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Abstract. We propose a leakage-resilient signature scheme in the con-
tinual leakage model that is based on a well-known identity-based en-
cryption scheme by Boneh and Boyen (Eurocrypt 2004). The proposed
signature scheme is the most efficient among the existing schemes that
allow for continual leakage. Its efficiency is close to that of non leakage-
resilient pairing-based signature schemes. It tolerates leakage of almost
half of the bits of the secret key at every new signature invocation. We
prove the security of the new scheme in the generic bilinear group model.
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1 Introduction

Side channel attacks are often effective in recovering the secret key of cryp-
tosystems that are provably secure otherwise [I6/I7/7]. Typical examples
of side channel attacks include analysis of running-time, power consump-
tion, electromagnetic radiation leak, fault detection, to name just but a
few. Countermeasures adopted in practice against side channel attacks are
usually heuristic, aimed often at covering a restricted class of attacks. On
the other hand, it is desirable to extend the traditional provable security
methodology to also include side channel attacks. This area of contempo-
rary cryptography is usually referred to as leakage-resilient cryptography
and it has been an increasingly active area in recent years.
In this work we make two main assumptions to model leakage:

— Bounded leakage: the useful leakage data per signature invocation
is bounded in length (but unbounded overall);

— Independent leakage: the computation can be divided into rounds,
where each such round leaks independently.
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This model has been previously used in [ITJ2TIT5]12]. The first assump-
tion can be seen overly restrictive; however it should be noticed that in
practice many side-channel attacks only exploit a polylogarithmic amount
of information. The second assumption allows us to divide the memory of
a device, at every computing step, into two parts - an active and a passive
part. The part of the memory being currently accessed by a computation
is the active part, and only the active part leaks information at any given
time. We stress that even if our leakage definition is local with respect
to each part of the memory, it still captures some global functions of the
secret key, for instance any affine leakage function. We refer to the work
by Dziembowski and Faust [10] for a discussion on the significance and
limitations of this leakage model. In particular, the Only Computation
Leaks Information model [I3J20] complies with our leakage model.

In the last few years a tremendous progress has been made in the inter-
play between provable security and side-channel attacks, such as the works
[14UT2I6I8IT8I5] bear witness for the case of digital signatures. Admittedly,
the schemes that do not use any idealized assumption (random oracle,
generic groups), are much more involved than their non-leakage counter-
parts, and more importantly, not yet quite efficient to be used in practice.
A rough estimation of the efficiency of current leakage-resilient schemes
is that they are a linear number of times in the security parameter slower
than their non-leakage counterparts. In this work we aim at building an
efficient signature scheme secure against continual leakage. To this aim,
we use an idealized model of computation called generic bilinear group
(GBG) model, which has been previously used by Kiltz and Pietrzak [15]
to provide leakage-resilient public key encryption. They propose a bilinear
version of the ElGamal key encapsulation mechanism which enjoys prov-
able leakage-resilience in the presence of continual leakage. Their scheme is
very efficient, less than a handful of times slower than standard ElGamal.

We use the techniques by Kiltz and Pietrzak to propose a leakage-
resilient signature scheme that builds upon the Boneh-Boyen identity-
based encryption scheme [2]. The resulting signature scheme is nearly as
efficient as the original identity-based encryption scheme (only % times
slower). Our main theorem (Theorem [2) states that allowing A bits of
leakage at every round decreases the security of the scheme by at most a
factor 222

The main criticism that can be addressed to our work is the use of the
generic group idealization to reason about side-channel attacks. The main
question is whether the generic group model is a risky abstraction when
side-channel attacks are considered. The main advantage of our chosen



approach lies on its practicality: the schemes obtained are of efficiency
comparable to traditional schemes, a major argument in our opinion to
motivate the cryptographic engineering community’s interest. This alone
justifies in our view a careful consideration of this approach to reason
about leakage-resilient schemes, since this level of practicality is still out of
reach for the existing leakage-resilient schemes in the standard model. We
would like to mention that nevertheless, given the breakthroughs achieved
in the last few years in the theory of leakage-resilient cryptography, we
are confident that the above-mentioned efficiency gap will be progressively
shrunk in the years to come and under widely accepted assumptions.

2 Definitions

In this section, we recollect some basic notions of security of signature
schemes, bilinear groups, and the generic bilinear group model. We also
describe the model of leakage we shall consider in this paper and formulate
a definition of security of signature schemes in the presence of continual
leakage. We adapt the leakage model specified in [15] to signature schemes.

