Low Energy and High Performance Scheduling on Scalable
Computing Systems

Pecero Sanchez, J.E., Bouvry P.
CSC Research Unit, University of Luxembourg, L-1359 Luxembourg
johnatan.pecero@uni.lu, pascal.bouvry @uni.lu

Barrios Hernandez, C.J.
Industrial University of Santander, Bucaramanga, Colombia
carlosjaimebh @computer.org

Abstract

With the fast development of supercomputers, en-
ergy consumption by large scale computer systems
has become a major concern. How to reduce en-
ergy consumption is now a critical issue in design-
ing high-performance computing systems. Moreover,
reducing energy consumption for high-performance
computing can bring various benefits such as, reduce
monetary operating costs, increase system reliability,
and reduction of environmental impacts. Therefore,
in this paper we address the problem of scheduling
precedence-constrained parallel applications on het-
erogeneous scalable computing systems with the ob-
Jjectives of minimizing finish time and reduce energy
consumption. We provide a scheduling algorithm
based on the best-effort idea that adopts dynamic
voltage scaling (DVS) to reduce energy consump-
tion. That is, the algorithm firstly looks for near-
optimal solutions employing a list-based schedul-
ing algorithm to find the minimum finish time (best-
effort). Then, a fast random local search algorithm
that exploits voltage scaling is used to reduce the
energy consumption of the generated schedule with-
out any performance degradation. Simulation results
on structured graphs representing real-world appli-
cations emphasize the interest of the proposed ap-
proach.

Keywords: Scalable computing systems; Het-
erogeneous computing; Distributed Systems; Green
Computing; Energy Optimization, Task Scheduling;

1 Introduction

Task scheduling problem for workflow applica-
tions has been one of the fundamental issues in par-

allel and distributed computing. Task scheduling
on homogeneous and heterogeneous computing sys-
tems has been studied extensively in recent years ad-
dressed to different efforts. Traditionally, to min-
imize the application completion time and to treat
time complexity. Nowadays, it exist an important
interest to reduce energy consumption in computing
systems due to performance, environment and mone-
tary issues.

In environmental terms, since the idea to build en-
vironmentally sustainable computing or Green Com-
puting [5] [3], the idea to minimize energy consump-
tion or maximize energy efficiency designing algo-
rithms and systems for efficiency-related computer
technologies, scheduling strategies is an active field
of research. One of the main concern is to provide
high performance with low energy consumption, in
other words to provide energy efficiency!.

Several works are based in the use of Dynamic
Voltage Scaling Algorithms (DVS). DVS exploits
hardware characteristics of processors to reduce en-
ergy dissipation by lowering the supply voltage and
the operating frequency. The DVS algorithms are
shown to make dramatic energy savings while pro-
viding the necessary peak computation power in gen-
eral purpose systems. On the other hand, DVS tries to
address the tradeoff between performance and energy
efficiency by taking into account two important char-
acteristics: the peak computing rate needed is much
higher than the average throughput that must be sus-
tained and the processors are based on CMOS Logic.
In this paper we adopt this technique. DVS enables
processors to dynamically adjust voltage supply lev-

"Energy efficiency can be measured in terms of perfor-
mance per watt, depending on the definition; reasonable
measures of performance are FLOPS, MIPS, or the score
for any performance benchmark (i.e. FLOPS per watt,
MIPS per watt)

els aiming to reduce power consumption at the ex-
pense of performance degradation.

Using DVS algorithms, the most part of the stud-
ies on scheduling are addressed on homogeneous
systems. Works as [1], [2], and [7] propose strate-
gies to efficient energy consumption of HPC Clus-
ters or VLSI systems considering deadlines of appli-
cations. In all cases the interval of energy savings
that can be achieved is between 20% and 40% for
different types of utilization, taking in account not
only interactive workloads but also scientific work-
load caused by parallel scientific applications. How-
ever, few works treat the problem of heterogeneous
systems and moreover of large scale systems such
as Grid computing platforms. Works as [7] pro-
poses algorithms implementable on both homoge-
neous and heterogeneous systems using task schedul-
ing and exploiting DVS capabilities of processing el-
ements to reduce energy consumption. The authors
consider scientific applications represented by a Di-
rected Acyclic Graph (DAG). The target architec-
ture is a distributed computing system which con-
sists of DVS enabled processors with varying pro-
cessing capabilities and network links with varying
bandwidths.

