-
ment. In order to introduce equilibrium concepts, a sharher on formal games is presented. Rational
players always try to achieve such an equilibrium and daypidlican be discovered with a wide variety of
algorithms. Previous work on the application of game theéoripformation security is described. Game
theory has already been addressed in the context of horseyfiot majority of the contributions focus on
games at the infrastructure level, where honeypots areasspdssive information security sensors which
cannot take individual strategic decisions. In games,gstagan make errors which may impact their be-
haviors. Countermeasures and mitigation techniques acesied. In practice, not all the parameters of
a game are known a priori, which motivates further invesidga in the domain of goal-oriented learn-
ing. First, we introduce Markov Decision Processes to pied theoretical foundation. They formally
describe an agent which operates in an environment withuttpope of optimizing a reward signal. Each
decision taken by an agent is rewarded or punished. Howeitber not all the parameters are known,
or some of the assumptions of the learning model are not trpeactice. Therefore, learning methods
are enumerated such that optimal rewards can be learnegdhef formally computed. The proposed
learning techniques are then extended with stochastic giamerhich two competitive opponents oper-
ate in a shared environment where each agent has its owastgeil his approach permits the modeling
of games where each player learns from its interaction wstbpponent.

Chapter 5 presents a transversal model of attacker and honeypot loehawhich is used in the adaptation

mechanisms described in chapter 6. The generic behaviotamkars is consolidated from previous
literature. Attackers input sequences of strings to a comfged system. These strings are sequences
of characters, and correspond to commands, invalid comspapgdographic errors or insults. These
strings are then mapped to states in a hierarchical prostbautomaton. Each program installed on the
compromised system corresponds to a macro state. We iogaastate hierarchy due to the semantic
difference of command line arguments. A program is a distinanaaton and also has states which
model the command line arguments. A major requirement efrtfodel is that it can be implemented in
automated adaptive honeypots without human interventidrerefore, we formally describe a process
where direct system observations are transformed suchhgtcan be mapped onto the hierarchical
probabilistic automaton. An attacker executing commanughe honeypot causes transitions in the
hierarchical probabilistic automaton. The purpose of thesis is to make honeypots autonomous and
adaptive instead of deterministically emulating a behaamit is the case for current honeypots. The
interventions of adaptive honeypots trigger responses fattackers. We defined three actions for an
adaptive honeypot. Firstly, an adaptive honeypot can allgwogram execution. In this case it behaves



2.3. CONTRIBUTIONS 23

exactly like a traditional honeypot. Secondly, it can preévéine execution of a program for strategic
reasons. Third, it can substitute a program execution iardalassess the skills of an attacker. Finally, it
can insult an attacker, aiming to irritate her and to prov@kesponse that reveals her social and linguistic
background. In response to these interventions by the lpohethe attacker can retry a command, select
an alternative command, insult the honeypot or leave it.

Chapter 6 presents an adaptation mechanism for honeypots, sucththbiviel of adaptation is continuously
increased and improved. A honeypot usually follows the ahje of acquiring information from at-
tackers. As a first step, games are modeled between a horaypbaih omnipresent attacker rather than
individual attackers. Two games are modeled with apprappaydf functions for each player. These
paydts are computed with Monte Carlo simulations, which use atairtigted hierarchical probabilistic
automaton as input. From these pfigahe optimal strategy profiles are computed for each player b
following Nash equilibria. For the honeypot the best blagkjprobability is the most promising result
from these computations. However, this adaptation meshais quite coarse-grained and neglects the
contextual state of an attack. Moreover, the optimal bloghirobabilities are derived from simulations
which assume perfectly equilibrated bootstrap data. lerotol address these issues and to increase the
level of interactions of an adaptive honeypot, we apply d-gdanted learning approach, namely re-
inforcement learning. An adaptive honeypot, Heliza, is gled as an agent which optimizes reward
signals in an environment. In this context, the omnipresgtaicker is a part of the environment, which
is modeled by the previously developed hierarchical pridisib automaton. An attacker attempts to
make a transition to a given state. Heliza has to decide wh#tis transition should be allowed, blocked
or detoured. Each decision yields a reward which is optithizBy following such an approach, the
competitive nature of the relationship between attackaedsteliza is neglected, and this may impact
the learning processes. Therefore, we modeled the iniendogtween an attacker and the honeypot as
stochastic game and used a learning algorithm to approgiogtmal behaviors.

Chapter 7 The operation of honeypots is a risky operation. Three ntajaats have been identified. Firstly,
attackers could take over the honeypot such that the opdmsses control over it. Secondly, an at-
tacker could perform stealthy operations wiffieets that are not directly visible to the honeypot oper-
ator. Thirdly, attackers could abuse the honeypot to atthitkl parties. Hence, accurate monitoring
techniques must be be used to monitor operation. The gtehtesat is that attackers could attack third
parties resulting in legal consequences for the honeypatabpr. Therefore, the honeypot operator needs
to be aware of all the ongoing activities in which the hondypdnvolved. Hence, all the network ffac
related to the honeypot is recorded and firewalls and irdrudietection systems are deployed as de-
scribed in the best practices for honeypot operation [1Béjvever, the volume of recorded tii@ may
quickly increase when the honeypot is under heavy attackilevgtill assuming a quick reaction by the
operator, we propose two novel network visualization tégnes. The first is an approach which uses
aggregated networks as inputs, aiming to highlight a@siat subnet layer. The second in contrast aims
to detect the nature of outgoing attack. Attackers couldhpagatile programs to the honeypot such that
no traces are left on the honeypot’s file system. Therefoecewaluated network forensic tools in order
to ensure that we can recover such programs from the netwasks. However, we determined funda-
mental design flaws in the network forensic tools. This ledousxamine the system call layer, which
can be considered as an additional monitoring layer. Thetorarg of the malicious programs installed
and operated by attackers has the advantage that attacketdirst ensure that all the prerequisites of
the tools are fulfilled, a requirement which is often not neetdynamic in-vitro analysis systems [190].
We finally propose a generic adaptive honeypot frameworkrevidéterent learning algorithms can be
quickly implemented and evaluated and which is freely awdd [174].

Chapter 8 describes the experiments performed during our reseatisfitias. A regular high-interaction hon-
eypot was set up to recover the traces of attackers. A logrdntion honeypot was also operated to re-
cover traces which were later used for comparirfedént adaptive honeypots. From the high-interaction



24

CHAPTER 2. INTRODUCTION

honeypot we recovered the process trees, which are tramsflointo process vectors. These process vec-
tors were then used as input data for the generation of owarkldcal probabilistic automaton. We
implemented a simulator that used such an automaton as amgutvhich could compute the pdj®
for each player. These paf§s were then used to compute the optimal strategy profilesafcin player.
We implemented an adaptive high-interaction honeypot Wwhvas configured with the results of the
simulations and noticed an increase in interactions withckers. We increased the level of interaction
by operating an adaptive high-interaction honeypot drivgmeinforcement learning. We noticed even
more interaction with attackers by comparing the tracedefadaptive honeypot with the traces from
the low-interaction and the regular high-interaction hgut. However, with the learning algorithm used
we noticed a slow convergence to optimal values due to thdHatthe competitive nature of attackers
and honeypots were being neglected. Therefore we operateldes adaptive honeypot using a learning
algorithm derived from stochastic games to take this phemam into account.

Chapter 9 formally summarizes our research activities and enumeadéential future work. We suggest a

new paradigm of adaptive honeypots to reveal more infoonabout attackers. These novel honeypots
adapt their behavior to attackers. The adaptation is cibedravith game theory and reinforcement learn-
ing aiming at automated operation. We illustrated the exaropadaptive high-interaction honeypots
exposing a vulnerable SSH service. However, we believeliesdaptation paradigm to attackers is not
related to a given technology. We could also develop aduitigames between attackers and a honey-
pot at diferent levels than those at the operating system kernel. Weslged adaptive honeypot games
between an omnipresent attacker and a honeypot. We coulldrexqgdso more complex game scenarios
considering multiple collaborative players.



2.3. CONTRIBUTIONS 25

State of the art Part |
Chapter 3 Chapter 4
Honeypots Game Theory
Reinforcement Learning

/[ /

/ \ Contributions / Part I
Chapter 5 Chapter 6
Attacker Adaptive Honeypot
Modeling Modeling
Chapter 7 — Chapter 8
Honeypot Operation Experimental
Monitoring & Control Evaluations
Implementation
Chapter 9
Conclusions and Future Work

Figure 2.3: Chapter Organization

The dependencies of the chapters are shown in figure 2.3. rEh@ps work is summarized in the first
part and our contributions are shown in the second part. Téndqus work allowed the modeling of attacker
behaviors which enabled the modeling of adaptive honeythatdake into account game theory and reinforce-
ment learning. The foundations of these two theories arsepted in the first part. We identified challenges
in the previous activities on honeypots and developed haotayponitoring and control mechanisms influenc-
ing the design choice of our generic adaptive honeypot fveorie We have evaluated our various models of
adaptive honeypots using the generic adaptive honeypoeftark. Finally, we conclude this dissertation and
summarize the limitations of our adaptive honeypot franmévand the various interaction models including
experimental aspects.



26

CHAPTER 2.

INTRODUCTION




Part |

State of the art

27






Chapter 3

Honeypots

3.1 Honeypot Evolution

In the late eighties, Stoll [158] reported an attack on thesleaice Berkeley Laboratory. Instead of keeping
the intruder out, he took a novel approach. He decided toigeozounterfeit military documents as bait and
monitored access to them. These documents were accesdalibyrader, who was then tracked. A little later,
in the early nineties, Cheswick [26] became interestedérattacks on his Internet gateway. He had the idea of
adding some pseudo-services with no production purposeegadding all activities related to those services.
After a while an attacker used these services which provédéulal content. The author noticed that the attack
came from a stolen account and that the services needed nopbevied. The decision was taken to manually
interact with the attacker by providing him with forged oemit

At this time only a few attackers were active and with the taflgystem administrators, thdtwial au-
thorities took the necessary steps to physically discottackers and call them to account. Today the scale of
attacks has changed [54]. In the late nineties, Cohen [3&Hudsed several deception techniques that could
be used to lure attackers. A tool, the deception tool kit ([ TWas developed allowing pseudo services to be
defined in advance. Popular examples are TCP services irgjuarpreviously generated content to attackers.
The major contribution of Spitzner [154] is a commonly adeephoneypot terminology for the throw-away
machines [26] and deception devices [31] proposed eanjientiers. The commonly-accepted definition is
shown in definition 1.

Definition 1. “A honeypot is security resource whose value lies in beirappd, attacked, or compromised.”
[154] page 23.

A honeypot is particularly useful for gathering informatiabout attackers, such as their technological
and ethnological background [139]. Most work in the hongéygammunities is centered on the gathering
of technical information such as source addresses, masickoftware and the locations of malicious code
repositories. Honeypots should closely mimic real producsystems in order to be attractive to attackers
[154]. Spitzner [154] proposes adding user accounts tot@syscreating email accounts, forging documents
and synthesizing a command history.

The honeypot movement started in the beginning of this cgrttugrow. More researchers worked on
honeypots. Googlefters a publicly available service to determine trends onrgaubjects. This service is
mainly ofered to journalists, economists and investors because tt@amunities often analyze trends on
given subjects. In the past, these communities have hadsw thair data on monthly governmental reports
that are frequently amended and which lack hard data [7&jurEi3.1 shows Google’s search trend [76] for
honeypots in the field of information security. The highes trend, the more popular the keyword is. The
detailed experiment is described in the appendix in chdhtédn the x-axis is represented the time from 2004
to 2010 expressed in months. The data was only available 2@d4, which explains why the period from
2000 to 2004 is not covered. On the y-axis is shown the sead#xi The first peak was mid-2004. At this

29



30 CHAPTER 3. HONEYPOTS

time Provos et al. [128] implemented a honeypot caltaheyd The paper was published an had a high
impact.Moreover, the authors published the source cbdeeydis reliable and easy to use. Furthermore, the
operation at risk of such an honeypot is almost zero. Henesympeople were interested in it, explaining
the peak in interest. The following years the interesthlijgdecreased. However, at the end of 2006, botnets
became an emergent threat on the Internet and became poptil@mews. Zou et al. [201], proposed a method
for detecting and tracking botnets with honeypots. Potidiseet al. [125] modified the popular virtual machine
Qemu [18] with additional monitoring features targeted atioious software analysis and honeypot operation.
The authors made the source code publicly available and witwey researchers started to use it [130], [153].
One year later, Xuxian et al. [194] extended Qemu with furtmenitoring features such as the availability
to observe executed processes on the guest system. To thaf bes knowledge, this implementation is not
freely available. The drawback of modified Qemu is its perfance, because every instruction is emulated on
the host CPU. In the same area, researchers [89], [125]ppeoipautomated generation of intrusion detection
signatures from honeypots. This conceptual approach legwoavenues for research. Instead of generating
signatures, Leita et al. [91] generated scriptsHoneyd At this point in timeHoneydwas still the least risky
honeypot to operate [91].

The evolution of the number of scientific publications in tieneypot area is presented in figure 3.2. A
detailed description of the methodology, is presented énahpendix B. The x-axis shows the time while the
y-axis gives the number of scientific publications. In 20@Bt&er [154] introduced honeypot terminology,
leading to a small number of publicationdoneydwas a major milestone in the field of low-interaction hon-
eypots. Honeyddoes not require expert knowledge to be operated and thetapel risk is low, because
counterfeit services are emulated in user space. Due tathdhat the source code blioneydwas publicly
available, numerous researchers [40], [65], [89], [91hduxcted experiments witHoneydand proposed ex-
tensions resulting in the significant growth of papers frddd4to 2005.Honeydwas also particularly useful
in detecting Internet worms [40], [120].

Although the CPU manufacturer Intel had already introduzeew virtualization technology in 2006, the
major break-through for the honeypot community came in 200@mpromised honeypots can more easily
be switched ff and reinstalled when virtualization is used. Conceptudlilg external monitoring of an em-
ulated system was not new, as it had been demonstrated psgvioy Dunlap et al. [45]. However, Intel's
virtualization technology (VT) revived the idea of extdrn@onitoring. In the case of VT, ring zero from Intel
architectures, is not the lowest anymore. Intel introduaedhypervisor ring, where additional honeypot mon-
itoring capabilities can be implemented [43]. Many othesearchers made new propositions based on virtual
machine monitoring in the context of honeypots [68], [15%he publication peak in 2008, mainly resulting
from the vitual machine introspection revival and obseriredigure 3.2, is corresponding only to a minor
peak in Google's search index in figure 3.1. The search indmdtcan be seen to be decaying. It reached
a peak in 2004, due tBloneyd The NIST organization enumerates the honeypot techndlogjyeir control
mechanisms. The honeypot control mechanism is defined dm ififformation system includes components
specifically designed to be the target of malicious attacksHe purpose of detecting, deflecting, and ana-
lyzing such attacks.” p.119 [114]. A typical implementatiof this control mechanism is the deployment of
low-interaction honeypots detecting the presence of lkegtac

The operation of high-interaction honeypots is still riskghich discourages people from using it. High-
interaction honeypots are particularly useful to studytibbavior of attackers after they penetrated a system.
We believe that most people interested in information sgcare willing to study break-in attempts and less
people are interested in studying the behaviors of attacfeer a successful penetration. Hence, we deduce that
only a small community is interested in this information.l{Dmfew organizations such as CSIRTs or groups of
information security researchers are interested in stypifie behavior of attackers after they have penetrated
a system. In addition, the lack of publicly available soucogle prevents people to use it and to extend it.
Consequently a smaller number of Google queries are olibeggelting in a decrease in the presented Google
trend.



3.1. HONEYPOT EVOLUTION

31

search index

# of publications

2.2

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4

120

100

80

60

40

20

| | |

|

i W ol o

2004 2005 2006 2007 2008 2009 2010 2011

time

Figure 3.1: Search Index Trend

QY D D D D Y D D Y
@) @) @) [ 00 006‘ 006‘ 00) 00 @)

> &% > % % s Qo

time

Figure 3.2: Scientific Publications about Honeypots



32 CHAPTER 3. HONEYPOTS

3.2 Honeypot Classifications

Data control and data capture are essential paradigms &fedseneypot operation [154]. Honeypot operators
should know at any time what is happening to the honeypot a@dnonitoring system should have multiple
layers in order to mitigate the failure of a layer [154]. Metyd101] reported a case where an attacker switched
off the honeypot’s monitoring features. This is a worst-casaago for honeypot operators. If attackers were
able to abuse the honeypot for performing further attackseipot operators would be legally responsible for
their systems and would actively participate in attackser&fore, it is essential to be able to classify honey-
pots. When a honeypot operator encounters a new honeyptarnraptation and if the honeypot category is
known, then a decision on whether to operate the honeypattds easier to take. Seifert et al. [147] classi-
fied honeypots according to six classes: interaction lelath capture, containment, distribution appearance,
communication interface, and role in a multi-tier architee.

Interaction-level Honeypots usually expose some functionality to an attadkeorder to limit the attacker’s
control, the exposed functionality is limited in some mankeom the point of view of interactions, hon-
eypots are divided into low- and high-interaction honegga80], [147], [154]. The term mid-interaction
honeypot is also sometimes used [130] to specify honeypatdating services having more features than
low-interaction honeypotdMultipot is a medium interaction honeypot designed for Windows ptatb
capable to emulate known vulnerabilities. Having receivedshell codeMultipot [77] tries to emulate
it with the purpose of downloading the additional payloacheTinteraction between attackers with a
compromised system is often modeled with attack-trees][@#h&re a node corresponds to a stage of an
attack and the edges represent the logical connectionsebetaodes.

Data capture Spitzner [154] and Cheswick et al. [27] advise the use of iplelimonitoring and data-capture
layers. Seifert et al. [147] propose the use of a honeypaita dapture capabilities, which describe
the type of data it is able to capture, as honeypot classdicariteria. They define four values for this
category: events, attacks, intrusion, and none. When ayponeollects data such as scanning activities,
it collects events; when it collects data on a brute-foréacton an account, it collects attacks and when
it collects data about an attacker who has penetrated thensyi collects information about intrusions.

Containment In most countries, honeypot operators are legally resptngr their systems [2]. Best practice
shows that a firewall should be put in front of the honeypotrifeo to protect other organizations and to
prevent it being actively involved in attacks on third pest{154]. Nicomette et al. [112] configured a
firewall in front a honeypot such that attackers could nothethird parties through the honeypot. Such
firewall configurations with additional intrusion detectisystems are called honeywalls [25]. Having
penetrated a system, attackers often want to downloadfrooisthe Internet [112], [154]. If the firewall
blocks all connections from the honeypot to the Internet, ibneypot is unattractive to attackers and
attacks can only be partially observed [112], [154]. Spmtzf154] proposes limiting the number of
Internet connections from the honeypot. This allows attesko download their tools but not to perform
destructive attacks [154]. Alata et al. [2] propose simintaexternal hosts for the honeypot by using
dynamic connection redirection mechanisms. Seifert e{14.7] defined these mitigation techniques
ascontainment They identified four containment techniques. Firstly, adypot can block actions of
attackers. Secondly, a honeypot could defuse attack@nactin this case, the attacker can connect to the
target, but the content of the connection is tampered withsgo remove dangerous payloads. Thirdly, a
honeypot can also slowdown an attacker. An example is tiicéatly slow down connections related to
attacks. Finally, a honeypot can block all actions by attesk

Distribution appearance Seifert et al. [147] introduced the distribution appeaeanlass as a classification
criterion. Honeypots can be stand-alone or distributediesys. A stand-alone honeypot only interacts

A detailed explaination of shell code is presented at page 35



3.2. HONEYPOT CLASSIFICATIONS 33

with the attacker and his environment, while a distributeddypot interacts both with the attacker and
with additional entities. Examples are automated log filalysis or attacker tracking programs.

Communication interface Seifert et al. [147] also uses the communication interfaceldssify honeypots.
The communication interface defines the means by which tloenration about attackers can be col-
lected. For instance, network ffi@ can be collected or system logs can be recovered, via ancapph
Programming Interface (API).

Role in multi-tier architecture Seifert et al. [147] describe server-side honeypots. Sumnaypot passively
waits for connections from attackers and waits to be exgdoitie also identified client honeypots, which
try to mimic a user whose machine gets compromised when Heeorisits a malicious web server. This
thesis mainly focuses on server-side honeypots.

The voluntary interaction with attackers is the riskiest jp& honeypot operation [192]. When a new hon-
eypot design is published, it is usually classified accaydia interaction level. Low-interaction honeypots
have often a lower software complexity than high-inte@cthoneypots and hence are easier to manage. Hon-
eypots are divided into research and production honeypotstuction honeypots are systems for detecting the
presence of attackers, whereas research honeypots ar®stedy attacks [154].

Low-interaction Honeypots

TheHoneydcommunity leveraged the low-interaction honeypot definithown in 1. Low-interaction honey-
pots try to mimic services that are frequently the subjeexaloitation. Attackers connect to such a honeypot
and provide some input such as their source IP address,espartand the requested service. However, at-
tackers are usually not allowed to store information anatatetheir own programs on the honeypot. Hence,
the operation of low-interaction honeypots is less riskanthllowing arbitrary code execution. Low-interaction
honeypots are typically production honeypots intendedstess the presence of attackers. The deployment of
low-interaction honeypots helps to understand the evmiutif automated threats such as the propagation of
malicious software.

Definition 1. Low-interaction honeypots simulate only services thanhoaie exploited to get complete access
to the honeypot [71].

Cohen [31] describes a variety of low-interaction honegpatle proposed the deception tool kit DTK
to emulate pseudo services. The main purpose is to lure atedmattack tools and waste attacker’s time.
When an attacker scans a host that deploys DTK, she sees miaeyabilities and needs to determine which
vulnerabilities are real and which are fake. Obviously,attacker should not be able to automate this task, and
thus must spend a lot of time to test them sequentially. Heheewnorkload of the attacker is increased and the
defender gains time to track the attacker.

Liston [95] used a similar approach to slowdown self-pratangy malicious software. He developed a pro-
gram called Labrea, which uses unused IP address spacegdordecelerate worms. When a worm connects,
Labrea artificially slows down the connection attempt. dtdins for network packets using theap library
[79]. When there is a connection attempt, it periodicallp@mces a TCP window size of 0, simulating net-
work congestion on the targeted host. Most TIERMplementations on attacking hosts then wait for a time
slott and retry. Furthermore, the intervagirows exponentially if the congestion persists increasimgslow-
down factor. Honeyd is a program that runs in user space ¢éimgila complete TCPP stack. This means that
the program does not need to run in kernel space, which redheeoperational risk. It can be configured to
respond to requests for an entire sub-network, meaningttregponds to each request to any host addngss
in this network. When an attacker probes the addhgssloneydcatches the corresponding IP packet via the
pcaplibrary and crafts a response packet that is sent via a rakesft86]. The reason for using raw sockets
with pcapis that arbitrary packets can be intercepted and craftedegfilar TCPIP stack is not designed to



34 CHAPTER 3. HONEYPOTS

respond to arbitrary IP addresses. A honeypot operatoraraigare forged outputs for any given service. For
instance, a Perl script could suply the code for a minimal saver that uses the standard input and standard
output file descriptors. This script is then attached to gOrtvhich is the default port for web servers com-
municating via HTTP. When an attacker probes this port, tretamized program is executed and the content
is returned to the attacker. Each THPstack has its own characteristics and can be fingerpr[Bd Thus,

for low-interaction honeypots it is important to mimic tledsehaviors in order to be similar to a real TGP
stack and so to lure network scanners [128bneyduses the signatures database of the network scanner Nmap
and it can be configured to make a given IP address emulatedR@PTstack of a particular operating system.
Provos et al. [128] call such a behavior a personality. Thdigoration file ofHoneydallows arbitrary routing
topologies to be emulated using manipulated TTL (Time tel[h56]) fields .

Honeydis a powerful tool for emulating known services. The backrdad malicious programs have been
reverse-engineered and scripts have been developed tatenttubse back doors. An example is the Kuang2
back doof [65]. However, some malicious programs use their own comgation protocols on random ports
and have not yet been reverse engineered. Hence, Tillmaogee Honeytrap [164]. This program listens for
TCP packets. When a SYN packet [156] hits Honeytrap, it dyoally assigns a listener to that port and can
respond according to four modes. Firstly falsified contemtloe returned to the attacker. In this case Honeytrap
behaves likeHoneyd Secondly, Honeytrap can mirror the connection attemptingonnect to the same port
on the attacker. An attacker is often a compromised machidesalooking for a vulnerable servicg. Due
to the fact that the machine is already compromised and isimgrthe services it is likely to interpret the
requests. Honeytrap mirrors the received request to thekatt and records the resulting conversation. Thirdly,
Honeytrap can forward the requests to another host suchigh-@nteraction honeypot. Finally, Honeytrap has
an ignore mode. In this mode, the packets are just droppddsH8] used a dferent implementation approach
in order to attract connections to arbitrary ports. If a &ris not running on a regular host, the corresponding
TCP/IP stack replies with a TCP [156] packet having the RST flag[5&t to tell the requester that the service
is not running [157]. In contrast of emulating a TAAPstack [128], [95], Bakos [8] usptablesto redirect the
traffic to a dedicated service capable of replying. Antonatos. é6héxploited the DHCP protocol in order to
get more IP addresses for a host aiming for greater netwsikiliy. Their honeypot is called Honey@home
and requests additional IP addresses by sending DHCP tedqaedocal DHCP server. The required addresses
are then used for setting up tunnels to high-interactiorefipats.

Now that we have discussed the monitoring techniques fotipiillP addresses and arbitrary ports, we
enumerate technigues for determining the content to benediuto an attacker. For instancéogts have been
undertaken to simulate real production services Witimeyd[65]. This is usually achieved with scripts written
in bash, perl, python, Windows Command-Line Shell Langu&igial Basic or JavaScript. Howevétpneyd
is not particularly bound to a particular scripting langeadt provides input, output and error channels and
passes information through environment variables to usadthpt, a process that is executed by the operating
system. When an attacker sends a request, it can be reachiestandard input file descriptor, while replies are
communicated through the standard output file descriptoneydsets environment variables for the source IP
address, the source port, the destination address, thrat&Est port and the protocol used (UDP, TCP, ICMP)
[156]. These variables can be accessed and further pracbgshe script. Honeydships with some useful
default scripts [65], for instance, the banner of an SSHeser®bviously, an attacker can only connect to
this pseudo-service and can neither perform a completeekelygange nor get a login to the machine. There
are also scripts that emulate a telnet login on common CIS&@rs. These always respond to the attacker
that credentials are incorrect and emulate connectionotinse [65] also presents a script that lists a directory
for an IS server (Microsoft’s proprietary web server). Hnsarver scripts have also been developed, as have
pseudo-FTP servers returning static content.

Leita et al. [91] propose a more advanced alternative to minimplementing scripts: automated gen-
eration of scripts from recorded honeypot traces. Theutgwol, Scriptgen, is composed of four functional

2Many malicious programs establish back doors. These présemselves as new services that, for example, allow tlaekat
continuing access to the compromised system.



3.2. HONEYPOT CLASSIFICATIONS 35

modules. The message sequence factory module yseespdile containing captured network ffc as input,

and produces messages. A message is defined as the longastudive set of bytes going in the same direc-
tion. Two possible directions are handled: the first is frdiant to server and the second is from server to
client. The authors use these messages with their stateimadalilder module in order to generate raw state
machines, which are composed of edges and states. An edgeisted with an exchanged message recovered
from traces and the observation frequency. The authorssihgplify these raw machines with a module called
the state machine simplifier. To do this, they first do maaustelring based on a sequence alignment approach,
then perform a region analysis, where they group homogenseguences of bytes. Both clustering methods
help to reduce the number of states and edges. The regrotgied Become abstract states. Finally, they use
the simplified automaton for feeding a script generator theoto generate scripts fétoneyd The authors
acknowledged that their generated scripts are only apmations to real services but they claim that they are
suficient to fool automated attacks.

In the previous static configuration exampldésr Honeyd[65], only the initial interactions are recorded.
On one hand, using such an approach reduces code compleditiias the risk that attacker can take over the
honeypot is reduced. On the other, not much can be learneddttackers because only the first interactions
can be observed. The counterfeit SSH server, proposed jndé only present a banner to the attacker. In
this case only the source IP address can be logged; the tisdder attackers cannot be observed because this
level of complexity is not implemented in the script. Cor@]implemented a pseudo SSH server, Kojoney,
simulating a complete SSH login and some basic bash commaAitidss code is implemented in Python, and
an attacker cannot execute or install her own programs. ¢jehis Kojoney is classified as a low-interaction
honeypot.

Allowing the execution of arbitrary code by attackers is agkrous decision. The attacker could switch of
the monitoring capabilities [101] or abuse the honeypottaxch third parties. In this case, the honeypot actively
participates in malicious attacks and in most countrieshtireeypot operator is legally responsible. Attackers
often exploit vulnerabilities. They send a crafted requksbwn as an exploit, to a vulnerable service. The
vulnerable service wrongly interprets the request in swehyathat the crafted request is partially executed.
The hostile code that is executed in a defective servicdlsdcshellcode. Historically, this code spawns a shell
enabling an attacker full access to the machine [122]. Abpsepagating worms, the infected code usually
downloads another malicious program instead of spawniniged EL22]. These shellcodes are particularly
dangerous, because when they hit their target, they alltalagrs to take over a service without any human
intervention. In the network intrusion community mudfoets has been undertaken to detect shellcode [122].
Historically an attacker simply added their shellcode iagitimate requests without any attempt to hide it. For
a traditional biéfer-overflow exploit, the return address is overwritten. deer, finding this address depends
on the process running the service and statkets difer slighly. Attackers use a NOP sled, which is often
considered as landing-zone. This means that the beginfitige shellcode starts with No OPeration (NOP)
instructions in order to make the code more robust agaimgitsl different dfsets [116]. When theffset is
only one byte ahead, the opcode alignment might be incoleading to invalid instructions and results in a
failure of the shellcode. For the instruction detection ommity such an attack is relatively easy to detect.
They simply need to search for a 0x90 byte sequence defintn@P sled [122]. Erickson et al. [47] noticed
that instructions using one word are need to constructeddirlg zone. The richness of Intel's x86 instruction
set provides many other alternatives. For instance, theugt®n to increment the register ECX by 1 has an
opcode of 0x41. When the intrusion detection system ingspthis opcode, it sees the ASCII cadand some
intrusion detection systems consider that ASCII codes arégh. The advantage of this approach is that a
landing zone populated with such irrelevant instructiomstill robust for attackers because the value of the
ECX register is discarded anyhow. Most exploits want to doath another program or to spawn a shell. Due
to Intel's i386 instruction set shellcodes share commotufea [47]. Intrusion detection systems use these
common parts to detect shellcode. As a countermeasureketsaencrypt their shellcode resulting in a small
routine that decrypts the remaining shellcode. After thelak the shellcode is decrypted in the defective

3Scriptgen is excluded.



36 CHAPTER 3. HONEYPOTS

service and the decrypted shellcode is executed [122]. Emenis case an intrusion detection system can still
create a signature for the encrypted hostile shellcode.céjeattackers have created polymorphic shellcodes
which slightly changes a few instructions such that thelsbéé looks diferent for each target. Intrusion
detection systems have two choices: they can try to dedngpghiellcode or they can emulate it.

The danger of self-propagating malicious software comas fthe fact that the exploit process is fully-
automated. An infected machine scans for other vulneralblehines. After having found one, the exploit is
automatically performed and the new infected machinesstarinfect other vulnerable machines. Malicious
programs often share the same spreading code, but downldiiti@ent malicious program. The previously
described honeypots can capture the connection attemptslafious machines and the exploit code. How-
ever, they are unable to download the malicious program.ckleBaecher et al. [7] developed a tool called
NepenthesThe purpose oNepenthess to collect malicious programs. It exposes services onsa dhenoted
collector which emulates fake vulnerable services. Wheonaptomised machine connects to the collector it
can upload the shellcode. The corresponding vulnerabilibglule on the collector decodes the shellcode and
downloads the malicious program as if it were a normal irfédiost. However, the program is not executed
but stored for later analysis.

Baecher et al. [7] define that Nepenthes is a low-interadtimmeypot because it simply emulates known
vulnerabilities. When new vulnerabilities are discoveradrulnerability module must be developed fée-
penthes Nepenthes is implemented using the4Cprogramming language. A worst-case scenario is a software
vulnerability in Nepentheésmplementation. Provos et al. [130] illustrated that maie collecting tools can
be detected. After such a detection an attacker could crgfeaial request to take over the collector. Hence,
Gobel [60] developed a similar tool called Amun. The majdfetence is that Amun is developed in Python
which is less vulnerable to [fier overflow attacks. In the worst case, attackers could dissleollector by
triggering an exception instead of taking it over. The lagesmmple of this type of honeypot is Dionaea [6] able
to handle IPv4, IPv6 and voice over IP services.

One one hand, low-interaction honeypots are partiallyuidef detecting attackers. The source address and
the requested service can be recorded. In the best casen lexploits can be emulated and malicious programs
can be downloaded. The software complexity of low-inteasichoneypots is usually low and attackers cannot
execute arbitrary code on them. Hence, their operatiosklisilow, which is an advantage for those who wish
to run them in large numbers. On the other hand, they candigctonalicious programs that use unknown
vulnerabilities. Furthermore, an attacker’s activityeafhaving exploited a system cannot be observed with a
low-interaction honeypot. However, all the rings of ourgrimierarchy, presented in section 2, can be addressed
with high-interaction honeypots.

High-Interaction Honeypots

Cheswick [26] mentions throwaway machines having realrégduoles with the sole purpose of being attacked
a long time before the honeypot movement. These servicesecapmpromised by attackers and their behavior
can be studied. He also discusses jails created witklheot command. This command permits d@drent
system root to be set for a process. The new root may be a eututy of the overall file system and a program
running in this jail can only access the files in this subdoscand its descendants. He concludes that such a
jail is not perfectly secure and not entirely invisible. Hi/&sed using throwaway machines with real security
holes that are externally monitored by a second machine. rbjgopes capturing all the network fiia and
thus observes an attacker’s activity. This was a valid swiufor its time, because attackers connected to the
service using clear-text protocols for remote access. eldheir activities could be monitored. However by the
mid-nineties, encryption was gaining popularity. Moshéglservices [126] were replaced with SSH [196] and
a significant fraction of communications became encryptad2000, Spitzner [154] called these throwaway
machines high-interaction honeypots. In order to overcdineeproblem of monitoring encrypted network
traffic, data capture should be performed on the honeypot itspifzrigr [154] proposes the use of a modified
command line shell to monitor an attacker’s activity [194¢ also defended the idea that no information about
attackers should be locally stored on a honeypot: if infdiomais locally stored, an attacker could tamper



3.2. HONEYPOT CLASSIFICATIONS 37

with or delete the recorded information. Attackers oftestatied their own command line interpreters on
honeypots [9]. This prevents an attacker from being momitdsy the honeypot's shell. To counteract this
trend, the monitoring features moved into kernel spacea®at al. [9] implemented Sebek a Linux kernel
module for monitoring an attacker’s keystrokes and reldiledaccesses. Sebek uses the rootkit technology
initially developed by attackers who wished to hide theggance on compromised machines. It detours the
read system call, and so is able to capture the content obod@as and the standard input stream. Hence, even
encrypted communications can be captured because theamiogihappens after the decryption. Moreover,
Sebek transmits the acquired data over a network to a sdraeist unlikely to be under the control of an
attacker.

A little bit later McCarty [101] published an article in whide describes techniques to detect these addi-
tional monitoring features. Attackers inspect the address the system calls. When a function is detoured
its address appears in an unexpected address range. M{¢Qaityalso describes techniques that attackers
could use to switchf the monitoring features. Dunlap et al. [45] argue that thaddemonitoring approaches
depend on the integrity of the operating system and assushéheh operating system is trustworthy. As proved
by McCarty, this is not always the case. Hence, Dunlap e#éal. §uggest performing the monitoring at virtual
machine level. This approach implies that the honeypot &atpd in a virtual machine. A virtual machine is
a program that emulates a complete operating system and isnder another operating system. A popular
open-source virtual machine is a Linux or Windows operatiggfem that uses the emulator Qemu [18]. Por-
tokalidis et al. [124] extended Qemu with additional moriitg features in order to detect zero-day exploits.
These features make it suitable for the operation of horteyddne authors developed a generic method to de-
tect stack smashing, heap corruption and format stringkatal he key idea is to detect them at the CPU level.
Qemu is a virtual machine allowing each executed instradiiobe monitored and controlled. Something that
is hardly possible with a kernel level approach. The honegp®ortokalidis et al. [124] generates signhatures
when an attack is encountered. A honeypot operator can sexioit when it happens but is still not able to
track all the regular commands that an attacker has entétedce Xuxian et al. [194] extended Qemu such
that the executed programs be recovered. With such an ajipradoneypot operator is able to determine the
actions of an attacker following a successful exploit. Qéraanslates each instruction in user space resulting a
high performance overhead comparing to the hardwaretedsigtual machines.

As previously discussed, with low-interaction honeypdtackers can only perform a limited set of inter-
actions with the honeypot. This limitation helps the oparéd control the honeypot. Consequently, this model
scales better than the model of high-interaction honeypdénce, low-interaction honeypots are better suited
for assessing attacks and for collecting a significant amoiufata [112], [167]. However, low-interaction hon-
eypots are not suitable if the intend is to study attackeglsawior within a system due to the limited amount
of exposed features. While had Cheswick [26] discussedviai@y machines with real security holes in the
early 90s and Bellovin had implemented pseudo services sted until 2000 that evolve quickly. Figure
3.3 shows the evolution of the numbers of scientific pubilicest about low- and high-interaction honeypots.
A detailed description about the experiment is presenteappendix B. Publications in 2000 and 2001 dealt
only with high-interaction honeypots, describing the ekpents made by the authors did with high-interaction
honeypots, explaining what the attacker did. The deceptiolkit had been available since 1998. In 2003 first
implementations oHoneydappeared. Gupta [113] discussed tifieaiveness of both tools. He pinpointed
their limits and proposed an iterative approach to the djperaf honeypots because the attackers’ tactics and
strategies are unknown. In 2006 virtual machines gainedlpdpy for the operation of honeypots. The advan-
tage of virtual machines is that they can be set up easily ande reset to a clean state without reinstalling a
machine from scratch. This process can even be partialynzaated.

The breakthrough for high-interaction honeypot can be meskin the year 2008, when the VT technology
is used for building honeypots. Instead of making the olzd@ms in kernel space they are performed at virtual
hardware level. The major disadvantage of virtual machit@s$pection is that assumptions must be made on
the interpretation of the collected data. A deeper momitptével implies a larger interpretatiofifert. Inside
a virtual machine, memory chunks and CPU registers coulthgmected. A system call number is put in a



38 CHAPTER 3. HONEYPOTS

Published honeypot papers

70 low-interaction _
high-interaction

60 -

40 | -

# of publications

20 -

10 + -

D D . D . D . . . .
% "%, %> "% "%, “%s "% "% "% "%y "%,
time

Figure 3.3: Scientific Publications about Low- and Higtenaiction Honeypots

register. A honeypot operator must know it and to which systall its value corresponds. An attacker could
thus change the system call numbering scheme by modifyiadottal kernel. In this scenario, a honeypot
operator could believe that an attacker read a file but intyesthe wrote a file. The honeypot operator must
also be capable of determining the results of a system cdlle QPU registers EAX or RAX contain the
return value of a system call. If an attacker redesigns thetsen values in the local kernel, the honeypot
operator might believe that the system calls failed but tlieye successful in reality. Hence, we believe that
the operation of a high-interaction honeypot always inetud residual risk that has to be accepted by the
honeypot operator. However, high-interaction honeypagarticularly interesting to study attacker behaviors
following a successful penetration.

3.3 Honeypot Research Activities

This powerful idea of honeypots, leads to numerous resemtivities. The major trends of research activities
are grouped in this section.

3.3.1 Attacker Observation and Information Gathering

The basic idea of honeypots is to provide a counterfeit gtftecture in a dangerous environment. This in-
frastructure is closely monitored. When, the infrastroetis attacked, intruders’ behavior is studied and in-
formation is gathered from the attackers. Low-interactioneypots only provide a limited set of features for
attackers, but they are quite useful for detecting attagksetworks. A connection tbloneyddiscloses the
source IP address of an attacker. The requested serviceoisalealed. An attacker can also connect to a
high-interaction honeypot. Portokalidis et. al. [124] ppsed Argos a customized virtual machine to detect
zero day exploits. The high-interaction honeypot comnyuisitalso interested in post-exploit activities. Most
research forts have focused on improving the monitoring capabiliEkigh-interaction honeypots. Alata et
al. [3] modified the TTY driver installed on the honeypot whienabled them to mirror the attacker’s terminal



3.3. HONEYPOT RESEARCH ACTIVITIES 39

and gather key-strokes dynamics. Moreover, they traclesysalls to the kernel for the case attackers bypass
a terminal. Attackers often switch of the terminal’s echd hlindly type commands. Xuxian et al. record only
processes that are executed [194]. Alata et al. [3] intredwan additional system call that is used within their
exposed program to fllerentiate system calls related to attackers and the syssefh iXuxian et al. [194]
simply trap all the system calls. Zuge et al. [199] use higiesiaction honeypots to collect self-propagating
malicious software. The authors compared the amount oftdayecollected with their high-interaction honey-
pot with the programs they collected from the low-interaicthoneypoiNepenthesunning the two experiments
the same time. They collected more unique malware samptbghvgir high-interaction honeypot because Ne-
penthes only emulates a subset of vulnerabilities. Theoasitiised the TCP stream reassembly engimat
from the open source intrusion detection system and looge@drtable Executable (PE) files in the network
streams tapped from the honeypot. This approach is usedléztcmalicious software targeted at Microsoft
Windows operating systems. In addition, they monitoredithesystem of the virtual machine that is operating
the honeypot. If a new malicious program is installed, itusoaatically copied. The file system is periodi-
cally remotely imaged and all the files are traversed. Eaeliditompared with a list of initial files installed
on the honeypot. If a new file appears, a new malicious prodgrambeen detected. The advantage of this
approach compared to those used by Nepenthes, is that sat@iaise unknown malicious programs can be
collected. Hence, low-interaction and high-interactiaméypots enable to collect programs related to attack-
ers. However, the current honeypots do not reveal any irdtiom about the usefulness of these programs from
the attacker’s points of view. For instance, a tool to unpaatmonly used archives has a lower value to an
attacker, than a database program including stolen infiioma

3.3.2 Honeypot Management

The operation of a high-interaction honeypot often inveleests. The major challenge is to handle arbitrary
code execution by attackers. Honeypots may crash and ndedlrestarted, or additional firewall rules must
be configured. The reason for this partially retroactivehrodtis that the attackers’ actions and objectives are
often unknown. The operation of a honeypot is an iteratieeg@ss [113]. Initially assumptions are made about
attackers’ behaviors. After a while, attackers violatesthassumptions. The honeypot operator has to adjust
the honeypot according to new assumptions. Further impoctansiderations are the scalability and network
visibility. A honeypot that is operated on only one publicdédress has a lower visibility than a collection of
honeypots. Honeypot operation is subject to legal regirist If the honeypot gets involved in further attacks
that involve third parties, the honeypot operator is lggadsponsible [2]. Hence, Spitzner [154] and Balas et
al. [10] propose letting attackers in, but using intrusi@tedtion systems and customized firewalls to prevent
them from attacking third parties. Chamales [25] calls ¢ifeagwallshoneywals. Portokalidis et al. [125] and
Jianwei et al. [199], claim thdioneywals are perfectly suited to high-interaction honeypots tivat@nly to
collect the first program that is acquired by attackers. Becn attack exploits the services and pushes the
shellcode, the honeypot operator has already achievedhls glowever, if the objective is to study attacker
behaviors after the break-in, providingnaneywallis not really éfective. Attackers usually try to connect to the
Internet after they have compromised a system [2], [3], [182hen they fail, they usually give up and leave the
honeypot. Alata et al. [2] proposed a customized Linux filethat can dynamically redirects connections or
simulate or drop them. They give an example in which an attaskanned an entire network. In this case, the
customized kernel forged connections to make an attackisvbdhat Internet connectivity was available. In
the scanning example, only SYACK [156] or RST TCP packets are forged. However, if an atadonnects

to a pseudo-service, a content has to be returned. In esshiscis the same problem faced by low-interaction
honeypots.

The risk of not attacking third parties can be reduced bygiaimumber of dferent strategies. Xuxian et
al. [193] proposed a hybrid honeypot solution. The low+iatéion honeypoHoneydis installed at dferent
locations on dterent IP addresses forwarding thefiato a centralized cluster of high-interaction honeypots.
This centralized approach helps to handle failures. Onltéetside, code complexity is reduced, resulting in a
low failure rate. However, the operational risk of the calited high-interaction honeypot remains, and a trust



40 CHAPTER 3. HONEYPOTS

relationship has to be established among the entities tipgthe low-interaction honeypots and the central-
ized high-interaction honeypots. Vrable et al. [173] addrie scalability issues of high-interaction honeypots.
They claim that most high-interaction honeypots waste CRlles during the long periods when they are wait-
ing for attackers. The authors exploit these cycles usirigtélilited architecture of high-interaction honeypots
to emulate on-demand a large fleet of high-interaction hpoisywhile using minimal physical resources. Most
of the proposed concepts to mitigate the damage resulting froneypots are static solutions based on fixed
assumptions. However, honeypots themselves do not adskeamanagement aspects such that they assess
the benefits and losses during operation.