Let Z denote the set of integers and Z, (p > 0) denote, depending
upon the context, either the set of integers {0,1,...,p — 1} or the ring
modulo p. We denote a random sampling of an element a € A from a set
A, and also denote a (possibly probabilistic) output of an algorithm A, by
a < A. If we want to explicitly denote the randomness r used during the
sampling/output, then we do so by s £ S. Unless otherwise mentioned or
implicit from the context, any sampling is from an uniform distribution.
The symbol “:=" is used to define a notation in an expression, as in A :=
Z, or to explicitly indicate an output of a deterministic algorithm or a
function.

2.1 Existential Unforgeability

A signature scheme 1 = (KeyGen, Sign, Verify) consists of three probabilis-
tic polynomial-time algorithms KeyGen, Sign, and Verify. Let k denote the
security parameter. KeyGen(k) on input x produces a public- and secret-
key pair (pk, sk) along with other public parameters PP. The algorithm
Sign(sk,m) on input a secret key sk and a message m € M, where M
is the message space, outputs a signature o. Verify(pk, m, o) on input a
public key pk, a message m € M and a signature o, outputs a bit b =1
meaning valid, or b = 0 meaning invalid. We require the following correct-
ness requirement to be satisfied by [1:

Pr[Verify(pk, m, Sign(sk,m)) =1 : (pk, sk) < KeyGen(k), m € M] = 1.



The security of a signature scheme I is defined through the following
experiment:

Sign-Forgen (A, k) Sign-Oracle 24(m)
(pk, sk) <+ KeyGen(k) w:=wUm
w =10 o < Sign(sk,m)
(m, o) « A% (pk) Return o
If m € w, then return b :=0
b < Verify(pk,m, o)

Definition 1. |Existential Unforgeability| A signature scheme I is ex-
istentially unforgeable under adaptive chosen-message attacks, in short
“secure”, if Pr[b = 1] is negligible in the Ezperiment Sign-Forgen(A, k)
for any efficient adversary A.

2.2 Leakage Model

We split the secret state into two parts that reside in different parts of
the memory, and structure any computation that involves access to the
secret state into a sequence of steps. Any step accesses only one part of
the secret state (active part) and the other part (passive part) is assumed
not to leak in the current step of computation. In the case of signature
schemes, we structure the signing process into two steps. For simplicity, we
define a security notion for leakage-resilient signature schemes assuming
that the signing process is carried out in two steps. We also refer to a
single invocation of the signature generation algorithm as a round.

Let us consider the problem of achieving leakage resilience under con-
tinual leakage even when a significant fraction of the bits of the secret
state are leaked per round. Then it is necessary that the secret state must
be stateful, i.e. the secret state must be refreshed during every round [15].
Otherwise, after many rounds the entire secret state will be completely
leaked.

Formally, a stateful signature scheme M* = (KeyGen*, Sign], Sign3,
Verify™) consists of four probabilistic polynomial-time algorithms KeyGen*,
Sign}, Sign; and Verify*. KeyGen* (k) is same as the set-up phase KeyGen
of N except that instead of a “single” secret key sk, it outputs two initial
secret states (Sp, S). Intuitively, Sy and S may be viewed as two shares
of the secret key sk. From the point of view of an adversary, the signing
algorithm Sign of 1 and (Sign7, Sign3) have the same functionality. First,
Sign} is executed and later Sign} is executed. That is, the i*! execution of

the signing process (or i*" round) is carried out as:



(S;,wi) & Sign®(Si_1,my) ; (S), 07) = Signi(Si_y, w). (1)

In the above expression, r; and r; are the randomness used by Sign] and
Sign3, respectively. The parameter w; is some state information passed
onto Sign; by Signi. The signature o; is generated for the message m;,
and the internal state is updated from (S;—1,S,_;) to (S;,S]).

We model the leakage during signature generation by giving an adver-
sary A access to a leakage oracle !2%627 s 1)(-). This oracle, in addition

to giving A signatures for the messages of its choice, also allows A to
obtain leakage from the computation used to generate signatures. More
precisely, let A be a leakage parameter. During the i'" signing round, A is
allowed to specify two functions f; and h;, each of range {0,1}*, that can
be efficiently computed. The outputs of the leakage functions are

A = fi(Sica,mi) 5 Ay = hi(Si_q, 7, w;). (2)

Since the value of m can be included in the description of f; and h;, hence
it is not explicitly included as an input. Note that it also possible for A
to specify h; after obtaining A;. But, for the simplicity of the exposition,
we focus on the case where f; and h; are specified along with the mes-
sage m; to the oracle. The security of the signature scheme 1" in the
presence of (continual) leakage is defined through the following experi-
ment Sign-Forge-Leakp« (A, k, A). In the description below, |f;| refers to
the length of the output of f;.

