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Abstract. We investigate the associativity property for functions of multiple

arities and introduce and discuss the more general property of preassociativity,
a generalization of associativity which does not involve any composition of
functions.

1. Introduction

Let X,Y be arbitrary nonempty sets. Throughout this paper, we regard vectors
x in Xn as n-strings over X. The 0-string or empty string is denoted by ε so
that X0 = {ε}. We denote by X∗ the set of all strings over X, that is, X∗ =
⋃n⩾0X

n. Moreover, we consider X∗ endowed with concatenation for which we
adopt the juxtaposition notation. For instance, if x ∈ Xn, y ∈ X, and z ∈ Xm,
then xyz ∈ Xn+1+m. Furthermore, for x ∈ Xm, we use the short-hand notation
xn = x⋯x ∈Xn×m. The length ∣x∣ of a string x ∈X∗ is a nonnegative integer defined
in the usual way: we have ∣x∣ = n if and only if x ∈ Xn. In the sequel, we will be
interested both in functions of a given fixed arity (i.e., functions F ∶Xn → Y ) as well
as in functions of multiple arities (i.e., functions F ∶X∗ → Y ). The n-th component
Fn of a function F ∶X∗ → Y is the restriction of F to Xn, i.e., Fn = F ∣Xn . In this
way, each function F ∶X∗ → Y can be regarded as a family (Fn)n⩾0 of functions
Fn∶Xn → Y . We convey that F0 is defined by F0(ε) = ε, if Y = X, and F0(ε) = ε′,
otherwise, where ε′ ∉ Y is a fixed element.

In this paper we are first interested in the following associativity property for
multiple-arity functions (see [7, p. 24]).

Definition 1.1 ( [7]). A function F ∶X∗ → X is said to be associative if for every
xyz ∈X∗ we have F (xyz) = F (xF (y)z).

Alternative definitions of associativity for multiple-arity functions have been pro-
posed by different authors; see [2, p. 16], [3], [5, p. 32], [6, p. 216], and [7, p. 24]. It
was proved in [3] that these definitions are equivalent to Definition 1.1.

Thus defined, associativity expresses that the function value of any string does
not change when replacing any of its substrings with its corresponding value. As
an example, the real-valued function F ∶R∗ → R defined by Fn(x) = ∑n

i=1 xi is
associative.

Associative functions F ∶X∗ → X are closely related to associative binary func-
tions G∶X2 →X, which are defined as the solutions of the functional equation

G(G(xy)z) = G(xG(yz)), x, y, z ∈X.
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In fact, we show (Corollary 3.4) that a binary function G∶X2 → X is associative if
and only if there exists an associative function F ∶X∗ →X such that G = F2.

Based on a recent investigation of associativity (see [3, 4]), we show that an as-
sociative function F ∶X∗ →X is completely determined by its first two components
F1 and F2. We also provide necessary and sufficient conditions on the components
F1 and F2 for a function F ∶X∗ →X to be associative (Theorem 3.5). These results
are gathered in Section 3.

The main aim of this paper is to introduce and investigate the following gener-
alization of associativity, called preassociativity.

Definition 1.2. We say that a function F ∶X∗ → Y is preassociative if for every
xyy′z ∈X∗ we have

F (y) = F (y′) ⇒ F (xyz) = F (xy′z).

Thus, a function F ∶X∗ → Y is preassociative if the equality of the function
values of two strings still holds when adding identical arguments on the left or on
the right of these strings. For instance, any real-valued function F ∶R∗ → R defined
as Fn(x) = f(∑n

i=1 xi) for every n ∈ N, where f ∶R → R is a one-to-one function, is
preassociative.

It is immediate to see that any associative function F ∶X∗ → X necessarily sat-
isfies the equation F1 ○ F = F (take xz = ε in Definition 1.1). Actually, we show
(Proposition 4.3) that a function F ∶X∗ →X is associative if and only if it is preas-
sociative and satisfies F1 ○ F = F .

It is noteworthy that, contrary to associativity, preassociativity does not involve
any composition of functions and hence allows us to consider a codomain Y that
may differ from the domainX. For instance, the length function F ∶X∗ → R, defined
as F (x) = ∣x∣, is preassociative.

