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Abstract—Testing is an indispensable part of software de-
velopment efforts. It helps to improve the quality of software
systems by finding bugs and errors during development and
deployment. Huge amount of resources are spent on testing
efforts. However, to what extent are they used in practice?
In this study, we investigate the adoption of testing in open
source projects. We study more than 20,000 non-trivial software
projects and explore the correlation of test cases with various
project development characteristics including: project size,
development team size, number of bugs, number of bug
reporters, and the programming languages of these projects.
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I. INTRODUCTION

Software testing is an important part of software devel-
opment life-cycle. Despite availability of various tools to
ensure quality of software, most of the software products
suffer from insufficient testing. The impact of inadequate
testing are increased failures which leads to poor quality
software, higher software development costs and delays the
time to market the product. A study conducted by the
National Institute of Standards and Technology reported that
inadequate software testing costs the U.S economy $59.5 bil-
lions annually, i.e., about 0.6% of its GDP [33]. The number
of bugs overwhelms the number of developers working in
the project. A triager from Mozilla project admitted that
the project receives almost 300 bugs everyday that need
triaging [1]. These figures reinforces the fact that software
testing is paramount for developing bug free software.

Software testing is used to verify that the program or
system under test produces the desired output based on
the set of inputs and execution environment, which are
specified in the requirements document. As the complexity
of software increases, detecting all software bugs is practi-
cally impossible, thus, making complete testing infeasible.
In the past, several studies have explored different software
testing strategies and techniques to address these challenges
and propose methods to perform exhaustive testing of soft-
ware [2], [6], [11], [12].

Although a large body of research about software testing
has been built, software programs continue to suffer from
numerous defects. Consequently, is software testing really
popular in development projects? Does it noticeably impact
the quality of software code? What kind of projects are
more likely to include tests? These are some of the im-
portant questions which can increase our understanding of

the unexplored areas of software testing and its impact on
software evolution. Our goal in this paper is indeed to fill a
research gap in the importance of software testing through
a large-scale empirical evaluation.

In this study, we analyse a large number of open source
projects from the GitHub hosting site. GitHub platform holds
millions of software projects including important projects
such as Linux and Ruby on Rails. GitHub provides various
features which makes it an important platform for storing
open source projects. GitHub also provides an in-house issue
tracking system where users record issues and classify them
as bugs, feature requests, and other self-defined categories.
We investigate in this study different characteristics of soft-
ware development that are related to testing: e.g., numbers of
developers in projects that include test cases. We also study
how the presence/absence of test cases can affect the quality
of software in terms of the number of reported bugs. Finally,
we investigate the programming languages in relation to the
projects with test cases.

The contributions of this paper are as follows:

1) We are the first to perform a large-scale empirical

study on the adoption of software testing in practice.
Our study involves the analysis of more than 20,000
software projects of sizes ranging from 500 to 17
millions LOC.

2) We examine the relationships between the number of
test cases and various project characteristics. These
include: the size of the projects, the number of the de-
velopers in the projects, the number of bugs, the number
of bug reporters, and the programming languages that
the projects are written in.

3) We employ a number of statistical tests to confirm if the
findings of our experiments are statistically significant.

This empirical study is an extension of our previous
preliminary work (described in a 4-page ERA (early research
achievement) track paper) [19]. For this project, we curate
the previously collected data to filter toy projects (i.e.
projects of small sizes). Further, we examine three more
research questions in addition to the two questions discussed
in the previous empirical study.

The structure of this paper is as follows. In Section II, we
describe preliminary materials about test cases and GitHub.
Our empirical study methodology is presented in Section III.
Next, we present the result of our experiments that answer
a number of research questions in Section IV. We highlight
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several threats to validity in Section V. Related work is
described in Section VI. Section VII concludes and describes
future work.

II. PRELIMINARIES

In this section, we mainly discuss the importance of
testing in software development and briefly describe GitHub,
the platform where we have collected the dataset of projects
for our study.

A. Software Testing and Test Cases

Software development produces programs that are often
buggy or incomplete with respect to some features. Software
complexity, (and therefore that of bugs) grows to the limits
of our ability to manage that complexity [3]. To verify that
software is compliant with its requirements, developers often
resort to software testing. As developers go on addressing
previously discovered bugs while simultaneously adding new
features, they produce complex software containing subtler
bugs that are more challenging to detect and to handle.
This in turn makes thorough testing tedious but necessary.
Actually, studies have shown that software testing accounts
for 40-70% of the time and cost of the complete software
development process [25]. Unfortunately, although software
testing is a challenging, time consuming and expensive
exercise, it has become a common part of the development
process, as releasing software with inadequate testing may
lead to even higher costs [33].