In this paper, the goal is to minimize the energy
consumption of a scalable computing architecture
when executing applications while a given perfor-
mance is preserved. Since the resource manager is
the component of a system responsible for deciding
which tasks of a parallel application run on the pro-
cessors simultaneously, scheduling is crucial for per-
formance and energy efficiency. The main contribu-
tions of the paper are two-fold: problem modeling
as a constrained multi-objective optimization. De-
sign a scheduling algorithm based on the best-effort
idea that optimize both makespan and energy objec-
tives. That is, the algorithm firstly looks for near-
optimal solutions employing a list-based schedul-
ing algorithm to find the minimum makespan (best-
effort). Then, we fix the makespan objective as con-
straint and a random local search algorithm that pro-
motes voltage scaling is used to reduce the energy
consumption of the generated schedule without in-
curring into the increase of the fixed criterion (i.e.,
the makespan).

The rest of the paper is organized as follows: Sec-
tion 2 describes the models used in this paper. Sec-
tion 3 presents the best-effort list scheduling and
random local search and voltage scaling algorithms.
Some simulation experiment results are discussed in
Section 4. In Section 5, concludes remarks and dis-
cusses the future work.

2 Models

In this section, we describe the system, applica-
tion, energy and scheduling models used in this work.
Most of them are based on the models from [7].

2.1 System model

The target system used in this work is a scalable
computing system that consists of a set M of m het-
erogeneous processors/machines that are fully inter-
connected. The processors have different processing
speed or provide different processing performance in
term of MIPS (Million Instruction Per Second). Each
processor m; € M is DVS-enabled; that is, it can be
operated on a set of supply voltages V. Hence differ-
ent speed performance.

In this work, we assume that for each processor
m; € M, asetVy, of v voltages is random and uni-
formly distributed among six different sets of supply
voltages (see Table 2.1).

We assume that when a processor is idle a low-
est voltage is supplied. For sake of simplicity and
without any loss of generality, we assume that all the
processing elements are fully connected through net-
work resource. That is, every processor has a direct
link to any other processor. The studied network is
considered to be nonblocking; that is, the communi-
cation of two processors does not block the connec-
tion of any other two processors in the network [8].
The inter-processor communications are assumed to
perform with the same speed on all links without con-
tentions. It is also assumed that a message can be
transmitted from one processor to another while a
task is executed on the recipient processor which is
possible in many systems. Finally, communications
between tasks executed onto the same processor are
neglected. This computational model corresponds to
the classical delay model [9].

2.2 Application model

Often, parallel programs are represented by a di-
rected acyclic graph (DAG). A DAG, G = (T, E), con-
sists of a set T of n nodes corresponding to the tasks
t; of the parallel program and a set E of e edges. A
DAG is also called a task graph or macro-dataflow
graph. In general, the nodes represent tasks parti-
tioned from an application; each edge (t;,t;) € E
represents precedence constraints such that task ¢;
cannot start until ¢; finishes its execution. The edge
(tj;t;) € E between tasks t; and ¢; also represents
inter-task communication. It means that, the output

Table 1. Voltage-Relative Speed Pairs [7, 10]

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
'Voltage[Relative|VoltageRelative|VoltageRelative|Voltage|Relative[VoltageRelative|Voltage[Relative
Levell Vv, |Speed| Vv, |Speed| V. |Speed| V, |Speed| V. |Speed| V. | Speed

(%) (%) (%) (%) (%) (%)
0 | 150 | 100 | 220 | 100 | 1.50 | 100 | 1.75 | 100 | 1.20 | 100 | 1.35 | 100
1 | 1.20 80 1.90 85 1.40 90 1.40 80 1.15 90 1.25 | 857
2 | 0.90 50 1.60 65 1.30 80 1.20 60 1.10 80 1.20 | 71.5
3 1.30 50 1.20 70 0.90 40 1.05 70 1.10 | 57.1
4 1.00 35 1.10 60 1.00 60 09 | 322
5 1.00 50 0.90 50
6 0.90 40

of task t; has to be transmitted to task ¢; in order for
task ¢; start its execution. A task with no predeces-
sors is called an entry task, te¢,, Whereas an exit
task, t..;, 1S one that does not have any successors.
Among the predecessors of a task t¢;, the predeces-
sor which completes the communication at the latest
time is called the most influential parent (MIP) of the
task denoted as MIP(¢;). The longest path of a graph
is called the critical path (CP).