In this paper we mainly focus on those preassociative functions F ∶X∗ → Y for
which F1 and F have the same range. (When Y = X, the latter condition is an
immediate consequence of the condition F1 ○ F = F and hence those preassocia-
tive functions include the associative ones). We show that those functions, along
with associative functions, are completely determined by their first two components
(Proposition 4.7) and we provide necessary and sufficient conditions on the com-
ponents F1 and F2 for a function F ∶X∗ → Y to be preassociative and have the
same range as F1 (Theorem 4.11). We also give a characterization of these func-
tions as compositions of the form F = f ○H, where H ∶X∗ → X is associative and
f ∶H(X∗)→ Y is one-to-one (Theorem 4.9). This is done in Section 4.

The terminology used throughout this paper is the following. We denote by
N the set {1,2,3, . . .} of strictly positive integers. The domain and range of any
function f are denoted by dom(f) and ran(f), respectively. The identity function
is the function id∶X → X defined by id(x) = x. Finally, for functions fi∶Xni → Y
(i = 1, . . . ,m), the function (f1, . . . , fm), from Xn1+⋯+nm to Y m, is defined by
(f1, . . . , fm)(x1⋯xm) = f1(x1)⋯fm(xm), where ∣xi∣ = ni for i = 1, . . . ,m. For
instance, given functions f ∶Y 2 → Y , g∶X → Y , and h∶X → Y , the function f ○(g, h),
from X2 to Y , is defined as (f ○ (g, h))(x1, x2) = f(g(x1), h(x2)).

Remark 1. Algebraically, preassociativity of a function F ∶X∗ → Y means that
ker(F ) is a congruence on the free monoid X∗ generated by X such that ε/ker(F ) =
{ε} (see Proposition 4.1). Similarly, a function F ∶X∗ →X is associative if and only
if F is preassociative and F (x) ∈ x/ker(F ) for every x ∈ X∗. Thus, associativity
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and preassociativity have good algebraic translations in terms of congruences of free
monoids. It turns out that this algebraic language does not help either in stating
or in proving the results that we obtain in this paper. However, this translation
deserves further investigation and could lead to characterizations of certain classes
of associative or preassociative functions. We postpone this investigation to a future
paper.

2. Preliminaries

Recall that a function F ∶Xn → X is said to be idempotent (see, e.g., [5]) if
F (xn) = x for every x ∈X. A function F ∶X∗ →X is said to be idempotent if Fn is
idempotent for every n ∈ N.

We now introduce the following definitions. We say that F ∶X∗ → X is unarily
idempotent if F1 = id. We say that F ∶X∗ → X is unarily range-idempotent if
F1∣ran(F ) = id∣ran(F ), or equivalently, F1 ○ F = F . We say that F ∶X∗ → Y is unarily
quasi-range-idempotent if ran(F1) = ran(F ). We observe that the latter property
is a consequence of the former one whenever Y =X. The following straightforward
proposition states a finer result.

Proposition 2.1. A function F ∶X∗ → X is unarily range-idempotent if and only
if it is unarily quasi-range-idempotent and satisfies F1 ○ F1 = F1.

We now show that any unarily quasi-range-idempotent function F ∶X∗ → Y can
always be factorized as F = F1 ○H, where H ∶X∗ →X is a unarily range-idempotent
function.

First recall that a function g is a quasi-inverse [8, Sect. 2.1] of a function f if

f ○ g∣ran(f) = id∣ran(f) and ran(g∣ran(f)) = ran(g).
For any function f , denote by Q(f) the set of its quasi-inverses. This set is

nonempty whenever we assume the Axiom of Choice (AC), which is actually just
another form of the statement “every function has a quasi-inverse.” Recall also that
the relation of being quasi-inverse is symmetric, i.e., if g ∈ Q(f), then f ∈ Q(g);
moreover, we have ran(f) ⊆ dom(g), ran(g) ⊆ dom(f), and the functions f ∣ran(g)
and g∣ran(f) are one-to-one.

Proposition 2.2. Assume AC and let F ∶X∗ → Y be a unarily quasi-range-idempotent
function. For any g ∈ Q(F1), the function H ∶X∗ → X defined as H = g ○ F is a
unarily range-idempotent solution of the equation F = F1 ○H. Moreover, the func-
tion F1∣ran(H) is one-to-one.

