ASSOCIATIVE AND PREASSOCIATIVE FUNCTIONS

JEAN-LUC MARICHAL AND BRUNO TEHEUX

ABSTRACT. We investigate the associativity property for functions of multiple
arities and introduce and discuss the more general property of preassociativity,
a generalization of associativity which does not involve any composition of
functions.

1. INTRODUCTION

Let X,Y be arbitrary nonempty sets. Throughout this paper, we regard vectors
x in X" as n-strings over X. The O-string or empty string is denoted by € so
that X° = {¢}. We denote by X* the set of all strings over X, that is, X* =
Unso X™. Moreover, we consider X* endowed with concatenation for which we
adopt the juxtaposition notation. For instance, if x € X" y € X, and z € X™,
then xyz € X"*1*™  Furthermore, for x € X™, we use the short-hand notation
x" = x--x € X™™, The length |x| of a string x € X* is a nonnegative integer defined
in the usual way: we have |x| = n if and only if x € X™. In the sequel, we will be
interested both in functions of a given fixed arity (i.e., functions F: X™ - Y') as well
as in functions of multiple arities (i.e., functions F: X* - Y). The n-th component
F, of a function F: X* - Y is the restriction of F' to X", i.e., F}, = F|x». In this
way, each function F: X* — Y can be regarded as a family (F},),so of functions
Fo: X" ->Y. We convey that Fy is defined by Fy(e) = ¢, if Y = X, and Fy(e) = ¢,
otherwise, where €’ ¢ Y is a fixed element.

In this paper we are first interested in the following associativity property for
multiple-arity functions (see [7, p. 24]).

Definition 1.1 ( [7]). A function F: X* — X is said to be associative if for every
xyz € X* we have F(xyz) = F(xF(y)z).

Alternative definitions of associativity for multiple-arity functions have been pro-
posed by different authors; see [2, p. 16], [3], [5, p. 32], [6, p. 216], and [7, p. 24]. Tt
was proved in [3] that these definitions are equivalent to Definition 1.1.

Thus defined, associativity expresses that the function value of any string does
not change when replacing any of its substrings with its corresponding value. As
an example, the real-valued function F:R* — R defined by F,(x) = Y, z; is
associative.

Associative functions F: X* — X are closely related to associative binary func-
tions G: X? — X, which are defined as the solutions of the functional equation

G(G(zy)z) = G(2G(yz)), z,y,z€X.
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In fact, we show (Corollary 3.4) that a binary function G: X2 — X is associative if
and only if there exists an associative function F: X* — X such that G = F.

Based on a recent investigation of associativity (see [3,4]), we show that an as-
sociative function F: X* — X is completely determined by its first two components
F1 and F>. We also provide necessary and sufficient conditions on the components
Fy and F; for a function F: X* - X to be associative (Theorem 3.5). These results
are gathered in Section 3.

The main aim of this paper is to introduce and investigate the following gener-
alization of associativity, called preassociativity.

Definition 1.2. We say that a function F: X* - Y is preassociative if for every
xyy'z € X* we have

F(y) = F(y') = F(xyz) = F(xy's).

Thus, a function F: X* — Y is preassociative if the equality of the function
values of two strings still holds when adding identical arguments on the left or on
the right of these strings. For instance, any real-valued function F:R* — R defined
as F,,(x) = f(Xi-, x;) for every n € N, where f:R — R is a one-to-one function, is
preassociative.

It is immediate to see that any associative function F: X* — X necessarily sat-
isfies the equation Fj o F' = F (take xz = ¢ in Definition 1.1). Actually, we show
(Proposition 4.3) that a function F: X* — X is associative if and only if it is preas-
sociative and satisfies Fj o F' = F.

It is noteworthy that, contrary to associativity, preassociativity does not involve
any composition of functions and hence allows us to consider a codomain Y that
may differ from the domain X. For instance, the length function F: X* — R, defined
as F'(x) = x|, is preassociative.