To every task ¢;, there is an associated value p;;
representing the computation cost of the task ¢; on a
processor m; at a maximum speed and voltage (i.e.,
it corresponds to the Level 0 in Table 2.1), and its av-
erage computation cost is denoted as p;. The relative
execution time p/ . at Level x greater than Level 0 is
given by the ratio (Eq.)

pij
RelativeSpeed

P = (1)

The weight on any edge stands for the communi-
cation requirement among the connected tasks. Thus,
to every edge (t;,t;) € E there is an associated value
¢;; representing the time needed to transfer data from
t; to t;. However, a communication cost is only re-
quired when two tasks are assigned to different pro-
cessors, as stated early. In other words, the communi-
cation cost when tasks are assigned to the same pro-
cessor can be neglected.

The Earliest Start Time (EST) of, and the Earliest
Finish Time (EFT) of, a task ¢; on a processor m
defined as (Eq. 2 and 3, respectively):

jare

0 ift; = tentry
EFT(MIP(t;),mg) + eprrp(s,).i
otherwise

EST(t;, mJ) =
(@)

/
BFT(t;;mj) = BST(t;,mj) + p;,

3)

where my, is the processor on which MIP(t;) is
scheduled.

Note that the Actual Start Time and Actual Fin-
ish Time of a task ¢, on a processor m;, denoted as
AST(t;,m;) and AFT(t;,m;) can be different from
its earliest start and finish times, EST(t;,m;) and
EFT(t;,m;), if the actual finish time of another
task scheduled on the same processor is later than

In the case of adopting task insertion the task
can be scheduled in the idle time slot between two
consecutive tasks already assigned to the processor
as long as no violation of precedence constraints is
made. This insertion scheme would contribute in
particular to increasing processor utilization for a
communication intensive task graph with fine-grain
tasks [6].

A simple task graph is shown in Figure 1 with
its details in Tables 2 and 3. The values presented
in Table 3 are computed using two frequently used
task prioritization methods, ¢-level (top level) and b-
level (bottom level). Note that, both computation
and communication costs are averaged over all nodes
and links. The t-level of a task ¢; is defined as the
summation of the computation and communication
costs along the longest path of the node from the
tentry task in the task graph to ¢; (excluding ¢;). The
t — level(t ;) is computed recursively by traversing the
DAG downward starting from the entry task ¢, 4.y

In contrast, the b-level of a task ¢; is computed
by adding the computation and communication costs
along the longest path of the task from the exit task
tezit 1N the task graph (including the task ¢;). The b-
level is used in this study. The b—level(t;) is computed
recursively by traversing the DAG upward starting
from the exit task ¢.,;;.
The communication to computation ratio (CCR) is

Figure 1. A simple precedence task
graph

Table 2. Computation cost with maxi-
mum voltage

task mq mq mo P;
0 11 13 9 11
1 10 15 11 12
2 9 12 14 12
3 12 16 10 12
4 15 11 19 15
5 13 9 5 9
6 11 15 13 12
7 11 15 10 12

a measure that indicates wether a task graph is com-
munication intensive, computation intensive or mod-
erate. For a given task graph, it is computed by the
average communication cost divided by the average
computation cost on a target system.

2.3 Energy model

The energy model used in this paper is derived
from the power consumption model in complemen-
tary metal-oxide semiconductor (CMOS) logic cir-
cuits as defined in [7]. The power consumption of
a CMOS-based microprocessor is defined to be the
summation of capacitive, short-circuit and leakage
power (static power dissipation).