Proof. Let g ∈ Q(F1) and set H = g ○ F . Since ran(F1) = ran(F ), we have F1 ○
g∣ran(F ) = id∣ran(F ) and hence F1 ○H = F1 ○ g ○ F = F . Also, H is unarily range-
idempotent since H1 ○H = g ○ F1 ○H = g ○ F =H. Since F1∣ran(g) is one-to-one and
ran(H) ⊆ ran(g), the function F1∣ran(H) is one-to-one, too. �

The following proposition yields necessary and sufficient conditions for a function
F ∶X∗ → Y to be unarily quasi-range-idempotent. We first consider a lemma.

Lemma 2.3. Let f and g be functions. If there exists a function h such that
f = g ○ h, then ran(f) ⊆ ran(g). Under AC, the converse also holds.

Proof. The necessity is trivial. For the sufficiency, take e ∈ Q(g). Since ran(f) ⊆
ran(g) we must have g ○ e∣ran(f) = id∣ran(f), or equivalently, g ○ e ○ f = f . �
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Proposition 2.4. Assume AC and let F ∶X∗ → Y be a function. The following
assertions are equivalent.

(i) F is unarily quasi-range-idempotent.
(ii) There exists a function H ∶X∗ →X such that F = F1 ○H.
(iii) There exists a unarily idempotent function H ∶X∗ → X and a function

f ∶X → Y such that F = f ○H. In this case, f = F1.
(iv) There exists a unarily range-idempotent function H ∶X∗ →X and a function

f ∶X → Y such that F = f ○ H. In this case, F = F1 ○ H. Moreover, if
h = F1∣ran(H) is one-to-one, then h−1 ∈ Q(F1).

(v) There exists a unarily quasi-range-idempotent function H ∶X∗ → X and a
function f ∶X → Y such that F = f ○H.

In assertions (ii), (iv), and (v) we may choose H = g ○ F for any g ∈ Q(F1) and
H is then unarily range-idempotent. In assertion (iii) we may choose H1 = id and
Hn = g ○ Fn for every n > 1 and any g ∈ Q(F1).

Proof. (i)⇒ (ii) Follows from Lemma 2.3 or Proposition 2.2.
(ii)⇒ (iii) Modifying H1 into id and taking f = F1, we obtain F = f ○H, where

H is unarily idempotent. We then have F1 = f ○H1 = f ○ id = f .
(iii) ⇒ (iv) The first part is trivial. Also, we have F1 ○ H = f ○ H1 ○ H =

f ○H = F . Now, if h = F1∣ran(H) is one-to-one, then we have H = h−1 ○F and hence

F1 ○ h−1 ○ F1 = F1 ○H1 = h ○H1 ○H1 = h ○H1 = F1, which shows that h−1 ∈ Q(F1).
(iv)⇒ (v) Trivial.
(v)⇒ (i) We have ran(F1) = ran(f ○H1) = ran(f ○H) = ran(F ).
The last part follows from Proposition 2.2. �

It is noteworthy that the implication (v)⇒ (i) in Proposition 2.4 exactly means
that the property of unary quasi-range-idempotence is preserved under left compo-
sition with unary maps.

3. Associative functions

The following proposition shows that the definition of associativity (Defini-
tion 1.1) remains unchanged if we upper bound the length of the string xz by
one. The proof makes use of the preassociativity property and will be postponed
to Section 4.

Proposition 3.1. A function F ∶X∗ → X is associative if and only if for every
xyz ∈X∗ such that ∣xz∣ ⩽ 1 we have F (xyz) = F (xF (y)z).

As observed in [7, p. 25] (see also [1, p. 15] and [5, p. 33]), associative functions
F ∶X∗ → X are completely determined by their unary and binary components.
Indeed, by associativity we have

(1) Fn(x1⋯xn) = F2(Fn−1(x1⋯xn−1)xn), n ⩾ 3,

or equivalently,

(2) Fn(x1⋯xn) = F2(F2(⋯F2(F2(x1x2)x3)⋯)xn), n ⩾ 3.