Sign-Forge-Leakp« (A, k, \) Sign-Leak-Oracle Qéeak st 1)(mi, fiy hi)
(pk, (So, S})) < KeyGen™ (k) If |fi| # X or |hi| # A, return L
i=1w:=0 (S, w;) € Sign3(Si_1,m;)

leak ’
(m, o) «— A Si-15i- ot ( k) (S/ ;) <= Sign(S!_ |, w;)
If m € w, then return b :=0 = fi(Si— 1,n)
b + Verify*(pk,m, o) A’ = hi(S|_{,rl,w;)
ti=1+1
w=wUm;
Return (o, 4;, A))

Definition 2. |Existential Unforgeability with Leakage| A signature sch-
eme [1* is existentially unforgeable under adaptive chosen-message at-
tacks in the presence of (continual) leakage if Pr[b = 1] is negligible in
the Ezperiment Sign-Forge-Leakp« (A, k, ) for any efficient adversary A.



2.3 Bilinear Groups

Let BGen(x) be a probabilistic bilinear group generator that outputs
(GaGTapv 6,9) such that:

1. G = (g) and Gp are (multiplicatively written) cyclic groups of prime
order p with binary operations - and *, respectively. The size of p is k
bits.

2. e: G x G — Gr is a bilinear map that is:

(a) bilinear: Vu,v € G and Va,b € Z, e(u®,v") = e(u,v)®.
(b) non-degenerate: e(g, g) # 1.

Such a group G is said to be a bilinear group the above properties hold.
It is also required that the group operations in G and G, and the map
e are efficiently computable. The group G is called as base group and Gr
as target group.

2.4 Generic Bilinear Group Model

The generic bilinear group (GBG) model [4] is an extension of the generic
group model [23]. The encodings of the elements of G and G are given
by random injective maps § : Z, — = and {1 : Z, — Z7, respectively,
where = and =7 are sets of bit-strings. The group operations in G and
Gr, and evaluation of the bilinear map e are performed by three public
oracles O, Or and O, respectively, defined as follows. For all a,b € 7Z,

— 0(&(a),£(b)) == &(a + bmodp)
— Or(ér(a),&r(b)) := &r(a + bmod p)
— 0c(&(a),£(b)) = &r(abmod p)

We assume that ZN=7 = ¢, the (fixed) generator g of G satisfies g = £(1),
and also the (fixed) generator gr of G satisfies g7 = e(g,9) = &r(1).

2.5 Min-Entropy

Let X be a finite random variable with a probability distribution Pr.

The min-entropy of X, denoted Hoo (X), is defined as Hoo (X) := —log,

(max Pr[X = x]) . Min-entropy is a standard measure of the worst-case
x

predictability of a random variable. Let Z be a random variable. The
average conditional min-entropy of X given Z, denoted Hoo(X | Z), is
defined as

Hoo(X|Z) = —log, <Z§Z [mi}XPr[X —z|Z = Z]D .



Average conditional min-entropy is a measure of the worst-case predictabil-
ity of a random variable given a correlated random variable. The following
result is due to [9].

Lemma 1. Let f : X — {0,1}" be a function on X. Then Hoo (X | f(X))
> Hoo(X) - N.

The following result is a simple variant of the Schwartz-Zippel Lemma
[2224].

Lemma 2. [Schwartz-Zippel; min-entropy version| Let F' € Z,[Xq,...,
X,] be a non-zero polynomial of (total) degree at most d. Let P; (i =
1,...,n) be probability distributions on Z, such that Ho(P;) > logp— X,

where 0 < X <logp. If x; & Zyp (i =1,...,n) are chosen independently,

then Pr[F(xi,...,z,) =0] < 2’\,2.
Proof. We prove the result by induction. When n = 1, the univariate
polynomial F' has at most d roots. Since Hyo(P1) > logp — X/, we have
PrF(z;) = 0] < d2-Ueep=¥) — 42X

Let us now prove the result for the n-variables case assuming the
result for the (n — 1)-variables case. On writing F as a polynomial in X3
with coefficients in Z,[Xo, ..., X,], let @ (i > 1) be the degree of X in
the leading term and F” € Zy[Xo, ..., X,] be the leading coefficient. The
probability

Pr[F(x1,...,m,) = 0] < Pr[F(z1,...,20) = 0| F'(z2,...,2,) # 0]
+ Pr[F'(za,...,2,) = 0].

F’ is now a non-zero polynomial, of degree at most d — i, in only n —
1 variables. By induction hypothesis we have Pr[F'(za,...,2,) = 0] <
%2)‘,. When F'(x9,...,x,) # 0, we have Pr[F(z1,...,2,) = 0] < %2)‘/
because degree of F' in X; is ¢ (¢ > 1) and the distributions P; (i =
1,...,n) are independent. Hence Pr[F(z1,...,z,) = 0] < %2”. Note
that the parameter n does not appear in the above bound. O

Corollary 1. If N = (1 —¢€)logp (for constant e > 0) in Lemma@ then
Pr{F(z1,...,x,) = 0] is negligible (in logp).
3 Basic Signature Scheme

We now describe a signature scheme that is obtained from the Boneh-
Boyen identity based encryption scheme (BB-IBE) [2]. This scheme is not



yet known to be existentially unforgeable under adaptive chosen-message
attacks (EUF-CMA) in the standard model. However, we are able to prove
that the BB-signature scheme is EUF-CMA secure in the GBG model.

