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1 Introduction

1.1 Mechatronic Systems Simulation

Basically,  mechatronics  is  the  combination  of  mechanical,  electronic  and  controls 

engineering during the design or optimization process of a product in order to achieve the 

best balance between the mechanical system and its controls. If these subsystems are often 

treated  independently,  they  are  considered  here  as  one  system  and  are  simulated  and 

analyzed in a single model. In a more general way, products integrating different kinds of 

technologies, such hydraulics, pneumatics or those mentioned above, can be referred to as 

mechatronic systems.

Different approaches are possible for the analysis of hybrid systems. They depend,  for 

example,  on the nature of the system to be analyzed,  on the required complexity of the 

model, or simply on the tools available to the engineer. The present work focuses on the 

implementation of commercial software packages and the combination of these tools for the 

simulation  of  mechatronic  systems.  These  programs,  developed  for  a  specific  field  of 

application, allow the modeling of complex and nonlinear phenomena. They can be linked 

among each other and make integrated analyses possible. This approach becomes more 

and more feasible and makes its way into more common engineering applications due to the 

constant  development  of  these  tools  and  of  more  performing  computer  hardware.  The 

software  has  been  implemented  and  coupled  at  the  University  of  Luxembourg  and  the 

resulting interdisciplinary tool has been applied to the dynamic simulation of the Quadloc™ 

clamp unit of an Husky injection molding machine.

The  case  studies  presented  in  chapter  3,  4  and  5  show the  potentials  of  such  an 

integrated analysis. First of all, it gives a better understanding of the dynamic characteristics 

of the overall system. Then, the interactions between different subsystems, generally difficult 

to  assess,  can  be investigated.  Furthermore,  the  model  allows  to  simulate  with  various 

design parameters and to predict  the effect  of  modifications to these parameters on the 

performance of the overall system. All this is very helpful in order to work out improvements 

and is generally faster and cheaper than proceeding experimentally. Such a simulation is 

also a valuable tool in early design stages as it can serve as a fast method of evaluating 

different designs to meet the specified objectives and reduce the cost of prototyping.
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Figure 1-1: Simulation of clamp unit

Figure  1-1  shows  the  setup  of  the  interdisciplinary  simulation  tool.1 The  Multi  Body 

Simulation (MBS) software ADAMS, the Fluid Power Simulation (FPS) software DSHplus 

and the controls design tool SIMULINK are coupled for the dynamic simulation of the clamp 

unit. The Finite Element (FE) program ANSYS is primarily used to generate FE models that 

can be included in the MBS model in order to account for the flexibility of the structure if 

necessary. To "quickly  and easily"  generate these FE or MBS models,  existing 3D CAD 

geometries are used. A more detailed presentation of the programs, the underlying theories 

and their coupling can be found in chapter 2. Finally, measurements, if available, can be of 

great help during the set-up of the simulation. They allow to validate the models, for example 

that the natural frequencies of the FE models correspond to the ones obtained from modal 

analysis measurements, and to determine and tune unknown parameters, like friction in the 

mechanical system or flow versus pressure drop characteristics of hydraulic components.

Of course,  full  complex models,  such as flexible MBS models coupled with FPS and 

controls models, are not systematically generated right from the start. Basically, the more 

complicate the model is, the longer the computation time takes. Therefore, to begin with it is 

kept as simple as possible; generally independent mechanical, hydraulic or controls models 

are first of all created and validated. Then, complexity is added step by step until it reaches 

the desired accuracy. In this sense, the simulation programs and the co-simulation setup 

prove to be very flexible. For example, a simple hydraulic model can be easily replaced by a 

more complicate one without  a complete reconfiguration of the co-simulation interface  as 

long as the exchanged input- and output-parameters do not change.

1 The names of the programs implemented at the University of Luxembourg are explicitly mentioned for the 

sake of clearness. Of course, there exist programs by other software companies that offer similar or identical 

functionalities [1]. However, as these tools have not been tested, no further statement can be given here.

measurements
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ANSYS
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dynamic analysis

of mechanical system
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As  stated  earlier,  different  approaches  are  possible  when  simulating  mechatronic 

systems. Since ADAMS was not available at the university right from the start, ANSYS was 

used to perform dynamic analyses. As long as non-linearities were not included in the FE 

model,  relatively  short  computation  times  were  achieved  with  the  mode  superposition 

method, but as soon as non-linearities were present, the calculation efforts became huge. 

Another  disadvantage  was  that  hydraulic  or  controls  systems  could  not  be  directly 

incorporated into these FE models. On the other hand, flexible mechanical structures with 

hydraulic and controls systems can be modeled within SIMULINK as presented in [2, 3, 4]. 

However, the non-linearities due to the large displacement of the moving platen are difficult 

to represent. In contrary to ANSYS and SIMULINK, ADAMS inherently models such large 

non-linear  motions.  Additionally,  it  is  possible  to  couple  ADAMS  with  DSHplus  and 

SIMULINK  and  to  model  the  flexibility  of  the  mechanical  parts;  even  though  limited 

compared  to  ANSYS.  When including  flexible  components,  the  computation  effort  stays 

relatively  moderate  as  through  the  component  mode  synthesis  method  the  number  of 

degrees of freedom of the FE model is considerably reduced. Hence, the simulation tool 

presented in figure 1-1 proved to be very efficient for the dynamic analysis of the clamp unit.

1.2 Injection Molding

1.2.1 Brief Overview

Injection molding is the process of forcing hot melted plastic into a mold cavity. Once the 

plastic has cooled down and consolidated, the finished part can be ejected. The process is 

generally used in mass-production and injection molded parts can be found in a wide range 

of applications, ranging from bottles, yogurt cups and syringes to computer parts, container 

bins and car bumpers. The beginning of injection molding can be traced back in the 19th 

century, but its lift off was in the 50th with the introduction of the screw as plasticizing and 

injection-pressure  generating  component  [5].  In  2003,  the  consumption  of  polymers  for 

plastics applications in Western Europe was over 39 million tons which is about 22.2 % of 

the  worldwide  plastic  consumption.  Packaging  is  the  largest  consumer  of  plastics, 

accounting for 37.2 % of all  plastics consumed, followed by the household and domestic 

industry with 20.1 %, the building and construction industry with 18.5 %, the electrical and 

electronic industry with 8.5 %, the automotive industry with 8 % and the rest with 7.7 %. In 

Western Europe, 39 % of the recovered waste is recycled - 23 % through energy recovery 

and 14 % through mechanical recycling - the rest is incinerated or landfilled [6].

Husky was founded in 1953 - starting to design snowmobiles, thus the company's name - 

and build its first mold in 1958 and its first injection molding machine in 1961. The company 

has since specialized in providing integrated system solutions for the plastic industry. Husky 

engineers  and  manufactures  a  comprehensive  range  of  injection  molding  equipment, 

including machines, molds, hot runners and robots. Manufacturing facilities are located on 
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campuses  in  Canada,  the  United  States,  Luxembourg  and  China.  Additionally,  over  40 

service and sales offices and technical centers exist throughout the world. In fiscal 2004, 

sales were US$ 774 million, with over 60000 units sold and with approximately 3,000 people 

employed worldwide [7].

Figure 1-2: Quadloc™ injection molding machine with mold and robot

Basically, an injection molding machine consists of two parts: the injection unit and the 

clamp unit. The injection unit melts the plastic pellets, injects the material in the mold cavity 

and keeps it there under pressure. The clamp unit closes and opens the mold and generates 

the  necessary  force  to  keep  the  mold  closed  during  the  injection  and  holding-pressure 

phase. This process allows high production rates with repeatable tolerances using a wide 

range of materials [5]. The process can be broken down into 5 stages:

1.  Clamping phase: once the mold is closed,  the clamp unit  has to generate a force 

capable  of  keeping  the  mold  closed  during  the  injection  and  holding-pressure  phase. 

Different  concepts exist  which basically  can be differentiated if  the closing,  opening and 

clamping are done mechanically or hydraulically.

2. Injection phase: the plastic pellets, loaded into a hopper on top of the injection unit, are 

fed into a heated barrel  where the screw is located.  Due to the heating and the friction 

between the pellets during screw rotation, the plastic is melted and homogenized. During 

this  process,  the  screw conveys  the  material  to  the front  of  the injection.  The pressure 

built-up at the nozzle pushes back the screw. When enough material is accumulated, the 

rotation stops and the injection process begins. The screw is then pushed forward and the 

plastic is injected into the mold (see figure 1-3). For some applications, two-stage injection 

units are used. Here the melted homogenized material is transferred from the screw to a 

plunger that injects the plastic.
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3. Holding-pressure phase: after the injection process, a pressure is applied to make sure 

that all of the mold cavities are filled. The magnitude and duration of the holding-pressure 

have a major impact on the quality of the part.

4. Cooling phase: the plastic is allowed to cool and solidify within the mold. This may take 

a split of a second or several minutes depending on the size of the part.

5. Ejection phase: finally the mold is opened and rods eject the finished parts from the 

mold.

Figure 1-3: Injection unit

This very general description should only give a brief overview to the reader, for more 

details please refer to [5].

1.2.2 Quadloc™ Clamp Unit

Next to the PET systems and the Hylectric™, Husky offers the Quadloc™ clamp unit 

which is dedicated to large tonnage molding operations like for example in the automotive 

industry. It is available from the size Q1350 to Q5400 with a clamping force reaching from 

13500 kN to 54000 kN, respectively. The machine is entirely engineered and assembled in 

Luxembourg [8].

The Quadloc™ clamp unit (see figure 1-4) has a two-platen concept: a stationary platen 

and a moving platen. The stationary platen is fixed to the clamp base and the moving platen 

is sliding on the clamp base. It  is guided by the latter  one and by four  columns.  These 

columns,  called  tie  bars,  are  fixed to  the  stationary  platen  via  the  tie  bar  nuts  and the 

retaining plates. The moving platen stroke is realized with two hydraulic cylinders that are 

fixed  between  both  platens.  Once  the  mold  is  closed,  the  moving  platen  is  locked 

mechanically  to  the  tie  bars  through  a  bayonet  system.  In  fact,  four  pistons,  which are 

integrated in the moving platen, are rotated by 45° to engage the tie bar teeth. Mechanical 

linkages allow the simultaneous rotation of the clamp pistons by the use of a single hydraulic 

cylinder, called the clamp locking mechanism.

hopper

barrelscrew

heater bands

nozzle piston motor
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Figure 1-4: Quadloc™ clamp unit

Once the moving platen is locked,  hydraulic  oil  is  pumped in the cavity  between the 

clamp piston and the moving platen in order to generate the necessary clamping force. After 

the cooling  phase,  the  hydraulic  pressure  is released and the pistons  are  retracted and 

disengaged for  the mold to open (see figure 1-5).  Finally,  the part  is  extracted with the 

ejector.  The spacing of the tie bar teeth and the possible clamp piston stroke within the 

moving platen, allow an infinite adjustment of the shutheight.

Figure 1-5: Quadloc™ locking and clamping function

As can be noticed all the main functions of the clamp unit are actuated hydraulically: the 

moving platen stroke, the clamping, the clamp piston rotation and the part ejection. Hydraulic 

systems present some clear advantages: their high power density, their compact design and 

their controllability. Furthermore, their power can be easily transformed in linear motion, they 

Tie Bar Clamp Piston Stroke Cylinder

Retaining 
Plate

Tie Bar Nut

Stationary PlatenMoldMoving PlatenClamp BaseSupport Pad

Ejector

Clamp-up

Clamp Piston

Tie Bar
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allow a step-less adjustment  of force and speed and are suitable for  quick and for  slow 

sequences of movement. Their main disadvantage is the total energy efficiency that is not 

always  satisfying.  Therefore,  the  hydraulic  drive  technology  faces  more  and  more  the 

competition from electrical  drive solution;  generally  having a better  overall  efficiency  but 

being more expensive [9]. The Quadloc™ has an electrohydraulic drive unit that consists of 

an electric motor driving several variable displacement pumps. To control the flow rate, the 

flow  direction  and the pressure  level,  different  types  of  valves  are  combined.  They  are 

actuated electromechanically by the controls system.

There were several issues with the clamp unit that Husky wanted to be investigated with 

the  help  of  the  mechatronic  simulation.  First,  a  cheaper  solution  for  the  clamp  locking 

mechanism should be developed (see chapter 3). For the current design, the connecting 

bars (see figure 3-1) are manufactured from a single piece in order to accommodate the 

forces  acting  on  the  bars  during  locking  and  unlocking.  This  solution  is  however  very 

expensive. The aim of the simulation is to find any means to reduce these forces and to 

replace  the  current  design  by  a  welding  construction  which  should  be  much  cheaper. 

Second, the moving platen stroke, and thus the overall cycle time of the machine, should be 

reduced (see chapter 4). Here, the focus is on the optimization of the control system in order 

to gain some time during the acceleration and deceleration phase of the moving platen. 

Third,  possible root sources for  machine creeping under  operation should be found (see 

chapter  5).  In  fact,  in  order  to  prevent  any  displacement  relative  to  the  ground  of  the 

complete injection molding machine during operation, it is simply bolted to the ground at the 

clamp unit end. The interest is to determine under which conditions such a displacement 

becomes possible.

In order  to investigate this three issues,  the Quadloc™  clamp unit  was modeled and 

analyzed with the interdisciplinary simulation tool presented in section 1.1. Several concrete 

improvements could be elaborated. During the analyses, the focus was on the Q2700 clamp 

unit as it is a mid-size machine that is relatively often sold and therefore should be normally 

available for measurements. The Q2700 has a maximum clamping force of 27000 kN. Its 

overall dimensions are approximately 6 m x 4 m x 4 m and its weight is about 130 tons - the 

moving  platen  having  65  tons.  The  machine  has  a  mold  shutheight  of  1000 mm  up  to 

1900 mm,  and  a  maximum  daylight  of  3900 mm. The  tie  bar  spacing  is  2150 mm  x 

1700 mm. The Euromap-6 dry-cycle time2 of the Q2700 is 8.0 seconds for an opening stroke 

of 1505 mm.

2 EUROMAP is the European committee of  several  national  associations of  plastics and rubber  machinery 

manufacturers. It has elaborated some technical recommendations such as the EUROMAP 6 that defines the 

determination of the duration of the dry cycle for comparison reasons. During the dry cycle, the machine is 

operated without injection of plastic. The cycle time comprises mold closing, application of 70% of maximum 

clamping force, mold opening and all idle times such as locking and unlocking.
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2 Simulation Software

In this chapter the three simulation tools mentioned in section 1.1 are presented in more 

details, with the focus lying on the multi-body system simulation software. At the end of the 

chapter, the set-up of the co-simulation for these particular programs is briefly explained.

2.1 MBS Software

Figure 2-1: ADAMS

A MBS program allows the user to simulate the kinematics and dynamics of mechanical 

systems. Generally, the different components are modeled as rigid bodies - which means 

that  their  shape  remains  unchanged  when  forces  are  applied  to  them.  Joints,  gears  or 

couplers  connect  the  rigid  bodies  in  order  to  define  the  motion  of  one component  with 

respect to another one. Additionally,  forces, motions and non-linear phenomena, such as 

contact or friction, can be added to the model. Afterwards, the user performs simulations to 

investigate the characteristics of the mechanical system. The program computes the forces 

and moments acting on the joints, the position, velocity and acceleration of the parts or any 

other user-defined parameters. Finally, the results are animated and plotted for analysis.

Furthermore, the employed software ADAMS gives the user the possibility to incorporate 

non-standard phenomena into the model by linking user-written subroutines to the solver. 
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Numerous plug-ins are also available that allow, for example, to model hydraulic, pneumatic 

and controls systems, or to perform modal, vibration and durability analyses. Other add-ons 

are  tailored  to  the  needs  of  specific  fields  of  application  such  as  the  aerospace  or  the 

automobile industry. An interesting feature in this context is an add-on that allows to account 

for  the flexibility  of  parts  in the MBS model.  The deformation is then written as a linear 

combination of mode shapes obtained from a finite element model. The underlying theories 

are exposed in the following sections where the development of the different formulas is 

mainly based on [10].

2.1.1 Rigid-Body Dynamics

2.1.1.1 Rigid-Body Kinematics

Figure 2-2 shows a rigid body in space. The coordinate system XYZ is fixed in time and 

serves as a reference for all bodies in the system. It is referred to as the global frame or the 

inertial frame of reference. The coordinate system X'Y'Z' is rigidly fixed to a point on the rigid 

body. It is referred to as the local frame or the body frame of reference.  The configuration 

of  a  rigid  body  in  space  is  completely  defined by  six  independent  coordinates:  three 

coordinates that  describe the location of  the origin of  the local  coordinate system in the 

global coordinate system, and three coordinates that describe the orientation of the local 

coordinate system with respect to the global coordinate system.

Figure 2-2: Rigid body positioning

The global position of an arbitrary point P on the rigid body can be written as

r P=rA⋅sP  (2-1)

where  r is  the  position  of  the  origin  of  the  selected  body  reference  X'Y'Z',  A is  the 

transformation matrix from the local coordinate system to the global coordinate system and 

s P  is the vector of coordinates of point P in the body reference X'Y'Z'.

The transformation matrix A, also called rotation matrix, can be represented in terms of 

 

X

Y

Z

X'

Y'
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different  parameters.  One  common  way  are  the  three  Euler  angles  that  involve  three 

successive rotations about three axes. Again, these successive rotations are not unique and 

the most widely used set, commonly denoted (3-1-3) which stands for the rotation sequence, 

is shown in figure 2-3. For this particular set of Euler angles, the initial system of axes xyz is 

rotated by an angle   about the axis z. Then, the resultant axes x'y'z' are rotated about the 

axis x' by an angle  . The new intermediate axes x''y''z'' are finally rotated by an angle   

about the axis z'' to get the x'''y'''z''' axes that correspond to the desired final system of axes.

Figure 2-3: (3-1-3) Euler angles set

The transformation matrix D1  from the coordinate system xyz to x'y'z' is

 

(2-2)

It can be easily shown that  D1  is orthogonal, which means that  D1⋅D1
T=I  and  D1

−1=D1
T . 

The same is true for the transformation matrices from x'y'z' to x''y''z'' and x''y''z'' to x'''y'''z''', 

which are respectively

D2= [1 0 0
0 cos sin
0 −sin cos ]  (2-3)

D3= [ cos sin 0
−sin cos 0

0 0 1 ]  (2-4)

As  the  transpose  and  the  inverse  of  an  orthogonal  matrix  and  the  product  of  two 

orthogonal  matrices  yield  an  orthogonal  matrix,  the  transformation  matrix  A from  the 

coordinate system x'''y'''z''' to xyz is also orthogonal. It can be derived from

A=D 1
T⋅D2

T⋅D3
T  (2-5)

Equations (2-2) through (2-5) lead to the expression of A, that is

A=[cos⋅cos−sin⋅sin⋅cos −cos⋅sin−sin⋅cos⋅cos sin⋅sin
sin⋅coscos⋅sin⋅cos −sin⋅sincos⋅cos⋅cos −cos⋅sin

sin⋅sin cos⋅sin cos ] (2-6)

Thus

sP=A⋅sP  and sP=AT⋅sP (2-7)

x

z, z'

y

x'

y'

x', x''

y'

z'

z'' y''

x''

x'''

y''
y'''

z'', z'''

D1=[ cos sin 0
−sin cos 0

0 0 1]
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where s P  is the vector of coordinates of point P written in a reference frame whose origin is 

coincident with the one of the local reference frame of the body and whose axes are parallel 

to those of the global reference frame.

Differentiating equation (2-1) with respect to time yields

ṙ P=ṙȦ⋅sP  (2-8)

where ṙ P  is the absolute velocity of P and ṙ  the absolute velocity of the origin of the body 

reference frame. As the matrix A is orthogonal, it can be written that

AT⋅A=I  (2-9)

The differentiation of equation (2-9) with respect to time yields

ȦT⋅AAT⋅Ȧ=0  (2-10)

which implies that

AT⋅Ȧ=−AT⋅ȦT  (2-11)

A matrix which is equal to the negative of its transpose is a skew-symmetric matrix3, thus it 

can be written that

AT⋅Ȧ=   (2-12)

which leads to

Ȧ=A⋅  (2-13)

  is defined as being the angular velocity vector of the body reference frame with respect 

to  the  global  reference  frame  written  in  the  body  coordinate  system.  Substituting  the 

expression of the transformation matrix A into equation (2-13),   can be identified as

= [sin⋅sin ⋅̇cos⋅̇
cos⋅sin ⋅̇−sin⋅̇

cos⋅̇̇ ] ⇒  

= [ sin⋅sin cos 0
cos⋅sin  −sin 0

cos 0 1 ]⋅[̇̇̇ ]=B⋅̇

(2-14)

Finally,  substituting  equation  (2-13) into  equation  (2-8) yields  the  expression  for  the 

absolute velocity vector of P, which is

ṙ P=ṙA⋅⋅sP  or ṙ P=ṙA⋅ ×sP (2-15)

Differentiating equation (2-15) with respect to time yields the absolute acceleration of P, 

that is

r̈ P=r̈Ȧ⋅⋅sPA⋅̇⋅sP  (2-16)

Using equation (2-13), equation (2-16) becomes

3 It can be shown that

a×b= [ 0 −az ay

az 0 −ax

−ay ax 0 ]⋅b=a⋅b=−b⋅a
where a  and b  are called skew-symmetric matrices and  ~  is the skew-symmetric operator.
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r̈ P=r̈A⋅⋅⋅sPA⋅⋅sP  or r̈ P=r̈A × ×sPA⋅×sP (2-17)

where r̈ P  is the absolute acceleration vector of P, r̈  the absolute acceleration of the origin 

of the body reference frame and   the angular acceleration vector of the body reference 

frame with respect to the global reference frame.

Equation (2-14) shows that the matrix B becomes singular if =0  or = . This means 

that singularities may occur at certain orientations of the body in space when Euler angles 

are  used.  Thus,  special  provisions  must  be  made  within  the  program  to  avoid  these 

configurations. Another possibility would be to choose another set of parameters to define 

the transformation matrix  A.  In  fact,  there exist  different  possible representations,  as for 

example the Euler parameters as shown in [10], that do not present this disadvantage. The 

relationship between the Euler angles (  , , ) and the Euler parameters ( 0 ,1 ,2 ,3 ) is

0=cos

2
⋅cos


2

, 1=sin

2
⋅cos

−
2

2=sin

2
⋅sin

−
2

, 3=cos

2
⋅sin


2

 (2-18)

In the case of Euler  parameters,  the configuration of a rigid body in space is defined by 

seven coordinates:  three coordinates that  describe the location of  the origin of  the local 

coordinate system and four coordinates that describe the orientation of the local coordinate 

system.  However,  these  seven  coordinates  are  not  independent  anymore  as  the  Euler 

parameters have to satisfy the additional relationship

0
21

22
23

2=1  (2-19)

The previous equations and the properties of the transformation matrix are irrespective of 

the set of rotational coordinates used. As the Euler angles are implemented in ADAMS, they 

will be used in the following. Henceforth, the set of generalized rigid-body coordinates that 

describes the configuration of a rigid body i in space is defined by the vector q i , which is

q i= [r i T i T ]T=[ x i y i z i  i i i ]T  (2-20)

2.1.1.2 Constraint Equations

Each MBS software  has an exhaustive library  of  constraints  that  define the absolute 

position and orientation of bodies in space or the relative position and orientation between 

two bodies in order to describe the motion of the complete mechanical system.

The multi-body system shown in figure 2-4 consists of 2 rigid bodies. To each body, with 

its local reference frame X'Y'Z', is attached a second joint definition frame X''Y''Z'' at point P. 

Additionally,  the  unit  vectors  a,  b and  c are  defined along  the  axes  of  X'',  Y'' and  Z'', 

respectively, and expressed in the global coordinate system. The superscripts  i and  j are 

used to distinguish between the two bodies and their respective local frame, joint frame and 

unit  vectors.  In this example,  it  is assumed that  Pi and  Pj and X''iY''iZ''i and  X''jY''jZ''j are 
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initially coincident.

Figure 2-4: Multi-body system

A necessary and sufficient condition that two vectors on body  i and j are orthogonal is 

that their scalar product is zero. For example if axes X''i and Y''j should remain orthogonal 

then the constraint Corth can be defined as

Corth a
i , b j  ≡ a i T⋅b j=0 (2-21)

C denotes a constraint and may be made up of one or several algebraic constraint equations 

that depend on the generalized coordinates of the rigid bodies. If the axes Z''i and Z''j should 

remain parallel, i.e. ci and cj parallel, then cj has to be orthogonal to ai and bi, which leads to 

the constraint

Cparac
i , c j ≡ {a i T⋅c j=0

b i T⋅c j=0
(2-22)

If it is required that the two bodies coincide at Pi and Pj, then

Ccoin P
i ,P j ≡ r iAi⋅sP i −r jA j⋅sP j=0 (2-23)

With  equation  (2-23) the  relative  rotation  of  both  bodies  is  still  possible.  In  fact,  this 

constraint represents a spherical joint.

These  three  primitive  constraint  equations  can  also  be  combined  to  describe  more 

complex constraints,  as for  example the revolute joint  in figure 2-5. This joint  allows the 

relative  rotation  between  two  bodies  about  one  common  axis  but  prohibits  any  relative 

translation. In figure 2-5, the center of the joint is located at  Pi and  Pj and the rotation is 

about the respective Y'' axis. The analytical formulation of the joint specifies that  Pi and Pj 

are  coincident  and that  bi and  bj are  parallel.  Thus  the  revolute  joint  is  defined by  the 

constraints

Ccoin P
i ,P j  and Cparab

i ,b j  (2-24)

Equation (2-24) gives rise to five scalar constraint equations. This means that a revolute joint 
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has only one degree of freedom (DOF), i.e. the rotation along the Y'' axis.

Figure 2-5: Revolute joint

Similar to the revolute joint is the cylindrical joint, except that a relative translation along 

the rotation axis is allowed. The parallelism condition of bi and bj remains, but Pi and Pj do 

not have to be coincident anymore. If dij is the distance between Pi and Pj then dij has to be 

collinear with bi, which means that

Cparab
i , b j  and Cparab

i ,d ij (2-25)

where dij is defined as

d ij=r jA j⋅sP j −r iAi⋅sP i  (2-26)

A cylindrical joint has four constraint equations, thus two DOF: a translation and a rotation.

The translational joint can be derived from the cylindrical joint. In this case, the relative 

rotation is not allowed anymore. An orthogonality condition between ai and cj is needed in 

addition to the constraints of equation (2-25), i.e. the joint is defined by

Cparab
i , b j  , Cparab

i , d ij and Corth a
i , c j   (2-27)

The translational joint has again five scalar constraint equations and thus only one DOF.

For the previous constraints,  time does not appear explicitly  in the equations. It  is of 

course possible to specify a position or an orientation of a body that depends on time. For 

example, a relative driving constraint may be expressed for the translational joint defined 

above. It is assumed that the translation occurs along the axis Y''i,j and that D, which is the 

distance between Pi and Pj, is time-dependent. In this case, additionally to equation (2-27) is 

defined the constraint

Ctrans ≡ d ij −D t =0  (2-28)

The constraints defined by equations (2-21) through (2-28), are expressed as algebraic 

equations in terms of generalized coordinates and time and can be written as

C q , t =0  (2-29)

Constraints  of  this  form are  called  holonomic  or  geometric  constraints.  Other  constraint 

equations may be defined that contain relations between velocity components that cannot be 
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integrated and put in the form of equation (2-29). They are called nonholonomic or kinematic 

constraints and can be written as

C q , q̇ , t =0  (2-30)

If the constraints of equation (2-29) and (2-30) depend explicitly on time then they are called 

rheonomic,  otherwise  they  are  denoted  as  scleronomic.  Finally,  the  collection  of  all  the 

constraints present  in a multi-body model  is denoted by  C.  In the case of  an holonomic 

system, C assumes the general expression 

Cq ,t =[C1q , t 
C2q , t 
⋮

Cnc
q ,t  ]= [

c1q , t 
c2q , t 
⋮

cnce
q , t ]=0  (2-31)

where  nc is the number of constraints, i.e. joints or drivers, in the model and  nce the total 

number of algebraic constraint equations. Generally, the number of generalized coordinates 

is larger or equal to the number of algebraic constraint equations. Because of the presence 

of  constraint  equations,  the generalized coordinates  are not  independent.  For  holonomic 

systems,  each  constraint  equation  eliminates  one  generalized  coordinate  by  writing  this 

coordinate in terms of the others. Therefore, a system with  n generalized coordinates has 

n-nce independent  generalized  coordinates,  which  is  also  referred  to  as  the  number  of 

degrees of freedom of the multi-body system.