3.3.3 Distributed Honeypot Operation

Setting up of a honeypot on a public IPv4 address permits aproéation of only% of the address spate

A Linux kernel can be configured to have more than one IP adgresnetwork interface [127]. However, it

is recommended that no more than 16 addresses should benugeter to avoid instability [94]. If a larger
address space is to be monitored, more physical interfaeeseseded. This limitation can be overcome by
usingHoneyd In this case the kernel TQIP stack is not used, but is emulated in user spattmeydenables
entire subnetworks to be emulated. However, no organizatam emulate all free IP addresses. Firstly, an
organization can use only IP addresses that they own. S@rgemizations such as [141] manage the address
allocation. Secondly, the networks need to be properlyeint order to guarantee the stability of the Internet.
In this case, only owned networks can be monitored, and nanimgfal assumptions about the neighboring
networks can be made. Hence, Dacier [38] described the sétugistributed network of honeypots composed
of a set of low-interaction honeypots. He created a projeetirré.com to which people could contribute by
setting up a low-interaction honeypot. Information is cally logged and each partner can access the common
collected data. In 2008, the project comprised Sedéent platforms in 30 countries. Initially (Leurré.com
V.1.0), Honeydwas deployed aiming to reduce operational risk. The EUREG@ttute dfered a Compact
Disk with the necessary software to facilitate deploym@ihiey also ffered a centralized log collection facility
and granted access to partners. In Leurré V.1.0., The eufboused mainly on the measurement of scanning
activities, but subsequently the authors focused on doilganalicious programs with their low-interaction
honeypots.

The Leurré.com project evolved into an EU project called MBAT [39]. The authors used SGNET
instead of honeyd. The authors collected malicious prograsing feedback from dynamic malware analysis.
Any pointers to other malicious programs found by the anshygre acquired. The authors of this project have
three objectives: Data acquisition, data enrichment arehttanalysis. The NoHa, a framework 6 EU project
[88] is a similar European project to set up honeypots. Initiieision detection community, the SurfIDS
[160] is a distributed intrusion detection system projesgpable of identifying malicious tfac by means of
shared information retrieved from other sensors. The madthese projects is to collaboratively share threat
information and collect malicious data on a large scalejrarno provide a better visibility and understanding
of global malicious activities. An exhaustive list of dibtrited malicious data collection projects can be found
in [99]. The advantage of distributed honeypots is that adnigisibility of malicious activities is reached than
with a single honeypot. The higher visibility frequenthsudts in a larger amount of data that is collected with
such solutions. Hence, data aggregation technigques anghhration of data processing tools is mandatory for
a meaningful interpretation of the data.

3.3.4 Honeypot Data Analysis

Threat collection and measurement is of particular inteiegarticularly for the anti-virus industry. Their
portfolio of commercial security products must keep tratkhe attackers. In addition to the submission of
malicious software by their customers, they also use harteypOnce they have a malicious program, they

“The number Zis only a theoretical value. Some addresses should not liadsand some addresses should not be routed [157]
resulting in a smaller address space.



3.4. DETECTING HONEYPOTS 41

can generate a signature for it then update and distribeterttalicious software database. A customer hit by
the new threat can then detect the infection and in some casksits €fects. In order to undo thefects of
malicious software, thesdfects must be known. Because the source code is seldom &wailad software
must be reverse-engineered. Two approaches are used: i@ atatysis of the malicious program can be
performed [49]. In this case the program is not executeddisaissembled. The machine code is transformed
into assembly code which is semi-automatically analyzedlidibus software developers are aware of this
technique and use tricks to confound the analysis. In omeotinter such evasion techniques, a malicious
program can be dynamically inspected [49]. To do this, tloggam is executed in isolation and environmental
changes are recorded. A fundamental problem of a dynamigsamés that it is not known if all code branches
are executed. This problem can be reduced to the Haltindgol9]. In addition, attackers try to detect such
environments and provide erroneous analysis results aruatering them. Malicious software researchers try
to make the environment robust against such attacks. athyithis has led to a an arms race situation similar
to that which the intrusion detection and honeypot comnyunis encountered. In the malicious software
analysis community a similar downward spiral like that poesly discussed, can be observed: Function hooks
have been moved from user space [190] to kernel space anc:hded up in virtual hardware space [43].
Besides installing programs on a honeypot attackers ofteact with files on honeypot. An operator
should always be aware of exactly what has happened on a pamney his PhD thesis, Fairbanks [48] de-
scribed new forensic techniques focusing on EXT3 and EX®djlstem structures. File system changes
are recovered from the file system journal. His Timekeepel permits the recovery of sequences of file
system events such as file modification, file creation andditeoval. Nicomette et al. [112], operated a high-
interaction honeypot for 419 days. They exposed a vulner&B8IH server hosted on a Linux operating system
to the Internet. The SSH server was constantly under attadlbeute force attacks were launched against it.
The authors of the paper focused offetientiating between human and automated attacks. In addttiey
analyzed the user name and password pairs that the attadexrts They clustered these pairs and compared
the lists used by attackers with popular password cracRéwsir purpose was to identify attacker communities
which share password lists and compromised accounts. Theralconcluded that attackers use customized
dictionaries and discovered that there are specializadlat communities for focusing on brute-force attacks.
According to the authors, only a few dictionaries were sth@among attackers. Due to the long-term nature of
the experiment, the authors observed that some dictianagee stable over time. Furthermore, the authors no-
ticed that high- and low-interaction honeypots runnindhatgame time were targeted bytdrent communities
of attackers: none of the IP addresses observed on thetirttigtaction honeypot appeared in the records of the
low-interaction honeypot deployed in the Leurré projéldhe authors used the presence of typographic errors
and the mode of data transmission with the honeypot asiaritedistinguish human attackers from automated
attacks. Automated attacks transmit the data faster, amd aften group it into blocks, than human attackers.
An examination of the TTY bffier [33] enabled the authors to identify copy and paste astionthe honeypot
and thus they were able to distinguish script kiddies fronrarexperienced attackers. They concluded that
they observed more script kiddies than experienced attacRéney also found out that attacks are composed
of various attack phases and that the attackers dereht source addresses to perform attacks. Besides the
collection of malicious tools and the assessment of thereattl attackers, additional information could be
assessed such as their reactions to failures aiming tol veaskills and social background.

3.4 Detecting Honeypots

Honeypots have become popular and their deployment hasaiged. Attackers are aware of this trend, and try
to avoid. A honeypot tries to mimic a legitimate server. Tleids to artifacts that are searched for attackers.
Provos et al. [128] note that this happens as early as theeinlidtovery phase. When an attacker scans a
network he may analyze the arrival of network packets. A \W0imsl kernel behaves fiigrently from a Linux
kernel; each host's TQHP stack has its own fingerprint [57]. Thesdfdiences allow an attacker to expect the
services that are available. In [130] Provos et al. consitler case where a host’'s T@Pstack behaves like that



42 CHAPTER 3. HONEYPOTS

of a Linux host yet announces typically Windows servicesviOlsly, an attacker can determine this mismatch,
assume that the host is a honeypot or a gateway and stay o[it28h Provos et al. discuss techniques for
fooling commonly-used fingerprinting techniques. Lookiogartifacts on a host is also a valid approach. The
resulting Linux kernel can be complied as regular progratheamulate an entire operating system. This kernel
is called User-Mode-Linux (UML) and is popular for setting high-interaction honeypots. Holz et al. [70]
described UML detection techniques. For instance, the GRtmation from the/proc file system already
reveals that UML is in use. A listing of running processesnshthe processes emulating the kernel, which are
not present on a regular system. The kernel command linesl®os that a UML is running. Linux kernel
messages also give some configuration hints concerning Uké& set of running processes is also fiedent
from that on a regular Linux system. Wagener et al. [180] veestep further. After successfully identifying
the User Mode Linux, they could generate a system call wititigfly crafted parameters to take down the
entire emulated operating system. The system call causemallkpanic consequently file system content is
not synchronized with the hard drive and information thaghmihelp the honeypot operator to investigate the
attack is lost.

Virtual honeypots are often emulated with a VMware virtuaahine [130]. Unlike UML, VMware allows
to emulate arbitrary Operating Systems. A simple test @tldtr can make allows to query the serial numbers
of the hardware used. This information is the same for atuairmachines. Early VMware versions also
had implemented a back door, which could be detected bykatt®¢70]. To do this, an attacker needed to
implement a small assembler routine.

Honeypots are sometimes operated in conjunction with agitgsun order to trace all function calls ex-
ecuted by the emulated operating system. Holz et al. [70¢ries techniques to detect debuggers. The
previously discussed detection techniques for detectisgy WMode Linux and VMware virtual machines prove
only that a virtual machine is running. The detected virtmalchine might also have a legitimate production
purpose. Balas [9] proposes Sebek, a kernel monitoringhigeb. He detours commonly used system calls
resulting in address-range changes in the system call Bbl&lcCarty [101] reports attacks which can detect
these changes. The author also describes a methodologgaeerethe original address and a technique to
dynamically update the system call table. If this is done,rttonitoring techniques can be disabled by attack-
ers. The out-of-the box monitoring techniques proposed bglép et al. [45] and Xuxian et al. [194], make
a major assumptions about memory structure and systemrdait {68]. If an attacker interferes with these
assumptions, the external analysis results may be codupte

3.5 Summary

This chapter summarizes the evolution of honeypots. Thakitineough on attacker monitoring came with
the honeypot terminology proposed by Spitzner [154]. A lypog is a resource designed to be attacked in
contrast to classical intrusion detection systems nontititin has to be made between legitimate and malicious
activities. All activity on a honeypot is by definition susjaius because the honeypot has no production purpose
and the activity is certainly not legitimate.

Spitzner [154] also proposed a classification for honeypultsch has been adopted by the honeypot com-
munity dividing honeypots into low-, mid- and high-intetian honeypots. However, in academic communities
mid-interaction honeypots are uncommon. A low-interactimneypot emulates pseudo services without sup-
porting infrastructure. The most widely-used low-intei@t honeypot idHoneyd[128]. It allows conclusions
to be drawn about attacker presence and attack trends. Airtgfaction honeypot is a real resource having
a full-blown operating system that is exposed to attack@sviously, these operating systems must have ad-
ditional covert monitoring features in order to monitoraatters. There is an arms race between attackers and
honeypot operators. Once honeypot operators have dedetopew monitoring techniques, attackers try to
evade it. This has resulted in a trend to make observatiopogtessively lower levels of a system. The host
intrusion detection system has faced a similar downwanakfi9]. However, the honeypot community does
not aim at simply detecting intrusions but also tracking@lter activities after a successful exploit.



3.5. SUMMARY 43

Source Code
(%] > _ <
5 g |3 o | & ?;_’ 5
Q g .'cau 2 E 2 g © 0| L
g S |& |8 |8 |T |5 |g |&%|E
z o = o |° Z |2 |= |08]|3
DTK [31] low Ry Unix Yes | Yes | No | low Ly
Honeyd [128] | low Ry Pl Yes | Yes | Yes | low | L;
Labrea [95] low Ro Pl Yes| Yes| Yes | low | L,
Honey@home [5] mixed | Ryp_3 | Linux | No | No | No | low | L4
Kojoney [34] | low Ro—2 | PI Yes | Yes | Yes | low | Lj
Nepenthes [7] low Ro-1 | Linux Yes | Yes | Yes | low Ly
Amun [60] low Ro-1 | Linux Yes | Yes | Yes | low Ly
ReVirt [45] | high Ro-3 | Linux | Yes| Yes| No | high | Ls+ Ly
Sebek [9] high Ro_3 | Linux* | Yes| Yes | No | high | Ls
Argos [125] | high Ro-3 | Linux | Yes| Yes | No | high | Ls
VMScope [195] | high Ro-3 | VT No | No | No | high | Lg
Dionaea [6] low Ro-1 | Linux Yes | Yes | Yes | low Ly

Table 3.1: Honeypot Evaluation Grid

Spitzner [154] divides honeypots into production and regedoneypots. A production honeypot is a
counterfeit resource deployed in operational infrastmectwith simply to detect the presence of attackers.
For this application, low-interaction honeypots are gaittrly interesting due to their low operational risk.
Research honeypots are used to study attackers’ behaRiesgarch honeypots have been used to detect zero-
day exploits [125], which are known only to the attacker camity, and to generate signatures for intrusion
detection systems [89]. They are also used to study pastkatiehaviors. Most high-interaction honeypot
publications summarize specific observations, [3], [L35ropose novel monitoring techniques [9], [45].

Table 3.1 summarizes the proposed honeypots that have begaysly discussed and that are frequently
used by security researchers. The first column gives the p&the honeypot. On the second column is denoted
if it is high-interaction or low-interaction honeypot. Serauthors have proposed mitigation and management
techniques for honeypots [5], [193]. The key concept is tmigime low-interaction honeypots with high-
interaction honeypots. In this case, the tenixedis used. The capabilities column indicates the information
that can be gathered with the given honeypot by referencheaing hierarchy set out in chapter 2. The
fourth column shows the technology used. If it is a prograat tiees generic programming interfaces, the
term PI (Platform Independence) is used. If hardware Jigation technology is used the term VT appears.
Otherwise, the operating system’s family is used. Columrestth seven describe aspects of the source code.
Available source code is extremely useful for making an eateuevaluation. It permits researchers to reproduce
experiments, to analyze implementation details and tanelxtiee approach without reinventing the wheel. We
show whether the source code is available and functionah fia external point of view. If the source code
is not available we assume that it is not functional. We defirfenctional program as a program that does
exactly do what is described in the related publication. fBlsecolumn includes a codification about the limits
of a given honeypot. These are explained in table 3.2. Indnéxt of distributed architectures, a honeypot is
distributed in two parts. A front-end with a minimalisticgiign aiming to expose a service that is then relayed
to the back-end. Sometimes the software of the front-endaigadle but the the back-end unreachable. In such
a case it is likely that the community abandoned their itftecsure.

Operating systems constantly evolve and source code nebdstaintained. For instance, function names
change or disappear in updates of shared libraries. Wetiteiaed code, means that people still are working on
the project and that the program can be used on modern systaariteria have been used for determining
if a project is maintained. A honeypot suchtsneyd Labrea and Nepenthes are included in standard Linux
distributions which are maintained. Other honeypots, Kkgoney Argos or Dionaea are maintained by the



44 CHAPTER 3. HONEYPOTS

Code | Description

L1 Considerable developmentferts required for each service or vulnerability
L, Attacker is only slowed down

L3 Root privileges are required to run the honeypot

L4 Back-end service is not available

Ls Honeypot can be taken over by attackers

Le Honeypot is not available. Hence the experiments cannactfr@duced

L, Source code is obsolete and not maintained

* A Microsoft Windows version is available

Pl Platform independent

Table 3.2: Codifications

main developers. The eighth column describes operatimsb.c The term low is used when a honeypot can
be operated without much human monitoring. This is frequehe case for low-interaction honeypots, which
usually run with limited user privileges on protected maelsi Even when an attacker manages to take over
the honeypot, she has still only limited access.

In contrast, the operation of a high-interaction honeyatally needs a lot of humarffert. Attackers
have full access to the machine. Despite mitigation tealescattackers could find unconventional methods
of bypassing them. If they are able to cause damage to othigegahe honeypot operator is legally reliable.
Furthermore, data is collected at a low level of the honeymat additional forts is needed to reconstruct
the overall activity of the honeypot. For instance, whemaliwork trdfic is recorded from the honeypot, it
must be reassembled and the communication protocol neesldanddyzed. Using the knowledge ring model
introduced in chapter 2 and following a generic attack s@eaattackers usually attempt to discover potential
victims (ring Rg). When they have found a victim they exploit it (rif®}). After a successful exploit, they
usually start to investigate the system (riRg and start abusing it (rinBs; — R*). This knowledge is assessed
with the previously described honeypots.

3.6 Limitations

The initial purpose of research honeypots is to study attac&nd determine their tactics and tools [154]. As
summarized in table 3.1, low-interaction honeypots aréqaarly well-suited for collecting data at the infor-
mation ringsRp to R,. By setting up pseudo-services, attackers can be idengfiddexploits can be collected
and inspected. Their advantage is their low managementgtinteraction honeypot exposes an entire vulner-
able system to attackers. An attacker can execute arbittarynands on a high-interaction honeypot because
all commands are permitted. On high-interaction honeyptitekers can customize the system by using their
own tools. Usually, attackers manage to penetrate thermsyatel install malicious programs. According to
Spitzner [154] on page Have the enemy teach us its own tools, tactics, and motimati. Cheswick [26]
and Bellovin [20] pioneered the idea of interacting withaakers and described their encounters. Spitzner
[154] and Raynal et al. [139] explicitly set up a high-intgian honeypot and described their observations.
Ramsbrock et al. [135] went a step further and modeled ataothavior on a high-interaction honeypot as
a state machine derived from observations made during thiereaperation of high-interaction honeypots.
Their model describes typical attacker actions following tompromise of a system, and tells a honeypot op-
erator what he should expect while operating a high-intemaconeypot. However, this model assumes that
all commands are allowed for an attacker, and the honeypes dothing to resist an attack. They follow the
paradigm of exposing an infrastructure to an enemy withayt@otection or resistance. The enemy assaults
the infrastructure and her actions are observed. Follosiraip an approach only a limited set of strategies and
tactics of an attacker is likely to be observed becausekattadace no resistance during the attack, and may
react diferently in such a case.



3.6. LIMITATIONS 45

Most of the research related to high-interaction honeypassfocused on the arms race between attackers
and honeypot operators. The publication of a new attackevitoring technique is followed by another one
describing how to detect or evade this novel approach. Totainextent such research activities are necessary
in order to ensure that attackers continue to be lured anddiol any suspicion of counterfeit infrastructures.
When an attacker detects an obviously fake infrastructlre,may not attack it, or if she has attacked it may
backtrack quickly. Cohen [31] discusses deception teclasdn the context of confronting attackers. His idea
is mix real services with fake services such that an attaleisrto discover the services that are useful to her.
This approach has been formally described using game tlj@8ty[108] such that an attacker has to decide
how to attack a real or a fake system with each decision beiagcéated with a price. However, littléfert
have been made to make honeypots themselves more inteligdradaptive with in order to automated and
augment information retrieval from attackers. Currenthigteraction honeypots have static behavior and can
be only operated with a predefined configuration. Such aroapprallows malicious programs to be collected.
The skills of attackers or their tactics and strategies wiaeing resistance are not assessed. Attackers are
not challenged on the path to reaching their goal becausgpathtions are permitted, with the result that the
honeypot operator gains little idea of their skills. If thegve encountered resistance or additional constraints,
they might reveal more information about themselves. Sataekers may give up, and leave the honeypot.
Other attackers may look for alternative paths to their gohae choice of an attacker is particularly interesting
for a honeypot operator because it would allow him to clgssifackers according their skills. Furthermore,
after system identification, some attackers expect a péatly behavior from the compromised system. In
order to optimize information retrieval from attackers, @nypot’s strategies should not be predictable by
an attacker. If an attacker is able to correctly predict thbavior of a honeypot, this must mean that it is
behaving statically like a classical high-interaction &gpot. Adaptive honeypots use deception techniques in
order apply increasing resistance against attackers. tAddponeypots may reveal more information about
attackers, such as their strategies regarding their firal@aheir ethnological background. From a high-level
perspective, attackers and honeypot operators are opigoimea competitive environment. Attackers want
to reach their goal without being discovered. Honeypot atpes want to reveal information about attackers.
Therefore, we explore game and learning theories in theegbaf high-interaction honeypots in order to model
interactions with attackers and to optimize informatiotmiesal from attackers.



46

CHAPTER 3. HONEYPOTS




Chapter 4

Learning in Games

4.1 Game Theory

In 1928, von Neumann [171] introduced Game Theory in higlertiZur Theory der Gesellschaftsspiele”.
He formalized the case of players who play a game. Each player’s result is influenceti®pwn and his
opponents’ actions. Each player wants to achieve a goott egghe end of the game. In 1944, von Neumann
with the economist Morgenstern formalized this conceptionemics [172]. The breakthrough in game theory
came in 1950, when Nash published his thesis "Non-Cooper&ames” [109]. He introduced and proved
the Nash Equilibrium (NE) and received the Nobel prize fas #tichievement. Informally, every time people
have to deal with one another, a game is played [21]. Eactepiayable to perform a variety of actions, and
each action results in a payoA Nash equilibrium is a set of strategies among severaleptay a game if and
only if each strategy is the best reply to the other [21]. Thtisgmer's dilemma is a famous problem analyzed
in game theory [169]. In this thought experiment, the policest two people. Both are suspected of having
jointly committed a crime. The police lackfigient evidence to convict them. The suspects are put inat&par
cells such they cannot communicate with each other. Eagiestuss dfered the following deal: If a suspect
defects against the other, and if the other does not defeetjlhbe released (0 years of prison), while the other
will go to prison for 12 years. If neither suspect testifiesththave to go to prison for 1 year due to the lack of
evidence. If both testify, both will go to prison for 10 yeansd this situation is called Nash Equilibrium. In
this situation the players act selfishly and want to be betténdependent of the other player’s decision. Game
theory is particularly useful for modeling the interacsommong several players havingfdrent interests. It
allows reasoning about rational players’ strategic irtoas. The theory is popular in economics and politics
[115].

A game may be formalized as either a strategic form or an siteform game [55]. The strategic form is
less complete than the extensive form, but it is better ddideidentifying dominant strategies and to computing
Nash equilibria. A strategic form game [55] is composed ohadiset of playerdN = {0,1,2,...,n}. Player O
represents "Nature” and is exogenous to the game [169]. Rlagkri has either a finite set of pure strategies
Si or a mixed strategy set. A pure strategy set is a discrete setions or strategies a player can perform, and
a mixed strategy set for a playies defined in eq. 4.1 and represents the probability digtdhudenoted\(S;)
over afinite strategy s&; [64]. For a mixed strategy set, a strategy profil§[isQ; and is abbreviatedy(, q-i),
where—i denotes the other players. A mixed strategy profile is morege than a pure strategy profile. For
a pure strategy profile, the probability of selecting a gistategy is always 1. Therefore, the mixed strategy
profile is considered in the following.

Q =A®S) = {qi :'S; — [0,1] | Z gi(s) = 1} (4.1)

SES;

Each playeri also has a paybor utility functionr; : S — R, whereS = S; x --- X S,,. The expected

a7



48 CHAPTER 4. LEARNING IN GAMES

1\2|D C
D |-10,-10 0,-12
CcC |-120 -1-1

Table 4.1: Prisoner’s Dilemma - Pay®

paydt for a playeri, who is playing strategg according the probability is defined in eq. 4.2, whergs) =
IT}L, ai(s))-

Esq[ri(9] = " a(9ri(s) (4.2)
SS

The prisoner’s dilemma can be formalized as a strategic Jas®. The set of playerd = {1,2} is
composed of the two players. Each player has two strateiekefectD or to confes<C. Hence, both players
have the same set of strategies= S, = {D, C}. In some cases the suspects go to prison. The poffeeso
a special deal, which is presented in the gayeatrix 4.1 [169]. If both players defect they both go to pniso
for 10 years. Going to prison is a negative pfiyel0) for the players. If one player defects and the othesdoe
not, the second goes to prison (pyd2) and the first is freed. If neither player testies, bothayprison for 1
year (paydf = -1).

In strategic form games, the choices of the players are madétaneously in one round. In an extensive
form game [169] each player can make more moves in a game. eHaneraction among players can be
modeled. Strategic form games are represented with a dedigieK. Each node in this tree is a decision node
and represents a player.

A game represented by the extensive form includes the foilpwomponents [169]:

Set of players. This set contains players and is denoted = {0, 1, 2, ..., n}. External events result in actions
by player 0 and are usually caused by nature. The extensive game shown in figure 4.1 has two
playersN = {1, 2}.

Available actions. In particular situations a playére N can perfornk actions or strategieq;. An example
decision tree presented in figure 4.1 and is read from lefgtd.rThe first node is first player’s decision.
Two actions are available;} and % If player 1 chooses the strategy player 2 has to make a decision,
choosing between actiors$ or 3.

Order of moves. The extensive game form permits successive strategiesionsito be modeled. One player
can trigger an event before another one does. Each node diedigon tree represents a player and each
edge corresponds to an action by that player. The order ahthes is represented by a branch in the
decision tree. If player 1 makes the decis'ﬂ;irand player 2 then decides to perform the ac@,nthe
order of moves is}, s5.

Information sets. An information set is a partition of the history of moves fogiaen player. It is used to
model incomplete information for a player.

Paydfs. Each action results in a paffoThe paydr is usually distributed at terminal nodes and is represented
by a real number. In the case where a player’s gain is exagtigldo the other player's loss, the term,
zero-sum gamis used; otherwise the tergeneral sum gamis used [169].

Formalization permits the modeling of a game amarmgayers and subsequently analysis. Looking at the
prisoner’s dilemma presented in table 4.1, the strategegfieatD is a dominant strategy [169]. In any situation,
it gives a better paytd than the alternative. For instance, if one player defectsthe other does not it gives
0 paydt to the player that defects. In the prisoner’s dilemma, tlayqais act selfishly: they want to get the



4.1. GAME THEORY 49

)\

g

e

@ Player2

Player 1

Figure 4.1: Extensive Form Game

best payff for themselves. If both defect both get a negative flayld the players had had the opportunity
to agree to not defect they would both have been befterArcording to Fudenberg et al. [55] one player's
selection strategy can hurt other players. For instance z&ro-sum game one player’s profit is the other’s loss
[55]. The strategy of defecting is also a Nash Equilibriutris ialid for players to try to maximize their own
paydt while ignoring the other players’ goals. Therefore, theINaguilibrium is notPareto optimal A formal
definition is presented in [52Pareto gficiencycomes from théareto improvementf a parameter in a model
can be improved without deteriorating another onBageto improvementas occurred.

A Nash equilibrium shows the strategies that maximize aglaypaydf. If such a strategy exists, the
notion of pure Nash equilibriums used. Sometimes a pure Nash equilibrium does not existieler, Nash
[109] proved in his theorem 1 thavery finite game has an equilibrium pois Nash equilibrium is defined as
a strategy profile such that all players of the game seleategfies that are the best responses to the strategies
of the other players [64]. The best stratagjyfor a player facing other players; is defined in eq. 43

vai € Qi E[ri(q, 9-i)] = E[ri(ai, 9-i)] 4.3)

There are pure or mixed equilibria. A mixed equilibrium isralpability distribution over strategies. A pure
equilibrium is a special case of a mixed equilibrium, whére probability of selecting a particular strategy is
1. A strategic game permits straightforwardly computatibthe Nash Equilibria because there is only a single
interaction among the players. A decision tree of such a gamenly a depth of one. Games formalized as an
extensive form game permit to model more interactions anptengers. Repeated games [55] are games having
more than one interaction. In order to compute a Nash equifify all the selected strategies with their pgo
have to be known. A repeated game is divided into sub-gameex,eiNash equilibria can be computed in each
sub-game [55]. The computation of Nash equilibria addsetise question of which action pair for each player
maximize the payd for each player. Because, the exact algorithmic complefigomputing Nash equilibria
is unknown [123], this computation is a tradff-between execution speed and completeness. Although some
algorithms do not identify all the Nash equilibria meanihgttthese algorithms are not complete, they are fast
[123]. Other algorithms, are more exhaustive and requirealistic amount of processing power. A good
starting point is to clearly identify the type of game. On ¢ramd, generic algorithms for strategic games have
been proposed and are ready to use. On the other, when dedlingn extensive game, its particular sub-
games needs to be identified because every extensive gaiffetisiit. For each sub-game, Nash equilibria can
be computed. If the game is a strategic game, then readge@lgorithms can be applied. The next step is to
establish whether the game is zero-sum or general sum. A fargily of algorithms have been proposed to
search for Nash equilibria. These can be organized into ategories: Those in the first category can solve
strategic games and those in the second can solve gamesixtd¢imsive form. The category of strategic games
can be further diveded into two classes: algorithms aduhgdbke first class are solve zero-sum games, while
those in the second solve general-sum games.

E is the expected value.



50 CHAPTER 4. LEARNING IN GAMES

Due to the fact that the exact algorithmic complexity of firgliNash equilibria is unknown, a tradé-o
has to be made between completeness, meaning to find albfgoB&ish equilibria, and execution time. The
oldest but still frequently-used, algorithm was set out leyrike [92]. An algebraic proof was proposed for the
existence of equilibrium points for a two-person, non zemor games. The authors also propose an approach
for searching at least one equilibrium point, which is idfeed via linear complementarity. The algorithm uses
combinatorial search to find a Nash equilibrium, resultim@ exponential runtime. Shapley [149] showed that
this algorithm does not necessarily find all equilibriummsi Mangasarian [100] showed the enumeration of
all Nash equilibria is a polytope problem extending Lemlagproach to find all the Nash equilibria. Porter et
al. [123] described an algorithm that is capable of solviothlzero-sum and general-sum games. The authors
try to increase the execution speed by minimizing the tinkeriao find the first Nash Equilibrium point. In
practice players sometimes do not know their exact fiayichese errors may impact the equilibria and when
this impact is analyzed, is call€uantal response equilibriufi1]. Errors are incrementally introduced in the
paydts and the Nash equilibria are recomputed in order to see fadesthe equilibria are.

Game theory permits to formalize the interaction betweelyqrs having dferent interests. Players can
perform various actions, each of which is related to a coatreward. Recently, this theory has been applied in
the context of information security. Often, two parties aredeled: an defender and an omnipresent attacker.
For instance, Schmidt et al. [144] formalized a game betwaeattacker and a defender in the context of
intrusion detection systems. A defender can deploy irgrugietection systems in a communication network,
but each deployment involves a cost. The authors describvegbomes dtering in network characteristics, and
the number of accuracy of intrusion detection systems. Tthegluded that the accuracy of detecting attackers
is significantly reduced when attackers can find a way to éxgé&fects in intrusion detection systems even
when the defender uses an optimal placement strategy.

O’Donnell [115] formally explains the reason that most mialis programs are targeted for Microsoft
Windows platforms. He states that Macintosh users belieee platform is more secure than those of by
Microsoft, but argues that the reason for their being fewalicious programs on Macintosh than on Microsoft
platforms is that of economic motivation. He created a fdrgaane between attackers and users. Attackers
can attack a Windows system or a Macintosh system. In hisrcemadel he included the market share of the
system, the value of the system and the probability of sisfakys defending a system. He discovered that, for
some systems the market share factor makes a strategy damiids means that an attacker will always get
a higher payfi when attacking a more widespread system. Even the worstreagard for attacking such a
system is better than attacking a less popular system.

As discussed in chapter 3, Cohen described the idea of migalgsystems with fakes ones. In shadow
honeynets, production machines and honeypots are intedhf&. With such an approach attacks can be
partially observed. When attackers discover the infratitire, they leave traces on honeypots as well as on
production systems.

Garg et et al. [108] formalize an equivalent game involviwg players, an attacker and a defender. The
authors create a formal framework for modeling deceptiohdneynets. Attackers prefer to assault regular
hosts rather than honeypots, while defenders want to leadiers to attack honeypots. Hence, an attacker can
probe a regular host or a honeypot. If she hits a regular hgsbsitive reward is given to the attacker and a
negative reward to the defender. If the attacker probes aypan, the rewards reversed. Hence, each player
has ditferent interests. The authors’ game is in the extensive fdhis means that each player has information
sets modeling imperfect information. The game betweertkdta and defenders is played sequentially, taking
into account the opponent’'s moves. The game has four stadgesdefender has to decide whether host at a
particular address is to be a regular host or a honeypot. \@hetttacker probes a host he does not necessarily
know a priori it is a honeypot or a legitimate machine. Theedder also uses deception technigues. A host
having the role of a honeypot could respond to an attacker\asre a legitimate host, and a legitimate host
could respond in a way that suggests it is a honeypot. Thendefecould also utilize disclosure strategies
meaning that neither a regular host nor a honeypot wouldleits role. Garg et et al. [108] focus on a game
theoretical framework for honeynets using deception tieghas. They give an example of manually defined



4.1. GAME THEORY 51

paydfs and information sets for each player, then show how to ctenidash equilibria by partitioning the
extensive-form game into sub-games having the strategi@darm. However, the authors do not explain how
deception techniques are used in this context.

Carrol et al. [46] formalize a similar game between defesded attackers. The authors model a signaling
game in a network composed of honeypots and regular machiihesdefender has to decide which machines
should be honeypots and which should be regular machinesddition, a defender can use camouflage tech-
nigues to make a honeypot look like a regular host and a regokt like a honeypot. An attacker can assault
either a honeypot or a regular machine. Attacking a honeyjadis a loss for the attacker. A honeypot is
monitored, and when an attacker assaults such a machinevas her attacking techniques to the defender.
The authors derived four strategies for the defender aoupitd her capabilities, and nine strategies for the
attacker. The defender strategies are based on the deasitmwhether a host should reveal its true nature
or not. Based on received signals from the defender, thekattacan attack without determining the system
type, or after first determining the system type. Alterrelfivshe could retain from attacking the system. She
could also disbelieve the system of its true nature. Theoasitlefine a pay® structure for each action, giving
the gains and losses for each player. The authors thenisktblequations that must hold for computing the
expected payfds in the context oBayesian equilibria A formal definition of a Bayesian equilibrium is shown
in [56]. Using these equations, the authors discover teililedga. The authors made two case studies in order
to determine which equilibria is the most appropriate. la finst, they discuss a network where 10% of the
systems are honeypots. In this scenario the authors cattlimit the defender should disguise all hosts as
honeypots. In the second study, scenario the authors esedidutomated attacks such as botnets, and deter-
mined that the defender should always either reveal thertatigre of a system, or always claim the opposite
one.

Lye et al. [98] formalized a game between administratorsadtatkers. Their input was data by a network
manager employed at their university. The authors idedtifieee attack scenarios: firstly, an attacker could
deface the main web site on their public web server. Secpadlattacker could launch internally a denial of
service attack. Finally, an attacker could steal confiddndita. The authors are not interested in an individual
attacker, and therefore assume an omnipresent attacker.adthors consider a general-sum game between
attacker and administrator, because an attacker’s gaies miat necessarily have the same magnitude as the
administrator's costs. Their infrastructure is modeledyagph representing a network. A node in this graph
is a device like a workstation or a router. The external wiglthodeled as a single node. Each edge in the
graph corresponds to a physical or virtual communicaticanalel. On this graph, the authors introduce super
states which represent the state of the network and are cmdpf the individual states of each physical node
together with a triiic state. Each node state corresponds to a dedicated softamfiguration. The authors
define eleven attacker actions derived from their survegdaninistrator can perform eight actions. The authors
give a high-level description of these actions. For insgtamn attacker can install a virus or afiei program
and an administrator can remove compromised accounts aveesniters. Both players can also do nothing.
For the super states, the authors assign probabilitiegdositions among their super states. Formally, they
model the game as a stochastic gama@me with a set of super states, a set of actions for eachrptaget of
transition probabilities, and a set of rewards for eachgiayhey also introduce a discount factor and model
time using discrete steps. The authors examine severakat&narios and show how Nash equilibria can be
computed in this stochastic game. They used MATLAB to complie equilibria and report that the execution
time was between 30 and 45 minutes. Hence, this implementasinnot be applied on real-time systems.

Grossklags et al. [80] formally analyzed the situation®imng attackers and defenders on a shared infras-
tructure. They developed five security games: They invatdi) the case of total protection, best shot game,
weakest link game, the weakest target with mitigation tephes, and the weakest target without mitigation
techniques. Each player in each game has its own paranegteriitity function. The authors used parameter-
ized utility functions. The most relevant parameters aegifotection level and the self-insurance level. Due to
their generic approach with parameterized utility funesiothe authors were able to compute Nash equilibria

2A definition of a stochastic is presented at page 58.



52 CHAPTER 4. LEARNING IN GAMES

Step 1 Environment You are in state 23. You have 3 possibieract

Step2 Agent | go for action 3.
Step 3 Environment You received a reward of 4. You are in $taté¥ou have 2 possible actions.
Step4 Agent | go for action 1.

Step5 Environment You received a reward of -5. You are ires24t You have 5 possible actions.
Step 6 Agent | go for action 2.

Table 4.2: Reinforcement Learning - Operation Example

and then discuss the parameters, searching for best antloases in each type of game. The upper and lower
bounds also permit the authors to investigate the impadiavihg more players in each type of game.

Kantzavelou et al. [83] focused on a special type of attackemely the insider. An insider may have
different objectives than those of the organization that sheiking for. Insiders are divided into two cate-
gories: traitors and masqueraders. Traitors have beetegrartra privileges and exploit them to work against
their own organization. Masqueraders pretend to be somelsaén order to gain privileges. The activities of
insider are dierent from those of an external attacker. The authors defunedctions for an insider. Firstly,
an insider can work normally by performing permitted taskscondly, an insider can do unintentional damage
as result of making mistakes. Thirdly, an insider can emloarka pre-attack phase. Finally, an insider make
her attack. The authors define the pigoia preferences. A further preference defines which giiegeare
preferred by a player. For instance, an insider prefers antamdation from her manager to a warning. The
authors used a repeated game model. The authors manuafig gefydts for each scenario, and solved the
game by computing Nash equilibria. The authors also cagigc quantal response equilibrium analysis [61].
In such an analysis, the rationality of players and erroagmydis are inspected.

In contrast to the situations presented so far, there aesaabere the payfs are not known in advance
at all. Hence, a contribution of this thesis explores raitément learning where a player can learn her flayo
during her interactions. A primer of reinforcement leagnia presented in the next section followed with a
combination of reinforcement learning in stochastic gamiesre learning approaches are combined with game
theoretical paradigms.

4.2 Reinforcement Learning

Kaelbling et al. [82] give a broad overview of reinforcemé&arning. A typical reinforcement learning problem
is shown in figure 4.2 and a reinforcement learning scen&&dpif shown in table 4.2. An agent interacts with
its environment and has a set of sensors to perceive itsommant through which it receives a reward signal
ri [161]. Each action performed by the agent is rewarded orgal. The agent tries throughout its life to
optimize this reward signal. The environment is defined asrdte set of states, and the agent has a discrete
set of actionsA and a set of rewardR. The agent interacts with its environment only at seriesisdrdte time
steps.

At each instant, the agent identifies its staggin its environment. The agent then decides to perform an
actiona;, and as consequently makes a state change to thesstat€he agent'’s action is rewarded or punished
with a rewardr;. In order to maximize its long-term rewards, the agent nemtr a policyr , mapping states
to actions.

4.2.1 Markov Decision Process

This section presents a short primer on Markov decisiongaees (MDP), which provides a theoretical basis
for reinforcement learning [161]. An agent acting in an eowiment takes decisions, which result in state

3Keniji [86] discusses reinforcement learning in continutinse and action space, but this topic is not relevant for tigher
understanding of our contributions.



4.2. REINFORCEMENT LEARNING 53

T —3 Agent EE—

state reward action
S It &

Environment f————

Figure 4.2: Reinforcement Learning Problem

changes. In the most generic way the probability of reachiates € S and receiving reward € R depends
on the agent’s previous actions and its previous state @samtgfined in eq. 4.4 [161]. However, if the next
states’ depends only on the previous stateand the agent’s actioa € A, the environment conforms to the
Markov property, which is defined in eq. 4.5 [161].

Pri{sq1=9,rs1=r|s a0 S1,8-1,-1,- -, 1, S0, 30} (4.4)

Priss1=s,r1=r|s,al (4.5)

Each environment conforming to the Markov property can benfdly modeled as a Markov decision
process [161]. Here we consider the case of finite Markovgeses, because we are discussing the formal roots
of reinforcement learning. A finite Markov decision progesmply denoted as a Markov decision prodess
composed of

¢ Afinite set of state$.
¢ Afinite set of an agent’s actions.
e Atransition functionT : S x A —» PD(S), wherePD(S) is the probability distribution over the s8t

e The reward functiorR : S x A — Rdefining the distributed rewards.

According to Stutton et al. [161], a Markov decision procegsBnes the one-step dynamics of the environ-
ment as shown in eq. 4.6.

P, =Pr{s;1=5|s=sa=al (4.6)

The expected rewards are defined in eq. 4.7 and depend onriieatcstate, the previous state and the
action performed [161]. The expected value is den@ted

R, =E{fpils=sa=as1=9) (4.7)

An agent must find a policy that maximizes its received reward in the long run. Two kinfipolicies
have been defined:

Stationary policy An agent learns a mapping from the state space to the acttmesp S — A.

Non-stationary policy An agent learns a probability to be in statand taking actiora;, n(s, &).

4Infinite Markov decision processes are described in [148]a® not mandatory to conceive our contributions.



54 CHAPTER 4. LEARNING IN GAMES

A fundamental problem of an agent in an environment is thaast to learn the value of being in a stafe
and how profitable it is to perform an actiann a given states. The quality of the states and the state-action
pairs are defined with respect to the expected future reWaédg. An agent is follows a policy defining the
actions it should take. During this evaluation, an ageritnedes the value of a state, deno¥d in order to
see if it is worth visiting in this state. In addition, it evaktes a the value of a state-action pair under a palicy
denotedl™(s, a). An agent can maintai”™ andQ™ as parameterized functions. If these functions are re@yrsi
they are called Bellman equations [161]. The Bellman equatiefining the value of a stataunder the policy
mis shown in eq. 4.8. A detailed derivation can be found at [J@4e 91. The optimal value &f* can then
be calculated according eq. 4.9 [161]. Similarly, an agent@ptimize a state-action pal* by applying eq.
4.10.

Vi(s) = Eg {§ ')’krt+k+1 | s = S}
k=0 (4.8)
= In(sdy P2, [Ra, +yVA(S)|
Vi) = maxEfryi+yVi(su1) s =sa=a
v [pa . (4.9)
= maxy P [R2, + V(3|
Q(sa=E {rm + ymaaXQ*(sHl, d)|ss=sa= a} (4.10)

The valuev*(s) is the unique solution of the Bellman equation, and defiheoptimal value of a state. The
variabley is a discounting parameter used for handling indefinitelgrarctions. If an agent’s interaction with
the environment can be broken down into episodes, meanaidtta start time and the end time are known,
is set to 1 such that no discounting is done. However, if eithe start time or end time is unknown, future
rewards are usually decayed by settingc 1 so as to reduce future rewards. The act of breaking down an
agent’s interaction into episodes are is sometimes defim#iteaagent’s horizon [98].

finite horizon A finite horizon is used when the lifetime of an agent is knowmdvance. This means that an
agent has to optimize its behavior within a finite number epst In this case, the discounting facjor
can be setto 1.

infinite horizon If an agent’s lifetime is unknown in advance, the term inéirtibrizon is used. In this case, a
discounted reward accumulation or an average reward maddbe used.

discounted rewards Rewards are geometrically discounted according a disdactdr [82]. This dis-
count factor defines if the agent optimizes its reward sigwar the long or the short run. The
discount factor is usually a number between 0 and 1 and idptiett by the received rewards. On
one hand, a low discount factor reduces the received rewatdaaigets long-term operation. On
the other, if the highest discount factor (1) is used, thenefgeuses a short-term operation.

averaged rewards The average rewards in a delimited operation window are fisadward accumula-
tion. The operation window does not necessarily corresporach episode but the concept is quite
similar. It consists of a successive lists of rewards eistaddl in a continuous process.

As alternative to the algebraic computation, the optimdicps they can be determined by dynamic pro-
gramming approaches [161]. Agents’ decisions are ofteresgmted with backup diagrams like that shown
in figure 4.3. Looking at the left tree in figure 4.3, an agergpimizing the value of a staté* according to
equation 4.9. The agentis in a statend performs an actiom The agent gets a rewardnd a transition to the
states’ is made. Each such interaction corresponds to a branch béitieip tree, and the number of potential
transitions resulting from all potential actions increasequickly. Hence, the terfull-backupis used, because
all possibilities are taken into account. The right tree guffe 4.3 shows the case where an agents optimizes a



4.2. REINFORCEMENT LEARNING 55

max

a/
State optimizatiorv/* State-action pair optimizatio®*

Figure 4.3: Full Backup Representation

state-action paifQ* defined in eq. 4.10. The term of full-backups is also useddo”el0. Each policy has an
associated value function that either optimizes the valaestateV(s) or the value of a state-action p&Xs, a).
When the optimal value-functions are known, the optimalgyot* leading to this optimal value-function can
be discovered. This is due to the fact that the optimal valnetfons for a stats, or for a state-action pair, can
be expressed ag*(s) = maxV”™(s) andQ*(s a) = max Q" respectively. In order to find an optimal policy,
policy iterations have been proposed with an algorithmioglexity isO(|/A||S|?+|S[%) per iteration [82], taking
into account that there are at meatS! distinct policies [82]. Furthermore, the discounting &gt can increase
the algorithmic complexity [82]. Despite the fact that omail policies can be mathematically formulated and
algebraically solved, it is expensive in terms of memorygasand computational power to determine them
[161].

4.2.2 Learning Agents

Although Markov decision processes allow the formal madgelbf agents operating in an environment and
the algebraic computation of optimal policies, some patarseof Markov decision processes are unknown in
practice. Frequently unknown parameters are the rewardiumor the transition probabilities. An agent must
interact with the environment to discover the optimal valfmr a state or a state-action pair through learning
algorithms. When not all parameters are known, the terodel-free learnings used [82]. However, when
following a model-free approach, the fundamental expioraéxploitation trade4 emerges. An agent has to
discover its environment. Having explored the environmtrd agent could exploit its knowledge or continue
its exploration. There might be some hidden states yieldligper rewards. An agent may take an action
yielding a high reward but which may result in low rewardshe future. Hence, the far-reachinffexts of
actions are unknown. An agent usually has two componentsxjgiorer, a learning rule.