In this paper we mainly focus on those preassociative functions F: X* - Y for
which F; and F have the same range. (When Y = X, the latter condition is an
immediate consequence of the condition F; o F' = F' and hence those preassocia-
tive functions include the associative ones). We show that those functions, along
with associative functions, are completely determined by their first two components
(Proposition 4.7) and we provide necessary and sufficient conditions on the com-
ponents F} and F5 for a function F: X* — Y to be preassociative and have the
same range as Iy (Theorem 4.11). We also give a characterization of these func-
tions as compositions of the form F' = f o H, where H: X* — X is associative and
frH(X*) =Y is one-to-one (Theorem 4.9). This is done in Section 4.

The terminology used throughout this paper is the following. We denote by
N the set {1,2,3,...} of strictly positive integers. The domain and range of any
function f are denoted by dom(f) and ran(f), respectively. The identity function
is the function id: X — X defined by id(z) = . Finally, for functions f;: X" - Y
(¢ = 1,...,m), the function (f1,...,fm), from X™**"m to Y™ is defined by
(fiyeo s fm)(&xm) = fi(x1) fm(xXm), where |x;] = n; for i = 1,...,m. For
instance, given functions f: Y2 - Y, g: X - Y, and h: X — Y, the function fo(g,h),
from X2 to Y, is defined as (f o (g,h))(x1,22) = f(g(x1), h(x2)).

Remark 1. Algebraically, preassociativity of a function F: X* — Y means that
ker(F') is a congruence on the free monoid X * generated by X such that e/ ker(F') =
{e} (see Proposition 4.1). Similarly, a function F: X* — X is associative if and only
if F' is preassociative and F(x) € x/ker(F') for every x € X*. Thus, associativity
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and preassociativity have good algebraic translations in terms of congruences of free
monoids. It turns out that this algebraic language does not help either in stating
or in proving the results that we obtain in this paper. However, this translation
deserves further investigation and could lead to characterizations of certain classes
of associative or preassociative functions. We postpone this investigation to a future

paper.
2. PRELIMINARIES

Recall that a function F: X" — X is said to be idempotent (see, e.g., [5]) if
F(z™) =« for every € X. A function F: X* - X is said to be idempotent if F, is
idempotent for every n € N.

We now introduce the following definitions. We say that F: X* - X is unarily
idempotent if Fy = id. We say that F: X* — X is unarily range-idempotent if
Filran(r) = id|san(r), or equivalently, Fy o F' = F. We say that F: X* - Y is unarily
quasi-range-idempotent if ran(F;) = ran(F). We observe that the latter property
is a consequence of the former one whenever Y = X. The following straightforward
proposition states a finer result.

Proposition 2.1. A function F: X* — X is unarily range-idempotent if and only
if it is unarily quasi-range-idempotent and satisfies Fy o Fy = F7.

We now show that any unarily quasi-range-idempotent function F: X* — Y can
always be factorized as F' = Fy o H, where H: X* — X is a unarily range-idempotent
function.

First recall that a function g is a quasi-inverse [8, Sect. 2.1] of a function f if

f ° g|ran(f) = id|1ran(f) and I‘an(g|ran(f)) = ran(g).

For any function f, denote by Q(f) the set of its quasi-inverses. This set is
nonempty whenever we assume the Axiom of Choice (AC), which is actually just
another form of the statement “every function has a quasi-inverse.” Recall also that
the relation of being quasi-inverse is symmetric, i.e., if g € Q(f), then f € Q(g);
moreover, we have ran(f) ¢ dom(g), ran(g) ¢ dom(f), and the functions f|.an(g)
and glian(f) are one-to-one.

Proposition 2.2. Assume AC and let F: X* - Y be a unarily quasi-range-idempotent
function. For any g € Q(F1), the function H: X* — X defined as H =goF is a
unarily range-idempotent solution of the equation F' = Fy o H. Moreover, the func-
tion I |san(ry is one-to-one.

Proof. Let g € Q(F1) and set H = go F. Since ran(F;) = ran(F'), we have F} o
Glran(F) = id|ran(ry and hence F1 o H = Fyogo F' = F. Also, H is unarily range-
idempotent since Hy o H = go FyoH =go I'= H. Since I |;an(g) is one-to-one and
ran(H) cran(g), the function F|,an(s) is one-to-one, too. O

The following proposition yields necessary and sufficient conditions for a function
F: X* - Y to be unarily quasi-range-idempotent. We first consider a lemma.