Let MNgg = (KeyGengg, Signgg, Verifygg) be a signature scheme on the
message space Zj, defined as follows:

1. KeyGengg(k): Compute PP := (G,Gr,p,e,g9) < BGen(x). Choose
random x,xg,21 < Zp. Set X = g%, Xop = g™, X; = ¢"* and
X7 = e(g,X) = e(g,9)*. The public key is pk := (PP, Xy, X1, X7)
and the secret key is sk := X.

2. Signgg(sk, m): Choose a random t < Z,. Set o := (sk-(Xo-X7")*, ¢).
Output the signature o.

3. Verifygg(pk,m,0): Let 0 = (01, 02) € G2. Output the bit b = 1 (valid)
it X7 xe(o2, Xo- X7") = e(01,g). Otherwise output b = 0 (invalid).

Theorem 1. The signature scheme MNgg is EUF-CMA secure in the gene-
ric bilinear group model.

Proof. Let A be a ¢g-query adversary that can break the security of lNgg.
By a g-query adversary we mean that A can make totally at most ¢ group
oracle and signing oracle queries. Let go be the total number of calls to
the group oracles O, Or and O, and g, correspond to the number of
calls to the signing oracle. We have qo + qn < q. As is typical for proofs
in the generic group model, we bound the advantage of A against Ngp
by the success probability of A in the following game G (see [23/193]). A
plays the game G with an algorithm B.

Game G : Let X, Xo, X1, {7} : 1 <i<qp},{U; : 1<i<qy 0< gy <
2(go + D)} and {V; : 1 < i < qgp, 0 < qgp < 2q0} be indeterminates,
and {m; : 1 <i < gp} be elements of Z, chosen by A. Intuitively, these
indeterminates correspond to randomly chosen group elements in lgg, or
more precisely their discrete logarithms. The indeterminates X, Xo, X3
correspond to the quantities x, xg, x1, respectively. Note that A might
query the group oracles with representations (bit-strings) not previously
obtained from the group oracles. In order to accommodate this case we
introduce the indeterminates U;, V;. The U; (1 < i < g4) correspond to
the elements of G, whereas V; (1 <4 < gg,.) correspond to the elements
of Gr. We denote the lists {T; : 1 < i < g}, {U; : 1 <i < ¢4} and
{Vi : 1 <i<qqg} by {T}, {U} and {V'}, respectively.

B maintains two lists of pairs

L={(F;,&,;) :1<i< 7}, (3)
Lr={(Fr;,&r;) 1 <i<7r}, (4)



such that, at step 7 (0 < 7 < qp) in the game,
TL+Tr =T+ 290 + q¢ + q4, + 4. (5)

The entries Fy; € Z,[X, Xo, X1, {U}, {T}], Fr, € Z,[X, Xo, X1, {U}, {V},
{T'}] are multivariate polynomials over Z,, whereas 1 ;, {7,; are bit-strings
in the encoding sets = (of G) and Z7 (of Gr), respectively. Intuitively,
the polynomials in lists £ and L7 correspond to elements of G and Gr,
respectively, that A will ever be able to compute or guess. In order to
simplify the description, we view Z,[X, Xo, X1,{U},{T'}] as a subring of
7,[X, Xo, X1, (U}, {V} {T)].
Initially, 7 = 0,71 = 290 + q4 + 3,71 = qq¢, + 1,

L={(1,&,), (Xo,&1.2), (X1,613), {(U,€15i43) 1 1 < i < qyb,
{(X + (Xo+miX1)T;, &12i4q+2), (Ti€12i10q943) 1 < i < qo} },
Lr={X, {(Vi,€ri+1) : 1 <i<qg} }.

The bit-strings &1 4, {7, are set to random distinct strings from = and =7,
respectively. We assume that there is some ordering (say, lexicographic
ordering) among the strings in the sets = and =7, so that given a string
&1, or &1y, it is possible to determine its index in the lists, if it exits.