Explorers

When discounted rewards are used, an allocation index caadie An agent remembers the number of times
an action has been chosen and the number of times that podtivards were received for this action. An
agent has thus a history of rewards for a given action in angstate. This technique is known &stten’s
allocation indices In addition, Bayesian reasoning approaches have beeongwdpo tackle the exploration-
exploitation problem [82]. Alternative explorer familigsclude randomized strategies. In this case an action
is chosen according a probability-1e, and a random action is selected according the probakilityhe e-
greedy explorer follows this scheme [161]. The Bolzmanriangp [82] has a temperature parameter. If this
parameter is high, an agent is more willing to explore ankiigf parameter is low, the agent exploits its acquired
knowledge. The temperature parameter is decayed over wiitiethe result that an agent stops exploring in
the long run. In addition Kaelbling et al. [82] record the raemof successes and the number of trials in order
to improve the exploration-exploitation tradé=d/Nhen the explorer is tightly coupled with the exploitatibe



56 CHAPTER 4. LEARNING IN GAMES

termon-policyis used; otherwise the tergf-policy is used.

on-policy An agent learns a policy while following it. The value of a policy is estimated whilei$ being
used for control [161].

off-policy An agent learns a policy while following another.

Learning rules

Monte Carlo methods provide one way of tackling a partialiknown environment in order to compute the
optimal values. These methods require sequences of séatéms and rewards [161]. These sequences are
recovered either from on-line methods or from simulatioM&nte Carlo methods exist for episodic tasks, as
demonstrated in eq 4.11, wheReis the actual return at time[161]. The optimal policies are discovered via
general policy iteration methods [161]. An advantage of MdBarlo methods is that the estimate of a state
does not depend on estimates of the other states [161]. T¢assrthat Monte Carlo methods are even suited
to non-Markovian tasks [161]. A major drawback of Monte @ddchniques is that some states may never be
visited.

V(s) « V(s) + a[R = V(s)] (4.11)

In many application fields [161], an agent’s interactiongwain environment cannot be divided into episodes,
because the start or end times are not known. Hence, tentgifiesence (TD) learning methods which are also
model-free methods have been proposed. TD learning leseriégrations over the estimated value of a state
using immediate rewards as input. Estimated values areteghdd each time step instead at the end of an
episode. A basic TD learning method is shown in eq. 4.12, eiés a constant step size parameter [161]. As
shown in eq. 4.12, the estimated value of a state dependgioratss of other states. Consequently, estimation
errors may be propagated.

V(s) « V(s) + @ [ree1 + yV(se1) — V(s)] (4.12)

In order to mitigate these error propagations, a new commupwalled aradaptive heuristic critiqAHC)
is introduced [161]. An example, taken from [161], is showrfigure 4.4. The AHC is a separate memory
structure for an agent, which represents its policy stractlrhis component criticizes the actions of an agent.
A formal definition of an AHC is given in eq. 4.13. The TD errerdomputed from the new state, the previous
state and the received reward. This error can then be intlud@n agent’'s policy selection method. An
example is the Gibbs softmax method is presented in [161¢ 489. AHC methods are only applicable for
on-policy algorithms [161]. Another approach to reducihgse propagated errors is to UsB(1), which is a
combination of Monte Carlo methods and TD methods. Thmrameter defines eligible traces and consists
of a temporary record of the frequencies of an event, suchvisitdo a state or the performing of an action
[161]. The case whergis set to O results intd D(0). It has been shown thatD(1) methods converge faster
to optimal values than the simpleD(0) method [161].

0t = Ry + YV(S1) — V(8) (4.13)
Q-learning [188] is easier to implement than AHC becausg onk component has to be considered [82].
The basic Q-learning form is presented in eq. 4.14.
Qs &) « Qs @) + a|re+y maxQ(su1, @) — Qs &) (4.14)

According to Kaelbling et al. [82], a major advantage of @rleéng is that it is exploration-insensitive. The
Q values converge to the optimal values independent of teetagexplorer while the data is being collected.
The agent has still to explore, but the details of how theaspion is done do not impact convergence [161].



4.3. MULTI-AGENT LEARNING FOUNDED ON GAME THEORY 57

actor Policy

TD Error
state » .
Crmc\\ action

Value Function \

state reward

Environment

Figure 4.4: Adaptive Heuristic Critic

Q-learning is designed for discounted infinite-horizon ktardecision processes [82]. Undiscounted rewards
can also be handled with such an approach if a reward-frée istaeached and if this state is regularly reset
[82]. Q-learning is a model-free approach [188], and allansagent’s environment to be partially unknown.
A disadvantage of Q-learning is that each state has to ktedian infinity of times in order for the Q-values to
converge to the optimal Q-values. Thei{earning approach [119] combines the approach of usirtaptive
heuristic critic and reinforcement learning.

Q-learning is an fi-policy algorithm and SARSA, an alternative model-free rapgh, is an on-policy
algorithm. It takes the next state into account, the nexboaand the next reward [161], explaining the name
of the algorithm:Sate -Action - Reward -SateAction. The general form of SARSA learning is presented in
eg. 4.15. SARSA has also be extended with eligible tracesS¥R [161].

Qs &) « Qs &) + @ [r1 + ¥YQ(St+1, &) — Qs &)] (4.15)

Sutton et al. [161] show numerous application examplesninai the area of robotics. A classic example
is a robot that needs to find the exit of a maze ff@ent reward models exist to parameterize the behavior
of the robot. Examples include punishment induced by eneogtraints; others do not punish, and simply
give a positive reward when the robot finds the exit. In othemaples, the agent can even be punished for
bumping into walls. Reinforcement learning often conssdar agent operating in an environment and receiving
positive or negative rewards in response to actions takemordy the more spectacular autonomous agents are
helicopters which are able to perform aerobatic flight marmoes controlled by reinforcement learning [1].
Reinforcement learning has been explored and extendedllaborating agents [163]. Hierarchical learning
among agents has been studied by Barto et al. [13]. Gamhtmedadl. [58] tackle the well-known traveling
salesman problem using an experimental reinforcemergtebagproach. To the best of our knowledge, there is
no literature concerning the use of reinforcement learnirthe context of high-interaction honeypots.

4.3 Multi-Agent Learning Founded on Game Theory

Markov decision processes (MDP) are frequently used to freodagent in a dynamic environment. An agent
must learn a policy that maps states to actions by optimizggeward signal. Often some parameters of the
MDP, especially the probabilistic transition functioneamknown and a learning approach must be used. In
some cases, the successive states should also be takewedotmiby an agent instead of just maximizing a
reward signal. However, the previously discussed reigfment learning techniques only consider an agent
in an environment make the assumption that the environnsestationary. When there are more than two
agents, a simplistic approach is to consider opponentseagritironment [90]. However, an environment
containing additional agents is constantly changing [7#he environment may not be stationary anymore



58 CHAPTER 4. LEARNING IN GAMES

being is influenced by the other agents rather than genebgtedstochastic process [74]. In this section we
consider reinforcement learning where more than one agepteisent, and the agents are opponents. The
learning approaches should be feasible in close to real tBbechastic games are introduced that handle the
uncertainty of agents dealing with other agents better tizatitional Markov decision processes.

Stochastic Games

Shapley [150] introduced stochastic games. A stochastitega composed of a finite number of players who
may occupy a finite number of positions. A position corregjsoto a state in a traditional Markov decision
process. At each state a player chooses an action from adictitn set. Each action results in a reward.
The transitions from state to state are described by tiangirobabilities, which are jointly controlled by
the players. The interesting aspect is that these two @aymrld have dferent objectives. Zachrisson [198]
extends such games to Markov games. The theoretical faondgiroviding a bridge between game theory and
stochastic games are provided by Fink [50] who investigétedexistence of equilibrium points. Littman [90]
described a reinforcement learning approach in order i@sotwo player zero-sum game modeled as Markov
game. He defines a Markov game with a set of states, defSotaad a collection of action sefs . .. A, where

k denotes the number of players. The state transitions aceilded by the transition functiol of the current
state and the actions of each player. SxA; - - -xAx — PD(S), wherePD(S) is a probability distribution over

In this game the author uses a single reward function, whegeagent tries to maximize its reward signal and
another player tries to minimize it.

The major diference between a Markov decision process and a Markov gatmedgfinition of the policy
that an agent has to discover. In a traditional Markov degigirocess, a policy is a mapping from the state
space to the action space [90]. However, in Markov gamesJieyde a mapping from the state space to a
probability distribution of an action space [90]. The autpives the example of the rock-paper-scissors game,
where a deterministic policy by an agent can be easily defeguch games are better modeled by a Markov
game. The advantage of a Markov game is that the uncertafitiie @pponent’s moves can be included in the
probabilistic choice of a player’s actions. In a traditibiarkov decision process, the optimal deterministic
policy 7 : S — A can be used to determine the quality of a state action-paimtedQ(s, a). In addition, the
reward of each player depends on the actions of each plagerutrent state and the state transitions controlled
by the Markov property [74]. Littman [90] modified this statent by introducing an opponent’s action, denoted
0, and estimates the quality of the state-action-actionetrigenoted(s, a, 0). Instead of formally computing
the optimal policy, Littman [90] uses the previously delsed Q-learning algorithm. A formal convergence
proof was later published in [96].

Hu et al. [74] also model a stochastic game with more than geata The authors propose a combination
of Q-learning and Nash equilibria and create a bridge beatwemforcement learning and game theory. They
adapt Q-learning in general-sum games. The authors workestationary property of the environment. An
environment containing more agents is constantly changind the formal guarantees of Markov decision
processes do not always hold. In addition each agent miglat diffierent interests, as is usually the case for
noncooperative zero-sum and general-sum games. Genenalamnes have the advantage that arbitrary reward
models can be established [74]. Therefore, the authorsopeopash-Q, which is a variant of the Q-learning
algorithm [188] that takes Nash equilibria into account.eiffalgorithm is applicable in a stochastic game,
and its goal is to optimize a reward signal. Each agent estgnthe Q-values for each state and for each
other agent. Obviously, the exact Q-values of opponentsigkaown to an agent, so each agent has to learn
them and thus reveal each opponent’s strategy. After haewngaled these strategies, a Nash equilibrium is
computed. A Nash equilibrium is computed for each stage efgdime. This means that when the game is
in a given state, each player performs an action and a statsition is made. At each such moment each
agent seeks a Nash equilibrium. The authors noticed thaaltwithmic complexity of their algorithm is
dominated by the computation of Nash Equilibrium, for whilshy use the Lemke-Howardson method [35]. A
part from, the Nash equilibrium computation, the space derily of their algorithm is linear in the number



4.4. SUMMARY 59

of states, polynomial in the number of actions and expoakini the number of agents. The authors use
an infinite sampling technigue and decay their learning ralteder these conditions, they prove convergence
towards optimal Q-values. However, three additional aggioms must hold: Firstly, each state has to be visited
infinitely often; Secondly, each agent has to update its IQegaccording to the current state and the actions
of each player; and thirdly, each stage game has an optinral goa saddle point. Hu et al. also performed
some experiments in the context of multiple agents actirayshared environment. Firstly, they study learning
convergence. The authors achieved nearly optimal Q vallesiveach state-action tuple is visited just 95
times on average, despite their formal proof indicating #ech state has to be visited infinitely often. The
authors then studied the phenomenon of malfunctioningtagévhen some agents behaved randomly, instead
of following the computed Nash equilibrium, the impact ofioml Q-values for the other agents was found to
be low. Another phenomenon that the authors studied is #tmepce of multiple Nash equilibria. As evaluation
criterion that use agents that reach optimal Q-values bgy@welecting a given Nash equilibrium. This method
is possible due to the usage of the Lemke-Howson algorithichnddways returns Nash equilibria in a fixed
order.

4.4 Summary

In this chapter we have presented a short primer on gameythedrreinforcement learning based on Markov
decision processes. These theories have been linked intonshedel multiple agents havingftiérent interests
in a shared environment. The normal-form representatiange#me consists of a set of players with a defined
set of actions and a paffestructure. The extended form can be used if a game is repeatitigle times. Nash
equilibria of a normal form game can be computed in order e optimal strategies for each player. These
optimal strategies are not necessarily Paretto optimalgame theory, the major assumption is that players
are rational, and aim to optimize their pdioln practice, this is not always the case. Therefore, thetglia
response equilibrium is introduced in order to study hovblsta Nash equilibrium is. The irrationality of a
player is reduced to erroneous p#go

Game theory has already been applied in the context of hoteyplowever, the majority of contributions
define games at the level of infrastructure composed of mtamu machines and honeypots. Moreover, the
paydt structures have been manually defined [108] or derived fraureey [98]. Such approaches are only
suited to static models. However, an attacker’s interest®at always be known in advance, and may change.
Therefore this thesis considers reinforcement learniranf@rcement learning is founded on Markov Decision
Processes (MDPs). In an MDP, an agent interacts with itg@mvient by performing actions. Each action re-
sults in a reward or a punishment. An agent must find a poliayriaps states to actions. If all the parameters
of an MDP are known, the optimal values for a state or a stetierapair can be algebraically computed ac-
cording Bellman’s equations. The optimal value can thendaslto determine the optimal policy that leads to
these optimal values. However, some parameters such asthedrdistributions or the transition probabilities
are often unknown. These cases can use a model-free leappngach, where an agent tries to achieve the
optimal values by following a trial-an-error approach. Adebfree learning agent is composed of an explorer
and a learning rule. The explorer handles the trafidetween exploration and exploitation, and the learning
rules define how the optimal values are updated. The learnleg described require a stationary environment
where the probabilities of receiving a reward or makingestegtnsitions do not change over time. When an en-
vironment is shared among multiple agents havirffgdent interests, this assumption is often violated. MDPs
have been extended to stochastic games (Markov games) wiidtiple agents are formally modeled. Fink
[50] formally showed the existence of equilibrium pointssilch games. This statement shows the existence of
Nash equilibria in stochastic games and the combinatiamileg approaches with game theory. Game theory
and reinforcement learning enable to formally model theraattions with attackers including incomplete infor-
mation. The models are used to improve interactions witckérs in order to reveal a maximum information
about them in an automated fashion.



60

CHAPTER 4. LEARNING IN GAMES




Part Il

Contributions

61






Chapter 5

Modeling Adaptive Honeypots

Simulating failures in order to lure attackers was repoftedhe first time in the classical paper "An Evening
with Berferd” [26], where manual interactions from a humastem administrator lured an attacker into re-
vealing many of his tactics and tools. During the operatiba bigh-interaction honeypot, we had a similar
experience. We observed an attacker who installed a batitigidedy attack tool. The attacker launched this
tool, which had the ffect of allowing no further attackers could attack the howeygo that nothing interesting
could be observed. We manually injected some code into thekat’s tool such that it failed. After a while,
we saw that the attacker reconnected to our honeypot anstigated the records of her tool noticing that the
tool crashed. The attacker retried her command, restareedrogram which failed again. After a few minutes
the attacker tried to debug the program and still was not abtketermine why it failed. After another couple
of minutes, the attacker acquired an additional tool hawgingjlar features to the first. We observed that at-
tackers try to achieve their own goal. We manually intedeaséth the tools installed and operated by attackers
and noticed that some attackers reconnected to the honagddried to solve the issues we created. Some
attackers even tried to harden the system aiming to lock thar@attackers. Thus, we assume that attackers
are rational and each attack has a purpose. We address ah#pter an automated failure injecting honeypot
aiming to reveal as much information about an attacker asilpies The challenge addressed in this work is
to elaborate an adaptive high-interaction honeypot thahgits to optimize the retrieval of knowledge from
an attacker. The level of interaction is a consequence afdpabilities of a honeypot. The more features are
implemented in a honeypot, the more interactions betweenders and the honeypot are possible. One way
to obtain more interactions is to partially allow attackBrexecute some programs, leading them to explore
alternative execution paths and reveal more informati@mutithemselves such as tools, skills and repositories
used in attacks. Similarly, an adaptive honeypot can abalbymrevent the execution of programs initiated by
an attacker and lead the attacker to perform other ac8yitidnich can provide insightful information for the
security community. The case of high-interaction honeymerating a Linux operating system exposing a
SSH server to attackers is considered. SSH is usually alaitan servers having large amounts of processing
power and bandwidth. These servers are usually highlyablailand have only a few numbers of downtimes
and once the systems are accessed a full command line iatdeaslich that nearly any arbitrary command can
be executed. Hence, SSH is a popular attack vector for aita¢R], [112], [135], [181].

Table 5.1 shows a typical attack scenario on a SSH servepatilsie with the observations of Nicomette et
al. [112]. An attacker discovered the SSH server and manageifhck an account. She connects to the server
with the credentials (step 0) and obtains a shell. Due todbethat the system is unknown to the attacker, a
system identification is done. The attacker first needs tevkmbich privileges she has. For instance, this is
done with the commandd (step 2). Another useful piece of information is the kerneision which can be
gueried with the commanghame (step 4). Furthermore, the attacker might be interestedagavhich programs
are currently running on the system (step 6). The attadken tlecides to download a malicious tool (step 8).
The attacker then uses the tool on the compromised system18}. On traditional high-interaction honeypots,
an attacker has reached her goal and the honeypot operatoolfected one program and its origin.

63



64 CHAPTER 5. MODELING ADAPTIVE HONEYPOTS

The attack sequence without any riposte from the honeypsthel —» id — uname — ps— wget —
custom. Attackers may also enter empty commands, typographicseoransults. Attackers provide inputs as
sequences of strings. An input is a system command if andibibig a bash command [111] or if it is related
to a program installed during the setup of the system. Agaftlkequently install their own tools, like SSH brute
force scanners, rootkits, local root exploits or phishiegver software. This means that all valid programs
on the honeypot not previously known are installed by atexk After having successfully transferred them
to the honeypot, they are valid programs on the honeypot ancbe executed. Each input that is neither a
program nor an ENTER keystroke typed by an attacker is censilito be an insult. An adaptive honeypot
interferes with the commands entered by attackers with tinggse to learn more about them. The attacker is
challenged an some resistance faced her attack and she fe@sto For instance, she could simply retry the
program execution. Another option is to determine why tleeymm execution failed by debugging the system.
Attackers could also decide to simply download another twallesperate attackers give simply up. In the
example presented in table 5.1 the honeypot decided tar#tarerrorPermission denied (step 11). The
attacker decided to get more permissions with a local roplioibwhich she retrieves from another location.

Due to this strategical interference of the honeypot fatlegattacker, the honeypot operator retrieved more
information about her. First, the honeypot operator ledithat this particularly attacker did neither give up, nor
retried the command. However, this attacker looked for terradtive way to achieve her attack goal. Second,
the honeypot operator collected an additional progranteéleo an attacker which may be interesting for anti-
virus industry. Third, the honeypot operator discoveredtlager repository under the control of an attacker.
Fourth, the honeypot operator could measure the attackeatdion time. If it is very small it is likely that
the honeypot faced an automated attack. A larger delay amacgessive commands means that an attacker
needed more time to choose the next step. Within this tinmadran attacker could simply looked up the error
code in a public search engine or she could have interactidadotier attackers to choose the next steps.

A naive idea would be to block all the programs installed byattacker. However, following such an
approach, an attacker would immediately find out that sheatagxecute her own programs and the observation
of a honeypot operator stops when a tool is downloaded. Tdrerethe challenge that we addressed was to
frame this kind of interactions among a honeypot operatdraanattacker in theoretical frameworks which is
exploited the honeypot to take the right decision aiming sximize information retrieval from attackers. An
overview of the model of adaptive honeypots is shown in figute In the context of high-interaction honeypots
the behaviors of attackers and the behaviors of the hongegpetdefined in the next two sections. An attacker
has usually an attack goal and enters successive commareitothis goal. This kind of behavior we define
as advances of an attacker. The purpose of this work is tmetbadaptive honeypots that interfere with
an attacker advances and as consequence an attacker hgpsotadréo the strategical actions of the honeypot.
An attacker can leave the honeypot, retry the executed caomselect an alternative command, insult the
honeypot or leave the honeypot. As behaviors for the horteypeodefined four actions. The honeypot can
allow advances of an attacker, it can block the advancetituteshe command of an attacker or insult her.

5.1 Modeling Attacker Behavior

On high-interaction honeypots nearly arbitrary programns loe executed. Ramsbrock et al. [135] modeled an
attacker behavior on a high- interaction as state machitteseven generic states:

CheckHW Attackers check the hardware configuration of the compredthsystem in order to determine
whether it is worth to continue the attack or to stop it.

CheckSW Attackers check the current software on the honeypot inrddprepare it for further attacks.

Password Attackers often change the password of a stolen accounngitoilock out system administrators
and other attackers.

ChangeConf Attackers change the configuration of the system.



5.1. MODELING ATTACKER BEHAVIOR

65

—

Attacker Behavior

Advances \

Command Sequences ‘

Hierarchical Probabilistic Automatdn

Responses

Retry

Alternative

Quit

Insult

Honeypot Behavior

Allow Program Execution ‘

Block Program Execution ‘

Substitute Program Execution ‘

Insult Attacker \

Figure 5.1: Overview of the Model Structure of Adaptive Hgpets



66 CHAPTER 5. MODELING ADAPTIVE HONEYPOTS

Step| Attacker Honypot Comment

0 SSH connect Attacker penetration
1 Returns shell Full access

2 id System identification
3 Execute id

4 uname System identification
5 Execute uname

6 ps aux System identification
7 Execute ps

8 wgetURLg Acquire tool

9 Execute wget

10 ./ssh- brute Misuse the system
11 Return error Strategical block

12 | wgetURLy Additional tool

13 Execute wget

14 Jlocal-exploit

15 Execute local-exploit Make attacker happy

Table 5.1: Attack Scenario on a High-Interaction Honeypot

Download Attackers often acquire additional software in order totcwre their attack.
Install Attackers often install malicious software on compromisgthines.
Run Attackers run and operated their malicious programs onttilersaccount.

This behavior gives a high-level overview of attacker bébragnd is coarse grained. However, it enables
to abstract from individual attackers which is already adystarting point for modeling an adaptive honeypot
which objective is to be capable of interacting with a varief attackers rather than with a particular class
of attackers. Therefore, an omnipresent attacker is mddade to perform generic actions. However, in the
previously discussed attacker behaviors, the details @nditacker reach their goals are abstracted too. In
addition, it is dificult to automatically map observed system commands to gtages. The semantic richness
of a full operating systems permits a nearly infinity of aliives to reach a given state. Therefore, we aim to
elaborate a more generic model, where attackers enterrsszpief strings as inputs on an adaptive honeypot.
The states for a hierarchical probabilistic automaton aréved from these inputs. Hence, attackers entering
inputs perform transition in this automaton. An attackem ealvance in her attack by performing the next
transitions. However, if she is detoured from her attack crerespond. Therefore, we define two abstract
behaviors for an attacker: the advance operation and tpemss operation. We define that attackers do their
advance operations in a hierarchical probabilistic automand that they can select among four choices as
response when they have derived from their attack sequence.

5.1.1 Hierarchical Probabilistic Automaton

Once attackers have compromised a system, they start tosemmpeences of commands. Usually, they start to
investigate the system, prepare the system and abuse teensy85]. In essence, they enter commands on
the system until they reach their goal. If they are not diztdrwe define this behavior as advance operation.
We extended the model of Ramsbrock et al. [135] with an hidieal probabilistic automaton in order that

it can be induced with observed program execution from ledétac Probabilistic automata are often used in
the field of pattern recognition and computational lingags{170]. They are particularly interesting to add

probabilities to a given structure [170]. An attacker whatigcking a honeypot is such a structure. He or she



5.1. MODELING ATTACKER BEHAVIOR 67

can connect to a high-interaction honeypot and can execagggams. Downloads can be performed with tools
like wget, curl, ftp, archives can be extracted with programs liker andgzip etc. These sequences of
program executions are then considered as transitions autmaton. We define the states of the automaton
as the programs that can be executed on the honeypot. Mord¢bkee additional states are added. First,
the statecustomdescribes valid programs on the honeypot that are insthfedttackers. Second, the state
emptydescribes the behavior of the command line shell when aokattantered an empty command and hit
the ENTER key on her keyboard. Third, the statsult is added because attackers sometimes enter invalid
commands that are either typographic errors or insults.hpacgram has some program arguments which
are passed as an array to thein function upon execution. If no command line arguments agdiatty
passed to the program, the first command line argument pames to the program name [104]. Moreover,
different programs may have the same command line argumeffigsirgj only in semantic. Thus, a hierarchy
between programs and command line arguments is introduEeah program is formalized as automaton
where each state represents a command line argument. Tbe istaan automaton representing a program
are called macro states and each macro state contains rtates §.e. the command line arguments). Some
transitions between programs or command line argumentaarelikely than others. For instance, the program
wget is often executed previously to the prograrar. Therefore, each transition can be modeled using a
transition probability. The same notation as proposed bgllatd et al. [170] is used. Let the tupld =

(Qa, Z, 04, Ia, Fa, Pa) be the automaton where:

e Qais a set of states

¥ is the alphabet

la: Qa — [0, 1] (initial state probabilities)

da € Qa X 2 x Qa (set of transitions)

Pa : 6a — [0, 1] (transition probabilities)

Fa: Qa — [0, 1] (final state probabilities)

The setQp contains the programs installed on the honeypot includmgri&nowrstate and the set of states
for a given program is denote@,. Attackers penetrate the honeypot through the SSH sertss, The initial
probability* for the state/usr/sbiry/sshdis 1 and O for all the other states. Moreover the alphabetistsnsf
the commands executed by the attacker. An example of suatrarthical probabilistic automaton is shown
in figure 5.2. An attacker connects to the honeypot via SSHssawk in thesshd state. Next he or she can
execute the programs with the probability of 0.3, the prograis with the probability of 0.5 or the program
wget with a probability 0.2. After the execution of the progra®, the programds can be executed with a
probability of 0.8 and the programmar with a likelihood of 0.2. From the stafes and tar the attacker can
reach other states with the respective probabilities. lr@sbake of readability, the first command line argument
for each program and the command line arguments for the gmgir's, wget andtar are omitted.

During the operation of a high-interaction honeypot exedyirograms can be observed and two questions
have to be answered

e Which program executions are related to an attacker andwdries to the system itself?

¢ What are the relationships among the program executions?

1The probability that an attacker owing credentials of thetesy is performing a login on the honeypot.



68 CHAPTER 5. MODELING ADAPTIVE HONEYPOTS

Figure 5.2: Honeypot Hierarchical Probabilistic Autonrato

Ay =< sshd bash uname >
A; =< sshd bash ps >
Az =< sshd bash ungme wget >

Transition matrix

sshd bash wuname ps wget
sshd 3
bash 2 1
uname 1
ps
wget

Figure 5.3: Recovering Transition Frequencies

Process Vectors

Transitions between programs are described by conditiprddabilities, capturing the likelihood of one pro-
gram being executed after a previous one. Sequences ofipnagrecutions from a deployed high-interaction
honeypot are used to determine these probabilities. Sueluence of programs is considered as a process
vector which is observed from one attack and where each ekeima program that is executed during an
attack. An attacker who executes the prografinén/bash, /usr/bin/wget and /usr/bin/tar, generates
the process vectot / bin/bash, /usr/bin/wget, /usr/bin/tar >. An example of transition probabilities is
shown in figure 5.3. Three process vectors are sh8wg. In the transition matrix each column and each
row corresponds to a state. The content of the cell contamdransition probability for the state written in
the column to the state representing a row. Each processnateatrts with the stateshd. The first observed
program that is executedlmsh. Hence, the transitioashd — bash has been observed three times. The third
executed program of the process vectdjsand As is the stateuname and has been observed 2 times. The
transitionsbash — ps and the transitiomname — wget appeared only once. These numbers of transitions are
then normalized such that probabilities emerge. Unknoamsitions are in a first step tackled with a smoothing
approach which described on page 71 resulting in a fullyré@oenected automaton. The created unobserved
transitions have low probabilities in order to not influetice later payfi computations. The fact of including
only the last command respects the Markov property definethéipter 4 which is a requirement for the next
interaction model.



5.1. MODELING ATTACKER BEHAVIOR 69

Attacker Process Trees

In order to obtain the process vectors, the Linux kernel gtatecture, which resides on the honeypot and holds
the process tree information has to be inspected. Attaciserdlly execute programs, as soon as they manage to
compromise a honeypot. That in turn, triggerslane?or sys_execve system call which has to be monitored.
As multiple attackers can be concurrently connected to treeypot, and also, as the system itself is using
sys_execve andclone system calls, a distinction needs to be introduced. Thesystlls that are related to a
given attack can be identified as follows: In a Linux ope@sgstem each process has a process identifier (PID)
and a parent process identifier (PPID) [97]. An attack uglstlrts with a privilege separated process of the
SSH server [129], denotaah. The procesgg then forks, resulting in alone system call or directly executes

a program via thays_execve system call. It is considered that the procps®&xecutes a program and creates
another copy of the process, denoted The parent process g is thuspg and the result of the execution
of a sequence of programs is a process tree of an attack whigtsubtree of the Unix process tree on the
honeypot. A process tree is defined as a tree structure whehen@de can contain a process id, a timestamp
a program name or a command line argument resulting fregsaexecve or clone system call. An edge links
two process identifiers with each other. This representpdinent child relationship. Furthermore, in a process
tree, each parent of a leaf represents a program name antbafotpresents command line argument (at least
the program name). L&t° be a tree induced bylone andsys_execve system calls. Thus[{ is an ordered
pair (V, E) such that V is the set of nodes akds the set of edges. V contains the tuplps t, m, ¢). In fact

a node consists of a process identifigf) (a timestampt(), a program namen) or a command line argument
resulting from the execution ofsys_execve or clone system call. An edge € E, denoted as; x|, links two
process identifiers with each other, representing the patelt relationship in a Unix process tree context.
Eachclone or sys_execve message contains the parent process identifier which entblecover each edge.
Program names and command line arguments are extractedhfeays_execve system call. Furthermore the
mapé : E — N links edges with time dierences between successive nodes as it is defined in eq. 5.1.

ninj = d
5((pi, ti,mi, c) (pj,tj, mj,cj)) =t; -t (5.1)
=N =n;

One process tree is shown in figure 5.4. The privileged stgghmocess of the SSH server has the process
identifier 4121 and is the root of the tree. Twbone system calls are made; one results in a process with
the process identifier 4127 and another one in the procestifide 4129. The process with the identifier
4127 is created after one secon@d(l21 4127)= 1) and the process with the identifier 4129 is created after 3
seconds. Then the process with the identifier 4127 execuytexyaam calleg’bin/bash after one second and
the process with the identifiar 29 starts the prograribin/uname after 5 seconds. The prografhin/uname
is started with the argumenrtiu and the command line argumentssh anduname represent the respective
program names.

Assembly of a Honeypot Hierarchical Probabilistic Automabn

We model the honeypot capabilities as a hierarchical pribs@ad automaton where each state represents a
program. Each state is furthermore an automaton on its olwvatexcombinations of command line arguments
build the states of the sub-automaton.

Process trees related to attacks are extracted from a teihieraction honeypot. A process tree can be
composed of PID nodes, nodes containing the programs thiatexecuted and nodes modeling command line
arguments. Due to the fact that the process identifiers ehfmg one attack to another, we are interested

2The traditional term for creating a new process is callett {@064]. However, we use the teroloneas it is used in the Linux
kernel's source code.

3A timestamp includes the seconds elapsed since the Unihefarst January 1970) and the milliseconds concatenattiutie
number of CPU instructions queried by the instruction RDTSC



70 CHAPTER 5. MODELING ADAPTIVE HONEYPOTS

1 3
14127 14129
1 5

/binybash |/binjuname

00

0
bastj (ay  (unamg

Figure 5.4: Process Tree

in transforming these process trees to process vectorshvdgscribe the sequences of programs that were
executed during an attackH is the set of paths from the roog to a leafxx and such path is is denoted
XoX1X1X2 ... X_1X. The mapd : H — N describes the sum of the edge weights of the paths as shoven in e
5.2. In the example sketched in figure 514f the path 4121 412pbin/bashbecomes 2 and of the path 4121
4129 /bin/unamebecomes 8.

AXQ .. XiXig1 ... Xk) = Z d (5.2)
(xi%i+1.d)es

The order of program execution is important. A good exampiald/be a tool that is first downloaded from
a remote location and then extracted from an archive andyfiesgécuted. The program names represent the
macro states of the hierarchical probabilistic automatwh @e included in the s&a. To recover the order
we use the timestamps in the process trees. This can belmbby a mapl : H — Qa X N shown in eg. 5.3
which associates programs with their execution order.

(XoX1 - .- Xk-1Xk) = (Xk-1, A(2)) (5.3)
RS-

=Z

A process vector, denoted @s represents the program sequence executed by an attackisrdefined in
eg. 5.4 @ denotes the position in the vector). A process vector hasiamal length of 1 and always starts with
the program/usr/sbin/sshd. In order to avoid program position conflicts in a processaedhe unique
number of executed CPU cycles needs to be included in thegiamp. In the example shown in figure 5.4
the process vectov is < /bin/bash /bin/uname> because the prograjtbin/bash was executed before the
program/bin/uname.

V(x, d) € A(H), Vg = x (5.4)

Figure 5.5 illustrate an example how process vectors am/eeed from process trees. At the top of the
figure is shown a duplicated process tree. On the left sideletih branch is selected. The branch starts with
the statesshd and ends with the stateash. The sum of the edges (eq. 5.2) for this branch is 2. According
to eg. 5.3 bash is at position two of the generated procedsrvéithe sum of the edges of the right branch is
5. This means that the programame is at position 5 of the process vector. The resulting progestor is<
sshd, bash, uname

Each attacker generates a process tree that is convertegraxess vector. All these vectors are then
inserted in a two dimensional matrix transition called siian matrix shown in figure 5.3. The observed
programs are used as labels for the columns and rows resggctiach cell contains the frequency of how



5.1. MODELING ATTACKER BEHAVIOR 71

| 0 . 0

i : i

(1 2 111 2 )

14127 4129 412 4129 |

|1 3 111 3 |

| [past luname ~ [pas uname |-

0 0o 0 0 | | Xts]| Program name
| o [o sshd
&) @8 & (@ | |; |

- Attacker 1 A1) - Attacker 1 @) 15 uname

Figure 5.5: Process Vectors Recovery

often a pair of programs was observed. The transition pibtyal’a is computed from the transition matrix.
Each cell is divided by the sum of the row. The automaton doimg the macro states is created from the
transition matrix. In figure 5.2, each state is represented bectangle and the edges are labeled with the
transition probability. For instance, a transition frone tlnacro statashd can be done to the macro stdte
with a probability of 0.5. Another transition can then be édo the macro statps. The programps can
operated in dferent modes by acceptingfi@irent command line arguments. In this example the statextetbn
by "-x” and "-a" are micro states, presented with roundedargles, and belong to the automatan

First, the hierarchical probabilistic automaton may beimplete because it is constructed from honeypot
observations. Therefore, we integrate a state in the awtonvehich is called "unknown”. Second, rare tran-
sitions may be unobserved. To counteract this phenomen@smaeeth the probabilities that we derived from
honeypot observations, where the smoothing factor is @elzotin this case each probability O is multiplied
by (1- ¢€) and from a given state, transitions are created to all a#mrining states. If we assume that our
automaton hasl states and the number of transitions for a given state tikenN — n transitions are created
having the probability-. The automaton has noW? transitions and is able to capture all possible transitions
The recovered transition frequencies shown in figure 5.%areothed in table 5.2. Attackers executed three
times bash immediately after the SSH login. This prograntetien is done automatically when an attacker
logs in the system instead of directly executing remote camds. Hence, the transitions probability from the
statesshd to the statéash is one. The SSH service also permits to directly execute camasion the remote
system. Forinstance, an administrator can execute onededrrhachine the commarndh user@host tar
-cO0 /home > local_backup.tar. In this case no shell is opened on the remote host. The progaa is
remotely executed and the standard output, retrieved otota machine and is redirected to a file denoted
local_backup.tar. This technique has the advantage that no temporary arokisds to be created on the
remote server which is not always possible to disk conggai®bviously, arbitrary commands like this can
be remotely executed. The smoothing of the probabilitikedahese scenarios into account. A predefined
constante is removed from the transitiosshd to bash and equally distributed for the other transitions. Each
transition fromsshd to the other states thdrash gets thens5;.



72 CHAPTER 5. MODELING ADAPTIVE HONEYPOTS

sshd bash uname  ps wget
sshd | £ 1(1-¢ < £ £

4 2 4
bash |5 5 M Do
uname| z 5 5 3 1(1-¢
ps 3 11-¢) 3§ < <
wget | g 5 11-¢ 3 3

Table 5.2: Smoothed Transition Probabilities

Automaton Properties

The exit state is an absorbing state. When attackers are in thistbgehave left the honeypot. Due to
the fact, that all attackers penetrate the system througbstd state, all attacks pass through the same node.
Hence, it can be deduced that this graph modeling the autontainnot have distinct partitions. An attacker
can execute a command multiple times, resulting in a loopérautomaton. Due to common transitions among
different attackers, the same state can lead towards sevexnktites.

5.1.2 Attacker Responses

Four actions are defined for an attacker when they do not ithadhestimated macro state:

Retry of a command If executing a command fails, attackers may try executiag#in. A failure might occur
due to a syntax error or a timeout during the program execuior instance, an attacker may download
a file and a network timeout may occur. An attacker may choas¢har URL and another repository
might be disclosed. The execution of a program can also pmdn undesirediect if a wrong command
line argument has been used. The program will then be exdagi@in, with a dferent command line
argument resulting in a fflerent micro state but remaining in the same macro state.

Select an alternative solution The execution of a program may fail. Some attackers try taide¢be problem
on the honeypot. They can check the configuration file of tlegnam or run an inspection tool like
strace on the program. They also might try to download another @nogor to download the source
code of the program in order to compile it on the honeypot. Nuten which path they choose, their
behavior can be classified in a category describing theractibchoosing an alternative solution so that
they can reach their goal.

Insult An attacker could enter an unknown command in the termiratlitheither an insult or a typographic
error. As response to an insult in the attacker’s terminal sbuld insult the honeypot or the other
attackers.

Quit Some attackers check the capabilities of the honeypot ath@yf suspect a trap or a worthless system,
then they will leave.

5.2 Honeypot Behaviors

An adaptive honeypot is capable of adapting to attackerh that it can change its behavior such that it
interferes with an attackers advances. The adaptatiomis aicthe level of executing programs on the honeypot
in kernel space. For each program execution of an attaakejaptive honeypot can take fouffdrent actions:

allow If an adaptive honeypot allows the execution of a progranbehaves like a regular high-interaction
honeypot, because it does not interfere with the execution fl



5.3. SUMMARY 73

block An adaptive honeypot can also strategically block the ex@ewf a program, encouraging the attacker
to retry the command, to debug the process or to choosfeaatit command. For instance, an attacker
installed a buggy ssh brute force scanner. If an attackerctas the tool with a given command line
switchs; and if the adaptive honeypot decides to simulate a segnmmfault, the attacker might believe
that a feature of the tool is not working. The attacker maytbleoose another feature of the tool by
choosing the command lirg. An alternative scenario is where an attacker downloadslditianal tool
which may reveal another malicious software repository.

substitute An adaptive honeypot is also capable to substitute a comn#stteickers often download programs
for there malicious activities. Examples are IRC bouncowg, ssh brute force scanners, phishing server
software, bots or rootkits. Let's assume an attacker domddd an IRC bouncing tool. If an adaptive
honeypot substitutes this tool with an with an SSH bruteda@canner, the attacker might believe that
he downloaded the wrong tool and downloads another IRC hiogriool and he may disclose another
malicious code repository.

insult An adaptive honeypot is also capable to insult an attackethé\beginning of our early development
of an adaptive honeypot it was questionable whether ingudtise sense. At first glance we believed that
an attacker will immediately leave when an insult is dispthyn his terminal. However, on a standard
high-interaction honeypot based on a Linux operating systmonnected users can communicate with
each other using the commanrdll. Rudy administrators could also change error messagasdingl
insults. For instance the commasddo can be configured to display arbitrary messages. Attacksos a
sometimes do not know all possible behaviors about the usditious programs. Nevertheless, we
believe that an insult in the attacker’s terminal inducegrarise dfect for the attacker. When an attacker
responds with an insult, a honeypot operator has revealeihtwortant pieces of information. First it is
highly probable that this attack was performed rather byradrubeing than an automated script. In this
case the insult of an adaptive honeypot served as Reverisgy Teist aiming to dierentiate humans from
machines [30]. Second, the attacker’s origin can be idedtifiFor instance, when adaptive honeypot
is attacked from a German IP address and the attacker isisgggarRomanian it might be probable
that this attacker compromised a German machine servingbasind for further attacks and connection
laundering.

5.3 Summary

This chapter has described the generic attacker behawsbisét out in [181]. The context in which attackers
penetrate a SSH server is described. Once attackers hametht command line shell, they enter commands
in order to reach their attack goal. We define this kind of b@hraas the advancing operation of an attacker.
Having entered the system, attackers execute sequencgmits.i Each input usually corresponds to a command
to execute a program on the system. We consider a honeypettodilection of programs and represent it with
a hierarchical probabilistic automaton. A macro state is #utomaton corresponds to an installed program.
Each program is also an automaton, where each state candsspm a command line argument. However,
not all inputs can be associated with the execution of systmmmands: attackers often install programs for
their own use. Attackers sometimes make typographicateootype insults on the terminal. We therefore,
added three special states dendteslilt, customand emptyto the automaton in order to address such inputs.
Inputs are classified into four types. Attackers can entelid eommand that corresponds to a system program
installed during the setup of the honeypot. If the commanelsted to valid program that is not a system
program, the attacker is executing a customized prograntackdérs may also enter invalid commands. An
invalid command is either a profanity or a typographic eride describe a methodology for collecting these
inputs on a high-interaction honeypot.

In the operating system kernel running the honeypot, pstregs are extracted and are transformed into
process vectors. In addition, a distinction is made betweenesses related to the system itself and those re-



74 CHAPTER 5. MODELING ADAPTIVE HONEYPOTS

lated to individual attackers. A process vector correspdac sequence of inputs from an attacker. We focused
on Linux like operating systems because their source coditan freely available. However, the same infor-
mation can be collected in a proprietary Microsoft operasgstem by using appropriate API functions [22]
resulting in a nearly identical process tree structure. @vméally describe how process trees can transformed
into process vectors. An example showed that an adaptiveypon interferes strategically with the execution
of attackers’ commands related to attackers in order taucaphore information from them. An adaptive hon-
eypot can allow program execution in which case it behawkesdinormal high-interaction honeypot. It can
also strategically block the execution of a program, stilistithe program or insult the attackers, with the aim
of revealing more information about them. In response tedlaetions an attacker can retry a command, select
an alternative, type an insult or leave the honeypot. In the ohapter the interactions between attackers and
the honeypots are modeled with three formal frameworks.



Chapter 6

Learning in Honeypot Games

We argue in this chapter that a new paradigm of adaptive hmtgycan provide more intelligence than the
established architectures. The major challenge was toadfncontext and automatically learn the best strate-
gies for each contextual state. The organization of thiptnas shown in figure 6.1. The interactions with
attackers are modeled with three formal frameworks andiegiis done in these frameworks accordingly. The
choice of learning a behavior is mainly due to the high atpanic complexity required by these framework
or unknown parameters which can be handled with learningoagpes. The interactions between an adaptive
honeypot and attackers are first modeled with game theorydéffee games between an adaptive honeypot
and an omnipresent attacker where each player has an owasihtEor instance, an attacker want to reach her
attack goal and a honeypot operator wants to reveal infoométom the attacker. In addition we assume no
co-operation between attackers and adaptive honeypothese games paffs for each player are computed
with Monte Carlo simulations. These pdigare then used to compute the optimal strategies for eagharpla
A minor drawback of such an approach is that the fizybave to be computedfdine and the payifis may

be out dated for a future operation. In a second step, we nasdatlaptive honeypot as an agent who is op-
timizing a reward signal. These kinds of interactions arenfilly modeled as a Markov Decision Processes.
This approach enables us to abstract from the transitidogitities, previously learned in arffdine manner,

but ignores the competitive naturé the players. In addition, a learning approach is used tocxpate the
optimal behavior because in practice not all of the pararaaitthe model are known in advance. In a third
step, we model the interactions between attackers and theyhot as a stochastic game because it permits to
abstract from the attacker’s transitions and in the meantoninclude the competitive nature between attackers
and the honeypot. As a learning approach, fast concurraniteg was selected due to its low algorithmic
complexity which permits an implementation of an on-lin@ative honeypot.

([ Modeling interactions with attackers }———— Interacting with attackers )

( Game theory — General sum game )

( Markov decision process e Reinforcement learning )

[ Stochastic games ]—{ Fast concurrent learning ]

Figure 6.1: Learning in Games - Structure

75



76 CHAPTER 6. LEARNING IN HONEYPOT GAMES

6.1 Game Theory and High-Interaction Honeypots

In information security, game theory became applied [98}4], [108] because it permits to model interactions
among competitive players. However, neither game has befined at system level directly facing attack-
ers resulting in autonomous systems capable of interawtitigattackers. Attackers penetrate the honeypot,
modeled with a hierarchical probabilistic automaton, angtecommands which results into transitions in the
automaton. Each command is associated with a reward or .aSiastarly to Grossklags et al. [80] we assume
that attackers want to achieve their goal as fast as posaitnlevant to use as lesff@t as possible to reach
their attack goal. Hence, they want to minimize the numbeéntafractions with the honeypot. The honeypot
aims to maximize the number of interactions or to learn ashmascpossible from attackers or to distract them
from real assets as long as possible. Similarly to Lye et9d], [we consider attackers as one player because
we are not interested to model individual attackers but aniprasent attackér In this section we define two
possible actions for the honeypot and threféedieént actions for an attacker. We determine Nash equilib4a
providing the optimal strategies for both the attacker dmedhoneypot.