However, it is possible to define constraints that cannot be physically satisfied or that are 

automatically satisfied if the others constraints equations are satisfied. If  such constraints 

exist,  then  one  talks  about  an  inconsistent  redundancy  or  a  consistent  redundancy 

respectively. In that case, the constraint Jacobian, defined further below in equation (2-60) 

and  which  plays  an  important  role  in  the  numerical  solution,  becomes  singular  and  no 

solution exists. Now when modeling complex mechanism, it is easy to implement constraints 

which seem to be proper but which include redundancies. Therefore, MBS programs include 

numerical strategies to identify, and if possible to “eliminate”, redundant constraint equations 

[53].

Prior  to  a  dynamic  analysis,  a  kinematic  analysis  can  be  done  provided  that  no 

unconstrained  generalized  coordinates  remain  in  the  system.  The  aim  of  the  kinematic 

analysis is to study only the motion, i.e. position, velocity and acceleration, of the individual 

components. Forces are not considered as they do not affect the motion. However, reaction 

forces as a consequence of the motion can be calculated. For holonomic MBS models, the 

system of equations to solve in a kinematic analysis is

Cq ,t =0  (2-32)

For a complete system, the number of constraint equations must be equal to the number 

of  generalized  coordinates.  By  solving  equation  (2-32),  the  positions  of  the  system  are 
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known. Differentiating equation (2-32) with respect to time gives the velocities

∂C
∂q

q̇∂C
∂ t
=0  (2-33)

and differentiating equation (2-33) with respect to time gives the accelerations

∂C
∂q

q̈ ∂
∂ t ∂C
∂ q q̇ ∂∂ t ∂C

∂ t =0  (2-34)

Equation  (2-32) is generally highly non-linear so that no analytical result can be found. 

An  iterative  method  is  needed  to  solve  for  the  positions.  For  this  purpose  the 

Newton-Raphson  method  is  used  to  compute  q.  When  the  positions  are  known,  the 

velocities and the accelerations are deduced.

2.1.1.3 Equation of Motion for Rigid Bodies

Lagrange's equation is used to formulate the equation of motion of a multi-body system. 

For this purpose, the principle of virtual displacements is used and needs to be introduced. 

In  fact,  a  virtual  displacement  is  defined  as  an  infinitesimal  imaginary  change  of  the 

configuration of a system while time is held fixed. However, this virtual displacement has to 

be consistent with the boundaries and constraints of the system. Considering first of all a 

system of ni particles then, if the configuration of a particle i is defined by the position vector 

r i ,  the  vector  of  virtual  displacements  is  denoted  by   r i .  Additionally,  F i  is  the  total 

effective force vector acting on particle i. Now the principle of virtual displacement states that 

a system is in equilibrium if the sum of the virtual work of all the forces vanishes, that is if

∑
i=1

ni

F i T⋅ r i=0  (2-35)

This can also be extended to the dynamic case. As Newton's second law states that the 

sum of the forces acting on a particle i is equal to the rate of change of momentum of this 

particle, it can be written that

F i=Ṗ i  (2-36)

where P i  is the momentum of the particle i. Considering the virtual displacement  r i  of the 

particle i, then equation (2-36) can be written as

Ṗ i−F iT⋅ r i=0  (2-37)

which gives, similar to the principle of virtual displacements, for a system of particles that

∑
i=1

ni

Ṗ i−F i T⋅ r i=0  (2-38)

Equation  (2-38) is called D'Alembert's principle. It  states that any position of a system in 

motion can be regarded as an equilibrium position if to the effective forces acting on the 

system are added the inertia forces. The system can also be regarded to be in a dynamic 

equilibrium.

If the system has to satisfy a set of constraint equations, then the effective force  F i  
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acting on a particle  i can be divided into a vector of external forces  F e
i  and a vector of 

constraint forces F c
i . Substituting into equation (2-38) yields

∑
i=1

ni

Ṗ i−F e
i T⋅ r i−∑

i=1

ni

F c
i T⋅ r i=0  (2-39)

Considering that  the constraints are workless,  for  example frictionless joints,  then the 

term with F c
i  in equation (2-39) vanishes. The reasons are that, either the constraint forces 

do not work as they are perpendicular to the virtual displacements, or they are couples of 

forces that act along a vector connecting two particles and, according to Newton's third law, 

these forces are opposite in sign, thus the corresponding virtual work is canceled. Therefore, 

equation (2-39) becomes

∑
i=1

ni

Ṗ i−F e
i T⋅ r i=0  (2-40)

In equation  (2-40), the virtual displacements are generally not independent because of 

the  constraint  equations.  Therefore,  it  is  not  possible  to  write  that  each  coefficient  of 

Ṗ i−F e
i   equals  zero.  In  order  to  apply  such a reasoning,  equation  (2-40) is first  of  all 

transformed into an expression that  involves the virtual  displacements of the generalized 

coordinates.

It is assumed that a displacement  r i  depends on the n generalized coordinates of the 

system. Thus, by differentiating r i  with respect to time yields

ṙ i=∑
k=1

n
∂ r i

∂qk

⋅q̇k
∂ r i

∂t
 (2-41)

which leads to the expression of  r i , that is

 r i=∑
k=1

n ∂ r i

∂q k

⋅qk  (2-42)

The total virtual work of the external forces W e  can be written as

W e=∑
i=1

ni

F e
i T⋅ r i=∑

i=1

ni

∑
k=1

n

F e
i T⋅∂ r i

∂qk

⋅qk

=∑
k=1

n

∑
i=1

ni

F e
i T⋅∂ r i

∂qk

⋅q k

 (2-43)

From equation (2-43), Qk  can be defined as

Qk=∑
i=1

ni

F e
i T⋅∂ r i

∂q k

 (2-44)

where Qk  is  the  component  of  the  generalized  force  associated  with  the  generalized 

coordinate  qk.  The virtual  work  of  the  generalized  external  forces  can be  written  in  the 

compact form
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W e=∑
k=1

n

Qk⋅qk  (2-45)

The total virtual work of the inertia forces W i  in a system can be written with the help 

of equation (2-42) as

W i=∑
i=1

ni

m i⋅ r̈ i T⋅ r i=∑
i=1

nip

∑
k=1

n

m i⋅ r̈ iT⋅∂ r i

∂q k

⋅qk  (2-46)

where mi is the mass and r̈ i  is the acceleration vector of particle i.

The following useful identity can be written [10]

∑
i=1

ni d
dt mi⋅ ṙ i T⋅∂ r i

∂qk
=∑i=1

ni

mi⋅ r̈ i T⋅∂ r i

∂qk

∑
i

mi⋅ ṙ i T⋅d
dt  ∂ r i

∂qk
  (2-47)

which leads to

∑
i=1

ni

mi⋅ r̈ i T⋅∂ r i

∂qk

=∑
i=1

ni [ d
dt mi⋅ ṙ i T⋅∂ r i

∂qk
−m i⋅ ṙ iT⋅d

dt  ∂ r i

∂qk
]  (2-48)

Additionally,  according to equation  (2-41) the partial  derivative of  ṙ i  with  respect  to  q̇k  

gives

∂ ṙ i

∂ q̇k

= ∂r i

∂qk

 (2-49)

Furthermore, derivating 
∂ r i

∂qk
 with respect to time and identifying with equation (2-41) yields

d
dt  ∂ r i

∂qk
=∑

l=1

n ∂2 r i

∂qk⋅∂q l

⋅q̇ l
∂2 r i

∂qk⋅∂ t
=
∂ ṙ i

∂qk
 (2-50)

Substituting equation (2-49) and (2-50) into equation (2-48) yields

∑
i=1

ni

mi⋅ r̈ i T⋅∂ r i

∂qk

=∑
i=1

ni [ d
dt mi⋅ ṙ i T⋅∂ ṙ i

∂ q̇k
−m i⋅ ṙ iT⋅∂ ṙ i

∂q k ]  (2-51)

which can be rewritten as

∑
i=1

ni

mi⋅ r̈ i T⋅∂ r i

∂qk

=∑
i=1

ni {ddt [ ∂∂ q̇k
12⋅mi⋅ ṙ i T⋅ṙ i ]− ∂

∂qk
 12⋅m i⋅ ṙ iT⋅ṙ i}  (2-52)

Defining the total kinetic energy T of the system as

T=∑
i=1

n i

T i=∑
i=1

n i 1
2
⋅m i⋅ ṙ iT⋅ṙ i  (2-53)

where T i  is the kinetic energy of particle  i, equation (2-52) can be put in the more simple 

form

∑
i=1

ni

mi⋅ r̈ i T⋅∂ r i

∂qk

=∑
i=1

n i { d
dt  ∂T i

∂ q̇k
−∂T i

∂q k
}

= d
dt  ∂T
∂ q̇k
− ∂T
∂q k

 (2-54)
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Equation  (2-45) and equation  (2-46) with  (2-54) are substituted into D'Alembert's principle 

expressed by equation (2-40) to yield

∑
k=1

n [ d
dt  ∂T
∂ q̇k
− ∂T
∂q k

−Qk ]⋅qk=0  (2-55)

Using a matrix formulation, equation (2-55) can be put in the more convenient form of

[ ddt ∂T
∂ q̇ −∂T

∂q
−QT ]⋅q=0  (2-56)

Equation (2-55) or (2-56) are called D'Alembert-Lagrange's equation.

The preceding development was done for a system consisting of particles. Considering 

that a body consists of particles, each representing a infinitesimal volume of the body, this 

development can also be applied to a system of bodies. In that case, the virtual work of the 

inertia forces of a body  i can be written as the sum of the virtual work of the infinitesimal 

volumes.

W i
i=∑  i⋅dV i⋅ r̈ i T⋅ r i=∫

V i

 i⋅ r̈ iT⋅ r i⋅dV i

 (2-57)

Similarly, the kinetic energy can be written as

T i = 1
2∫

V
i

 i⋅ṙ P i

T⋅ṙP i⋅dV i
 (2-58)

where V i  is the volume and  i  is the mass density of body i.

Now, if the set of generalized coordinates is linearly independent then each coefficient of 

qk  in equation (2-55) can be set to zero which leads to Lagrange's equation given by

d
dt  ∂T
∂ q̇k
− ∂T
∂qk

−Qk=0  (2-59)

However,  in  multi-body  systems  the  generalized  coordinates  are  generally  not 

independent due to the combined set of constraint equations. Therefore, one cannot pass 

directly from equation (2-55) to equation (2-59).

The collection of all the constraints present in a multi-body model is denoted by C. In the 

case of an holonomic system, C assumes the general expression of equation (2-31). As the 

virtual  displacements  are  considered  to  occur  with  time  being fixed,  the  condition  for  a 

kinematically admissible virtual displacement is realized by taking the differential of the set of 

constraints C, that is

Cq⋅q=[
∂c1

∂q1

∂c1

∂q2


∂c1

∂qn

∂c2

∂q1

∂c2

∂q2


∂c 2

∂qn

⋮ ⋮ ⋱ ⋮
∂cnce

∂q1

∂cnce

∂q2


∂c nce

∂qn

]⋅q=0  (2-60)
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where  n is  the  number  of  generalized  coordinates  and  nce is  the  number  of  algebraic 

constraints equations.  Cq is called the Jacobian matrix of the system. In other words, any 

virtual displacement that satisfies equation (2-60), i.e. this virtual displacement is consistent 

with the constraints of the system, satisfies equation (2-56). If the constraint equations are 

linearly independent, i.e. no redundancies exist, then the matrix Cq has a full row rank and is 

thus nonsingular.

If equation (2-60) holds, then it can also be written that

T⋅Cq⋅q=0  (2-61)

where   is a vector containing nce Lagrange multipliers. Equation (2-61) and (2-56) can be 

combined to give

qT⋅[ ddt ∂T
∂ q̇ 

T

− ∂T
∂q 

T

−QCq
T⋅ ]=0  (2-62)

as  the  Lagrange  multiplier  theorem  guarantees  the  existence  of  a  vector    such  that 

equation (2-62) holds for any arbitrary q  that satisfies equation (2-60). In that case, each 

coefficient  of  q  can be set  to zero which leads to the Lagrange multiplier  form of the 

equation of motion

d
dt ∂T
∂ q̇ 

T

− ∂T
∂q 

T

Cq
T⋅−Q=0  (2-63)

Another approach to derive equation (2-63) is to say that if the generalized coordinates q 

are  linearly  dependent,  then  they  can  be  divided  into  dependent and  independent 

generalized coordinates, i.e. qd and qi respectively. It is then possible to choose   such that

d
dt  ∂T
∂ q̇d

T

−  ∂T
∂qd


T

Cqd

T⋅−Qd=0  (2-64)

The same equation can of course be written for qi as they are independent. Combining both 

equations finally leads again to equation (2-63).

Instead of deriving Lagrange's equation from D'Alembert's principle, Hamilton's principle 

can be used. If the Lagrangian L of a system is defined by

L=T−V  (2-65)
where T and V are the kinetic and potential energy, respectively, then Hamilton's principle 

states that the motion of a system from time  t1 to time  t2 is such that the variation of the 

Lagrangian plus the line integral of the virtual work done by the nonconservative forces must 

be equal to zero, that is

∫
t

1

t2

L⋅dt∫
t

1

t2

W nc⋅dt=0  (2-66)

With  the  techniques  of  calculus  of  variations  equation,  (2-66) finally  leads  to  the  very 

common form of Lagrange's equation [10], that is
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d
dt ∂L
∂ q̇ 

T

−  ∂L
∂q 

T

Cq
T⋅−Qnc=0  (2-67)

In fact, it can be shown that equation  (2-63) and  (2-67) are identical, as  Q in equation 

(2-63) includes both, conservative and nonconservative external forces.

As stated above, Lagrange's equation  (2-63) can also be applied to a system of rigid 

bodies where the kinetic energy of a body i is written as

T i =
1
2∫

V
i

 i⋅ṙ P i

T⋅ṙ P i⋅dV i  (2-68)

For a rigid body i, substituting equation (2-14) into equation (2-15) yields

ṙ
P i= ṙ iAi⋅i⋅sP i

= ṙ i−Ai⋅sPi⋅i ⇔  

ṙ
P i= ṙ i−Ai⋅sP i⋅Bi⋅̇i =[I −Ai⋅sP i⋅Bi ]⋅[ṙ i

̇i ] ⇔
ṙ

P i= [I −Ai⋅sP i⋅Bi ]⋅q̇ i

(2-69)

Substituting equation (2-69) into equation (2-68) leads to

T i =
1
2
⋅q̇ iT⋅M i⋅q̇ i  (2-70)

where the mass matrix M i  of the rigid body is defined as

M i =∫
V

i

 i [ I −Ai⋅sP
i⋅Bi

symmetric B iT⋅sP i

T⋅s Pi⋅B i ]dV i = [ mrr
i m r 

i

mr 
i T m

i ]  (2-71)

The matrix mrr
i  is related to the translation of the rigid body. It is a constant diagonal matrix

mrr
i =∫

V i

i⋅dV i⋅I =m i⋅I  (2-72)

where  I is a 3x3 identity matrix and  mi  is the total  mass of the body. The matrix  mr 
i  

represents the inertia coupling of the translation and rotation of a body. It can be written as

mr 
i =−Ai⋅∫

V i

 i⋅s
P

i⋅dV i⋅B i

 (2-73)

where the integral becomes the null matrix if the origin of the body reference is taken at the 

center of mass of the body. Finally, the matrix m
i  is related to the rotation of the rigid body

m
i = Bi T⋅∫

V i

i⋅s
P

i
T⋅s

P
i⋅dV i⋅B i=B i T⋅J 

i ⋅Bi

 (2-74)

The matrix J 
i  is called the inertia tensor of body i, which is constant for a rigid body.

Equation (2-70) leads to the expressions

d
dt  ∂T i

∂ q̇ i 
T

= d
dt

q̇ iT⋅M i T= d
dt

M i⋅q̇ i =M i⋅q̈ iṀ i⋅q̇ i

 
(2-75)

and
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 ∂T i

∂q i 
T

= 1
2
⋅ ∂M i

∂q i
⋅q̇ i 

T

⋅q̇ i  (2-76)

which, substituted into equation (2-63), give the equation of motion of a rigid body i, that is

M i⋅q̈ iṀ i⋅q̇ i−1
2
⋅ ∂M i

∂q i
⋅q̇ i 

T

⋅q̇ iC
q

i

T⋅−Q i=0  (2-77)

The  equation  of  motion  of  a  complete  multi-body  system  takes  the  same  form  as 

presented in equation (2-77). This set of differential equations is then combined with the set 

of algebraic constraint equations, for example  (2-31), in order to determine the Lagrange 

multipliers. The combined set represents the dynamic equations of a constrained multi-body 

system. The solution of this set of nonlinear differential  and algebraic equations (DAE) is 

very challenging from a numerical  point  of  view. Several  numerical  procedures  exist  for 

solving such systems. They will not be presented here but can be looked up for example in 

[10,  11,  12].  The complete  set  of  equations  to  solve  for  a system of  ni bodies and the 

meaning of the different variables is summed up below.

M⋅q̈Ṁ⋅q̇−
1
2
⋅ ∂M
∂q
⋅q̇ 

T

⋅q̇Cq
T⋅−Q=0  

C q , t =[c1q , t  c2q ,t  ⋯ c nce
q , t  ]T=0  

q ,q̇ , q̈ are vectors containing the n generalized coordinates of the system

and their time derivatives,

where, for a body i q i= [r i T i T ]T=[ x i y i z i i i i ]
T

.

M is an (n x n) matrix containing the mass matrices M i  of each body i

where M i=[m i⋅I 0
0 B i T⋅J 

i ⋅B i ]  if the origin of the body reference frame

is taken at the center of gravity of body i.

Ṁ is the time derivative of the mass matrix.

∂M
∂q

is an (n x n x n) matrix containing the partial derivative of the mass

matrix with respect to the generalized coordinates. 

Cq is an (nce x n) matrix called the system Jacobian, where C ij=∂C i / ∂q i .

 is a vector containing the nce Lagrange multipliers.

Q is a vector containing the n generalized forces associated with each

generalized coordinate qk that are determined form the conservative

and non-conservative external forces applied to each body i.

C is an (nce x n) matrix containing the nce algebraic constraint equations.

(2-78)
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2.1.2 Flexible-Body Dynamics

Nonlinear dynamic problems of complex mechanisms which are represented with rigid 

bodies  are  simulated  and  analyzed  efficiently  with  MBS  programs.  For  the  nonlinear 

dynamic simulation of flexible structures, the code has to handle additionally the flexibility of 

bodies. Today, most of the commercial MBS programs including flexible bodies are based 

on a formulation that assumes the large overall motion of the body superimposed by small 

linear deformations. These deformations are generally represented by a modal approach, 

which means that the deformation is written as a linear combination of mode shapes. In 

general, these mode shapes are not only made up of eigenvectors of the structure but may 

include static deformation modes as will be shown in the following.

2.1.2.1 Reduction Methods

To model  the flexibility  of  a body which has an arbitrary  geometry,  the finite element 

method is used as a general  systematic  approach.  However,  a reasonable fine mesh is 

usually needed in order to obtain accurate results. Therefore, FE models often have a large 

number of degrees of freedom. Now using this full FE model with its large number of nodal 

DOF directly in a  MBS model is unnecessary and often not feasible from a computational 

point of view. The model has to be reduced before being included in a multi-body dynamic 

simulation. The need for reduced FE models is also shared by other fields of mechanical 

analysis. For this reason, several reduction methods were developed. The general formalism 

of a reduction method can be expressed by

u=T⋅v  (2-79)
where u is the vector that contains the physical coordinates of the FE model, v is the vector 

with  the  generalized  coordinates  obtained  by  the  reduction  and  T is  the  coordinate 

transformation matrix [13]. If  np physical  coordinates should be reduced to  n generalized 

coordinates, then the transformation matrix T has the dimension np x n, i.e.

{
u1

u2

⋮

un
p

}= [ T ]
n

np

1

{v1

v 2

⋮
vn
}  (2-80)

It is assumed that T is time-independent therefore

u̇=T⋅v̇  and ü=T⋅v̈ (2-81)
The linear equation of motion of an undamped structure with the mass matrix  M and the 

stiffness matrix K can be written as
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M⋅üK⋅u=F  (2-82)
Substituting equation (2-79) and (2-81) into equation (2-82) and multiplying from the left with 

the transpose of matrix T yields the reduced linear equation of motion, that is

T T⋅M⋅T⋅v̈T T⋅K⋅T⋅v=T T⋅F

⇔ MT⋅v̈KT⋅v=FT

(2-83)

The resultant  set  of  equations  has now only  n degrees of  freedom.  MT and  KT are  the 

reduced mass and stiffness matrix,  respectively  and  FT is the reduced force vector.  The 

problem  is  to  adequately  choose  the  transformation  matrix  T.  Several  possibilities  are 

presented in the following sections.

a) Guyan Reduction
The  physical  coordinates  u can  be  partitioned  into  two  groups:  the  coordinates  that 

should be retained - they are called master DOF and denoted by the subscript m - and the 

coordinates that  should be eliminated by the reduction - they are called slave DOF and 

denoted by the subscript s. Thus equation (2-82) can be written in the partitioned form

[Mss Msm

Mms Mmm
]⋅[ üs

üm
][Kss Ksm

K ms K mm
]⋅[us

um
]= [ Fs

F m
]  (2-84)

The Guyan reduction is based on a solution method used in static structural analysis. In 

this case, the coordinates to which no forces are applied, can be eliminated [14] without 

introducing  an  error  according  to  the  following  process. The  structural  equations  are 

arranged so that after partitioning the forces Fs are zero, i.e.

[K ss K sm

Kms Kmm
]⋅[us

um
]= [ 0

F m ]  (2-85)

The upper partition of equation (2-85) gives the static constraint equations

K ss⋅usK sm⋅um=0  (2-86)

From equation (2-86) the transformation matrix T can be identified as having the form

T= [−Kss
−1⋅Ksm

I ]  (2-87)

so that finally

u=T⋅v ⇒ [ us

um
]= [−K ss

−1⋅K sm

I ]⋅um  (2-88)

Although the transformation matrix  T resulted from a static analysis approach, it is also 

applied in dynamic analysis for the mass matrix [14]. The advantage of the Guyan reduction 

is that the physical DOF of interest are kept. However, the fundamental idea of the Guyan 

reduction  is  that  the mass of  the structure  can be concentrated  at  a limited  number  of 

degrees of freedom without significantly affecting the natural frequencies of interest. For an 

arbitrary structure, the master DOF must therefore be chosen judiciously. They should not 

only include the DOF of the nodes that connect to other structures but also DOF throughout 
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the rest of the structure in order to respect the mass distribution within the structure. Thus, 

this technique introduces errors  in the inertia terms while  the reduced stiffness matrix  is 

exact with respect to the full FE model.

b) Modal Reduction
The equation of motion in (2-82) is considered without external forces, i.e.

M⋅üK⋅u=0  (2-89)
A solution for equation (2-89) can be put in the form of

u=U⋅ei⋅⋅t   (2-90)

Substituting (2-90) into (2-89) yields the eigenvalue problem

K⋅U=2⋅M⋅U  (2-91)

This  problem  has  np solutions.  To  each   j ,  which  is  called  an  eigenvalue  or  natural 

frequency,  corresponds  a  vector  U j ,  which  is  commonly  denoted  as   j ,  called  an 

eigenvector or mode shape. When all  j  have been determined, they can be grouped in the 

modal matrix   such that

= [1 2  np
]n p

n
p

1
 (2-92)

and it can be written that

u=⋅v  (2-93)

Substituting  equation  (2-93) into  equation  (2-82) and  multiplying  from  the  left  with  the 

transpose of matrix   yields the equation of motion

T⋅M⋅⋅v̈T⋅K⋅⋅v=T⋅F  (2-94)

A fundamental property of the eigenvectors is that

T⋅M⋅=diag m j  and T⋅K⋅=diag k j   (2-95)

with  j
2=k j / m j . Thus the equation of motion (2-94) is uncoupled and can be rewritten as

diag m j⋅v̈diag k j⋅v=
T⋅F  (2-96)

Equation  (2-96) is now made up of  np independent algebraic equations that can be easily 

solved and used to determine u with

u=⋅v=∑
i=1

np

i⋅v i  (2-97)

In order to reduce the number of DOF, the eigenvectors corresponding to the highest 

eigenvalues are generally discarded, such that

u≈∑
i=1

n

i⋅v i  (2-98)

where n≪n p . These retained eigenvectors are used to fill the transformation matrix T with

T= [1 2  n ]
n

np

1
 (2-99)

This reduction method allows very high reduction degrees without significantly affecting 

the  accuracy  of  the lower  natural  frequencies. However,  the  disadvantage  of  the modal 
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reduction is that the system is "frozen" in its state at which the eigenvalue problem is solved, 

i.e. the boundary conditions cannot be changed anymore.

c) Component Mode Synthesis
First component mode synthesis (CMS) techniques were developed in the sixties. The 

original idea, is to partition a structure into several components where each component is 

represented by a set of suitable defined component modes. These sets are then coupled to 

get a reduced order problem of the entire assembly for the dynamic analysis. Since then, 

CMS is used extensively in the dynamic analysis of structures and various formulations have 

been developed. First intended for undamped or lightly damped structures, the formulation 

has  been  extended  for  heavily  damped  and  gyroscopic  systems  and  for  use  with 

experimentally determined CMS parameters. References [15, 16, 17] provide a review on 

the different techniques with an exhaustive list of available literature. In this work, only the 

basic formulation is presented [18].

The  principle  of  the  CMS  technique  is  that  each  substructure  is  projected  from  the 

physical space onto a mode subspace composed by normal modes, i.e eigenvectors of the 

substructure, and supplementary modes which are constraint modes, rigid body modes and 

attachment modes.

The following partitioned form of an undamped linear equation of motion is used.

[M ii M ib

Mbi Mbb
]⋅[ ü i

üb
] [K ii K ib

Kbi Kbb
]⋅[u i

ub
]= [F i

Fb
]  (2-100)

This partition is identical to the partition in  (2-84) used for the Guyan reduction. However, 

instead of master and slave DOF, the terms of boundary and interior DOF are generally 

retained for CMS methods; thus the subscripts b and i, respectively.

Normal Modes
Normal modes are obtained by the solution of the eigenvalue problem

K− j
2⋅M  j=0  (2-101)

Different  normal  modes can be computed depending on whether all,  none or part  of the 

boundary  coordinates  are  restrained  so  that  they  are  classified  as  fixed-interface, 

free-interface or hybrid-interface normal modes, respectively.  The   j  are grouped in the 

normal  mode matrix  N .  The complete mode set  is  usually  truncated to a set  denoted 

hereafter as N .

If all the boundary DOF are fixed, then the eigenvalue problem to solve is

K ii− j
2⋅M ii i j=0  (2-102)

and the reduced normal mode matrix N  can be written as

N≡[ i N

0b
]=[i1 i2  i3 ⋯

0b1 0b2 0b3 ⋯]  (2-103)
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 i N  represents  the  reduced  set  of  eigenvectors  while  the  coefficients  related  to  the 

boundary DOF are zero.

Constraint Modes and Rigid-Body Modes
Constraint modes are static deformation shapes and can be interpreted as giving each 

coordinate  of  the  set  of  boundary  coordinates  a  unit  displacement  while  holding  the 

remaining coordinates of that set fixed; the remaining DOF of the structure are free. This set 

must prevent any rigid-body motion of the component. The constraint modes are defined by

[K ii K ib

Kbi Kbb
]⋅[ib

I ]= [ 0
Rbb ]  (2-104)

where Rbb are the reaction forces at the boundary DOF and I is an identity matrix. The upper 

row partition gives the constraint mode matrix C , which is then defined as

C≡ [ib

I ]= [−K ii
−1⋅K ib

I ]  (2-105)

One clearly notices the similarity to equation (2-87) of the Guyan reduction.

Rigid-body modes can be considered as a special case of constraint modes. From the 

set of boundary coordinates, a minimal set of coordinates is chosen that prevents rigid-body 

motion of  the component,  they are denoted by the subscript  r.  The remaining boundary 

coordinates are denoted by the subscript  e, for excess (redundant) boundary coordinates. 

The rigid-body modes are then defined by

[K ii K ie K ir

Kei K ee Ker

K ri K r e K rr
]⋅[ir

er

I ]= [
0
0
0 ]  (2-106)

Rrr is zero as there are no reaction forces acting on this particular set of boundary DOF. 