Lemma 2.3. Let f and g be functions. If there exists a function h such that
f=goh, thenran(f) cran(g). Under AC, the converse also holds.

Proof. The necessity is trivial. For the sufficiency, take e € Q(g). Since ran(f) <
ran(g) we must have g o e|ian() = idlran(y), Or equivalently, goeo f = f. O
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Proposition 2.4. Assume AC and let F: X* - Y be a function. The following
assertions are equivalent.
(i) F is unarily quasi-range-idempotent.
(ii) There exists a function H: X* - X such that F'= Fy o H.
(iii) There exists a unarily idempotent function H:X* - X and a function
f: X =Y such that F' = fo H. In this case, f = F}.
(iv) There ezists a unarily range-idempotent function H: X* — X and a function
f:X =Y such that F' = fo H. In this case, F = Fy o H. Moreover, if
h = Filran(m) is one-to-one, then hteQ(F).
(v) There exists a unarily quasi-range-idempotent function H: X* - X and a
function f: X —-Y such that F = foH.

In assertions (ii), (w), and (v) we may choose H = go F for any g € Q(Fy) and
H is then unarily range-idempotent. In assertion (i) we may choose Hy =1id and
H, =goF, for everyn>1 and any g € Q(F}).

Proof. (i) = (ii) Follows from Lemma 2.3 or Proposition 2.2.

(i1) = (i1i) Modifying H; into id and taking f = Fy, we obtain F' = f o H, where
H is unarily idempotent. We then have F} = fo Hy = foid = f.

(i7i) = (iv) The first part is trivial. Also, we have Fi o H = fo Hyo H =
foH =F. Now, if h = Fi|san(s) is one-to-one, then we have H = h™'o F and hence
F1 o h71 o F1 = F1 o H1 = hOHl o H1 = hOHl = Fl, which shows that h71 € Q(Fl)

(iv) = (v) Trivial.

(v) = (i) We have ran(F;) =ran(f o Hy) =ran(f o H) = ran(F).

The last part follows from Proposition 2.2. O

It is noteworthy that the implication (v) = (i) in Proposition 2.4 exactly means
that the property of unary quasi-range-idempotence is preserved under left compo-
sition with unary maps.

3. ASSOCIATIVE FUNCTIONS

The following proposition shows that the definition of associativity (Defini-
tion 1.1) remains unchanged if we upper bound the length of the string xz by
one. The proof makes use of the preassociativity property and will be postponed
to Section 4.

Proposition 3.1. A function F: X* — X is associative if and only if for every
xyz € X* such that |xz| <1 we have F(xyz) = F(xF(y)z).

As observed in [7, p. 25] (see also [1, p. 15] and [5, p. 33]), associative functions
F: X* - X are completely determined by their unary and binary components.
Indeed, by associativity we have

(1) Fo(zymy) = Fa(Foor(21Tn-1)T0), nz3,

or equivalently,

(2) Fp(zyan) = F(Fa(-Fo(Fa(ziz2)es)-)zn),  n>3.
We state this immediate result as follows.

Proposition 3.2. Let F: X" - X and G: X* - X be two associative functions
such that Fy = G1 and F5 = Go. Then F =G.
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A natural and important question now arises: Find necessary and sufficient
conditions on the components F and F5 for a function F: X* — X to be associative.
The following proposition is an important step towards an answer to this question.

Proposition 3.3. A function F: X* — X is associative if and only if

(1) F1 OF1=F1 andFl OFQZFQ,
(11) FQ:FQO(Fl,id):FQO(iCLFl),
(iii) Fy is associative, and

)
(iv) condition (1) or (2) holds.

Proof. The necessity is trivial. To prove the sufficiency, let F: X* — X be a function
satisfying conditions (i)—(iv) and let us show that F is associative. By conditions
(ii)—(iv) we must have

F, = Fy0(F,1,id) = Fyo(id, F,,_1) for every n > 2.