Testing is an activity which is managed through the
building of a set of test cases. A test case consists of a set
of inputs, preconditions, as well as the associated expected
results to be compared with the outputs of the program under
testing. Together with test scripts, test cases are constructed
to check whether a given software performs in conformance
with its requirements. Test cases can further provide the
following information such as bug count, help managers in
decision making, examine quality of product, how to get
these bugs fixed etc. Tests are useful when they produce
significant results, provide insight into a product or applica-
tion, easier to evaluate and reveal valuable information.

Exhaustive testing requires, for each functional require-
ment, both a positive test, which evaluates that an applica-
tion produces the expected result, and a negative test that
evaluates the outcome when the application is run under
conditions outside what is defined. Such tests are included
in test suites which also contain detailed descriptions of test
cases and are progressively constructed by project teams. It
is to be noted however that the presence of a large number of
test cases does not guarantee that a software program is free
from defects. Developers therefore regularly seek new ways
to test their code more effectively. To this end, they often
rely on various approaches, such as test case prioritization
and test case reduction techniques that have been proposed
to reduce time and cost of software testing [4], [16], [18],
[20], [21]. In this study we focus on examining how the

presence/absence of test cases in a software project correlate
with various characteristics of software development.

B. GitHub

GitHub is a web-based project hosting platform which
was launched in 2008 and has become one of the premier
open source development sites hosting more than 3,000,000
projects. GitHub implements the concept of social coding
to create a developer-friendly environment where develop-
ers are enabled to network, collaborate and promote their
projects.

GitHub, an open source coding repository site allows de-
velopers to create and manage projects. It provides features
such as followers, feeds and network graph for developers
to monitor their repository. GitHub provides an open source
wiki engine gollum which is backed by Git and provides
plethora of text formats.

Most of GitHub project repositories are publicly accessi-
ble and can be retrieved through an extensive set of REST
APIs [9]. GitHub hosts diverse types of projects from various
application domains, from gaming software, web applets, to
operating systems. The code in the projects are also written
in a myriad of programming languages by development
teams ranging from 1 to several thousand developers. This
variety of project instances makes GitHub an appealing
source to collect data for empirical studies.

Although our study is on the test cases in software
projects, we also collect information about other develop-
ment artifacts in order to estimate the correlations between
test cases and a number of software characteristics. We have
thus collected huge amounts of data from GitHub through
its API and processed raw program code data to extract
information such as numbers of lines of code and test cases,
which are not directly available through the GitHub API.

III. METHODOLOGY

For our empirical study, we analyse projects downloaded
using the GitHub API. GitHub does not follow a distinct
ordering scheme to download the projects. Thus, the results
vary every time with a new request. To ensure that most of
the projects are non toy projects in our dataset, we filtered
the data and selected the projects which have more than
500 lines of code (LOC). We have in total 20,817 projects
of sizes 500 to 17 millions LOC. These include well-known
projects such as Ruby on Rails and jQuery.

A. Collecting the dataset

a) Lines of code: GitHub uses the git software configura-
tion management system (SCM) to store software revisions.
We cloned the git repositories of the projects and used the
SLOCCount! utility to count the lines of code of the latest
revisions of these projects. Figure 1 shows the lines of code
of different projects. We observe that 40% of our projects

Uhttp://dwheeler.com/sloccount
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have LOC between 1,000 and 5,000. Around 27% of the
projects lie between 500 to 1,000 LOC , while more than
23% of the projects have more than 10,000 lines of code.
Also, over 15,000 projects (total 20,817 projects) have more
than 1,000 LOC.
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Figure 1. Distribution of Projects in Terms of Total Lines of Code

b) Test Cases: Test cases are an important part of a project
as they help developers confirm whether their code meets
the requirement laid down for the software. Collection of
test cases for large number of projects is an arduous task
as different languages follow different naming conventions.
We perform a lightweight identification of test cases that can
scale to thousands of projects. We notice that most test cases
contain the word “test” as part of their file names. Thus we
select files whose name contains the word “test”. For each
project, we then count the number of such files which are
treated as the number of test cases. We then investigate the
relationships between the number of test cases and various
project characteristics.