The capacitive power (P:) (dynamic power dis-
sipation) is the most significant factor of the power
consumption. It is directly related to frequency and
supply voltage, and it is defined as:

Pe=ACy V2,)

Table 3. Task priorities

task b-level t-level
0 101.33 0.00
1 66.67 22.00
2 63.33 28.00
3 73.00 25.00
4 79.33 22.00
5 41.67 56.33
6 37.33 64.00
7 12.00 89.33

where A is the number of switches per clock cy-
cle, C, ¢ is the total capacitance load, v is the supply
voltage, and f is the operating frequency [11, 12].
The relationship between circuit delay (7,;) and the
supply voltage is approximated by (Eq. 5):

C’er

T; X —mm———,
47V V)

&)

where C; is the load capacitance, V,;, is the
threshold voltage, and « is the velocity saturation in-
dex which varies between one and two (a=2). Be-
cause the clock frequency is proportional to the in-
verse of the circuit delay, the reduction of the supply
voltage results in reduction of the clock frequency. It
would be not beneficial to reduce the CPU frequency
without also reducing the supply voltage, because in
this case the energy per operation would be constant.

Equation 4 clearly indicates that the supply volt-
age is the dominant factor; therefore, its reduction
would be most influential to lower power consump-
tion. The energy consumption of the execution of any
application (i.e., represented by a DAG) used in this
work is defined as

n n
2 2
Ee=Y_ ACVifpf =Y KV, (6)
i=1

=1

where V; is the supply voltage of the processor on
which task n; is executed, and p;.“ is the computation
cost of task n; (the amount of time taken for n;’s ex-
ecution) on the scheduled processor.

2.4 Scheduling model

In this work the scheduling model is defined as
follows. The scheduling problem is the process of
allocating a set N of n tasks to a set M of m proces-
sors (without violating precedence constraints) aim-
ing to minimize makespan with energy consump-
tion as low as possible. The makespan is defined as
Cmaz = maz{AFT(ng;;)} after the scheduling of n

tasks in a task graph G is completed. We do not con-
sider deadlines of tasks as in real-time systems. Fur-
thermore, tasks are not allowed to be preempted.

3 Best-effort and Random Lo-
cal Search for Energy Opti-
mization

As noted, the problem of scheduling precedence-
constrained task graphs with minimum makespan
and energy is a trade-off of schedule length and en-
ergy consumption. The reduction in energy con-
sumption is often made by lowering supply volt-
age and this result in increasing the tasks execution,
hence the schedule length. These two objectives are
conflicting [7]. Different solutions produce trade-offs
between the two objectives, which means there is no
single optimum solution. In this case, the energy-
aware task scheduling problem is modeled as a bi-
criteria optimization problem and our objective be-
comes finding Pareto optimal schedules (i.e., non-
dominated schedules), such that no schedule can be
better and use less energy. A common approach
to bicriteria problems is to fix one of the parame-
ters. This approach corresponds to the e-constrained
method [13]. In this paper, we fix the schedule length
and then we optimize the energy consumption on the
scalable computing system. We consider the follow-
ing scenario and the corresponding objective: Reduce
energy consumption without performance degrada-
tion. That is, assume we know the makespan of a par-
allel application that minimizes the execution time
in the scalable computing system. Determine a new
schedule that tries to minimize the energy consump-
tion on the computing system assuming no allowable
increase in the makespan.

For the first step of the proposed approach, we
look for solutions with optimal or near-optimal
makespan. We consider a list scheduling heuristic
as a best-effort algorithm. List scheduling heuristic
is a two phase scheduling algorithm that maintain a
list of all tasks of a given graph according to their
priorities [14]. In the first phase of the algorithm a
ready task is selected from the list based on its pri-
ority. The task with highest priority is selected. This
process corresponds to the task prioritizing or task
selection phase. Then, a suitable processor that min-
imizes a predefined cost function is selected (i.e., the
processor selection phase). The best-effort algorithm
we use is the task list scheduling heuristic proposed
by Topcuoglu ef al. in [6], Heterogeneous Earliest

Finish Time (HEFT). We used HEFT because it is
simple, well-known and was shown to be competi-
tive in [6]. An extension to parallel task scheduling
on cluster-based computing architectures was done
in [14]. The pseudo-code of HEFT is presented in
Algorithm 1.

Let us remark that HEFT uses the maximum volt-
age to obtain the makespan. Once HEFT computes
the schedule for the application, we apply a ran-
dom local search to reduce the energy consumption.
The aim is not only to improve the quality of the
makespan, but also to reduce energy.