Thus, the rigid-body mode matrix R  is defined by

R≡ [ir

er

I ]= [−[K ii K ie

K ei K ee
]
−1

⋅[K ir

K er ]
I ]  (2-107)

From the remaining set of boundary coordinates, a set of redundant-interface constraint 

modes can be defined similar to the constraint modes, while the "rigid-body" coordinates are 

fixed. Thus,

[K ii K ie K ir

K ei Kee Ker

K ri K r e K rr
]⋅[ie

I
0 ]= [ 0

Ree

Rr e
]  (2-108)

The redundant-interface constraint mode matrix E  is then defined as
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E≡ [ ie

I
0 ]= [−K ii

−1⋅K ie

I
0 ]  (2-109)

Attachment Modes
Attachment modes are defined as static  deflections which result  when a unit  force is 

applied to each coordinate of a specified set while the remaining coordinates of that set are 

force free. The difficulty when computing attachment modes is that the component may have 

one or more rigid-body DOF. In this configuration, it is impossible to apply directly to the 

unrestrained component the necessary unit forces. One solution to circumvent the problem 

is to select from the set of boundary coordinates, a minimal set of coordinates, denoted by 

the subscript  r,  that prevents rigid-body motion. The remaining boundary coordinates are 

chosen  as  "attachment"  coordinates,  they  are  denoted  by  the  subscript  a.  Thus,  the 

attachment modes are computed from

[K ii K ia K ir

Kai Kaa K ar

K ri K ra K rr
]⋅[ia

aa

0 ]= [
0
I

R ra
]  (2-110)

and the attachment mode matrix A  is defined by

A≡ [ia

aa

0 ]= [− [K ii K ia

Kai Kaa
]
−1

⋅[0I ]
0 ]  (2-111)

Another possibility  to determine attachment modes leads to the so-called inertia-relief 

attachment  modes.  They are  also  defined by  applying  unit  forces  f at  the  "attachment" 

coordinates. However, instead of fixing some DOF to prevent rigid-body motion, a rigid-body 

D'Alembert force vector M⋅ü r , where ur  is the rigid-body motion due to f, is added to f in 

order to have an equilibrated load system fe that is [18]

f e=f−M⋅ür=P⋅f  (2-112)

where P is called the inertia-relief projection matrix with

P=I−M⋅r⋅r
T  (2-113)

r  are the rigid-body modes that have been normalized with respect to the mass matrix M. 

The  set  of  attachment  modes  A  measured  relative  to  the  "rigid-body"  coordinates  is 

defined by

[K ii K ia K ir

Kai K aa K ar

K ri K ra K rr
]⋅[ ia

aa

0 ]= [
P ii P ia P ir

Pai Paa Par

P ri P ra P rr
]⋅[0I0 ]  (2-114)

In this case, there are no reaction forces at the "rigid-body" coordinates as the loads are 
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self-equilibrated. The attachment mode matrix A  is

A≡[  ia

aa

0 ]=[−[K ii K ia

K ai K aa
]
−1

0
0

0 0 0 ]⋅[
P ii P ia P ir

Pai Paa Par

P ri P ra P rr
]⋅[0I0]=G⋅P⋅f  (2-115)

This mode set is now made orthogonal to the rigid-body modes r  and it can be shown [18] 

that the resulting inertia-relief attachment mode set A  is

A=PT G P ⋅f  (2-116)

Basically, CMS can be divided into two different approaches: constraint-mode methods 

or attachment-mode methods. The latter ones employ attachment modes and free-interface 

normal  modes,  as presented by Mac-Neal  [19] and Rubin [20].  They produce very good 

results,  generally  with  a higher  accuracy  then constraint-mode methods,  and are  widely 

used  in  the  context  of  experimental  verification  of  finite  element  models  [21].  The 

constraint-mode  methods  use  fixed-interface  normal  modes  that  are  supplemented  by 

constraint modes. In reference [22], Hurty used fixed-interface normal modes with rigid-body 

modes  and  redundant-interface  constraint  modes.  Instead  of  differentiating  between 

rigid-body and redundant DOF, Craig and Bampton [23] simplified Hurty’s method by using 

constraint modes and fixed-interface modes. The coordinate transformation matrix T for the 

Craig-Bampton method employs a combination of equations (2-103) and (2-105) and takes 

the form

T=[i N ib

0 I ]  (2-117)

Therefore,  the  set  of physical  FE  coordinates  u reduces  to  the  set  of  generalized 

coordinates v, with

[u i

ub
]=[ i N ib

0 I ]⋅[v N

v b
]  (2-118)

where vb are the physical boundary coordinates and vN are modal coordinates. The resulting 

generalized mass and stiffness matrices are defined by equation (2-83) and can be written 

as

MT=[MNN MNb

MbN Mbb
]

K T=[K NN 0
0 K bb

]
(2-119)

where MNN and KNN are diagonal as they are associated with eigenvectors. MNb and MbN are 

not  null  matrices,  which  highlights  that  there  is  inertia  coupling  between  the  constraint 

modes and the fixed-interface normal modes.

The Craig-Bampton  method  combines  the  advantages  of  the  two  reduction  methods 
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presented in the previous sections a) and b) - in fact, they can be regarded as special cases 

of CMS. On the one hand, the normal modes are truncated and allow a very high reduction 

of the interior (or slave) DOF while the dynamic properties of interest, i.e. natural frequencies 

and mode shapes, are still represented accurately. On the other hand, the use of constraint 

modes  preserves  the  boundary  (or  master)  DOF  and  allows  the  definition  of  arbitrary 

boundary  conditions  after  the  reduction,  which  greatly  facilitates  component  coupling. 

Because of its very simple and straightforward formulation, the Craig-Bampton method is 

widely used in dynamic analysis. Therefore, it is also proposed as CMS technique in ANSYS 

and ADAMS for the generation of flexible bodies. The implementation of the generalized 

coordinates v into an MBS code is presented in the next section.

2.1.2.2 Equation of Motion for Flexible Bodies

The  equation  of  motion  for  a  flexible  body  i is  derived  from  similar  equations  as 

presented in section 2.1.1. In order to apply Lagrange's equation, the kinetic energy has to 

be determined. Therefore, the position and velocity of an arbitrary point on a flexible body 

are needed. From figure 2-6, the position in the global reference frame of a point  Pi on a 

flexible body i is defined by

r
P i=r iAi sP iuP i  (2-120)

where  ri is  the  position  of  the  origin  of  the  selected  body  reference  X'Y'Z',  Ai is  the 

transformation matrix from the local coordinate system to the global coordinate system, s P i  

is the position vector of point P with respect to the body reference X'Y'Z' in the undeformed 

state and uP i  is the deformation vector from the undeformed to the deformed position of Pi.

Figure 2-6: Flexible body positioning

This means,  that  the motion  of  a flexible  body is  defined by the motion of  the local 

reference frame plus the motion of the material points on the body with respect to the local 

reference frame. For the following development, it is first of all assumed that the deformation 

of  the  body  can  be  described  by  an  approximation  method  such  that  the  translational 

deformation of an arbitrary point Pi on a flexible body can be expressed as
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uP i ≈∑
k

S
P i

k⋅q f
i k = S

Pi⋅q f
i  (2-121)

where S
P i  is a matrix corresponding to point Pi that reflects the stiffness of the deformable 

body  and  q f
i  are  the  corresponding  elastic  coordinates  of  the  body  i that  are 

time-dependent. According to equation (2-121), equation (2-120) can be written as

r
P i=r iAi sP iSP

i ⋅q f
i   (2-122)

And the generalized coordinates set for a flexible body i can be defined as

i= {qi T q f
i T }T={r iT i T q f

i T }T={x i y i z i  i i i q f
i T }T  (2-123)

where x i y i z i  i i i
, are the coordinates of the local reference frame that describe the 

rigid-body displacement and q f
i  are the elastic coordinates of the deformable body i.

The absolute velocity of a point Pi on a flexible body is obtained by taking the first time 

derivative of equation (2-122), that is

ṙ
P i= ṙ iȦi⋅sP iS

P i⋅q f
i Ai⋅S

P i⋅q̇f
i  (2-124)

Substituting equation (2-13) and (2-14) into equation (2-124) yields

ṙ
P i = ṙ iAi⋅i⋅ sP iS

P i⋅q f
i Ai⋅S

P i⋅q̇ f
i

= ṙ i−Ai⋅ sP iSP i⋅q f
i ⋅iAi⋅S

P i⋅q̇ f
i

= ṙ i−Ai⋅ sP iSP i⋅q f
i ⋅B i⋅̇ iAi⋅S

P i⋅q̇ f
i

 (2-125)

In partitioned form, the absolute velocity can be written as

ṙ
P i=[ I

−Ai⋅ sP iSP i⋅q f
i ⋅Bi

Ai⋅S
P

i
]⋅̇i

 (2-126)

Lagrange's equation is now used to derive the equation of motion of a flexible body i,

d
dt  ∂T i

∂ ̇i 
T

− ∂T i

∂i 
T

Ci
T⋅−Q i=0  (2-127)

where the kinetic energy Ti of a flexible body is defined by

T i = 1
2∫V

i 
i ṙ P i

T ṙ P i dV i
 (2-128)

Substituting equation (2-126) into (2-128), the kinetic energy can be written as

T i = 1
2
̇i T∫V

i 
i⋅[ I

−Bi T⋅ sP iSP i⋅q f
i 

T

⋅Ai T

S
P i

T⋅Ai T ]⋅[I −Ai⋅ sP iSP i⋅q f
i ⋅B i Ai⋅SP i ]dV i ̇i

= 1
2
̇i T M i ̇i

(2-129)

Mi is  called  the  generalized  mass  matrix  of  the  flexible  body.  It  can  be  divided  into 

sub-matrices and put in the symbolic form of
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M i=[ M rr
i M r 

i M rqf

i

M 
i M q

f

i

sym. Mqf qf

i ]  (2-130)

where

M rr
i = ∫V i i⋅I dV i

M r 
i =−∫V i 

i⋅Ai⋅ sP iSP i⋅q f
i ⋅Bi dV i

M rq
f

i = ∫V i i⋅Ai⋅S
P

i dV i

M 
i = ∫V i i⋅B i T⋅ sP

iS
P

i⋅q f
i T⋅ sP

iS
P

i⋅q f
i ⋅B i dV i

M q
f

i =−∫V i 
i⋅B i T⋅ sP

iS
P

i⋅q f
i T⋅SP

i dV i

Mqf qf

i = ∫V
i 

i⋅SP i

T⋅SP i dV i

 (2-131)

Equation (2-131) shows that the solution of a flexible multi-body system needs a much 

higher computational effort than the solution of a rigid multi-body system. This results from 

the inertia coupling between the reference motion and the elastic deformation of the body. It 

is possible to determine several inertia terms in advance such as M rr
i  or parts of M r 

i  and 

M 
i . Nevertheless, the rest of the mass matrix has to be updated for each time-step as they 

depend on the orientation and motion of the body reference and the elastic coordinates.

It  can  be  noticed  from  equation  (2-131) that  if  the  body  is  rigid,  then  the  elastic 

deformations vanish and M rqf

i , M qf

i ,  M qf qf

i  are null matrices. The resulting mass matrix is 

identical to the one formulated in equation (2-71) for a rigid body. On the other hand, if no 

reference motion is allowed then the only remaining matrix is M qf qf

i , which is equivalent to 

the generalized mass matrix used in a linear structural analysis.

Equations (2-129) is used with Lagrange's equation (2-127) to finally give the equation of 

motion for a system of flexible bodies, similar as for rigid bodies (see equation (2-78)).



34 Simulation Software

M⋅̈Ṁ⋅̇−1
2
⋅∂M
∂
⋅̇

T

⋅̇D⋅̇K⋅C
T⋅−Q=0  

C q , t =[c1q , t  c2q ,t  ⋯ c nce
q , t  ]T=0

 , ̇ , ̈ are vectors containing the n generalized coordinates of the system and

their time derivatives; for a flexible body i i={x i y i z i  i i i q f
i T }T .

M is a (n x n) matrix containing the mass matrices Mi of each body i 

defined in equation (2-130) and (2-131).

Ṁ is the time derivative of the mass matrix.

∂M
∂

is a  (n x n x n) matrix containing the partial derivative of the mass matrix 

with respect to the generalized coordinates.

D is the (n x n) damping matrix and is defined at the end of section 2.1.2.3.

K is a (n x n) matrix containing the stiffness matrices Ki of each body i

defined in equation (2-138).

Cq is a (nce x n) matrix called the system Jacobian.

 is a vector containing the nce Lagrange multipliers.

Q is a vector containing the n generalized forces.

C is an (nce x n) matrix containing the nce algebraic constraint equations.

(2-132)

A generalized force that  is exclusively  present  in a system with flexible bodies is the 

elastic  force  due  to  the  deformation  of  the  bodies.  Therefore,  its  expression  is  briefly 

developed in the following lines. According to [10, 25], the virtual  work due to the elastic 

forces for a flexible body i can be written as

W e
i=−∫V i 

i T⋅i dV i
 (2-133)

where i  and  i  are the strain and stress vectors, respectively. For a linear material and 

geometry, they are defined as

i = D i⋅u i and  i = E i⋅ i (2-134)

where  Di is  the  strain-displacement  matrix  and  Ei is  the  stress-strain  matrix.  Based  on 

equation (2-121), the deformation vector for the complete body can be written as

u i=S i⋅q f
i  (2-135)

Substituting into (2-134) leads to

i = D i⋅S i⋅q f
i and  i = E i⋅Di⋅S i⋅q f

i (2-136)

Equation (2-133) can finally be written as
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W e
i=−q f

i T⋅[∫V i S
i T⋅Di T⋅E i⋅D i ⋅S i dV i ]⋅q f

i

=−q f
i T⋅K qf qf

i ⋅q f
i

 (2-137)

where K qf q f

i  is the stiffness matrix related to the elastic coordinates q f
i  of the flexible body i. 

Therefore, the generalized stiffness matrix Ki of a flexible body i has the form

K i=[ 0 0 0
0 0

sym. Kq
f
q

f

i ]  (2-138)

According to equation  (2-45),  the generalized elastic force  Qe for  a system of flexible 

bodies is expressed as

Qe=−K⋅  (2-139)

which can be added to equation (2-132).

2.1.2.3 Implementation of Flexible Bodies in ADAMS

The problem is to choose the appropriate matrix S to model the elastic deformation of a 

body. As indicated in section 2.1.2.1., the finite element method is generally used to model 

the flexibility of a body with an arbitrary geometry. As these FE models often present a large 

number of DOF, they have to be reduced before being included in a multi-body dynamic 

simulation.  The reduction  technique  implemented  by default  in  ADAMS is  based on the 

Craig-Bampton method that uses normal modes and constraint modes. As explained at the 

end of section 2.1.2.1, the truncated set of normal modes allows a very high reduction of the 

number of interior DOF while the natural frequencies and mode shapes are still represented 

accurately. On the other hand, the constraint modes preserve the boundary DOF and allow 

the definition of arbitrary boundary conditions.

However,  the  original  Craig-Bampton  modal  basis  has  a  disadvantage  that  makes  it 

inappropriate for a direct use in the multi-body formulation presented in the previous section. 

In fact,  the set of constraint modes contains six rigid-body modes, or in other words, the 

rigid-body modes are represented by a linear combination of the constraint modes. However, 

as the large displacement of the flexible body is defined by the coordinates of  the body 

reference frame, the rigid-body modes have to be removed. Besides, these linear rigid-body 

modes  are  generally  not  sufficient  to  describe  the  non-linear  motion  in  space  of  a 

component.  Deleting some constraint  modes in order  to  disable the rigid-body modes is 

correct  but  not  a feasible solution as the omission of  a constraint  mode is equivalent  to 

restraining the corresponding boundary DOF.4

This  problem  is  resolved  by  transforming  the  original  Craig-Bampton  basis  with  the 

solution of the eigenvalue problem [24]

K T⋅v=⋅MT⋅v  (2-140)

4 In the following, the superscript i, which was used to identify a body i, is intentionally omitted to lighten up the 

formulas.



36 Simulation Software

where  MT is  the  reduced  mass  matrix  and  KT is  the  reduced  stiffness  matrix.  The 

manipulation results in a modal basis where v=N⋅q f . Finally, the reduction of the physical 

FE DOF u can be written as

u=T⋅v=T⋅N⋅q f  (2-141)

where T is defined by equation (2-117) which is recalled below

T=[i N ib

0 I ]  (2-142)

N contains the eigenvectors from equation (2-140) and q f  are the elastic coordinates of the 

flexible body. Comparing equation  (2-141) with equation  (2-121), matrix  S of equation  (2-

121), denoted here by S , can be identified as being

S=T⋅N  (2-143)

This is a purely mathematical approach and does not further reduce the number of DOF. 

The  new  modal  basis  has  no  direct  physical  meaning,  but  synthesized  from  the 

fixed-boundary normal modes and the constraint modes are two families of mode shapes: 

the first one approximates the mode shapes of the unconstrained structure and the second 

one  defies  any  clear  physical  classification.  However,  the  most  important  effect  of  this 

additional  transformation  is  that  it  addresses  the  problem mentioned  above.  In  fact,  the 

mode shapes of the first  family include the six rigid-body modes that can now be clearly 

identified. They are disabled by ADAMS by removing the corresponding coordinates and 

columns of q f  and matrix S , respectively. The elimination of the rigid-body modes for the 

MBS formulation is henceforth underlined by using the denotation q f  and S.

When relying on a FE model  to describe a flexible body,  the concept  of infinitesimal 

volumes, implemented in the previous section, has to be replaced by a discrete approach 

using finite volumes. In that case, to each node of the FE mesh corresponds a finite volume. 

Thus, the volume integrals are replaced by sums and the total kinetic energy of a flexible 

body that is made up of np nodes can be written as

T = 1
2∫V

 ṙ P
T ṙ P dV≈ 1

2
⋅∑

p=1

nP

mp⋅ṙ p
T⋅ṙ pp

T⋅J p⋅p   (2-144)

where mp is  the  mass  and  Jp is  the  inertia  tensor  of  the  volume  attached  to  node  p. 

Generally, the inertia tensor Jp is a negligible quantity if the mesh is not too coarse [24].

The translational position  r p  of a node  p is expressed in the global reference frame, 

similar to equation (2-122), as

r p=rA spSp⋅q f   (2-145)

where r is the position of the origin of the body reference expressed in the global reference 

frame. s p  is the position vector of node p with respect to the body reference frame in the 

undeformed state of the FE model.  A is the transformation matrix from the body reference 
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frame to a frame whose origin is coincident with the one of the local reference frame of the 

body and whose axes are parallel to those of the global reference frame. Sp is a matrix that 

contains the three rows of matrix S, defined in equation (2-143), that correspond to the three 

translational degrees of freedom of node p. and qf are the elastic coordinates of the flexible 

body.

Similar to equation (2-124), the velocity ṙ p  of a node p can be written as

ṙ p= ṙ−A⋅ s pS p⋅q f ⋅B⋅̇A⋅Sp⋅q̇ f  (2-146)

Equation (2-146) can finally be transformed into

ṙ p=[ I −A⋅ spSp⋅q f ⋅B A⋅Sp ]⋅̇  (2-147)

In  order  to  respect  any  angular  constraints  defined  in  the  MBS  at  a  node  p,  the 

orientation of a frame rigidly attached to that node must be known. This frame is called in the 

following nodal  reference frame and it  is  assumed that  it  is  initially  parallel  to  the body 

reference  frame5.  In  the  next  paragraph,  the  expression  for  the  orientation  of  the  nodal 

reference frame with respect to the global reference frame using qf and S is developed.

As the deformations of the flexible bodies are supposed to be very small, the rotation of a 

nodal reference frame with respect to the body reference frame can be expressed as

p= S p⋅q f  (2-148)

where Sp  contains only the three rows of matrix  S that correspond to the three rotational 

degrees of freedom of node  p. The orientation of a nodal reference frame relative to the 

global reference frame is defined by the transformation matrix Ap , where

Ap=A⋅ ApB  (2-149)

ApB  is the transformation matrix that takes into account the deformation at node p. Using 

the direction cosines and considering small rotations, ApB  can be expressed as

ApB =[ 1 −pz py

pz 1 −px

−py px 1 ]= Ip  (2-150)

where p  is defined in equation (2-148) and ~ is the skew-symmetric operator. Finally, the 

transformation matrix Ap  is defined by

Ap=A⋅ Ip   (2-151)

Still remains the definition of the angular velocity of a nodal reference frame p . In fact, 

it can be expressed as the sum of the angular velocity of the body reference frame and the 

angular velocity due to the deformation. According to equation (2-14) and (2-148), p  can 

be written as

5 This is not imperative but allows to simplify the formulation of the following equations.
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p=B⋅̇ S p⋅q̇ f  (2-152)

which can be put in the partitioned form

p= [0 B Sp ]⋅̇  (2-153)

Now, substituting equations (2-147) and (2-153) into equation (2-144) yields

T=1
2
⋅∑

p=1

n P

mp⋅̇
T⋅[I −BT⋅ spSp⋅qf 

T
⋅AT Sp

T⋅AT ]⋅[I −A⋅ spSp⋅qf ⋅B A⋅Sp ]⋅̇ 
 1

2
⋅∑

p=1

nP

̇T⋅[0 B T Sp
T ]⋅J p⋅[0 B Sp ]⋅̇ 

 (2-154)

which can be put in the simplified form

T=1
2
⋅̇T⋅M⋅̇  (2-155)

where M is the generalized mass matrix of the flexible body and

M= [ M rr Mr  M rqf

M M qf

sym. M qf q f

]  (2-156)

with6

M rr=I
1 I  (3 x 3) (2-157)

M r =−A⋅[ I 2I 3⋅q f ]⋅B  (3 x 3) (2-158)

M rqf
=A⋅I 3

 (3 x k) (2-159)

M =BT⋅[I 7I 8I 8TI 9 ]⋅B  (3 x 3) (2-160)

M qf
=−BT⋅[I 4I 5 ]  (3 x k) (2-161)

M qf q f
=I 6

 (k x k) (2-162)

k is the number of elastic coordinates qf and I is the identity matrix. I  are terms, defined in 

equation  (2-163) through  (2-171),  that  depend  on  the  elastic  coordinates qf, the  nodal 

masses mp, the nodal inertia tensors Jp, the nodal positions in the undeformed state s p  and 

the shape vectors Sp  and Sp . In fact, all these terms are time-invariant, except for I 5 , I 8  

and I 9  that depend on qf. However, they could also be further stripped down and expressed 

by time-invariant expressions as in [10] and [24].

I 1=∑
i=1

np

mp  (scalar) (2-163)

I 2=∑
i=1

n p

mp⋅sp  (3 x 1) (2-164)

6 A more detailed development of the following expressions is found in appendix A.
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I 3=∑
i=1

n p

mp⋅Sp  (3 x k) (2-165)

I 4=∑
i=1

n p

mp⋅sp
T⋅SpJ p⋅S p  (3 x k) (2-166)

I 5=∑
i=1

n p

mp⋅S p⋅q f 
T⋅S p  (3 x k) (2-167)

I 6=∑
i=1

n p

mp⋅Sp
T⋅S p S p

T⋅J p⋅Sp  (k x k) (2-168)

I 7=∑
i=1

np

mp⋅s p
T⋅s pJ p  (3 x 3) (2-169)

I 8=∑
i=1

np

m p⋅s p
T⋅Sp⋅q f  (3 x 3) (2-170)

I 9=∑
i=1

n p

mp⋅S p⋅q f 
T⋅S p⋅q f   (3 x 3) (2-171)

Finally, one remark concerning damping of flexible bodies in ADAMS. Damping of any 

kind is not considered by the Craig-Bampton reduction. This means that material damping or 

structural  damping is not taken into account by the reduced FE model. Of course on the 

other  hand,  damping  can  be  included  in  the  MBS  model  through,  for  example, 

spring-damper elements or friction within joints. These elements add damping to the flexible 

body and affect the dying away of vibrations of the flexible body. Additionally, ADAMS allows 

the user to directly specify to the flexible body a damping ratio. Assuming that the damping 

forces only depend on the elastic coordinates qf, they can be derived from the Rayleigh 

dissipation function [24]

R=
1
2
⋅q̇ f

T⋅D⋅q̇ f  (2-172)

Generally, the damping matrix D has non-zero coefficients. However, the eigenvectors of 

the  modified  Craig-Bampton  basis  are  orthogonal  and  several  of  these  eigenvectors 

approximate the mode shapes of the unconstrained structure. Thus, it comes in very handy 

to arbitrarily define the damping matrix  D to be diagonal and to work with modal damping 

factors as used in the dynamic analysis of linear structures.  In fact,  a damping ratio   i  

relative to the critical damping coefficient c i
cr  is defined, where

c i= ic i
cr= i 2 k i m i  (2-173)

If such damping is specified by the user, then the term D⋅̇  is added to equation (2-132).

During this work, flexible bodies were derived from FE models that were generated with 

ANSYS. These FE models have to be detailed enough to correctly represent the frequencies 

and  mode  shapes  of  interest.  Impact-hammer  modal  analysis  measurements  were 
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performed to verify the computed natural frequencies and mode shapes. The Craig-Bampton 

reduction and the following orthonormalization is also done within ANSYS. The necessary 

information is written to a file that is then imported into ADAMS. Adding flexible bodies to an 

ADAMS  model  is  quite  straightforward.  Nevertheless,  there  are  still  some  limitations 

regarding forces and joints that can be defined to them. Especially the problem of a moving 

force on a flexible body, i.e. moving platen sliding on clamp base, is still  an open issue. 

However, there are "standard" workarounds which work well and which have proved their 

usefulness. A more detailed presentation of the generation of FE models in ANSYS and the 

solution implemented to model a moving force on a flexible body can be found in chapter 5.

2.1.3 Slider Crank Mechanism

The classical slider crank mechanism of figure 2-7 is chosen to illustrate the formulas 

derived in the previous sections. It consists of three bodies: body 1, which is the slider block, 

body 2, the crankshaft and body 3, the link. The mechanism is assumed to be planar, i.e. 

motion is only allowed in the XY plane. Furthermore, gravity is neglected. Body 1 slides on 

the ground. It is modeled as a rigid body and its center of mass is located at  B. Body 2 is 

fixed to the ground but can rotate at O about the Z axis; it is also modeled as a rigid body. 

Body 3 is fixed to body 1 and body 2 at B and A, respectively, with the rotation about the Z 

axis being possible.  However,  body 3 is modeled as a flexible body. Finally,  in order to 

actuate the slider crank mechanism, a driving moment M is applied to body 2.

Figure 2-7: Slider crank mechanism

2.1.3.1 Kinematics and Kinetic Energy of the Rigid Bodies 1 & 2

The global reference frame XYZ has its origin at O. The local reference frame X'Y'Z' for 

body 1 and 2 is rigidly attached to the center of mass of the respective body as shown in 

figure 2-7. The global  position and velocity  of an arbitrary point  Pi on the rigid body  i is 

defined by equation (2-1) and (2-15) as

r
P i=r iAi⋅s Pi  and ṙ

P i= ṙ iAi⋅
i⋅sP i (2-174)

s P i  is the vector of coordinates of point Pi in the local reference and 
i  is


i=B i⋅̇i  (2-175)

As the motion is planar, the coordinates z i  and the Euler angles i  and  i  are zero, i.e.

O B

A

Y

X

X'2
Y'2

Y'3

Y'1

X'3

X'1

M

body 1

body 2
body 3
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z i=i=i=0  (2-176)

These expressions are in fact constraint equations and could only be taken into account 

during the formulation of the constraints. However, to simplify the equations already at this 

state, they are implemented immediately. Thus, substituting equation  (2-176) into equation 

(2-6), (2-14) and (2-20), the set of generalized coordinates q i , the transformation matrix Ai

, the matrix B i  and the angular velocity of the local frame 
i  for body 1 and 2 are

q i=[
x i

y i

0
i

0
0
] , Ai=[cos i −sin i 0 

sin i cosi 0 
0 0 1 ] , B i=[0 1 0 

0 0 0 
1 0 1 ]  and 

i=[0 
0 
̇ i ] (2-177)

And substituting equation (2-177) into equation (2-174), the global position and velocity of an 

arbitrary point Pi can be written as

{xP i=x ix P i⋅cos i−yP i⋅sin i

y
P i=y ixP i⋅sin iyP i⋅cos i

z
P

i=0

 and {ẋP i= ẋ i−xP i⋅sini−yP i⋅cosi⋅̇i

ẏ
P i= ẏ ixP i⋅cosi−yP i⋅sini ⋅̇i

ż
P

i=0

(2-178)

The kinetic energy of body 1 and 2 is defined as

T i=
1
2∫

V
i

i⋅ṙ P i

T⋅ṙ P i⋅dV i  (2-179)

where Vi is the volume and  i  is the mass density. Substituting (2-174) into (2-179) yields

T i=1
2
⋅q̇ i T⋅[∫V i

 i⋅dV i⋅I −Ai⋅∫
V

i

 i⋅sP i⋅dV i⋅B i

sym B iT⋅∫
V i

i⋅s
P

i

T⋅s
P

i⋅dV i⋅B i ]⋅q̇ i
 

(2-180)

It can be written that

∫
V i

i⋅dV i =m i

 (2-181)

where m i  is the total mass of body i, furthermore

∫
V i

i⋅sPi⋅dV i = 0  (2-182)

as the origin of the local reference frame is defined at the center of mass, and

∫
V i

i⋅sPi

T⋅sP i⋅dV i = J i

 (2-183)

where J i  is the inertia tensor of body i.