We state this immediate result as follows.

Proposition 3.2. Let F ∶X∗ → X and G∶X∗ → X be two associative functions
such that F1 = G1 and F2 = G2. Then F = G.
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A natural and important question now arises: Find necessary and sufficient
conditions on the components F1 and F2 for a function F ∶X∗ →X to be associative.
The following proposition is an important step towards an answer to this question.

Proposition 3.3. A function F ∶X∗ →X is associative if and only if

(i) F1 ○ F1 = F1 and F1 ○ F2 = F2,
(ii) F2 = F2 ○ (F1, id) = F2 ○ (id, F1),
(iii) F2 is associative, and
(iv) condition (1) or (2) holds.

Proof. The necessity is trivial. To prove the sufficiency, let F ∶X∗ →X be a function
satisfying conditions (i)–(iv) and let us show that F is associative. By conditions
(ii)–(iv) we must have

Fn = F2 ○ (Fn−1, id) = F2 ○ (id, Fn−1) for every n ⩾ 2.

This means that F (xy) = F (xF (y)) and F (yz) = F (F (y)z) for every xyz ∈ X∗.
To see that F is associative, by Proposition 3.1 it remains to show that F (y) =
F (F (y)) for every y ∈ X∗. By (i) we can assume that ∣y∣ ⩾ 3. Setting y = uy, by
(i) we have

F (y) = F (uy) = F2(F (u)y) = F1(F2(F (u)y)) = F1(F (uy)) = F (F (y)).

This completes the proof. �

Corollary 3.4. A binary function F ∶X2 → X is associative if and only if there
exists an associative function G∶X∗ →X such that F = G2.

Proof. The sufficiency follows from Proposition 3.3. For the necessity, just take
G1 = id. �

The following theorem, which follows from Proposition 3.3, provides an answer
to the question raised above.

Theorem 3.5. Let F1∶X →X and F2∶X2 →X be two functions. Then there exists
an associative function G∶X∗ → X such that G1 = F1 and G2 = F2 if and only
if conditions (i)–(iii) of Proposition 3.3 hold. Such a function G is then uniquely
determined by Gn = G2 ○ (Gn−1, id) for n ⩾ 3.

Thus, two functions F1∶X → X and F2∶X2 → X are the unary and binary com-
ponents of an associative function F ∶X∗ → X if and only if these functions satisfy
conditions (i)–(iii) of Proposition 3.3. In the case when only a binary function F2 is
given, any unary function F1 satisfying conditions (i) and (ii) can be considered, for
instance the identity function. Note that it may happen that the identity function
is the sole possibility for F1, for instance when we consider the binary function
F2∶R2 → R defined by F2(x1x2) = x1 + x2. However, there are examples where F1

may differ from the identity function. For instance, for any real number p ⩾ 1, the
p-norm F ∶R∗ → R defined by Fn(x) = (∑n

i=1 ∣xi∣p)1/p for every n ∈ N, is associative
but not unarily idempotent (here ∣x∣ denotes the absolute value of x). Of course an
associative function F ∶X∗ →X that is not unarily idempotent can be made unarily
idempotent simply by setting F1 = id. By Proposition 3.3 the resulting function is
still associative.
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4. Preassociative functions

In this section we investigate the preassociativity property (see Definition 1.2)
and characterize certain subclasses of preassociative functions (Theorem 4.9 and
Proposition 4.13).

Just as for associativity, preassociativity may have different equivalent forms.
The following straightforward proposition gives an equivalent definition based on
two equalities of values. The extension to any number of equalities is immediate.

Proposition 4.1. A function F ∶X∗ → Y is preassociative if and only if for every
xx′yy′ ∈X∗ we have

F (x) = F (x′) and F (y) = F (y′) ⇒ F (xy) = F (x′y′).

The following immediate result provides a simplified but equivalent definition of
preassociativity (exactly as Proposition 3.1 did for associativity).

Proposition 4.2. A function F ∶X∗ → Y is preassociative if and only if for every
xyy′z ∈X∗ such that ∣xz∣ = 1 we have

F (y) = F (y′) ⇒ F (xyz) = F (xy′z).

As mentioned in the introduction, any associative function F ∶X∗ → X is preas-
sociative. More precisely, we have the following result.