Local search was one of the early techniques for
combinatorial optimization [15]. The principle is to
refine a given initial solution point in the solution
space by searching through a neighborhood of the
solution point. We use a simple random search in
which the local search direction is randomly selected.
If the initial solution point is improved, it moves to
the refined solution point. Otherwise, another search
direction is randomly selected. A simple neighbor-
hood point of a schedule in the solution space is an-
other schedule which is obtained by transferring a
task from a processor to another processor. In our
solution, we also define a neighborhood by changing
a voltage and speed level to another operating point
(i.e. level) of the processor. That is, the algorithm can
modify only one parameter (i.e., to move one task to
another location or to change voltage and speed to
another operating point) at a time, or both parame-
ters simultaneously. In both cases we define a new
neighborhood.

The constant MAXSTEPS in Algorithm 2 is de-
fined to limit the number of steps so that only
MAXSTEPS tasks are examined. At each iteration
of the random local search we compute a new sched-

Algorithm 1 Pseudo-code for HEFT.
1: Calculate the priority of each task according to
the b-level
2: Sort the tasks in a scheduling list by descending
order of tasks priorities
3: while there are unscheduled tasks in the list do
4: Remove the first task, n;, from the list for

scheduling
5: for each processor m; in the processor set do
6: Compute EFT(t;, m;) value using the
insertion-based scheduling policy
end for
8: Assign ¢; on the processor m; that minimizes
the EFT of task ¢;

9: end while

Algorithm 2 Pseudo-code for random local search
and voltage scale.

1: searchstep =0

2: while searchstep < MAXSTEPS do

3: Pick a task ¢; randomly

4: Pick a processor m; randomly

5 Pick a voltage v;, from the corresponding set
of voltage of m; randomly

6: Assign ¢; on the processor m; with the oper-
ating voltage v, that minimizes both Energy
and EFT of task ¢; or minimizes Energy with-
out increasing EFT

7: end while

ule. Step 6 indicates that a new solution is accepted
if the movements improve the Energy and makespan
or only the Energy consumption without any perfor-
mance degradation. In other case the movements are
not allowed and task n; and voltage v, are moved
back to their original processor and operating point.

4 Performance Evaluation and
Experiments

Simulation studies have been used to compare
the energy saving capability and the performance of
the proposed approach with the previously proposed
HEFT. Before to present simulation results, we il-
lustrate with an example the qualitative schedules in
terms of makespan and Energy that the proposed ap-
proach could generate.

4.1 Performance evaluation

Figure 2 shows the schedules generated by HEFT
and the proposed approach (HEFT + random local
search and voltage scaling). The schedules were
obtained taking into account three processors under
three different pairs (i.e. voltage set and relative
speed). Processor 1 (m() operates under Pair 4, pro-
cessor 2 (mq) uses Pair 3 and processor 3 (my) uti-
lizes under Pair 2 as described in Table 2.1. In the
left of Figure 2 the schedule generated by HEFT us-
ing maximum voltage (i.e., Level 0) is depicted. The
schedule length is equal than 89 units of time and
this schedule is obtained using 380 units of Energy.
In the right shows the schedule computed by the pro-
posed approach using as input the schedule generated
by HEFT. The quality of the solution is improved by
16% while saving 28% of Energy. The makespan is
equal to 74 units of time and 272 units of Energy are

used to generate such as schedule.
4.2 Simulation results

In this section, we present the comparative eval-
uation of the proposed approach and HEFT by sim-
ulations. For this purpose, we consider some struc-
tured applications as the workload for testing the
algorithms. The applications represent some real-
world applications. The four real-world applica-
tions are a subset of tasks of the Laser Interferom-
eter Gravitational Wave Observatory (LIGO) appli-
cation [16, 17], a molecular dynamics code (MD-
Code) application [6], the sparse matrix solver and
fpppp applications from the Standard Task Graph Set
(STG) [18]. Table 4 describes the main characteris-
tics for these applications. The computational costs
of the tasks in each application graph were generated
as described in [6]. We fixed the parameter g to 1.
Parameter g is basically the heterogeneity factor for
processor speeds. A high percentage value (i.e., a
percentage of 1) causes a significant difference in a
task’s computation cost among the processors. Addi-
tionally, for each graph we have varied the communi-
cation to computation cost ratio (CCR). It is the ra-
tio of the average communication cost to the average
computation costs. A very low CCR means that the
application is considered as a computation-intensive.
We have generated five CCRs (0.1, 0.5, 1, 2, 5) for
each graph. The execution of the applications is per-
formed on 8, 16 and 32 processors. We compare the
algorithms in terms of the schedule length and En-

ergy.