This means that F(xy) = F(zF(y)) and F(yz) = F(F(y)z) for every xyz € X*.
To see that F is associative, by Proposition 3.1 it remains to show that F(y) =
F(F(y)) for every y € X*. By (i) we can assume that |y| > 3. Setting y = uy, by
(i) we have

F(y) = F(uy) = F(F(au)y) = Fi(F2(F(u)y)) = Fi(F(ay)) = F(F()).

This completes the proof. (I

Corollary 3.4. A binary function F:X? - X is associative if and only if there
exists an associative function G: X* - X such that F = G.

Proof. The sufficiency follows from Proposition 3.3. For the necessity, just take
G, =id. O

The following theorem, which follows from Proposition 3.3, provides an answer
to the question raised above.

Theorem 3.5. Let F1: X > X and Fy: X? - X be two functions. Then there exists
an associative function G: X* - X such that Gy = F| and G2 = Fy if and only
if conditions (i)—(iii) of Proposition 3.3 hold. Such a function G is then uniquely
determined by G, = Gy o (Gp-1,id) for n > 3.

Thus, two functions Fy: X — X and Fp: X? - X are the unary and binary com-
ponents of an associative function F: X* — X if and only if these functions satisfy
conditions (i)—(iii) of Proposition 3.3. In the case when only a binary function F; is
given, any unary function Fj satisfying conditions (i) and (ii) can be considered, for
instance the identity function. Note that it may happen that the identity function
is the sole possibility for Fj, for instance when we consider the binary function
Fy:R? > R defined by Fa(x122) = 1 + z2. However, there are examples where F;
may differ from the identity function. For instance, for any real number p > 1, the
p-norm F:R* - R defined by F,(x) = (X7, |z;|?)/? for every n € N, is associative
but not unarily idempotent (here |z| denotes the absolute value of z). Of course an
associative function F: X* — X that is not unarily idempotent can be made unarily
idempotent simply by setting F3} =id. By Proposition 3.3 the resulting function is
still associative.
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4. PREASSOCIATIVE FUNCTIONS

In this section we investigate the preassociativity property (see Definition 1.2)
and characterize certain subclasses of preassociative functions (Theorem 4.9 and
Proposition 4.13).

Just as for associativity, preassociativity may have different equivalent forms.
The following straightforward proposition gives an equivalent definition based on
two equalities of values. The extension to any number of equalities is immediate.

Proposition 4.1. A function F: X* - Y is preassociative if and only if for every
xx'yy’ € X* we have

F(x) = F(x) and F(y) = F(y) = F(xy) = F(xy').

The following immediate result provides a simplified but equivalent definition of
preassociativity (exactly as Proposition 3.1 did for associativity).

Proposition 4.2. A function F: X* - Y is preassociative if and only if for every
xyy'z € X* such that |xz| =1 we have

F(y) = F(y') = F(xyz) = F(xy'z).

As mentioned in the introduction, any associative function F: X* — X is preas-
sociative. More precisely, we have the following result.

Proposition 4.3. A function F: X* — X is associative if and only if it is preas-
sociative and unarily range-idempotent (i.e., Fy o F = F).

Proof. (Necessity) F' is clearly unarily range-idempotent. To see that it is pre-
associative, let xyy’z € X* such that F(y) = F(y'). Then we have F(xyz) =
F(xF(y)z) = F(xF(y')z) = F(xy'z).

(Sufficiency) Let xyz € X*. We then have F(y) = F(F(y)) and hence F(xyz) =
F(xF(y)z). O

Remark 2. (a) From Proposition 4.3 it follows that a preassociative and unarily
idempotent (i.e., Fy =id) function F: X* — X is necessarily associative.
(b) The function F:R* — R defined as F,(x) = 2, z; is an instance of a
preassociative function which is not associative.

We are now ready to provide a very simple proof of Proposition 3.1.