Substituting equation (2-177), (2-181), (2-182) and (2-183) into equation (2-180) leads to
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T i = 1
2
⋅[ ẋ i ẏ i 0 ̇ i 0 0]⋅[

mi 0 0 0 0 0
0 mi 0 0 0 0
0 0 mi 0 0 0
0 0 0 J zz

i J zx
i J zz

i

0 0 0 J xz
i J xx

i J xz
i

0 0 0 J zz
i J zx

i J zz
i
]⋅[ ẋ

i

ẏ i

0
̇i

0
0
]  (2-184)

  Equation (2-184) finally simplifies to

T i=1
2
⋅[m i⋅ ẋ i 2 

m i⋅ ẏ i 2 
J zz

i ⋅̇ i 2 ]  (2-185)

which is,  as expected,  the general  expression of the kinetic energy of a rigid body for  a 

planar motion.

2.1.3.2 Kinematics and Kinetic Energy of the Flexible Body

In order to account for the flexibility of the link, the component is modeled with five beam 

elements as shown in figure 2-8. The FE model has six equidistant nodes with each node 

having two translational and one rotational DOF.

Figure 2-8: Finite element model

The full FE model of figure 2-8 has eighteen physical DOF and is reduced according to 

the Craig-Bampton method as described in section  2.1.2.1. Therefore, node 1 and node 6 

are chosen as interface nodes for the MBS model as they are attached to body 2 at A and to 

body 1 at B, respectively. Each node having three DOF, a total of six constraint modes are 

computed. Additionally, the first three normal modes of the structure, with node 1 and node 6 

being fully restrained, are computed for the reduction. ANSYS is used to determine the nine 

component  modes.  For this purpose,  the link has the following properties: overall  length 

0.5 m, section area 0.0004 m2, density 7850 kg/m3 and E-module 2.1⋅1011 Pa. It is modeled 

with the element BEAM3, a 2-D Euler-Bernoulli beam element with three DOF at each node. 

The  element  has  tension,  compression  and  bending  capabilities  and  the  results  are 

summarized in table 2-1.

These  modes  are  used  to  fill  the  transformation  matrix  T.  If  the  physical  DOF  are 

arranged according to interior and boundary DOF as in equation  (2-100), then T takes the 

form

T= [N
1 N

2 N
3 C

u 1 C
u2 C

u3 C
u16 C

u17 C
u18 ]918

1
 (2-186)
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{u4 ⋯ u 15 u1 u2 u3 u16 u17 u18 }
T=T⋅{v 1 v 2 v 3 u1 u2 u 3 u16 u17 u18}

T
 (2-187)

where v1, v2, v3 are modal coordinates.

Normal Modes Mode Shape Comment

N
1 : 451.6 Hz 1st bending shape

N
2 : 1357 Hz 2nd bending shape

N
3 : 3044 Hz 3rd bending shape

 

Constraint Modes Static Shape Comment

C
u1 u2, u3, u16, u17, u18 fixed

C
u2 u1, u3, u16, u17, u18 fixed

C
u3 u1, u2, u16, u17, u18 fixed

C
u16 u1, u2, u3, u17, u18 fixed

C
u17 u1, u2, u3, u16, u18 fixed

C
u18 u1, u2, u3, u16, u17 fixed

Table 2-1: Craig-Bampton Modes

This  Craig-Bampton  basis  is  then  transformed,  again  within  ANSYS,  by  solving  the 

eigenvalue problem as described in section 2.1.2.3 such that

{v1 v 2 v 3 u1 u2 u3 u16 u17 u18 }
T
=N⋅{qf

1 q f
2 q f

3 qf
4 q f

5 q f
6 qf

7 qf
8 qf

9 }T  (2-188)

The final reduction matrix reduces the eighteen physical DOF u to nine coordinates q f  

according to

u=T⋅N⋅q f= S⋅q f  (2-189)

Synthesized  from  the  fixed-boundary  normal  modes  and  the  constraint  modes  are 

eigenvectors that approximate the normal modes of the unconstrained structure, including 

the three rigid-body modes that must be disabled for ADAMS. It was previously said that 

these rigid-body modes are a linear combination of the constraint modes. In fact, it can be 

clearly seen from table 2-1 that the horizontal and vertical rigid-body mode is described by 

the sum of C
u1  and C

u16  and the sum of C
u2  and C

u17 , respectively. Furthermore, it can be 

shown that the rotational rigid-body mode is described by −0.5⋅C
u 20.5⋅C

u17C
u3C

u18 . As 

the non-linear motion of  the flexible body is represented by the coordinates of the body 

reference frame, the rigid-body modes of the reduced FE model must be disabled. This can 

now be easily done by removing the coordinates  q f
1 ,  q f

2  and  q f
3  and the corresponding 
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columns of matrix S . Finally, the set of elastic coordinates of the flexible body is denoted as 

q f  and the transformation matrix is denoted as S, with

q f={q f
4 q f

5 q f
6 q f

7 q f
8 qf

9 }  (2-190)

Table 2-2 regroups the eigenvalues of the modified Craig-Bampton basis and compares 

them  to  the  natural  frequencies  of  the  unrestrained  FE  model.  As  stated  earlier,  some 

eigenvectors of the modified Craig-Bampton basis approximate the first mode shapes of the 

unrestrained FE model, while for the remaining eigenvectors, no clear physical interpretation 

can be given.

modified Craig-Bampton full unrestrained FE model Comment

q f
1 0 Hz 0 Hz rigid-body mode

qf
2 0 Hz 0 Hz rigid-body mode

qf
3 0 Hz 0 Hz rigid-body mode

qf
4 383.6 Hz 383.6 Hz 1st bending shape

qf
5 1031.6 Hz 1031.6 Hz 2nd bending shape

qf
6 2109.2 Hz 2109.2 Hz 3rd bending shape

qf
7 5487.9 Hz no physical meaning

qf
8 5556.0 Hz no physical meaning

qf
9 20056.6 Hz no physical meaning

Table 2-2: Comparison of eigenfrequencies

The local reference frame of body 3 is attached at A as shown in figure 2-7. The absolute 

position and velocity vector of a node i, r i  and ṙ i  respectively, is

r i=r 3A3  s iS i⋅q f   and ṙ i=ṙ 3−A3⋅ s iS i⋅q f ⋅B3⋅̇3A3⋅S i⋅q̇ f (2-191)

The transformation matrix A3 , the matrix B3  and the angular velocity of the local frame 


3  of body  3 are identical  to the rigid-body ones defined in equation  (2-177). s i  is the 

position vector of node i with respect to the body reference frame in the undeformed state of 

the FE model and Si is a matrix that contains the two rows of the transformation matrix  S 

that correspond to the two translational degrees of freedom of node i. Considering that z 3 , 

3  and 3  are zero, the set of generalized coordinates of body 3 is

=[ r 3 T 3 T q f
T ]T=[ x3 y 3 3 q f

T ]T  (2-192)

The position vector in the undeformed state s i  and the mass mi of node i given by ANSYS are 

listed in table 2-3; the inertia tensor J i  being zero. In fact, the Craig-Bampton reduction in ANSYS is 

done with lumped element mass matrices. This means that the mass and inertia terms for a particular 

node are found on the main diagonal of the mass matrix; and for this particular element the inertia tensor 

is zero.
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node s m

1    [0   0   0]T 0.157

2 [0.1   0   0]T 0.314

3 [0.2   0   0]T 0.314

4 [0.3   0   0]T 0.314

5 [0.4   0   0]T 0.314

6 [0.5   0   0]T 0.157

Table 2-3: Node properties

Finally, the total kinetic energy of body 3 can be written as

T 3 =
1
2
̇T⋅M3⋅̇ =>

T 3 =
1
2
[ x3 y 3 3 q f

4  q f
9 ]⋅[ M rr M r  M rqf

M  M qf

sym. Mqf q f

]⋅[
x3

y 3

3

q f
4

⋮
q f

9
] (2-193)

where M3  is the generalized mass matrix defined by equations (2-156) through (2-162). In 

this particular case, M rr  is a (2x2) matrix, M r   is a (2x1) matrix, M rqf
 is a (2x6) matrix, M   

is  a scalar,  M qf
 is  a  (2x6) matrix  and  M qf q f

 is  a (6x6)  matrix;  the  rows and columns 

corresponding to  z 3 ,  3  and  3 ,  which are zero,  have been intentionally  omitted.  The 

terms defined by equations equations (2-163) through (2-171) are for example I 1= 1.57 kg 

and I 2= [0.3925 0 0 ]T . Except for M rr  and M qf q f
, the coefficients of the mass matrix M3  

must be computed for each time-step as they depend on A3  or q f  in this particular case.

2.1.3.3 Constraint Equations

Constraints define the absolute position and orientation of bodies in space or the relative 

position and orientation between two bodies in order to describe the motion of the complete 

mechanical  system. The planar slider crank mechanism of figure 2-7 yields the following 

constraint  equations.  (In  the  following  lines,  the  equations  have  been  simplified  by 

considering that z i , i  and i  are zero for all three bodies.

Body 1, can only translate along the X axis which gives rise to two constraint equations

{y 1=0 
1=0 

(2-194)

Body 2 can only rotate about the Z axis at O which leads to
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r 0=0 ⇔ r2A2⋅[− l 2

2
0 0 ]

T

=0  

  

⇒{x2− l2

2
⋅cos2=0

y 2− l 2

2
⋅sin2=0

(2-195)

where l2 is the distance between 0 and A.

Body 3 is attached to body 2 at A, while the rotation about the Z axis is allowed, i.e

r
A2=r

A3 ⇔ r 2A2⋅[ l 2

2
0 0]

T

=r 3A3⋅ [000]S1⋅q f   

  

⇒{x2−x3 l 2

2
⋅cos2−cos3⋅∑

k=4

9

Su 1

k⋅qf
ksin3⋅∑

k=4

9

Su2

k ⋅q f
k=0

y 2−y 3 l 2

2
⋅sin2−sin3⋅∑

k=4

9

Su 1

k⋅qf
k−cos3⋅∑

k=4

9

Su2

k ⋅q f
k=0

(2-196)

where S1 contains the rows that correspond to the translational DOF of node 1.

Finally, body 3 is also attached to body 1 at B which leads to

r B1=r B3 ⇔ r 1A1⋅[0 0 0 ]T=r 3A3⋅ [ l 3

0
0 ]S6⋅q f   

  

⇒{x1−x3−cos3⋅l 3−cos3⋅∑
k=4

9

Su16

k ⋅qf
ksin3⋅∑

k=4

9

Su 17

k ⋅q f
k=0

y 1−y3−sin3⋅l 3−sin3⋅∑
k=4

9

Su16

k ⋅qf
k−cos3⋅∑

k=4

9

Su 17

k ⋅qf
k=0

(2-197)

where l3 is the total length of the flexible body and S6 contains the rows that correspond to 

the translational DOF of node 6.

The eight independent holonomic constraints equations, that are defined in equation (2-

194) through  (2-197),  form  the  set  of  constraints  C.  This  set  depends  on  the  fifteen 

generalized coordinates qsc  of the slider crank mechanism which are

qsc=[ x1 y1 1 x2 y 2 2 x3 y 3 3 qf
4 qf

5 q f
6 q f

7 qf
8 q f

9 ]T  (2-198)

Thus the flexible multi-body system has seven DOF, one rigid and six flexible DOF.

The Jacobian matrix Cq
sc

 of the system, which is needed for the Lagrange multiplier form 

of the equation of motion can now be determined according to equation (2-60).

2.1.3.4 Equation of Motion of the Multi-body System

The only external forces acting on the mechanism are the elastic forces of the flexible 

body and the driving moment. The generalized elastic force is defined in equation  (2-139) 
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and takes the form

Qe=−K⋅qsc  (2-199)

The virtual  work of the driving moment is  M⋅2 ,  thus according to equation  (2-44) the 

generalized force is

Q2=M ⇔ QM= [0 0 0 0 0 M 0  0 ]T  (2-200)

The total kinetic energy T of the system, with

T = T 1T 2T 3 ⇔  

T = 1
2
⋅[m1⋅ ẋ12 

m1⋅ ẏ 12 
J zz

1 ⋅̇1 2 
m2⋅ ẋ 2 2 

m2⋅ ẏ 2 2 
J zz

2 ⋅̇22 
̇T⋅M 3⋅̇ ] (2-201)

is substituted into Lagrange's equation of the slider crank mechanism, that is

d
dt  ∂T
∂ q̇sc


T

−  ∂T
∂qsc


T

Cqsc

T⋅K⋅qsc=QM  (2-202)

in order to get the governing equations of motion in terms of the generalized coordinates of 

the system. This set of fifteen differential equations is associated with the eight algebraic 

constraint equations defined in equations (2-194) through (2-197) and solved numerically for 

the position, velocity and acceleration of the generalized coordinates.

2.2 FPS Software

Fluid  power  simulation  tools  were  developed  for  the  dynamic  simulation  of  complex 

fluid-technical systems, such as pneumatic or hydraulic units. The mathematical formulation 

of these programs is based on the one-dimensional flow theory supplemented by empirical 

considerations.  This means that  FPS software cannot  model,  for  example,  the unsteady 

non-uniform flow through a valve.  Despite the simplifications, they give however very good 

results for the dynamic simulation of complete hydraulic systems in common engineering 

applications. (They are not  comparable to  computational  fluid  dynamics (CFD) codes. In 

fact,  comparing fluid  power  simulation  to computational  fluid  dynamics is  like  comparing 

multi-body simulation to finite element analysis.)

The program used for  the simulations is DSHplus.  It  has different  libraries containing 

hydraulic,  thermo-hydraulic  and  pneumatic  components.  In  addition,  controls  and 

mechanical libraries exist to complete the simulation tool. An interesting feature is the open 

mathematical description in C++. The user can take a look at the mathematical description 

of each component and can edit the existing or include his own code. A graphical interface 

allows the user  to  quickly  and easily  generate  the simulation  model  and to access  and 

visualize the results (see figure 2-9). Finally, interfaces to several other simulation tools are 

available.
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Figure 2-9: DSHplus

2.2.1.1 Fluid Mechanics

In  the following,  the very basic concepts of  fluid  mechanics implemented in the FPS 

program are briefly presented.

2.2.1.2 Pascal's Law

Figure 2-10: Hydraulic press
Pascal's law states that in a fluid at rest in a closed container, a pressure change in one 

part is transmitted without loss to every portion of the fluid and to the walls of the container. 

The pressure always acts at right angles to the walls. A direct application of Pascal's law is 

the hydraulic press as shown in figure 2-10 where

p=
F1

A1

=
F2

A2

 (2-203)
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2.2.1.3 Conservation of Mass / Equation of Continuity

The law of conservation of mass states that mass can neither be created nor destroyed. 

For hydrodynamics this means that the inflows, outflows and change in storage of mass in a 

system must be in balance. This can be written as

ṁ1− ṁ2=
d
dt∫V

dV  (2-204)

ṁ  is called the mass flow rate and is expressed as

ṁ=⋅v⋅A  (2-205)

where   is in general not constant.

Figure 2-11: Equation of continuity

For a steady flow, i.e. conditions such as velocity,  pressure and cross-section may differ 

from one point  to another but  do not change with time,  and an incompressible fluid,  i.e. 

density   is constant, then equation (2-204) becomes

A1⋅v 1= A2⋅v2 =Q  (2-206)

where A is the section area, v is the mean flow velocity7 and Q is the discharge, also called 

volume flow rate. A standard assumption in hydraulics is that the flow and fluid may be 

regarded  as  steady  and  incompressible,  respectively.  Therefore  equation  (2-206) is 

commonly used for calculations in hydrodynamics.

2.2.1.4 Bernoulli's Equation

When a fluid is in motion, inertia and friction must be considered. If inviscid steady flow 

and incompressible fluid is assumed, then the application of Newton's second law to a fluid 

volume brings forth Bernoulli's equation.


2
⋅v 2p⋅g⋅h =constant  (2-207)

As the altitude difference in hydraulic systems is generally small,  the pressure due to 

gravity is often neglected compared to the relatively high pressures in the system. For a 

component with a variable sections, e.g. figure 2-11, Bernoulli's equation allows to determine 

the pressure difference between two sections, that is

7 In practice, every fluid that flows near a solid boundary will take the speed of the boundary, which is usually 

zero. Therefore, the velocity through a component, e.g. a pipe, is not constant across the cross section: its is 

minimum at the walls and increases to a maximum at the centre of the cross section. This variation is known 

as the velocity profile.

v
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1
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p1−p2=

2
⋅v 2

2−v 1
2 = 2⋅Q2

2

A2
2
−

Q1
2

A1
2   (2-208)

2.2.1.5 Pressure Loss in Components

Hydraulic energy cannot be transferred through components without losses. Because of 

friction within the fluid and friction between fluid and components, energy is transformed to 

heat which results in a pressure loss. For example, if the pressure loss is taken into account 

for the component in figure 2-11, the equation (2-208) becomes

p1−p2=

2
⋅v 2

2−v 1
2  p loss  (2-209)

This pressure loss can be expressed as a function of the dynamic pressure  [26] and the 

resistance coefficient  . The hydraulic resistance of a component can then be written as

 p loss= ⋅

2
⋅Q

2

A2
⇔ Q = 1


⋅A⋅ 2


⋅ p loss  (2-210)

  depends on the viscosity    and the flow rate Q or the flow velocity  v. Generally,    is 

expressed as a function of the Reynolds number R, that is

=
K 1

R
K2  (2-211)

The Reynolds number is defined as

R=
v⋅dh


 (2-212)

where  dh is  called  the  hydraulic  diameter.  For  circular  sections  dh equals  the  diameter, 

otherwise it is defined as

dh =
4⋅A
U

 (2-213)

A being the cross-section area and U the section circumference.

Substituting equations (2-211) through (2-213) into equation (2-210) yields

 p loss=
K 1⋅U

8 ⋅A2
⋅⋅⋅Q

K 2

2 ⋅A2
⋅⋅Q2  (2-214)

Thus, the pressure loss of a component can be expressed by two terms, the first  one is 

linearly dependent on discharge and viscosity and the second one is square dependent on 

discharge  and  independent  of  viscosity.  Generally,  K1 and  K2 can  only  be  determined 

experimentally; only for some components they may be derived theoretically.

The pressure loss for an orifice constriction as shown in figure 2-12 can be derived using 

Bernoulli's equation. Assuming that the fluid is incompressible and that the pressure due to 

gravity is negligible leads to
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Q=
A3

1− A1

A2


2
⋅2

⋅ p loss

 (2-215)

A3 is lying slightly behind the orifice and is smaller than the actual orifice area due to a jet 

contraction. This point of minimum area is called the vena contracta.

A3/A0= c  (2-216)

where c  is called the coefficient of contraction. For a sharp orifice c  is about 0.62, for an 

orifice that resembles to a short tube c  is nearly 1. Of course, there are also losses due to 

turbulences and friction. Therefore, the velocity over  A3 is corrected with the coefficient of 

velocity  v . However, this coefficient is usually very high, between 0.95 and 0.99. Finally, 

the commonly known coefficient of discharge D  is introduced. It accounts for both effects 

and equation (2-215) can be written with respect to A0 as

Q= D⋅A0⋅ 2

⋅ p loss  (2-217)

D  is again determined experimentally, it ranges from 0.6 to 0.9 for most orifices.

Comparing equation (2-217) to equation (2-214) one can say that the pressure loss of an 

orifice  is  independent  of  the  viscosity  of  the  fluid.  Generally,  all  kind  of  valves  can  be 

regarded as orifices and equation (2-217) is commonly used to calculate the flow rate at a 

given  pressure  difference  with  D  and    constant;  which  is  acceptable  for  most 

applications.

Figure 2-12: Orifice

In  contrast  to  an orifice,  the pressure  loss  in  a straight  pipe  depends mainly  on the 

Reynolds number,  i.e.  flow velocity and viscosity. The resistance coefficient for a pipe is 

commonly defined as

= ⋅ l
dh

 (2-218)

where l is the length of the pipe, dh the hydraulic diameter and   the dimensionless friction 

coefficient that is depending on the Reynolds number and the wall roughness of the pipe. 

This friction coefficient is encoded in the Moody chart. Similar charts can also be found for 

other standard components in the literature [26, 28, 29].

Until now, the case of steady flow has been assumed, but in reality, flow and pressure 
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vary  in  time.  This  is,  for  example,  happening  during  start-up  and  brake  operations  of 

cylinders or during switching operations of valves. Under these conditions, pressure peaks 

or  oscillations  are  possible  that  may damage the system.  In  order  to  account  for  these 

effects in the simulation, compressibility and inertia of the fluid have to be included. The 

respective formulas are developed in the following.

2.2.1.6 Compressibility of Fluid

If a pressure is applied to a fluid then the fluid is compressed and its volume is reduced. 

Similar to steel, a bulk modulus can be defined for the fluid such that

V =
V 0

Eoil

⋅p  (2-219)

Figure 2-13: Fluid compressibility

Now applying equation  (2-204) to  a control  volume  V  with the stored mass being  m 

having a density  , then one can write that

ṁ1−ṁ2=
d ⋅V 

dt
=⋅V̇V⋅̇  (2-220)

Considering that   is depending on the pressure p, then it can be expressed as (30)

= i
i

Eoil

⋅p  (2-221)

where  i  is the mass at zero pressure.

Inserting equation (2-221) into (2-220) and dividing by   leads to

Q1−Q2=V̇ V
Eoil

⋅ṗ  (2-222)

If the volume is fixed, equation (2-222) finally simplifies to

ṗ=
Eoil

V
⋅Q1−Q2  (2-223)

Equation  (2-223) is fundamental for the description of the pressure dynamics in hydraulic 

systems.

The elastic  modulus  Eoil of  mineral  oil  has the order  of  magnitude of  10∙9 Pa,  which, 

compared to the elastic modulus of steel, shows that the hydraulic system can represent a 

stiffness weak point. The effective bulk modulus in a hydraulic system depends on several 

parameters such as temperature, pressure, amount of undissolved air or flexibility of hoses. 

Therefore, an equivalent bulk modulus  E'oil is commonly defined and used for calculations. 

V
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The variation of Eoil against these parameters is generally described by empirical formulas. 

Figure 2-14 shows the influence of temperature, pressure and piping.

Figure 2-14: E-modulus of oil (taken from [26] p20)

2.2.1.7 Inertia of Fluid

When the flow rate changes, the mass of the fluid has to be accelerated or decelerated. 

Applying Newton's second law to a finite volume of fluid yields

p⋅A= ⋅V⋅ẍ  (2-224)

where ẍ = v̇ = Q̇ /A , hence the hydraulic inertia can be defined as

p =
⋅V

A2
⋅Q̇  (2-225)

Figure 2-15: Fluid inertia

2.2.2 Hydraulic Modeling Components

It is possible to define an analogy between a fluid power system and an electrical circuit. 

The concept of resistance, capacitance and inductance can be defined [26, 27, 30], they are 

resumed in figure 2-16. DSHplus uses this analogy for the dynamic simulation. The basic 

modeling components are resistances of flow and volumes of fluid, they are combined to 

create  simple  or  more  elaborated  models.  In  this  section,  the  most  important  modeling 

components  are  briefly  presented to give a better  understanding of  the  possibilities  and 

limitations of the simulation tool.

    1  - high pressure hose NW30
    2  - steel pipe dia.30 x 4
3, 4  - hydraulic oil
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Figure 2-16: Electrical-hydraulic analogy

2.2.2.1 Fluid

In the fluid options the user chooses the type of fluid that is characterized by its viscosity 

υ, its density ρ and its bulk modulus Eoil; all three depending in real systems on temperature, 

pressure and other parameters. In a standard simulation the temperature is supposed to 

remain constant; otherwise the thermo-hydraulic library must be used. Viscosity and density 

are also kept constant as they generally vary little under normal conditions. Only the bulk 

modulus  changes  with  pressure.  Additionally,  it  can  also  depend  on  the  amount  of 

undissolved air in the fluid and the pressure related change of volume of the recipient.

2.2.2.2 Hydraulic Node

All hydraulic components need to be connected via hydraulic nodes. The flow rates  Q 

from the components are summed up at the node and the actual pressure Δp in the node is 

calculated according to equation (2-226).

p=E '

V
⋅∫Q⋅dt  (2-226)

The volume  V consists of the volume of the connected components. This means that the 

volume  of  a  node  may  change  if  components  such  as  cylinders  or  accumulators  are 

attached to it. The corrected bulk modulus E' depends on the actual pressure, the amount of 

undissolved air and the volume change of the recipient.

2.2.2.3 Valves

Directional control valves, proportional valves, pressure reducing valves or orifices are 

flow resistances. A flow of fluid through a resistance causes a pressure drop, or vice versa a 

pressure difference causes a flow. Depending on the component the user has to specify a 

flow rate and a pressure drop or a coefficient of discharge αD and an area A according to

 p=RH⋅Q
2  (2-227)

Equation (2-227) can be written in the more common form of

Q=D⋅A⋅ 2

⋅p  (2-228)

These components have no volume; if necessary it has to be specified "manually" at the 
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hydraulic node. For non-standard components, the user has the possibility to define look-up 

tables. For example, a proportional valve with a special spool-cut needs a look-up table that 

defines the flow section area versus the spool position. On the other hand. the dynamic 

behavior of a valve is modeled with a controls approach. The control path for the position of 

the spool against the input signal may be equivalent to a P-, PT1- or PT2S-element.

2.2.2.4 Cylinder

The cylinder computes a force according to the actual pressure Pi and the area Ai of the 

cylinder chambers.

Fcyl=∑P i⋅Ai  (2-229)

The compressibility  of  the fluid  inside the cylinder  is  considered as its  volume is added 

automatically  to  the volume of  the  hydraulic  nodes.  However  it  is  massless,  i.e.  has no 

inertia. Generally, the inertia of the fluid in the cylinder chambers is negligible compared to 

the inertia of the mechanical parts attached to the cylinder. The velocity  vcyl of the cylinder 

rod is directly related to the discharge of a cylinder chamber by

Qi=Ai⋅v cyl  (2-230)

2.2.2.5 Piping

The pipe is modeled as a hydraulic resistance and inductance. The capacitance of the 

pipe is taken into account at the hydraulic nodes. In order to model the continuous nature of 

the pipe, several  pipe components have to be lined up. The number  n of pipe elements 

depends on the highest frequency f of interest [31].

n10⋅L⋅f⋅ E '
 (2-231)

The resistance coefficient of a pipe is calculated according to

 p=⋅ L
d h

⋅

2
⋅Q

2

A2  (2-232)

L is  the  length  of  the  pipe,  dh the  hydraulic  diameter  and  λ the  dimensionless  friction 

coefficient  that  in  DSHplus  is  only  depending  on  the  Reynolds  number.  Adding  pipe 

components to the model drastically increases the computation effort.

Figure 2-17 shows the set of differential equations that needs to be integrated to simulate 

the  cylinder  extension for  this  particular  hydraulic  system.  The user  can choose among 

different  integration  methods  with  a  variable  or  a  fixed  time-step.  He  can  also  set  the 

simulation error and control the amount of solution output.
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Figure 2-17: DSHplus formulation

Generally the problem in such hydraulic simulations is not the generation of the model 

itself, but the definition of the input parameters for the different components. Most of the time 

the only information available is the one found in the manufacturer catalogues. However, this 

data has been determined experimentally at specific conditions, so that it may have to be 

adapted to the required simulation input. It is also possible that it is not complete. In that 

case, extensive measurements on the hydraulic system are necessary.

2.3 Controls Software

Simulink  is  used  to  model  the  controller.  It  is  a  software  package  developed  for 

simulating  and  analyzing  time-varying  systems.  It  can  model  linear  and  non-linear 

phenomena  and  plug-ins  extend  the  program  with  tools  for  specific  modeling  tasks.  A 

graphical user interface serves for generating the models that are built from block diagrams 

which are connected among each other.  The program includes a large library of various 

blocks, and, of course,  customized blocks may also be created. After a model has been 

generated,  it  can  be  simulated  with  different  integration  methods.  The  results  may  be 

displayed while the simulation is running and they can also be exported to the MATLAB 

workspace for further processing and visualization.

Simulink  can  be  used  in  a  wide  range  of  applications,  including  signal  processing, 

financial  or  electrical  circuits  modeling;  actually  all  kind of  time-varying systems may be 

modeled.  But  the  tool  is  very  popular  for  controls  system  modeling  and  analyzing. 