Table 4. Employed Benchmark and Their
Main Characteristics

Application # of Tasks # of Edges
fpppp 334 1196
Sparse matrix 96 128
LIGO 76 131
MDCode 41 70

Figure 3 depicts the results of the simulations with
respect to the five CCR values. We present only av-
erage results. The results indicate that the proposed
approach outperforms HEFT in terms of Energy. Our
algorithm utilizes less Energy than HEFT without de-
grading performance. The provided approach have
generated schedules with makespan smaller than 3%
on average than the schedules computed by HEFT.
As in previous studies, HEFT has been proven to
perform very competitively [6] and it has been fre-

t2
as |-
s

sa [~

63 —

72 |-

oo L ———

Figure 2. In left HEFT without DVSF (Makespan = 89, Energy = 380). In the right
HEFT + random local search and voltage scaling (Makespan = 74, Energy = 272)

quently extended as for example in [14]; It implies
that the average makespan of the proposed approach
with even three percent margin is convincing.

In terms of Energy, our algorithm can achieve
up to 16% energy saving on average in the experi-
ments. From Figure 3 we can observe that in most of
cases the energy saved increases as the CCR values
increase. In some cases our approach can produce
schedules with energy less than 30% than the sched-
ules computed by HEFT, which is the case for fpppp
and sparse applications and for a CCR equal to five
(i.e. in this case the application is communication-
intensive).

5 Conclusion and Future Work

We have presented a best-effort scheduling algo-
rithm with random local search and voltage scaling to
minimize energy consumption in scalable computing
systems. We investigated the problem of minimiz-
ing energy for precedence task graph execution. We
modeled the problem as a constrained optimization
problem. The main idea was to look for schedules
with minimum execution time (best-effort), hence the
makespan was fixed as a constraint for energy op-
timization. A random local search combined with
voltage scaling was developed for energy optimiza-
tion.

Although the results may be controversial, values
observed in several applications have this behavior.
Differences with other models suggest take into ac-
count infrastructure features and propose more ex-
perimental testbeds. Precisely, future work includes
to investigate the proposed approach on applications
with arbitrary structure and large number of tasks.

On the other hand, it exists the possibility to study
how implement the algorithm in real time monitors
and in structure management systems (using auto-
matic tools), to establish efficient mechanisms to
minimize energy consumption.

Acknowledgment

This work is supported by the National Research
Fund (FNR) of Luxembourg through project Green-
IT no. C09/1S/05 and the Luxembourg research grant
scheme (AFR) through the grant no. PDR-08-010.

References

[1] Chen, J. J., and Kuo, T. W. Multiprocessor
Energy-Efficient Scheduling for Real-Time Tasks
with Different Power Characteristics, Proc of Int
Conf on Parallel Processing, Norway, 2005.

[2] Ge, R., Feng, X. and Cameron, K. W. Perfor-
mance constrained Distributed DVS Scheduling
for Scientific Applications on Power-aware Clus-
ters, Proc of the ACM/IEEE Conf on Supercom-
puting, USA, 2005.

[3] The Green500 List Site http://www.green500.org

[4] Kim, K. H., Buyya, R. and Kim, J. Power
Aware Scheduling of Bag-of-Tasks Applications
with Deadline Constraints on DVS-enabled Clus-
ters, Proc of the IEEE Int Symp on Cluster Com-
puting and the Grid, CCGRID’07, Brazil, 2007.