Proof of Proposition 3.1. The necessity is trivial. To prove the sufficiency, let
F: X* — X satisfy the stated conditions. Then F is clearly unarily range-idempotent.
To see that it is associative, by Proposition 4.3 it suffices to show that it is preasso-
ciative. Let xyy'z € X* such that |xz| = 1 and assume that F(y) = F(y"). Then we
have F(xyz) = F(xF(y)z) = F(xF(y')z) = F(xy'z). The conclusion then follows
from Proposition 4.2. O

The following two straightforward propositions show how new preassociative
functions can be generated from given preassociative functions by compositions
with unary maps.

Proposition 4.4 (Right composition). If F: X* - Y is preassociative then, for
every function g: X — X, the function H: X* - Y, defined as Hy, = F,, 0 (g,...,9)
for every n € N, is preassociative. For instance, the squared distance function
F:R* 5 R defined as F,(x) = Y1, 27 is preassociative.
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Proposition 4.5 (Left composition). Let F: X* - Y be a preassociative function
and let ¢:Y - Y be a function. If g|ran(F) is constant or one-to-one, then the
function H: X* - Y defined as H = g o F is preassociative. For instance, the
function F:R* > R defined as F,,(x) = exp(Xi-, ;) is preassociative.

Remark 3. (a) If F: X* - Y is a preassociative function and (gn)nen is a se-
quence of functions from X to X, then the function H: X* — Y defined as
H, = F, o (gn,-..,9,) need not be preassociative. For instance, consider

the sum function F,(x) = >~ «; over the reals and the sequence g,(z) =
exp(nz). Then, for z; =log(1), =2 = log(2), 2} = $1og(3), =4 = 3log(2),
and z3 =0, we have H(x122) = H(z]z}) but H(z12223) + H(2 x523).

(b) Preassociativity is not always preserved by left composition of a preasso-
ciative function with a unary map. For instance, consider the sum function
F,(x) = X1 x; over the reals and let g(z) = max{z,0}. Then for the func-
tion H = go F, we have H(-1,-2) =0= H(-1,1) but H(-1,-2,1)=0%1=
H(-1,1,1). Thus H is not preassociative.

Although preassociativity generalizes associativity, it remains a rather strong
property, especially when the functions have constant components. The following
result illustrates this observation.

Proposition 4.6. Let F: X* - Y be a preassociative function.

(a) If F,, is constant, then so is Fpyq.
(b) If F,, and F, 41 are the same constant function ¢, then F,, = ¢ for allm > n.

Proof. (a) For every y,y’ € X™ and every x € X, we have F(y) = F(y') = ¢, and
hence F(xy) = F(xy'). This means that F,,; depends only on its first argument.
Similarly we show that it depends only on its last argument.

(b) Let xyz € X"*2. Then ¢ = F(x) = F(xy) and hence ¢ = F(xz) = F(xyz). So
F, .0 =c, etc. O

We now focus on those preassociative functions F: X* — Y which are unar-
ily quasi-range-idempotent, that is, such that ran(F;) = ran(F'). As we will now
show, this special class of functions has very interesting and even surprising prop-
erties. First of all, just as for associative functions, preassociative and unarily
quasi-range-idempotent functions are completely determined by their unary and
binary components.

Proposition 4.7. Let F: X* - Y and G: X* - Y be preassociative and unarily
quasi-range-idempotent functions such that Fy = G1 and Fy = G4, then F =G.

Proof. Let F: X* - Y and G: X* — Y be preassociative and unarily quasi-range-
idempotent functions such that F; = Gy and F; = Go. We show by induction on
n € N that F,, = G,,. The result clearly holds for n < 2. Suppose that it holds for
n—1 > 1 and show that it still holds for n. Let x € X™ and choose z € X such
that F'(z) = F(x1--2p-1). By induction hypothesis, we have G(z) = G(x1-@n-1).
Therefore by preassociativity we have F,,(x) = Fa(zx,) = Ga(2xy,) = G, (X). O

Remark 4. Proposition 4.7 states that any element of the class of preassociative
and unarily quasi-range-idempotent functions is completely determined inside this
class by its unary and binary components. This property is shared by other classes
of preassociative functions. Consider for example the class of functions F: X* - Y
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for which there are distinct ¢, ¢’ € Y such that F; = c and F,, = ¢’ for all n > 2. The
elements of this class are preassociative functions that are not unarily quasi-range-
idempotent. However, any function of this class is completely determined inside
the class by its unary and binary components.