c) Issues & Bugs: GitHub has its own issue tracking
system which provides issue trackers for each hosted project
where reporters can file issue tickets, and label them with
different tags. We collect all the issues (open and close)
reported through the in-house tracker. We further find infor-
mation such as reporter’s identity and different labels used
to report the issues. In our dataset, issues are labelled as
enhancement, bug, feature requests, error, fixed etc. Further,
we find the issues labelled as bugs, errors or defects because
they most likely represent the actual bugs in the project. We
also calculate the number of bug reporters in a project, i.e.,
people who reported issues for the project.

d) Developer contributions: Git records store contributors
name and email for each revision of the repository. There are
two types of contributors: committers and revision authors.
Committers have access to main repository and commit the
code contributions from revision authors. These revision
authors are the end contributors of the code. We calculate
the number of developers (i.e., revision authors) for each
project and examine the impact of the number of developers
on the presence of test cases.

B. Research questions

We examine five research questions which pertains to the
importance of software testing in software development. We
collect several software metrics to investigate correlations
between them, which can contribute towards improvement of
software testing process and overall software development.
We are thus interested in analyzing the following research
questions:

RQ1: How many projects have test cases? Testing is a
crucial activity in the life-cycle of software development
process. Testing is used to detect the conditions under which
a program may fail and provides directions to rectify that
problem. Investigating test cases in a project is important as
we wish to know whether projects are properly tested or not.
Although presence of test cases does not ensure that project
is bug free, but it can help developers analyse the defects
and provide motivation to remove those bugs.

In this research question, we examine the prevalence of
test cases in open source projects. We analyse the projects
containing test cases to investigate whether test cases com-
mensurate with the lines of code of the project.

RQ2: Does the number of developers affect the number
of test cases present in a project? Developers are the people
who are main contributors of the project. They analyse
requirements, prepare documents, write code and finally
test the code. Usually, developers write unit test cases to
test their individual modules or functions as they have
better knowledge about the product or application they are
developing. They are the best people to write white box tests
as they can develop multiple test cases to extensively test
the application. Our dataset consist of both small and big
projects where numbers of developers vary from as small as
1 to several thousands collectively working on the project.

Thus, we investigate the correlation between the number
of developers working on a project and the number of test
cases available for the project.

RQ3: Does the presence of test cases correlate with the
number of bugs? A bug manifests itself as an error, failure
or fault which can seriously affect the functionality of a
program. The main objective of running test cases is to
detect bugs in the application and find ways to fix it. Test
cases can help us to find as many bugs as possible, thus,
improving the efficacy of testing. Test cases can be created
by analysing the bugs which can be further used to create
regression test suite.

In this question, we investigate the correlation between
the bug count and the number of test cases. We wish to
examine whether presence of test cases has an effect on the
bug count.

RQ4: Does the presence of test cases encourage bug
reporting? Bug reports are the documents which contain
details about the bugs in the program. Bug reports increases
the chances of removing bugs from the software. Bug reports
are also called as fault reports, problem reports, change
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requests etc. When a developer or tester runs test cases and
find bugs, they can log this information in a bug report. Bug
reports and test results can be used to analyse the quality of
software.

In this research question, we examine, indirectly, whether
the presence of test cases persuades users to run these
test cases and report bugs. To this end, we determine the
correlation between number of test cases and number of bug
reporters, i.e., people who report bugs.

RQ5: Which programming languages appear to have
more test cases? Our dataset consists of 20,817 projects
written in different languages. Some people prefer writing
code using their favourite language. Although we randomly
selected our projects, we still want to determine if people
prefer writing test cases in some particular programming
language. Some of the programming languages provide unit
test framework which supports writing and running of test
cases. So, we investigate whether number of test cases
depends upon the popularity of programming languages.