We reuse the definitions and notations proposed by Amy Gralehi@4] in order to formally describe our
games between attackers and the honeypot.

Let a 3-tuplel’ = (N, (A, R)1<i<n) be the game between the honeypot and the attacker, where

¢ Nis a set ofn players
e A is afinite strategy seg( € A,)
¢ R : A— Ris a paydf function, whereA = A; x --- X A,

The game between the attacker and the honeypot has two glajeus,N = {honeypatattacket. The
honeypot can blockys_execve system calls with dferent probabilities. The sé¢, corresponds to the set of
blocking probabilities the honeypot can choose. An attacka choose to retry a command, to search for an al-
ternative command or to leave. We define an attacker’s giratéh a 3-tuple Pr(Retry),Pr(Alternative,Pr(Quit))
and the sef, contains all these strategies. The notaf(x) denotes the probability that a player is perform-
ing the actionx described in chapter 5. The relation 6.1 holds for the attaskategies. One purpose of game
theory is to compute the optimal strategy profiles for they@ia which results in the computation of Nash
Equilibrium. A Nash Equilibrium in the context of honeyparges means that neither the honeypot nor the
attacker can increase their expected Esyassuming that neither player does not changes his strdtgmg
the game.

Pr(Quit) + Pr(Retry) + Pr(Alternativg = 1 (6.1)

Examples of attackers and honeypot strategies are dejpicfeglire 6.2. We observe that an attacker tries
to invoke the commandmap (a popular network scanner). The honeypot might allow itscakon (with
the probability 1- Pr(BlocK) and in this case the attacker continues and executes tigeapnwget (with a
probability of 0.95). If the toohmap is not allowed by the honeypot, the attacker can decide hereguit (with
a probability ofPr(Quit)) or to retry the execution afmap or to execute another command (for instanaame
- with a probability of 0.3). The execution efnap was blocked and its probability was equally distributed
among the transitions to the stateget anduname. Probabilities of attackers choosing the next command
to be executed can be estimated from an operational highaittion honeypot. Probabilities used by the
honeypot to block the execution of a command is a configuraaiting and reflects the strategy played by the
honeypot. Similarly, the probabilities used by the attadkeeither quit the session, or retry a command (and
conseguently to choose another command) compose thegstigiteyed by the attacker. The main question
is related to what are the optimal settings for both the hpaefPr(BlocK) as well as the attackeP((Quit),
Pr(Retry),Pr(Alternative).

!Detailed description is shown on page 66.



6.1. GAME THEORY AND HIGH-INTERACTION HONEYPOTS 77

o Attacker

Honeypot

Allow
- Pr(block).

Figure 6.2: Honeypot Game

6.1.1 Defining Paydfs

Respectively to attacker and honeypot strategies, twoylpmiegames are proposed. The games aferdint
with respect to the paybcomputation.

Number of Transitions Similarly to Grossklags et al. [80], we assume that attackee rational and that they
want to achieve their goal as fast as possible. Thus, arkattaées to minimize the number of transitions
in the hierarchical probabilistic automaton. The honeypet to learn as much as possible from the
attacker. Information, that is potentially useful for thenkeypot will include tools used by attackers
as well as their download sources. Hence, the honeypotti@saximize the number of transitions
performed by an attacker. The pdlyor the honeypoR}1 returns the number of transitions performed
by an attacker. The more transitions an attacker does, titer liteis for the honeypot. Attackers try to
minimize their transitions and their paydunction, denoted?}1 returns—1 multiplied by the number of
transitions. The less transitions attackers do, the lesgahe punished in terms of payo This game
seems unfair at first glance regarding attackers. If we asghat attackers do not want to be discovered
while they are performing their attack, they have already lmecause they connected to a monitored
honeypot instead to real assets. The only chance they haweliiaulge as little information as possible.
Therefore, they try to minimize the number of transitionslevktill advancing in the attack.

Path Probability Payoff The paydf computations purely based on the state transitions ignioegfact whether
attackers reached their goal or not. Moreover, the fisgtmuld take into account how likely a path is
regarding observations from a deployed honeypot. We akérigdor a paydf computation that rewards
the honeypot for blocking and that penalizes the attackemwieing blocked.

The paydr for the honeypot is shown in definition 6.2 and the pgféjor the attacker is presented in defini-
tion 6.3.

RY = Pr(path)

" P (path 2



78 CHAPTER 6. LEARNING IN HONEYPOT GAMES

_ Pr(path)

RE - Pr*(path) (6.3)

The more the attacker path probabiliBr(path) gets closer to the most probable path probabily (path)),
the payd for the attackerR) is likely to converge to 1. That is, if the attacker follovietmost probable path,
then the payfi for the attacker results in 1. In this case, the ghpbthe honeypotRﬁ) gets close to 0 which
is the minimum payfd for the honeypot. If the path of the attacker is diverted dublocked programs, the
path probability chosen by the attacker diverges from thetrpmbable path probability and gets lower than
the most probable path probability. Hence, the gagets minimized for the attacker and maximized for the
honeypot.

6.1.2 Computing Paydfs with Simulations

In order to compute the paffovalues for all possible combination of strategies, a MonégldCsimulation
will be used. We have developed a simulator that uses baptsita obtained from an operational honeypot
deployed over a period of 3 months. Due to computation antbgeyent constraints, simulations were neces-
sary since, performing real life experiments for all pokstiehaviors would require 2684fflirent honeypots
setups.

Attackers as well as the honeypot select their strategiesrading to a given probability. These probabil-
ities are fixed and an attack is simulated. The simulatiowiges the number of transitions an attacker did,
the optimal path probability, the path probability for theaaker, the fact that the attacker left and the fact that
the maximum number of transitions was reached. The mainlatoruialgorithm is presented in algorithm 1.
In order to make the pseudo code more readable the propaBiiiblock) is denotedPyock, the probability
Pr(quit) is denotedPqit, the probabilityPr(retry) is denotedPretry and the probabilityPr(alternative is de-
notedPaernative The variablesrc specifies the initial state and the variablst stands for the destination state
in the hierarchical probabilistic automaton. Hence, thalfitate probability F »), required by the probabilistic
automaton is 1 for the statkstand O for all the other states. During a simulation, the items performed
by an attacker are recorded. The states, that an attackexcptigough are kept in a list denotsid ps When
the simulation starts, the attacker enters the initialessitown in line 2. She is assumed to choose the next
transitions on the most probable path. Due to the fact tleattacker was not blocked, she follows the same
path. An attacker has a fixed goal. If this goal is reached sthmilation ends. Moreover, the number of
transitions during a simulation is recorded and if this neméxceeds a defined threshold the simulation ends.
The rationale behind this is to avoid endless transitiomg dttacker can retry a command or compute the next
state and the step is recorded (line 15). The honeypot detidelock this step or to allow this step accord-
ing the probabilityPr(BlocK). The attacker then decides whether to quit or continue #megaccording the
probability Pr(quit) (line 17). If the attacker quits, the simulation ends. K #itacker decides to choose an
alternative command, the hierarchical probabilistic enaton is modified due to implementation issues. The
probability for the blocked transition is set to 0 and thelyadaility for this transition is equally distributed for
all outgoing transitions. Due to the fact that an attackemags computes the most probable path, the same path
could not be selected due to the 0 probability transitionc@ifrse this ffect is undone for the next simulation
round by loading the initial automaton. If the attacker desito retry a command the statéernativeis set to
False, the loop ends and the next round starts. The decinigger an event is a function that takes as input
a probability p; then generates a random numB€p < x < 1) according a uniform distribution. Kis below
pi then the value true is returned, false is returned otherwise

The recovered payts enable to compute Nash Equilibria aiming to identify thetlstrategies profiles
for each player. In a profile the honeypot can allow or block@pmm execution of an attacker according
to a given probability. Hence, the action set of the honeypd set of tuples describing a blocking and
allowing probabilities. As response an attacker can rdteygrogram execution, look for an alternative solu-
tion or leave the honeypot according a probability. Thawefthe action set of an attacker contains 3-tuples



6.1. GAME THEORY AND HIGH-INTERACTION HONEYPOTS

79

Algorithm 1 High-Interaction Honeypot Simulator

1: procedure SMULATE(SIC, dSt, Ppiock, Pquits Pretry, Paiternative)
2: steps— [ src]

3: Alternative«< True
4: while src # dstdo
5: LoadAutomaton()
6: if currentRound> maxRoundhen
7: maxRoundReached True
8: return
9: end if
10: currentRound— currentRound+ 1
11: if alternativethen
12: nextS tate— GetNextS tatsrc, dsf)
13: alternative«— False
14: end if
15: steps.add(nextState)
16: if TriggerEventPyock) then
17: if TriggerEventPqyit) then
18: quit « True
19: return
20: end if
21 if TriggerEventPajernative) then
22: alternative«— True
23: AdjustWeightérc, dsi)
24: else
25: alternative«— False
26: end if
27: else
28: Src « nextState
29: end if

30 end while
31: end procedure




80 CHAPTER 6. LEARNING IN HONEYPOT GAMES

(Pr(Retry), Pr(Alternative, Pr(quit)). The paydfs were computed via simulation. Among, the honeypot’'s and
attacker’s actions, strategy profiles can be generatedwan&combinations of all actions.

6.1.3 Leveraging Optimal Strategy Profiles

The key question is now which blocking probability leads hie highest expected pa§o After having re-
covered numerical values for the p#gfor each player, we determine Nash equilibria with statthefart
algorithms. We have defined two games: a zero-sum game andesagjsum game. In the zero sum game
with the paydrts RL andR., the honeypot’s loss is the attacker’s gain. While usingpiedts RE andRY the
magnitude of the honeypot's gain isfidirent than those from the attacker and we have a general sme ga
As discussed in section 4.1, the algorithmic complexityas entirely known for the determination of Nash
equilibria. We address this problem with an experimentgragach presented in section 8.3. Nash equilibria
are divided into two categories: pure equilibria and mixqdikbria. The simpler case is a pure equilibrium.
This means that a player should always select a given syratag block the execution of programs with a
probability 8g. However, in case of a mixed equilibrium, the Nash equilibripoints towards a probability
of choosing a given strategy. For instance, the honeypatldhgse a blocking probability g8y according

a probability ofag. The blocking probability3, is a given strategy of the honeypot that has been defined in
advance. The probabilityg results from the Nash equilibrium computation. This pralitgtcan be either 1
for a pure equilibrium or between 0 and 1 for a mixed equilibri

The reason for defining strategy sets with probabilitiesgsable. One could imagine to define the strategy
set for the honeypot with two elements, namely allow or bltiek execution of programs instead of defining
discrete blocking probabilities. A mixed Nash equilibrimvould result into a probability of allowing or block-
ing the execution of programs. The reason for using proihalsiéts is that there is an uncertainty for attackers
and on the observed transition probabilities. For instamten the honeypot blocks the commarnykt, some
attackers give up because they do not see a way to acquiretisdmized tools; other attackers simply retry
the command and clever attackers seek an alternative pndgragetting their tool. Therefore, we compose a
strategy profile as set of tuples containing probabilitiegesforming various actions. Furthermore, the risk of
taking a bad decision using fixed actions is higher than dhgdslocking probabilities.

In order to have a more precise idea about the impact of estenansition probabilities, a quantal equi-
librium can be computed as defined in [61]. The idea is thatgskaare assumed to make errors and, in our
case the payts may be faulty due to uncertain transition probabilitiesla@tal response equilibrium analysis
describes a function taking as input p&gand a rationality parameter and outputting the Nash dqiuith for
this setting. By iterating this function and by having samitonsecutive Nash equilibria the selected strategy is
robust against noisy paffs (independent of the rationality parameter). However,mimeng high-interaction
honeypots the quantal equilibria shows that the Nash égailare not perfectly robust against errors. The pay-
offs and transition probabilities may also change over timerdier to address these issues, the fisyand the
transition probabilities need to be periodically reestima Therefore we aim to abstract from this problem in
the next section by choosing an approach to handle partiskpown parameters like these uncertain transition
probabilities and payfts.

6.2 Learning Honeypots Operated by Reinforcement Learning

Attackers who are executing commands on the honeypot araflyrmodeled with transitions in an hierarchi-
cal probabilistic automaton as it is defined in chapter 5. daydive honeypot can interfere with the attackers’
actions by blocking the execution of strategical importartgrams. Transitions in the automaton are simu-
lated and payfis are derived. These pay® are then used to compute the optimal strategy profiles fmlind
with game theory. It is assumed that the attacker wants yomtahe path with the highest probability which
is also included in a reward model. However, in practice difficult to get meaningful transition probabili-
ties. A straightforward approach is to recover them fromdsaof a deployed high-interaction honeypot as it



6.2. LEARNING HONEYPOTS OPERATED BY REINFORCEMENT LEARN(BI 81

is shown in chapter 8. However, there are no guarantees ahitbse probabilities are stationary. Another
phenomenon is the diversity of attackers who are attackiaghobneypot. Firstly, some attacks are fully auto-
mated. Secondly, attacks are performed by script kiddiés;iware novice attackers, who do not understand
all the details. Thirdly, some attackers are more expeeiérand understand all the details. All these kinds
of attackers are considered as one collective player. Adfiest towards these uncertainties is the introduction
of probabilities in the actions of each player. For instarthe probability 0.3 to block an attacker’'s program

means that 30 program executions out of 100 should be blo&ssiliming, that a well balanced set of traces is
present to bootstrap the automaton, the honeypot takemtiialecisions on average. However, the uncertainty
on the transition probabilities introduce erroneous fisytor both players. This problem is tackled with a

guantal response equilibrium. In this case a parameigintroduced which is the inverse of errors introduced
on the payffs. The parametet is echeloned in each quantal response equilibrium analysis

The results of this analysis show how robust the Nash egiaildre facing faulty payds. In this section,

a model is proposed to abstract from these uncertaintiescaextract more information of an attacker rather
than keeping him busy. This section describes an adaptiveyipot, denoted Heliza which allows information
retrieval from attackers to be optimized by leveragingfagitement learning algorithms.

According to Sutton [161], reinforcement learning is anoatdted method for goal-directed learning and
decision making that works to maximize a numerical rewand agent must discover which actions provide the
most reward by trying them out. Rewards can be positive catiagand an agent by default tries to optimize
its reward in the long run. A general overview of reinforcemnlearning is presented in [161] and is shown in
figure 6.3. An agent operates in a specific environment angedonrm various actionsy() at discrete time
steps, denoted by the varialileEach action results in a state charggand a reward is given for the selected
action ;). A classical example is an agent that needs to find the exitmahize. The agent can move north,
south, east and west. Each position in the maze results istiaadistate. When the agent bumps to the wall
or wants to make an impossible transition, the agent is pedisWhen the agent makes a valid movement no
reward is given. However, if the agent finds the exit of the epétzgets a positive reward.

T —3 Agent EE—

state reward action
S It &

Environment f————

Figure 6.3: Reinforcement Learning Overview

In this section we consider an adaptive honeypot denoteizadelhich is dedicated to be attacked, and
behaves like a learning agent which is continuously undeclat As described in chapter 5 attackers want to
execute commands. Heliza has to take decisions as to allthock these commands. Heliza is also able to
forge outputs or insult an attacker. Following a decisionattacker can enter another command, which results
into a state change. Each state change is also linked withvaxde Attackers are constantly attacking Heliza
resulting in sequence of inputs including program exeagtitypographic errors and insults.

6.2.1 Environment

Attackers compromising the system are modeled as its emmieat. The behavior of attackers is defined in
chapter 5. They penetrate the system via SSH and provide stpogs that are usually commands. For
instance, they may inspect the system and then try to maleadyrfor their malicious purpose. A typical
attack sequence is for instansshd — uname — wget — tar — custom. Attackers may also enter empty
commands, typographic errors or insults. As describedaptr 5 attackers enter sequences of strings denoted



82 CHAPTER 6. LEARNING IN HONEYPOT GAMES

igii2...in Wherei, € S*. The underlying finite state spaceSs= {s1, S, ..., Sy} is similar to the hierarchical
probabilistic automaton presented in section 5. An iripig a system command if and only if it belongs to the
setL = {s1, S, Ss, . - ., o} Which contains all bash commands [111] including systengamms installed during
the setup of the system. In addition we add three speciasstt= L | J{insult, customempty. A transition to
theempty state is made when an attacker hitsEN&ER key on the system. Attackers sometimes do this to test
whether the remote connection is still working. Attackeftem install customized tools, which we designate
the set C, like SSH brute force scanners, rootkits, local exploits or phishing server software. Hence,
C ¢ S*. This means that all valid programs on the honeypot not pusly known are installed by attackers.
After having successfully transferred them to the honeyihaty are valid programs on the honeypot and can
be executed. Each input that is neither a program nor an ENKEyRroke typed by an attacker is considered
to be an insult. Hence, the set of insultd is S* — L — {empty — C. When an attacker wants to execute a
custom installed program, a transition to thestom state is made. We define a relatipnc C x {custom. A
string that is entered by an attacker and that is neither grano nor an ENTER keystroke is mapped into the
state callednsult, which is formally defined by the mappirzg C | x {insult}.

6.2.2 Honeypot Actions

The added value of honeypots lies in their ability to leaonfrattackers or to reveal information about them.
Heliza is adaptive and capable of taking actions in resptmagtacker actions. Heliza aims to collect attacker
tools and to detect whether the attack is automated or mgmextformed. Heliza can also be tuned to keep
attacker busy. Four actioreg_4 € A are possible for Heliza: It can behave like a standard higgr-action
honeypot by allowingd;) command executions. When Heliza decides to bl@k & command entered by
an attacker, it is not executed, but an error code is returhiliza can also substitut@y) commands. For
instance, when the commands executed, aiming to see how many users are logged in,aHediz and shows

a previously generated content. Another, example is whreedtacker executes the taajet with the intention

of downloading a customized tool. In this case, Heliza cdiglénd display a "page not found” error, which
may lead an attacker to reveal another malicious repositdnyalternative possibility is to swap a few bytes
in the downloaded payload. Provos et al. [132] showed thealifittime of malicious code repositories can be
very small (1 hour) and if an attacker is connecting to sudteange assume that it is not suspicious if we return
a "page not found” error. Heliza can also inswd) attackers. This action mainly serves as Reverse Turing
Test [30]. The purpose of such a test is to discover whethactan is being performed by a human being or
an automated tool. The insult decision leads to a displayafsult in the terminal of an attacker. An attacker
can respond with an insult. By doing so, it is highly likelyathithe attacker is a human being. Suppose that an
attacker has downloaded a customized tool and wants to exicieliza then repliesIs this all what

you want to do? Some attackers immediately leave when they see a messaghik Obviously, in this
case we cannot determine whether this attacker is a humaot.oHowever, some attackers get overwhelmed
by emotion and type insults on the terminal. In this caseizdeadan discover that the attacker is a human and
can sometimes determine the native language of the atteé8kiare attacks are automated and their reaction to
insults depends on the capabilities of the script. Sometscecheck error codes and the output of the executed
command and take appropriate actions. Other scripts hageraohandling and just continue the attack.

6.2.3 Rewards
In the reinforcement learning domain, a learning agens tideoptimize a reward signal. Heliza can use two

reward functions depending on the desired behaviors.

Collecting Attacker Related Information

Alata et al. [3] described that attackers often install coszed tools on high-interaction honeypots designed
for their malicious purpose. Hence, the goal of our rewamtfion is to collect as many attacker tools as



6.2. LEARNING HONEYPOTS OPERATED BY REINFORCEMENT LEARN(BI 83

t | it S action reward
0 | sshd sshd allow 0

1| ssudo insult allow %

2 | sudo sudo block 0

3 | wget wget substitute 0

4 | wget wget allow 0

5| ./exploit custom insult 1
6|Iam ... insult insult 14775

Table 6.1: Sample Attacker Session

possible. The more we are interested to discern the lirigdestures of an attacker. However, the main focus
is on customized tools installed by an attacker. The rewardtfon with this purpose is defined in eq. 6.4 where

i is the input string used by an attacker. Each inmftan attacker sequence of strings . .. i, is mapped with

the states in the state space as it is described in sectidn2S. The normalized Levenshtein distance [62]
is denotedy and the action taken by Heliza is denod The merged set of custom commands and system
commands i& = CJ L. If an attacker does a transition to a customized tool, ldediets the highest reward
(1) and if an attacker executes a system related commaneweed O is distributed. However, if an insult is
entered, the Levenshtein distance between this string lanthar programsX) is computed and the minimal
normalized distance is returned as reward.

1 ifi e C
rt(s,aj) = Teip(ld(i, X)) ifiel 6.4)
0 otherwise

If the attacker just made a typographic error, the minimunmadized Levenshtein distance is low. Not
much information about the attacker has been revealed eitégpighly probable that this attacker is a human
being. However, if the distance is close to 1, an attackerehésred a completely unknown input, which may
be valuable for Heliza. The reason for normalizing the LeW®ain distance between 0 and 1, is that Heliza
should focus on collecting tools than rather collecting@er insults. The highest reward is still granted when
a transition to a customized tool is made.

An example of an attacker session is presented in table 6etenthe variabld represents discrete time
steps. The column labeled withshows the input provided by an attacker which is mapped tata stin the
state space. For a given transition made by an attackerzaledin take amaction and get aeward In this
example, an attacker connected to the honeypot at time 0 antsuo get to thashd state. Heliza allows this
transition and gets a reward of 0. The attacker then wantssiouge the commanskudo, which is classified as
an insult. However, the attacker simply made a typograpfar.eFor this simplified example, the Levenshtein
distances are computed between the imitido and all the installed programsshd, sudo, wget}. The
resulting set of Levenshtein distanceq1s2,5}. The minimal Levenshtein distance is 1, which means that
only one character needs to be edited to get to the stfiig. Hence, the normalized Levenshtein distance
become%. In step 2, the attacker notices the typographic error atgr®the correct command. This time,
Heliza blocks the command. The attacker decides in step 8vimidad a local root exploit. Heliza decides to
return a forged output stating that the requested page wdsural. The attacker then selects another malicious
repository and this download is allowed. The attacker wemgxecute the local root exploit. A transition to the
statecustom is made because the program was not known during the honsgpgt. The reward 1 is returned
because Heliza has collected a customized tool from ankattadieliza decides to print the tekke you
stupid enough to execute this crappy tool.... For the attacker this is usually a surprise, because
she has to determine how this text emerged in her terminat.slsply an output of a compromised tool or
coming someone else who is monitoring her? This could elthexnother attacker or a system administrator.



84 CHAPTER 6. LEARNING IN HONEYPOT GAMES

Sometimes, an attacker is overwhelmed by emotion in sucheasssituation and types am not stupid
dude, it is time for revenge .... Thistime, the normalized Levenshtein distance becoﬁiewhich
rewards the honeypot of having revealed an entire senteocethe attacker.

Keeping Attackers Busy

Cohen et al. [31] already discussed techniques aiming atasing an attacker’s workload. Thus, a straight-
forward reward is to take into account the delay between maressive commands expressed in seconds.
A higher delay means a longer reaction time of the attackdraimdling partial attack failures. We cannot
determine what the attacker was doing in this reaction titheould be that the attacker was looking up a
solution in available information sources or she was bugk semething else. Nevertheless, the delay between
two successive commands is measurable for the honeypotelHer define a functiofi: SxSx AxN — R.

The reward function defined in eq. 6.5 returns the tempofidrince needed to transit from the previous state
to the current state by taking the actiapat the timei.

ra(s.aj) = 6(s-1, s, aj, i) (6.5)

6.2.4 Learning Agents

Formally, the interaction of the honeypot with attackersléscribed with a Markov Decision Process [161]
which is composed of:

¢ Afinite set of state$§.
¢ A finite set of an agent’s actions.
e A transition functionT : S x A —» PD(S), wherePD(S) is the probability distribution over the st

e The reward functiorR : S x A — Rdefining the distributed rewards.

The set of states has already be defined in section 6.2.1 amaindy derived from the hierarchical proba-
bilistic automaton defined in chapter 5. It consists of ilestiprograms on the honeypot including the special
stateustominsultandempty The modeled adaptive honeypot is an agent and has a sekofssEtomposed
of the actions presented in chapter 5. An adaptive honeygoallow or block the execution of a program. It
can also substitute the execution of a program or insulttacksdr. Hencé\ = { allow, block, substitute, insylt
An adaptive honeypot is in a given state and takes an actiochwhsults in another state according to the
probability distribution over the s&. Each action is also related to positive or negative rewaobring a
reward function. Although this model permits to describeaagition function and a reward function, these
parameters are often unknown and have to be learned.

Heliza is a learning agent, and attackers act as its envigahmAccording to Sutton [161], an agent has
the ability to perform a set of actions in various situatigetates). Each action is awarded with a positive
or negative reward. The purpose of reinforcement learrsntp ifind the optimal policy to select the most
promising actions in given states. Formally, a policig defined as a stochastic rule used by an agent to select
actions [161]. Reinforcement learning is divided into twaiegories: fi-line learning and on-line learning
[161]. Monte Carlo methods are frequently used féirlime learning methods and timeftérence learning
methods are used for on-line learning. Either method requipmplete knowledge about the environment and
both try to optimize received rewards. The purpose of a p@i@luation is to estimate the value of a given state
sunder a policyr [161]. However, in the context of adaptive honeypots, weirterested in evaluating state
action pairs rather than states. An attacker whose rootkitigion has been blocked may chose another path
in the hope to achieve the initial attack goal. The objeabif/eleliza is to incrementally discover the policy for
choosing actions in given states, which is usual for onegatnethods [161]. Attackers connect to Heliza and



6.2. LEARNING HONEYPOTS OPERATED BY REINFORCEMENT LEARN(BI 85

perform some malicious activity resulting in state traosi. In the statexit, they leave the honeypot which
means that they have reached an absorbing state. This pBeoorgives the possibility of breaking down the
learning method into episodes. The policy is being evatliatehe end of an episode. The State Action Reward
State Action (SARSA) method is a straightforward method repolicy learning method [161]. The general
form is presented in eq. 6.6. The goal is to estimate the tb@aaccording to a policy, for a given stageand

a given actions;. Due to the fact that an environment is unknown for an aganexglorer has to decide to
explore or to exploit the learned knowledge. This is a funelatal problem in reinforcement learning. We used
the e-greedy explorer, shown in algorithm 2 because convergemoptimal Q values has been proved with
such an explorer [152]. The environment is explored acogrth a random componeatand the environment

is exploited according the learning rule shown in eq. 6.6.eAtimation ofQ at timet is augmented by the
received reward; plus a discountedy estimated future reward, taking into account a step siranpeter ¢).

In practice, the rewards are set retroactively and in thgtagahoneypot scenario no discounting € 1) is
done because the beginning and the end of an episode are kAavepisode begins when an attacker connects
and ends when an attacker leaves. A default value of 0.0t as step size paramete) (143].

Qs &) «— Qs &) + afre1 + yQ(St+1, ar1) — QS )] (6.6)

Algorithm 2 Honeypot - Greedy Explorer
1. function noneyrorGREEDYEXPLORER(State,actionSet, lastAttackerAction)
2: action< 0

3 X « random(0,1)

4: if X < ethen > Explore
5: i « random(Q,actionSet)

6: action < actionSet]

7 else > Greedy behavior
8: mx« 0

9: for i € actionSedo

10: j « StateMatrices[honeypot][state][lastAttackerActioh][

11: if j > mxthen

12: MX « j

13: action« i

14: end if

15: end for

16: end if

17: €e—exXA

18: return action

19: end function

In order to avoid the problem of uncertain transition prali@ds reinforcement learning can be used as an
alternative to Monte Carlo simulations and static gagomputations. The advantage of reinforcement learning
is that it embodies model-free approaches [82]. In this eas®del does not have to be known in advance,
meaning that the transition functions or reward functioosidt have to be completely known. This means that
the decisions about attacker actions are independent obtberved transition probabilities. An agent operates
in an environment by performing several actions. Each actsults in a reward. The objective of an agentis to
optimize its received reward. An agent in the context of kiglkraction honeypots is the honeypot itself. The
agent operates in an environment, defined as a hierarchigbalpilistic automaton providing rewards to the
honeypot. If an attacker connects to the honeypot and hesovahts to execute a program, then the honeypot
needs to decide whether this program execution should beeidl or blocked. After the decision, a reward is
distributed to the honeypot. The received reward is thenutated for each state. When the honeypot reaches



86 CHAPTER 6. LEARNING IN HONEYPOT GAMES

a previously seen state, it needs to take a decision. Thisidealepends on the honeypot’s explorer. The
choice of the explorer is one parameter to ensure convetgeiitie learning process. Thkegreedy explorer

is frequently used. This means that the honeypot almostyaltekes the action yielding in the highest reward
with some random behavior parametdi 61].

Hence, the probability of blocking the program executioesinot depend on the transition frequencies in
the honeypot automaton. The previously discussed autoniadoiction problem (discussed in section 5.1.1)
can be avoided because a closed loop is used to estimatadsewReinforcement learning can be more fine-
grained than just determining the optimal probability testa blocking probability. In reinforcement learning,
expected rewards are estimated for each individual stb#m attacker executes the commasnydt and if the
objective of the honeypot is to collect programs acquiredtbgickers, then this program should be allowed,
because the allow action yields the highest reward. Howevproblem of such an approach is that attackers
are considered as part of the environment despite their ettip nature. According to Banerjee et al. [11]
considering competitors in a learning scenario as aspétie @nvironment may mean the environment is no
longer stationary and convergence results may be impacted.

6.3 Fast Concurrent Learning Honeypot

For single learning agents, Markov decision processesarelar for modeling the environment with an agent
[73], [161]. However, this modeling framework is not suitethien multiple players are taken into account.
Stochastic games were proposed as extension to tradifiberddov decision processes. According to Hu et al.
[73], a 2-player stochastic ganiieis a 6 tuple< S, A%, A%, r1,r2, p >, whereS is the discrete state spaot
is the discrete action space of playerk = 1,2, rk : S x Al x A2 — R is the paydf function for playerk,
p:SxAlx A2 > Ais the transition probability map, wherteis the set of probability distributions over state
spaceS. Such a model can be derived from our honeypot automatoemtexs in chapter 5. The state sp&e
remains the same, containing the programs installed onatheyipot and the game is played among an adaptive
honeypot and an omnipresent attacker. The actions of eagferpare the same than those for Heliza. The
action setA? for the adaptive honeypot {gllow,block, substitute, insyland the action sea! for the attacker
is {continue, retry, alternative, insult, guit

At any point the operation of a stochastic game, the gamedgjinen state. In the context of our adaptive
honeypot, this is the last program that was executed. Eagleptakes an action. The attacker wants to execute
a next program by entering a command and the honeypot degidether this command should be allowed,
blocked, substituted or lead to an insult. Although the reMianctionrk takes all these inputs and is capable
of returning a reward, the reward function is often unknowtht players. The transition function is also often
not known [73]. In this context this means that the next comadnentered by an attacker is unknown. In such a
situation, agents need to explore the environment andabgctive is to find an optimal policy that maximizes
their expected rewards. According, to Bikramjit Banerjeale[11] the distributed reward may depend on the
behaviors of the opponents, which makes reward computatialenging, because each opponent has his or
her own self-interests.

6.3.1 Attacker and Honeypot Rewards

In a stochastic game each player has his own reward funclionthe attacker we consider a similar reward
function than the pay® model, defined for an attacker in section 6.1.1 concernimggdneral-sum game.

We assume that an attacker has a dedicated goal, desigtettile penetrating the system. We also suppose
that attackers use the easiest and quickest method forvawhithis. In the honeypot automaton there is a
shortest path, denotd® leading from thesshd to this goal (states”). The attacker knows that he can reach
s passing on average thoudfpr| states. On a standard high-interaction honeypot, thekattaran execute

arbitrary commands. Hence, the attacker stays on the shpgth by simply executing the needed commands.
However, if the honeypot is interfering with the attackerdtsategically blocking commands, substituting his



6.3. FAST CONCURRENT LEARNING HONEYPOT 87

or her commands or writing insult to his or her terminal, ttiacker gets distracted. He or she could give up, or
accept the challenge by choosing alternative commandsrging the failed command. When the attacker is
disturbed, conceptually she is detoured from the shortst fargetings* and followed another path, denoted
P’. In addition to the pay® model defined in section 6.1.1, we assume that attackeroaedways enthusiasts
and naively try to achieve their goal with an infinitely largféort. When the attacker believes of getting closer
to his or her goal, a higher reward is distributed. If theckta has not reached the goal witlii| transitions,
she tries a little bit more. If she is disturbed too much, wieelie that the attacker’s interest decreases until she
gives up.
1 P

r Bl (6.7)

In section 6.2, two reward models have been suggested filwatithg a honeypot agent. The function
defined in eq. 6.5 focuses on the delay involved in a tramsiind the function defined in eq. 6.4 on the
inputs provided by an attacker. In this section we combimseahtwo functions in a single function. This has
as advantage that only a single agent needs to be operatedmAsan attacker provides an ingyintending
to execute a command or to insult the honeypot. db¢ the delay between two successive commanead
S_1, measuring the attacker’s response time. The reward fondheypot is defined in eq. 6.8 whdris the
minimal Levenshtein distance [62] between the providediirgpand all the known states (see eq 6.9). If an
attacker makes a typographical error, axgnme instead ofuname (I=1), is a good indication that this attacker
is a human being rather than an automated script [3]. On thehand, if the response time is 0 seconds it is
probable that a defective attack script has been launchadsighe honeypot and the honeypot gets a reward
of 0. On the other hand, if the delay was larger than 0 secdnidshighly likely that a human intruder is
attacking, which is more interesting than automated atsadipt. When an attacker enters a regular command,
the minimal Levenshtein distance becomes 0, which is inerged by 1, in order to avoid an overall reward
of zero. Even in this case, for delays larger than 0, the hamoteanages to keep the attacker busy, which is
positively rewarded. The Levenshtein distance increasesthe attacker enters a new input which is probably
a new tool or an insult from the attacker yielding a high redvan this case, the honeypot has learned something
new from the attacker.

r2=6x(+1) (6.8)

¥se S |= minLevenshteift, ) (6.9)

6.3.2 Learning Honeypot and Attackers

Having defined the two agents, the environment and the reyvénd learning method for each agent is pre-
sented in this section. A straightforward method is to irdegNash equilibrium computations into the expected
reward computations of a traditional reinforcement leagniHence, Hu et al. proposed Nash-Q [73]. However,
there are some open issues concerning such a solution. dkegdo Junling Hu et al. the algorithmic complex-
ity of finding an equilibrium in matrix games is unknown. Biknjit et al. [11] prove that the minmax-Q and
Nash-Q are equivalent in the purely competitive domainsvéi@r, the advantage of the minmax-Q algorithm
that it is more resourcefiicient.

Similarly to traditional reinforcement learning, the pase of an adaptive honeypot is to incrementally
learn the optimal policy for choosing actions in given stat€he major dierence, here is that the opponents
actions are taken into account. In the context of adaptiveeyyoots we use the minmax learning proposed by
Bikramijit et al. [11] and define a stochastic game betweerttacker and a honeypot. As we have two agents,
lets denote a playet andk the competitor. The parametgrcomes from traditional reinforcement learning
and represents the discounting rate whileepresents the learning rate [161]. In a given state at andiuee
t, 5, each player performs an actiall For each playek at timet a reward{‘ is distributed and the estimated



88 CHAPTER 6. LEARNING IN HONEYPOT GAMES

values are updated according to eq. 6.10. The estimateddewad the greedy explorer already presented
in 6.2 serve for the self-configuration of the honeypot. Ifaypr is greedy and if positive rewards have been
observed for a given state and action, the player decidedkéothis action.

QM5 8 &) = (1 - a) Qs a &) + enfr + yQh(s a1, 8 1)] (6.10)

In practice each player maintains a reward table per statghwbntains the estimated Q values. The actions
of a player are identified with a natural number. The actidrthi® honeypot aré\noneypot= {0, 1, ..., N} and
the actions of an attacker af@iacker = {0, 1, ..., M}. A row is identified with the numerical representation of
a honeypot's action. A column is identified with the numdrieggpresentation of an attacker’s action. When
an attacker performs an action, the honeypot has to reaatdieg this action. This decision to exploit the
acquired knowledge or to explore new choices is taken aoapeh explorer. In this work thegreedy explorer
is considered and is shown in algorithm 2. An attacker is iivargstate and enters a command. The honeypot
can take an action defined in the action set for this stategtwigia subset of the overall actions a honeypot
is capable. For instance, when an attacker left the hondypaotosing her terminal, the honeypot can only
allow this action. The -greedy explorer is called greedy explorer, because it @t@sila greedy behavior. The
explorer is parameterized with a parameter calle@his parameter defines the exploring will of an agent. If
this parameter is 0, then no exploration is done. If this p@tar is 1 the explorer always tries new behaviors.
The explorer generates a number between 0 and 1 accordingridfoam random distribution. This number
corresponds to the exploring probability. If the number édol €, the explorer randomly selects an action.
However, if this number exceeds the explorer first checks the estimated reward table, tloasiders the
attacker's desired action and performs a look-up of an agtielding the highest reward. This action is then
returned. Atthe end the exploring parameté& decayed in order to ensure learning convergence. Afiena
taken the action a reward is distributed and the correspgnaiward table is updated respecting the learning
rule defined in eq. 6.10.

6.4 Summary

This chapter proposes a new paradigm for adaptive highaictien honeypots. The behavior of attackers who
are attacking an adaptive high-interaction honeypot is etemtlwith a hierarchical probabilistic automaton
presented in chapter 5. To this automaton, we added a spt&iaempty An attacker makes a transition to
this state if she enters an empty command. Uhknownstate presented in chapter 5 is partitioned into the
customstate andnsult state. Every time an attacker executes a program that wadléasby herself or another
attacker, a transition is made to the statistom An input corresponding to a profanity entered by an attacke
or a typographical error, is mapped to the statult An attacker enters inputs to the automaton resulting
into transitions in the automaton. The interaction betwtberhoneypot and an attacker is modeled as a game
where appropriate pagtdfunctions model the behavior goals observed in the realdraort! from the literature.
The best strategy profiles are derived from the Nash Equilifor We make the assumption that hackers are
always rational although this might not be the case for &tickiers. The results obtained provide practical
solutions for designing adaptive high-interaction horatgp The adaptability results from blocking one system
call according to the calculated optimal blocking probisibs.

We first consider a Monte Carlo simulation which uses captunputs by a previously-deployed high-
interaction honeypot to parametrize our model. Our redt®e been published in [181]. However, transition
probabilities remain uncertain and this method udédirte computations. These problems were addressed by
using a model-free learning approach, which applied reigiment learning in the context of high-interaction
honeypots.

The Heliza honeypot described in our paper in [182], optasia reward signal and defines attacking
intruders as the environment. The behavior of Heliza hastadsextended in order to reveal more information
about an attacker rather than keeping her busy. Its behavidefined in terms of several actions that may
be taken: blocking, executing the command, returning srmar insulting. The applicability of each action is



6.5. LIMITATIONS 89

dependent on the context, which includes the command todiieed command and the history of commands.
An on-line reinforcement algorithm was leveraged to mapctir@ext of actions to the action to be taken. This
work can be used to develop a new generation of honeypot&xhdiit learning capabilities and adaptability
which reduces the risks involved in honeypot operationizdatould be used as information source for studies
of the social backgrounds of attackers.

Considering attackers as the environment resolves thdgonobf transition probabilities, but ignores the
competitive nature of the relationship between attackedsh@mneypots. Therefore, fast competitive learning in
a stochastic game is considered equivalent to learnintggicadecisions while facing attackers. The interaction
of a honeypot with attackers is framed as a stochastic galmerenthe honeypot learns state-specific reactions.
A reaction is a choice from a set of possible actions whichibeaallowing, blocking or substituting a command
or insulting the attacker. We have also assessed learniiad) avhattacker can do in order to accommodate a
broader model in which an attacker can also be adaptive.apsoach is to be published in [177].

6.5 Limitations

Even with an adaptive honeypot, the risk of losing contraimya high-interaction session still exists, attack-
ers could also make profiling attacks on the honeypot, stiggethat further work on machine learning and
self stabilization approaches in the context of adaptiveelpots would be desirable. An adaptive honeypot
may interfere with some commands in command block in whitk@hmands are normally successful or all
fail. The case where only one fails appears suspicious tesattackers. Attackers could perform indirect
attacks. To do this, they would install an attacking scripd aeconfigure the honeypot such that the system
itself performs the attack. In this case only the processdmresponding to the deployment can be observed.
To counter such attacks, the process tree should be exterittealdditional information like file system knowl-
edge. In addition, attackers could misuse commands to\actteir goals. For instance, an attacker could for
instance useerl to list programs instead of using the commard Experienced attackers could replace pro-
grams on the honeypot and poison the learning process. Tieyhot model could also be extended by system
command semantics. More complex competitive learningriilgos could be explored, taking into account
multiple, possibly colluding, attackers. Further reshashould be done concerning attackers that know how
Heliza works and who try to poison its learning process.



90

CHAPTER 6. LEARNING IN HONEYPOT GAMES




Chapter 7

Honeypot Operation

As discussed in chapter 3, the exposure of an adaptive htghaiction honeypot is a risky operation. A short
recapitulation of these risks including their mitigati@chniques is presented in order to suggest additional
mitigation or evaluation techniques needed for the expamisipresented in chapter 8. In addition, we aim at
the identification of additional information sources fohancing the previous suggested adaptive honeypots.

Honeypots face real attackers and real damage may be thié résu overview of operation state-of-
the art virtual high-interaction honeypot is presented gurfe 7.1. On a given operating system, a virtual
machine is installed to expose a vulnerable service to tieerlat. Spitzner [154] recommended using redundant
observation points to monitor the activities of attackerse figure 7.1 identifies four layers of data capture.
Firstly, all the network triic directed and originated from the honeypot is captured tomdd as network tific
captures with the aim of keeping all the network traces. 8digpon the honeypot itself, all executed processes
are monitored, and the information being stored in an eateobservation database in order to determine
the executed commands. Thirdly, all the system calls erelcunt the virtual honeypot are recorded so as to
determine the actions of individual programs executed kackérs. Finally, all the system calls related to
the virtual machine are monitored, (see circle (4) in figuw® ™ order to detect misbehavior of the virtual
honeypot. An adaptive honeypot is a system that is exposattdokers and should interact with attackers.
The decision on whether to allow or deny an action is takenheydecision maker, represented by a star in
figure 7.1. Each adaptive honeypot is operated in an isolabegtatory environment with an an exposed on the
Internet. As discussed in this chapter, the collected datald be stored in a tamper-proof environment such
that attackers cannot amend or delete it which is analyz#usrchapter. The honeypot is operated on a public
IP address such that attackers can access it. Usually, alfiievget up to protect third parties from collateral
damage in which the honeypot is involved. In addition, tlaffitr is queued to ensure that a given bandwidth
is not exceeded. However, as we show in the next sectiore thégation techniques are notfSaient. Due
to the legal constraints on the honeypot operator, attackesuld not be able to inflict damage on third parties.
Despite the previously described autonomous behavioessybtem should also be monitored by a human
honeypot operator. Thus, we propose two new visualizagohrtiques. The first gives a broad overview of the
network activity and the scope is labeled (1). The secon@l{@vs the nature of attacks against third parties
to be determined. Therefore, prior the operation of adagtaneypots additional contributions are proposed in
order to guarantee monitoring.

The data collected from attackers is a valuable asset. Tthehda to be stored in a reliable way such that an
attacker cannot alter or delete previously collected dateattacker who manages to delete this data could wipe
the traces of the actions she carried out on the adaptiveyponheT he assets of an adaptive honeypot are system
resources like CPU power and memory. If an attacker manageske an adaptive honeypot so busy that it
can no longer operate correctly. The exhaustion of reseur@gy result in data loss or in services becoming
unavailable. An adaptive high-interaction honeypdfesing from resource exhaustion caused by one attacker
cannot collect data on others. The most valuable asset afatige high-interaction honeypot is its public IP
address: it is needed to let attackers in, but it can alsoeablig attackers to attack third parties. Such abuse

91



92 CHAPTER 7. HONEYPOT OPERATION

-

Observation
Database
Virtual Honeypot 4@4—*
= 3% ‘
Queue - Queue
FW/IDS 1 i
| D
Network Traffic Captures
A
Host Operating System
Third party host =X Decision making routine

g Attacker host

Figure 7.1: Overview of Honeypot Operation

would result in legal liabilities for the honeypot operat@herefore, it is essential to have correct and usable
traces. Hence, we focus on an evaluation of monitoring tecies, followed by technical recommendations
for the implementation of adaptive honeypots.

7.1 Netflow Analysis

As shown in figure 7.1 a well-known dilemma for honeypot opmsathat of the Internet connectivity for a
honeypot [154]: Should an attacker be capable of connettirgher hosts when she has entered the system?
A honeypot operator is usually legally responsible for IHsatldresses. An intruder who attacks third parties
using the honeypot brings legal consequences for the hoheyerator. A honeypot becomes unattractive if
attackers cannot connect to the Internet. On such a honeytaakers quickly leave and nothing interesting
can be observed. If all connections are are allowed, attackéckly attack third parties, resulting in collateral
damage and legal liabilities for the honeypot operator. traffic incoming and outgoing from on a honeypot
is considered suspicious by default[154]. Having compsamiia honeypot, attackers often install customized
and protectetitools which do not generate log information. Hence, netwadnitoring and, in particular,
early pattern recognition of this kind of ffac is crucial. Besides state of the art mitigation technigli&e

the use of network intrusion detection systems, firewatlapection throttling and bandwidth reduction, visual
aggregation helps the honeypot operator to get a wide awerof the networks involved in the attacks.