We now give a characterization of the preassociative and unarily quasi-range-
idempotent functions as compositions of associative functions with one-to-one unary
maps. We first consider a lemma, which provides equivalent conditions for a unarily
quasi-range-idempotent function to be preassociative.

Lemma 4.8. Assume AC and let F: X* =Y be a unarily quasi-range-idempotent
function. The following assertions are equivalent.
(i) F is preassociative.
(ii) For every g € Q(Fy), the function H: X* — X defined by H = go F is
assoctative.
(iii) There is g € Q(Fy) such that the function H: X* — X defined by H=go F
18 associative.

Proof. (i) = (4i) By Proposition 2.2, H is unarily range-idempotent. Since g|ian(r,) =
lran(F) is one-to-one, H is preassociative by Proposition 4.5. It follows that H is
associative by Proposition 4.3.

(i1) = (447) Trivial.

(7ii) = (i) By Proposition 4.3 we have that H is preassociative. Since g|ian(r)
is a one-to-one function from ran(F) onto ran(g), we have F = (glan(r)) " 0 H
and the function (g|ran(F))_1|ran(H) is one-to-one from ran(H) onto ran(F). By
Proposition 4.5 it follows that F' is preassociative. O

Remark 5. Let F: X* — Y be a preassociative function of the form F = fo H,
where f: X — Y is any function and H: X* - X is any unarily range-idempotent
function. Then F = Fj o H by Proposition 2.4(iv). However, H need not be
associative. For instance, if F' is a constant function, then H could be any unarily
range-idempotent function. However, Lemma 4.8 shows that, assuming AC, there is
always an associative solution H of the equation F' = F; o H; for instance, H = go F'

for g e Q(F1).
Theorem 4.9. Assume AC and let F: X* - Y be a function. The following asser-
tions are equivalent.
(i) F is preassociative and unarily quasi-range-idempotent.
(ii) There exists an associative function H: X* - X and a one-to-one function
firan(H) - Y such that F = fo H. In this case we have F = Fy o H,
[ = Filran(m) fteQ(F), and we may choose H = goF for any g € Q(F}).
Proof. (i) = (i) Let H: X* —» X be defined as H = go F, where g € Q(F;). By
Proposition 2.2, H is unarily range-idempotent and we have F' = f o H, where
[ = Filran(m) is one-to-one. By Lemma 4.8, H is associative. The second part of
condition (ii) follows from Proposition 2.4 (condition (iv)) and Lemma 4.8.
(i1) = (4) F is unarily quasi-range-idempotent by Proposition 2.4. Tt is also
preassociative by Proposition 4.5. O

Remark 6. (a) If condition (ii) of Theorem 4.9 holds, then by Eq. (1) we see
that F' can be computed recursively by

Fn(‘rlxn) = FQ((fPlO n—l)(xl"'xnfl)mn)a n 3.
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A similar observation was already made in a more particular setting for the
so-called quasi-associative functions; see [9].

(b) A function F:X* - Y of the form F = F; o H, where H is associative
need not be preassociative. The example given in Remark 3(b) illustrates
this observation. To give a second example, take X = R, Fy(z) = |z| (the
absolute value of x) and H,(x) = Y-, z; for every n € N. Then F(1) =
F(-1) but F(11) =2+ 0= F(1(-1)). Thus F is not preassociative.

We now provide necessary and sufficient conditions on the unary and binary
components for a function F: X* — X to be preassociative and unarily quasi-range-
idempotent. The result is stated in Theorem 4.11 below and follows from the next
proposition.