[5] Murugesan, S., Harnessing Green IT: Principles
and Practices, IT Professional, Vol. 10, Issue 1,

fpppp334 application fpppp334 application

1100 18000

0.1 05 1 2 5

CCR

o
8
R

13500

0.1 05 1 2 5
CCR

@
8
g
P
8
g

Avg makespan (sec.)

o
~
Bl

Avg Energy (milli-Joules)
S
&
S

o

HEFT W HEFT+rlsvs HEFT W HEFT+lsvs
LIGOT76 application LIGO76 application
800 5000
- g
g 600 5 3750
2 3
H =
& 400 € 2500
g >
: :
2w I I 9 1250
<
o —= W = = = 0
0.1 05 1 2 5 0.1 05 1 2 5
CCR CCR
HEFT W HEFT+rlsvs HEFT W HEFT+rlsvs

sparse application
500 5000

) I I I I |
0

CCR

sparse application

3750

2500
1250
1 2 5
CCR

Avg makespan (sec.)
Avg Energy (milli-Joules)

0.1 05

HEFT W HEFT+lsvs HEFT W HEFT+rlsvs
ics code ics code
800 3000
S 600 £ 0
g 3
b 2
< =
g a0 €10
3 8
E 2
2o “§ 750
I E
| ————— =—=—==—= 0
o1 05 1 2 5 01 05 1 2 5
CCR CCR
HEFT Il HEFT+rlsvs HEFT Il HEFT+rlsvs

Figure 3. Makespan and Energy for all the applications with respect to CCR values

Pages 24-33. IEEE Educational Activities Depart-
ment Piscataway, NJ, USA, 2008.

[6] Topcuoglu H., Hariri S. and Wu M. Y,
Performance-effective and Low Complexity Task
Scheduling for Heterogeneous Computing, /IEEE
Trans. Parallel Distrib. Syst., Vol. 13, Issue 3,
Pages 260-274, 2002.

[7] Lee, Y. C. and Zomaya A. Y. Minimizing Energy
Consumption for Precedence-Constrained Appli-
cations Using Dynamic Voltage Scaling, Proceed-
ings of the IEEE/ACM Int Symp on Cluster Com-
puting and the Grid, CCGRID’09, China, 2009.

[8] Sinnen O. Task Scheduling for Parallel Systems.
Hoboken, NJ: Wiley-Interscience, 2007.

[9] Papadimitriou C. H., and Yannakakis M. To-
wards and architecture independent analysis of
parallel algorithms, SIAM Journal on Computing,
vol. 19, no. 2, pp. 322-328, April 1990.

[10] Rizvandi N.B., TaheriJ., Zomaya A. Y. and Lee
Y. C. Linear Combinations of DVFS-Enabled Pro-
cessor Frequencies to Modify the Energy-Aware
Scheduling Algorithms, Proc of the IEEE/ACM
Int Symp on Cluster Computing and the Grid, CC-
Grid’ 10, Pages 388-397, Melbourne, VIC, Aus-
tralia, 2010

[11] Burd T. D., Pering T. A., Stratakos A. J. and
Brodersen R. W. A Dynamic Voltage Scaled Mi-
croprocessor System, I[EEE J. Solid-State Cir-
cuits, Vol. 35, No. 11, Pages 1571-1580, 2000.

[12] Brodersen R. W., Chandrakasan A. P. and
Sheng S. Low-power CMOS Digital Design,
IEEE J. Solid-State Circuits, Vol. 27, No. 4, Pages
473484, 1992.

[13] Chankong V. and Haimes Y. Multiobjective De-
cision Making Theory and Methodology, Elsevier
Science, New York, USA, 1983.

[14] Suter, F., Desprez, F. and Casanova, H. From
Heterogeneous Task Scheduling to Heterogeneous
Mixed Parallel Scheduling, LNCS, Special Edi-
tion for Europar 2004. Pages 230-237. Springer
Ed. Germany, 2004.

[15] Gu J. Local Search for Satisfiability (SAT)
Problem, IEEE Trans. Systems, Man, and Cyber-
netics, Vol. 23, No. 4, Pages 1108-1129, 1993.

[16] Barish B. C. and Weiss R. LIGO and the Detec-
tion of Gravitational Waves, Physics Today, Vol.
52, Pages 44-50, 1999.

[17] Brown D. A., Brady P. R., Dietz A., Cao
J., Johnson B. and McNabb J. A case study on
the use of workflow technologies for scientific
analysis: Gravitational Wave Data Analysis, In
Taylor, 1., D. Gannon, and M. Shields (eds.),
Workflows for e-Science Scientific Workflows for
Grids, Springer, Pages 39-59, 2007.

[18] Tobita T. and Kasahara H. A standard task
graph set for fair evaluation of multiprocessor
scheduling algorithms, J Scheduling, Vol. 5, Is-
sue 5, Pages 379-394, 2002.