We have used Aguri [87] a flow-monitoring tool supporting 4Rand IPv6 tréic. IP flows are monitored in
near real time and are spatially aggregated. Aggregatiparitcularly useful to give an overview at the subnet
layer rather than considering each individual flow. Spa@dregation is realized by a special process which
aggregates small flow entities into larger prefix-basedstrégom these temporal and spatial aggregations of

1Using obfuscation and anti-reverse engineering techsifL&s].



7.1. NETFLOW ANALYSIS 93

% !AGURI-1.0

$%StartTime: Tue Dec 01 13:54:12 2009 (2009/12/01 13:54:12)
$EndTime: Tue Dec 01 13:54:44 2009 (2009/12/01 13:54:44)
$AvgRate: 323.40Kbps

o\

[src address] 1293591 (100.00%)
0.0.0.0/5 7531 (0.58%/99.22%)

10.0.0.0/9 13545 (1.05%/30.79%)
10.4.0.13 237599 (18.37%)
10.91.0.0/24 19625 (1.52%/10.09%)
10.91.0.22 110920 (8.57%)
10.91.1.4 16664 (1.29%)

72.0.0.0/5 21618 (1.67%/37.09%)

74.125.79.91 202791 (15.68%)
74.125.79.93 214301 (16.57%)
74.125.79.99 27396 (2.12%)
74.125.79.104 13649 (1.06%)
83.231.205.49 324379 (25.08%)
83.231.205.50 73506 (5.68%)

::/0 10067 (0.78%/0.78%)

$LRU hits: 95.52% (1790/1874) reclaimed: O

Figure 7.2: Aguri Profile Representation

network trdfic, the tool generates fourftrent profiles providing summaries for incoming and outgaiet-
work treffic in a tree-like structure. The first profile shows the soumdresses, the second the destination
addresses, while the third profile captures the source goitst@and the last gives destination protocols. Tempo-
ral and spatial aggregations have figting purposes. Temporal aggregation is more coarseegtand similar

to a summary of profiles, whereas spatial aggregation paddretter for real-time monitoring.

A traffic profile generated by Aguri can be seen in Figure 7.2. It stemwextract of an Aguri profile for
source tréfic, summarizing tréiic over 5 seconds. The profile is composed of a four-line heiatlewed by
the monitored network tfac in a tree-like structure that contains IP addresses, defgths, the total number
of bytes transferred and the volume compared to its subaggmrcentage. The structures of the other profiles
are similar. Aguri defines aggregation thresholds for eantl &f profile. These present a dilemma. One the
one hand, using a high-aggregation threshold results imahigh level overview. On the other, using a low
aggregation threshold results in a large number of profilds. preferred to use low aggregation thresholds,
then look for similarities in these profiles.

The similarity metric for comparing two profiles is takenrird184]. The metric takes into account the
layout of the tree and the aggregatefiitavolume. The purpose of the comparison is to detect straictur
similarities that indicate activity such as brute-forctacks on third parties or the scanning of uncontrolled
machines. We compute similarities on successive aggmdedari profiles and visualize these. To do this,
we refer to the values of the kernel functidq, for Aguri trees presented in [184] which are assembled as a
vectorv that describes evolution of fific using sliding window. This vector is then mapped to a rectangle
that is sequentially put into an image. The rectangle is fiikxa with a color derived from the kernel value
K itself. The color of the rectangle describes the intensftyhe evolution. We define an image as a two-
dimensional space having an x- and y-axis. The discreteiirdefined byt = (to, t1, t2, . . ., ty). The time step,

a, corresponds to an interval afseconds between the export of successive Aguri trees, batfrom timet;
to ti,1, a seconds have elapsed. The first rectangle at the top leftrimmge, represents the kernel vakie



94 CHAPTER 7. HONEYPOT OPERATION

for the first time period and is defined by the coordina¢g \p). The next kernel value at time stéphas the
coordinates X; + r,y;j), with r being the rectangle width. On reaching the end of a line, weefa line break

by resettingx; to 0 and incrementing; by the rectangle height The freshnes§ of a picture is defined in
eg. 7.1. The size of the data window has an impact on the fesshof the images. A short window means a
smaller and thus a fresher image, whereas a larger one niesdribe visualized tféic is more out of date, but

at the same time gives a better overview. In our tool the fresk parameter can be specified by the honeypot
operator. The graphical representation used in our workrisesvhat similar to a Self Organizing Map [162]
with the diference that no learning process and no training set is nded#te network tréic analysis.

I = a x width x height (7.1)

We use the similarities of our Aguri input obtained from therrel function (defined in [184]) and map
them to a color space defined by the Red — Green — Blue model IBBB(in eq. 7.2). Intuitively “black”
represents the network ffa noise, while interesting patterns are shown with morensite colors. We are
particularly interested in detecting whether a given hestdanning other systems, and in tracking dominant
and long-lasting TCP sessions. A dominant TCP session ighald@indwidth consuming one initiated by SSH
brute-force attacks or IRC bouncing. Another interestirdjdator is the amount of tfizc targeting a given host.
By focusing on a sequence of successively observed kermetamnormalize the kernel values between 0 and
1. We then multiply eack; value by 24 which has the fect of exploring the RGB colour space (represented
in eq. 7.2). This adds a brightness facByrconsidering a higher decimal precision of the kernel \&tlam
intensity factorl, was added to linearly shift kernel values in the RGB space.

, KjXB
T YK xB

A RGB color is composed of 3 bytes. Each byte is used to reptéise colors red, green and blue respec-
tively and can be obtained by using a logical AND operatiothwéspective bit masks. The lower eight bits
of K{ represent the color “blue”, the next eight model the “greand the high eight bits “red”. This means
when trdfic fluctuates rapidly the similarity between two successieed is quite low, meaning all bits are
low resulting in a black color. Small similarities are deypéd in bluish colors and high similarities in reddish
colours. When all the bits are high (very high similaritiés} color tends to “white”. An observation of a white
rectangle means that there is a persistent attack goinghedait a particular target which has to be manually
stopped in order to avoid real damage. Such an observatigalysesults in a shutdown of the honeypot
experiment.

PeekKernelFlow is the outcome of our early prototyping. Aergiew is presented in figure 7.3. The
current network topology of the honeypot is discovered &y Alguri. In the same time, all network ffie
is captured with the tool tcpdump [79]. If no full-packet tane is available, we use nfdump [66] to provide
Netflow records as input for the NetflowToAguri module. Thedgpot operator configures the Aguri-tool to
periodically export Aguri trees, which are then processét the AguriProcessor module.

The components of the architecture are as follows:

x 224 4+ | (7.2)

Tcpdump Tcpdump is a popular network forensic tool implemented by Jacobson et al. [79]. Itis able to
put a network interface into promiscuous mode resultindgp@ninterception of all packets even those not
addressed to the machine running tcpdump. The capture@tsaae bffered and can be summarized in
text form or stored in a file. Tcpdump can also read previoaaptured trific. Tcpdump is based on the
library libpcap which implements the reception of packata binary form.

Nfdump Nfdump, developed by Haag [66] that reads Netflow recordsucag by a Netflow collector and
displays them in a human-readable form that can be easibegar

2The parameter B could be canceled out. However, each vatueliiplied and then casted to an integer. Thus, we can nbétityee
casting error.



7.1. NETFLOW ANALYSIS 95

1
== Ethernettap =~

tcpdump (storage) }

N Aguri
1
> AguriProcessor

Y
AguriViz
T

v
Aguriul

NG v I
LtcpsllceJ Ltcpdump]

Figure 7.3: PeekKernelFlow - Architecture

Aguri Aguri [87], also uses the library libpcap to acquire netwpackets. From these packets, TCP flows are
reconstructed and then stored in Patricia trees that takertbtwork prefixes into account.

NetflowToAguri In this module, we implemented an adapter that convertaioeghiNetflows into Aguri format
such that the Aguri tool can process them.

AguriProcessor The AguriProcessor computes the kernel valuef two successive trees. The AguriViz-
module then reads these kernels and presents them in a mnemsional space, taking responsibility
for the correct visualisation of the Aguri tree kernel fuans. The honeypot operator uses the PeekKer-
nelFlows User Interface, AguriUl. If an interesting patté& observed in the display, the relevant network
traffic can be extracted with tcpslice and piped to the tcpdumpstwihi this context is used to transform
the captured network packets into a human readable form. rééed a script, AguriProcessor which
takes the output trees of Aguri as input, waits for at least swccessive Aguri trees and then com-
putes the kernel-value K, defined in [184], between thessirEhe computed K-values are then used in
AguriViz for further processing.

AguriViz We implemented a module AguriViz, which processes kerniglegfor visualisation and maps them
into RGB format using the equations presented in 7.2.

AguriUl The AguriUl module is our implementation of a visual useeifdace for the honeypot operator. With
this interface, he can adjust the monitoring setting andptmameters (image height, width, rectangle
size, freshness parameter, brightness, intensity) oféhergted images.

Tcpslice Tcpslice [118], developed by Paxson, is a program for etitr@gortions of packet-trace files ac-
cording to records’ time stamps.

Traces from a deployed high-interaction honeypot exposinginerable SSH server on a public IP address,
are used for this evaluation. The capture contains 24 hdurstwork trafic. All traffic related to this host is
by definition suspicious and was recorded. The honeypotaatied with 47 523 dierent external addresses.
We used Aguri's default time parameter£ 5 seconds) which we call freshness parameter for the exppetim
and represented the visualization in a 24-bit color spabeo€ing a larger freshness parameteesults in less
timely observations. Table 7.1 summarizes statisticarmation for the data sets used.

In figure 7.4(a) and figure 7.4(b) we present the pictures rg¢ee by applying PeekKernelFlows to a 24-
hour honeypot tridic capture. Figure 7.4(a) presents the analysis of the squafde, while figure 7.4(b)



96 CHAPTER 7. HONEYPOT OPERATION

Operation time 24 hours
Number of observed addresspd 7523
Used bandwidth 64Kbit/s
Exchanged TCP packets 1183419
a (seconds) 5

Colors (bit) 24

Table 7.1: Aguri Visualization Data Set

(a) Source Profiles (b) Destination Profiles

Figure 7.4: Visualization of Aguri Profile Similarities

presents the destination profiles. The figures have a résolot 1 200 x 1 000 pixels. This means that with a
rectangle size of £ 20 and a freshness paramatet 5 seconds, we have represented 3 000 Aguri trees in one
picture, corresponding to approximately four hours offita

We manually investigated some interesting patterns aridetba minor design problem in Aguri. Accord-
ing to its user manual, the s-switch is used to output a summarya seconds. However, by analyzing the
Aguri trees we realized that the interval is not constantteA&n investigation of the Aguri source code, we
noticed that the start and end time are taking from the cagtpackets. This has as consequence that moments
of silence, where no packets are transmitted, are not b&en tato consideration, and so we detected that the
time intervals varied bya+. An active honeypot is continuously under a wide varietyttsfeks. Some attack-
ers launch brute-force attacks against the honeypot, wttikers having already compromised the system, scan
or control other targets. Both kinds of attackers generédeat network trdfic-noise that is hard to investigate
manually. In both images the background networkicanoise is represented by the “black”, which means that
successive Aguri trees are completelffelient. The more the color tends to “white”, the more simifer $uc-
cessive Aguritrees. In Figure 7.4(a), four relevant patt&an be observed. Three successive green lines which
have been framed by the rectangles can be seen. After a mawvestigation of the recorded network fiig,
we observed that these “green” lines represents SSH hotte-attacks, whereas the “colored” line (framed by
the dashed ellipse) in the right bottom of the image reptsssanning activities from our honeypot directed
towards other victims. In the observed scanning activities attackers nearly used the entire bandwidth of
the honeypot and continuously scanned entire sub-netwdrkss results in similar successive Aguri trees.

3If we assume that the packpt has the time stamip and that the next packeb has the time stamip. The variabler is defined as
t, — t; — @. Ideally,r should be 0.



7.2. NETWORK ACTIVITY IDENTIFICATION 97

The colors of scanning activities are more light in colomtldmminant TCP sessions, which consist mostly of
“dark” colors. This can be explained by the kernel functibrnwhere the topological part has a greater weight
than the volume part. The source profile does not focus onxhet ¢éarget of the honeypot attacks. To obtain
more fine-grained information about the targets, the datstin profile represented in figure 7.4(b) can be used.
In the destination profile analysis we can observe furthéepes that are represented as segments due to the
focus on destinations. We can observe how long attackerseotnated on a particular target and how much
traffic was exchanged.

In this section, we also describe a visualization tool fongeral and spatially aggregated flows. The main
idea is to track changes in the topology and volume on a n&tlwetween successive time intervals in order
to detect anomalous behaviors by which we mean harmfulkattdicected towards third parties. Flows are
captured for a given time interval in a special tree like ctiee (Aguri tree). We have introduced a similar-
ity metric that leverages kernel functions defined over dueé structures and assessed fiiency using a
scenario of tréic captured from a high-interaction honeypot. A limitatidnoar approach is that an experi-
enced attacker can poison our visualization technique bgrgéing additional noise, so reducing the similarity
between successive samples, with the result that the gdigleomes blacker, and hence less noticeable. We
plan to improve the tool by increasing the Human Machiner&wion, by for example adding zoom features,
integrated analysis and decision-making components. emndtiture work possibility is the implementation of
“image transparency” for better tracking long-term eviolt

7.2 Network Activity Identification

The previously described visualization approach perrhiégsdentification of similarities in aggregated netflow
records generated by a full capture. The Peekkernelflowstables a honeypot operator to identify similari-
ties at sub net layer and to extract the related network packimwever, these network packets can easily have
a large volume and it is not necessarily known which type t#ckthas been spotted. Hence, we propose an
additional technique to identify patterns in a subset ofwiaal packets. In essence, we use a polar representa-
tion in order to diferentiate between attack patterns. Two typical attackpr®ented in figure 7.5(a) and in
figure 7.5(b). Both figures show a circle similar to a plan posiindicator (PPI) which allows enemy vehicles

to be located.

sensor id - 2001 sensor id - 2001

(a) Detecting a Scanning Attack (b) Detecting a Targeted Attack

Figure 7.5: Polar Attack Representation

The aim is to identify the manner and intensity with whictaekiers probe third parties’ services in order
to keep collateral damage as low as possible and to quickltiig attacks and select appropriate countermea-
sures. When attackers scan third party hosts by sendindesing® SYN packets in order to discover running
services, not much damage is done. However, if an attackeages to penetrate another host from our hon-
eypot severe damage could be done and these kind of attaphsticularly have to be avoided. The PPl is fed
with TCP and UDP packets. The time stamp, the source port astihdtion ports of each packets are used.
The source and destination port are normalized in the iaterf{0, 27] and the result is an angle. Hence, the



98 CHAPTER 7. HONEYPOT OPERATION

angle of a point on the PPI corresponds to the ports assugiatith a network packet. In a set of captured
packets the time stamp of each packet is analyzed. The tiffezatices are used to determine the radius of a
point on the PPI. The time is then normalized into a discretes of time windows or slots. In each slot, the
frequencyf; of each packet is counted. The numligs then normalized to 0 and®2and a color is the output.
The slot number corresponds to the radius of a point. Thid &frvisualization allows three attacks families to
be identified:

Port-scanning activities Such an attack makes a kind of concentric rings appear on RheltPis usually
composed of dark points due to the low frequency of the usadifidual ports. The rings result from
the fact that a large number of ports is probed in a short time.

Successful PenetrationsA long-lasting TCP session from our honeypot to another rim@échenerates a large
number of TCP packets having the same source port. This heglaéncy results in a light colored point.

Brute - force attacks Such an attack often involves a large number of connectim@asgiven port in order to
abuse the associated service. The establishment of cavméztanother host results in the appearance
of a higher-numbered source ports. This produces a ligbtedlspot in the first quadrant, assuming that
a service with a port number below 128 is being targetedoviadd by a large number of dark points in
the third quadrant which represent the source ports.

The PPI visualization enables a honeypot operator to ifjesitiack families directed towards third parties.
The simplicity of mapping network packets on the PPI avoidsrteed to implement per host counters which
quickly became exhausted when concurrent attacks aregtakiice on. A honeypot operator can also identify
ongoing concurrent attacks on the same PPI. For the sakegifdtion, the network scannemnap was launched
against another machine from our honeypot and the resudtingentric rings can be seen in figure 7.5(a). In
figure 7.5(b), five successful TCP connections can be obddrem a single source port. The major limitation
of the PPI visualization is that tifac data must be pre-filtered, for instance with the Peekkiiomed, to ensure
that there is no ambiguity on the target. Finally, a clevexcker could instrument the honeypot to use the same
source port while doing her brute-force attack; the honegperator observes a successful attack on his PPI
instead of observing a brute-force attack.

7.3 Full Network Capture Analysis

On a high-interaction honeypot, attackers can download o they can remove them after having used them.
When a complete packet capture is made on the inbound ioéedithe honeypot, these tools are accessible
in the network traces provided that the an attacker did neindtzad them over an encrypted channel. The
correct reassembly of network flows is a prerequisite fownet intrusion detection systems and network
forensic tools. The evasion of network intrusion detecgstems was an active research topic in 1998 [133].
In our tests we discovered that some of the attacks outlingtid paper still evade network forensic tools,
even when the best practices for honeypot operation arectsp In addition to classical attacks based on
incomplete knowledge or unimplemented protocol featuses,incovered fundamental design flaws in popular
network forensic tools. In essence a flow identifier problewnmses intermixed streams which result in corrupted
tools downloaded by attackers. Hence, it is not guarantestdat honeypot operator can recover an attacker’s
tool despite it has been acquired over a clear text commumicahannel. Therefore, we start by formally
describing the problem followed by an evaluation of populketwork forensic tools. The root of the problem is
the popular definition of a network flow, which assumes thatrmidirectional IP flow is a set of IP packets that
are characterized by a 5-tuple [29, 37, 41] (Source |IP addB8rsurce port, Destination IP address, Destination
port, Protocolk |I. The protocol parameter identifies the protocol is beingluseequently used protocols are
TCPandUDP. We define a mathematical relationskipbetween captured packets and flow identifiers shown
in relation 7.3 wheré is the set of captured packets wheiis the set of flow identifiers.



7.3. FULL NETWORK CAPTURE ANALYSIS 99

(I,F,P)cIxP (7.3)

The 5-tuple identifier is extended in NetFlow [29] by the aidai of N other parameters such as ingress
interface and type of service. Assuming that all parametansbe represented by numbers, the relationgfiip
between a general flow identifier and a set of captured paikstown in relation 74

N, 7, P)c NN x P (7.4)

In this section we focus on classical concept of TCP flows twhice defined as a set of TCP packets
identified by a 4-tuple (Source IP address, Source port,ifzi&in IP address, Destination Port). The main
purpose of TCP is to serve as a transport layer, which gusgarnhat a data stream is correctly transfered to
a given destination over an unreliable network. In an uabdi network packets may be lost, duplicated or
reordered [156]. The packets must be correctly reassentbladier to recover the sender’s stream. Due to the
diversity of TCP reassembly designs, Rdbe the set of reassembly functions. A reassembly functiqusri&P
packets to streams. The purpose of such a function is to eetio® initial stream as emitted by the sender, from
captured TCP packets. LBtbe the set of captured TCP packe®s= {ps,..., p...., pr}). A packet that was
captured at time is designatedy. A packet contains checksums in order to detect transmissiors. These
checksums are verified with the functian which returns the value 1 if the packet has a correct checksud
0 otherwise. The set of TCP packets with a correct checksufefised in equation 7.5. In a network capture
we only have the checksum information to see whether thegpaglkorrect or corrupted, although it has been
shown that checksums are not always reliable [159].

P={pePlwp)=1} (7.5)

For a given set of captured packd®s and a reassembly functigne Rthere is a s that includes the data
streams, recovered from TCP packets. A reassembly fungtiorkR reassembles TCP packets and is defined
in equation 7.6 such th#t j € {1,2,3,..., N}. The numbey identifies the flow and the inddkidentifies the
offset in the stream.

p:P—>S

o 1) (7.6)

We also define a functiom, shown in equation 7.7, that maps TCP packets to TCP ses#idrSP session
starts with connection establishment and finishes with eotion close, as it is described in [156]. The variable
s« is the set of TCP packets belonging to a TCP sessiog. {pil{(pi, K)} € F}. Thus the seE contains subsets
of TCP packets that belong to a TCP session.

oc:P—>E
o

(7.7)

Each session is mapped to a data stream, defined in func8oid@ally the reassembled data stream should
be identical to the data stream emitted by the sender.

n:E—>S

X n(X) (7.8)

A reassembly functiop is composed of the session function and the session mapmiatjdn, shown in
proposition 7.9.

P—-S

R (7.9)

4N is the set of natural numbef8, 1, ...}.



100 CHAPTER 7. HONEYPOT OPERATION

TCP reassembly is a flicult task. Although a standard specification of the protolgiven in RFC
793 [165], there are many implementations. Each reassetoblyhas its own specification of a stream. The
tcptrace tool considers that a stream constitutes a sesgiile tcpflow treats all matching tuples as belonging
to a stream. Tcptrace and tcpflow put data sent from the séodkee receiver into one stream and data from
the receiver to the sender in another. A stream recoveredrighark, the successor of Ethereal [17], puts data
sent by the sender and by the receiver in one stream.

High-interaction honeypots are frequently monitored hyteeng incoming and outgoing the ffie. When
we apply the traditional flow relation, defined in equatio8, Tve notice that the sour@estination IP address
and the destination port are constant for a given monitoesdurce. We are interested in the case where the
same source port is reused. The set of packets that belongltiplansessions using the same source port is
described by equation 7.10.

Pa, Po € P
Mp = ((@(P2) # o (Po) A (9(Pe) = p(PO) (710

The phenomenon of having multiple sessions per flow migheldedaible to the birthday problem [102],
assuming that the source port distribution is uniform. lthis probabilityPy, of finding at least two streams,
belonging to same flow in a set afstreams. The applied birthday problem is formulated in #guar.11,
whereP, = 216 — 1024 1 represents the TCP port range from which an operatingraysa® choose a source
port.

P!
- PP, —n)!
As we have defined in equation 7.6, the payloads of the TCPepsmeke put in a stream at affset defined
in the TCP header. TCP headers indicate corrupted or dtgdigaackets and packets that have been received
out of order. We need a verification process for reassemipigtions in order to detect wrongly reassembled
streams. This should meet two goals: it should estimatedtgracy of the reassembly of streams by comparing
reassembled streams with a variety of independent toalsitahould help us to understand why streams have
been reassembledftiirently by diferent functions. Therefore we aim to have methods to cheekrss. The
input of these methods is composed of a reassembled strehthearaw captured packets. We put the payload

of TCP packets in a vectab as shown in figure 7.6. This vector represents one TCP sespjon P,_b> =
(o(pi)). The packets are put in the vector in order of arrival. A Taleketp; is a tuple (TCP header, and TCP
payload).

We then consider a reassembled stredms a vector of bytes, again shown in figure 7.6. From the v&ctor

b andd we generate a matrix which serves to check the reassembly function. The coluommtains the time
stamp attached during the capture. The varialpas the diference of the real packet length and tffeeive
captured packet length. For packets that were completetyied, Ay is 0. The variablel quantifies the TCP
payload length. The number of occurrences of the packeyload in the stream is specified by the variable
The dfset in the stream of the payload is described bysheariable, followed by the variable which is the
sequence number given in the TCP packet. The colufm) indicates correct or incorrect checksums. Finally,
the columng contains the TCP flags present in the TCP header. This matsorted according to the sequence
numbers and a matriX matrix is the result. Here we should mention that in the basee(p;) = f., j = < for

a reassembly function. Two choices are possible if thigstaht does not hold: (i) the stream was not correctly
reassembled or (ii) the payload of the TCP pagkeippears more than once, i.e.> 1. The computational
complexity for establishing the matrixis O(n?) because the frequencies of the TCP payloads in the stream ar
used.

Having presented the TCP reassembly model and TCP reassehatlenges, we wish to establish prob-
abilities to quantify TCP reassembly errors. There are types of potential error are presented (i) potential
errors at the packet level and (ii) errors at the stream |é&a@i a given reassembly tool it should first be checked
whether it is necessary to compute these probabilities etlven they can be ignored due to a probably correct

Pp=1 (7.11)



7.3. FULL NETWORK CAPTURE ANALYSIS 101

b vector (captured packets)

P
’ { d vector (generated stream by p)

|1 ]e]s]af[s[e[7]8]o]
P Offset 0 1 2 3 4 5 5 6 7
1

¢ matrix
Pz{ Pl o] o | o] o 10| 1]Ss

0

P, 0 3 1 0 | 101 | 1 A

P, 0 3 1 3 | 101 1 A
P, Pl o 31 5 [108] 1 | A

P, 0 0 0 0 | 108 1 F
PA

B TcP header

. TCP payload

Figure 7.6: Detecting Corrupted Streams

software design. A potential cause of error at the packet ie\a the possibility that a defective packet resulted
in awrongly reassembled stream. The probability of fautigaksums influencing stream reassembly is defined
in equation 7.12.

l{pi € P| w(p) = O}
P

Some tools do not take into account IP fragmentation [156]] famgmented IP packets may impact the
accuracy of reassembly. The probability of observing fragtad IP packets during the reassembly process is
defined in equation 7.13 whegds a function that returns 1 if a packet is fragmented and Bretise.

p, _ PPl 4(p) = 1y (7.13)
1Pl

In order to avoid errors caused by fragmented IP packets tauity checksums it must be ensured that the
reassembly function correctly handles such packets.

Potential errors at the stream level are quantified by thieghitity that a particular stream is corrupted. We
have the sefE containing TCP sessions and also the set of recovered strédeally the number of reassembled
TCP sessions should be the same as the number of recovezanhsirThe number represents the fierence
between the number of reassembled sessions and the nunreeoedred streams=|E| - | S|. If ¢ is zero,
no mismatch has been detecteds i§ negative, there must be TCP sessions that are presemt setiut have
not been reassembled. We call these sessions invisible prbhability of having such streams is defined in
equation 7.14. 1% is positive, the cause is a spurious stream that was not @edefrom a session shown in
equation 7.15.

(7.12)

c:

5>o:|p=1—:—8: (7.14)
E
5<0:Ap=1—% (7.15)

Equation 7.15 and 7.14 give an idea of the number of streaatsdtbes not match with the number of
sessions. However these equations might say that thereggoioeven in a situation where the two types of



102 CHAPTER 7. HONEYPOT OPERATION

error cancel each other out. An example is an invisible siréat cancels out a spurious stream. Therefore it
is essential to check if the streams are consistent. Theapilily that multiple sessions are present in a TCP
flow is defined in equation 7.16.

_ o(p) | pi € Mpll
Pspec— 0 (7.16)

The methodology proposed in figure 7.6 establishes a soréik’ which can be used to detect incorrect
reassembly in some cases. Cases where ambiguities aratprasealso be detected. Streams can be wrongly
reassembled due to incompletely collected payloads ordpaeket payloads which are due to a faulffset
computation. the first step in the packet capturing procetssdapture the complete packets in order to correctly
reassemble a stream. The libpcap [79] library, used by fiduiop provides two packet lengths. Tdaplenis
the packet length as captured, dewlis the length of the packet initially sent. The parametgr= len—caplen
can be greater than zero, meaning that the packet was notletetypcaptured. Incomplete packets that are
used by reassembly functions cause gaps in reassemblathstdeie to the lack of captured information, with
a probability show in equation 7.17.

_ pea(p)ian >0}
i Pl

Incorrect dfsets can also be caused by software defects. In a correafigembled stream, no holes should
be present. This can be formulated if relation 7.18 holdimgres; = 0.

Pa

(7.17)

i>0:8=2i-1+5 4 (7.18)

In order to use the output of a network forensic tool as evidemgainst someone we believe that it is
mandatory to check firstly the captured input data and thelmhiies of the tool. Secondly, output should
validated by other independent tools. Two families of exican emerge. Firstly it could be that the capture tool
was not correctly calibrated, so that some packets aredtedc Streams might also be defectively reassembled
due to ambiguities that result in implementation flaws. Adigonal requirement is that all analysis tools
should have the same interpretation of flows, sessions egahss. We have proposed a TCP reassembly model
and a stream verification methodology that can be used teed@nid compute reassembly errors. We discovered
that multiple sessions per flow cause problems in contextevaeesource is monitored over a long period of
time as in high-interactive honeypots. In the next sectiom,are provoking the enumerated TCP reassembly
errors aiming at an evaluation of popular network forensag.

7.3.1 Network Forensic Tool Analysis

The tools evaluated in this section are frequently used eyhtineypot and security communities [17]. Many
of them are vulnerable to TCP flow identification flaw resgtirom their use of the 5-tuple.

Valgrind [110] dynamic execution analyzer was applied @ ttols under evaluation in order to identify
reports invalid pointer use and memory leaks as well as “fise faees”. Each tool was launched on a 512MB
packet capture (PCAP) and was configured to extract thaliritreams from the capture. The outcome is
presented in table 7.2. It is a good sign that none of the tmalde any invalid memory writes. These errors
are particularly dangerous because in some cases theyaliaekers to execute arbitrary code and thus infect
the honeypot's operator’s analysis machine. At first glattoe tools tcpflow and tcpick look clean. In tcpick,
16 bytes are not freed, but these 16 bytes are constant andtdiepend on the capture. Tcpflow assumes
that the encoded packet length always corresponds to thel aetptured length. However, this is not always
true. In some cases, the captured packet length is smadlarttie expected packet length. The violation
of this assumption results in invalid pointer operatiorediag to bifer overruns. Tcptrace also generates a
large number of invalid file descriptors. This is mainly doeatlack of resource organization. Particularly
in honeypot tréic, attackers are constantly scanning the honeypot reguttia large number of concurrent



7.3. FULL NETWORK CAPTURE ANALYSIS 103

Error Tcptrace  Tcpflow  Tcpick

Invalid read s4 5 0 0 occurrences
Invalid read s1 2 11 0 occurrences
Definitely lost 345 0 16 bytes
Possibly lost 49152 0 0 bytes

Invalid file descriptors 36196 0 0 occurrences
Uninitialized 0 4 2 occurrences

Table 7.2: Valgrind Tests

Attacker Router/fragrouter

o

)

10.0.0.2 UML switch €th0:10.0.0.3
tap0
Target eth1:10.0.1.1
-i
59: 10012 UML switch
tap1

Figure 7.7: Fragroute - Attacks - Setup

TCP flows. Keeping every flow in memory is not an option if netkvtsaces of several GB are to be analyzed.
Consequently, tcptrace opens a file descriptor per reassérsfoeam. The number of file descriptors is limited
by the system, and when they run out, tcptrace simply coesimithout notifying the user. The result is that
some sessions are not reassembled, allowing a clevereattackipe her traces by flooding the honeypot with
TCP sessions.

The table 7.3 summarizes the test results of fragroute whidbsigned to test network intrusion detection
systems [133]. The setup of the experiment is presentedurefig. 7. A stream is transmitted from an attacker
to the victim. The attacker and the victim are offfelient networks. Instead of using a standard router to
route the packets from one network to another, fragrouteused. All the network packets were captured by
tcpdump and the resulting files were used to test the netwaydnsic tools. Fragroute was instrumented to
modify the packet streams to perform TCP man-in-the-middtacks [133] (B1, T1, T5, F7). On the target
machine, denoted victim, the stream from the attacker vaaiedt Each time a stream was transmitted from the
attacker to the victim, the received stream was comparddthét stored in order to ensure correct transmission
despite the TCP attacks. For each type of attack a PCAP filstweed, if the stream was correctly transmitted.
These PCAP files were analyzed with the network forensictdaladdition, fragroute was disabled once, and
the stream was transmitted via IPv6. Each column of tablal@s@ribes a preset fragroute attack than can be
enabled by the given command line switch. The symp@ used if the attack was successful and the symbol
x is used if the attack failed. The versions of the forensit¢staoe summarized in table 7.4. Surprisingly, many
of the old attacks still work today against state-of-ther@twork forensic tools despite fragroute is being more
than ten years old. Hence, network captures from highaotem honeypots are not a reliable information
source.

The fundamental problem of flow identification can theosdljcbe exploited by an attacker. We propose
the PCAP bomlas proof of concept. A typical use case of Pl@AP bomhs when an attacker suspects that all
the trdfic is being recorded. The attacker deploysR@AP bomlby generating specially designed flows to an
arbitrary host. Later analysis of the networkffiawill trigger thePCAP bomkand destroy the analysis results.
The name PCAP bombis used for historical reasons inspired from the 42.zip bam compression bomb,



104 CHAPTER 7. HONEYPOT OPERATION

Attack Tcpflow Wireshark Tcptrace Tcpick

BT vV v v
T1 X X X X
T5 X X X X
F7 X v X X
IPv6®  x v v X

Table 7.3: Fragroute Tests

Tool | Version
Tcpflow 0.21-11
Wireshark | 0.99.6a
Tcptrace | 6.6.1-1.3
Tcpick 0.2.1

Table 7.4: Forensic Tool Versions

which were frequently used by attackers to disable antisvioftware [121]. The advantage of € AP bomb

is that collateral damage is limited. An attacker does nqtire a lot of network bandwidth to deploy such
a bomb, and network equipment is not hit. The full damage iedmn the machine carrying out the forensic
analysis.

An overview of thePCAP bombis presented in figure 7.8. The idea is to create flow-tuplésamhs.
Assume that the first tuple has the lowest ISN (Initial Segaedumber)|S N;, with the next flow having a
larger ISN,ISN,. The flow starting withlIS N, is put in the same stream as the flo&N; due to a stream
identification collision, and starts at a much highffsetlS N, — IS N;. The fake stream between the end of the
first flow and the beginning of the next flow is filled either witmdom data or with zeros, depending on the
implementation of the forensic tool. The proof of conceplsbeript needed to createPICAP bombs shown
in figure 7.9. The bomb can be constructed using standardonktwg tools. The multi purpose relay tool
socat is configured to reuse the same source port, is started inparoarder to generate multiple flow-tuple
collisions. The ISN dference is increased by using higher delays between sugediesis: a time dference
of 1 second between successive flows and the generation ovidlilisions results on average in a stream
length of 2GB. If an attacker generates 20 such collisioreaming that she has generated 100 flows in total,
she has been able to generate 40GB of traces from just 48kd3 lojtraw TCP packets. Tcpflow, version
0.21-11, is vulnerable to this attatk

An attacker can also use a flow-tuple collision to hide a stre& typical scenario involves an attacker who
wants to download a malicious programs from a public-vésiiglpository. The malicious software is accessible
through an URL which the attacker wants to hide. To achieig the attacker establishes a dummy connection
to the root of the repository and then reuses the same soarteoprigger a flow-tuple collision. A honeypot
operator using the “Follow stream” feature from the popMéreshark tool, version 0.99.6a, sees an empty
window instead of the program from the URIThese preliminary tests showed that the network layertisino
perfectly reliable information source. Hence, the focysuat the system layer in the next section.

7.4 User Mode Linux Tests

User Mode Linux (UML) is a customized Linux kernel that runs top of a host kernel as a collection of
non-privileged processes [42] and is frequently used tagdiigh-interaction honeypots [45, 70, 193]. User
Mode Linux can be built from any recent Linux kernel (versie2.6). It is included in the default kernel as

A proof is shown in the appendix chapter C.
A proof is shown in the appendix chapter C.



© ~ (2] (&) S w N Ll

e
[

i
N

7.4. USER MODE LINUX TESTS

105

(Source IP, Source Port, Destination IP, Destination Port)

TCP header ISN,— IS N
TCP payload

Figure 7.8: PCAP Bomb - Design

tcpdump -i lo -s® -w pcap-bomb.cap &
i=1235
while [ 1 ]; do
j=0
while [ \$j -1t 5 ]; do
cat req.txt | socat - tcp:localhost:80, \
sourceport=%$i,reuseaddr
sleep 1
let j=$j+1
done
let i=8$i+1
done

Figure 7.9: PCAP Bomb - Proof of Concept in Bash



106 CHAPTER 7. HONEYPOT OPERATION

#include <sys/mman.h>

void main() {

mmap ((void*) 0x10000, 1048576, PROT_NONE, MAP_PRIVATE | MAP_FIXED |
MAP_ANONYMOUS | MAP_NORESERVE, -1, 0);

}

Figure 7.10: System Call of Death - Proof-of-Concept

Eeek! page_mapcount(page) went negative! (-1)

page pfn = 175

page->flags = 400

page->count = 1

page->mapping = 00000000

vma->vm_ops = 0x8227ae8

vma->vm_ops->fault = special_mapping_fault+0x0/0x60
Kernel panic - not syncing: BUG!

Figure 7.11: Kernel Output

a separate architecture. The UML kernel loads a dedicadyitem image. In order to start, a 4GB file is
filled with zeros, then this file is formated with an Ext3 filessgm. This file is then loop-back mounted on
a mount-point of the host operating system. Because of thgahility of tools like debootstrap [12] which
automatically install all programs necessary for a Debiablountu operating system, we decided to install a
minimalistic Ubuntu operating system in the file system imag

UML supports Copy-On-Write images (COW) [42]. The UML kelrtekes two file system images. The
first of these is static, including the operating system axmbficonfiguration files. During the operation of the
UML kernel, all file system changes are written to the secoled With the result that the original operating
system is not touched. Hence, heavily compromised systamsasily be restored. Another advantage of
User Mode Linux, compared to real virtual machines like Qdt8], is that the CPU is not emulated: CPU
instructions triggered by an attacker are directly exatote the host hardware. User Mode Linux allows the
creation of virtual hosts and routers on a single physicalhime with negligible performance overhead because
the hardware is used directly rather than being emulatedpiethese attractive advantages of UML, Holz et
al. [70] report numerous techniques for identifying UML tgyas, so we went a step further. Our purpose is to
determine whether, having detected a confining UML envirentnan attacker could escape it or take control
it. Even though when he had disabled kernel modulesdavgkmem, we discovered a that an attacker could
execute the code presented in figure 7.10, which succeedssiroging the honeypot by crashing the kernel
as shown in figure 7.11. The kernel is unable even to syncheat@ta any more. This means that unsaved
file system changes are not persisted. An attacker can take the entire UML system as a non-privileged
user. After identifying the vulnerabilities, we incremalhy downgraded the UML kernel using thehaial
Linux source code repository in order to determine scalé@fiinpact of the proof of concept. Thirty kernels
are vulnerable (see table 7.5) to the proof of concept pteden figure 7.10, representing a large population
that could be taken down by attackers. As a mitigation tephmi the system call can be patched such that
the invalid arguments are rejected in advance. In addifdtl,inux [142] or Apparmor [103] can be used as
mitigation techniques. These components run in the keffrtblechost operating system and are able to monitor
processes running in user space. A policy can be establfshéte User Mode Linux processes such that only
a limited set of system calls are allowed. Each policy viotatesults in process termination.



IN VIVO MALWARE ANALYSIS 107

v2.6.27-rc9 v2.6.27 v2.6.27-rcl v2.6.25-rc9

v2.6.27-rc8 v2.6.26-rc9 v2.6.26-rc2 v2.6.25-rc8

v2.6.27-rc7 v2.6.26-rc8 v2.6.26-rcl v2.6.25-rc7

v2.6.27-rc6 v2.6.26-rc7 v2.6.26 v2.6.25-rc6

v2.6.27-rc5  v2.6.26-rc6 v2.6.25-rcb  v2.6.25-rc2

v2.6.27-rc4 v2.6.26-rc5  v2.6.25-rc4 v2.6.25

v2.6.27-rc3 v2.6.26-rc4 v2.6.25-rc3 v2.6.25-rcl

v2.6.27-rc2 v2.6.26-rc3

Table 7.5: Vulnerable Linux Kernels

7.5 Invivo Malware Analysis

The states of the model presented in chapter 5 are identifitdpnogram names. However, attackers could
modify these names or replace them with customized prograoseover, attacker could infect existing pro-
grams by adding malicious code. Therefore, we are lookimgdad for a more robust state representation
based on system calls. In [185] we propose a unified appragi¢hd analysis of both process-related informa-
tion and system calls executed. This topic is of interestséweral reasons. From a conceptual point of view,
there is a need to represent two types of relevant informdatiche same model. Attack detection and analysis
would be improved if two disparate types of information @bl represented on the same model. The first type
comprises relationships between processes, for instéugckact that one process launches another one. The
second concerns the low-level inter-working between a $ystem and executed software. One possible infor-
mation source can be provided by system calls performedigeiecution. There are at least two application
domains for our approach: online host-level intrusion ckd@ and malware analysis. A good host-level intru-
sion detector should be able to identify in real time that sarser sessions are suspicious when, for instance,
anomalies in user sessions occur. Such anomalies can bagehby sessions that launch processes tlfiardi
from those expected. We argue in this section that proegdated information that also comprises relationships
among processes can serve to build better host-level iotrdgtectors. Malware analysis can also benefit from
our work. Additionally, the detection and classificationroélware can be improved by a combined process
and system call mechanism. Obfuscated malware componégid be revealed by exploring similarities in
the structure of the underlying processes and system calls.

In chapter 5, process trees are extracted from the kerneatipg the honeypot in order to determine the
input sequences provided by an attacker. We enhance thegsrtree model, presented in chapter 5, and use
tree kernels and graph-based kernels in order to to compese tprocess trees and so determine common
behavior or anomalies with respect to legitimate SSH sassio

7.5.1 Tree- and Graph-based kernels

Kernel methods are advanced mathematical tools for thsifitzgion (either supervised or unsupervised) of
high-dimensional data. Their potential lies in the compataperformed by a kernel function, which reveals
the level of similarity between data sets. The input datagpped into a higher dimensional space, such that the
mapped data categories become separable and the distanegeddrom a scalar product and corresponding
to degree of similarity) in the mapped space can be direetived from the original input space. In the recent
past, kernel methods [168] have been shown to be very usefolving problems from disparate domains such
as bioinformatics or natural language processing.

The first contribution is a model that uses tree-based strestto evaluate process trees captured from live
systems. An extension is based on graph kernels. Our secoigbaition is a method for capturing complex
relationships among processes, executed system calldlardsgnthetic measures using the same objective.



108 CHAPTER 7. HONEYPOT OPERATION

Tree-based kernel functions

The method described in [106, 107] defines a tree kernelifimbiased on the decomposition of a tree into its
constituent substructures — subtrees or partial treeserier@l, a kernel function is based on the inner product
of input objects, which have been mapped onto a higher — diforal vector space. In a tree kernel function,
the similarity between two input tredg and T, is measured by computing the number of common patterns
(subtrees) between the two trees. This can be done withedingean exhaustive computation over the entire
fragment space.

We have extended this kernel [32, 106] in order to capturé-tadated process information. For having a
fragment seF = { f;, f5,...}, the indicator function, is defined by [32] to be 1 if the target fragmehas its
root in noden or O otherwise. The kernel function defined by [32, 106] isrgh@ eq. 7.19.

KTuT2)= > > A, ) (7.19)

nie NTl npe NT2

where the sets of nodes ©f andT, are represented by, andNr, and the number of fragments common
to n; andn; by eq. 7.20.

IF|
A nz) = > li(n)li(ng) (7.20)
i=1
whereA has the following recursive rule set defined in eq. 7.21,

1. A(ng,ny) = 0 if productions ah; andn, are diferent
2. A(ng,np) = 1 if productions ahy; andn, are the same and have only leaf nodes

ng(ng) o
A, mo) = [ | (0 + A, &) (7.21)
j=1

wherenc(n) represents the number af children, c) the j-th child of noden and o € {0,1} is the
parameter for evaluating subtrees and subset trees ieddoy [106]. To include leaf nodes in the
fragment space, [106] adds a condition to the recursivesetie\(n,,np) = 1, if n; andn, are leaves and
their associated symbols are equal. The similarity scanerisialized in the kernel space by applying eq.
7.22.

K(T1,T2)

VK(T1, T1) X K(T2, T2)

K'(T1, T2) = (7.22)

Graph kernels

On compromised machines attackers often install servéwamd which are programs that run as daemon.
Using the process tree model presented in chapter 5, onlggplmyment of the program and the program
execution can be observed. However, all the actions beirigrpeed by the program itself are not handled with
the process tree model. If an attacker installs a new sengereconnects to this server in order to continue his
attack, then these steps are not observed with the proeessitrdel. To handle the case of generalized graphs
(Tree-based kernels can be applied only to connected agyrelphs), we considered the more general functions
presented in [84, 85], which introduce a family of kerneldtions that addresses labeled graphs. A labeled
graph is a directed grapB, a number ofG| vertices and a labeling function. In the graph, each vertexa
unique index between 1 an@|. The label of the vertekis vieX, and the edge label fromto j is g;eXg. A
kernel functionK (G,G’) between two graphG andG’ having both vertex and edge labels is introduced in [84].
The main building block for computing the kernel functiosshe random walk. A random walk is given by
the hidden sequende= (hy,..h), wherel is the length oh and has values between 1 d@dl In the first step,



7.5. INVIVO MALWARE ANALYSIS 109

h; is established by the initial probability distributiqna(h). After thei-th step the next node is determined
by the transition probability(hilhi_1), the random walk may end with probabilify(hi-1):

|G|
> puhiih) + pe(hia) = 1 (7.23)
=1

For the labeled path the posterior probability can be described as follows, whés the length oh.

|
p(G) = ps(hn) [ | pechithi-1) pa(hy) (7.24)
i=2

The joint kernelK; can be defined from two grapi&andG’, using hidden sequencesandh’. During a
random walk the visited labels might be as follows n, Vh,en,Vhs€ns - - -

Two kernel functions can be defined using vertex and edgéditgbespectivelyK(v,v') andK(e€). Both
kernel functions are assumed to be nonnegati(@;Vv’), K(e,&)>0. An example of a vertex label kernel is the
identity kernel, where is a function returning value 1 if an argument holds, O othssw

K(v,V) =6(v=V) (7.25)
If the labels used are defined ¥, the Gaussian kernel [146] is a good candidate:
K(v,V) = exf—|lV - V||?/25?) (7.26)

In general, the joint kernel is computed by the product ofl#tel kernels. If the lengths of the two hidden
sequences are equal that#4’, the following equation can be applied:

[
Koz Z) = Kvia, Vi) | | K@ ams & ) X K(¥h, Vi) (7.27)
i=2
If the lengths of the sequences are not eqlsdl’), thenK,(z,2)=0.