The initial state of the two lists correspond to the group elements
that A gets as input as part of the public parameters and the signatures
obtained by A on the messages m; of its choice. As previously mentioned,
the polynomials U;, V; correspond to the group elements that A will guess
in the actual interaction. Since A can query the group oracles with at most
two new (guessed) elements and since it may also output at most two new
elements from G as its forgery, we have g+ g4, < 2go + 2. Hence (5)) can
be simplified as (assuming g, > 6, without loss of generality)

71+ 71 < qo +2q0 + 290 + 2 +4 < 3(go + q0) < 3q. (6)

The game begins by B providing A with the initial 7y strings & 1, ...,
&1,7, from £, and 7 strings {11, .. ., {770 from L.
Group operation: The calls made by A to the group oracles O and
Or are modeled as follows. For group operations in G, A provides B
with two operands (bit-strings) &14,&1; (1 < 4,7 < 71) in £ and also
specifies whether to multiply or divide them. BB answers the query by first
incrementing the counters 71 := 71 + 1 and 7 := 7 + 1, and provides A
with the polynomial Fy ,, := Fi; + Fy ;. If F1,; = Fy} for some k < 7,
then B sets {1 -, := &1 1. Otherwise, &; -, is set to a random string distinct



from those already present in £. Also the pair (F} ,,&1,- ) is appended to
L. Note that the (total) degree of the polynomials F ; in £ is at most two.
Similarly, group operations in G are answered, appropriately updating
the list L7 and the counters 7 and 7.

Pairing: For a pairing operation, A queries B with two operands &; 4, &1 ;
(1 <i,j <m)in L. B first increments 77 := 70 + 1 and 7 := 7 + 1, and
then computes the polynomial Fr ., := Fi; - F1 ;. Again, if Fr, = Fry,
for some k < 7, then B sets {17, = {7 k- Otherwise, {77, is set to a
random string distinct from those already present in Lp. Also the pair
(Fr7p, &1 7p) 1s appended to L7. The degree of the polynomials Fr; in
L is at most four.

When A terminates it outputs (m, (§1,01581,00)) € Zp X L x L (1 <
a1,az < 71). This corresponds to the “forgery” output by A in the ac-
tual interaction. Let the polynomials corresponding to &1, and &1, in
L be Fi 4, and F},,, respectively. After A terminates, B computes the
polynomial

Fl’g 1:X+F1,a2<X0+mX1) _Fl,al- (7)

Note that the degree of Fj, is at most three. Next, B chooses random
values z, xg, x1, {u}, {v}, {t} < Z, for the indeterminates X, Xy, Xj,
{U}, {V'}, {T'}, respectively. Then it evaluates the polynomials in lists £
and L. A is said to have won the game G if:

1. Fyi(z,z0, 21, {u},{t}) = F1;(z,x0,z1,{u}, {t}) in Z,, for some two
polynomials Fy ; # Fyj in L.

2. Pri(x,wo,z1,{u},{v},{t}) = Frj(z, xo,z1,{u},{v},{t}) in Z,, for
some two polynomials Fr; # Fr; in Lr.

3. Fio(x,z0,21,{u},{t}) =0in Z,, and m # m; Vi, i =1,...,qq.

This completes the description of the game G.

We claim that the success probability of A in the actual EUF-CMA
game is bounded above by its success probability in the above game G.
This is because of the following reasons:

— The conditions 1 and 2 above ensure that A will get to see only distinct
group elements in the actual interaction. In other words, A is unable
to cause collisions among group elements. As long as these two con-
ditions are not satisfied, then the view of A is identical in the game G
and the actual interaction. Hence if A is unable to provoke collisions,
then adaptive strategies are no more powerful than non-adaptive ones
(for more details, we refer to [I9, Lemma 2 on pp. 12|, also [23]).
This observation allows us to choose group elements and their repre-
sentations independently of the strategy of A. Hence A specified the



messages m; at the beginning of the game G and also obtained the
corresponding signatures. For the same reason, it also decided at the
beginning itself on the representations it would guess. Note that the
assumption that A would a priori decide the representations it would
guess is only to simplify the description of the proof and it is not an
inherent limitation.

— The condition 3 above ensures that the pair (£1.4,,&1.0,) I8 a valid
forgery on a distinct message m.

We now compute the success probability of A in the game G. The 7
polynomials F7; in £ have degree at most two. Note that F1; # F1; <
F1; — F1j # 0 as polynomials. From Lemma [2| (with A’ = 0), the prob-
ability that two distinct polynomials in £ evaluate to the same value for
randomly and independently chosen values for the indeterminates is at
most ]%. Summing up over at most (21) distinct pairs (7, j), the probabil-
ity that the condition 1 above holds is at most (E) . %. Similarly, we have
the probability that the condition 2 above holds is at most (22) . %. The
degree of the polynomial Fi, in condition 3 is at most three. In order
to apply Lemma [2] we need to prove that F, is not identically equal to
the zero polynomial. We prove this fact in Lemma (3| below. Let Prﬁ:f-lgBeB
denote the advantage of the adversary A in computing a forgery against
Mgg. Then, assuming Lemma |3 we obtain from @

2 (m\ 4 3 2 184>
Prforgeé<71>.+< >-+§7'1+7'22§- 8
ANep 2) p 2) p »p P( ) p ¥

Hence if ¢ = poly(log p), then PrﬁorngBeB is negligible.