Proposition 4.3. A function F ∶X∗ → X is associative if and only if it is preas-
sociative and unarily range-idempotent (i.e., F1 ○ F = F ).

Proof. (Necessity) F is clearly unarily range-idempotent. To see that it is pre-
associative, let xyy′z ∈ X∗ such that F (y) = F (y′). Then we have F (xyz) =
F (xF (y)z) = F (xF (y′)z) = F (xy′z).

(Sufficiency) Let xyz ∈X∗. We then have F (y) = F (F (y)) and hence F (xyz) =
F (xF (y)z). �
Remark 2. (a) From Proposition 4.3 it follows that a preassociative and unarily

idempotent (i.e., F1 = id) function F ∶X∗ →X is necessarily associative.
(b) The function F ∶R∗ → R defined as Fn(x) = 2∑n

i=1 xi is an instance of a
preassociative function which is not associative.

We are now ready to provide a very simple proof of Proposition 3.1.

Proof of Proposition 3.1. The necessity is trivial. To prove the sufficiency, let
F ∶X∗ →X satisfy the stated conditions. Then F is clearly unarily range-idempotent.
To see that it is associative, by Proposition 4.3 it suffices to show that it is preasso-
ciative. Let xyy′z ∈X∗ such that ∣xz∣ = 1 and assume that F (y) = F (y′). Then we
have F (xyz) = F (xF (y)z) = F (xF (y′)z) = F (xy′z). The conclusion then follows
from Proposition 4.2. �

The following two straightforward propositions show how new preassociative
functions can be generated from given preassociative functions by compositions
with unary maps.

Proposition 4.4 (Right composition). If F ∶X∗ → Y is preassociative then, for
every function g∶X → X, the function H ∶X∗ → Y , defined as Hn = Fn ○ (g, . . . , g)
for every n ∈ N, is preassociative. For instance, the squared distance function
F ∶R∗ → R defined as Fn(x) = ∑n

i=1 x
2
i is preassociative.
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Proposition 4.5 (Left composition). Let F ∶X∗ → Y be a preassociative function
and let g∶Y → Y be a function. If g∣ran(F ) is constant or one-to-one, then the
function H ∶X∗ → Y defined as H = g ○ F is preassociative. For instance, the
function F ∶R∗ → R defined as Fn(x) = exp(∑n

i=1 xi) is preassociative.

Remark 3. (a) If F ∶X∗ → Y is a preassociative function and (gn)n∈N is a se-
quence of functions from X to X, then the function H ∶X∗ → Y defined as
Hn = Fn ○ (gn, . . . , gn) need not be preassociative. For instance, consider
the sum function Fn(x) = ∑n

i=1 xi over the reals and the sequence gn(x) =
exp(nx). Then, for x1 = log(1), x2 = log(2), x′1 = 1

2
log(3), x′2 = 1

2
log(2),

and x3 = 0, we have H(x1x2) =H(x′1x′2) but H(x1x2x3) ≠H(x′1x′2x3).
(b) Preassociativity is not always preserved by left composition of a preasso-

ciative function with a unary map. For instance, consider the sum function
Fn(x) = ∑n

i=1 xi over the reals and let g(x) =max{x,0}. Then for the func-
tion H = g ○F , we have H(−1,−2) = 0 =H(−1,1) but H(−1,−2,1) = 0 ≠ 1 =
H(−1,1,1). Thus H is not preassociative.

Although preassociativity generalizes associativity, it remains a rather strong
property, especially when the functions have constant components. The following
result illustrates this observation.

Proposition 4.6. Let F ∶X∗ → Y be a preassociative function.

(a) If Fn is constant, then so is Fn+1.
(b) If Fn and Fn+1 are the same constant function c, then Fm = c for all m ⩾ n.

Proof. (a) For every y,y′ ∈ Xn and every x ∈ X, we have F (y) = F (y′) = cn and
hence F (xy) = F (xy′). This means that Fn+1 depends only on its first argument.
Similarly we show that it depends only on its last argument.