C. Statistical measurements

To the best of our knowledge, this is the first study
which explores relationship of test cases with different
characteristics of the project on such a large scale. We
use common metrics in statistical analysis to confirm the
existence of a correlation among the data and for examining
the statistical significance of our figures.

a) The Mann-Whitney-Wilcoxon (MWW) test: The MWW
test is a non-parametric statistical hypothesis test to assess
the statistical significance of the difference between the
distributions in two datasets [22]. As this test does not
assume any specific distribution, we use it for our project as
we collected data from different open source projects which
might not be normally distributed. Given two independent
samples x and y, of size nl and n2 respectively, the MWW
test allows us to evaluate whether these distributions are
identical. The test first combines and arranges the data points
of the two samples in ascending order of their values. Data
points with identical values are assigned a rank equal to the
average position of those scores in the ordered sequence.
Second, the algorithm sums the ranks of data points in the
first sample (x). Let us denote this sum as T. The formula
for computing the Mann-Whitney U for x is :

nl(nl —+ 1)
2

The U value calculated above is used to determine the
p-value. Given a significance level o = 0.05, if p-value <
«, then the test rejects the null hypothesis. This implies that
at the significance level of o = 0.05, the two datasets have
different distributions.

b) Spearman’s rho: Spearman’s rtho (p), also known as
Spearman’s rank correlation coefficient, is a non-parametric
measure used to assess statistical dependence between two

U:n1n2—|— - T

variables X and Y using a monotonic function. This measure
can be used when data is not normally distributed. Thus,
making it a good fit for the datasets that we investigate in
this study. The values of p are limited to the interval [-1;
1]. A perfect Spearman correlation of -1 or +1 occurs when
each variable is a perfect monotone function of the other.
The closer to 0 p is, the more independent the variables are.
Equation 2 states the formula for finding this coefficient.

_ iz (@ = T)(y: — 7)
Vs (@i =22 (v - 9)?
In this equation, x; and y; represent the ranks of elements

Xi and Yi in X and Y respectively, while = and ¥ represent
the averages of the ranks.

p

IV. EMPIRICAL EVALUATION

In this section, we examine the research questions and
report the results of our empirical study.

A. RQI: Popularity of Test Cases

To answer this research question, we tabulate the number
of test cases in the projects. Table I shows the distribution
of test cases in the projects. After curation, our dataset
includes 20,817 projects of significant size, out of which
7,982 projects do not contain test cases, which represents
38.34% of the total projects. The remaining 61.65% of the
projects contain one or more test cases. In total, we have
1,875,409 test cases from 12,835 projects in our dataset. We
examine how presence/absence of test cases correlate with
other characteristics of the projects such as lines of code
(LOC).

Table 1
TEST CASES DISTRIBUTION

Projects # of Projects % of Projects
Without Test Cases 7,982 38.34%
With Test Cases 12,835 61.65%

Table II details the prevalence of test cases: 84.87% of
the projects have less than 100 test cases. 10.7% of the
projects have between 100 and 500 test cases, whereas less
than 4.5% of the projects have more than 500 test cases.
Only 17 projects have more than 10,000 test cases.

Table II
PREVALENCE OF TEST CASES
# of Test Cases

# of Projects % of Projects with Test Cases

1-9 6,195 48.26%
10-49 3,769 29.36%
50-99 931 7.25%

100-249 964 7.51%
250-499 410 3.19%
500-999 303 2.36%
1000-4999 219 1.70%
5000-9999 27 0.21%
> 10000 17 0.13%
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We believe that bigger projects have higher test cases due
to large number of functionalities that needs to be tested
to produce a high quality software. So, we examine the
correlation between the number of test cases in a project
to the corresponding number of lines of code.
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Figure 2. Test Cases and Lines of Code

Figure 2 % shows the distribution of project sizes (in terms
of LOC) for projects with and without test cases. We observe
that projects with test cases have an average of 107,096
LOC (median=3549) whereas average of projects without
test cases is 5,605 LOC (median=1353). We compare the
LOC numbers of the set of projects with test cases and that
of those without test cases using Mann-Whitney-Wilcoxon
(MWW) test. Our results show that the difference between
these two sets is statistically significant with p-value < 2.2
e~16 3, Thus, we can conclude that projects with test cases
are bigger in size than the projects without test cases.
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Figure 3. Correlation between Test Cases and Lines of Code

To verify that projects with test cases have higher LOC,

2The line in the middle of the box represents the median. The upper
part of the box represents the upper quartile, while the lower part of the
box represents the lower quartile. The lines on top and below the box are
referred to as whiskers. Data points above and below these whiskers are
regarded as outliers — data points which are significantly different from the
majority of the data points.