Lemma 3. The polynomial F1 , € Zp[X, X0, X1,{U},{T'}] is non-zero.

Proof. Any polynomial in £ is obtained by either adding or subtracting
two polynomials previously existing in the list. Hence we can write F1 o,
and [y o, in terms of polynomials present in £ when it was was initialized
at step 7 = 0 in the game G. Note that initially £ also includes the
representations guessed by A, in addition to the inputs.

Flo, = c1+c2Xo+c3X1+ >0, caiU; + 312 5T,
+ ;121 067¢(X + (X[) + min)Ti), (9)

Flo, = di+ daXo +ds X1+ 309 da;iUs + 302, ds i T,
+ ;121 d67i(X + (XU + min)Ti), (10)



where ¢j,d;(j = 1,2,3),¢5,dj:(j = 4,5,6;1 < i < qn) € Z, are
chosen by A. We have two possible cases:

Case 1: C6,i = d6,z’ =0 Vi, 1 < 7 S q0-

In this case, both F} 4, and Fj,, do not contain the indeterminate
X. Hence the expression Fj o,(Xo + mXi) — Fiq, in is free of X.
Therefore, in the polynomial X + F} o, (Xo+mX1) — F1 q,, the coefficient
of the term X is non-zero. Hence F} , is non-zero.

Case 2: ¢g # 0 or dg i, # 0 for some k, where 1 <k < qp.

On substituting expressions from @ and into , we get that
the coefficient of monomials XgTi, XoT;, XiT; in Fy, are dg;, ds; —
C6,i, mds; —m;ce;, respectively, for 1 <i < ggq.

If dg 1, # 0, then the coefficient of Xng is non-zero, and hence Fy , #
0. Else, c6 1 # 0. We again have two cases: If ds;, # ce i, then the coef-
ficient of X7}, is non-zero. Or else, if d5j, = c¢ x, then the coefficient of
X1T} is non-zero, since m # my; Vi, i = 1,...,qp. Hence in all cases we
have F , to be a non-zero polynomial. O

4 A Leakage-Resilient Signature Scheme

As previously mentioned in Section any cryptographic scheme that
does not maintain a stateful secret state is insecure against continual
leakage. So is the case with the signature scheme lNgg. We now describe a
leakage-resilient version Mg of MNpg. We follow the techniques of [I3] to
adapt lgp to a leakage setting. The basic idea is to store the secret key
X = ¢% in two different parts of the memory as (Sp := g0, S := g*~ %)
for a randomly chosen ly < Z,. Accordingly, the KeyGengg step of lNgg
is modified to obtain the set-up stage KeyGengg of lMgg. The signature
generation is now carried out as a two step process Signgg, and Signgg,.
During the i*? signature query, the two parts of the secret key (S;_1,S!_;)
are refreshed to obtain (S; := S;_1 - g%, S=5_, -g7"), where I; + L.
This is done in order to protect against continual leakage.

Let Mgg = (KeyGengg, Signgg1, Signgp,, Verifygg) be a stateful signa-
ture scheme on the message space Z, defined as follows:

1. KeyGengg(k): Compute PP := (G,Gr,p,e,g9) + BGen(k). Choose
random x,xg, x1,ly < Zp. Set X = g%, Xo := ¢*°, X1 := ¢"* and
X7 = e(g,X) = e(g,9)*. The public key is pk := (PP, Xy, X1, X71)
and the secret key is sk* := (Sp := g%, Sp = g7l =X .g70) e G2

2. Signgg; (Si—1,m;): Choose random t;,l; < Z,. Set S; := S;_1 - gk,
o1 =S (Xo- X{")%, and 05, := g".



)

Output the signature o;.
4. Verifygg(pk,m,0): Let o = (01,02) € G?. Output the bit b = 1 (valid)
it X7 xe(o9, X0+ X") =e(01,g). Otherwise output b =0 (invalid).

3. Signge2 (i1, (914,093, 1i)): Set Sj = Si_1:g~ " and o; == (57010, 0%,3)-

In steps 2 and 3 above, the index i keeps a count of the number of invoca-
tions (rounds) of the signing algorithm. For every i > 1, let ¥; := 3% 1;.
It is easy to check that S;-S! = g¥i-¢g*~Yi = X. We sometimes even refer
to X as the secret key.

Note that Signgg; requires four exponentiations and Signgg, requires
one. The total number of exponentiations needed for every signature in-
vocation can be reduced from five to four if Signgg; also passes on g% to
Signgg,. Hence only one extra exponentiation is needed when compared
with the Signgg step of MNgg, which requires three.