(b) Let xyz ∈ Xn+2. Then c = F (x) = F (xy) and hence c = F (xz) = F (xyz). So
Fn+2 = c, etc. �

We now focus on those preassociative functions F ∶X∗ → Y which are unar-
ily quasi-range-idempotent, that is, such that ran(F1) = ran(F ). As we will now
show, this special class of functions has very interesting and even surprising prop-
erties. First of all, just as for associative functions, preassociative and unarily
quasi-range-idempotent functions are completely determined by their unary and
binary components.

Proposition 4.7. Let F ∶X∗ → Y and G∶X∗ → Y be preassociative and unarily
quasi-range-idempotent functions such that F1 = G1 and F2 = G2, then F = G.

Proof. Let F ∶X∗ → Y and G∶X∗ → Y be preassociative and unarily quasi-range-
idempotent functions such that F1 = G1 and F2 = G2. We show by induction on
n ∈ N that Fn = Gn. The result clearly holds for n ⩽ 2. Suppose that it holds for
n − 1 ⩾ 1 and show that it still holds for n. Let x ∈ Xn and choose z ∈ X such
that F (z) = F (x1⋯xn−1). By induction hypothesis, we have G(z) = G(x1⋯xn−1).
Therefore by preassociativity we have Fn(x) = F2(zxn) = G2(zxn) = Gn(x). �

Remark 4. Proposition 4.7 states that any element of the class of preassociative
and unarily quasi-range-idempotent functions is completely determined inside this
class by its unary and binary components. This property is shared by other classes
of preassociative functions. Consider for example the class of functions F ∶X∗ → Y
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for which there are distinct c, c′ ∈ Y such that F1 = c and Fn = c′ for all n ⩾ 2. The
elements of this class are preassociative functions that are not unarily quasi-range-
idempotent. However, any function of this class is completely determined inside
the class by its unary and binary components.

We now give a characterization of the preassociative and unarily quasi-range-
idempotent functions as compositions of associative functions with one-to-one unary
maps. We first consider a lemma, which provides equivalent conditions for a unarily
quasi-range-idempotent function to be preassociative.

Lemma 4.8. Assume AC and let F ∶X∗ → Y be a unarily quasi-range-idempotent
function. The following assertions are equivalent.

(i) F is preassociative.
(ii) For every g ∈ Q(F1), the function H ∶X∗ → X defined by H = g ○ F is

associative.
(iii) There is g ∈ Q(F1) such that the function H ∶X∗ → X defined by H = g ○ F

is associative.

Proof. (i)⇒ (ii) By Proposition 2.2,H is unarily range-idempotent. Since g∣ran(F1) =
g∣ran(F ) is one-to-one, H is preassociative by Proposition 4.5. It follows that H is
associative by Proposition 4.3.
(ii)⇒ (iii) Trivial.
(iii) ⇒ (i) By Proposition 4.3 we have that H is preassociative. Since g∣ran(F )

is a one-to-one function from ran(F ) onto ran(g), we have F = (g∣ran(F ))−1 ○ H
and the function (g∣ran(F ))−1∣ran(H) is one-to-one from ran(H) onto ran(F ). By
Proposition 4.5 it follows that F is preassociative. �
Remark 5. Let F ∶X∗ → Y be a preassociative function of the form F = f ○ H,
where f ∶X → Y is any function and H ∶X∗ → X is any unarily range-idempotent
function. Then F = F1 ○ H by Proposition 2.4(iv). However, H need not be
associative. For instance, if F is a constant function, then H could be any unarily
range-idempotent function. However, Lemma 4.8 shows that, assuming AC, there is
always an associative solution H of the equation F = F1 ○H; for instance, H = g ○F
for g ∈ Q(F1).
Theorem 4.9. Assume AC and let F ∶X∗ → Y be a function. The following asser-
tions are equivalent.

(i) F is preassociative and unarily quasi-range-idempotent.
(ii) There exists an associative function H ∶X∗ →X and a one-to-one function

f ∶ ran(H) → Y such that F = f ○ H. In this case we have F = F1 ○ H,
f = F1∣ran(H), f−1 ∈ Q(F1), and we may choose H = g○F for any g ∈ Q(F1).