Proposition 4.10. Assume AC. A function F:X* — Y is preassociative and
unarily quasi-range-idempotent if and only if ran(Fy) ¢ ran(Fy) and there exists
g € Q(F1) such that
(1) Hz = Hzo (Hy,id) = Hy 0 (id, H1),
(il) Hj is associative, and
(iii) the following holds

Fo(x12y) = Fo((go Fro1)(@12p-1)Zn), n3,
or equivalently,
Fo(z12y) = Fo(Ha(--Hay(Hay(x122)x3) ) T0), n >3,
where Hy =go Fy and Hy =go F5.

Proof. (Necessity) Let F: X* - Y be preassociative and unarily quasi-range-idem-
potent. Then clearly ran(Fs) c ran(F') =ran(Fy). Let g e Q(Fy) and H = go F. By
Lemma 4.8, H is associative and hence conditions (i)—(iii) hold by Proposition 3.3.
(Sufficiency) Let F: X* — Y be a function satisfying ran(F;) < ran(F;) and
conditions (i)—(iii) for some g € Q(F1). By conditions (ii) and (iii) we must have

F, = Fy0o(goF,_1,id) = Fyo(id,go F,_1) for every n > 3.

Then ran(F,) ¢ ran(F3) ¢ ran(Fy) for every n > 3 and hence F' is unarily quasi-
range-idempotent.

Let us show that F' is preassociative. By Lemma 4.8 it suffices to show that
H = go F is associative. By Proposition 3.3, it suffices to show that H; = H; o H;
and Hs = Hy o Hs, or equivalently, go F} = go Fiogo Fy and go Fr =go Fyogo Fy,
respectively. These identities clearly hold since g € Q(Fy) implies go Fiog=g. O

Theorem 4.11. Assume AC and let Fi: X - Y and Fy: X? - Y be two func-
tions. Then there exists a preassociative and unarily quasi-range-idempotent func-
tion G: X* - Y such that Gy = Fy and Gs = Fy if and only if ran(Fy) € ran(Fy) and
there exists g € Q(Fy) such that conditions (i) and (i) of Proposition 4.10 hold,
where Hy = go F1 and Hs = go F5. Such a function G is then uniquely determined
by G, = Gao(goGy_1,id) forn> 3.

We close this section by introducing and discussing a stronger version of pre-
associativity. Recall that preassociativity means that the equality of the function
values of two strings still holds when adding identical arguments on the left or on
the right of these strings. Now, suppose that the equality still holds when adding
identical arguments at any place. We then have the following definition.
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Definition 4.12. We say that a function F: X* — Y is strongly preassociative if
for every xx'yzz' € X* we have

(3) F(xz) = F(x'zZ)) = F(xyz) = F(x'yz').

Clearly, Definition 4.12 remains unchanged if we assume that |y| = 1.

As we could expect, strongly preassociative functions are exactly those preasso-
ciative functions which are symmetric, i.e., invariant under any permutation of the
arguments.

Proposition 4.13. A function F: X* - Y is strongly preassociative if and only if
it is preassociative and F,, is symmetric for every n € N,

Proof. We only need to prove the necessity. Taking z =z’ = ¢ or x = x' = ¢ in
Eq. (3) shows that F is preassociative. Taking z = X’ = ¢ and z’ = x, we obtain
F(xy) = F(yx) for every xy € X*. Then, by strong preassociativity we also
have F(uxvyw) = F(uyvxw) for every uxvyw € X, which shows that F is
symmetric. O

5. CONCLUDING REMARKS AND OPEN PROBLEMS

We have proposed a relaxation of associativity for multiple-arity functions, namely
preassociativity, and we have investigated this new property. In particular, we
have presented characterizations of those preassociative functions which are unar-
ily quasi-range-idempotent.

This area of investigation is intriguing and appears not to have been previously
studied. We have just skimmed the surface, and there are a lot of questions to be
answered. Some are listed below.

(1) Find necessary and sufficient conditions on a class of preassociative func-
tions for each element of this class to be completely determined inside the
class by its first two components (cf. Remark 4).

(2) Find a generalization of Theorem 4.9 without the unary quasi-range-idem-
potence property.

(3) Find necessary and sufficient conditions on Fj for a function F' of the form
F = Fy o H, where H is associative, to be preassociative (cf. Remark 6(b)).
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