3Here, lines of code is the dependent variable and the presence/absence
of test cases is the independent variable. The null hypothesis is: there is
no difference in the size of projects with test cases and those without test
cases. The alternative hypothesis is: projects with test cases have more LOC
than those without test cases. We consider a significance level a=0.05. For
this o value, if the p-value < 0.05, we reject the null hypothesis.

we analyse the correlation between the number of LOC
and the number of test cases. Figure 3 shows the scatter
plot between the number of LOC and the number of test
cases. The graph shows that there is positive correlation
between these two metrics. To confirm this correlation, we
use Spearman’s rho which gave a value of 0.427 with p-
value < 2.2 e !6 4 The result validates that there is a
positive correlation between the number of test cases and
the number of LOC.
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Figure 4. Correlation between Test Cases per LOC and Lines of Code

Although correlation between the number of test cases
and the number of LOC is positive, we wish to examine
the correlation between the number of lines of code and
the number of test cases per LOC. Here, we only consider
projects with test cases and divide the number of test cases
by the corresponding LOC of that project. Figure 4 depicts
the correlation between these two variables. We can observe
that with an increase in the number of LOC, we see a
decrease in the number of tests per LOC. The Spearman’s
tho for the distribution is -0.451 with p-value < 2.2 =16,
which confirms that there is a negative correlation between
the lines of code and the number of test cases per LOC.

Eighty five percent of the projects have less than 100 test
cases. Projects with test cases are bigger in size than projects
without test cases. However, the number of test cases per LOC
decreases with increasing LOC.

B. RQ2: Developers and Test Cases

Developers form an important part of the project as they
contribute by writing/modifying code, developing test cases,
running them and solving bugs logged in bug tracking
system. So, finding a correlation correlation between the
numbers of developers and the numbers of test cases is
important to understand the impact of these developers on
the presence of test cases. Our dataset consists of 20,817
projects which contain a total of 2,916,105 developers who
have contributed to the code bases of the projects. The
projects with test cases have 2,861,031 developers whereas
the projects without test cases have 55,074 developers. Thus,
projects with test cases have a higher numbers of developers.

4Null hypothesis (rho is zero) is rejected
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We can observe from Figure 5 that projects with test cases
have more developers. We used MWW test between the set
of numbers of developers of projects with test cases and
those for projects without test cases which gave p-value <
2.2¢716 5. The results signify that the difference between
these two sets is statistically significant.
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Figure 5. Number of Developers in Projects with/without Test Cases

We wish to examine whether increase in the number of
developers leads to an increase in the number of test cases
in that project. We use scatter plot (Figure 6) to examine
the correlation between the numbers of developers and the
numbers of test cases. We calculated Spearman’s rho to
confirm the correlation between these two variables which
gave a value of 0.207 (p-value < 2.2 e~16). This suggests
that there is a weak positive correlation between the number
of developers and test cases.
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Figure 6. Test Cases and Number of Developers

We further investigate the average number of test cases
contributed by each developer. For each project, we divide
the total number of test cases by the corresponding number
of developers in that project. Figure 7 depicts the correlation
between the numbers of developers and the numbers of test

SHere, number of developers is the dependent variable and the pres-
ence/absence of test cases is the independent variable. The null hypothesis
is: there is no difference in the number of developers of projects with test
cases and those without test cases. The alternative hypothesis is: projects
with test cases have more developers than those without test cases. We
consider a significance level =0.05. For this « value, if the p-value <
0.05, we reject the null hypothesis.

cases per developer. We use Spearman’s rho to find the
correlation between these two variables. The Spearman’s
value is -0.444 with p-value < 2.2 ¢~ 16, Thus, the cor-
relation between the number of developers and the number
of test cases per developer is negative. As only some of the
developers write test cases, we observe a decrease in the
test count per developer with an increase in the number of
developers.
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Figure 7. Correlation between # of Test Cases per Developer and # of
Developers

The number of test cases increases when there are more
developers in a project. However, the number of test cases per
developer decreases for the projects with more developers.

C. RQ3: Test Cases and Bug Counts

In this research question we examine whether the number
of bugs is correlated with the number of test cases present
within a project. First, we identify the issue reports present
in our dataset. GitHub provides an issue tracking system
which lets users file issue tickets, tag them according to the
issue and label them as the state of the issue changes. It
also allows the project development team to either enable or
disable the issue tracking system. Users can tag issues and
categorize them. However, user-supplied tags can create a
problem for developers as there can be typographical errors
while tagging. Since tags are not predetermined by GitHub,
a tag can be reported in different forms. For example, a
bug can be tagged as defect, type:bug, bugfix, etc. Table III
depicts several representations of tags which we count as
bugs for our project.