7.5.2 The Process Tree Model

Process execution commands on a host can be monitored asebped. The results of the monitoring process
are process trees. A process tree, formally defined in chapieredefined as an ordered paie (V, E), where
V=(py,....pn) describes the set of nodes aBe(ty,...t;) represents the set of labeled edges. We distinguish
between three dierent node typeID, Process namandSystem call

¢ A PID node refers to a process identifier in a Linux operating syste
e A Process name (pmgfers to a the process name transmitted as argument todtegrsgallsys_execve

e TheSystem call (sapode refers to a system call number implemented in the Lirnred

In order to compute the tree-based kernel function aftatgyahe types of nodes have to be of the same type.
Nodes that have flerent types will have a similarity of 0. Further, we distilgfubetween three types of edges,
PID-to-PID, PID-to-pnandPID-to-sc

e ThePID-to-PID edge refers to one process that has created another andledatith a time dierence
between the two nodes.

8R is the set of real numbers.



110 CHAPTER 7. HONEYPOT OPERATION

e The PID-to-pn represents a process has started a another program and iststed with the time
difference.

e The last type of edgeRID-to-sg describes how many times the given system call is execatadl,is
labeled with the number of executions. Such a link modelssifstem calls (and their call pattern)
executed by a process.

A main advantage of this proposed model is that cycles in #ia structure can be avoided, even if the
number of diferent nodes becomes very large.

An example of a process tree can be seen in figure 7.12. ltssrtioe initial process identifier (P1D) 534,
the privileged separated process [129]sshd Process 534 has created two other processes, process 1038
after three seconds and process 1031 after zero secondsesBPrb038 immediately executes the command
uname Process 1038 has also madsya _write (4), sys_execve (11) and twosys_read (3) system calls,
represented by boxes in the figure 7.12. On the other treelpranocess 1031 immediately executestiash
command, then creates process 1041 after a delay of eighhd®cThis new process executegetat once
and ten seconds later creates a new process, which exeshtiesite andtar. To avoid clutter we have not
shown all system calls in the figure 7.12.

Figure 7.12: Example of a Process Tree

7.5.3 The Process Graph Model

The second concept is based on a labeled graph. A deapan be described as a pdir= (V, E), where
V=(pi(nameproc, statd),..., pi(hameproc, statd)).

The set of nodep is composed of two parameters, the process name paranatexproc and the pa-
rameter for the corresponding probability distribution $gstem callsstat d, wherestatd = (xg,...,Xn) IS a set
of distinct variablesStatd is another identifier for processes [187]. The inter-nodfietences, the distance
between the sets of the probability distribution of the eystalls of two nodes, can be established. This takes
into account variants of the same malicious software or #s=g€ where a malicious program tries to mimic
already installed software. For instance, an attacker adestb, adds customized features, and getstpot
If another attacker uses the same bogxtends it with other minor features and gets lgtthen the distance
between bob; andb, is probably small. However, if a malicious program tries tionic another program, for
example by executing out of a file nameshd, the distance between the legasyhd and the fakesshd is
likely to be quite large.



7.6. IMPLEMENTATION OF ADAPTIVE HONEYPOTS 111

[ bash ] [ uname ] [<(open,4); (read 6); (clone,2); (write 1) >]
(<(open.4); (read 11); (°'°"e’6)" (write,5 > (Ctr 1 (<(open.ay; (rea;ﬁl); (clone,0); (write,3);> [<(open,]:)\;\(;e\ad,l); (clone, 1; (write,2); >
(<(open.); (read,2); (clone,0); (write 1 >}----{  Is ] [<(op;r;:z;);i{ead,11);(c|one,0); (write,3):> /[sshbrute}—[ init_|

[<(open,4); (read,11); (cloné,;)); (write,s);>]

Figure 7.13: Example of a Graph Model

An example of a graph can be seen in figure 7.13. The privilsgpérated processhd executes the
processedash anduname. Next, the progranmwget andtar are executed bpash. After the execution of
tar, the commands is executed, followed by the attacker taalh_brute which is then daemonizé&d For
the clarity, pseudo-edges, represented by dotted linesnoduced to associate the probability distribution of
system calls to each node.

In this section, published in [185], we have presented aension to our process tree model initially intro-
duced in chapter 5. We base our approach on supervisedficiatish methods that leverage native grége
kernels. We propose two applicable kernel families: the fises tree kernels and thus is easier to implement
and has a better operational performance. The second fasglymore general graph kernels. Although, in the
latter case, the complexity of the method (algorithmic fagrimes) increases, richer modeling capabilities are
very promising. Our future work will address several rerirarissues. We will look at further graph kernels
and assess their applicability, especially with more c@xpind richer graph-related information, but we also
planned to evaluate our solutions against earlier ones @stutly interactions between multiple concurrent
malicious programs. In the context of this PhD thesis we dimith this contribution to explore potential en-
hancements of our process tree model. However, in the rémgaive use the simplified version of the process
tree model presented in chapter 5.

7.6 Implementation of Adaptive Honeypots

Various, adaption mechanisms are described in chapten&ey#s, implementing a new honeypot from scratch
for each of these is a tedious and error-prone task. Typicalth implementations must be written in the
C programming language, often required code change in kepaee. To overcome thesefftiulties, we
have created a generic adaptation framework that provididdirig blocks for adaptive honeypots having the
following requirements:

Kernel control Total control of the kernel is needed, in order to take denssion allowing or blocking
sys_execve system calls. If an attacker with figient privilege has compromise a machine she could
potentially take control over the kernel — a worst-case aGerior the honeypot operator —.

Process monitoring Process execution must be tracked, so as to interfere otiysystem calls that are re-
lated to attackers. Preventings_execve calls related to the operating system may render the system
unstable.

Opaque decisionsAn attacker should never be able to use measurements ofgsregecution time to predict
the decisions made by the honeypot. The honeypot shoulddotive at all times even when decision

9The parent process ekh_brute becomes the procesait.



112 CHAPTER 7. HONEYPOT OPERATION

making involves computational overhead. Honeypot fumetiity should not introduce code paths that
are overly complex and non-interruptible, as these may ainih@ stability of the entire operating system
[97].

Flexible Many different games between attackers and high-interaction hotegpn be imagined. A system
call can be blocked by returningftérent answers or error codes to an attacker. In the Linuxekern
version, 33 diterent error codes can be returned, for instance, permigginied, input output error, out
of memory etc. Our games could be extended with a strateggléstsappropriate return codes each
time an attacker-related action is blocked. Therefors, referable to have a flexible architecture which
allows other games to be implemented without large devedmpretort.

7.6.1 Adaptive Honeypot - Framework

An overview of our adaptive honeypot framework is shown inifegg7.14. We focus on a high-interaction hon-
eypot exposing a vulnerable SSH service operated in a cutdriyser Mode Linux (UML) [191]. Attackers
are constantly scanning the Internet for new victims (stapt@e figure). Once they have discovered the ser-
vice they start launching a brute force attacks againstehees in the hope of compromising a user-account.
Nicomette et al. [112] figured out that specific attacker camities specialize in this task. The compromised
accounts are then shared among other attacker communmitied) can then get, a shell on User Mode Linux
and can make their attack. In the background the SSH servireddser Mode Linux clones a privilege sepa-
rated process [129] and its information is put into an outpugue by the modified UML kernel (step 2). The
AHA daemon, AHAD, fetches this message. For each messageAHA daemon determines whether the
process belongs to the system itself or to an attacker. Hldrgs to system it is allowed by default. However,
if it belongs to an attacker, AHAD passes the message totidligence routine for a decision. AHAD puts
its decision as a reply message into an input queue (step )elmeantime, the UML kernel waits femil-
liseconds for a decision. After the pause, it polls for theyrenessage from the input queue (5). If it receives
the decision within the predefined time framet implements the decision, if not the erf€eNOMEM is returned
suggesting to the user that the system has run out of memory.

Execution performance is critical for AHAD and UML kernel.h@refore, a minimalistic design is used
for AHAD and for the additional UML kernel functions. Theyaiid only fetch a message from the comple-
mentary subsystem and make or implement a decision. Messauye temporarily stay in the queues. The
AHA _worker program takes messages from the queues after a finedititerval and writes them in a log
file. This program also cleans the queues. The_&p@a program takes the raw reassembled mesthged
generates a report which allows a honeypot operator to wbsdnat is happening.

A generic adaptation mechanism is defined in chapter 5 wkishrinmarized as:

allow The usual control flow of sysxecve is used.
block An error code is returned.

substitute The program arguments of the sggecve system call are changed and the regular control flow is
used.

insult The program arguments of the sggecve system call are exchanged with an insulting program.

The modified UML exchanges messages with the AHA daemon. &adrsys_execve, sys_clone and
sys_exit system call, UML puts an export message into the output quBue directories presented the input
and output queue. Each exported message has a simple keyfgainat, the fields are separated by th& “
character. The reason for using this format is that manydiblle a variable length, potentially requiring
additional memory management code in the Linux kernel. Tieerative of copying everything to the stack is

19An example of a message is shown in the appendix in section D.3



7.6. IMPLEMENTATION OF ADAPTIVE HONEYPOTS 113

Kernel

Use

User Mode Linux

®)

Ahaeye Aha worker

Figure 7.14: AHA - Architecture

not a viable technique, because stack length in kernel spéicgited. Simply allocating memory with kmalloc

is also tricky because page faults may occur during theioreaf concurrent messages, possibly resulting in
deadlocks. In order to correctly associate the decisiotigtoequests, a unigue message is generated containing
a unique filename in the output directory. The uniquenessafite name avoids concurrency issues. Each
message hastgpe key which is used to determine the system call createthéssage. A value of 1 indicates
thatsys_execve created the message, 2 indicatesra_clone message and 3 indicatesgs_exit message.
An export message has a variable length, which depends dartpth of the file name of the program that is
executed, the total length of the environment variablestaadength of the process identifiers. There is a risk
that the AHA daemon fetches incomplete messages. Theraf@done key is used to mark the end of the
message. When the AHA daemon sees this key it knows that tesage is complete. In appendix section D.3
we show a message created by $ya_execve system call. Besides thgpeanddonekeys, it contains dile

key which corresponds to the absolute filename of the proghatis scheduled to be executed. A program
always has a command line argument: even if the user gives, io@ system provides the program name as
the first [97]. Anargument key is set for each command line argument. The valuthis key corresponds
to the command line argument. A similar technique is usedHerenvironment variables: each environment
variable is identified with amnvkey denoted. Environment variables are particularly Useiuidentifying
attackers. For instance, we can see what kind of terminattiaeker is using, the attacker’s locale settings,
and the source IP address and port. Messages resultingsfremlone andsys_exit include only process
identifier information. The process identifiers, represdrby the keyid, ppid andrppid, are essential in
determining whether the program execution belongs to aclst or the system itself.

The reply message, shown in figure 7.15 is composed of thiegdrs. A non-zero value in any field means
the corresponding action should be implemented. A valudénexit field represents the error that should
be returned to the user. Examples of such errorsEaBRM=1 (Operation not permitted) anBNOSPC=28
(No space left on the device). A complete error code list id p&the default kernel development tree
(include/asm-generic/errno-base.h). If the field of insult is non-zero, it is passed as an argunen
the /sbin/insult program installed on the honeypot. The argument is useditxian array of insults in the
/sbin/insult program, which sends the corresponding message to anexttatdeminal. A non-zero value
for the field substitute is used by the honeypot to index a-badid table of filenames for executable programs



o S w N

114 CHAPTER 7. HONEYPOT OPERATION

struct ReplyMessage{
int block;
int substitute;
int insult;

}s

Figure 7.15: Reply Message Structure

File Function
archiumykernefexec.c sys_execve
archiumykernefprocess.c  exit_thread
archiunysys-i38@syscalls.c sys_clone
os-Linu¥main.c __init

Table 7.6: Modified Kernel Files

that can be run in place of that intended by the attacker.

When an export message is created, a unique message idegdiferated in the user mode kernel is at-
tached to it. This identifier is needed to correctly corelatatch requests with decisions. To generate such
a unique identifier in the UML kernel without adding large degencies on other libraries, we exploited the
traditional x86 architecture. With the RDTSC instructionan inline assembly routine, we queried the time
stamp counter on the CPU processor. The value of this coahtarges with every instruction. Hence, these
numbers are unigue for code executed on a particular cofeed@PU. The 64 bit value returned by RDTSC is
converted to a hexadecimal string which is appended to ttpubdirectory path to create a full pathname.

7.6.2 Component Description
UML

Our modified UML can be built with a default UML configurationVe added a new header and C files in
the directoriesarch/um/include/ andarch/um/kernel to the Linux kernel development tree, containing
the adoption functions. Obviously, small changes also bawetmade to the Linux kernel. Thys_execve
wrapper for UML is hooked to export the executed programmets, along with associated process identifier
and environment variables. Besides these additional wramit capabilities, the kernel polls replies from the
AHA daemon and implements its decisions. The files that haem bnodified are presented in table 7.6. In
addition to these files, we added a configuration directontaining configuration files which each contain a
parameter. The reason for using a number of files instead iofyjiesconfiguration file is that domain specific
files can be parsed by few lines of C language codematin. c the polling intervalr,which corresponds to
the waiting time for a decision from the AHA daemon, is reamtrirthe configuration fil@ollinterval. A
hook for thesys_execve wrapper has been added to the filsch/um/kernel/exec.c: the relevant section
is shown in figure D.2 in the appendix D.3. This function putsmessage in the output queue along with
a unigue message identifier which is used to ensure thatialesiare correctly applied, even when several
system calls are executed concurrently. The function tlodls for a reply encapsulated in the flat C structure,
shared between kernel and daemon, shown in figure 7.15.



7.6. IMPLEMENTATION OF ADAPTIVE HONEYPOTS 115

Adaptive Honeypot Alternative Daemon

AHAD uses a library, AHAIib, containing the attacker momitmy and adoption mechanisms. The AHA dae-
mon tracks the process hierarchy by following the processs $tructure [104]. The relevant information is
provided by the modified UML kernel. If the UML would confusedacision for a system call initiated by
the system itself with a decision for a system call relatedrt@ttacker may have dramatic consequences such
as failures of the system. When an attacker connects to theypot, the SSH server clones a privilege sep-
arated process handling the attacker’s connection [128¢. UML kernel notifies the AHA daemon about all
the cloned processes and executed programs. If it seehthptdagram/usr/sbin/sshd clones a process,

it knows that a new attacker has connected to the honeypat.piidtess id (PID) is then recorded in a list
containing all the users connected to the honeypot. THisdistains the roots of the process subtrees belong-
ing to SSH connections related to attackers. The AHA daemegies a reply message stating that the system
call should be allowed or blocked, substituted and whethensult should be triggered. For easps_clone

or sys_execve message, the AHA daemon recursively looks up the correspomatocess identifier in the
recorded process tree. If a parent process identifier mattelement in the lidt, the daemon knows that the
process belongs to an attacker. If it does not match, theepsdoelongs to the system itself and is allowed by
default.

After having decided whether a process belongs to the systéoan attacker, the AHA daemon is capable
to adopt itself to the attacker. This is the core of our regeaxctivities. Reimplementing a honeypot for each
learning solution is not a very productive approach. Hemae propose a generic framework containing the
implementation of common features, like monitoring atesk and dierentiating between attackers and the
system itself. The AHA daemon uses a library called AHAlillnieh is a collection of four classes.

AHAActions This class contains all the necessary functions for comeatinig with the modified UML. It
contains a functions to load and parse a message from thdiesbdML kernel. It includes functions to
load, parse, and create reply messages.

KERNEL _ERRORS This class contains the errors that can be returned to ackatts process. The error
codes are taken from the default Linux development tree endedined in the fildinclude/asm-generic/
errno-base.h.

ReplyMessageThe purpose of this python class is to write a plain C stractubviously, the fields of the
structure must be identical with the C structure includethenmodified UML kernel (see figure 7.15),
otherwise the decisions will be wrongly interpreted.

ProcessTreesThe responsibility of this class is to track process idesrsfin order to determine if an executed
program belongs to an attacker or to the system itself. Hawhthe SSH server clones a process, the
PID is put in a user list in a ProcessTree instance. A procesismary is also included. This dictionary
is keyed by a process identifier and each entry has an elehmnpdints to a parent process identifier.
This information is augmented by an annotated proces®danty, which process identifiers serve as keys
pointing to a third dictionary. This embedded dictionaryni@ins the message creation time stamp and
attacker SSH connection information including her souddr@ss. The most important function in this
class is calledearchTree (pid, ppid) which takes a process identifier and a parent process iagntifi
as input and searches in the process tree for a match. If atganecess identifier cannot be found in
the process tree, then it is assumed that the process beloiigs system itself and the valfalse
is returned. However, if a match is found, the vallraie is returned, meaning that the parent process
identifier belongs to an attacker. In this case, the curremtgss identifier is also added to the process
tree. The process look up is done recursively. In order tidaan ever-growing process tree, this class
also has a method to remove processes from both the proeesartd the annotated process tree using
information provided by the UML kernel instrumentedread _exit function.



116 CHAPTER 7. HONEYPOT OPERATION

Aha_Worker

Execution time is an essential consideration in the opmraif an adaptive honeypot. Each system call needs
to be acknowledged by the AHA daemon. If the system calls aspended for a too long time, the system
may become unstable and unusable. Hence, the AHA daemotddbous only on speedy decision making.
This means that the queues can quickly fill up. Each messaff@ege results in creation of two files on the
UML host file system. In order to avoid the accumulation ofjfianumber of files in a directory, the program
AHA _worker daemon periodically checks the queue, selects tmatdnessages, merges them in a log file and
removes them from the queues. Normally a message initiataledoUML should be acknowledged within
50ms. When a file is created in a queue, the file creation timecrded. Each file that is older than 1 minute
is merged in the log file and removed from the queue.

Aha_Eye

Attacker activity monitoring is an essential task during tperation of a high-interaction honeypot. Albge
takes the merged exchanged messages as input and generapest alescribing the sequences of program
executions made by each attacker. In order to determineagelquence, the process trees are inspected and
recovered by Ah&ye using AHAIlib. Each time the SSH server clones a privilsgparated procespy, an
attacker has connected. All the programs executed durin§Stth session belong to the process tree of an
attacker, and so have the procggsas root. The sequences of executed programs from such a tisgeavbe
recovered with the help of relative timestamps taken froenrttessages generated by the modified User Mode
Linux. For a process tree of an attacker, that is a subtrebeobverall process tree, the privilege separated
process is remembered and considered as the root of thesprivee related to an attacker. Each branch from
the root to each leaf is inspected and each edge containgrbeliference between these nodes. For each
node on a given branch, the sum of the tim@aitences is computed serving as index in the process executio
sequence. An illustrative example is shown in figure 7.1& $8H server cloned a privilege separated process,
with the process identifier 4121. After 1 second this procdmses another process with the identifier 4127.
This process then executes the progiamh with the program argumeittash (first program argument set by
default). This means that for this branch (marked in thefdaft of the figure) the sum of timeftierences is 1

+ 1+ 0= 2. After 2 seconds the processes with the identifier 4121ed@mother process with the identifier
4129 which executes after 3 seconds the prodgsash. For this branch (marked in the right part of the figure)
the sum of time dferences is & 2 + 3+ 0= 5. Due to the fact that 5 2 we know that the commarishsh

was executed prior the programname. The SSH server also exports SSH environment variables thitd
processes which include the source IP address of the attdokesource port and the used terminal.

7.7 Conclusions

The best practices [154] for setting up high-interactiondypots advise that all the networkftia related to
the honeypot should be recorded, for instance, by creatirvaork tap on the interface to which the honeypot
is connected. Capturing all network fitia results in a large volume of data. In order to facilitatertfanitoring
operation, we propose two network fiia visualization techniques. Our PeekKernelFlows approatfl84]
gives an aggregated overview of overall networkficabased on Aguri. Aguri aggregates networkfiica
resulting in aggregation profiles. We suggest a visuabnagipproach of these profiles. A more detailed attack
distinction is made with our polar representation. Assuntirat an attacker on the honeypot could not take over
the network switch and destroy the tap, the attacker couldamoper with the network traces. Even when an
attacker cannot remove traces, we identified techniquesaiid use to obfuscate her traces. Her raw packets
are still in the trace, but showing she could trigger faulthévior of commonly-used network tools. We give a
proof of concept in [179] showing how an attacker can hideeast and how she could terminate the network
analysis by force with our PCAP bomb. The essential problesrdescribed in [178] can be reduced to an



7.8. LIMITATIONS 117

| . 0 |
| - |
(1 2 11 2 )
4127 412 (4127 | [4129
|1 3 1 3 |
|[Bash | [Emamé  [Gash |[omame |
o o o o |
bas () (bash &

——
Attacker 1 @)

Figure 7.16: Recovering Attacker Sessions

imprecise definition of network flows that can be exploitedaloyattacker. Therefore, before performing the
network analysis, the network traces must be preprocessadiér to eliminate such collisions.

Because a honeypot may not immediately recognize the signife of all the attacker related software
which is often malware, our approach published in [185] stgjan in vivo malware analysis approach, where
profiles of system calls are generated during an activekatidee proposed profiles can also be used to harden
our automaton against state tampering made by an attacker.

Like a traditional high-interaction honeypot an adaptiighkinteraction honeypotffers a complete operat-
ing system to attackers. However, an adaptive honeypotlbasceinterfere with commands run by an attacker.
User Mode Linux runs as non-privileged processes on thedpmstating system and provides useful features
for interacting with the host operating system and allowaréety of functions to quickly implement adaptation
behaviors. As we showed in [180] an attacker can performaetbtake down of the system without any extra
privileges. Hence, the mmap system call has to be patchedlér to close the discovered vulnerability. The
vulnerability could also be mitigated using Apparmor or $itix.

Using these mitigation techniques, we propose an implestient of an adaptive honeypot framework in
order to integrate a variety of learning algorithms intohaigteraction honeypots without reimplementing the
honeypot from scratch each time. Each system call relatédetprocess execution of an attacker has to be
acknowledged by a decision-making routine that implem#émtslearning approach. The design and source
code was published in [176] and can be checked out from ouigbulvailable repository [174] which is an
augmented clone of the Linux kernel git repository.

7.8 Limitations

Currently a few challenges needs to be addressed in theiagdyaneypot framework. First of all, an at-
tacker could explicitly look for artifacts specific to theagudive honeypot. Obviously, an adaptive honeypot is
slower than a regular high-interaction honeypot, due tomtreessary interprocess communication and decision-
making. However, it is dhicult for an attacker to make a timing attack on the decisi@king routine of the



118 CHAPTER 7. HONEYPOT OPERATION

honeypot. This is mainly due to the constant polling interwéaich is set to 50ms in the modified UML. An at-
tacker could also look for the prografsbin/insult, because this tool is not installed on regular systems. An
attacker could even remove this program. Additional wonkéeded to hide and protect this program by using
traditional rootkit techniques [101]. An attacker could@abo an indirect attack on the honeypot. She could
first push an attack script to the honeypot and instalten job that executes the script. An adaptive honeypot
then only sees and interferes with the deployment of the@tsdfi’hencrond executes the script, the adaptive
honeypot framework classifies its activity to system preasecutions and allows them by default. In order to
tackle this problem, file system changes also need to bednladke could complement our approach by modi-
fying thetty read andtty write functions to assess attackers’ typing capabilities, fstance whether they
use backspaces or cursor keys. Other interprocess comationitechniques, like shared memory segments,
named pipes or socket can be explored in order to optimizeutira performance and avoid kernel deadlocks.
Other protection mechanisms for User Mode Linux should bésexplored to reduce the possibility of interfer-
ence with the kernel. We could also adapt a virtual hardwarerlof virtual machines to communicate with the
adaptive honeypot daemon. However, this requires a lamezlopbment fort than modifying a Linux kernel
and, as such, was out of scope in providing a proof of conaedaptive honeypots.



Chapter 8

Experimental Evaluations

In this chapter are described the experiments related fatimdanigh - interaction honeypots. We setup state-
of-the art high-interaction honeypot and a low-interactimneypot to recover traces from attackers. The traces
from the high-interaction honeypots are used to to comphdeoptimal strategy profiles for attackers and the
honeypot. In a next step, we evaluate adaptive honeypatsrdby reinforcement learning and fast concurrent
learning which have a higher adaptation degree than theiaddmmneypot which optimal behavior is defined
through simulations.

8.1 Recovering High-Interaction Honeypot Traces

A high-interaction honeypot capable of recording_execve andclone system calls has been setup to induce
our hierarchical probabilistic automaton described inptea5. The automaton instance serves as ground truth
for the computation of Nash equilibria. The Linux kernel vaaiectly patched in order to avoid detection by
address arithmetic which is an attack described by McCafg] The data collected in kernel space is directly
transmitted to the hardware level in order to avoid it beiogeasible by an attacker. The honeypot is operated
with the Qemu x86 emulator [18]. The kernel inside Qemu wadifigal such that process ids are logged. The
host machine stores this data in a database. The honeypah lzklitional network interface which transmits
the system logs to a syslog-ng server. The default runningcsds a SSH server which serves as an entry point
for attackers. It could be configured to use the PAM mogale permit. In this case no password is required
and this may be very suspicious for attackers. Therefompdlm_unix module was modified. The patch
is described in section D.1. It is responsible for passwaitthentication in Linux operating systems. With
the patch, the system asks for a password but then negléctsraprivileged user passwords. The attacker
is asked a password and each password is accepted as valigopds This implementation choice is also
resistant against password changes performed by attadi@ss138], because the password is not checked
anymore. In theory an attacker could also change the PAM faediuring the operation of our honeypot but
this phenomenon has not been observed. At the same time,attankers installed their own shell in order to
be sure that they are not using a shell with additional manigdfeatures. Furthermore, other attackers replaced
the SSH server on the honeypot.

From this honeypot, we recovered the process trees relatettackers which are sub trees of the Unix
process tree on the honeypot. These process trees weffetnaged in process vectors. Each vector corresponds
to an attack. From the observed process vectors a hieratghimbabilistic automaton was created to drive the
simulation. Our data sets and developed software are pyhbliailablé.

The honeypot was operated on one public IPv4 address andsismhsf a Ubuntu Linux 7.10 operating
system. The Linux operating system was ran in a virtual nmecbperated by Qemu, version 0.9.1. We patched
thepam_unix module, version 0.99.7.1 in order to facilitate accesstarkers and to mitigate thdéfects of an

Ihttp://quuxlabs.com/~ gerard/jogy-experiment

119



120 CHAPTER 8. EXPERIMENTAL EVALUATIONS

attacker changing the password of a compromised accouredver, we want to mitigate the fact of attackers
installing compromised SSH servers as it was reported by&last al. [138]. We extended the Linux kernel,
version 2.6.28-rc6 with theys_execve andclone monitoring features.

During the operation of the honeypot, 637 successful ssimdognd 12140 ssh failures were observed.
Despite the patchepam unix module, a high humber of ssh failures was discovered. For 6flfte failed
ssh attempts, the root account was targeted which was #plidocked by ourpam_unix module patch.
Besides the 13 system accounts, 12 additional user acchawtsbeen created. Therefore, 25 non privileged
user accounts existed in total. Attackers tested 1763 nitirex accounts with dierent passwords which is
another explanation for the high number of SSH failures. tRersuccessful logins, 183ftérent IP addresses
were recorded. Some attackers modified the kernel but thealimachine was configured in such a way that a
reboot was translated into a powef.dl he kernel changes are noticed because the file system lobitieypot
was periodically mounted (loop back) and checksums weregated to detect changes. Whenever, the kernel
was changed, the modified kernel was replaced with the atigin

637 process trees were recovered. The root of each proeeswas the privileged separated process by
sshd. The smallest trees have only one node and the tree hgitméximum nodes had 1954 nodes. The
small trees can be explained by brute force attacks agdiesEE&H server which were performed by some
attackers using automated tools. Automated tools managbdetk into the honeypot but left immediately.
The maximum length of a process tree is due to bots that wstallied on our honeypot. The bot master had
long sessions with the bot in order to operate it. Due to dedegssing capabilities trees of length longer than
100 nodes, were not processed. The average number of nada®pess tree is 105 with a standard deviation
of 231.

Each process tree was converted into a process vector aimadract the program sequences performed
by an attacker. The longest process vector is composed ofgffgms and the smallest one contains only 1
program. The average process vector length is 6.16 witmaatd deviation of 2.81.

The hierarchical probabilistic automaton was set up udiegécovered process trees. We obtained 91 dif-
ferent programs (states). Each program is on its own an aftonbased on the command line arguments. To
simplify the automaton, the first command line argument (Wltorresponds to the program name in a Linux
operating system) was removed. On average, programs h&e®@nmand line arguments. The program with
the most observed command line arguments has 181 argunmehtome programs have one program argu-
ment. The standard deviation of the program arguments pergm is 23.5. A large number of command line
arguments can be explained by substitutions done by theardgash [111]. For instance the argumettis
substituted by the prograbash with a file list in the current directory. Moreover the hialical probabilistic
automaton contains 581ftkrent transitions. To model unknown or unseen transitiomsmoothed the transi-
tion probabilities. Due to the fact that in our simulatioe tittacker selects the path with the highest probability,
the smoothing factor is selected in such a way that the patbahilities are notffiected. Figure 8.1 shows the
evaluation of the smoothing factor from48- 1071° to 448- 10~ which are multiples of 10 of the lowest path
probability. For each smoothing factor, we computed thaae number of transitions from the initial states
(always/usysbirysshd) until the final states (last programs executed bykaitgg. In the range of 48-101°to
4.48-10°% the average number of transitions remains constant andfoes larger that.48- 1076 the average
number of transitions linearly decreases due to the fatttihattacker can select artificial shortcuts. We used a
smoothing factor of 48- 10-%8, which does not change the number of average transitionssdade enough
to avoid rounding errors. The number of transitions inceda® 8281 which is the square of the number of
states which can be explained that we have a fully interottedeautomaton.

8.2 Recovering Low-Interaction Honeypot Traces

In order to recover traces from a low-interaction honeyjpoutating a vulnerable SSH server, Hali was devel-
oped. Besides, the traces from an high-interaction horteyaees of a low-interaction honeypot are desired

2The longest process vector was removed due to data progdissitations.



8.2. RECOVERING LOW-INTERACTION HONEYPOT TRACES 121

Impact of the smoothing facter
4.0442 ; ; ; ;

smoothing

4.044
4.0438
4.0436
4.0434
4.0432

4.043

Average number of transitions

4.0428

40426 1 1 1 1 1 1 1
0 5e-06 1le-051.5e-052e-052.5e-053e-053.5e-054e-068.5e

€

Figure 8.1: Evaluation of the Smoothing Factor

in order to compare our adaptive honeypots with a classwatiteraction and high-interaction honeypot.
Hali is a pure python shell serving as low-interaction hgmaty Hali is a bldfing honeypot that reproduces
attacker outputs from previously deployed honeypots. idaishell implemented in python with ncurses [137]
and with a memcached back-end [51]. The memcached backsemddlatile server containing outputs from
high-interaction honeypots. This means that the inforomais only kept in memory. Furthermore, memcached
does not use a relational query language but only key-valae$e stored or retried. This has as consequence
that lookups are faster than on a persistent database.efudhe, during the operation of Hali, Hali's knowl-
edge can be extended without restarting the experimens i lgiartially important because hosts with a large
uptime are more interesting for attackers. An alternatiapléementation choice would be a shared memory
segment. However, ready to use memcached clients existsahde used by a honeypot operator to manage
the database. Hali reads a command line from an attacketequerandom pre-generated output from a mem-
cached database. The input characters are logged to a sgsiag [16]. Using this remote logging facilities,
an attacker cannot interfere with existing logs. The aedhitre is shown in figure 8.2. Hali is foreseen to be
installed in a User Mode Linux as default shell, with a patthem unix module. The User Mode Linux has
two network interfaces. One with a public IP address (ndtviierface tap0) where it is accessible via SSH,
and one private (network interface tapl) which is used toexgyslog messages and which is used for the
memcached queries. The taal [75] is used to limit the throughput of the network interfdwving the public

IP address. The network ffe is also filtered with an iptables [136] firewall in order totig@te scanning
activities performed by attackers. With a limited and fédibandwidth, attacks towards third parties can be
limited. These are best practices to operate honeypotd.[¥54 attacker connects to the UML (ssh user @
<public IP address). Hali records the SSH environment variables via syslogntthese variables the source
IP address and source port of the user is recovered whichecardal to correlate network captures with SSH
shell sessions. The correlation is based on the source lesajdource port, destination IP address, destination
port and timestamp. Messages are sent to the syslog seatés thachable via themanagement IP address

The rationale to select two network interfaces is to avoat #yslog starts dropping messages while users are
heavily probing the public available network interface eUser enters a command by typing characters. These



122 CHAPTER 8. EXPERIMENTAL EVALUATIONS

? Attacker

tap0
[

User Mode Linux

Figure 8.2: Hali Deployment Architecture

characters are also logged via syslog to the syslog servieenhe user hits the keyEnter-, Hali selects an
pre-generated output via memcached, where the serveoiaetgssible from themanagement IP address
The selected output identifier is also logged via syslog.i lHatonfigured with a configuration file which is
used by Hali and other tools (memcached) related to Halst Bfrall, the User Mode Linux should be correctly
configured, shown in architecture, with one public IP adsl@sd one management IP address. On the host
of the User Mode Linux, GNU screen can be started. This hasheengage that a honeypot operator could
remotely attach to each running process for its state itigpedn one window memcached can be started, in
another one the User Mode Linux, and in anther one tcpdumpptuce all the network packets. On the host
machine syslog-ng can be installed, acting as syslog seinside the User Mode Linux syslog-ng could be
configured to export messages to the host machine using thagaaent network interface.

Hali was our second honeypot experiment and was operatedZ909-09-04 to 2009-12-19, on one public
IPv4 IP address. Within this time frame 342 unigue IP adér®seere observed. These 342 hosts did 6087
SSH connections. The traces of Hali are not used for comgpitash equilibria but for evaluating the learning
honeypots.

8.3 Computing Nash Equilibria

The hierarchical probabilistic automaton based on the desaribed in section 8.1 is used to simulate attacks
in order to compute payfs for each player. These pdj® are then used to determine the optimal strategy
profiles by computing Nash equilibria. We simulated the lypogstrategiesKr(Block)) and attacker strategies
(Pr(Quit), Pr(Retry), Pr(Alternative) in a range of 0 and 1 in a step of 0.10 respecting the rel&ibn

In a second step, we computed Nash equilibria using the gaeoeyt simulator Gambit [166]. Only mixed
equilibria have been found. If we consider the first game ¢upalf of the table 8.1) then one mixed Nash
equilibrium exists: for instance, the honeypot can deaidase either a blocking probability of 0.10 or of 0.90.
It should use 0.10 in 54% of the cases and 0.9 in 46% of the c@kesattacker should us&r(Quit) equal to 0.3
or 0.4 with associated probabilities 0.73 and 0.27 resgalgti Similarly, value choices according to the table
can be set foPr(Retry) andPr(Alternative. The second game, (lower half of the table 8.1), has alsaadni



8.4. REINFORCEMENT LEARNING DRIVEN HONEYPOTS 123

R R
q Pr(BlocK q Pr(Quit) | Pr(Retry | Pr(Alternative
0.54 0.1 0.73 0.3 0.4 0.3
0.46 0.9 0.27 0.4 0.2 0.4
R i
0.3 0.4 0.14 0.6 0.2 0.2
0.51 0.7 0.26 0.8 0 0.2
0.19 1 0.6 0.8 0.1 0.1

Table 8.1: Gambit Simulation Results

equilibrium: the honeypot should use thredeatient blocking probabilities (0.4, 0.7, 1) with correspiogd
probabilities 0.3, 0.51 and respectively 0.19. This isriegéng, since blocking all transitiondf(Block) = 1

) should be done in 19% of the cases. The attacker can alsessgitimal strategies with respect to this table.
The Nash equilibrium regarding the palyoomputationsR!, tells us that the attacker should leave the honeypot
in most of the cases (60% and 83Playing a game respecting the pﬁchmputatiorRL is more attractive

for attackers but less informative for the honeypot. Traefwe decided to go for the pafyaxomputatiorRﬁ.

In that case, rational attackers leave in at least 30% ofdbescand at most in 40% of the cases.

A first prototype of the adaptive honeypot framework (showrchapter 7.6) was instrumented to use
the optimal blocking probabilities defined in the Nash abtith. The adaptive honeypot was deployed from
2010-01-19 until 2010-01-28 and in that short period, 3ackitrs were observed. Each attacker is identified
with an IP address. The polling intervalwas empirically set to 50ms. The system was still usable hed t
program AHAD has still enough time to react. In figure 8.3 weale that the attackers enter more commands
compared to a standard high-interaction honeypot. The adsgn of the two process vector averages shows
that attackers execute 3.45 commands more on the adaptieypat than on the regular honeypot. This is a
gain of 55%. In both cases, for the initial high-interactiooneypot and the adaptive honeypot we removed
the process vectors related to probes from brute force scaiust for the sake for this comparison. In case
of a scan a single IP address is probing many user accoungsoridinal datasets remain untouched and one
attacker from the 31 has been removed. The adaptive honegpolts may be premature due to the short
period of operation. In addition, the experiments have bid@me at diferent dates. However, the purpose
of this experiment was to see whether adaptive high-interatoneypots work in real life and to determine
whether attackers play and accept the challenge or if thetyl¢ave. A public available kernel development
fork including adaptive honeypot features has been retéasming to contribute to the security community.

8.4 Reinforcement Learning Driven Honeypots

In section 8.1 and 8.2, we operated a high- and a low-inferationeypot to evaluate Heliza. Each honeypot
was operated until 349 successful attacks have been oldserve

In the early stages of our honeypot development, it was tumedile whether attackers would react to in-
sults. Such a reaction would be an immediate disclosurerebpal information regarding attacker. Particularly
interestingly, we observed 1011 insults from attackersnta purely ethical point of view, we cannot print
these insults in this chapferHowever, we can give some information (table 8.2) abouuies! language by
attackers to insult Heliza. For most insults we were not ébldiscover the language attacker used. Some

3Assuming that the attacker aims at reaching the Nash eqjuitib

4git.quuxlabs.com

5The term insult may be misleading because it also includesgiaphic errors. As it has been defined in chapter 5 an iissatt
input provided by an attacker that does neither correspmadst/stem program, nor to a program installed by an attackegn empty
command.



124 CHAPTER 8. EXPERIMENTAL EVALUATIONS

Process vector length distribution
0.3 T T T T T T T T T T T L T T T T T T
- Initial honeypot m—
Adaptive honeypotmmm

0.25

0.2+ -

0.15

Probability

0.1t -

i I

012345678 91011121314151617 1820
Process vector length

0.05

0

Figure 8.3: Process Vector Length Distribution

insults consisted of only one character or some random ikdyest. 17% of the insults were due to misspelled
command, like the commanghnme where we believed that the attacker wanted to typeme. From these
attacker inputs it is highly probable that a human being wasected to Heliza, rather than an automated
script assuming that most attackers test their maliciotenaated attacks before running them. Heliza always
used the English language to insult attackers and, surghjsifewer than 10% of the returned insults were in
English and 12% were in Romanian. Some attackers (5%) shawedse of humor and replied with a smiley.
The right part of table contains the top 10 commands enteyeattbckers after an insult of the Heliza. Table
8.4 shows the inputs and commands attackers have provitkrdlagy were insulted by Heliza. On the x-axis
is presented the number of inputs an attacker provided atigeopraxis shows the amount of attackers. Heliza
insulted 86 distinct attackers and 15% of them immediakftythe honeypot. However, most of the attackers
entered at least one command or an insult. After a manuastigegion of the attacker input sequences, we
noticed that some attackers believed that the insults azdalother attackers and not from the system itself.
Even some attackers replied with the commaaill which is used to display messages in all the terminals of
the users that are connected. Some attackers just pregsetioeriean the terminal and repeated the command
which explains that attackers preferred to continue trackttNormally the attacker response time for the first
insult is larger than the response time regarding anottseidtinAfter a while some attackers get annoyed and
started to enter successive insults. For such a sequennsutifsithe delay between such successive insults is
less than 2 seconds. Other attackers became curious atedi stachallenge Heliza in order to understand what
is going on. It is worth to mention, that insults can give aadion about other compromised machines. For
instance, we observed some Romanian insults from German¢kand Spanish IP addresses. In this case we
assume that Romanian attackers have compromised thesénesmahd used them as rebounds for attacking
Heliza aiming connection laundering. The reactions ofcattes regarding strategical blocks are also interest-
ing. On average an attacker retries a command one time areias an attacker who retried a command 116
times. After having done manual analysis of this attackesises we assume that this attacker tried to challenge
Heliza in order to determine how the decisions are taken.r@aetion of attackers namely if attackers continue
their attack or if they get annoyed, their persistence facasistance permit to draw a profile of attackers.



8.4. REINFORCEMENT LEARNING DRIVEN HONEYPOTS 125

Amount of attackers

Command Frequency Language Proportion
exit 15.77 Undefined 49.1%
Is 11.16 Typographic errors  17.1%
cd 9.95 Romanian 11.8%
uname 5.82 English 9.2%
ps 5.82 Smiley 5.3%
last 5.09 Slovak 5.3%
wget 4.61 Croatian 1.0%
id 4.36 Polish 1.0%
w 4.36 German 0.2%
others 33.06

Table 8.2: Attacker Insult Analysis

Inputs of attackers after a honeypot insult
0.25

inputs m—

. commandsmms
0.2 | .
0.15 .
0.1} 0 .
0.05 L 4

N7 TR

07 20 %86 >89 Gl NXplelslels iy,

#of inputs

Figure 8.4: Inputs Entered by Attackers after an Insult



126 CHAPTER 8. EXPERIMENTAL EVALUATIONS

Heliza was configured with two reward functions defined ed.&hd eq. 6.5. The honeypot environment
Markov chain has 46 states. For space reasons, not all statidse discussed in detail in this chapter. Thus,
we present only the most relevant and some general resoitghé& purpose of comparison and simplification
each attacker connection to Heliza corresponds to anidarat Heliza incrementallyl{ = k + 1) computes an
action value table describing the various states with thierscthat provided the best rewards in the long term
(estimated Q values defined in eq. 6.6). After the final atfick 349) a stripped action value table is shown
in table 8.3. Generally the highest reward for a given statertchines the action which should be taken for this
state in the long run. This table is quite valuable for a hpoewperator who does not want to setup Heliza
but rather simply wants to install static fake services. gitedollowing the two behaviors, some strategies for
selecting an action for a given state are the same. For iestarhen an attacker connects to Heliza, the action
value table suggests to allow the command. An attacker whs dot get a command prompt can hardly stay or
install custom tools on Heliza. Some commands are frequestd by attackers to explore the compromised
system. Heliza has decided to block the commbanslt such that the attackers cannot detect other attackers on
the system. The prograsudo is a convenient way to get more user privileges and is oftex fisr attacker
maintenance work on Heliza. When Heliza insults an attadkerattacker needs to investigate the situation,
so spending more time on the system. The attacker needseiordiet whether the system itself initiated the
insult (i.e. provocative error messages configured by systéministrators) or if the insult is due from other
attackers concurrently connected to the system. Howd\éeliza wants to collect tools, this command should
be allowed, because it is often used for installing softwarghe system. If the purpose of Heliza is to collect
attacker information, the commamget should be allowei However, if Heliza aims to waste an attacker’s
time, a forged output should be returned. Attackers usuldiynload their tools as tarballs. Obviously, when
transitions favoring custom-installed tools are desithd transition should be allowed. If the purpose is to
detain an attacker, the commatad should lie, such that the attacker needs to understand vetnetiuired tool
is not working. From an implementation point of view the féeme passed to the command tar is substituted
with another filename.

Used rewardry Used rewardr;

allow substitute block insult allow substitute block insul
tar 100 203 55 127 | 5,55 5.15 494 1.96
sudo 101 101 146 196 | 5.37 1.16 3.71 4.17
chmod 199 121 140 71 | 533 5.50 8.85 8.05
uname 184 202 190 159| 5.02 4.81 458 549
kill 65 1 295 220 | 1.83 2.82 5.77 1.82
insult 189 188 199 190 | 5.42 5.57 5.29 4.69
custom 194 170 163 189| 5.66 5.10 495 5.37
ps 194 183 214 140 | 4.82 5.14 4,71 5.44
wget 175 202 163 146 | 6.34 5.53 5.24 5.20
bash 202 118 37 172 493 2.86 3.56 3.90
last 64 81 202 106 | 0.99 1.07 485 2.50

Table 8.3: Final Action Values

It has been proved formally that the SARSA always converfjeadh state is visited an infinity of times
and if a greedy learning policy is used [152]. In practicés theans that we need to assess how many attackers
are needed to compromise the system in order to have meahawfon value functions. We studied some
relevant bash commandgget, sudo. The results are presented in figure 8.5(a), 8.5(b), 8.6@&Ba6(b). The
graphs 8.5(a) and 8.5(b) show estimated rewardsdett, and the graphs 8.6(a) and 8.6(b) tardo. In the
graphs 8.5(b) and 8.6(a), Heliza is configured to colleatrmfation; in the graphs 8.5(a) and 8.6(b), to waste

6Assuming that Heliza’s outgoing connections are strictiptoolled by an Network Intrusion Detection System aimiagavoid
collateral damage.