Furthermore, as Simulink is integrated with MATLAB, the user has access to the Control 

System  Toolbox.  This  add-on  provides  additional  means  for  designing  and  analyzing 

closed-loop control  systems such as root locus, pole placement and frequency response 

pV1

Eoil pV1

V1

Qpump QPRV pV1
Qvalve pV1

,pV2

pV2

Eoil pV2

V2

Vpipe

2

Qvalve pV1
,pV2

Qpipe

pV3

Eoil pV3

V3

Vpipe

2
Vcyl xcyl

Qpipe vcyl Acyl

Qpipe

Apipe
2

Vpipe

pV2
pV3

ploss Qpipe

vcyl

1
m

pV2
Acyl F friction

xcyl vcyl

 

hydraulic nodes



57

analyses or state-space model representations.

The controller logic of the moving platen positioning has been translated into a Simulink 

block  diagram.  This  was not  imperative  as  the  displacement  of  the  platen  is  controlled 

through  an  open-loop  system.  However,  it  comes  in  handy  when  simulating  different 

machine setups and it can be extended to a closed-loop system.

Figure 2-18: Simulink block diagram model

2.4 Co-simulation

The co-simulation is possible as the software companies offer add-ons to their products 

developed especially for this purpose. The models have only to be generated accordingly. 

The different set-ups for these particular programs are presented in the following.

2.4.1 MBS-FPS

The user can include own written subroutines in ADAMS if he wants to model specialized 

phenomena  that  are  not  part  of  the  standard  simulation  package.  The  subroutines  are 

programmed in FORTRAN or C. Afterwards they are compiled in order to work with the 

solver. These functions are then evaluated as part of the solution process. DSHplus-STC 

(Simulation-Tool-Chain) makes use of this feature to link the hydraulic model with the MBS 

tool.  The  STC-module  generates  an  interface  between  the  FPS  model  and  the 

user-subroutine.

In order to illustrate the coupling procedure, a simple example of a hydraulic cylinder 

actuating a clamp piston is used. The MBS model computes the position and velocity of the 

clamp piston and cylinder, and the hydraulic model computes the cylinder force.



58 Simulation Software

Figure 2-19: ADAMS - DSHplus co-simulation

In  DSHplus,  special  input- and  output-components  need  to  be  defined  so  that  the 

STC-module recognizes the data exchanged during the simulation. In ADAMS, the model is 

generated  as  usually  except  for  the  force  statement.  The  user-subroutine  and  its  input 

parameters have to be specified here; in this example the input parameters are the id's of 

the  moving  marker  and  reference  marker.  Finally,  the  FORTRAN  subroutine  must  be 

programmed. It computes the actual relative position and velocity of the moving marker with 

respect to the reference marker and calls the STC-module.

Figure 2-20: Inter- and extrapolation of exchanged values

When the simulation is started, both programs are first of all initialized. ADAMS then gets 

the initial values of DSHplus from the STC-module and computes the first time-step. At the 

end of every successful simulation step in ADAMS, the new position and velocity values and 

the duration of the time-step are transferred to the STC-module. The module then triggers 

the calculation of the same time period in DSHplus with the new position and velocity values 

of the cylinder. When DSHplus has computed its time-step, the new force value is passed 

back to ADAMS which then starts to compute the next  time-step. The STC-module also 

manages the interpolation or extrapolation of the input- and output-parameters in order to 
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smooth out  the computation process [32]. The detailed FORTRAN code can be found in 

appendix B.

DSHplus distinguishes between the co-simulation mode and the  embedded mode. The 

only difference is that for the embedded mode the DSHplus online plots and graphical user 

interface are not available. This has two advantages: first, less memory and CPU time is 

required and second, no DSHplus version is necessary on the processing computer. The 

drawback is that the user has only access to the DSHplus results that have been defined as 

import or export parameter of the MBS model. The configuration of the STC-module allows a 

very  flexible  mode  of  operation.  The  user  can  switch  between  different  hydraulic  or 

mechanical models as long as the import- and output-parameters do not change.

2.4.2 MBS-Controls

The ADAMS/Controls plug-in provides the possibility to integrate a controls system into 

the MBS model or to link it to a block diagrams model developed with controls applications 

such  as  Simulink.  For  this  purpose,  inputs  and  outputs  have  to  be  specified  in  the 

mechanical model. The inputs describe the variables that are transferred from the controls 

application to the MBS software and the outputs are the variables that are exported from the 

mechanical to the controls model. The final step consists of linking both programs. Several 

procedures  exist  depending  on  the  chosen  simulation  method:  discrete,  continuous or 

C-code import.

In the discrete or co-simulation mode, ADAMS solves the mechanical system equations 

and  Simulink  solves  the  controls  system  equations;  identical  to  the  ADAMS-DSHplus 

coupling. In the continuous mode, the controls application solves both, the mechanical and 

controls system equations. This mode is also called the  function evaluation mode. As the 

system of differential and algebraic equations (DAE) cannot be solved by Simulink, ADAMS 

simplifies  the  DAE system and transforms  it  into a set  of  ordinary  differential  equations 

(ODE). This ODE set is transferred to Simulink and combined with the controls equations 

set. The combined set is then integrated by Simulink [33]. For most analyzes, the discrete 

mode is generally the more efficient simulation method because of the optimized DAE solver 

algorithms in ADAMS. It is faster and can handle complex mechanical models better than 

the continuous mode. The latter one can be of interest when the equations solved in the 

controls system cause a large coupling effect on the mechanical model or when very small 

time-steps are required.

For  both  methods,  a  "Controls  Plant  Export"  dialog  box  in  ADAMS  creates  the 

appropriate files and Simulink variables from the specified input and output parameters and 

options.  In  the  next  step,  the  ADAMS_SUB block,  that  is  created  during  the  export,  is 

integrated into the controls model. From the ADAMS_SUB block, additional parameters such 

as discrete or continuous mode, with or without animation or communication step size can 
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be specified.

Figure 2-21: ADAMS - Simulink co-simulation

In the C-code import mode, ADAMS solves the combined sets of DAE and ODE. For this 

purpose a C-code representation of the controls system is exported using the Real-Time 

Workshop  plug-in  of  Simulink.  ADAMS/Controls  can then automatically  create  a general 

state equation element and connect it to the inputs and outputs of the mechanical system. 

The combined model is simulated within ADAMS.

2.4.3 MBS-FPS-Controls

With the licenses available at the University of Luxembourg only the co-simulation, or 

discrete simulation mode, is possible. Linking the three programs is straightforward and does 

not request any additional operations than those presented in the two preceding paragraphs. 

The setup of the co-simulation proves to be very flexible. The user can for example replace 

a rigid-body model by a flexible-body model, add an orifice to the hydraulic model or simply 

change the gain of the controller without having to reconfigure the co-simulation. Of course 

this is only possible as long as the input- and output-parameters do not change.

Figure  2-22  shows  the  configuration  of  the  moving  platen  stroke  simulation.  The 
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computation time for this hybrid model depends on various parameters like the complexity of 

the model, the solvers used for the computation or the settings of the solvers. To give an 

idea, the computation of a complete stroke of the moving platen takes about ten minutes for 

a rigid-body model, whereas at least ten hours are needed for a flexible-body model.

Figure 2-22: ADAMS - DSHplus - Simulink co-simulation

In the following three chapters, the different simulations tools were used to investigate 

the clamp unit and to work out improvements. In chapter 3, a cheaper solution for the clamp 

locking mechanism is  proposed.  Therefore,  the mechanism was modeled with a flexible 

MBS model while the force of the hydraulic cylinder was computed with the FPS program 

(34). In chapter 4, different possibilities to reduce the machine cycle time are analyzed. In 

this case, the focus was on the complex hydraulic system and on the implementation of a 

PID  controller  for  the  moving  platen  positioning,  as  the  mechanical  system  was  only 

modeled as rigid bodies (35). Finally in chapter 5, possible root causes for machine creeping 

during operation are investigated. For this purpose, the rigid clamp base, stationary platen 

and tie bars in the MBS model of chapter 4 were replaced by flexible bodies.

SIMULINK ADAMS DSHplus
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3 Clamp Locking Mechanism

3.1 Introduction

The four clamp pistons mechanically lock the moving platen to the tie bars through a 

bayonet coupling (see section 1.2.2). The pistons are rotated with the help of the so-called 

clamp  locking  mechanism.  This  mechanism  is  made  up  of  a  hydraulic  cylinder,  three 

connecting bars and several fixation parts such as clevises, screws, pins or washers. A flow 

directional valve controls the hydraulic cylinder and thereby the direction of rotation of the 

clamp pistons.  The end positions  of  the  cylinder  determine  the "locked"  and "unlocked" 

positions of the clamp pistons. As the valve only controls the direction of flow, and not the 

flow rate, the cylinder always operates at maximum possible velocity. When reaching an end 

position, the cylinder is decelerated by its built-in cushion, which basically works by throttling 

the fluid flow [34].

Figure 3-1: Clamp locking mechanism

For a Q2700,  each clamp piston weights 1400 kg and the connecting bars are about 

2.5 m long. The hydraulic cylinder has a stroke of 390 mm and can generate a maximum 

force at 180 bar system pressure of 221 kN for pushing and 106 kN for pulling. The locking 
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or un-locking time is under 1 second.

At  valve  opening and cylinder  cushioning,  the  connecting  bars  are  exposed to  force 

peaks.  Therefore,  the  initial  design,  which  was a  welded  construction,  was replaced  by 

connecting bars that are manufactured from a single piece (see figure 3-2). If this design is 

far more robust, it is also more expensive. The aim of the simulation is to quantify the forces 

acting on the bars and to give an additional understanding of the locking mechanism. The 

idea is  to  change  the  system accordingly  so  that  the  acting  forces  are  reduced  and  a 

cheaper welded construction can be installed. Thus, in a first step the simulation model is 

used to determine the parameter that influences the most the level of the acting forces; the 

opening velocity of the directional valve is identified to have by far the biggest influence. In a 

next step, the directional valve is replaced by a proportional valve. This allowed to reduce 

the force peak in the simulation by 40% and to use much cheaper welded connecting bars, 

but at the expense of more expensive hydraulic components.

Figure 3-2: Connecting bar designs

3.2 Simulation Model

The  mechanical  and  hydraulic  system  are  simulated  with  the  multi-body  and  the 

fluid-power simulation software, respectively; a controls model is not necessary. The clamp 

pistons are modeled as rigid bodies and the connecting bars are represented by flexible 

bodies in order to account for their flexibility. The hydraulic system is needed to include the 

effects of valve opening and cushioning.

3.2.1 Mechanical System

3.2.1.1 Rigid-Body Model

The model includes 9 moving parts: the 4 clamp pistons, the cylinder rod and the cylinder 

body, which were created from simplified CAD geometries, and the 3 connecting bars (see 

figure 3-3). The mass and inertia properties of the different parts are computed by the CAD 

program from the detailed geometry and are entered manually in the MBS model. In order to 

describe the motion of the complete mechanical system, 4 revolute joints define the rotation 

of the clamp pistons relative to the moving platen (ground part), 6 spherical joints model the 

spherical bearings by which the connecting bars are fixed to the pistons and a spherical, 

translational  and  cylindrical  joint  model  the  mechanism  of  the  hydraulic  cylinder  that  is 

connected between the moving platen and piston 4. For the purpose of preventing the free 

5 Flame Cut

a) old welded design b) new manufactured design

6 135
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rotation of each connecting bar along its longitudinal axis, additional rotational-joint motions 

are applied to some spherical joints in order to lock the respective degree of freedom.

The following survey of the degrees of freedom of the moving parts and joints shows that 

the system has 1 degree of freedom, which of course corresponds to the overall motion of 

the locking mechanism.

9 moving parts : 9 x 6 degrees of freedom = 54

4 revolute joints : - 4 x 5 constraint equations = -20

7 spherical joints : - 7 x 3 constraint equations = -21

1 cylindrical joint : - 1 x 4 constraint equations = -4

1 translational joint : - 1 x 5 constraint equations = -5

3 motion joints : - 3 x 1 constraint equation = -3
                                                                                                                                                                                                                          

remaining degrees of freedom 1

Figure 3-3: Clamp Locking Mechanism

The hydraulic force driving the MBS model is computed by the hydraulic model and acts 

between  the  moving  platen  and  clamp  piston  4.  For  this  purpose,  a  user-subroutine 

determines the actual position and velocity of the cylinder with the help of the moving and 

reference  marker  as  explained  in  section  2.4.1.  Contact  statements  are  also  defined 

between the cylinder rod and cylinder body in order to add a mechanical stop in addition to 
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the hydraulic stop that is the cylinder cushion.8

Friction occurs everywhere in the system, e.g. between the clamp pistons and seals, in 

the spherical bearings or in the hydraulic cylinder. As it is not negligible, it has to be included 

in the model. However for the sake of simplicity, the overall friction is only specified in the 

clamp piston revolute joints. The friction algorithm implemented in the MBS tool is capable of 

modeling  stiction,  Stribeck  and  Coulomb  friction.  It  computes  the  instantaneous  friction 

forces from the forces and moments applied to the joint, the geometric properties of the joint 

and the actual friction coefficient. This instantaneous friction coefficient depends on the joint 

velocity: if it exceeds 1.5 times the user-defined transition velocity then the joint is in dynamic 

friction, if it is below the transition velocity then the joint is in static friction, otherwise the joint 

is considered to be transitioning between static and dynamic friction and the coefficient is 

estimated from a cubic interpolation as shown in figure 3-4 [12].

Figure 3-4: Friction model

Both  friction  coefficients  are  not  known and are  estimated  from measurements.  The 

dynamic friction coefficient is selected so that the computed hydraulic pressures correspond 

to the measured ones during the constant velocity phase. It is assumed that at this moment 

the hydraulic cylinder has only to overcome the friction forces within the system. A dynamic 

friction coefficient of μd = 0.42 and a static friction coefficient of μs = 0.5 are retained for the 

following simulations.

3.2.1.2 Flexible Connecting Bars

The connecting bars are modeled as flexible  bodies as they are relatively  slender  in 

relation to the mass of the clamp pistons that they have to actuate. That way, the effect of 

their  stiffness  on  the  behavior  of  the  overall  system  can  be  investigated.  Additionally, 

stress/time histories, that may be useful for fatigue analyses, can be obtained with a special 

add-on. For this purpose, a modal stress matrix has to be computed during the flexible-body 

generation which relates the stress components to the component generalized coordinates. 

Thus, it is possible to get a stress distribution directly within the MBS tool. Of course, there is 

8 Basically, the contact statement is a nonlinear spring-damper element where the force is proportional to the 

penetration depth and velocity. If there is no penetration, then no force is applied, otherwise a force acting 

between both parts is computed. More details on the contact statement can be found in chapter 4.

μ
s

μ
d

v 1.5·v

friction

velocity
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also the possibility to export the results and to calculate the stresses within a finite element 

software.

A quarter of the connecting bar model is shown in figure 3-5. A simplified CAD geometry 

is imported in the FE code and meshed automatically with tetrahedral elements. Afterwards, 

beam elements  with  a very  high stiffness  and a low density  are  added manually.  They 

connect the solid elements to a node representing the center of the spherical bearing. The 

two boundary nodes, each having 6 DOF, serve as attachment for the flexible body in the 

MBS model. Additionally to the 12 static modes, 13 fixed normal modes are calculated (see 

section 2.1.2.1.c). Finally, the FE model with 40000 physical DOF is reduced to 25 modal 

coordinates. Despite the very high degree of reduction, the method gives very good results 

for the lowest natural frequencies as can be seen in table 3-1 and 3-2.

Figure 3-5: Finite element model of connecting bar

FE model Craig-
Bampton

comment FE model Craig-
Bampton

comment

0.0 Hz 0.0 Hz 6 rigid-body modes 652.4 Hz 652.9 Hz 4th bending mode x

44.2 Hz 44.2 Hz 1st bending mode z 771.6 Hz 771.4 Hz 5th bendingmode z

65.4 Hz 65.4 Hz 1st bending mode x 896.1 Hz 923.5 Hz 1st long. mode

138.1 Hz 138.0 Hz 2nd bending mode z 990.6 Hz 991.1 Hz 5th bending mode x

158.1 Hz 154.3 Hz 1st torsion mode 996.7 Hz 966.4 Hz local mode

197.3 Hz 197.2 Hz 2nd bending mode x 1085 Hz 1085 Hz 6th bendingmode z

288.6 Hz 288.4 Hz 3rd bending mode z / 2074 Hz no phys. classific.

392.0 Hz 391.7 Hz 3rd bending mode x / 2141 Hz no phys. classific.

500.6 Hz 500.3 Hz 4th bending mode z / 2685 Hz no phys. classific.

528.5 Hz 512.1 Hz local mode / 3074 Hz no phys. classific.

Table 3-1: Eigenfrequencies of a free-free vertical connecting bar

BEAM 4: - 6 DOF / node
- high stiffness
- low density

SOLID 187: - 3 DOF / node
- 10-node tetrahedral solid

 X

Z

Y
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As mentioned in chapter 2, the orthonormalisation of the fixed-boundary normal modes 

and the constraint  modes  yields,  first,  mode shapes of  the unconstrained structure,  and, 

second, mode shapes with no physical meaning. This result can be found in table 3-1, where 

the eigenfrequencies of the unconstrained FE model are compared to the eigenfrequencies 

of the modified Craig-Bampton modal basis.

Furthermore,  an experimental  modal analysis is performed on an installed connecting 

bar, i.e. fixed at both ends by spherical bearings, in order to validate the FE model and the 

flexible  MBS  model.  The  impact-hammer  modal  testing  allows  to  measure  the  natural 

frequencies and the corresponding mode shapes of the structure [see appendix C]. In table 

3-2, the first eigenfrequencies of the constrained FE model and the flexible MBS 9 model are 

compared to the natural frequencies obtained from the measurements.

FE model flexible MBS model measured comment

26.8 Hz 4.7 % 26.7 Hz 4.3 % 25.6 Hz 1st bending mode z

39.5 Hz 0.3 % 39.4 Hz 0.3 % 39.4 Hz 1st bending mode x

106.4 Hz / 103.6 Hz / / 1st mode long. rotat.

106.5 Hz 6.0 % 106.5 Hz 6.0 % 100.5 Hz 2nd bending mode z

151.1 Hz 1.3 % 151.2 Hz 1.4 % 149.1 Hz 2nd bending mode x

244.7 Hz / 244.7 Hz / ? 3rd bending mode z

331.4 Hz 3.0 % 331.4 Hz 3.0 % 321.8 Hz 3rd bending mode x

447.5 Hz / 447.5 Hz / ? 4th bending mode z

589.5 Hz 4.8 % 591.8 Hz 5.2 % 562.3 Hz 4th bending mode x

Table 3-2: Eigenfrequencies of a constrained vertical connecting bar

As modal damping ratios can be specified for flexible bodies (see section 2.1.2.3), they 

are estimated from the impact modal analysis. The evaluation of the measurements gives 

modal damping parameters that lie between 1 % and 6 % [see appendix C]. Next to this 

approach, the damping parameters can also be derived from acceleration measurements of 

the connecting bars under operation. In this case, they are calculated from the logarithmic 

decrement of two successive maxima of response [35], that is

ln  xp

x p1
≃ln  e

− tp

e
−t pT    (3-1)

where

ln  e
− tp

e
−t pT  =ln eT  =T=2  (3-2)

For α small, which is usually the case for mechanical structures, equation (3-1) simplifies to

9 Natural frequencies and mode shapes can be computed with a special plug-in that linearizes the non-linear 

MBS model and expresses it by complex valued eigenvalues & mode shapes.
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≃ 1
2

ln  x p

xp1
  (3-3)

The modal damping from the acceleration measurements is about 0.6 % for the first mode. 

Finally, a modal damping of 1 % is retained for the simulation and applied to all the modes of 

the flexible bodies.

3.2.2 Hydraulic System

3.2.2.1 Hydraulic model

The basic hydraulic schematic of the clamp locking mechanism is found in figure 3-1. It is 

made up of a cylinder, a directional control valve, a pump and some piping; the remaining 

hydraulic circuit of the machine is not considered. This schematic is translated into a fluid-

power  model  where  simplifications  and  adaptations  are  necessary  with  respect  to  the 

hydraulic components available and their limitations (see figure 3-6).

Figure 3-6: Hydraulic model

The fluid characteristics are those of HLP46: viscosity  υ = 46 mm2/s  at  40 °C,  density 

ρ = 835.2 kg/m3 and E-modulus = 1.49∙109 Pa. The system pressure is at 185 bar. As the 

pump configuration of the machine is able to deliver an output flow that largely exceeds the 

flow rate needed by the locking cylinder, the pump system is modeled as an ideal pressure 

source, i.e. it can hold a specified pressure constant regardless of the flow needed in the 

system. In reality, fluctuations of the pressure occur as variable displacement pumps with 

pressure and/or  flow controllers  are installed on the machine. Piping is integrated in the 

 

differential cylinder: 
 - displacement & velocity as input from MBS 
 - force as output to MBS 

flexible hoses 

flexible hoses & pipes 

pump & pressure relief valve 

pilot operated directional control valve: 
 - special spool parameterized by look-up table 

cushion model: 
 - check valve 
 - variable orifice dependent on cylinder position 
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model in order to contribute to the effects of fluid inertia as these are not negligible due to 

the high dynamics of the clamp locking mechanism. Additionally, the volume change under 

pressure of the flexible hoses can also be represented by the piping.

The pilot operated directional control valve controls the start, stop and direction of flow of 

the  fluid  (see  figure  3-7).  If  a  controls  signal  is  applied,  the  spool  of  the  valve  moves 

completely to either side; its position is not proportional to the input signal. As large actuating 

forces are needed due to the high flow through the valve, a small valve, called pilot valve, is 

needed to operate the main valve. The pilot valve is however directly operated by solenoids. 

This means that the electrical control signal is hydraulically amplified in order to actuate the 

main spool, which is centered again by springs. The main valve opening and closing time 

can be controlled by different means. In this case, orifices are mounted between the pilot 

valve and the main valve. They reduce the amount of flow from the pilot valve to the main 

valve and thus influence the total reaction time of the main spool.

Figure 3-7: Pilot operated directional control valve

The pilot operated valve is not modeled in detail,  i.e. with main valve, pilot valve and 

orifices. The modeling component directly relates the stroke of the spool to the input signal 

by  a  first  order  delay.  The  total  response  time  of  the  valve  was  determined  by 

measurements and found to be 90 ms. In order to respect the non-standard spool of the 

main valve, look-up tables are defined that relate the relative opening area of one port to the 

position of the spool. The particularity of this valve is that it connects the bore and rod side 

during cylinder extension. Thus, the fluid in the rod chamber is not fed to the tank but directly 

to the bore chamber which reduces the flow that has to be delivered by the pump.

Another particularity of the hydraulic system is the cylinder cushion. It is a built-in device 

that decelerates the cylinder when reaching an end position. The basic principle of a cushion 

is to reduce the flow area so that  a pressure build-up occurs in the cylinder.  When the 

cylinder starts from an end position, a check valve, or similar device, is used to by-pass the 

Pilot Valve

Orifices

Main Valve

When the main spool is in central position then     
port A and port B are connected to port T .

When the main spool is moved to the right then     
port B is connected to port P and port A to port T.

When the main spool is moved to the left then       
port A and B are connected to port P.
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throttling point. The cushioning effect is modeled with a variable orifice and a check valve. A 

look-up table  relates  the orifice  area to the cylinder  position.  The characteristic  curve is 

determined  from  measured  data.  This  is  a  very  heavy  simplification  and  only  models 

approximatively  what  is  happening  in  the  cushion.  However,  it  gives  decent  results 

compared to the modeling effort.

Figure 3-8: Cylinder cushion

3.2.2.2 Comparison with Measurements

As gauge  ports  are  available  on  the  hydraulic  cylinder,  the  pressure  in  the  cylinder 

chambers can be measured. In figure 3-9 they are compared to the pressure of node CA 

and CB of the hydraulic model. Although differences in the absolute values are found, the 

relative correlation of the results with the measured data is fairly good. The discrepancies 

mainly result  from the simplified model  of  the spoolcut,  of  the pump and of  the cylinder 

cushion. A further fine-tuning might improve the correlation of measured and computed data 

but is not really necessary for the further analyses.

cylinder extension cylinder retraction

Figure 3-9: Hydraulic pressures in cylinder chambers

For the directional control valve, only the flow rate at maximum opening is available in 

Throttling point

Check-valve
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the technical data sheets. The exact spoolcut and the corresponding flow rate in relation to 

the spool position is not known. However, the spoolcut is optimized with fine control notches 

in order to reduce pressure peaks during valve opening. As this information is not available, 

it  cannot  be  incorporated  in  the  model.  Furthermore,  at  valve  opening,  the  variable 

displacement pumps have to react to the flow demand. The delay of the pumps causes first 

of all a pressure drop in the system. The adjustment of the discharge of the pumps by the 

controller system leads to fluctuations in the system pressure. Both effects are not included 

in the model and explain the differences at valve opening.

The oscillations in the cylinder pressures observed between 0.2 and 0.8 seconds are due 

to  the  overall  stiffness  of  the  hydraulic  system,  i.e.  compressibility  of  oil  volumes  and 

elasticity  of  hoses,  and  mass  of  the  mechanical  system  attached  to  the  cylinder;  the 

frequencies lie between 16 Hz and 21 Hz.

The pressure built-up at t = 0.8 s results from the cylinder cushioning. The discrepancy at 

cylinder extension is rather large but still acceptable when only considering the first pressure 

peak (see also figure 3-10).

3.3 Simulation Results

Once the model is validated by measurements, it is used to analyze and quantify the 

influence of different parameters on the behavior of the complete system. As explained in 

the introduction, the main interest lies in the forces acting on the connecting bars.

Figure 3-10: Comparison of cylinder force & computed connecting bar forces

A survey of the current model leads to the following conclusions:

- The force peaks are greater at valve opening than during cushioning, as they have not 
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only to cause acceleration but also have to overcome friction. Accelerations measurements 

also confirm this observation. (Besides, this is also the reason why the cushion model was 

not further improved.)

- The horizontal connecting bar is exposed to the highest forces. In fact it has to operate 

piston 1 and piston 2, whereas the vertical connecting bars only act on one clamp piston.

- The vertical  connecting bars see the highest  force when subjected to traction. The 

traction force adds to the weight of the clamp piston thus the friction force acting on piston 2 

and piston 3 is higher during extension, respectively retraction. The opposite occurs when a 

compression force is applied.

A durability  analysis  of  the  current  configuration  shows the failure  of  the old  welded 

design for an unlimited service life and the non-failure of the new manufactured design (see 

figure 3-2 ). The proof is done with the application of the German FKM-guideline [36, 37]. 

For this purpose, a flexible body of the welded connecting bars is generated. The time/stress 

history at node 3110 near a welding seam is plotted in figure 3-11 for a complete cycle. 

There exist several approaches for the durability check in the FKM guideline. One possibility 

is to use the local stress as computed by the MBS analysis and shown in the figure below. 

Another  possibility  is  to  compute  the  nominal  stress  in  the  welding  seam,  which  is 

τ = 12.2 ± 32.2 MPa for the welded connecting bar over a complete cycle.

Figure 3-11: Stress/time history for welded connecting bar

stress at t = 1 s

-12 MPa 20 MPa 52 MPa 63 MPa 115 MPa 147 MPa
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Considering  the  nominal  stress  and  parameters  such  as  loading  history,  welding 

construction or security concerns, the conclusion from the FKM is that the old design has 

only  a  limited  service  life.  Different  welding  designs  were  checked  but  only  a  welding 

according to construction Nr.221 (figure 3-12) and complying with the highest  FAT class 

passes the durability test [FKM, table 5.4.1, page 198].

Figure 3-12: New welding design

However, the execution of this weld is technically challenging and probably no alternative 

to the new design from a costing point of view. The only possibility is to reduce the acting 

forces. Therefore, in a next step the influence of different parameters on the force amplitude 

is investigated.

3.3.1 Connecting Bar Stiffness

In order to reduce the force peaks at valve opening and during cushioning, the idea is to 

make the connecting bars as soft as possible. Therefore a hollow profile is used for the old 

welding  design  and  a  longitudinal  slot  is  added  to  the  profile  for  the  single-piece 

construction. To quantify the impact of this solution, the influence of the stiffness is analyzed 

by changing the E-modulus. The results are partially surprising.

Indeed, a softer connecting bar reduces the force peak during deceleration. However, it 

unexpectedly has the opposite effect during acceleration. For example, when the stiffness is 

halved the force acting on the connecting bars increases by 10%. This effect results from the 

interaction  of  the  mechanical  and hydraulic  system.  First  of  all,  a  softer  connecting  bar 

reduces the hydraulic force by approximately 3%. In fact, as it is more flexible, the hydraulic 

cylinder starts moving earlier and thus the pressure built-up is reduced. But on the other 

hand, the connecting bar is more compressed and due to the interaction with the clamp 

piston inertia and friction, the effective forces acting finally on the connecting bars increase. 