Table III
TAGS REPRESENTING BUGS

bug bug; T bug; Bug Confirmed; bugs; starter bug; bug fix etc.
defect  defect; Type-Defect; minor defect
error error; Wow error; build error; error page; user error etc.

Since errors can be represented by any combination of
these tags, we use these tags to account for all the bugs.
In total, we have 1,081 projects which contain 24,703 bugs
as represented by the tags mentioned above. These projects



hal-00826812, version 1 - 6 Aug 2013

contain 83,576 test cases written by the project development
teams.

# of Bugs
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Figure 8. Correlation between # of Test Cases and # of Bugs

Our aim is to study and see that with increase in the
number of test cases, bug count increases. Figure 8 shows
a scatter plot to explore the correlation between the number
of bugs and the number of test cases. Here, we can see that
as the number of test cases increases, we see an increase
in the number of bugs. We calculated the Spearman’s
correlation which yields rho value 0.181 (p-value = 1.78
e~ 9), suggesting a weak correlation between the number
of test cases and the number of bugs.

Projects having higher numbers of test cases observe an
increase in the number of bugs, although the correlation is
weak between them.

D. RQA4: Test Cases and Bug Reporters

We wish to know if the presence/absence of test cases
affects bug reporting. We examine the relationship between
the number of test cases and the number of bug reporters.
Bug reporters are the people who report or log bugs related
to a particular application or software. Based on the user
names, we collected the data about people who have reported
issues in the project. As not all the projects contain issues,
we identified 6,230 projects in which users logged issues.
These issues were filed by 274,276 reporters.
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Figure 9. Test Cases and Bug Reporters

We can observe from the Figure 9 that projects with test
cases have higher number of bug reporters (median=5) as

compared to projects without test cases (median=3). We
performed the MWW test and found that the difference
between the set of bug reporters in projects without test
cases and those of projects with test cases is statistically
significant (p-value < 2.2 e~ !6). We can infer that if test
cases are present, it can persuade users to run these test
cases and if they found bugs, they can log them in issue
tracking systems.

Figure 10 shows the scatter plot of the numbers of bug
reporters and the numbers of test cases. We computed
Spearman’s rho for the distribution which yielded the value
0.171 (p-value < 2.2 e~16), suggesting a weak dependence
between the number of test cases and the number of bug
reporters.

# of Bug Reporters

1 100 10000
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Figure 10. Correlation between # of Bug Reporters and # of Test Cases

There is weak correlation between the number of test cases
and the number of bug reporters.

E. RQS5: Test Cases and Programming Languages

With this research question, we attempt to establish
whether projects written in common languages such as C#,
Java, PHP or JavaScript, contain more number of test cases
than other languages. We first compute the number of test
cases present in projects depending on the programming
language that is used. We then select projects developed in
the top ten languages with the highest number of test cases.

Figure 11 shows the number of projects of the corre-
sponding top ten languages in our dataset. Out of 20,817
projects in our dataset, 19,327 projects use one of these top
ten languages. During the analysis, we find out that Java has
3,112 number of projects and also the highest count among
all the projects. Our dataset contains 3,016, 2,902 and 2,536
projects written in ruby, PHP and Python respectively. Perl
has the lowest number of projects among the projects written
in the computed top ten languages. C++ has the highest
number of test cases being 648,773 present in 1,920 projects.
Then, we have projects written in ANSI C, PHP and Java
having respective count of 286,009, 255,553 and 196,703
test cases. Perl has lowest number of test cases, i.e., 7,690
present in 630 projects.
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Figure 11. Count of Projects and Different Languages

Figure 12 shows the distribution of the number of tests of
top-10 languages that are used in the projects of our dataset.
We observe that median values of some of the pairs such as
C# and Ruby, Python and Java, ANSI C and PHP, Objective-
C and Perl are almost comparable to each other. JavaScript
has a median value of 4 test cases, 1 less than the median
value of C# and Ruby.
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Figure 12. Prevalence of Test Cases for Common Languages

As most of the projects have lower number of test cases,
we can observe that median line is gravitating towards the
left, i.e, data is skewed towards the right. The rest of the
projects having higher number of test cases are considered
as outliers as they are small in number and does not have a
significant impact on the box plots ®. Thus, we can observe
a big difference in the mean and median values for all the
languages.