8.5. HONEYPOT COMPARISON 127

Action-value evolution for wgetr§ reward) Action-value evolution for wgetr{ reward)

2500 : : 8
allow
substitute al
block
2000 | insult 6L
1500 | 5r
o o 4t
1000 - 3l
200 M
500 | yi— substitute
1 block
0 0 insult
50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
k k
(a) rq¢ Reward (b) ry Reward
Figure 8.5: Action-value Evolution for the State wget
Action-value evolution for suda{ reward) Action-value evolution for suda § reward)
5.5 . . . . . . 2000 . . . : : : e
allow | allow [
5L substitute | 4 1800 substitute .
block r block [
45| insult [ 1600 insult T
Al T 1400 | o
a5 - — 1200 | i
o '3 [ o 1000} \
I ‘% 800 | e
251 r . 600 - .
27 | T 400 | |
T — r
15— | } 1 200 | \ ’ ;
1 | L [ L L L 0 i L L L L L
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
k k

(a) r; Reward (b) rq Reward

Figure 8.6: Action-value Evolution for State sudo

attacker’s time. Examining figure 8.5(b), we see that, bsatten 340, Heliza has learned that allowinget

is the best strategy for collecting information; in contri@mskeep the attacker on time as long as possible, the
graph 8.5(a) shows that substitution is identified as bettd$p0th iteration. Similarly, Heliza learned after the
40th iteration that the execution of teado should be allowed when the purpose is to collect attackatae!
tools (figure 8.6(a)). In figure 8.6(b), Heliza learned atatimn 44 that attackers should be insulted for keeping

them busy.

8.5 Honeypot Comparison

In this section we evaluate the performance of Heliza by @ing it with a standard high-interaction hon-
eypot and a low-interaction honeypot called Hali which ested behaviors for all the commands executed by
attackers. Hali is a fake shell and was developed by oursésee section 8.2). The output of each command
is forged. By default, the standard high-interaction hgmyallows all executions of programs; program ex-
ecutions are neither blocked nor substituted nor are atadksulted. The purpose of this comparison is to
determine whether Heliza reveals more information frorackiérs than typical low- or high-interaction hon-
eypots. Figure 8.7(a) shows that attackers make more ti@rsio custom installed programs on Heliza than
on a regular high-interaction honeypot when Heliza is camég to collect attacker-related information. The
x-axis shows the iteration numbleron the y-axis is the cumulative number of transitions tadamsinstalled



128

CHAPTER 8. EXPERIMENTAL EVALUATIONS

Number of transitions

Accumulated number of transitions to attacker tools
250

200 +

150

100

—
—

50 —
4_//_/J

High-interaction
Heliza

——

150 200
k

0 50 100 250 300

(a) Attacker Related-Information Collection

350

duration (s)

1le+06

100000 -
10000 -
1000 +

100} /

10

1

Cumulated attack duration

Hali
High-interaction
Heliza

20 40 60 80
learning steps

100

(b) Attack Duration

120

140

Figure 8.7: Honeypot Comparisons

commands by attackers is shown. The order of attacks ntégr dimong the dierent honeypots. Alata et al.
[3] reported that attacker launch automated attacks agaihsneypot in a first step and come later back to
perform the real attack. During the operation of a honeypese two kinds of phenomena might be mixed.
Hence, the cumulative number of transitions is considenadtder to make the comparison more robust taking
into account an equal set of attacks for each honeypot. Fooaimately the first 25 attackers Heliza has the
same performance than a standard high - interaction hohé@yperms of transitions to attacker related pro-
grams. However after 347 successful attacks, Heliza pegvah increase of 3 times in transitions to attacker
related commands. This increase is partially due to bloekiatker-related programs. However, an analysis of
the actions taken by Heliza for transitions to the executibcustom programs shows that 20% of the attacker-
related programs have been blocked. These programs havsiiestituted in 26% of the cases. Heliza allowed
transitions to these programs 21%. Finally, Heliza decid&2% of the cases to insult an attacker when such a
transition is made. The reason for not showing the compassth Hali is that no installations of custom tools
has been observed for the first 350 attackers. Obviouslyeifyecommand is forged, the installation process
for attacker-tools fails. The figures 8.7(b) show the corngoarresults of Heliza with Hali and a standard high-
interaction honeypot are shown in terms of attack duratemn 6.5). On Hali, attackers cannot install tools.
Usually they try for a while and then give up. At first glan&e<( 30), the standard high-interaction honeypot
performs better than Heliza in terms of keeping the attabkisly. These short sequences of commands are
often entered by automated scripts. If Heliza interfereh thiem they often fail. At the beginning of operation
Heliza may take wrong decisions inducing attackers to lebl@vever, after approximately the 30th iteration
Heliza keeps attackers longer than the standard highaictien honeypot.

From these experiments we recovered honeypot traces ared shem in an SQLite database [117] which
is freely available [175]. A honeypot trace is a chain of itgoprovided by attackers and is composed of the
following elements:

uid is a unique identifier which distinguishesfeérent attacker sessions. An attacker session starts waen th
SSH server clones a privileged separated process [129]radwdvehen this process dies, from which it
can be deduced that the attacker left the honeypot.

id is a numerical strictly monotonically increasing identifthat identifies the input that an attacker gives.
This identifier is essential to establish the order of theuigpghat an attacker has provided. Further
details about recovering attacker sessions regardingiocamcy issues between attackers and the system
itself are presented in section 5.1.1.

input is the input or command an attacker entered. The input carcbmenand, a misspelled command or an
insult from an attacker.



8.6. FAST CONCURRENT LEARNING 129

General Statistics Country Code Proportion
Number of attacker sessions 349 RO 47%
Minimal attack duration Os DE 16%
Maximal attack duration 58495 ES 10%
Average attack duration 1629 Unknown 4%
Stdev of attack duration 5095 LU 4%
Proportion of allow actions 31%| IT 4%
Proportion of block actions 22%| MK 4%
Proportion of substitute actions 30% LB 3%
Proportion of insult actions 17%| NL 2%
GB 1%
BE 1%
us 1%
Fl 1%
AT 1%
FR 1%

Table 8.4: Dataset Description

next input specifies the next input an attacker provided in her sesditsually it is the next command but
sometimes it can also be a misspelled command or an insult.

action is the action the honeypot took. For instance, allow, blscdkstitute or insult.

delay records the time dlierence expressed in seconds between the two inputs. Dusttarsand network
buffering delays we determined a slowdown factor which was takeraccount for further processing.

Table 8.4 (left part) describes general statistics abahtineypot experiments including attacker traces of
the honeypot setups. We have observed 3#8mint successful logins on each SSH server. The shortask att
duration is between 0 and 1 seconds which is mainly due tovatexd brute-force tools that were run against
the honeypots aiming to establish a list of successfullyiaétgal user accounts. The maximal attack duration
was 97 minutes. In this SSH session an attacker did heavygewafion work on the system and compiled
large programs which took some time. For a standard higdrdotion honeypot, the average attacker session
lasted for approximately 3 minutes and most attacker seshioations were below 3 minutes (83%). Heliza
most frequently performed allow actions closely followsctie number of occasions on which it forged output
for the attackers. Heliza explicitly blocked 31% of the itgoand deliberately insulted attackers in 17% of the
cases. The country code corresponding to the IP addressgbyattackers was looked-up and the distribution
is shown in the right part of table 8.4 (right part). Most ekiers came from Romanian IP addresses. 16% of
the attackers came from German IP addresses and 10% ofdbkeatt had a Spanish IP addresses.

8.6 Fast Concurrent Learning

Heliza has some weaknesses to interact with learning aitadlecause their are considered as environment
for Heliza. This problem is tackled with the adaptive hor@yim this section. The learning of attackers is
hard to verify. Therefore, we used the honeypot traces itestin section 8.1 and 8.2 as ground truth for
learning evaluation and serve for setting up the honeypttnaaton. The traces contain 47 states including
programs installed during the setup of the honeypot. Prograstalled by attackers are mapped to the state
u* and insults to the stateg ,, which are mapped to computed minimal Levenshtein distawithsrespect to
installed programs. We observed 436f@alent transitions between programs. In addition, the ddbepween



130 CHAPTER 8. EXPERIMENTAL EVALUATIONS

two successive programs were used, serving as reward footieypot. In order to recover the pakgfor the
attackers, the last program execution was recorded whereaiheypot allowed all the transitions. This means
that the honeypot had not interfered with the attacker andsgeime that the attacker reached their goal. The
observed delays and minimal Levenshtein distances pesmit compute the rewards.

In the following we addressed how fast the learned Q-valtasilize. During the experiment no discount-
ing factor was usedy(= 1) with the purpose of arriving at a worst case scenario fikzation. By selecting
v <« 1, the values should stabilize faster [161]. Due to spacsoreaonly a few relevant states are represented
in figures 8.8(a), 8.8(b), 8.9(a) and 8.9(b). The discretetiis shown on each x-axis, while the y-axis gives
the learned Q-value. The stdlte is a typical system command for listing files and sometimendasory for
performing an attack, but in general this command is not demgs assuming that there are no confidential files
on the honeypot. Hence, the attackers and the honeypot maitarsnterests when this command is allowed.
In figures 8.8(a) and 8.8(b) the Q value evolution for botlygia is represented. When an attacker wants to
continue the attack, this command should be allowed. Somastithe honeypot also insulted the attacker or
substituted the commariad due to thee-greedy explorer, but the respective learners noticedttigse actions
are not suited for this state. However, sometimes the isiteref an attacker and the honeypot diverge. For
instance, this is the case for the toglet. This tool is frequently used to download arbitrary files &ndften
one of the last steps of an attack. Thus, when an intruderstarmontinue the attack, the best choice from the
honeypot is to allow this command (figure 8.9(a)). If the hgoot substitutes the execution of this program,
an attacker usually finds alternative commands for installhe desired customized tool. From the honeypot’s
perspective it is better to substitute the execution of thgi@amwget in order to keep the attacker longer active
(figure 8.9(b)).

For each command entered, the honeypot needs to decideantethllow this command to block the
program execution, to substitute the output of the prograto msult the attacker. Q values are then recorded
for each player. Figures 8.10(a) and 8.10(b) show the age@agalues, represented on the y-axis, for the
honeypot in dferent states, shown on the x-axis. Rewards are distribatad-étroactively. This means that
an attacker is at statg and wants to move to state ;. The honeypot reacts by choosing the acégnThe
state transition is made or not made according to the aefioAfter this move the rewards are distributed for
each player for the stat®. In figure 8.10(a) a subset of statdsl, sh, bash, unset} can be identified, where
the highest averaged Q value occurs when the attackersratdemmand. The commands in the set are usually
common system commands and when the attacker arrives at skaes, the attack is usually continued by
retrying successive commands. For instance, the attaalses Bhell meaning that he or she is atiihgh state
and he or she wants to execuiget. Even when this transition is blocked, the attacker cahgiibtinue the
attack by retrying the command. The situation iffatient for theinsult state. Attackers sometimes reach
the insult statel, when they make a typographical error or when they enter amawk command. When
the honeypot returns an error like command not found, tleekdr assumes that the program is not installed
on the system and tries to use dfelient program. If the attacker made a typographic error, hg emter
the intended program which is also considered &gsmdint program input. Hence, the highest average Q-value
results in the selection of an an alternative path. Figut8(&) presents the average Q values when the honeypot
substitutes the command. The programsname anduptime are first commands entered by attackers in order
to identify the system that has been compromised. In oue$rathe command is often the first command
entered. When the honeypot allows the transition to thie stad then starts substituting successive commands
like id, uptime the forged output is often not consistent with the outputhef programw. We assumed that
some attackers then realized that they were connected ke alfill, identified the honeypot and started to type
insults in the terminal, inducing a large Levenshtein distaleading to a high reward.

We implemented a fast concurrent learning module for our Aftlnework, which is publicly available
[174]. The resulting honeypot was operated for 8 hours inrdrotled environment and 15 attacks have been
observed. The average attack duration is 260 seconds orotteypot, which confirms the average attack
duration of 238 observed during the experiments driven &ges. In order to do a more fine grained analysis,
additional theoretical research needs to be done aiming assessment of learning techniques from empirical



8.6. FAST CONCURRENT LEARNING

131

Average Q value

Is for attacker - attacker acticacontinue

0.07
J——
0.06 | e 1
P
0.05 FJ_fﬂ —
0.04 - r allow —— ]
,_H substitute
| block -
0.03 - f’ insult 7
002} | 1
i
[
0.01 | |
ol

0 100 200 300 400 500 600 700 800 900
t

(a) Attacker’s Perspective

&

1000

Is for honeypot - attacker acticacontinue

18 . .

16 A

14| — ]

12} ——I i
allow ——

10 substitute 1

gl block -]
insult

6 L 4

4L i

2L 4

0 Il 1 L L L L i I L i

0 100 200 300 400 500 600 700 800 900

t

(b) Honeypot’s Perspective

Figure 8.8: Q-value Evolution for the State

wget for attacker - attacker actiencontinue

0.008 T T
allow ——
0.007 1 substitute
block - !
0.006 |- insult — ]
L
0.005 Hf —

0.004 - J B
0.003 + J ]

0.002 - r‘ 1

0.001 - ]

0 b . . . .
0 100 200 300 400 500 600 700 800 900
t

(a) Attacker’s Perspective

1000

12

0.8

0.6

0.4

0.2

0

waget for honeypot - attacker actiencontinue

— allow ——
| substitute

— block - ]

insult

0

100 200 300 400 500 600 700 800 900
t

(b) Honeypot’s Perspective

Figure 8.9: Q-value Evolution for the Staiget

Q(retry, block) ms
Q(alt,block) mmm=m

= 2 5 5 ¢« 2 2 5 F
©
2 E 4§ 5 5
mQ_
State

(a) Block Impact

Average Q value

chmod

Q(retry,subst) s
Q(alt,subst) = _
= ° oy
EE=¢2gs2e =38 :
g o s 2 2 B
5 3 5 7 g
State

(b) Substitute Impact

Figure 8.10: Impact when the Honeypot Blocks or SubstitRregram Executions

1000

1000



132 CHAPTER 8. EXPERIMENTAL EVALUATIONS

data because we do not know which learning approaches taakets use. If these challenges are solved, a
larger dataset is heeded for doing this analysis, but thedieninary results already confirm that our approach
can be implemented and operated.

8.7 Conclusions

This chapter has described experiments related to our isedpineypots. We operated two state-of the art
honeypots in order to to recover data of attackers. In otialnétudy, a high-interaction honeypot and a a
low-interaction honeypot were set up for this purpose. Thees from the high-interaction honeypot were
used to generate a hierarchical probabilistic automatdris fhen served as the basis for computing i&syo
via simulations with these paffs, we could to compute optimal strategy profiles for eachgrlayhe initial
aspect of adaptability of the honeypot to attacker is givemlocking one system call according to optimal
blocking probabilities resulting from the Nash equilibrihese probabilities depend on the pfiyianctions
used to model the objective of an adaptive honeypot.

We operated an adaptive honeypot with these blocking pititie and observed that attackers typically
enter three more commands than on a regular high-interalstioeypot. However, this approach has two major
disadvantages. Firstly, the optimal blocking probaleifitdepend on the particular instance of our hierarchical
probability automaton, and thus depend on recovered trased to generate it. Secondly, we assume that
attackers are always rational. This might not always be &éise.cNicomette et. al. [112] described observations
of script kiddies, who do not understand the details of aacéttbut just try blindly to apply a particular attack
technique. Thirdly, the adaptability of the adaptive hqguyis quite coarse grained. The optimal strategy
profiles for an adaptive honeypot define only a probabilitplotking or allowing the execution of a program,
while ignores, the context of the execution. Attackers daadsily perform a profiling attack on the adaptive
honeypot by executing the same command several times. Tesslthis issue, we operated an additional
adaptive high-interaction honeypot driven by reinforcatrearning. This approach, allowed us to estimate
the best behaviors for a given state, which corresponds tostalled program on the honeypot. In addition
we extended the adaption mechanisms of our adaptive hotseepadding the possibility of substituting the
execution of a program with another program, and of insgitive attacker. The outcome of this experiment is
a final action-value table that defines an adaptive’s horteyptimal behavior in a given state.

A comparison of the adaptive honeypot with a regular honeghows that attackers perfortinree times
more transitions (see figure 8.7(a)) to customized tools on the adaptive hmteyin addition, an adaptive
honeypot allows to observe the skills or social backgrouhdroattacker. Examples are whether attackers
respond to insults, or are clever enough to find alternathations to reach their attack goal. However, the
straightforward reinforcement learning approach defitegkers as the environment of the adaptive honeypot,
and ignores the étiering goals of the attackers and adaptive honeypots. ItHeaweakness that it ignores the
fact that attackers could learn too. Consequently, thaiegralgorithm has a slow convergence to the optimal
values for a given state. To counter this, we applied a fastwwent reinforcement learning algorithm in order
to achieve a better convergence for optimal behaviors ih state.



Chapter 9

Conclusions and Perspectives

9.1 Summary of the thesis

This thesis presents a new paradigm for adaptive highaatien honeypots. An adaptive honeypot can strate-
gically interfere with an attacker’s actions in order to mdier reveal more information about herself. The idea
of manually interacting with an attacker was pioneered éndlarly nineties by Cheswick [26]. We did a similar
experience and we observe that attackers have dedicaset gthals and that they want to reach. In order to
reach this goal, an attacker has to follow a path (i.e. haster @ sequence of commands). We identified three
actions an attacker could perform when she is diverted froiinegt attack path. Firstly, an attacker could retry
the command, either unchanged or witffelient command line arguments. Secondly, an attacker celddts
an alternative path to achieve an attack goal. Thirdly, gackér can simply leave the compromised system
because it is unattractive or because she cannot find anatlter means of reaching the initial attack goal.

After having described the assumed objectives and actibas attacker, this thesis described the utilities
and actions of an adaptive honeypot. Firstly, the main gbdlooeypots is to collect information about at-
tackers such as the tools or programs they use. Secondlyeypa should keep attackers busy. If attackers
quickly leave a honeypot this means it is unattractive tontfire terms of bandwidth, CPU power or installed
programs. Thirdly, an adaptive honeypot should stratdigiaaterfere with an attack, for instance, by block-
ing the execution of an attacker’s customized program. Bgguan increasing resistance against attackers,
an attacker’s skills can be assessed. They may give up, getnynands or intelligently look for alternative
solutions. Fourthly, attackers often often use alreadymomised machines as stepping stones for their at-
tacks. Consequently, an attacker’s source IP address dbescessarily reveal her origin. Hence, an adaptive
honeypot should reveal an attacker’s linguistic skillst iRstance, they may use a slang language or profanities
that reveal their ethnic background.

An attacker and a honeypot havefdiing interests. The interaction between the honeypot andta
tacker can be modeled as a game, where appropriatdffayations model the goals observed in the real
world. Rather than individual attackers, an omnipresdatker is modeled. Thus, two players are considered.
Attackers penetrate the honeypot with the purpose of ragcthieir attack goal. The system penetrated by
attackers is modeled with a probabilistic hierarchicabendaton. Once attackers have entered a system, they
usually start to execute programs. Each program corresgoraimacro-state of the automaton. In addition, at-
tackers may execute programs with various command linenaggts. The ffect of a particular command-line
argument depends on the program. Hence, each program idaddnjea distinct automaton, where each state
corresponds to a command-line argument. Attackers engiglesees of commands, i.e. tokens in the alphabet
of the automaton, resulting in program invocation trigggriransitions in the automaton. The transitions are
described by transition probabilities.

We first used, traces from a high-interaction honeypot ionegé these transition probabilities and a number
of states. We used the resulting automaton for performingt®€arlo simulations in order to calculate pfigo
for each player and derive the optimum strategies using #ile kmown Nash equilibrium. However, such

133



134 CHAPTER 9. CONCLUSIONS AND PERSPECTIVES

equilibria depend on the attack traces used to generateaabealjlistic hierarchical automaton. Therefore, in
a further study we used reinforcement learning in conjamnctvith a model-free approach. This means that
the honeypot learns the optimum behavior as consequendse gpération. The honeypot is modeled as an
agent operating in an environment that aims to optimize argwignal. An omnipresent attacker is modeled
as acting in the honeypot's environment. However, this eg@gi ignores the fact that players hav&atient
interests, and makes the possibility false assumptionttigaenvironment is stationary. Therefore, our final
approach is to use a multi-agent learning approach to fréiseptoblem. This has the further advantage of
being dficient to implement.

9.2 Insights

The competitive nature between players has been modelédangame between two players, and a major
problem has been to find the optimal behavioral strategiegdoh player. Oferent reward functions have
been proposed for each player, including measurable paeesnel hese include the number of transitions an
attacker makes and the timdidrences between successive commands and inputs providathbiers. This
has the advantages that the honeypot can be operated awigsigrand that the attacks do not have to be
manually defined in contrast to previously-published apphes. Because it embodies transition probabilities,
our model, although it is presented a as hierarchical piibsiabd automaton, does follow traditional attack
trees, in which an attacker can reach a set of states repedsas nodes that are logically interconnected. A
premise of such an attack tree is that these logical interctions must be known in advance. This is not a
requirement for our proposed adaptive honeypots.

Proof-of-concept studies have shown that more informateombe gathered from attackers using adaptive
honeypots than regular high-interaction honeypots. Wegmted the use case of adaptive Linux systems. How-
ever, as discussed in chapter 5, we believe that the parafigohaptive honeypots is not necessarily restricted
to a given technology. Our experiments suggest that on gotisddoneypot attackers make more transitions
to using their own customized tools than on a regular higbrattion honeypot. In addition, we determined
that, on average attackers stay longer on adaptive horsetiment on regular high-interaction honeypots. An-
other powerful tool for an adaptive honeypot is the reversgng test that can distinguish between human
and automated attackers. Often when attackers believetimat attackers have insulted, they reply using in-
sulting language themselves. If no insult had been sent t@itanker's terminal, this information would not
have been captured. Hence, an adaptive honeypot is sorsatinieto reveal the linguistic background of an
attacker. As demonstrated in our experiments, adaptiveypmts are calibrated using pdigor a learning
rule. These can be tuned to collect attacker tools, whichaltable prizes for the anti-virus industry. Adaptive
honeypots can be configured to just keep attacker busy amdsedsure the resistance of attackers confronted
by failures. Finally, they can also be calibrated to coliesults from attackers; some combination of insults
and attacker-related programs. Taken together, insittsil@ded command failure and the reverse Turing test
serve as solid building blocks in the measurement of attadobavior and the identification of ethic and cul-
tural background. We have taken care, that adaptive hoteyam be operated in an automated way aiming
to reduce human interventions. We have shown the exampldagitize honeypots in the context of Linux
systems exposing vulnerable SSH servers. However, wevbdliat the adaptation paradigm is not restricted
to those systems and may be applied to a larger family of pmtey We believe that the paradigm of adaptive
honeypots may serve in industry to systematically explteekers behaviors. The retrieved information about
attackers may also serve for an improvement of existingitderaction honeypots.



9.3. LIMITATIONS 135

9.3 Limitations

9.3.1 System Attacks

An adaptive honeypot only interferes with program exeawdidirectly triggered by an attacker. Attackers can
make indirect attacks by installing a script on the honeypolater execution by the system itself, for example
as aCRONjob. In this case, an attacker can disconnect from the harteyp theCRONdaemon continues the
attack. The honeypot only observes and interacts with thentands related to the deployment of the script.
All program executions initiated by the system are allowgdbfault. Hence, an attacker could bypass the
adaptation mechanisms by disguising herself as the sydtenrder to counter this attack, the system model
must be extended with additional information such as irtifite system knowledge. A taint analysis must be
made in order to track all pieces of information related t@attacker. Each program handling such pieces of
information has to be considered, and by default should eatlowed.

A similar attack against the system is the installation ofadditional remote control mechanism. The
deployment of such a backdoor can be observed and takencowarat by the honeypot. The backdoor is then
set up using a program that accepts incoming connectionsdediaated port. When the attacker leaves the
honeypot, she wants the backdoor to remain, meaning thatotinesponding program must run as a daemon
otherwise it will be terminated by the kernel. The attaclemonnects to the system through the backdoor and
is presented with a shell. This results in program execugi@iem calls. However, the honeypot believes that
these system calls are related to the system itself andsaittoem by default. The problem in this case is that
the assumption that attackers enter the system via SSHI@&edo However, such an assumption is heeded to
guarantee a stable system. If the honeypot interferes Wilystem calls, the startup of the operating system
would fail and could not operate. The deployment of specialMall rules does not necessarily help. An
attacker could use the Browser Exploitation Framework (Be&s a backdoor so that the honeypot operator
only observes outgoing HTTP fiec. When HTTP tréic is blocked the honeypot becomes unattractive for
an attacker. Instead of creating a process tree when the &8tdah clones a privileged process, a process
tree could be created for an arbitrary programs that accepiming connections on any network interface.
However, this requires additional implementatigfoe in kernel space. The local network interface also has to
be considered, because an attacker could implement a bachdd accepts only incoming connections. She
can then connects to this service through a legitimate S8httu

Moreover, an attacker could confound the states of the fioleiGal probabilistic automaton by overwrit-
ing existing programs. This strategy could bypass the iegralgorithms when a state-action pair has been
optimized. For instance, suppose that a learning algorftaendetermined that the program should always
be allowed because future rewards are likely to be high. fackér can replace the progrdm with her cus-
tomized attack tool and ensure that it is always possibledowe it. This attack can be mitigated by computing
checksums of each installed program at each system caligaits in a program execution. This checksum is
then compared with the initial tamper-proofed checksunth@fprograms. However, this mitigation technique
requires additional implementatioffert in kernel space and results in a performance overhead.

Also, the Linux Pluggable Authentication Module (PAM) cddie patched in a fferent way. A clever at-
tacker might find a machine that has multiple standard adsdile test, admin, ftp etc with the same password,
suspicious. A game making login more challenging for ataskcould be developed.

Kernel Attacks

The honeypot's interference with an attacker's commankisstalace in kernel space. To circumvent this, an
attacker could install her own kernel and reboot the systdnmitigation technique to such an attack is to
instrument the virtual machine so that a reboot is trandlate a power-& When a honeypot operator sees
that the honeypot had been switchdtl die could check the checksums of the kernel binary and diterm
whether it has been modified. An attacker could alternatiiredtall and load a kernel module, that modifies
the honeypot adaptation code. In this case, an attackeffiemttie system call table that points to the code of



136 CHAPTER 9. CONCLUSIONS AND PERSPECTIVES

the system calls. However, in our proposed design, the keaue is directly modified such that the attacker
must alter more than one instruction and addresses mustiseaquently realigned requiring a largéogt on

the part of an attacker. Furthermore, our honeypot reliea monolithic kernel, where no additional modules
can be loaded. Another possibility for modifying the kermeimory is through the special devi¢geev/kmem,

but this feature could also be switchefi. oFinally, an attacker could use a kernel exploit in orderdoeas
kernel memory. This risk cannot be entirely eliminated liseanew kernel exploits emerge from time to time.
Therefore, the kernel should always be kept aligned withdlest security patches. Due to the fact that our
modifications have been made in parts of the kernel code dnelyrchange, updates can be accomplished by
merging our kernel repository clone with the original, gsgit. An adaptive honeypot may interrupt some
commands in command blocks where normally all commandsaMoeisuccessful or all would fail. The case
where only one fails might be suspicious to some attackeh® ifitrospection of virtual machines is praised
to be bullet proof for constructing high-interaction hopets [194]. However, assumptions must be made on
interpretation of the observed data. An attacker capablaaxfifying the kernel could alter the system call
order resulting in misinterpretation of the observed d&ar proposed design is not to be meant bullet proof
however we defined the residual risk as acceptable for tHaati@n of adaptive high-interaction honeypots.

9.3.2 Behavioral attacks

Chapter 5 presents a game between the honeypot and an osenipattacker. A major assumption of game
theory is that expecting rational players in simple gameas.cdse of attackers, taking this for granted for
attackers is questionable. In practice, it is not always.trihere are for instance, script kiddies who simply
copy and paste commands to the compromised system withdetstanding them. There are also attackers
who have good Windows skills but poor Linux skills [197]. Tindividual discipline of attackers may also vary
[197]. In order to mitigate the rationality problem, a qualmesponse equilibrium analysis can be carried outin
order to see how stable the Nash equilibria are [61]. Whetr#loes are recovered to calibrate the game model,
attackers could poison the transition probabilities byfgrening dummy automated attacks resulting a biased
automaton. Additional research should be done on the himglefi automata in order to tackle this problem.
Another assumption of the Nash equilibrium is that playersidt deviate from the optimal strategy. However,
attackers could make profiling attacks to reveal the stiesegf the honeypot. As a result, they could change
their strategy during the game in order to gain additionabathge. Such attacks have been partially addressed
by using the model-free learning approach presented ifoseg12.

Since the semantics of the programs are not considered,taoket could abuse existing programs to
achieve particular goals. Instead using the progianto list a directory an attacker could use the command
echo * and obtain the same result. When a learning approach is thecitihmediate rewards may be assigned
to the wrong state, possibly slowing down convergence tim@btvalues. A solution to this problem is to man-
ually define super states [15] on top of the existing hiefiaedlprobabilistic automaton that take the semantics
of each program into account. Program profiles defined intehapcould be used to identify a program in-
stead of using the program file name. Markovian environmeittspartially visible states [189] could be used
instead of simple Markov decision processes.

9.4 Future Work

In this thesis, the interactions of attackers with a honewpe formally modeled an evaluated. Attackers are
assumed to be omnipresent. We elected to not considerdiodivattackers. However, game and learning mod-
els that take into account swarms of attackers could be segbleolluding in order to discover their individual
role during an attack.



9.4. FUTURE WORK 137

9.4.1 Alternative Honeypot Designs and Feature Extensions

Our adaptive honeypot paradigm builds on top of User-Mouhert. As described in section 9.3, this design

choice leads to traditional high-interaction problems.rtd&l machine introspection [59] could be used in

order to ensure that an attacker cannot modify observatimsdecision-making routines. An alternative

solution would be to extend mid-interaction honeypotseJuastonio Coret [34] implemented Kojoney, an SSH

honeypot purely in Python so reducing the operational fidle author reimplemented a sub-set of frequently
used programs in Python. The Kippo honeypot is another niitaction honeypot implemented entirely

in python. This honeypot includes a fake file system in whittackers believe that they can create files.
These are particularly interesting for a honeypot oper&ach a mid-interaction honeypot could be extended
with the proposed adaptation mechanisms. However, an opdtem is to make attackers believe that they
are executing their own programs. Jose Antonio Coret [3dfjrdjuished human from automated attacks by
applying heuristics to an attacker’s keystroke dynamicgehSlynamics could also be included in our proposed
reward models.

Before a widespread deployment of adaptive honeypotss itkerneed for a detailed performance analysis.
However, an individual analysis has to be made for eachitlegaigorithm. The proposed adaptive honeypots
are only capable of insulting in English. Language modutegdbe added such that the honeypot could swear
in different languages or even in the attacker’s native languagere®earch activities have focused on adaptive
high-interaction honeypots exposing a vulnerable SSHarThe paradigm of adaptive honeypots could be
extended to other types of services like email and the web][20Ve considered games between attackers
and honeypot operators at the operating system level. Hawexe could model adaptive network routers
specialized in collecting attackers’ tools based on gareerthand reinforcement learning. We could also
investigate the presentation of adaptive client honeypstautonomous services. Client honeypots were not
addressed in this thesis; instead of emulating a vulnesasdrdce, they mimic a careless user visiting dubious
web sites. A major research challenge in this area is toiigermgue web-sites using a learning approach.
The crawling technique typically used for this purpose @sinsof recursively visiting web sites. However,
this method is often irféicient, and costly in terms of resources due to the large welafrdata that must be
processed. [134]. Autonomous and collaborating swarmgefits driven by reinforcement learning [69] may
be a research track that can tackle this problem. The probfehe in-vivo analysis of malicious software has
been briefly mentioned. However, we believe that additionalware analysis research should be done in this
area.

9.4.2 Additional Honeypot - Attacker System Games

Once an attacker enters the system, she starts to executearwhn that result in program executions. Our
current adaptive honeypot can allow this execution, stultstthe execution with another program or insult the
attacker. The honeypot can also block the program execufibapter 7 suggest that an arbitrary exit code could
be returned. However, in the evaluations, Heemission Denied exit code was used. However, examining
the Linux kernel's header file defining error types it is clé@at many other errors could be returned. A
straightforward extension of the honeypot game would bategrate dierent exit codes into the game model.
As a result, the action space of the honeypot would increagedportion to the number of possible errors.
At system-call level, attackers also create, read and filéie An adaptive honeypot could also interfere with
these system calls. Again, this would dramatically inceeth® action space of the honeypot. Current adaptive
honeypots only consider programs and ignore their commiaedakguments in their learning algorithms and
computing the Nash equilibrium. Arguments could also béushed, again increasing the action space of the
honeypot. Such increases, impact algorithmic compleXitiearning algorithms and the computation of the
Nash equilibrium, but would permit the modeling of finerians for the honeypot.

Attackers penetrate the system through the SSH service.teh ar the Unix authentication module has
been suggested for two reasons: firstly, to make it easiextfackers to access to the system; secondly to avoid
the possibility of an attacker changing an account to lotlerst out. However, a clever attacker performing



138 CHAPTER 9. CONCLUSIONS AND PERSPECTIVES

a brute-force attack against the system will notice thagiaccounts have the same password and become
suspicious. A formal game could be modeled in which the hpaehas to discover the best strategies for
letting more experienced attackers in while discouragiogjaes.

In this thesis, strategic games have been modeled betwieekeats and adaptive honeypots. However, other
types of games could be modeled, such as Stackleberg gabigoflblufing games [19]. In a Stackleberg
game, leaders and followers are defined. Bayesian gamesd8ld also be modeled, allowing other types of
equilibria to be investigated, among them the Bayesiaribgaj which would provide a link between adaptive
honeypots and Bayesian learning.

Cooperative Adaptive Honeypots

Formally, games defined between attackers and honeypotmares represented in the normal form, and are
either zero-sum or general-sum games which model just oneyipot under attack. Groups of honeypots
sharing data among themselves could be modeled. The shati@dniyht concern vulnerabilities and content
exposed to attackers. In addition, strategies could beagxgd among honeypots. Hence, Stackelberg games
where one honeypot takes a leaders role and the others $odlould be developed. Cohen’s deception tech-
niques [31] could be automated and distributed. Each haneypuld dfer a given number of services and
relay real services. The leader would then discover thecgnthat detain attackers for the most time, and
share this information with other honeypots in order to kadarger attacker group busy. By introducing the
idea of having multiple honeypots into the reinforcememrténg area, collaborative learning or hierarchical
learning techniques [14] could be used to calibrate codperadaptive honeypots.



Author’s publications

Scientific Awards

e Best Paper Awarat 4th International Conference on Network and System 8gclelbourne, Septem-
ber, 2010.

e Best Student Paper Awaat the 11th International Symposium on Stabilization, §afnd Security of
Distributed Systems (SSS 2009) in Lyon, France, 2009.

Publications

Scientific Journal Publications

e Gérard Wagener, Radu State, and Alexandre Dulaunoy. Mal@haviour analysis. Journal in Com-
puter Virology, 4(4):279, 2008.

e Gérard Wagener, Radu State, Alexandre Dulaunoy and Th&ngsl. Heliza: Talking Dirty to the
Attackers. Journal in Computer Virology, 2010.
Accepted Journal Publications

e Gérard Wagener, Radu State, Alexandre Dulaunoy and Thé&ngsl. Playing with Your Enemy: A
Game Theoretical Approach for High Interaction-HoneypoSCM Journal of Transactions on Au-
tonomous and Adaptive Systems (TAAS), 2011.

Conference Publications

e Gérard Wagener, Radu State, Alexandre Dulaunoy. Malwateatour Analysis. In proceedings of the
2nd International Workshop on Theory of Computer ViruseS\{12007), May 2007, Nancy, France.

e Gérard Wagener, Alexandre Dulaunoy, Radu State. Autamdedware Behaviour Analysis. Presented
at hack.lu, October 2007.

e Gérard Wagener, Alexandre Dulaunoy and Thomas Engel. stndmented Analysis of Unknown Soft-
ware and Malware Driven by Free Libre Open Source Softwaneprdceedings of SITIS, November
2008.

e Geérard Wagener, Alexandre Dulaunoy and Thomas Engel. fsaan estimation of the accuracy of
TCP reassembly in network forensics. Proceedings of ther8emmternational Conference on Future
Generation Communication and Networking, pages 273-278.

e Geérard Wagener, Radu State, Alexandre Dulaunoy and Thamgsl. Self adaptive high interaction
honeypots driven by game theory. In the 11th Internationahi®sium on Stabilization, Safety, and

139



140

CHAPTER 9. CONCLUSIONS AND PERSPECTIVES

Talks

Security of Distributed Systems (SSS), volume 5873 of LiecNotes in Computer Science, pages 741-
755 Springer, Lyon, 2009.

Cynthia Wagner, Gérard Wagener, Radu State and Thomad. BEviglevare analysis with graph kernels
and support vector machines. In 4th International Confa¥eam Malicious and Unwanted Software
(Malware 2009), pages 63-68, Montreal, October, 2009.

Cynthia Wagner, Gérard Wagener, Radu State, Alexandraubol and Thomas Engel. Breaking Tor
Anonymity with Game Theory and Data Mining. In the 4th Inteional Conference on Network and
System Security. Melbourne, September, 2010.

Cynthia Wagner, Gérard Wagner, Radu State Alexandre Dolaand Thomas Engel. PeekKernelFlows:
Peeking into IP flows. In the 7th International Symposium @udlization for Cyber Security, Ottawa,
2010.

Geérard Wagener, Alexandre Dulaunoy, Radu State and Thamgal. AHA - Adaptive High-Interaction
Honeypot Alternative. Presented at hack.lu, October, 2010

Gérard Wagener, Radu State, Alexandre Dulaunoy and Th&mgeal. Adaptive and Self-Configurable
Honeypots. Inthe 12th IFJEEEE International Symposium on Integrated Network Mamaget, Dublin,
2011.

Malware Reverse Engineering. LIASIT Seminar, Luxemboigyil, 2006.

Attacking the TCP Reassembly Plane of Network ForensictgsTéb-Underground XI, Warsaw, October
2008.

Gérard Wagener, Frédéric Raynal, Alexandre Dulaundyjstbphe Kyvrakidis. Detecting User Mode
Linux Honeypots is fine ... butit's better to crash them. BPnésd at hack.lu in the barcamp, Luxembourg,
October 2008.

Game-Theoretic Honeypot Control. Future Challenges imidit Security, Prague, June 2010.



9.4. FUTURE WORK 141

Open Source Contributions

Discovered and Reported Bugs

Table 9.1 describe the bugs. The bugs have been reporte@ toftware maintainers. The first column
describes the destination where a given bug was filed. Tireab bug tracker from the Linux kernehas the
code K and the bug tracker Launchpasi denoted L.

Destination.| Bug Identifier| Bug Description

L 289983 Tcptrace is vulnerable against some of the fragrouterkstac

L 245531 Use of uninitialized bytes during TCP reassembly (patcippsal)
L 252604 Stack overflow in the bvi package

L 256122 DOS vulnerability in tcpflow

L 289976 Segmentation fault on tcpick with fragmented IP packets

L 364688 Tcpick uses wrong timestamps in the output

K 11974 UML crashing as non-root with a specific mmap

Table 9.1: Reported Vulnerabilities

Developed Projects

Project Name Project Description Reference

ANNE Malware Sandbox httfysourceforge.ngbrojectganng
FIW Highlevel Debugger httpygit.quuxlabs.com

AHA Adpative High-Interaction Honeypot htiffgit.quuxlabs.com

https;/bugzilla.kernel.org
2httpsy/launchpad.ngt



142 CHAPTER 9. CONCLUSIONS AND PERSPECTIVES




Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]
[13]

Pieter Abbeel, Adam Coates, Morgan Quigley, and Y. Ng vemd An application of reinforcement
learning to aerobatic helicopter flight. Bdvances in Neural Information Processing Systepagies
1-8. MIT Press, 2007.

Eric Alata, lon Alberdi, Vincent Nicomette, Philippe Owegki, and Mohamed Kaaniche. Internet
attacks monitoring with dynamic connection redirectionchranisms. Journal in Computer Virology
4(2):127-136, 2008.

Eric Alata, Vincent Nicomette, Mohamed Kaaniche, Marc iaand Matthieu Herrb. Lessons learned
from the deployment of a high-interaction honeypot.Diependable Computing Conferenpages 39—
46, 2006.

K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xulis, E. Markatos, and A.D Keromytis. Detecting
targeted attacks using shadow honeypotsPioceedings of the 14th conference on USENIX Security
Symposiupwvolume 14, Berkeley, CA, USA, 2005. USENIX Association.

Spiros Antonatos, Kostas Anagnostakis, and Evangelaskdtos. Honey@home: A New Approach to
Large-Scale Threat Monitoring. Proceedings of the 2007 ACM workshop on recurring malcpdges
38-45, New York, NY, USA, 2007. ACM.

Paul Baecher and Markus Koetter. Dionaea catches bhgsp://dionaea.carnivore.it/. Last
accessed, February 2011.

Paul Baecher, Markus Koetter, Thorsten Holz, MaximaitliDornseif, and Felix Freiling. The Nepenthes
Platform: An Hficient Approach to Collect Malware. In Diego Zamboni and Gtapher Kruegel,
editors,Recent Advances in Intrusion Detectiamlume 4219 ofLecture Notes in Computer Science
pages 165-184. Springer Berfineidelberg, 2006.

George Bakos. Tiny Honeypohttp://freshmeat.net/projects/thp/. Last accessed December
2010.

Edward Balas. Sebek: Covert Glass-box Host Analytiegin Magazine 28(6), December 2003.

Edward Balas and Camilo Viecco. Towards a Third Gemanddata Capture Architecture for Honeynets.
In 6th IEEE Information Assurance Workshaages 21-28. IEEE, 2005.

Bikramijit Banerjee, Sandip Sen, and Jing Peng. Fast@oent Reinforcement Learners. Pnoceed-
ings of the Seventeenth International Joint Conference niificdal Intelligence pages 825-830, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

Daniel Barlow. Building your own live CDLinux Journa) 2005, April 2005.

Andrew G. Barto and Sridhar Mahadevan. Recent Advaicéserarchical Reinforcement Learning.
Discrete Event Dynamic Systemi8(1-2):41-77, 2003.

143



144 BIBLIOGRAPHY

[14] Andrew G. Barto and Sridhar Mahadevan. Recent Advaircéerarchical Reinforcement Learning.
Discrete Event Dynamic Systemi$(4):341-379, October 2003.

[15] Frédérique Bassino, Marie-Pierre Béal, and Domuei Perrin. Super-State Automata and Rational
Trees. InProceedings of the Third Latin American Symposium on T tieatdnformatics LATIN '98,
pages 42-52, London, UK, 1998. Springer-Verlag.

[16] Mick Bauer. Paranoid penguin: syslog configuratibmux Journa) 2001, December 2001.

[17] Richard Bejtlich. The Tao of Network Security Monitoring: Beyond Intrusiontd@don Addison-
Wesley Professional, 2004.

[18] Fabrice Bellard. QEMU, a Fast and Portable Dynamic 3iator. INUSENIX Annual Technical Confer-
ence pages 41-46, Berkeley, CA, USA, 2005. USENIX Association.

[19] Richard Bellman. On games involving Iffiung. Rendiconti del Circolo Matematico di Palermb:139—
156, 1952. 10.100BF02847783.

[20] Steven M. Bellovin. There Be Dragons. BRioceedings of the Third Usenix Unix Security Symposium
pages 1-16, September 1992.

[21] Ken Binmore.Playing for Real Oxford University Press, 2007.

[22] Bill Blunden. The Rootkit Arsenal: Escape and Evasion in the Dark Cornéthe SystemJones and
Bartlett Publishers, Inc., USA, 2009.

[23] Herman Anthony Carneiro and Eleftherios Mylonakis. d@le trends: a web-based tool for real-time
surveillance of disease outbreakSlinical infectious diseases: arfirial publication of the Infectious
Diseases Society of Amerjc#9(10), October 2009.

[24] Brian E. Carpenter. Observed relationships betwesn sieasures of the intern@lGCOMM Comput.
Commun. Rey39:5-12, March 2009.

[25] George Chamales. The Honeywall CD-ROMEE Security and Privagy2:77-79, 2004.

[26] Bill Cheswick. An Evening with Berferd in Which a Craakis Lured, Endured and Studied. Rro-
ceedings of the USENIX Conferenpages 163—-174. USENIX Association, 1992.

[27] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rin. Firewalls and Internet Security; Re-
pelling the Wily Hacker Addison-Wesley, Reading, Massachusetts, second edxif)8.

[28] Eric Chien. The New Generation of Targeted Attackshttp://www.raid2010.org/files/
EricChien.pptx, 2010. Keynote at Recent Advances in Intrusion Detection.

[29] Benoit Claise. Cisco Systems NetFlow Services Exggatem, Oct 2004. RFC 3954.

[30] Allison L. Coates. Pessimal Print: A Reverse TuringtTes ICDAR '01: Proceedings of the Sixth
International Conference on Document Analysis and Retioghipages 1154-1159, Washington, DC,
USA, 2001. IEEE Computer Society.

[31] Fred Cohen. A note on the role of deception in informaiootection Computersi Security 17(6):483—
506, 1998.

[32] M. Collins and N. Dify. Convolutional Kernels for Natural Languag&dvances in Neural Information
Processing Systems,12002. MIT Press.



BIBLIOGRAPHY 145

[33] Jonathan Corbet, Alessandro Rubini, and Greg Kroaftrhtn. Linux Device Drivers, 3rd Edition
O’Reilly Media, Inc., 2005.