These interactions could only hardly be assessed by simple calculations and the example 

shows the interest of such integrated dynamic simulations.

Reducing the stiffness by one half or one fifth is not really realistic. However, considering 

the results it is not advisable to reduce the stiffness of the connecting bar because, first, this 

is generally achieved by reducing the cross-section area of  the structure  which in return 

increases the stresses, second, this design constraint normally increases cost and limits the 

design possibilities and third, the influence of the mechanical stiffness on the force acting 

full profile 60x60



75

during acceleration, which is crucial for the fatigue analysis, is marginal.

relative horizontal bar vertical bar op.-side vertical bar non op.-side

stiffness acceleration deceleration acceleration deceleration acceleration deceleration

1/5 171 kN 25 kN 63 kN 43 kN 15 kN 21 kN

1/2 170 kN 39 kN 57 kN 48 kN 14 kN 29 kN

1 155 kN 41 kN 50 kN 70 kN 13 kN 30 kN

2 147 kN 55 kN 47 kN 82 kN 13 kN 30 kN

5 145 kN 60 kN 46 kN 82 kN 12 kN 30 kN

Table 3-3: Forces vs. Stiffness during Cylinder extension

3.3.2 Different Mechanical Configurations

Figure 3-10 shows that the forces vary whether they act against or with the clamp piston 

weight. The question is, if the forces may be reduced by judiciously placing the connecting 

bars and the hydraulic cylinder. Thus, different configurations are simulated. As expected, 

the force repartition in the mechanical system changes completely. However, the difference 

between the maximum force value during extension and retraction remains the same. As 

this parameter is crucial for the durability analysis, changing the configuration is not a option.

Figure 3-13: Different connecting bars and cylinder configurations

3.3.3 Valve Response Time

The opening time  of  the main valve  can be altered by adding orifices  in  the  control 

channels between the pilot and the main valve. By throttling the fluid flow the response time 

is lengthened. Actually, orifices of diameter 0.5 mm are used and the response time, taken 

from measurements, is about 90 ms. The directional valve is not modeled in detail but the 

opening time of the valve component can be changed. The effect  of the opening time is 

recapitulated in table 3-4. It shows that changing the response time of the directional valve is 

a very effective way to reduce the force peaks without noticeably affecting the overall locking 

or unlocking time.
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The simulation gives the evidence that the best results can be achieved by changing the 

hydraulic system. Unfortunately, the smallest orifices available are already fitted in the valve. 

Other means have to be found to reduce the pressure peaks at valve opening.

opening time 
of valve

horizontal bar vertical bar
op.-side

vertical bar 
non op.-side

(un)locking time

50 ms 214 kN + 38 % 72 kN + 44 % 56 kN + 30 % - 22 ms

70 ms 182 kN + 17 % 59 kN + 18 % 47 kN + 9 % - 12 ms

90 ms 155 kN / 50 kN / 43 kN / ≈ 0.9 s

110 ms 150 kN - 3 % 48 kN - 4 % 45 kN + 5 % + 12 ms

130 ms 138 kN -11,00% 44 kN - 12 % 44 kN + 2 % + 25 ms

Table 3-4: Forces vs. Stiffness during Cylinder extension

3.3.4 Proportional Valve

As  the  spool  velocity  cannot  be  further  influenced,  the  directional  control  valve  is 

replaced by a proportional valve where the spool position is directly related to the command 

signal.  The higher the input  signal,  the further the spool  shift,  and the greater  the spool 

stroke,  the greater  the flow through the valve (see figure  3-14).  The composition of  the 

proportional valve is similar to the directional control valve except that it additionally has a 

positional transducer and a controller unit. When the solenoid of the pilot valve is energized, 

the main spool is actuated. The actual position of the spool is measured by the transducer 

and compared  to  the  specified  command  value  by  the  controller  unit.  If  necessary,  the 

controller corrects any deviations. By judiciously choosing the input signal the force peaks 

can be reduced without affecting the locking time.

Figure 3-14: Performance curve at Δp = 5 bar

Using a proportional valve, the acting force at valve opening could be reduced by over 

40 % (see figure 3-15). The input signal is slowly ramped up to the maximum input in order 

to reduce the pressure peaks to a minimum. To compensate for the time lost due to the 
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moderate acceleration, the maximum velocity of the cylinder is increased. Then, the velocity 

is again reduced to about 500 mm/s before cushioning as the current cushion is limited to 

this velocity for the deceleration of the clamp piston mass.

The old welded design still  fails the FKM durability test, and a further reduction of the 

forces is only possible by considerably extending the locking time. However, the alternative 

welding design of figure 3-12 has no more to comply with the highest FAT class to pass the 

FKM check. A standard welding will do, which is an acceptable solution.

The disadvantage  of  the  proportional  valve  solution  is  the  increase of  the  maximum 

cylinder velocity. During retraction the velocity is raised from 500 mm/s to 600 mm/s and 

during extension, 1000 mm/s are reached. This probably means that another cylinder with 

special  sealing  is  needed  to  accommodate  these  higher  velocities;  but  this  has  to  be 

discussed  with  the  cylinder  manufacturer.  Additionally,  the  current  piping  might  also  be 

adapted due to the larger flow rates.

A preliminary price check yields that the welded connecting bar is about 30 % cheaper 

than the machined design. On the other hand, the proportional valve is nearly three times 

more expensive than the directional control valve, and the special cylinder about 15 % more 

expensive than the standard one. All  in all,  the cost reduction due to the welding design 

might be out weighted by the new hydraulic components that are necessary; but this has to 

be looked into more detail.

Figure 3-15: Command signal and cylinder force
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3.4 Summary

This case study shows the interest of such integrated analyses. First  of all,  it  gives a 

better  understanding of  the  dynamic  characteristics  of  the overall  system.  The tool  also 

allows the user to easily  evaluate different setups and parameters in order to optimize the 

design. But  most  striking  is  the  possibility  to  investigate  the  interactions  between  quite 

different subsystems, which are generally difficult to assess.  Additionally, as the MBS tool 

has the possibility to derive stress/time histories of a flexible body, the extra stress due to 

the dynamics of the system can also be computed.

The preceding analysis highlights the importance of the hydraulic system in the clamp 

locking mechanism. It is relevant for the force peaks in the mechanical system and dictates 

the design of the connecting bars. For the hydraulic system with the directional control valve 

only  the  new  manufactured  design  passes  the  FKM  durability  test.  By  replacing  the 

directional control valve with a proportional valve, it is possible to significantly reduce the 

forces peaks by 40 % without extending the locking time. The current design can then be 

replaced by a cheaper welding design. However, it still has to be checked if this solution is 

also a success from a costing point of view. Finally, an easy to implement cost reduction is 

possible by simply leaving out the longitudinal slot which is added to the current connecting 

bars.  The  simulations  show that  a  reduction  of  the  connecting  bar  stiffness  is  counter-

productive as it does not reduce the force peaks as was expected, but in contrary increases 

them.



4 Moving Platen Stroke

4.1 Introduction

In order to extract the finished product, a mold consists of two parts. One half of the mold 

is fixed to the moving platen which is sliding on the clamp base while being guided by the 

latter one and by the four tie bars. The other half is attached to the stationary platen. The 

displacement of the moving platen is realized with the two stroke cylinders so that the mold 

can be opened after the injection phase for part extraction [38].

Figure 4-1: Quadloc™ clamp unit

The hydraulic  cylinders are actuated by a pilot  operated proportional  valve.  The flow 

through this valve,  and thus the velocity of the moving platen,  can be influenced as the 

position of the spool is directly related to the electrical input signal for the valve. Currently, 

the  velocity,  and indirectly  the  position,  of  the  moving  platen  are  controlled  through  an 

open-loop system. The aim of the simulation is to investigate the moving platen stroke in 

order to find any means to reduce the overall cycle time of the machine. As the mechanical 

configuration is difficult to change, potential improvements are possible with the hydraulic 

and controls systems.

Tie Bar Clamp Piston Stroke Cylinder

Retaining 
Plate

Tie Bar Nut

Stationary PlatenMoldMoving PlatenClamp BaseSupport Pad

Ejector
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4.2 Simulation Model

The moving platen  stroking is  analyzed with the  simulation  tool  presented in  section 

1.1.1.  The flexibility  of  the mechanical  components is neglected as the influence on the 

moving platen stroke is  marginal  compared  to  the  required  modeling  and computational 

efforts. The main focus is on the hydraulic and controls system.

4.2.1 Mechanical System

The rigid-body model of the Quadloc™ clamp unit consists only of two components: the 

moving platen  and the stationary platen assembly that comprises the clamp base and tie 

bars (see figure 4-2). The 3D models are created from simplified CAD geometries. The mass 

and inertia  properties of  the different  parts  are computed by the CAD program from the 

detailed geometry and entered manually in the MBS program.

Figure 4-2: Rigid MBS model

The Q2700 clamp unit  is standing on 18 support  pads. They are height-adjustable to 

allow the leveling of the machine and are equipped with composite material to act as isolator 

and  damper.  In  the  model,  the  clamp  base  is  simply  fixed  with  linear  spring-damper 

elements to the ground. Their stiffness and damping coefficients are deduced from catalog 

data and measurements (see section 5.1.3). Single-Force statements model the two stroke 

cylinders.  Similar  to  the  clamp  locking  model,  their  force  is  calculated  by  the  hydraulic 

model. The actual position and velocity of the cylinders are computed by a user-subroutine 

from the moving marker and the reference marker (see section 2.4.1). The sliding of the 

moving platen is modeled with Contact statements. Basically, the Contact formulation is a 

nonlinear spring-damper element where the force is proportional to the penetration depth x 

and the penetration  velocity ẋ .  If  there is no penetration then no force is applied to the 

support pad

stroke cylinder force moving & stationary
platen contact

moving platen & base contact

reference markermoving marker
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geometries. Otherwise the solver computes the location of the points of contact, the normals 

at the points of contact and the force acting between both parts based on equation  (4-1), 

that is

F=k⋅xed⋅ẋ for x0
F=0 for x0

 (4-1)

where k and d are the contact stiffness and damping coefficients, respectively, and e is an 

exponent that for numerical reasons should be chosen greater then 1. As the components 

are generally modeled as rigid bodies, the stiffness coefficient has to reflect the rigidity of the 

impacting area and of the overall  structure. For some specific contact configurations,  the 

stiffness may be determined from formulas based on the hertzian elastic contact theory [39]. 

Otherwise, it may be estimated from impact measurements or from finite element models. 

For  the  moving  platen  contact,  the  impact  parameters  are  set  to  k =  1.6 1011 N/m, 

d = 1.6 108 N/m and e = 1.2. Because of computational reasons, the Contact statements are 

not  defined  between  the  imported  CAD  geometries  but  between  additional  simplified 

geometries  that  represent  the  potentially  contacting  surfaces.  4  vertical  and  4  lateral 

contacts are defined between the moving platen and clamp base to model the sliding and 

guiding respectively.

Friction can also be associated with the Contact  statement.  However,  it  uses a more 

simpler friction model than the one presented in the section 3.2.1.1. The formulation is based 

on the Coulomb friction model, that is

F friction=⋅F contact  (4-2)

However,   depends on the relative sliding velocity v between the two colliding geometries 

and the specified static and dynamic friction coefficient, s  and d . A typical representation 

of   with respect to v can be found in figure 4-3. The plot shows that this friction formulation 

cannot model sticking as a minimum velocity is required to compute a friction force.

Figure 4-3: Contact friction coefficient

The friction coefficients are estimated from measurements. It is assumed that the stroke 

cylinders  only  have to overcome friction  forces  when the  moving platen has  a  constant 

velocity.  The  cylinder  force  is  calculated  from  the  measured  hydraulic  pressures  in  the 

cylinder chambers. Knowing the overall  weight of the moving platen, the dynamic friction 
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coefficient  d  and  the  static  friction  coefficient  s  are  estimated  to  be  0.09  and  1.20 

respectively.

Finally,  a Contact  statement is defined between the moving platen and the stationary 

platen. In this case, the stiffness coefficient is estimated from impact measurements on an 

operating machine. The coefficient is chosen so that the acceleration peak at impact from 

the model  corresponds  to  the  acceleration  peak measured  on the machine.  The impact 

parameters are set to k = 6 109 N/m, d = 6 106 N/m and e = 1.2.

4.2.2 Hydraulic System

The hydraulic  system for  the  moving platen  stroke  is  quite  complex  and,  as  for  the 

locking  mechanism,  the  schematic  is  not  translated  one-to-one  into  a  hydraulic  model. 

Simplifications  and adaptations  are  necessary  with  respect  to  the  hydraulic  components 

available and their limitations. Additionally, valves that only have a safety function and that 

are not active during normal operation are not included in the model. The simplified hydraulic 

model is presented in figure 4-4. Basically, the hydraulic system consists of the two hydraulic 

cylinders,  the  pump  configuration  and  the  stroke  manifold  block10 which  includes  the 

proportional valve.

The fluid characteristics are those of HLP46: viscosity  υ = 46 mm2/s at  40 °C,  density 

ρ = 835.2 kg/m3 and E-modulus = 1.49∙109 Pa. The system pressure is at 185 bar. As the 

pump configuration  of  the  machine is  able  to  deliver  a  flow  that  exceeds the  flow rate 

needed by the stroke cylinders, the pump system is modeled as an ideal pressure source. In 

reality, pressure fluctuations occur as variable displacement pumps with pressure and flow 

regulators are used on the machine. Their influence is not taken into account by the model.

Hoses  and  pipes  connect  the  manifold  block  with  the  pump  system  and  the  stroke 

cylinders. In the model they contribute to the effects of the fluid inertia and of the volume 

change under pressure of the flexible hoses. In contrary to the clamp locking model, their 

influence on the dynamic behavior of the system is although limited.

The stroke cylinders are actuated by a pilot operated proportional valve. As the high flow 

through the valve involves large actuating forces, a pilot valve controls the main valve. This 

valve is directly operated electrically by solenoids so that the control signal is hydraulically 

amplified in order to actuate the main spool. Again, the pilot operated valve is not modeled in 

detail,  i.e.  with  main valve  and pilot  valve.  The modeling  component  directly  relates  the 

stroke of the spool to the input signal by a second order delay; a natural  frequency and 

damping  coefficient  need  to  be  defined.  Furthermore,  look-up  tables  relate  the  relative 

opening area of one port to the position of the spool. For this purpose, the flow characteristic 

of the valve, similar to figure 3-14, is converted to a corresponding orifice area according to

10 A manifold  block  is a machined  steel  block  on which  different  hydraulic  components  such as valves,  or 

cartridges are mounted. This allows a compact construction by eliminating the use of subplates and piping.
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Q=D⋅A⋅2⋅p  (4-3)

Figure 4-4: Hydraulic model

Finally, the input parameters for the hydraulic model are the position and velocity of the 

hydraulic  cylinders,  computed by the rigid-body model,  and the command signal  for  the 

proportional valves and a directional valve, computed by the controls model. In return, the 

hydraulic model determines the stroke cylinder forces needed by the mechanical model.

In the beginning, the input parameters for the different hydraulic components were taken 

from  the  technical  sheets  available  from  the  suppliers.  Any  unknown  parameters  were 

deduced  from  experience  values.  Unfortunately,  first  simulation  results  showed 

unacceptable deviations from the measured data. The discrepancies could be reduced by 

tuning specific parameters. However, these parameters had to be adapted each time that a 

different configuration, e.g. another maximum moving platen velocity, was simulated. This is 

not  acceptable  so  that  in  the  end,  extensive  measurements  on  the  complete  hydraulic 

system were necessary in order to adequately determine the input parameters.

output
parameters

input
parameters

stroke manifold
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Figure 4-5: Measured pressure-flow characteristics

Therefore, pressures at specific locations of the stroke manifold were measured during a 

complete machine cycle. These measurements were repeated for different moving platen 

velocities.  Deriving  the  oil  flow  in  the  system  from  the  cylinder  velocity  and  taking  as 

reference the flow characteristic of the proportional valve, relevant input parameters for the 

main hydraulic components, such as pressure-flow characteristics, can be identified. After 

the complete analysis of the measurements and the implementation of the results, a very 

good correlation of the computed and measured data is finally achieved, and this for any 

machine setup (see figure 4-8 and 4-9). The measurements highlight two important points: 

first, the manifold block design has a big influence on the overall behavior of the hydraulic 

system, and second, the supplier data may not always be correct - in fact, a measured flow 

characteristic differed noticeably from what is specified by the supplier.

4.2.3 Controls System

The displacement  of  the moving platen is controlled through an open-loop system. A 

velocity profile for the moving platen is generated by the controller unit according to the input 

parameters specified by the operator. The accelerating phase is time dependent whereas 

the decelerating velocity  profile  depends on the actual  moving platen position. From the 

velocity profile a command signal for the stroke valve is generated with the help of a look-up 

table (see figure 4-6). It relates the input voltage to the platen velocity. This means that the 

complete  dynamic  behavior  of  the  machine,  i.e.  mechanic  and  hydraulic  system,  is 

approximated by the measured look-up table which in fact roughly reflects the stationary 

behavior of the system.
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The  controller  logic  is  translated  into  a  controls  block  diagram  model.  Unnecessary 

options are not included and any safety checks are bypassed. Of course, the model is not 

imperative as the platen position is controlled through an open-loop system. However,  it 

comes  in  very  handy  when  simulating  different  machine  setups  and  it  can  be  later  on 

extended to a closed-loop system.

Figure 4-6: Mold close command signal for stroke valve

4.2.4 Co-Simulation

The  three  models  are  linked  for  the  overall  simulation  as  explained  in  chapter 2. 

Figure 4-7  shows  the  configuration  for  the  simulation  of  the  moving  platen  stroke.  The 

computation of a complete stroke of the moving platen takes about ten minutes.

Figure 4-7: Hybrid simulation model

4.3 Simulation Results

The simulation results are now compared to measurements. Figures 4-8 and 4-9 show 

that, although differences in the absolute values are found, the relative correlation of both 

data is very good.
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4.3.1 Comparison with Measurements

During the measurements, the machine is running in dry-cycle mode. This means that 

only the clamp unit is operated; no plastic is melted and injected. The overall moving platen 

stroke is 3300 mm, the maximum velocity  is 760 mm/s for  mold-close and  880 mm/s for 

mold open. The overall  dry-cycle time,  i.e. mold close,  lock,  clamp-up,  unlock and mold 

open,  for  this specific  configuration is 15.6 seconds. The complete moving platen stroke 

requires 9.8 seconds where 5.2 seconds are needed for mold-close and 4.6 seconds for 

mold-open.

The comparison shows that the simulation lacks an accurate modelization of the pump 

configuration. The variable displacement pumps installed on the machine deliver  only as 

much flow as is required by the attached actuators. Their discharge is adjusted by either a 

pressure and/or flow controller. For example at valve opening, the pump controller has to 

react to the sudden demand of oil flow by the stroke cylinders. Due to the time delay of the 

pump configuration, the system pressure can momentarily drop as much as 20 bar. As the 

complete pump system is simply modeled by an ideal pressure source, these fluctuations 

cannot  be represented.  The discrepancies during  the deceleration  phase are due to the 

approximated pressure-flow characteristics of some components. A better correlation is not 

possible with the actual  information and measurements available. However,  the model is 

accurate enough for further analyses.
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Figure 4-8: Mold closing
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Figure 4-9: Mold opening
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4.3.2 Remarks

The model allows to simulate various design parameters of the hydraulic system. The 

effect  of  different  valve  characteristics  onto  the  system’s  dynamic  or  how  the  system 

performs under changing operating conditions can be investigated. The same is true for the 

controls. Different command signals of the proportional valve can be simulated in order to 

get some benchmark data that will help for the design of improved controllers.

The  modifications  presented  in  figure  4-10  and  4-11  should  rather  demonstrate  the 

possibilities  of  the  simulation  model.  In  figure  4-10 b),  the  proportional  valve  is  opened 

completely  during  acceleration in order  to  get  the  maximal  possible  flow. This allows to 

reach the set velocity earlier and to shorten the mold closing by 0.06 seconds, which are 

1.2 %11. In figure 4-10 a), the acceleration profile is used for the deceleration of the moving 

platen.  The  moving  platen  is  abruptly  decelerated.  Because  of  the  fast  closing  of  the 

proportional valve, the pressure rise at the bore side of the stroke cylinders is so important 

that the moving platen moves backwards for a brief moment. This in turn is responsible that 

the pressure at port A drops down to 0 bar. In a real hydraulic system this would lead to 

cavitation which is unacceptable as the hydraulic components could be damaged.

Figure 4-10: a) Modified deceleration profile, b) Modified acceleration profile

In figure 4-11, the proportional valve is completely opened during mold close in order to 

reach the maximum possible velocity, which is 882 mm/s. This velocity is specified to the 

controller model in order to generate the appropriate command signal for the proportional 

valve. The other parameters remain the same, i.e. deceleration 1200 mm/s2, final velocity 

25 mm/s safety  distance 3.5 mm and mold stroke 3300 mm. The overall  gain of time for 

11 All the percentages refer to the corresponding displacement, i.e. mold close 5.2 s and mold open 4.6 s.
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mold closing is 0.5 seconds, i.e. 9.6 %. For mold opening the maximum possible velocity is 

1240 mm/s and the overall gain of time is 0.8 seconds, 17.4 %.

Figure 4-11: Maximum velocity at mold closing

Even though the simulation model does not always give exact absolute values, it helps to 

make qualitative and quantitative statements to the influence of different parameters on the 

dynamic behavior of the complete machine.

4.4 Closed-Loop Controls

Figure 4-8 and 4-9 show that the acceleration and deceleration of the moving platen take 

both about 1 second. As figure 4-10 b) brings forth, the acceleration cannot be significantly 

improved anymore. However, it should be possible to further reduce the deceleration time as 

the friction forces  help  to  slow down the moving platen.  Instead of  finding an adequate 

command  signal  through  a  trial  and  error  approach,  a  closed-loop  model  is  developed 

according to figure 4-12.

Figure 4-12: Closed-loop model

The feedback controller  adjusts the input  signal  for  the proportional  valve so that the 

velocity of the moving platen follows a given velocity profile. For this purpose, a simplified 

linearized model of the moving platen stroke is created in order to get a first estimation of the 

PID parameters. Afterwards the controller is applied to the complete simulation model for 

further fine tuning.
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4.4.1 Linearized Model

The dynamic of the complete system is highly nonlinear. Furthermore it is subjected to 

non-smooth and discontinuous nonlinearities due to control saturation, directional change of 

valves,  friction  and  impact.  For  a  preliminary  analysis  of  the  closed-loop  model,  the 

combined mechanical  and hydraulic  system is  heavily  simplified,  linearized  at  a  specific 

working point and reformulated as a transfer function model where the input is the valve 

command signal and the output  is the moving platen velocity. In this form, the controller 

system  can  be  analyzed  using  the  tools  available  in  MATLAB  and  Simulink,  such  as 

frequency response analysis, root locus or pole placement.

Figure 4-13 shows the equivalent simplified moving platen stroke model. It consists of a 

hydraulic  cylinder,  representing  the  two stroke  cylinders,  acting  on  a  mass,  the  moving 

platen.  The cylinder is actuated by two variable orifices that  correspond to the complete 

stroke  manifold  block.  The  nominal  flow  rate  of  each  orifice  is  directly  related  to  the 

command signal u that is controlling the moving platen velocity v.

Figure 4-13: Simplified moving platen stroke model

The  set  of  differential  equations  to  solve  is  derived  from  the  hydraulic  equations 

presented in chapter 2. The equations describe the cylinder retraction, i.e. the mold close. 

E is the elastic modulus of the oil and α and β are the nominal flow rates of the equivalent 

valve, the other parameters are explained in figure 4-13.
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{
Ṗ r=

E
V rAr⋅x

⋅[Qr−Ar⋅v ]

Ṗb=
E

V b−Ab⋅x
⋅[Ab⋅v−Qb ]

Qr=⋅P P−P r⋅u

Qb=⋅Pb−PT⋅u

ẋ=v

v̇=
1
m
⋅[P r⋅Ar−P b⋅Ab−F r ]

 (4-4)

The set  of  equations  (4-4) is  now linearized around the working point.  To make this 

possible several  assumptions are made: first,  the bulk  modulus  E of  the oil  is constant, 

second, the valve dynamics is infinitely fast,  i.e. the control input  u is porportional to the 

valve opening, third, the nominal flow rates depend linearly on the control input u.

At the working point,  the velocity  v and the pressures  Pr and  Pb are constant,  which 

means that

v̇=0, Ṗ r=0, Ṗb=0  (4-5)

Additionally it is assumed that

u=u0 , V r=V r0
, Vb=V b0

, x=x0=0  (4-6)

thus equations (4-4), (4-5) and (4-6) yield

v 0=u0⋅⋅⋅PP⋅Ar−PT⋅Ab−F r

2⋅Ar
32⋅Ab

3

Pk 0
=PT

Ab
2

2⋅u0
2⋅v 0

2

P r 0
=

F r

Ar


Ab

Ar

⋅Pb

 (4-7)

The set  of  equations  (4-4) is  linearized by  a first-order  Taylor  series  expansion and 

reformulated into a set of algebraic equations using the Laplace transformation. This leads 

to the system of equations
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{
s⋅P r= [ E

V r0
]⋅Qr− [E⋅Ar

V r 0
]⋅v

s⋅Pb=−[ E
V b0
]⋅Qb [E⋅Ab

V b0
]⋅v

Qr= [⋅PP−P r0 ]⋅u−[ ⋅u0

2⋅PP−P r0
]⋅P r

Qb=[⋅Pb0
−PT ]⋅u[ ⋅u0

2⋅P r0
−PT ]⋅P r

s⋅v= [ Ar

m ]⋅P r− [ Ab

m ]⋅Pb

 (4-8)

Finally,  the transfer function between the input  u,  the valve command signal,  and the 

output v, the moving platen velocity, is

v=
[a]⋅s[b]

s3[c ]⋅s2[d ]⋅s[e]
⋅u  (4-9)

with

a =
E⋅Ar

V r 0
⋅m
⋅⋅PP−P r0


E⋅Ab

V b0
⋅m
⋅⋅P b0

−PT  

b = u0⋅⋅⋅
E2⋅Ar

2⋅V r0
⋅V b0
⋅m
⋅PP−P r0

Pb0
−PT

−u0⋅⋅⋅
E2⋅Ab

2⋅V r 0
⋅V b0
⋅m
⋅P b0

−P T

PP−P r 0

 

c =
u0⋅⋅E

2⋅V r 0
⋅PP−P r0


u0⋅⋅E

2⋅V b0
⋅Pb0

−PT

 

d =
u0⋅⋅⋅E

2

4⋅V r 0
⋅V b0
⋅P P−P r 0

⋅Pb0
−PT


E⋅Ar

2

V r 0
⋅m

E⋅Ab

2

V b0
⋅m

 

e =
u0⋅⋅E

2⋅Ab
2

2⋅V r0
⋅Vb0
⋅m⋅PP−P r0


u0⋅⋅E

2⋅Ar
2

2⋅V r0
⋅Vb0
⋅m⋅Pb0

−PT

 

(4-10)

The behavior of the system heavily depends on the selected working point. However, as 

the stability margins are worst at low velocity, a working point at the end of the deceleration 

process is selected, i.e. for  u0 = -1 V which corresponds to a velocity v0 of 53.2 mm/s. The 

other parameters are:
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E =  1.4 x109 Pa PP =  180 bar PT =  0 bar

m =  62400 kg Fr =  55.1 kN

Ar =  0.01508 m2 Ab =  0.03079 m2

Vr0 =  0.05978 m3 Vb0 =  0.02208 m3

α =  -0.4394 x10-6 m3/(sV√Pa) β =  -0.7049 x10-6 m3/(sV√Pa)

Pr0 =  146.7 bar Pb0 =  54.0 bar

and equation (4-3) becomes

v
u
=FP=

−55.76⋅s−188.1
s312.44⋅s21076⋅s3537

 (4-11)

Figure 4-14 shows the step and frequency response of the transfer function defined by 

equation (4-2). The zero of the transfer function is -3.37 and the poles are -4.53 ± j∙32.0 ( => 

ω0 = 32.3 rad/s = 5.1 Hz;  D = 14 % ) and -3.38 ( => T = 0.3 s ).

Figure 4-14: Step Response & Frequency Response of Plant

The results presented above correspond relatively good with the full  simulation model 

when close to the working point. For example in figure 4-15 the frequency response of the 

linearized model is compared to the one of the full non-linear simulation model.

      

Figure 4-15: Frequency Response of linear (blue line) and non-linear model
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However, a discrepancy is observed when leaving the working point. Furthermore, the 

behavior of the system strongly depends on the selected working point. The main reason for 

this is the assumed linear dependency of the control input on the nominal flow rates.