We further analyze the number of test cases per project.
Table IV depicts the mean number of test cases per project
for each language. We observe that C++ has the highest
value, i.e., 337.90, whereas Perl has the lowest value among
all the top ten languages. JavaScript projects has higher
number of test cases per project than Python and Objective-
C projects. Although the numbers of projects written in C++,

Shttps://github.com/isis-project/WebKit having 166488 test cases and
https://github.com/chrispilot2293/CM9 having 44871 test cases

Table IV
DISTRIBUTION OF TEST CASES PER PROJECT

Language # of Projects  # of Test Cases  Test Cases/Project
C++ 1,920 648,773 337.90
ANSI C 2,197 286,009 130.18
PHP 2,902 255,553 88.06
C# 1,042 81,334 78.05
Java 3,112 196,703 63.20
Ruby 3,016 173,864 57.64
JavaScript 819 39,070 47.70
Python 2,536 103,600 40.85
Objective-C 1,153 21,343 18.51
Perl 630 7,690 12.20

ANSI C and PHP are less as compared to the numbers of
projects written in Java and Ruby, they have higher mean
numbers of test cases per project.

Projects written in popular languages, such as C++, ANSI
C, and PHP, have higher mean numbers of test cases per
project.

V. THREATS TO VALIDITY

We now describe some threats to validity that we have
identified in the course of this study.

External validity is related to the generalizability of our
results. Although our dataset consists of over twenty thou-
sand projects, the results may not represent all real world
projects. Also, our study is conducted on GitHub, which is
one of the biggest repository for open source projects. So,
the results may differ for closed source projects. To the best
of our knowledge, GitHub hosts projects from myriad of
areas and we selected the projects randomly.

Threats to internal validity refers to whether an experi-
mental condition makes a difference or not. Data quality is
one of biggest threat here. We have tried to ensure quality
of our dataset by examining that we take the proper count
of number of test cases for all projects. We use heuristics
to detect test files, i.e., we consider the files whose name
contains test. This might not identify all test files whose
name does not have word test and conversely, detect some
files whose name contain the word test but actually are not
test files. In order to scale to a large number of projects, we
need to take these heuristics. We have manually checked and
counted the test cases for some of the projects to validate our
results. For counting bugs we had to take into account all of
the labels that can be marked as bugs such as defects, error,
bugfix etc. Since GitHub does not provide set of labels to be
marked as bugs or defects, users are free to mark labels in
any fashion suitable to them. Different labels were identified
through a painstaking review of projects and characterizing
labels into different categories. Still there is possibility that
we may have wrongly identified some of the labels as bugs
which may not be actual bugs. For multi-language projects,
we consider only the dominant language, i.e., the language
with the highest number of lines of code in a project.
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VI. RELATED WORK

In the following section, we highlight studies on open
source software projects, empirical studies on testing, and
other large scale studies.

A. Studies on Open Source Software Projects

Open source software projects has received enormous
attention from industry as well as the research community in
the last several years. Pham et al. discuss several strategies
to understand the testing culture on social coding sites such
as GitHub. They also present some guidelines which can be
used by developers and managers to influence the testing
behavior in their projects [26]. Dabbish et al. examine open
social software repository namely GitHub, to understand
the value of transparency for large-scale distributed collab-
orations and communities of practice [10]. Crowston et al.
analyse the social structure of Free/Libre and Open Source
Software (FLOSS) by examining the communication pat-
terns used in bug tracking systems [7]. Their results shows
that FLOSS projects cannot be characterised into particular
pattern of communications centralization or decentralization.

Roberts et al. develop a model to understand motivations,
participation, and performance of open source software
developers [28]. They validate their model using data col-
lected from Apache projects. Bird examine the relation-
ship between developers in large open source projects [5].
They use source code repository histories, communication
and coordination data from mailing lists, and bug tracking
databases to understand the relationship between participants
social and development behavior and the social structure
that exists between them. Crowston et al. use coordination
theory to analyse free/libre open source software (FLOSS)
development projects [9]. They also compare these results
with the existing literature on coordination in proprietary
software development and found several similarities and dif-
ferences in the coordination mechanisms used in the project.
Sowe et al. investigate knowledge sharing activities between
the knowledge providers and knowledge seekers using the
Developer and User mailing lists of Free/Open Source
Software (F/OSS) project, namely Debian [29]. Crowston et
al. analyze the structure and coordination practices used by
development teams during bug fixing practices in free/libre
open source software (FLOSS) [8].