[34] Jose Antonio Coret. Kojoney — A honeypot for the SSH 8srvhttp://kojoney.sourceforge.
net. Last accessed December 2010.

[35] Richard W. Cottle, Jong-Shi Pang, and Richard E. StoFiee Linear Complementary ProblenAca-
demic Press, 1992.

[36] M.F. Cowlishaw. Fundamental Requirements for pictoresentation. IifProceedings of the Society for
picture presentationvolume 26, pages 101-107, 1985.

[37] Mark Crovella and Balachander Krishnamurthyternet Measurementhapter Issues in capturing data,
pages 101-102. John Wiley & Sons Ltd, 2006.

[38] Marc Dacier. Leurré.com: a worldwide distributed legnet, lessons learned after 4 years of existence.
In Terena Networking ConferencBruges, Belgium, May 2008.

[39] Marc Dacier, Corrado Leita, Olivier Thonnard, Hau Phand Engin Kirda. Assessing Cybercrime
Through the Eyes of the WOMBAT. In Sushil Jajodia, Peng LiipivSwarup, and Cff Wang, editors,
Cyber Situational Awarenesgolume 46 ofAdvances in Information Securjtgages 103—136. Springer
US, 2010. 10.100978-1-4419-0140-%.

[40] David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee, Julianz&ard, John Levine, and Henry Owen.
HoneyStat: Local Worm Detection Using HoneypotsRicent Advances in Intrusion Detectienlume
3224 ofLecture Notes in Computer Scienpages 39-58. Springer Verlag, 2004.

[41] Abhishek Das, David Nguyen, Jospeh Zambreno, Gokhamikleand Alok Chouldhary. An FPGA-
Based Network Intrusion Detection Architecturéaformation Forensics and Securit(1):118-132,
Mar 2008.

[42] Jet Dike. User Mode Linux Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[43] Artem Dinaburg, Paul Royal, Monirul I. Sharif, and Wenkee. Ether. malware analysis via hardware
virtualization extensions. In Peng Ning, Paul F. Syverso, Somesh Jha, editoSCM Conference on
Computer and Communications Securjtages 51-62. ACM, 2008.

[44] Kevin Dooley. Designing Large Scale Lan®’Reilly Media, November 2001.

[45] George W. Dunlap, Samuel T. King, Sukru Cinar, MurtazaBasrai, and Peter M. Chen. ReVirt:
Enabling Intrusion Analysis through Virtual-Machine Lagg and Replay. Inn Proceedings of the
2002 Symposium on Operating Systems Design and Impleivenf@SDI) pages 211-224, 2002.

[46] Thomas E. Carrol and Daniel Grosu. A Game Theoreticdtigation of Deception in Network Security.
In Proceedings of 18th International Conference on Compu@m@unications and Networkpages
1-6. IEEE, 2009.

[47] Jon Erickson.Hacking: The Art of Exploitation 2nd EditionNo Starch Press, 2nd edition, February
2008.

[48] Kevin FairbanksForensic framework for honeypot analys®hD thesis, Georgia Institute of Technology,
April 2010.

[49] Eric Filiol. Computer Viruses: from theory to applications (CollectiBiS). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.



146

BIBLIOGRAPHY

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]
[65]
[66]

[67]

[68]

[69]

A.M. Fink. Equilibrium in a Stochastic n-Person Gandeurnal of science of the Hiroshima university
28:89-93, 1964.

Brad Fitzpatrick. Distributed caching with memcaché&thux Journa) 2004, August 2004.

Mark Fleischer. The measure of pareto optima. apptinatto multi-objective metaheuristics. Evo-
lutionary Multi-Criterion Optimization. Second Internahal Conference, EMO 200®ages 519-533.
Springer, 2003.

Foster and C. Jamebletasploit Toolkit for Penetration Testing, Exploit Dey@inent, and Vulnerability
Research Syngress Publishing, 2007.

Stefan Frei, Martin May, Ulrich Fiedler, and Bernharthtther. Large-scale vulnerability analysis. In
LSAD '06: Proceedings of the 2006 SIGCOMM workshop on Laggde attack defenspages 131—
138, New York, NY, USA, 2006. ACM.

Drew Fudenberg and Jean Tiroléame TheoryMIT Press, August 1991.

Drew Fudenberg and Jean Tirole. Perfect Bayesianibguiin and sequential equilibriumlournal of
Economic Theory53(2):236 — 260, 1991.

Fyodor. Remote OS Detection via T@P Stack Fingerprinting, October 1998.

Luca M. Gambardella and Marco Dorigo. Ant-Q: A Reinfengent Learning approach to the traveling
salesman problem. IRroceedings of the ML-95, 12th international conferencarachine learning
pages 252-260. Morgan Kaufmann, 1995.

Tal Garfinkel and Mendel Rosenblum. A Virtual Machinéraspection Based Architecture for Intrusion
Detection. InNetwork and Distributed Systems Security Symposium (NP&§s 191-206, 2003.

Jan Gobel. Amun: A Python Honeypot. Technical Rep&t2009-008, University of Mannheim, 2009.

Jacob Goeree, Charles Holt, and Thomas Palfrey. ReQuiantal Response Equilibriurexperimental
Economics8(4):347-367, December 2005.

Navarro Gonzalo. A guided tour to approximate stringehang. ACM Comput. Sury.33(1):31-88,
2001.

Google. Google Scholahttp://scholar.google.lu/intl/en/scholar/about.htm.
Amy Greenwald. Matrix Games and Nash Equilibrium, 20D&cture.

Roger GrimesHoneyd Service Scriptpages 167-188. Springer, 2005.

P. Haag. nfdumpnfdump . sourceforge.net.

John C. Harsanyi. Games with Incomplete Informatioaytl by “Bayesian” Players, I-1ll. Partl. The
Basic Model.Management Scienc#4(3):159-182, 1967.

Brian Hay and Kara Nance. Forensics examination oftitelaystem data using virtual introspection.
SIGOPS Oper. Syst. Re#2(3):74-82, 2008.

lima Hitoshi and Kuroe Yasuaki. Swarm Reinforcemenaireng Method Based on an Actor-Critic
Method. InSimulated Evolution and Learningolume 6457 ofLecture Notes in Computer Science
pages 279-288. Springer Berlikleidelberg, 2010.



BIBLIOGRAPHY 147

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[86]

Thorsten Holz and Frédéric Raynal. Detecting Homegmnd Other Suspicious Environments.6th
IEEE Information Assurance Workshdpnited States Military Academy, West Point, 2005.

Honeypot Backgroundattp://www.honeyd.org/background. php.

Michael Howard, Jon Pincus, and Jeannette WiMigasuring Relative Attack Surfacgmges 109-134.
Springer, 2005.

Junling Hu and Michael P. Wellman. Multiagent Reinfemzent Learning: Theoretical Framework and
an Algorithm. Inln Proceedings of the Fifteenth International Conferennévtachine Learningpages
242-250. Morgan Kaufmann, 1998.

Junling Hu and Michael P. Wellman. Nash Q-Learning f@n@ral-Sum Stochastic Gamd©URNAL
OF MACHINE LEARNING RESEARCH:1039-1069, 2003.

Bert Hubert, Thomas Graf, Gregory Maxwell, Remco VandWpMartijn Van Oosterhout, Paul B.
Schroeder, Jasper Spaans, and Pedro Lakioyux Advanced Routing Traffic Control HOWTQ April
2004.

Choi Hyunyoung and Varian Hal. Predicting the Preseith oogle Trendshttp://www.google.
com/googleblogs/pdfs/google_predicting_the_present.pdf.

iDefense. MultiPothttp://labs.idefense.com/files/labs/releases/previews/multipot/.

Omar Ismail, Masashi Etoh, Youki Kadobayashi, and Sugtamaguchi. A Proposal and Implementa-
tion of Automatic DetectiofCollection System for Cross-Site Scripting Vulnerability Proceedings of
the 18th International Conference on Advanced Informabietworking and Applications/olume 2 of
AINA '04, Washington, DC, USA, 2004. IEEE Computer Society.

V Jacobson, C Leres, and S McCanne. tcpduhtxp: //vwww . tcpdump . org.

Grossklags Jens, Christin Nicolas, and Chuang JoheurBeor insure?: a game-theoretic analysis of
information security games. IRroceeding of the 17th international conference on WorldéNivVebh
WWW '08, pages 209-218, New York, NY, USA, 2008. ACM.

Chow Jim, Pf& Ben, Garfinkel Tal, Christopher Kevin, and Rosenblum Mendéhderstanding data
lifetime via whole system simulation. IIRroceedings of the 13th conference on USENIX Security Sym-
posium - Volume 133SYM'04, Berkeley, CA, USA, 2004. USENIX Association.

Leslie P. Kaelbling, Michael L. Littman, and Andrew W.ddre. Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research:237-285, 1996.

lonna Kantzavelou and Sokratis Katsikas. Playing Gamigh Internal Attackers Repeatedly. Rro-
ceedings of 16th International Conference on SystemsalSigimd Image Processingages 1-6, Los
Alamitos, CA, USA, June 2009. IEEE Computer Society.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalizedhels between labeled Graphs.Rrmoceedings
of the Twentieth International Conference on Machine LaaynlCML-2003, Washington DQ003.

H. Kashima, K. Tsuda, and A. InokucHernels for GraphsBy B.Schoelkopf, K.Tsuda, J.-P.Vert, The
MIT Press, illustrated edition, 2004. chapter 7, pp.156;1%3BN-100262195096.

Doya Kenji. Reinforcement Learning in Continuous Tiared SpaceNeural Computation12(1):219—
245, 2000.



148

BIBLIOGRAPHY

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]
[102]
[103]
[104]

[105]

Cho Kenjiro, Kaizaki Ryo, and Kato Akira. Aguri: An Agggation-Based Tfac Profiler. INnCOST
263: Proceedings of the Second International Workshop oali@uf Future Internet Servicepages
222-242, London, UK, 2001. Springer-Verlag.

Georgios Kontaxis, lasonas Polakis , Spiros Antonat@nd Evangelos P. Markatos . Experiences
and Observations from the NoAH Infrastructu@omputer Network Defense, European Conferenge on
pages 11-18, 2010.

Christian Kreibich and Jon Crowcroft. Honeycomb: ¢iag intrusion detection signatures using hon-
eypots.Computer Communication Revigd4(1):51-56, 2004.

Michael L. Littman. Markov games as a framework for nralgjent reinforcement learning. Rroceed-
ings of the eleventh international conference on machiamlag, pages 157-163. Morgan Kaufmann,
1994,

Corrado Leita, Ken Mermoud, and Marc Dacier. Automdtandling of protocol dependencies and
reaction to 0-day attacks with scriptgen based honeypotfecent Advances in Intrusion Detection
volume 4219 ol ecture Notes in Computer Scienpages 185-205. Springer Verlag, 2006.

C. E. Lemke. Equilibrium Points of Bimatrix Game3ournal of the Society for Industrial and Applied
Mathematics12(2):413-423, 1964.

Connie Li and Taufik Parsioan. Profiling Honeynet Attaick InProceedings of the Class of 2006 Senior
Conference on Natural Language Processipgges 19-26, Swarthmore, Pennsylvania, 2006.

Linux Kernel Documentation. http://www.kernel.org/doc/Documentation/networking/
ip-sysctl.txt. ip-sysctl.txt.

Tom Liston. Home page of “LaBreahttp://labrea.sourceforge.net.

Michael L. Littman and Csaba Szepesvari. A GenerdlReinforcement-Learning Model: Convergence
and Applications. Inn Proceedings of the 13th International Conference on Niael.earning pages
310-318. Morgan Kaufmann, 1996.

Robert Love.Linux Kernel Development (2nd Editionovell Press, 2005.

Kong-Wei Lye and Jeannette M. Wing. Game strategieseimark security. International Journal of
Information Security4(1):71-86, February 2005.

Federico Maggi and Stefano Zanero. Analysis of theestédithe-art.http://wombat-project.eu/
workpackages/wp2-analysis-of-state-of-the-a/. ICT-216026-WOMBAT.

O. L. Mangasarian. Equilibrium Points of Bimatrix Gam Journal of the Society for Industrial and
Applied Mathematicsl2(4):778-780, 1964.

Bill McCarty. The Honeynet Arms RacézEE Security and Privagyl(6):79-82, 2003.
E. H. McKinney. Generalized Birthday Problefmerican Mathematical Monthly3:385-387, 1966.
Bauer Mick. Paranoid penguin: AppArmor in Ubuntul9nux Journa) 2009, September 2009.

Mark Mitchell and Alex Samuel Advanced Linux ProgrammingNew Riders Publishing, Thousand
Oaks, CA, USA, 2001.

David Moore, Gefirey M. Voelker, and Stefan Savage. Inferring Internet dewfigservice activity. In
Proceedings of the 10th conference on USENIX Security Ssiomovolume 10, Berkeley, CA, USA,
2001. USENIX Association.



BIBLIOGRAPHY 149

[106] A. Moschitti. Hficient Convolution Kernels for dependency and Constitugmitagtic Trees. IrPro-
ceedings of the 17th European Conference on Machine LagrBierlin, Germany2006.

[107] A. Moschitti. Making Tree Kernels practical for NatiLanguage Learning. IRroceedings of the 11th
International Conference on EACL, Trento, I1taB006.

[108] Garg Nandan and Grosu Daniel. Deception in honeyn&tgame-theoretic analysis. limformation
Assurance and Security Workshop, 2007. IAW '07. IEEE 3p4Ges 107-113, 2007.

[109] John NashNon-cooperative game®hD thesis, Princeton University, May 1950.

[110] Nicholas Nethercote and Julian Seward. How to shadeevyebyte of memory used by a program.
In VEE '07: Proceedings of the 3rd international conferencevistual execution environmentpages
65—74, New York, NY, USA, 2007. ACM.

[111] Cameron Newham, J. Vossen, Carl Albing, and J.P. VosBash Cookbook: Solutions and Examples
for Bash Users O'Reilly Media, Inc., 2007.

[112] Vincent Nicomette, Mohamed KaanicHexic Alata, and Matthieu Herrb. Set-up and deployment of a
high-interaction honeypot: experiment and lessons leardeurnal in Computer Virologypages 1-15,
2010.

[113] Gupta Nirbhay. Improving theffectiveness of deceptive honeynets through an empiricedifepap-
proach, 2002. Paper presented at the 2002 Australian lat@mWarfare and Security Conference.

[114] NIST. Recommended security controls for federalinfation systems and organizations, 2010. NIST
Special Publication 800-53.

[115] Adam J. O’Donnell. When Malware Attacks (Anything Bindows). IEEE Security and Privagy
6:68—70, 2008.

[116] Aleph One. Smashing The Stack For Fun And Préftirack 7(49), November 1996.
[117] Michael Owens. Embedding an SQL database with SQLitaux Journa) 2003(110), 2003.
[118] Vern Paxson. tcpsliceftp://ftp.ee.1bl.gov/tcpslice.tar.gz.

[119] Jing Peng and Ronald J. Williams. Incremental mu#pxQ-learning. IrMachine Learningvolume 22,
pages 226-232, 1994,

[120] Kalyan S. Perumalla and Srikanth Sundaragopalan. h4fidelity Modeling of Computer Network
Worms. Computer Security Applications Conference, AnnQal26-135, 2004.

[121] Scott Piper, Mark Davis, and Sujeet Shenoi. CoungeHostile Forensic Techniques. In Martin Olivier
and Sujeet Shenoi, editoradvances in Digital Forensics,Ivolume 222 ofFIP Advances in Informa-
tion and Communication Technolagyages 79-90. Springer Boston, 2006.

[122] Michalis Polychronakis, Kostas G. Anagnostakis, Bwdngelos P. Markatos. Network-level polymor-
phic shellcode detection using emulatidimurnal in Computer Virology2(4):257-274, 2007.

[123] Ryan Porter, Eugene Nudelman, and Yoav Shoham. Si8gdech Methods for Finding a Nash Equi-
librium. In Games and Economic Behavigages 664—669, 2004.

[124] Georgios Portokalidis and Herbert Bos. Eudaemonolimtary and On-Demand Emulation Against
Zero-Day Exploits. IlProceedings of ACM SIGOPS EUROSY Sjiiyes 287—-299, Glasgow, Scotland,
UK, April 2008. ACM SIGOPS.



150 BIBLIOGRAPHY

[125] Georgios Portokalidis, Asia Slowinska, and HerbeosB Argos: an emulator for fingerprinting zero-
day attacks for advertised honeypots with automatic sigeafjeneration.SIGOPS Oper. Syst. Rev.
40(4):15-27, 2006.

[126] J. Postel and J. Reynolds. Telnet protocol specifinatilay 1983. RFC 854.
[127] Shawn Powers. Virtual Interfaces: When One IP Isndligh. Linux Journal September 2009.

[128] Niels Provos. A virtual honeypot framework. BSYM’'04: Proceedings of the 13th conference on
USENIX Security Symposiymerkeley, CA, USA, 2004. USENIX Association.

[129] Niels Provos, Markus Friedl, and Peter Honeyman. &rtrg privilege escalation. 1I8SYM’'03: Pro-
ceedings of the 12th conference on USENIX Security SynmyaBerkeley, CA, USA, 2003. USENIX
Association.

[130] Niels Provos and Thorsten Holirtual honeypots: from botnet tracking to intrusion deten. Addison-
Wesley Professional, 2007.

[131] Niels Provos, Panayiotis Mavrommatis, Moheeb AbuaRapnd Fabian Monrose. All your iFRAMES
point to Us. InProceedings of the 17th conference on Security sympo®&enkeley, CA, USA, 2008.
USENIX Association.

[132] Niels Provos, Dean Mcnamee, Panayiotis Mavrommakis, Wang, Nagendra Modadugu, and
Google Inc . The ghost in the browser: Analysis of web-basabivare. Inin Usenix Hotbots2007.

[133] Thomas H. Ptacek and Timothy N. Newsham. Insertioasien, and denial of service: Eluding network
intrusion detection. Technical report, Secure Networks,,ISuite 330, 1201 5th Street S.W, Calgary,
Alberta, Canada, T2R-0Y6, January 1998.

[134] M.T. Qassrawi and Hongli Zhang. Client honeypots: Aggehes and challenges. 4th International
Conference on New Trends in Information Science and Se®dimnce (NISSpages 19-25, May 2010.

[135] Daniel Ramsbrock, Robin Berthier, and Michel Cukigtrofiling Attacker Behavior Following SSH
Compromises. IIDSN '07: Proceedings of the 37th Annual IEEHP International Conference on De-
pendable Systems and Netwgnhages 119-124, Washington, DC, USA, 2007. IEEE Computee§o

[136] Michael RashLinux firewalls No Starch Press, San Francisco, CA, USA, first edition, 2007
[137] Eric S. Raymond. ncursekinux Journa) 1995, September 1995.

[138] Fréderic Raynal, Yann Berthier, Philippe Biondidananielle Kaminsky. Honeypot Forensics Part I
Analyzing the NetworklEEE Security and Privagy2(4), 2004.

[139] Fréderic Raynal, Yann Berthier, Philippe Biondiddbanielle Kaminsky. Honeypot Forensics, Part Il
Analyzing the Compromised HodiEEE Security and Privagy2, 2004.

[140] Jorg Rech. Discovering trends in software engimgewith Google trendSIGSOFT Softw. Eng. Notes
32(2), March 2007.

[141] Ripe.http://www.ripe.net/.

[142] Smalley S., Vance C., and Salamon W. Implementing 8&ktis a Linux security module. NAI Labs
Report #01-043, NAI Labs, Dec 2001. Revised May 2002.

[143] Tom Schaul, Justin Bayer, Daan Wierstra, Sun Yi, MeF@lder, Frank Sehnke andThomas, and Jurgen
Schmidhuber. PyBrainJournal of Machine Learning Researc010.



BIBLIOGRAPHY 151

[144] Stephan Schmidt, Tansu Alpcan, Sahin Albayrak, TaBaesar, and Achim Muller. A Malware Detector
Placement Game for Intrusion Detection. In Javier LopezBewhhard M. Hammerli, editor&ritical
Information Infrastructures Security (CSITIS), Seconginational Workshopvolume 5141 ot ecture
Notes in Computer Sciengeages 311-326. Springer, October 2008.

[145] Bruce Schneier. Attack treeBr. Dobbs Journal 24(12), December 1999.

[146] B. Schoelkopf and J. Smoléearning with Kernels The MIT Press, illustrated edition, 2002. chapter
1-3, pp. 1-78, ISBN-100262194759.

[147] Christian Seifert, lan Welch, and Peter Komisarczlikxonomy of Honeypots. Technical Report CS-
TR-06§12, School of Mathematical and Computing Sciences, PO B&\@6llington New Zealand,
June 2006.

[148] Linn I. Sennott. Average Cost Optimal Stationary Biek in Infinite State Markov Decision Processes
with Unbounded Cost®perations Resear¢i37(4):626—633, 1989.

[149] Lloyd Shapley. A note on the Lemke-Howson algoritiviathematical Programming Study:175-189,
1974.

[150] L.S. Shapley. Stochastic gamd&oceedings of the National Academy if Sciences of the diStates
of America 39(10):1095-1100, October 1953.

[151] M. Simaan and J.B. Cruz Jr. On the Stackelberg Stratebpnzero-Sum Gamegournal of Optimiza-
tion Theory and Applicationsl1(5):533-555, May 1973.

[152] Satinder P. Singh, Tommi Jaakkola, Michael L. Littmand Csaba Szepesvari. Convergence results for
single-step on-policy reinforcement-learning algorithilachine Learning38(3):287-308, 2000.

[153] Asia Slowinska and Herbert Bos. Prospector: accuaagdysis of heap and stack overflow by means of
age stamps. Technical Report IR-CS-031, Vrije Univershensterdam, 2007.

[154] Lance SpitznemHoneypots: Tracking Hackerg\ddison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[155] Abhinav Srivastava and Jonathonffi. Tamper-resistant, application-aware blocking of nialis net-
work connections. IfProceedings of the 11th international symposium on RecaévaiAces in Intrusion
Detection pages 39 — 58, Cambridge, MA, USA, 2008.

[156] W. Richard StevensTCPIP illustrated (vol. 1): the protocols Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1993.

[157] W. Richard StevensTCPIP illustrated (vol. 1): the protocols Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1993.

[158] Clifford Stoll. Stalking the wily hacketCommun. ACM31(5):484—-497, 1988.

[159] Jonathan Stone and Craig Partridge. When the CRC afdch€cksum disagre&lIGCOMM Comput.
Commun. Rey30(4):309-319, 2000.

[160] SurfNet. Surfidshttp://ids.surfnet.nl.

[161] Richard S. Sutton and Andrew G. Bar®einforcement Learning: An Introduction (Adaptive Coraput
tion and Machine Learning)The MIT Press, March 1998.



152 BIBLIOGRAPHY

[162] Kohonen T., Schroeder M. R., and Huang T. S., edit&slf-Organizing Maps Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 3rd edition, 2001.

[163] Ming Tan. Multi-Agent Reinforcement Learning: Indemlent vs. Cooperative Agents. ImProceed-
ings of the Tenth International Conference on Machine Ligynpages 330-337. Morgan Kaufmann,
1993.

[164] Werner Tillmann. Honeytraphttp://sourceforge.net/projects/honeytrap/. Last accessed,
December 2010.

[165] Transmission control protocol darpa internet praggotocol specification, 1981. RFC 793.
[166] Theodore Turocy. Gambihttp://gambit.sourceforge.net,2007. Last accessed, December 2010.

[167] Pham Van-Hau and Marc Dacier. Honeypot trace forenditie observation viewpoint mattefSuture
Generation Computer Systenhis Press, Corrected Proof, 2010.

[168] V. Vapnik. Statistical Learning TheoryWiley, 1998.
[169] Fernando Vega-RedondBconomics and the Theory of Gam&ambridge University Press, 2003.

[170] Enrigue Vidal, Franck Thollard, Colin de la Higueraahkcisco Casacuberta, and Rafael Carrasco. Prob-
abilistic Finite-State Machines-PartlEEE Trans. Pattern Anal. Mach. IntelR27(7):1013-1025, 2005.

[171] John von Neumann. Zur Theorie der Gesellschaftespiblathematische Annaleri00(1):295-320,
1928.

[172] John von Neumann and Oskar Morgensteifheory of Games and Economic BehavidPrinceton
University Press, 1944,

[173] Michael Vrable, Justin Ma, Jay Chen, David Moore, BEvindekieft, Alex C. Snoeren, Gficey M.
Voelker, and Stefan Savage. Scalability, fidelity, and aimmhent in the potemkin virtual honeyfarm.
SIGOPS Oper. Syst. Re89(5):148-162, 2005.

[174] Gérard Wagener. AHA Source Codettp://git.quuxlabs.com/.
[175] Gérard Wagener. Datasets:tp: //quuxlabs.com/~gerard/datasets.

[176] Gérard Wagener. AHA - Adaptive Honeypot Alternativehttp://archive.hack.1lu/2010/
Wagener-AHA-Adaptive-Honeypot-Alternative-slides.pdf, 2010.

[177] Gérard Wagener, Alexandre Dulaunoy, and Thomas Erfggaptive and self-configurable honeypots.
to appear in the 12th IFJEEEE International Symposium on Integrated Network Mamaget.

[178] Gérard Wagener, Alexandre Dulaunoy, and Thomas Enfmvards an estimation of the accuracy of
TCP reassembly in network forensics.Hature Generation Communication and Networkiaglume 2,
pages 273-278. IEEE Computer Society, December 2008.

[179] Gérard Wagener and Thomas Engel. Attacking the TC&s&anmbly Plane of Network Forensics Tools.
In IT Underground Xl Software-Konferencje, October 2008t tp: //quuxlabs.com/~gerard/pub/
TCPr.pdf.

[180] Gérard Wagener, Frédéric Raynal, Alexandre Dutgtiand Christophe Kyvrakidiattp://archive.
hack.1u/2008/barcamp/various-hack-1lu-uml.pdf, 2008. Presentation held in barcamp.



BIBLIOGRAPHY 153

[181] Gérard Wagener, Radu State, Alexandre Dulaunoy,Térmnas Engel. Self Adaptive High Interaction
Honeypots Driven by Game Theory. 88Svolume 5873 ot ecture Notes in Computer Sciengages
741-755. Springer, 2009.

[182] Gérard Wagener, Radu State, Alexandre Dulaunoy, Tdmamas Engel. Heliza: talking dirty to the
attackers.Journal in Computer Virology2010. Online first: doi 10.100811416-010-0150-4.

[183] Gérard Wagener, Radu State, and Alexandre Dulauli@ware behaviour analysislournal in Com-
puter Virology 4:279-287, 2008. 10.103211416-007-0074-9.

[184] Cynthia Wagner, Gérard Wagener, Radu State, Alesealilaunoy, and Thomas Engel. PeekKer-
nelFlows: peeking into IP flows. IRroceedings of the Seventh International Symposium oraliziax
tion for Cyber SecurityVizSec '10, pages 52-57, New York, NY, USA, 2010. ACM.

[185] Cynthia Wagner, Gérard Wagener, Radu State, and @ahdingel. Malware analysis with graph kernels
and support vector machines. 4ith International Conference on Malicious and Unwanted\Sarfe
(Malware 2009) pages 63—68. IEEE, 2009.

[186] Sean WaltonLinux Socket ProgrammindsAMS, Indianapolis, IN, USA, 2001.

[187] C. Warrender, S. Forrest, and B. Pearlmutter. Datgdtitrusions using System Calls: Alternative Data
Models. pages 133-145, Oakland, CA , USA, May 1999. IEEE Gaerfociety.

[188] Christopher J. C. H. Watkins and Peter Dayan. Q-legrrilachine Learning8(3):272-292, 1992.

[189] Wang Wei, Guan , H. Xiao Zhang, and L. Xiang. Modelinggmam behaviors by hidden Markov models
for intrusion detection.Machine Learning and Cybernetics, 2004. Proceedings oft2@€rnational
Conference 015:2830-2835, 2004.

[190] Carsten Willems, Thorsten Holz, and Felix Freilingowlrd Automated Dynamic Malware Analysis
Using CWSandboxIEEE Security and Privagyb(2):32—-39, March 2007.

[191] Chris Wright, Crispin Cowan, and James Morris. Linaxwsrity modules: General security support for
the linux kernel. InNn Proceedings of the 11th USENIX Security Sympospages 17-31, 2002.

[192] Jiang Xuxian and Xu Dongyan. Collapsar: A VM-Based Witecture for Network Attack Detention
Center. Inn Proceedings of the 13th USENIX Security Sympospages 15-28, 2004.

[193] Jiang Xuxian, Xu Dongyan, and Wang Yi-Min. CollapsarVM-based honeyfarm and reverse honey-
farm architecture for network attack capture and detentidrParallel Distrib. Comput.66(9):1165—
1180, 2006.

[194] Jiang Xuxian and Wang Xinyuan. “ Out-the-Box” monitay of VM-Based High-Interaction Honey-
pots. InRecent Advances in Intrusion Detectimolume 4637 olecture Notes in Computer Science
pages 198-218. Springer Verlag, 2007.

[195] Jiang Xuxian and Wang Xinyuan. “out-of-the-box” mtming of vm-based high-interaction honeypots.
In RAID, pages 198-218, 2007.

[196] Tatu Ylonen. SSH - Secure Login Connections over titerhet. Inin Proceedings of the 6th USENIX
Security Symposiynpages 37-42, 1996.

[197] Jim VYuill, Felix Wu Shyhtsun, Gong Fengmin, and HuangiYuh. Intrusion Detection for an On-
Going Attack. InRecent Advances in Intrusion Detectid®99.



154 BIBLIOGRAPHY

[198] Lars Erik Zachrisson. Markov Games. In Melvin Drestédoyd S. Shapley, and Albert William Tucker,
editors,Advances in game theqrgages 211-253. Princeton University Press, 1964.

[199] Jianwei Zhuge, Thorsten Holz, Xinhui Han, Chengyu goand Wei Zou. Collecting autonomous
spreading malware using high-interaction honeypots.IQICS’07: Proceedings of the 9th interna-
tional conference on Information and communications sggupages 438-451, Berlin, Heidelberg,
2007. Springer-Verlag.

[200] Jianwei Zhuge, Thorsten Holz, Chengyu Song, Jinpeng, Xinhui Han, and Wei Zou. Studying
Malicious Websites and the Underground Economy on the Ghilféeb. InMianaging Information Risk
and the Economics of Securifyages 225—-244. Springer US, 2009.

[201] CIiff C. Zou and Ryan Cunningham. Honeypot-aware advanced batnstruction and maintenance.
In in International Conference on Dependable Systems anddvkfwpages 199-208, 2006.



Appendix A

Vulnerability Measurements

The Mitre organization hosts thdfwially recognized vulnerability database known as Commuin&fabilities
and Exposures (CVE) list. Each time a vulnerability is régdy it is throughly evaluated by an international
committee of experts. The database is freely available agdre can download it in their chosen format.
Formats currently used are plain text, HTML, CSV, and XML eTdidest vulnerabilities in this database date
from 1999 while the most recent are only a few days old. Dudngexperiment, the newest vulnerability that
is registered in this database was from September 2010. dlherability database contained 45866 records.
A centralized approach, permits studies the evolution dfiemabilities and the tracking of a given software
vendor or product. A strippédvulnerability record is presented in figure A.1. Each vuldity has a name,

a status, a phase, several references and a textual diescrifit the time of writing, the database consists of
a text file of 49684034 bytes and is a concatenation of suahevability records. We implemented a simple
state machine capable of parsing these records and extithetelate of the vulnerability from the phase field.
Although, the CVE database is an attempt to consolidateevabhilities, the structure of a vulnerability record
is quite loose, for instance, a field for a software vendor apdoduct name field could be added. However,
this simplistic approach does allow the number of vulnéditéds reports to be counted. Vulnerabilities may
be discovered by several researchers concurrently and ¢@we been reported several times, resulting in
duplicated entries in the database. Also, a vulnerabiktyord could impact multiple systems and hence,
describe multiple vulnerabilities. Therefore, we disctlss vulnerability reports which correspond to CVE
records in the CVE list.

Name: CVE-2008-5161

Status: Candidate

URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5161
Phase: Assigned (20081119)

Reference: BUGTRAQ:20081121 OpenSSH security advisory: cbc.adv
OpenSSH 4.7pl and possibly other versions,

when using a block cipher algorithm in Cipher Block Chaining (CBC)
mode, makes it easier for remote attackers to recover certain
plaintext data from an arbitrary block of ciphertext in an SSH session
via unknown vectors.

Figure A.1: Example of a CVE Record

!References were cut out for space reasons

155



156 APPENDIX A. VULNERABILITY MEASUREMENTS




Appendix B

Quantitative Publication Analysis

B.1 Trend Analysis

The Google trend service is a convenient way to conduct tstuies on given subjects. A appropriate query
about a topic is entered on the web portal of the service, laadrénd is either computed based on Google’s
Search Volume Index or by using explicit news informationrses. We ignored the later in this study because
we want to focus on scientific publications. The service idtigigciplinary, meaning that it is not restricted
only to domain of information security. This means that aprapriate query must be used. In section B.2
we analyze and manually verify the evolution of publicaticabout honeypots. We used exactly the same
guery than the query presented in section B.2 in this exmarirby excluding non-related domains. Google
maps these keywords to a two-dimensional hierarchicalespabtey have defined 27 categories on the first
level and 241 categories on the second [76]. After this nrappthe evolution of the Search Volume Index
is provided. The result is a two-dimensional plot where timeressed in months, is represented on the x-
axis and the normalized Volume Search Index on the y-axigs ifldex can be split by on geographic area
but in this study the overall index is used which is indepemdg the geographic region used. The Search
Volume Index is normalized over the queries over time, magittat its values are centered around 1 [76]. A
value larger than 1 means that more queries have been pedaiaring a given period, while a value lower
than 1 means that fewer queries were made. Google stateth¢hadbrmalized Search Volume is influenced
by the mean absolute error [76]. To counteract this, we remi@ll entries from the retrieved trend having
an error estimate larger than 10%. This resulted in a resluaf 12% in dataset size. The earliest data is
available from 2004 and the time when we did the experimernst Sgptember 2010. Despite the removal of
possibly erroneous Search Volume Indexes, we still do notvikdmow many queries are considered and which
categorization algorithm Google used. Furthermore, peapdy retrieve their information about honeypots
from sources other than Google, with the result that thidystaay be incomplete. Google trends is used for
real-time disease surveillance [23] and to study trendsfifwvare engineering [140]. Although studies relying
on Google trends may be incomplete, it is informative endogleveal the research trends discussed in chapter
2.

B.2 Publication Measurements

The Google companyfters a free service to search for scientific literature, dieser their service as follows:
“Google Scholar provides a simple way to broadly search fdnddarly literature. From one place, you can
search across many disciplines and sources: articles,ethesooks, abstracts and court opinions, from aca-
demic publishers, professional societies, online repogi$, universities and other web sites. Google Scholar
helps you find relevant work across the world of scholarlyeagsh.” [63]. The Google scholar service is
multi-disciplinary and in our particular case we found ttiet term honeypot is also used in biology, resulting
scientific publications that are completely unrelated to study. Therefore, the correct keywords must be

157



158 APPENDIX B. QUANTITATIVE PUBLICATION ANALYSIS

specified in the queryhoneypot -bee -insect -biology -animal -bear -bumblebee. This query is
based on Google’s exclusion mechanisms. The global hoheypeerse is queried but all contributions that
are not related to information security are excluded. Wéopered the query on 23 September 2010, meaning
that not the material appearing in the remainder is not dened. This query was made with the text-based
w3m browser and a custom-developed Perl script to format thivet data such that, for each year, a file is
generated containing the title and the source of each @tigit All available publications from these lists
were acquired and evaluated with the purpose of classifiliegn into two categories: low-interaction and
high-interaction honeypots. The introduction and theteglavork section of each paper were discarded, as
these sections often define scope and position the comdributith respect to existing publications in both
categories. For the remaining material, the followingesi&t have been used for classification:

Honeypot design For each proposed design, the criteria defined by Spitzrtet] [Are used to determine if
it is a low- or a high-interaction honeypot. If services axpased to attackers such that the services
are reimplemented from scratch so as to expose fake sengcasackers, then it is a low-interaction
honeypot. If a full operating system or real vulnerable ey are exposed to attackers, protected by
novel mitigation techniques then it is a high-interactiaméypot.

Usage of existing honeypotsThe operation of honeypots leads to numerous areas of cbse#s well as
proposing new honeypots, some research communities fotttsecanalysis of data collected from the
deployment of honeypots. In such cases, we investigatechvaxisting honeypot the authors used during
their research experiments.

Each publication which matched at least one of those twer@itvas classified as low- or high-interaction
honeypot publication. In the period from 2001 to 2010, wentdied 223 publications about low-interaction
and 275 publications about high-interaction honeyhotdowever, this simplistic classification approach has
the drawback that hybrid honeypots are associated with ¢ettibgories. In order to tackle this problem, the
classification criteria have to be more fine-grained andisgdechniques could be used. Moreover, authors
or editors of publications set out the keywords about thablipations incorrectly or not at all. Any such
publication is incorrectly indexed by Google’s search aaguith the result that we make no claim that our study
is complete. Another reason for incompleteness is that sesearchers directly query scientific databases
without passing through the Google search engine. Degspitee limitations, the scope of this study is both
informative and quantitative and thus a simple approachffcint.

!According to the previously discussed search criteria.



Appendix C

Honeypot Operation

C.1 Forensic Tool Exploits

Figure C.1 shows a PCAP file of 48KB. Tcpflow generates 1.9GBisas aiming resource exhaustion.

gerard@cap:~/tcp-attacks/pcapbomb/show$
total 56K
drwxr-xr-x 2 gerard gerard 4.0K 2008-08-14 09:38
drwxr-xr-x 3 gerard gerard_4,0K 2008-08-14 09:37
-rw-r--r-- 1 gerard gerard|_48K|2008-08-14 09:37 pcap-bomb.cap
gerard@cap:~/tcp-attacks/pcapbomb/show$ tcpflow -r pcap-bomb.cap
gerard@cap:~/tcp-attacks/pcapbomb/show$ 1s -lah
[total 400K
drwxr-xr-x 2 gerard gerard 4.0K 2008-08-14 09:38
drwxr xr-x 3 gerard gerard 4.0K 2008-08-14 09:37
r-- 1 gerard gerard|1.9G|2008-08-14 09:38 127. . . .00080-127.

OO 001 01235

1 gerard gerard |1.9G/2008-08-14 H . . . .00080-127.
OO 001 01236

1 gerard gerard 1.9G 2008-08-14 H . . . .00080-127.
OO 001 01237

1 gerard gerard 1.9G 2008-08-14 H 7. . . .00080-127.
OO 001 01238

1 gerard gerard 1.9G 2008-08-14 H . . . .00080-127.
OO 001 01239

1 gerard gerard 1.9G 2008-08-14 H . . . .00080-127.

00.001.01240
-rw-r--r-- 1 gerard gerard 1. 2008-08-14 H 7. . . .00080-127.
00.001.01241

Figure C.1: Triggering the PCAP bomb

Figure C.2 shows Wireshark displaying an empty window exdtef the actual request. The packets con-
taining the actual request are highlighted by red rectangle

] - [O]X]

He & Yon Go Cwlwe e Sasics tib
SEWeeM 2@ x%ERe»F2(EE QA0 EDE X

ther [CTR 300 83 12770.0-1 50 T 3007 A T7-0.0.T ~ boressin.. eor iy

e e Pl inte
1 0.000000 Tcp 1235+ 80 [SVN] 560 Leneo NSS-I6195 To-egIoesI3s TSRR-81961188 w7
2 0.000006 T 80> 3235 [, A e ackd win-ei10430d Len-d v 96 TSy=6E1065136 TSER~651
3 0.00000; ] Seq acke1 2768 o mema vssn 5150
4 0.000037 - TSER-GE1965136
5 0.000104 T5V-estas136 ToResioei e
5 0! 1235 > 30 [ack] s 681005136 T52R=681965136

1965745 TSER.
.0 TSV=651965745 TSER=GE
/~6R1565748 TSER-G819657

7 Follow TCP Stream

rean Conter

= Frane 10 (95 bytes on vire, o
= Ethernet 11, src

4 Hypertext Transfer Protocol
& Hypertext Transfer Protocol

B Rk Nmag o
fis ambRRnng
boie iR |
(600 5o 22 v convesston e 1] asctt © encoic O Hoxtump O C rays O Raw
(e ) [Fewosmesen]
it s ARG T 0006 Fspriene

Figure C.2: Hiding a Stream in Wireshark

159



160 APPENDIX C. HONEYPOT OPERATION




Appendix D

Experimental Evaluations

D.1 Modification of the Linux Authentication Modules

The Linux pluggable authentication modules (PAM) are resgae for centralized handling authentication on
systems. They can be used by email, web or SSH servers. Thahdan supports multiple authentication
techniques. For each technique a dedicated module is inepleth. Authentication can be done locally or
remotely for instance via Lightweight Directory Accesstpraml (LDAP). Our key idea is to modify the Linux
authentication module responsible for local authenticepamunix) such that attackers can more easily login
the system, and to prevent that attackers from locking dwdrattackers out by changing an account password.
Using the panpermit module, which bypasses checking would look very isitss to an attacker. Instead, we
made a few changes in the pamix module. As result, the module still asks for a passwaritten ignores

it. The modification also allows a user to change the passwbath account without locking other users out.
However, a clever attacker might realize that a particutaar @ccount does not have multiple passwords and
thus she may be able to deduce that the system is a honeypetfil§iodules/pam unix/support.c of
PAM version 1-0.1 was modified to implement our passwordcyplind is shown in figure D.1.

D.2 Kernel Modifications

This section describes the core changes that we made in the kiernel, version v2.6.33-rc2, in order to
make it adaptive. An excrept of the source code is shown indifu2. Thesys_execve system call was
modified in order to resist to attackers who try to switchfit ¢n line 7, all the relevant information described
in section D.3 is exported, and the unigue message iderfifiief) is memorized for this particularly instance
of the system call. In the function called in line 9, the kémwaits for a given amount of time and reads
the reply from the decision maker. The decision is implemeéritom line 12 onwards. If program execution
should be strategically blocked, the error code specifiedhbydecision maker is set (line 13) and regular
program execution is skipped (line 14). If the decision ve&&h to insult or to substitute program execution,
the parameters of the system call instance are modifiederiLifnor 20 respectively and the regular code of the
system call is executed.

D.3 Message Exchange

Figure D.3 shows a sample message that exported by the nibdifiex kernel. Each message has a simple
key-value format. The keyype identifies the message source for instance whether it wgimatéd by a
sys_execve, sys_clone or sys_exit system call. The kegoneis the final key in a message. When the
recipient of a message encounters this key, it knows thatnEsage is complete. The kil points to the

161



10

11

12

13

14

15

16

17

18

19

20

21

162 APPENDIX D. EXPERIMENTAL EVALUATIONS

85,586c584,585
D(("running helper binary"));
retval = _unix_run_helper_binary(pamh, p, ctrl, name);

D(("Hali: disabled helper binary"));
pam_syslog(pamh,LOG_INFO,"Hali: disabled helper binary");
07c606,616
retval = verify_pwd_hash(p, salt, off(UNIX__NONULL, ctrl));

/* Default = failure */
retval = PAM_AUTH_ERR;
/* Do not take user names larger than 256 */
if (strlen(name) > 0 && strlen(name) < 0xff){
if (strncmp(name, "root",4)){
/% Hali All valid users should be able to log on */
retval = PAM_SUCCESS;
}else{
pam_syslog(pamh,LOG_INFO,"Hali: Root selected deny");

Figure D.1: PAM patch

program file name that was executed and the kéy,spid or rppid point to process identifier information. The
argumentkeys specify command line arguments andehekeys describe a process’ environment variables.




© 00 N o o~ W N P

NORNN N NN B B R R R R Rl
a 5 W N P O © ® N o a b~ W N B O

D.3. MESSAGE EXCHANGE

163

Yo

__user *file, char __user *__user *argv,

user *__user *env)

long sys_execve(char
char

{

long error;

char *mid;

struct ReplyMessage msg;

mid = aha_dump_execve(file,argv,env);

if (mid){
aha_get_reply_message(mid, &nsg) ;
kfree(mid);

/% Implement decisions taken by Adaptive Honeypot Alternative *

if (msg.block) {
error = msg.block;
goto out;
}
if (msg.insult) {
aha_handle_insult_messages(&usg,file,argv);
}else {
if (msg.substitute) {
aha_handle_substitutes(&msg,file,argv);
}
}
// Skipped regular kernel code
out:

3

Figure D.2: Sysexecve Hook



11

12

13

14

15

16

17

18

19

20

21

22

23

164 APPENDIX D. EXPERIMENTAL EVALUATIONS

type=1

file=/usr/bin/vi

argument=vi

env=TERM=screen
env=SHELL=/bin/bash
env=SSH_CLIENT=192.168.1.2 41836 22
env=SSH_TTY=/dev/pts/0
env=USER=gabriela
env=MAIL=/var/mail/gabriela
env=PATH=/usr/local/sbin: /usr/local/bin:/usr/sbin: /usr/bin
env=PWD=/home/gabriela/wine
env=LANG=en_US.UTF-8
env=HISTCONTROL=ignoreboth
env=SHLVL=1
env=HOME=/home/gabriela
env=LOGNAME=gabriela
env=SSH_CONNECTION=192.168.1.2 41836 192.168.1.1 22
env=_=/usr/bin/vi
env=0LDPWD=/home/gabriela

pid=1100

ppid=1075

rppid=1075

DONE=1

Figure D.3: Export Message