4.4.2 Controller Model

A PID algorithm is chosen for the closed-loop system as it is a very popular feedback 

controller with a robust and easy algorithm. The controller consists of three basic elements, 

a  Proportional,  an  Integral  and  a  Derivative  element.  The  transfer  function  of  the  PID 

controller implemented in the model is

FC=KP⋅1 1
T I⋅s

T D⋅
s

1T⋅s   (4-12)

The different  controller  parameters  need to  be determined.  For  this  purpose,  various 

rules of thumb are found in the literature [40, 41]. To make a first guess, the Ziegler-Nichols 

method  is  applied  to  the  step-response  obtained  from  the  full  simulation  model.  The 

parameters retained are: KP = -4, TI = 0.07 and TD = 0.015, T is set to 0.01.

Thus the open-loop and closed-loop transfer functions are:

open-loop system

F0=
0.3903⋅s319.16⋅s2283.2⋅s752.3

0.0007⋅s50.07871⋅s41.624⋅s377.77⋅s2247.6⋅s
 (4-13)

The zeros are: -3.37

-22.86 ± j∙7.00

The poles are: -100

-4.53 ± j∙32.0 ( => ω0 = 32.3 rad/s = 5.1 Hz;  D = 14.0 % )

-3.38

0

closed-loop system

Fw=
0.3903⋅s319.16⋅s2283.2⋅s752.3

0.0007⋅s50.07871⋅s42.014⋅s396.93⋅s2580.8⋅s752.3
 (4-14)

The zeros are: -3.37

-22.86 ± j∙7.00

The poles are: -96.7

-4.91 ± j∙35.5 ( => ω0 = 35.8 rad/s = 5.7 Hz;  D = 13.7 % )

-3.41

-2.54 ( => T = 0.4 s )

The root locus plot of the open-loop model in figure 4-18 a) shows that the controller is 

stable for  the given  TI and  TD,  and that  the stability  and damping of  the system can be 
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improved by increasing the gain KP of the controller. However, the gain cannot be infinitely 

raised due to the control saturation limit of the proportional valve. Furthermore, the controller 

has, unfortunately, no real influence on the pole at -2.54. This dominant pole dictates the 

overall time response of the system.

Figure 4-16:   a) Root locus plot for KP   b)  Root locus plot for Ti

The root locus of the open-loop model is also expressed as a function of the parameter 

TI  and plotted in figure 4-18 b). The diagram shows that for KP = -4 and TD = 0.07 the system 

becomes unstable for TI  < 0.0142.

For KP = -4 and TD = 0.015, an optimal TI of 0.020 can be determined with the integrated 

squared  error  criterion  [40,  42].  However,  an  absolute  optimal  PID  setting  cannot  be 

estimated for this particular  controller  model.  Therefore,  in the next step the PID setting, 

KP = -4, TI = 0.02 and TD = 0.015 is, as a start, applied to the full simulation model.

4.4.3 Full Simulation Model

The controller model in section 4.2.3 is extended with a PID controller. In practice, the 

original controller algorithm is used for the acceleration phase and the PID controller is only 

switched on during the constant-velocity phase. It controls the command signal with respect 

to  the  reference  velocity.  When  the  reference  velocity  reaches  the  final  velocity,  the 

controller is switched off again and a constant command signal is maintained until impact of 

the moving platen on the stationary platen (see figure 4-17).

The  current  deceleration  time  is  about  1  second.  In  order  to  have  any  significant 

improvement, a deceleration time of half a second is targeted. Different controller gains and 

deceleration profiles are tested. Several  individual test runs can be found in appendix D. 

Finally, the best results are obtained for a PID setting of KP = -20, TI = 0.048, TD = 0.015, and 

a deceleration velocity profile based on a cubic spline as reference.

The overall gain of time, compared to the current controller, is 0.36 seconds, i.e. 6.9 %, 

for mold closing and 0.26 seconds, i.e. 5.7 % for mold opening. The controller handles the 

targeted deceleration time of 0.5 seconds without any saturation, i.e. no valve inputs above 

±10 V and no cavitation. Of course, the sharper deceleration causes higher pressure peaks 
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in the hydraulic system, but they do not exceed the maximum specified pressure rise rate. 

An implementation of the proposed PID controller or of an optimized command signal on a 

real machine would be very interesting in order to test and validate these results.

4.5 Summary

The analysis  of the moving platen stroke shows the potential  of  the simulation tools. 

Once the model is generated and validated, it allows to simulate various design parameters 

and to predict the influence of modifications on the performance of the overall system faster 

than proceeding experimentally.  It  also  allows  to  simulate  worst-case situations  that  are 

preferably  not  performed on real machines in a first  step. The biggest modeling effort  is 

needed for  the hydraulic  system.  However,  the generation  of  the model  itself  is  not  the 

problem, but the determination of the input parameters for the  modeling components. The 

case  study  highlights  the  importance  of  measurements  as  the  technical  data  from  the 

suppliers is often insufficient.

In order to reduce the cycle time of the machine, the focus was on the controller system. 

Of course, the potential for improvements is probably greater by changing the mechanical or 

hydraulic system. However, any software changes are generally easier to implement than 

hardware modifications. Basically, two possibilities have been found to reduce the cycle-time 

of the clamp unit: first,  to increase the moving platen velocity and second, to reduce the 

deceleration time. By opening the proportional valve completely during mold close and mold 

open, the model yields a maximum velocity of 882 mm/s and 1240 mm/s, respectively. The 

overall stroke time is reduced by 1.3 seconds, i.e. 13.3 %. No direct technical reasons have 

been identified not to run with higher velocities, except that probably other stroke cylinders 

and bigger piping are required in order to accommodate the much higher flow rates [43]. The 

PID controller implemented in the controls system allows to further reduce the overall stroke 

time by 0.6 seconds, i.e. 6.1 %.

The controller and optimization strategy used is well suited for linearized applications. Of 

course,  there exist other solutions that  are tailored to hydraulic  systems, as for  example 

presented in [30, 44, 45, 46],  which probably yield better  results.  The comparison of the 

original controller with the PID controller basically shows that if the deceleration time should 

be reduced then the proportional valve must be closed faster. The limits are the intensity of 

the pressure peaks and the possibility of cavitation as shown in figure 4-12 a).

The great advantage of the optimization procedure presented in this chapter is that it can 

be done offline for a given machine configuration and load case, which means that some 

parameter tuning can be done upfront. The closed-loop controller can then afterwards be 

implemented directly on the injection molding machine or  it  can be used to generate an 

optimized command signal which is then used in an open-loop controller.
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Figure 4-17: Mold closing with PID controller
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In order to prevent  any displacement  relative to the ground of  the complete injection 

molding machine during operation, it is simply bolted to the ground at the clamp unit end. 

The interest  is  now to  determine  under  which conditions such  a  displacement  becomes 

possible. With the simulation tools available, the root source of the phenomenon should be 

identified.  It  is  expected  that  for  some  particular  situations,  such  as  acceleration, 

deceleration and/or  impact  of the moving platen,  the lateral  forces acting on the support 

pads are temporarily so important that the complete machine slides for a split second. The 

model is used to compute the lateral and vertical forces acting on the support pads during 

moving platen stroking and to see if at any moment the friction coefficient of the support 

pads is exceeded.

5.1 Flexible MBS Model

For  this  purpose,  the  clamp  unit  model  of  the  previous  chapter  is  changed  to  a 

flexible-body model  in order  to  include mechanical  vibrations  and to have a more exact 

representation  of  the  force  distribution  on  the  support  pads.  Furthermore,  the  model  is 

extended  with  an  injection  unit  to  account  for  this  additional  mass.  However,  only  the 

stationary  platen,  the  tie  bars  and  the  clamp  base  are  modeled  as  flexible  bodies,  the 

moving platen and the injection unit remain rigid bodies.

The modeling effort is much higher than for the clamp locking mechanism presented in 

chapter 3 because, first, the finite element models necessary for the stationary platen and 

the clamp base are more complex, and second, there are some limitations regarding forces 

and joints that can be defined to flexible bodies.

5.1.1 Moving Platen Sliding

Currently, several modeling elements such as translational joints or contact statements 

cannot be directly defined to flexible bodies. However, this can be overcome by attaching a 

dummy part to the node of a flexible body and defining the joints and forces to that dummy12. 

In fact, a moving force on a flexible body cannot be modeled with the standard constraints 

currently available. The point of contact  must be defined to a node that is determined a 

12 A dummy part is a part whose mass and inertia properties are set to zero. Furthermore it does not add any 

degrees of freedom to the model as it is completely attached to the flexible body with a fixed joint.
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priori. This means that, when working with dummy parts for translational joints or contact 

statements, rather than modeling a point force sliding over the flexible surface, a varying 

point torque acting on the flexible surface at the location of the dummy part is modeled. This 

is an issue for the modeling of the moving platen sliding on the clamp base. Fortunately, this 

limitation can be avoided by different means - several approaches are presented in [47, 48]. 

The  technique  implemented  in  the  flexible  clamp  unit  model  is  based  on  the  contact 

statement presented in chapter 4.

Basically the approach works as follows: for each of the selected nodes of the clamp 

base along the sliding path, a force  F is computed according to equation  (5-1).  DY is the 

relative  vertical  position  and  VY the  relative  vertical  velocity  of  the  node to  the  moving 

platen. K and D are the contact stiffness and damping coefficients, respectively, and E is an 

exponent.

F =K⋅DY ED⋅VY for DY0 
F = 0 for DY0

 (5-1)

However, the force F is only activated when the node and the moving platen effectively 

overlap.  In fact,  it  is weighted by a function that  depends on the horizontal  distance  DZ 

between the node and the moving platen. The force is ramped up from zero or ramped down 

to zero in order to guarantee a smooth application and to minimize any discontinuities. The 

basic algorithm for the contact force computation can be found in figure 5-1.

Figure 5-1: Sliding contact algorithm

IMPACT is an internal  function of  the MBS program that  computes the contact  force 

based on equation (5-1). STEP is an internal function that approximates the unit step with a 

cubic polynomial; it depends on DZ and varies between 0 and 1. Like in chapter 4, a friction 

force is also computed based on a Coulomb friction model according to equation (5-2).

F friction=⋅F contact  (5-2)

node

d1 d2

d3 d4

DY,VY
DZ

d1 d2

d3 d4

DY,VY
DZ

CALL IMPACT(DY, VY, K, E, D, force)

IF ( (DZ < d1) OR (DZ > d2) ) THEN

     impactFORCE = 0.0

ENDIF

IF ( (DZ > d3) AND (DZ < d4) ) THEN

     impactFORCE = force

ENDIF

IF ( (DZ > d1) AND (DZ < d3) ) THEN

     CALL STEP(DZ, d1, 0, d3, 1, coeff)

     impactFORCE = coeff * force

ENDIF

IF ( (DZ > d4) AND (DZ < d2) ) THEN

     CALL STEP(DZ, d4, 1, d2, 0, coeff)

     impactFORCE = coeff * force

ENDIF

clamp base

moving platen shoe
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Where μ depends on the relative sliding velocity VZ between a node and the moving platen.

This very simple approach does not compute contact points and contact normals. The 

distance  and  velocity  of  a  node  relative  to  the  moving  platen  are  taken  in  the  global 

coordinate  system  and  the  contact  and  friction  forces  are  always  collinear  with  the 

coordinate  system unit  vectors.  However,  as the  deformation  of  the  clamp base is  very 

small, the rotation of the clamp base or the moving platen can be neglected. This approach 

adequately  models  the  moving platen  sliding with regard  to  the  results  needed and the 

modeling effort. The same technique is also implemented for the tie bar sliding. In fact, the 

tie bars are fixed at one end to the stationary platen while the other end is supported by the 

moving platen.

Figure 5-2: Moving platen sliding

The main disadvantage of this modeling approach is that  a huge number of interface 

nodes  are  needed  to  have  any  sound  representation  of  the  moving  contact  forces. 

Unfortunately, this gives a huge number of flexible-body DOF in the MBS model and thus 

unacceptable  computation times.  Therefore,  instead of defining these nodes as interface 

nodes,  they remain interior  nodes. The accuracy of the static deformation at the contact 

nodes  is  reduced  when  defining  them  as  interior  nodes  instead  of  interface  nodes.  To 

compensate  for  the  accuracy  loss,  additional  normal  modes  are  chosen  during  the 

computation of the Craig-Bampton basis. It is up to the user to find a compromise between 

computation  time  and  accuracy.  A  comparison  of  a  model  using  interior  nodes  for  the 

moving platen sliding with a model using interface nodes shows a very good compliance of 

the  results  while  having  a  much  faster  computation  time.  Therefore,  in  the  following 

simulations, interior nodes are used for the contact sliding of the moving platen and the tie 

bars.

5.1.2 Flexible Body

The flexible body is created in the FE program by importing simplified CAD geometries of 

the stationary platen and the clamp base and meshing them automatically with 10-nodes 

d1 d2

d3 d4

1

0

d1 d2

d3 d4

1

0
moving platen

clamp base

weighting function
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tetrahedral elements and 4-nodes shell elements, respectively. Afterwards, the tie bars are 

modeled manually  with beam elements  and the different  components  are connected via 

spring-damper  elements.  Additionally,  beam  elements  with  very  high  stiffness  and  low 

density are used to generate several interface nodes for the MBS model. The final FE model 

is composed of 14858 solid, 10061 shell, 280 beam and 44 spring-damper elements, and 

has a total number of 139287 finite element DOF.

Figure 5-3: FE model

A predefined macro for the computation of the modified Craig-Brampton modal basis is 

available in the FE program. It allows the user to specify the interface nodes and the number 

of normal modes to consider. The resulting modal basis is written to a file that has to be 

imported into the MBS code. The macro automatically selects the six DOF of each interface 

node as master DOF. However, it is not imperative to select all the six DOF. For example, 

for a spherical joint defined at an interface node, only forces along the three translational 

DOF are transmitted,  the three rotational  DOF can be saved. This allows to furthermore 

reduce the number of static modes and thus the total  number of flexible-body DOF. The 

macro has been changed accordingly to select only the effectively required DOF. Finally, the 

flexible  body representing  the  stationary  platen,  clamp base and tie  bars,  has  only  150 

flexible-body DOF. Despite the very high reduction degree from nearly 140000 physical DOF 

to 150 modal DOF, the first free-free natural frequencies of interest are still met as can be 

seen in table 5-1.

SOLID187

BEAM4

SHELL63



103

full
FE model

comment modified
Craig-Bampton

comment

0.0 Hz rigid-body modes 0.0 Hz rigid-body modes

4.7 Hz injection interface modes 4.6 Hz injection interface modes

8.5 Hz tie bar modes 8.5 Hz tie bar modes

9.0 Hz 9.0 Hz

9.7 Hz 9.7 Hz

13.3 Hz 13.3 Hz

18.8 Hz 18.8 Hz

19.5 Hz 19.5 Hz

35.7 Hz 35.7 Hz

50.4 Hz 50.3 Hz

Table 5-1: First major eigenfrequencies of flexible body

Impact-hammer modal analyses of the different components are done in order to validate 

the FE model and the flexible MBS model. Unfortunately, measurements of the complete 

assembly  as in  figure  5-3 are  not  possible,  only  the  individual  parts  are  measured;  the 

results can be found in appendix C. In fact, the characteristics of the joint elements that are 

connecting the different subassemblies have an influence on the natural frequencies of the 

complete assembly. They are deduced from catalog data and acceleration measurements 
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on an injection molding machine under operation. The concordance of the measured and 

computed data is satisfying as shown in section 5.2.

5.1.3 Overall Simulation Model

The composition of the flexible MBS model is similar to the rigid-body model of chapter 4. 

It consists of one flexible body that represents the stationary platen, the clamp base and the 

tie bars and of two rigid bodies that are the moving platen and the injection unit. The clamp 

base and the injection  unit  are  fixed with  linear  spring-damper  elements  to  the  ground. 

Spherical joints connect the clamp base to the injection and the stroke cylinder forces and 

the  contact  statement  for  the  moving  platen  impact  are  defined  between  both  platens. 

Finally,  the customized contact statements with friction for  the moving platen and tie bar 

sliding are added.

Figure 5-4: Flexible MBS model

The modal damping of the flexible body is difficult to assess. It mainly depends on the 

friction at the interconnections of the substructures and on the damping characteristic of the 

composite  material  of  the  support  pads.  These  damping  and  stiffness  parameters  are 

estimated  from  acceleration  measurements  presented  in  the  following  section  and  from 

catalog data. A vertical  stiffness and damping coefficient of respectively 6.3x108 N/m and 

4.0x106 Ns/m and a lateral stiffness and damping coefficient of respectively 4.1x107 N/m and 

8.0x105 Ns/m for  the  spring-damper  elements  are  retained.  A modal  damping  of  5 % is 

estimated for the flexible body and applied to all modes. In fact, the modal damping of some 

local modes, such as the one at 35.7 Hz in table 5-1, is generally much lower. But as these 

local modes are not of interest for this analysis, their damping is not specifically estimated by 

additional modal analysis measurements.

Finally, the hydraulic and controls model of chapter 4 are taken as they are and linked 

with the flexible mechanical model for the simulation of the injection molding machine. Due 

cylinder forcetie bar sliding

moving platen impact

support pads

spherical joint

injection

moving platen sliding & friction
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to the flexible body and the sliding contact, the computation time is significantly increased; 

for example the calculation of the mold closing takes about 10 hours.

5.2 Acceleration Measurements

In the following, some simulation results are compared to acceleration measurements on 

an operating machine. The measurements are done on a machine available in the Technical 

Center in Luxembourg. During the measurements, the machine is running in dry-cycle mode. 

The maximum admissible velocity, acceleration and deceleration parameters are specified to 

the controller unit.

Figure 5-5: a) measured and computed accelerations b) FFT of measured and computed data

In a first step, simple accelerometer measurements are carried out on the clamp unit in 

order to determine the frequencies of interest. The accelerometers are fixed on both platens 

in the stroke direction and on the clamp base in the vertical  direction. Three frequencies 

clearly appear in the spectrum of the time signals at 8.2 Hz, 223 Hz and 447 Hz. The two 

latter frequencies are due to the operating pumps. The frequency of 8.2 Hz corresponds to a 

deflection of the stationary platen and clamp base. The oscillation is particularly observed at 

mold-close start as can be seen in figure 5-5 a). The time delay between the computed and 

measured moving platen impact results from slightly different maximum velocities. The peak 

at 320 Hz in the ADAMS FFT is not found in the other spectrum. Probably the damping of 

mold-close start moving platen impact



106 Machine Creeping

this mode is not properly defined.

Afterwards,  more  exhaustive  measurements  are  carried  out  in  order  to  generate 

operating deflection shapes (ODS).  Several  sets  of  measurements  are necessary  where 

vertical  and  horizontal  accelerations  from  several  locations  along  the  clamp  base  and 

stationary platen are measured in reference to vertical  and horizontal  accelerations from 

fixed  locations.  The  acquired  data  is  evaluated  with  the  algorithm  implemented  in 

ME'scopeVES. The ODS gives an information on the deformation under operation of the 

structure at a certain frequency [49, 50].

Figure 5-6: a) ODS measurement, b) ADAMS modal analysis

The MBS model is linearized and the eigenfrequencies of the complete clamp unit, with 

the corresponding mode shapes, are computed (see figure 5-6 b). Actually, figure 5-6 shows 

that  the ODS at 8.2 Hz corresponds to a mode shape of  the clamp unit.  It  is  the force 

impulse from the stroke cylinders at mold-close start that excites this natural frequency. The 

same phenomenon is  observed  at  mold-open start;  however  less  pronounced  and  at  a 

slightly  higher  frequency  because  the  moving  platen  is  nearby  the  stationary  platen. 

Additionally,  the measurement shows that the complete machine, i.e. clamp and injection 

unit, is oscillating at the same frequency in machine direction on the support pads.

5.3 Forces Acting on Support Pads

Preliminary to this investigation, the question arose if a vibrational problem could be the 

root source for the creeping. One can for example imagine that the complete machine is 

excited by the moving platen displacement, and therefore "bouncing" through the production 

hall.  But  neither  the  acceleration  measurements  nor  any  simulation  results  point  to  this 

possibility in the slightest sense. What seems more plausible is that the lateral forces acting 

on the support pads are temporarily so important that the complete machine slides for a split 

second, for example at moving platen impact.

The manufacturer of the pads indicates a friction coefficient of 0.8 on concrete with fine 

mortar  as reference.  With the simulation model  it  is  possible to compute the lateral  and 
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vertical  forces  acting  on  the  support  pads  during  the  moving  platen  stroke.  Thus,  it  is 

possible to determine if at any moment or for any particular situation, the lateral-force to 

vertical-force ratio exceeds the specified coefficient of adhesion. In figure 5-7 a), the vertical 

force of three pads is plotted for mold-close at maximum admissible velocity, acceleration 

and deceleration. In figure 5-7 b), the sum of all the lateral forces acting in machine direction 

(18 clamp unit  and 4 injection unit support  pads) is divided by the sum of all  the vertical 

forces.

Figure 5-7: a) Vertical force, b) Force ratio

It can be noticed in figure 5-7 a) that the support pads at the extremities of the clamp 

base see negative forces. In reality, this would mean that the clamp base lifts of from those 

pads.  At  this  particular  moment,  these  pads cannot  take  up  anymore  lateral  forces.  Of 

course,  the  linear  spring-damper  elements  cannot  model  this  phenomenon.  In  order  to 

simulate this, a more complex model is generated where the flexible clamp base is attached 

via  spring-damper  elements  to  support  pads  which  in  turn  apply  with  contact-friction 

statements on the ground. However, the computation time becomes unrealistic (estimated to 

be at least one week) so that this model is finally abandoned. Therefore, the following results 

are all based upon the initial flexible MBS model.
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Friction  is  a  very  complex  phenomenon  and  there  is  a  wide  range  of  physical 

circumstances that cause friction. There exist a number of models of quite different nature to 

capture the essence of the different friction phenomena [52]. To get any notion if creeping 

might occur or not, the simple Coulomb friction model is considered. Figure 5-7 b) shows 

that  for  a standard cycle,  the ratio between both forces does not  exceed 0.2. It  can be 

assumed that as long as the friction coefficient between the support  pads and ground is 

much higher than 0.2, no creeping can occur. In fact, the injection molding machine of the 

Luxembourg Technical Center, which is now running for several months, is not bolted to the 

ground and no creeping can be noticed.

Figure 5-8: Emergency stop

Figure 5-9: Moving platen impact at maximum speed

In a next step, different machine configurations and particular situations are investigated. 

The following worst  case scenarios  are considered:  first,  the  moving platen impacts  the 

stationary  platen at  maximum speed (this  is technically  possible if  for  example  a wrong 

shutheight is specified by the operator) and second, an emergency stop is pressed while the 
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moving platen is traveling at maximum speed (in this case the proportional valve is instantly 

de-energized and the main spool is centered as fast as possible in order to stop the moving 

platen). The lateral-force to vertical-force ratio for both cases is plotted in figure 5-8 and 5-9. 

If the maximum ratio is nearly 0.5 for an emergency stop, it clearly exceeds the specified 

friction coefficient of 0.8 for a moving platen impact.

It is also interesting to have an idea of the potential displacement of the machine under 

these particular situations. As stated above, it is not feasible to apply contact statements 

between the flexible body and ground. However, it is very well possible for a rigid body. In 

this particular model, the complete injection molding machine is represented by a single rigid 

body. Contact statements with Coulomb friction are defined between the rigid body and the 

ground. Then, the computed lateral and vertical forces of the flexible MBS model are applied 

to the rigid body. The resulting displacement of the overall machine depends on the friction 

coefficient, the overall machine weight and the intensity of the lateral forces.

Table 5-2 lists the overall  machine displacement in case of an emergency stop and a 

moving platen impact for different friction coefficients. The order of magnitude of the results 

in figure 5-8, figure 5-9 and table 5-2 appears to be reasonable in spite of the simplified 

simulation model.  By intuition,  the displacements seem however to be slightly  too small. 

Unfortunately, there is actually no data available to compare the results with.

Friction Coefficient Emergency Stop Moving Platen Impact

0,8 0 0.4 mm

0,7 0 1.0 mm

0,6 0 3.0 mm

0,5 0 6.1 mm

0,4 0.9 mm 10.2 mm

0,3 7.0 mm 15.6 mm

0,2 17.2 mm 25.5 mm

Table 5-2: Machine displacement per cycle

5.4 Summary

The modeling and computation effort for the flexible clamp unit model is very high, but 

necessary in order to have a sound representation of the forces acting on the support pads 

during the moving platen stroke. The computation time can probably be reduced by more 

carefully generating the respective FE models. In fact, the stationary platen and the clamp 

base models  are  obtained from automatically  meshed  CAD geometries.  A more  regular 

meshing can be obtained by a "manual" mesh that would generally consist of less nodes. 

Furthermore, instead of 10-node tetrahedral elements, 4-node brick elements can be used 

that would further reducing the number of nodes. Thus, the size of the reduction matrix is 

reduced, speeding up the computation process. The drawback is that more time is needed to 
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manually generate adequate FE models; especially for the stationary platen. Additionally, 

the setting-up of the customized contacts in the MBS model is also quite time-consuming; 

the effort is reduced by working with macros. But the software companies are working on 

this  issue  and it  can be expected  that  a "flexible"  contact  will  soon be available  in  the 

standard constraint-library.

The results  for  the  machine  creeping  are  obtained from a relative  simple  simulation 

model, in the sense that it uses the Coulomb friction model and does not account for the 

contact loss of some support pads. However, the results are reasonable and give a very 

good qualitative information when creeping can occur. For a standard machine cycle, the 

lateral-force to vertical-force ratio for the support pads does not exceed 0.2. In case of an 

emergency stop, the ratio reaches already a maximum peak of 0.5, and in the case of a 

moving platen impact  at  maximum velocity,  the maximum peak is 1.4.  However,  as the 

manufacturer of the support pads indicates a friction coefficient of 0.8 on concrete with fine 

mortar, creeping should normally not be an issue if the machine is properly operated and 

maintained, i.e for example no impacts at high speed level and no oil on the floor.



 

6 Synopsis

Today, the interest in integrated dynamic analysis of mechatronic systems increases [54, 

55,  56,  57,  58,  59].  As  already  explained  in  the  introduction,  different  approaches  are 

possible depending on the nature of the system, on the required complexity of the model, or 

simply on the tools available to the engineer. During this work, the aim was to implement 

specialized  commercial  simulation  software  packages  and  to  combine  them  in  order  to 

simulate the dynamic behavior of mechatronic systems as for example an injection molding 

machine [60, 61, 62].

The  multi-body  simulation  software  is  the  backbone  of  the  current  analysis  as  it 

inherently models large non-linear motions. Such analyses are only conditionally possible 

with an FE program and normally at the expense of very long computation times. But on the 

other hand,  the FE formulation inherently  includes the flexibility  of  the components.  It  is 

possible to account for the flexibility of components in the MBS model if necessary, but the 

use of flexible bodies has some restraints. They cannot for example account for non-linear 

material characteristics or model large deformations. Moreover, there are currently still some 

limitations regarding forces and joints that can be defined to them. Especially the problem of 

a moving force on a flexible body, like the sliding of the moving platen on the clamp base, is 

still  an open issue in multi-body dynamics. However,  there exist  "standard" workarounds 

which  work  quite  well.  Additionally,  stress-time  histories  of  flexible  bodies,  which  are 

necessary for durability analyses, are also directly accessible.

The flexible MBS components are created from FE models. They are reduced before 

being imported into ADAMS in order to limit the computation efforts. With the help of the 

component  mode  synthesis  method,  the  generally  huge  number  of  FE  DOF  can  be 

considerably  reduced  to  a  few  DOF  without  significantly  compromising  the  natural 

frequencies  and the  component  stiffness  of  interest.  To speed up the generation  of  the 

flexible bodies, simplified CAD geometries are imported into the FE tool and automatically 

meshed whenever possible. The finite-element and flexible-body models are validated by 

comparing the computed eigenfrequencies with measured natural  frequencies. Generally, 

the agreement for single parts that are manufactured from solid metal and from casting is 

very good so that measurements are not really a necessity. For assembled parts or welding 
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constructions,  it  is  more  difficult  to  generate  an  appropriate  FE  model.  In  that  case, 

measurements are advisable to confirm their accuracy.

Finally, another very interesting feature of the MBS program is that it can be linked with 

other simulation tools.  For the analyses, other simulation codes were used to model  the 

hydraulic and controls systems. It is important to mention that for hydraulic systems, the real 

modeling effort is not the generation of the model itself, but the determination of the input 

parameters for the different modeling components. Generally, the data found in the technical 

sheets  is  insufficient  and  often  too  optimistic  -  which  highlights  the  importance  of 

measurements.