For the sake of clarity, we would like to compare the various notations
used in the signature scheme lNgg above with those in corresponding
to a generic stateful signature scheme N*. The quantities r; and w; in (1))
correspond to (I, ;) and (o7 ;, 09 ;,1;) of Mg, respectively. The quantities
Si, Si and m; denote the same things in both the cases. However, since the
algorithm Signgg, of Mg does not generate any randomness, there is no
analogue in Mg for 7} of . Accordingly, the leakage functions specified
by an adversary to the signing oracle “Q%%ilil,sg 1)(mi, fi, hi) would be of
the form fi(Si_l, (ZZ', tL)) and hz( 2{—17 (Ui,iv Uéﬂ, lz)>

First we show that lNgg is secure in the GBG model when an adver-
sary is not allowed to obtain leakage. The following lemma is a trivial
consequence of the fact that the input/output behaviour of Mgz and Mg
are identical (c.f. Theorem [L)).

Lemma 4. The signature scheme g5 is EUF-CMA secure in the generic
bilinear group model.

The following theorem establishes the fact that the signature scheme [Ngg

is resilient to (continual) leakage attacks in the GBG model if A < 10§p ,
where X is the leakage parameter.

Theorem 2. The signature scheme Mg is secure with leakage w.r.t. Def-
inition [9 in the generic bilinear group model. The advantage of a q-query
adversary who gets at most X bits of leakage per each invocation of Signgg,

" . ﬁ 2\
or Signggs 250<p2 )

Proof. Let A be a g-query adversary that can break the security of gg.
By a ¢-query adversary A we mean that A can make totally at most ¢



group oracle and signing oracle queries. Let go be the total number of calls
to the group oracles O, Or and O, and qg correspond to the number of
calls to the signing oracle. We have qo + qn < ¢. In the count gp, even
the group oracle queries by leakage functions f;, h; specified by A are also
included.

We first informally sketch the main ideas of the proof and then formal-
ize these ideas. Let us try to see why the proof of security of lNgg in the
absence of any leakage (i.e. proof of Theorem [1) would not carry over as it
is in the presence of leakage. In the non-leakage setting, while determin-
ing the probability of collision among distinct polynomials in conditions
1-3 on page [I0} we substituted for each indeterminate an independent
value chosen from an uniform distribution over Z,. But, when A has ac-
cess to leakage functions f;(Si-1, (li,t:)) and h;i(S;_y, (07 ;,09;,1;)), then
from its point of view the parameters ¢; (1 < ¢ < gg) are no longer uni-
formly distributed (though they are still independent). With some partial
information about t;, A can now cause collisions among polynomials with
increased probability. Since each ¢; is chosen independently and it can be
leaked by only f;, hence at most A bits of ¢; can be leaked. Apart from the
values ¢;, the only other “useful” information that leakage functions can
provide is about the secret key X = ¢*. This is because the parameters [;
themselves alone do not help A to output forgery since the signatures gen-
erated are independent of these randomly chosen values. Instead, A can
very much use the leakages of [; to compute, and eventually leak, the se-
cret key X. Note that the leakage functions do not provide any additional
information on the values x, g or x7.

We first bound the probability of the event that the secret key X is
computed by some leakage function f; or h;. As long as this event has not
occurred, then no bits of the secret key is leaked and the “only” additional
information A has is about the values ¢;. Clearly, the probability of this
event depends on the leakage parameter A. For instance, if the amount
of leakage per invocation is not bounded, then during the first signature
query itself, the adversary can leak the initial two shares of the secret key
Sp = g and S) = X - g7 to recompute X. Finally, we determine the
advantage of A conditioned on the event of the secret key X not being
computed by any of the leakage functions.

Formally, we define E to be the event of computing (or guessing) the
secret key X = ¢g* by any of the leakage functions f; or h; (1 <i < qgp).
Let E denote the complement of the event E, Forgery denote the event

of A forging a signature on a new message, and Prf}’ﬁg;i = Pr[Forgery]



denote the advantage of A in computing a forgery against IN5g. We have

Prfz)’ﬁgg‘s = Pr[Forgery|E] Pr[E] + Pr[Forgery|E| Pr[E].

Since Pr[Forgery|E], Pr[E] < 1, we obtain
Prﬁfﬁg,; < Pr[E] + Pr[Forgery|E]. (11)
We first bound the probability of the event E.
Lemma 5. Pr[E] <O (%2”‘) .

Proof. Let the adversary A play the following game G’. Since the game
G’ is similar in nature to the game G in the proof of Theorem (1} we only
briefly describe G’. We use the notations introduced in the game G. Let
{L} denote the list of indeterminates {L; : 1 <1i < gp} that correspond
to the values [; in INgg.