Raja et al. use data and text mining to build and validate a
model to analyse the effect of project type, end user activity,
process quality, team size and project popularity on the
defect density of operational open source software (OSS)
projects [27]. Michlmayr et al. perform exploratory inter-
views on open source developers to gain an insight into qual-
ity practices and quality problems particular to free software
projects [24]. Krogh et al. develop an inductive theory of the
open source software (OSS) innovation process to analyse
why new people join existing developer community [35].
Zanetti et al. use data driven approach to get insight into

sustainability of software development by analysing large
number of open source software projects [37].

We perform large scale study on more than twenty thou-
sand open source projects hosted on GitHub.

B. Empirical Study on Testing

There have been a lot of studies that assess various aspect
of testing. We just highlight some of them here. Greiler et
al. conduct a qualitative study of test practices followed by
a community of people working on plug-in based applica-
tions [14]. Rehman et al. discuss several software component
testing issues and classify set of testing techniques used
when a component is integrated with its target system [34].
Memon et al. present their analysis to improve the current
testing techniques and strategies to create new collaborative
development and testing processes where developers can
share tools and information repositories [23].

Zaidman et al. study the co-evolution between production
code and test code on two open source and one industrial
project [36]. Fraser et al. use search-based software testing
for test data generation for open source projects [13]. They
perform case study on 100 Java projects selected from
SourceForge and give directions for future research. Cecato
et al. perform an empirical study to analyse the impact of
automatically generated test cases on accuracy and efficiency
of debugging.

Stamelos et al. conduct an empirical study on open source
projects to understand the implications of structural quality
and the probable benefits of such analysis on software devel-
opment [30]. They perform the experiment to measure the
quality characteristics of 100 applications written for Linux.
Kamei et al. perform an empirical study to identify the
real-time software changes that can have a high probability
of introducing a defect [17]. They evaluate a Just-InTime
(JIT) Quality Assurance” approach on 6 open source and 5
commercial projects.

In this work, we consider a separate research problem
namely on the adoption rate of testing in practice. We
investigate a large number of projects from GitHub.

C. Large Scale Studies

Aside from our work, there have been many past stud-
ies that also perform large scale studies on hundreds
and even thousands of projects. Gruska et al. evaluates
a lightweight anomaly detection technique on a collection
of 6,000 projects [15]. They extract formal rules in the
form of computational tree logic expressions from code
and detect for violations of these expressions. Surian et al.
analyze a snapshot of projects in SourceForge.Net [32]. They
find several patterns of how developers collaborate with
one another in SourceForge.Net. Surian et al. also analyze
projects in SourceForge.Net to build a system to effectively
recommend developers to one another [31]. They perform
random walk with restart over a graph containing links
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between developers and projects to realize their proposed
solution.

VII. CONCLUSION AND FUTURE WORK

Software testing is used to ensure that the software
produced is complete, correct, secure and of higher quality.
Test cases are used to confirm that software meets all
these criteria. We conduct a large scale empirical study
to analyse the prevalence of test cases in open source
projects and the correlations between the test cases and other
important software metrics. We plot graphs to depict these
correlations and use statistical analysis techniques to confirm
the relationships depicted by the graphs.

Our analysis shows the following results:

1) Projects with test cases have more LOC than those
without test cases. As projects grow in size the number
of test cases per LOC decreases.

2) Projects with more number of developers have more
test cases. However as the number of developers grow,
the number of test cases per developer decreases.

3) There is weak positive relationship between number of
test cases and the number of bugs.

4) Number of test cases has a weak correlation with the
number of bug reporters.

5) Projects written in popular languages, such as C++,
ANSI C, and PHP, have higher mean numbers of test
cases per project as compared to projects in other
languages.

In this work, we only consider around 20,000 projects.
We plan to increase the number of projects in a future work.
We also plan to investigate more project characteristics
and analyse their correlation with the number of test cases.
Further, we intend to perform qualitative analysis of test
cases to understand how well test suites cover the code.
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