The  case  studies  show  the  interest  and  the  potential  of  a  combined  analysis  of 

mechatronic  systems.  Once  the  different  sub-models,  generated  with  the  adequate 

simulation tool, have been successfully linked and, if possible, validated by measurements, 

various scenarios can be simulated and analyzed. The model provides the engineer with an 

additional insight into the overall system and thus with a better understanding of its dynamic 

characteristics. The interactions between the subsystems, which may be of very distinctive 

nature,  can  be  investigated.  Generally,  it  is  difficult  to  predict  such  relations  intuitively. 

Finally, the model allows to simulate with different design parameters and to asses the effect 

of modifications to these on the overall performance of the machine. This helps to identify 

the significant parameters that are crucial for an optimized functioning.

The simulation results presented in the preceding chapters show a very good correlation 

with the time-measurements done on an operating injection molding machine. There are in 

some cases small discrepancies in the absolute values that mainly result from a simplified 

model,  for example the cylinder cushioning or the pump configuration. Nevertheless, it is 

always possible to make qualitative statements in order to give the direction to go. This is 

very helpful to work out improvements while being generally much faster and cheaper than 

proceeding experimentally. Such a simulation tool is also valuable in the early design stages 

as it serves as a fast method of evaluating different solutions in order to meet the specified 

objectives. Thereby, the need of costly prototypes can be significantly reduced. Furthermore, 

worst-case  situations,  which  are  preferably  not  performed  on  real  machines,  can  be 

simulated without any concerns.

The simulation tools  implemented at the university  of  Luxembourg are applied to the 

Q2700 clamp unit. Several  issues were investigated: first,  the clamp locking mechanism, 

second,  the reduction of the moving platen cycle-time and third,  the possible causes for 

machine creeping during operation. For this purpose, specific models are created to analyze 

the different problems in order to elaborate improvements.

Due to the high dynamics of the clamp locking mechanism and the installed hydraulic 
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system, the current connecting bars are manufactured from solid. This design is very robust 

but also very expensive. The aim of the investigation is to change the system accordingly so 

that the acting forces are reduced and a cheaper welded construction can be installed. The 

analysis in chapter 3 highlights the importance of the hydraulic system. The high force peaks 

responsible for the concerns occur at valve opening and are directly related to the opening 

speed of the flow directional valve. The only possibility to influence this parameter effectively 

is to install a proportional valve and to choose the command signal accordingly. With a very 

slow opening rate,  the forces peaks are reduced by 40 %. The locking time remains the 

same as the maximum cylinder velocity is significantly increased in order to compensate for 

the time loss  due to the moderate  opening speed.  With these changes in the hydraulic 

system, the current design can be replaced by a cheaper welding design. The drawback is 

that probably a special cylinder and bigger piping are needed to accommodate the higher 

flow rates. Furthermore, the proportional valve is also more expensive. All in all, the cost 

reduction obtained with the welding design may be abrogated by the cost of  the special 

hydraulic components that are needed; but this still has to be looked into detail. Finally, an 

easy to implement cost reduction is possible by simply leaving out the longitudinal slot in the 

current connecting bars. The simulations shows that reducing the stiffness of the connecting 

bars is counterproductive and does not reduce the force peaks as hoped.

Another aim of the project was to simulate and analyze the moving platen stroke in order 

to reduce the overall  cycle time of the machine. The mechanical design is frozen so that 

potential  improvements  are  only  expected  by  judiciously  changing  the  hydraulic  and/or 

controls systems. The model  allows to easily test  different  extreme situations that  would 

preferably not be done on a real machine. For example, the proportional valve is completely 

opened during mold close and mold open. The moving platen reaches then a maximum 

velocity of 882 mm/s and 1240 mm/s, respectively; the current acceleration and deceleration 

parameters are not changed. The overall cycle-time is reduce by 1.3 seconds, i.e. 13.3 %. In 

a next step, the acceleration and deceleration phase is investigated. The simulation shows 

that the acceleration cannot be improved anymore, whereas it is possible to further reduce 

the deceleration time. Instead of finding an adequate command signal through a trial and 

error approach, a closed-loop model is developed. A feedback controller adjusts the input 

signal for the proportional valve by comparing the actual velocity of the moving platen to a 

given velocity profile. The PID controller that is implemented in the controls system allows to 

further reduce the overall cycle-time by 0.6 seconds, i.e. 6,1 %. Basically, a shortening of the 

deceleration time is achieved by faster closing the proportional valve. This causes higher 

pressure peaks, and in the worst case can lead to cavitation, which limits the closing rate. A 

feedback controller is not indispensable as the same result can be obtained by changing the 

input  parameters  for  the  existing  open-loop  controller  in  order  to  generate  a  steeper 

deceleration profile. However, the advantage of this approach is that a command signal can 
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be automatically generated offline, whereas the current use of a look-up table relating the 

input voltage to the moving platen velocity is an oversimplified approximation of the system 

dynamics.

Finally,  in  the  past  the  complete  injection molding machine was sometimes creeping 

during operation. For this reason, it is nowadays bolted to the ground at the clamp unit end. 

With the simulation tools available, the possible causes of the phenomenon are investigated. 

In  the  beginning,  the  idea  was  that  a  vibrational  problem  could  be  responsible  for  the 

creeping, but such a phenomenon cannot be observed in the simulation runs, nor in the 

measurements.  It  seems more  plausible  that  creeping is  related  to  the  friction  between 

support pads and ground. It is assumed that for specific situations, the lateral forces acting 

on the support pads are temporarily very high so that the complete machine is sliding for a 

split second. For a standard machine cycle, the maximum lateral-force to vertical-force ratio 

is about 0.2, during an emergency stop the ratio reaches nearly 0.5, and for a moving platen 

impact  at  maximum velocity  it  is  1.4.  The manufacturer  of  the support  pads indicates  a 

friction coefficient of 0.8 on concrete with fine mortar. Considering Coulomb friction, sliding is 

then only possible during an impact of the moving platen at maximum velocity. However, the 

effective friction coefficient is not really known and may vary from one machine to another. 

For example, it is not uncommon that the floor of the production halls is very dirty and oily, or 

that  an operator  regularly  uses  the  emergency  stop to interrupt  a cycle.  The simulation 

shows that creeping should normally not be an issue if the machine is properly operated and 

maintained.
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Generalized Mass Matrix M

The kinetic energy of a flexible body can be written as

T= 1
2 ∑i=1

nP

mp⋅ṙ p
T⋅ṙ pp

T⋅J p⋅p ≡ 1
2
̇T M ̇  (A-1)

where nP is the total number of FE nodes and mp and Jp are the mass and inertia tensor of 

node p, respectively. The absolute translational velocity and the angular deformation velocity 

of a node p are defined by

ṙ p=[ I −A⋅ spSp⋅q f ⋅B A⋅Sp ]⋅̇  (A-2)

and

p= [0 B Sp ]⋅̇  (A-3)

Therefore, the kinetic energy of a node p can expressed by

T p=
1
2
⋅mp⋅ṙ p

T⋅ṙ p
A

1
2
⋅p

T⋅J p⋅p
B 

 (A-4)

where (A) is (recalling that AT⋅A=I )

1
2
⋅m p⋅̇

T⋅[ I −BT⋅ s pS p⋅q f 
T
⋅AT Sp

T⋅AT ]⋅[ I −A⋅ s pS p⋅q f ⋅B A⋅Sp ]⋅̇  

⇒ 
1
2
⋅m p⋅̇

T⋅[ I −A⋅ s pS p⋅q f ⋅B A⋅S p

BT⋅ s pSp⋅q f 
T
⋅ spSp⋅q f ⋅B −BT⋅ s pS p⋅q f 

T
⋅Sp

sym Sp
T⋅Sp

]⋅̇ (A-5)

and (B) is

1
2
⋅̇T⋅[ 0 B T S p

T ]⋅J p⋅[0 B Sp ]⋅̇  

⇒ 
1
2
⋅̇T⋅[ 0 0 0

BT⋅J pi⋅B BT⋅J p⋅S p

sym S p
T⋅J p⋅Sp

]⋅̇ (A-6)
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From equations (A-4), (A-5) and (A-6), the generalized nodal mass matrix Mp is

Mp=[ M rr
p M r 

p M rq f

p

M 
p M q

f

p

sym. Mq f q f

p ]  (A-7)

where

M rr
p=mp⋅I  (3 x 3) (A-8)

M r 
p =−mp⋅A⋅ s pS p⋅q f ⋅B  (3 x 3) (A-9)

M rqf

p =mp⋅A⋅S p  (3 x k) (A-10)

M 
p =mp⋅BT⋅ spSp⋅q f 

T
⋅ s pS p⋅q f ⋅BBT⋅Jp⋅B  (3 x 3) (A-11)

M qf

p =−m p⋅BT⋅ s pS p⋅q f 
T
⋅S pBT⋅Jp⋅S p  (3 x k) (A-12)

M q
f
q

f

p =mp⋅Sp
T⋅Sp Sp

T⋅J p⋅S p  (k x k) (A-13)

In the following, the different vectors and matrices are presented in their expanded form 

for a clearer understanding of the developed formulas.   is the generalized coordinates set 

for a flexible body with = {r T T q f
T }T= {x y z    qf

T }T , where x , y , z ,  ,  ,   are 

the coordinates of  the local  reference frame of  the flexible body and  q f  are the modal 

coordinates of the modified Craig-Bampton basis with  q f= q f
1 q f

2 q f
3  q f

k T ;  k is the total 

number of modal coordinates. Generally, the first six modal coordinates are the rigid-body 

modes that are disabled in ADAMS.

A is the Euler transformation matrix from the local reference coordinates to the global 

reference coordinates and B is a matrix used in the description of the angular velocity of the 

local reference frame, 1

A=[c⋅c−s⋅s⋅c  −c⋅s−s⋅c⋅c  s⋅s 
s⋅cc⋅s⋅c  −s⋅sc⋅c⋅c  −c⋅s

s⋅s c⋅s c ]  and B= [s⋅s 0 c
c⋅s 0 −s

c  1 0 ] .

s p  is the position vector of node p of the undeformed flexible body defined in the local 

reference  frame,  with  s p=  x p yp zp T .  mp and  Jp are  respectively  the  mass  and inertia 

tensor of the finite volume corresponding to node p. Sp  and Sp  are the rows of the shape 

matrix corresponding to the translational and rotational DOF of node p, respectively, thus

1 c ≡ cosinus; s ≡ sinus
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Sp=[q xp

1 qx p

2 qx p

3  q xp

k

qy
p

1 q y
p

2 qy
p

3  q y
p

k

q zp

1 qzp

2 qz p

3  qzp

k ]  and Sp=[qrotx p

1 qrotx p

2 qrotx p

3  qrotx p

k

qroty
p

1 q roty
p

2 qroty
p

3  qroty
p

k

qrotz p

1 qrotz p

2 qrotz p

3  qrotz p

k ] .

Finally I is an (3 x 3) identity matrix and  ~  is the skew symmetric operator such that for

a= [xa

ya

za
]  the operator yields a= [ 0 −za y a

za 0 −xa

−y a xa 0 ]
The total kinetic energy of a flexible body is written as

T=∑
i=1

n p

T p =
1
2
⋅̇T⋅∑

i=1

n p

M p⋅̇ = 1
2
⋅̇T⋅M⋅̇  (A-14)

The summation of the sub-matrices defined in equations (A-8) to (A-13) yields

M rr=∑
i=1

np

m p⋅I

=I 1⋅I

 (A-15)

M r =∑
i=1

np

[−mp⋅A⋅ spSp⋅q f ⋅B ]

=−A⋅[∑
i=1

np

mp⋅s p∑
i=1

n p

m p⋅S p⋅q f ]⋅B

=−A⋅[∑
i=1

n
p

mp⋅s p∑
i=1

n
p

m p⋅Sp⋅q f ]⋅B

=−A⋅[ I 2I 3⋅q f ]⋅B

 (A-16)

M rqf
=∑

i=1

n p

mp⋅A⋅Sp

=A⋅∑
i=1

n p

mp⋅S p

=A⋅I 3

 (A-17)

M =∑
i=1

np

mp⋅BT⋅ s pS p⋅q f 
T
⋅ spSp⋅q f ⋅B∑

i=1

np

BT⋅J p⋅B

=BT⋅[∑
i=1

n p

mp⋅ s p
T⋅s psp

T⋅Sp⋅q fSp⋅q f 
T
⋅s pS p⋅q f 

T
⋅S p⋅q f ∑

i=1

np

J p]⋅B

=BT⋅[∑
i=1

n p

mp⋅sp
T⋅spJp ∑

i=1

np

m p⋅s p
T⋅Sp⋅q f∑

i=1

np

mp⋅ s p
T⋅Sp⋅q f 

T

∑
i=1

n p

mp⋅S p⋅q f 
T
⋅S p⋅q f ]⋅B

=BT⋅[I 7I 8I 8TI 9 ]⋅B

 (A-18)
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M qf
=∑

i=1

n p

[−mp⋅BT⋅ spS p⋅q f 
T
⋅Sp ]∑

i=1

n p

BT⋅Jp⋅Sp

=−BT⋅[∑
i=1

n p

mp⋅sp
T⋅S pJ p⋅Sp∑

i=1

np

mp⋅Sp⋅q f 
T⋅Sp]

=−BT⋅[I 4I 5 ]

 (A-19)

M qf qf
=∑

i=1

np

mp⋅Sp
T⋅S p∑

i=1

n p

Sp
T⋅J p⋅S p

=I 6

 (A-20)

The terms I  are recapitulated below

I 1=∑
i=1

np

m p  (scalar) (A-21)

I 2=∑
i=1

n p

mp⋅sp  (3 x 1) (A-22)

I 3=∑
i=1

n p

mp⋅Sp  (3 x k) (A-23)

I 4=∑
i=1

n p

mp⋅sp
T⋅SpJ p⋅S p  (3 x k) (A-24)

I 5=∑
i=1

n p

mp⋅S p⋅q f 
T⋅S p  (3 x k) (A-25)

I 6=∑
i=1

n p

mp⋅Sp
T⋅S p S p

T⋅J p⋅Sp  (k x k) (A-26)

I 7=∑
i=1

np

mp⋅s p
T⋅s pJ p  (3 x 3) (A-27)

I 8=∑
i=1

np

m p⋅s p
T⋅Sp⋅q f  (3 x 3) (A-28)

I 9=∑
i=1

n p

mp⋅S p⋅q f 
T⋅S p⋅q f   (3 x 3) (A-29)
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Co-Simulation

In  the  following,  the detailed  FORTRAN code for  the ADAMS-DSHplus  co-simulation 

model of figure B-1 is presented. For DSHplus the input parameters are the position and the 

velocity of the hydraulic cylinder and the output parameter is the cylinder force. For ADAMS 

the input  parameter is the cylinder force and the output  parameters are the moving and 

reference marker id's. The coupling of both models is done via the STC-module and the 

FORTRAN subroutine as explained in chapter 2. The code can of course be extended with 

additional  exchange  parameters  or  with  more  complex  calculations,  the  basic  structure 

remains the same.

SUBROUTINE SFOSUB(ID, TIME, PAR, NPAR, DFLAG, IFLAG, RESULT)

------ External variable definitions

INTEGER ID identifier of calling FORCE statement

DOUBLE PRECISION TIME current time

DOUBLE PRECISION PAR( * ) array containing passed parameters

Figure B-1: ADAMS-DSHplus co-simulation

Cylinder Force

Cylinder Position

Cylinder Velocity

reference marker

moving marker

force statement
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INTEGER NPAR number of passed parameters

LOGICAL DFLAG differencing flag

LOGICAL IFLAG initial pass flag

DOUBLE PRECISION RESULT computed force returned to ADAMS

------ Local variable and parameter definitions

INTEGER IPAR(3) array of marker id's for SYSFNC evaluation

INTEGER movMARKER ADAMS id of moving marker

INTEGER refMARKER ADAMS id of reference marker

DOUBLE PRECISION DISPL output of SYSFNC

DOUBLE PRECISION VELOC output of SYSFNC

LOGICAL ERRFLG

INTEGER nDSHin number of DSHplus inputs

INTEGER nDSHout number of DSHplus outputs

DOUBLE PRECISION DSHin(2) array of DSHplus inputs

DOUBLE PRECISION DSHout(1) array of DSHplus outputs

DOUBLE PRECISION SIMENDTIME simulation end

INTEGER FLAGS(2)

INTEGER nFLAGS

DOUBLE PRECISION H

DOUBLE PRECISION OLDTIME

DOUBLE PRECISION LASTSUCCSTEP

=== INITIALISATION ===================================================================

movMARKER = PAR(1)

refMARKER = PAR(2)

IPAR(1) = movMARKER

IPAR(2) = refMARKER

IPAR(3) = refMARKER

nDSHin = 2

nDSHout = 1

FLAGS(1) = 1 flag for embedded (0) or normal co-simulation (1)

FLAGS(2) = 1 flag for no extrapolation (0) or extrapolation (1)

nFLAGS = 2

IF (IFLAG) THEN

------ Setting functional dependencies for SYSFNC in ADAMS

  CALL SYSFNC('DM', IPAR, 3, DISPL, ERRFLG) evaluates the actual distance between both markers

  CALL ERRMES(ERRFLG, 'Error for DISPL', ID, 'STOP')
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  CALL SYSFNC('VM', IPAR, 3, VELOC, ERRFLG) evaluates the actual velocity between both markers

  CALL ERRMES(ERRFLG, 'Error for VELOC', ID, 'STOP')

  DSHin(1) = ABS(DISPL)

  DSHin(2) = VELOC

------ Initialisation of DSHplus interface

  CALL LOCKING_MAPMODULC(nDSHin, nDSHout, 'LOCKING.txt', 'LOCKING.ken.txt', FLAGS, nFLAGS)

------ Pass actual displacement and velocity to DSHplus

  CALL LOCKING_SETMODULDATAC(DSHin, TIME, H, FLAGS, nFLAGS)

ELSE

=== NEW TIMESTEP ===================================================================

------ if ADAMS successfully computed a new timestep then the result is passed to DSHplus that in return

------ computes a new force. But if the ADAMS solver did not converge and has to step back to recompute

------ the timestep then no DSHplus computation occurs and the forces of the latest successful timestep are

------ kept.

  IF (TIME .GT. OLDTIME) THEN

    CALL TIMGET(LASTSUCCSTEP)

    H = TIME - LASTSUCCSTEP

    OLDTIME = TIME

    CALL SYSFNC('DX', IPAR, 3, DISPL, ERRFLG)

    CALL ERRMES(ERRFLG, 'Error for DISPL', ID, 'STOP')

    CALL SYSFNC('VX', IPAR, 3, VELOC, ERRFLG)

    CALL ERRMES(ERRFLG, 'Error for VELOC', ID, 'STOP')

    DSHin(1) = ABS(DISPL)

    DSHin(2) = VELOC

------ Pass actual displacement and velocity to DSHplus

    CALL LOCKING_SETMODULDATAC(DSHin, TIME, H, FLAGS, nFLAGS)

------ Get actual hydraulic force from DSHplus

    CALL LOCKING_GETMODULDATAC(DSHout, TIME, FLAGS, nFLAGS)
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    RESULT = DSHout

    

  ELSE

    CALL TIMGET(LASTSUCCSTEP)

    H = TIME - LASTSUCCSTEP

    RESULT = DSHout

  ENDIF

ENDIF

=== END CO-SIMULATION ==============================================================

IF (ABS (SIMENDTIME - TIME) .LT. 1.0E-09) THEN

------ Stop co-simulation with DSHplus

  CALL LOCKING_UNMAPMODULC(FLAGS, nFLAGS)

ENDIF

RETURN

END



 

APPENDIX C

Experimental Modal Analysis

Impact  testing  is  one  of  the  most  common  methods  used  to  identify  the  modal 

parameters. The advantage is that a minimum of equipment is needed to perform a modal 

analysis: a 2-channel FFT analyzer, a hammer with a load cell to produce a broad-banded 

excitation and measure the input force and an accelerometer to measure the response. The 

aim is to determine the Frequency Response Function (FRF) that describes the input-output 

relationship at one point or at two distinct points of a structure as a function of frequency. In 

other words, it is a measure of the displacement, velocity or acceleration a structure has at 

an output point when applying a unit of excitation force at an input point. In experimental 

modal  analysis,  the  FRF  is  measured  in  order  to  estimate  resonant  frequencies,  mode 

shapes and damping coefficients.

Theoretically, the FRF can be defined as the ratio of the Fourier Transform of the output 

at point j Xj( )ω  divided by the Fourier Transform of the input force at point k of the structure 

Fk( )ω .

H jk =
X j 
Fk 

 (C-1)

Considering the equation of motion for an n degree-of-freedom system

[M ]{ẍ }[C ]{ẋ }[K ]{x }={F t }  (C-2)

The Fourier Transform of equation (C-2) becomes

[X ]= [[K ]−2 [M ]i [C] ]−1
[F ]  (C-3)

By diagonalizing the matrices M, C, K, equations (C-3) can be reformulated and the FRF, 

i.e. Matrix H can be expressed only in terms of modal parameters. The development can be 

looked-up in [51]. The individual element of the matrix H can be expressed as

H jk =∑
r=1

n  A jkr

r r i −r 1−r
2


A jkr

r r i r 1−r
2   (C-4)

In  practice  the  FRF  is  calculated  using  the  auto-spectral  density  (Sff) and  the 

cross-spectral density (Sfx) of the input and output signal such that
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H jk =
Sf k x j


S f k f k


 (C-5)

When a structure is tested, the measured set of FRF is typically used to estimate the 

modal  parameters  by a curve fitting  method.  This means that  the  data  is  matched to a 

parametric model of the FRF similar to equation (C-4). Multitudes of different methods were 

developed  to  estimate  the  natural  frequencies  with  the  associated  mode  shape  and 

damping. They are more or less effective depending on how the FRF were obtained - e.g. by 

Impact  Testing  or  Shaker  -,  how  many  FRF  were  measured  and  what  the  measured 

structure is like - e.g. lightly or highly damped. In the commercial modal analysis programm 

available  at  the  University  of  Luxembourg  two  related  methods  that  are  based  on  a 

least-squares procedure - known as the Rational Fraction Polynomial method and Global 

Rational  Fraction Polynomial  method - are used to estimate the natural  frequencies with 

their corresponding mode shape and modal damping coefficient.

Vertical Connecting Bar

A hammer-impact modal analysis of an assembled vertical connecting bar is done. For 

the measurement, the accelerometer is fixed with wax at position 4 in direction x. Then, the 

structure is excited in the same direction with the impact hammer at each measuring one 

after the other. Afterwards, the measurement is repeated for the z-direction (see figure C-1). 

Finally,  the  measured  FRF  are  exported  to  the  other  software  for  modal  parameter 

estimation. The natural frequencies with the corresponding mode shape and damping are 

estimated and the results are presented in figure C-2.

Figure C-1: Modal analysis measurement setup
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Figure C-2: Modal parameter estimation: mode shape / natural frequency / damping
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Major Clamp Unit Parts

A stationary, a tie bar and a clamp base have been measured in order to validate the FE 

models of the flexible bodies in ADAMS. The FE models have not to be very detailed for the 

dynamic analysis. A correct overall mass distribution and structural stiffness are sufficient to 

represent  the  inertia  effects,  natural  frequencies  and  mode  shapes.  A  too  fine  mesh 

unnecessarily increases the computation efforts.

As the parts weigh several tons, they could only be suspended through lifting ropes to a 

crane. Impact measurements were done with a modal hammer and two accelerometers. A 

complete experimental modal analysis of the parts as for the vertical connecting bar has not 

been done due to time constraints in production. Generally, one accelerometer is enough to 

measure  the natural  frequencies.  The second accelerometer  is  needed to get  additional 

information about the relative phasing between two measuring points. Thus, it is easier to 

compare and allocate the measured and the calculated natural  frequencies by having a 

rough idea of the mode shapes.

Stationary Platen

The overall dimensions of stationary platen are 3.5 x 3 x 1.2 meters and its weight is 36 

tons. Two FE models are generated: one detailed and one coarse model. Both are created 

from 3D CAD models that are imported and automatically meshed with ANSYS/Workbench. 

For  the  detailed  model,  only  the  threaded  holes,  some  pads  and  some  grooves  are 

removed, for the coarse model nearly all blends and some major features are suppressed. 

They are meshed using the 10-node tetrahedral element SOLID92 with 3 translational DOF 

per node. The detailed model has 252459 DOF whereas the coarse model has 53982 DOF. 

The  material  properties  are:  E-modulus  1.6x1011 Pa,  Poisson's  ratio  0.28  and  density 

7100 kg/m3.

Figure C-3: Stationary platen

The natural frequencies of the detailed model differ from the measured frequencies by 

± 4 %. As expected, the coarse model is not as good but still reproduces the same mode 

shapes and the corresponding natural frequencies with an error of under 10 %.

 
crane
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Measured
Frequencies (Hz)

Detailed Model
Frequencies (Hz)

% Coarse Model
Frequencies (Hz)

%

138.5 141.99 2.5 138.66 0.1

146.5 150.18 2.5 147.15 0.4

183.0 178.55 -2.4 168.22 -8.1

189.5 181.68 -4.1 178.96 -5.6

203.5 203.40 0.0 204.20 0.3

222.5 220.52 -0.9 220.81 -0.8

235.5 235.97 0.2 240.08 1.9

266.5 257.75 -3.3 254.65 -4.4

272.5 266.60 -2.2 258.39 -5.2

307.5 298.56 -2.9 292.92 -4.7

309.5 301.08 -2.7 290.78 -6.0

317.0 308.70 -2.6 302.07 -4.7

336.0 325.65 -3.1 321.36 -4.4

379.5 369.62 -2.6 356.58 -6.0

Table C-1: Eigenfrequencies of stationary platen

Tie Bar

The tie bar length is 5.8 meters and its weight is about 4.1 tons. The tie bar is suspended 

near its center of gravity to a crane. Again, two different FE models are generated: a detailed 

model that is created from a simplified 3D CAD geometry and automatically meshed with 

18862 SOLID92 elements and a coarse model  that  is created manually  with 54 BEAM4 

elements.  BEAM4 is  a uniaxial  element  with tension,  compression,  torsion,  and bending 

capabilities. The element has six DOF at each node: three translational and three rotational. 

The  material  properties  are:  E-modulus  2.05x1011 Pa,  Poisson's  ratio  0.3  and  density 

7830 kg/m3.

For the first three natural frequencies, the BEAM4 element performs very well. Therefore, 

depending on the frequencies of interest, a coarse model is sufficient for a dynamic analysis.

Figure C-4: Tie bar
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Measured
Frequencies (Hz)

Detailed Model
Frequencies (Hz)

% Coarse Model
Frequencies (Hz)

%

46.5 47.39 1.9 46.35 -0.3

126.5 128.06 1.2 126.96 0.4

240.5 240.62 0.0 246.85 2.6

386.5 385.60 -0.2 403.98 4.5

555.0 552.42 -0.5 596.42 7.5

745.5 745.44 0.0 822.10 10.0

Table C-2: Eigenfrequencies of tie bar

Clamp Base

The clamp base is a welding-construction.  Its  overall  dimensions are 6.5 x 3.5 x 0.7 

meters and its weight is about 7.4 tons. One model is generated from a simplified 3D CAD 

model  and has 23668 SOLID92 elements. Another model is created manually with 4532 

SHELL63 elements.  The material  characteristics  are:  E-modulus  2.10x1011 Pa,  Poisson's 

ratio 0.3 and material density 7850 kg/m3.

The clamp base is not really clement regarding modal analysis. It is difficult to generate 

an accurate FE model and to include all possible things that might influence the frequencies 

and mode shapes. For example, the welding has certainly induced tensions in the structure 

that are difficult to determine. Furthermore, in contrary to stationary platen and tie bar, the 

influence of the lifting robes must also be taken into account.

Figure C-5: Clamp base

Measured
Frequencies (Hz)

Detailed Model
Frequencies (Hz)

%
Coarse Model

Frequencies (Hz)
%

30.0 31.13 3.8 28.75 -4.2

47.8 48.55 1.6 44.46 -7.0

68.3 75.09 9.9 67.78 -0.8

Table C-3: Eigenfrequencies of clamp base
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As an absolute optimal  PID setting cannot be estimated analytically for this particular 

closed-loop  model,  different  parameter  sets  are  tested.  The  value  of  KP is  gradually 

increased, starting with -4.  TI is determined for each  KP with the integrated squared error 

criterion [37, 39] and TD is kept constant.

KP = -4, TI = 0.0200 and TD = 0.015

KP = -10, TI = 0.0347 and TD = 0.015
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KP = -20, TI = 0.0484 and TD = 0.015

KP = -30, TI = 0.0573 and TD = 0.015

KP = -40, TI = 0.0644 and TD = 0.015
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