Game G': For every leakage function f;(Si—1, (l;,t;)) and h;(S]_, (aiyi,
03,1i)), A builds lists L7 and £, respectively. These lists contain poly-
nomial-bit string pairs. The polynomials are from Z,[X, Xo, X1,{U},{T"},
{L}] and the bit-strings are from the encoding set = of the group G. In-
tuitively, the polynomials in lists £/ and £" correspond to the elements
of group G that can be computed by f; and h;, respectively. Every poly-
nomial in £f is of the form
i—1
c1iL; + C2,¢ZLJ‘ + ¢34 D, (12)
§=0

where ¢4, ¢4, ¢35 € Z, are chosen by A and D; € Zy[X, Xo, X1,{U},
{T'}] is in the list £ (c.f. ) Every polynomial in £ is of the form

i1 i
diiLi+da; | X — ZLj +d3; ZLj + (Xo +m X1)T; | +da Wi,
=0 =0

where dy 4, da;, d3i, da;, m; € Zy are also chosen by A and W; € Z,[X,
Xo, X1, {U}, {T}] is in the list L.

When A terminates it outputs a polynomial F from the list £/ or
L for some i. Intuitively, the polynomial F output by A corresponds to
its guess of the secret key X. A is said to have won the game G’ if

1. There is a collision in any of the lists L£fi and £hi, for some i (1<i<
q0)-



2. F— X =0inZ,.

Note that the polynomials are now evaluated with values chosen from
independent distributions with min-entropy logp — 2. The reason for
this will be shortly explained. This completes the description of the game
g

Technically speaking, A must also maintain lists Eg’}i and £:}F (1<i<
qq) that correspond to elements of the group Gr that can be computed
by f; and h;. To simplify the discussion, we only describe collisions in
the lists £7 and £". Similar arguments apply for the lists ,C%' and ng.
Since we compute Pr[E] only up to a constant factor, the additional ad-
vantage A obtains from collisions in E{f and E?ﬁ' is implicitly included.
However, working on the lines of the proof of Theorem [T} it is relatively
straightforward to completely formalize the present discussion.

For similar reasons as given in the proof of Theorem |l| we have Pr[E]
is bounded above by the success probability of A in the above game G'.
We particularly like to note the following. As observed in [1, pp. 691] and
the references therein, even in the leakage setting adaptive strategies are
no more powerful than non-adaptive ones.

Before computing the success probability of A, we first show that
F — X is a non-zero polynomial. From Lemma [] and Theorem [ we
know that Mgy is secure without leakage. Hence the polynomial X (that
corresponds to the secret key) cannot appear in the list £, because this
would otherwise imply that the secret key can be computed without access
to leakage functions. A formal proof for this fact can be easily obtained
on the lines of the proof of Lemma [3| Hence even when ¢1; = ¢c2; =0 in
, the lists £i cannot contain the polynomial X. If c1i #0orecy; #0,
then the polynomial in (12)) will contain either L; or L;_1, or both. Hence
the polynomial X cannot appear in any of the lists £/i. In a similar way
it can be seen that the lists £* do not contain X. Hence F — X is a
non-zero polynomial of degree at most two.

Let us now determine the probability that the condition 1 above holds,
i.e. the probability of collisions among distinct polynomials in any of the
lists £7¢ and £". In order to compute the probability, we evaluate the
polynomials in and by choosing values from Z, according to
(independent) distributions with min-entropy at least logp — 2\. This is
because A can obtain at most 2\ bits of leakage about I; (1 =0, ..., qn),
and at most A\ bits of t; (i =1, ..., qp). From Lemma the values [;, t;
have min-entropy at least logp — 2\ in the view of A. The total length
of the lists £7, £" is at most O(qn + qo) = O(q). Hence there can
be at most O(q?) pairs of distinct polynomials (of degree at most two)



evaluating to the same value. From Lemma [2| (with A’ = 2)), we obtain

Pr[E] <O (%22’\) . Since F' — X is a non-zero polynomial of degree at
most two, the probability that F — X evaluates to zero is at most 222},
This probability is also implicitly included in the above bound. ad

We now determine the probability Pr[Forgery | E] in .

— 18q2 A
Lemma 6. Pr[Forgery | E] < ——27.

Proof. Given that the event E has not occurred, the only meaningful
leakage A can now obtain is that of ¢; (i =1, ..., gp). Since at most A
bits of t; can leak (only by f;), from the view point of A the values t;
have min-entropy at least logp — A\. From Lemma 2 (with M = \), the
probability of collision among distinct polynomials in conditions 1-3 on
page is now increased by a factor of 2*. Hence, from , we obtain

Pr[Forgery | E] < %2)‘. 0

2
From (|11) and Lemmas |5 and we have Prﬁoﬁg,ées <0 <q22)‘> . This
’ p

completes the proof of Theorem
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