Proof. (i) ⇒ (ii) Let H ∶X∗ → X be defined as H = g ○ F , where g ∈ Q(F1). By
Proposition 2.2, H is unarily range-idempotent and we have F = f ○ H, where
f = F1∣ran(H) is one-to-one. By Lemma 4.8, H is associative. The second part of
condition (ii) follows from Proposition 2.4 (condition (iv)) and Lemma 4.8.
(ii) ⇒ (i) F is unarily quasi-range-idempotent by Proposition 2.4. It is also

preassociative by Proposition 4.5. �
Remark 6. (a) If condition (ii) of Theorem 4.9 holds, then by Eq. (1) we see

that F can be computed recursively by

Fn(x1⋯xn) = F2((f−1 ○ Fn−1)(x1⋯xn−1)xn), n ⩾ 3.
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A similar observation was already made in a more particular setting for the
so-called quasi-associative functions; see [9].

(b) A function F ∶X∗ → Y of the form F = F1 ○ H, where H is associative
need not be preassociative. The example given in Remark 3(b) illustrates
this observation. To give a second example, take X = R, F1(x) = ∣x∣ (the
absolute value of x) and Hn(x) = ∑n

i=1 xi for every n ∈ N. Then F (1) =
F (−1) but F (11) = 2 ≠ 0 = F (1(−1)). Thus F is not preassociative.

We now provide necessary and sufficient conditions on the unary and binary
components for a function F ∶X∗ →X to be preassociative and unarily quasi-range-
idempotent. The result is stated in Theorem 4.11 below and follows from the next
proposition.

Proposition 4.10. Assume AC. A function F ∶X∗ → Y is preassociative and
unarily quasi-range-idempotent if and only if ran(F2) ⊆ ran(F1) and there exists
g ∈ Q(F1) such that

(i) H2 =H2 ○ (H1, id) =H2 ○ (id,H1),
(ii) H2 is associative, and
(iii) the following holds

Fn(x1⋯xn) = F2((g ○ Fn−1)(x1⋯xn−1)xn), n ⩾ 3,
or equivalently,

Fn(x1⋯xn) = F2(H2(⋯H2(H2(x1x2)x3)⋯)xn), n ⩾ 3,
where H1 = g ○ F1 and H2 = g ○ F2.

Proof. (Necessity) Let F ∶X∗ → Y be preassociative and unarily quasi-range-idem-
potent. Then clearly ran(F2) ⊆ ran(F ) = ran(F1). Let g ∈ Q(F1) and H = g○F . By
Lemma 4.8, H is associative and hence conditions (i)–(iii) hold by Proposition 3.3.

(Sufficiency) Let F ∶X∗ → Y be a function satisfying ran(F2) ⊆ ran(F1) and
conditions (i)–(iii) for some g ∈ Q(F1). By conditions (ii) and (iii) we must have

Fn = F2 ○ (g ○ Fn−1, id) = F2 ○ (id, g ○ Fn−1) for every n ⩾ 3.
Then ran(Fn) ⊆ ran(F2) ⊆ ran(F1) for every n ⩾ 3 and hence F is unarily quasi-
range-idempotent.

Let us show that F is preassociative. By Lemma 4.8 it suffices to show that
H = g ○ F is associative. By Proposition 3.3, it suffices to show that H1 = H1 ○H1

and H2 =H1 ○H2, or equivalently, g ○F1 = g ○F1 ○ g ○F1 and g ○F2 = g ○F1 ○ g ○F2,
respectively. These identities clearly hold since g ∈ Q(F1) implies g ○F1 ○ g = g. �
Theorem 4.11. Assume AC and let F1∶X → Y and F2∶X2 → Y be two func-
tions. Then there exists a preassociative and unarily quasi-range-idempotent func-
tion G∶X∗ → Y such that G1 = F1 and G2 = F2 if and only if ran(F2) ⊆ ran(F1) and
there exists g ∈ Q(F1) such that conditions (i) and (ii) of Proposition 4.10 hold,
where H1 = g ○ F1 and H2 = g ○ F2. Such a function G is then uniquely determined
by Gn = G2 ○ (g ○Gn−1, id) for n ⩾ 3.

We close this section by introducing and discussing a stronger version of pre-
associativity. Recall that preassociativity means that the equality of the function
values of two strings still holds when adding identical arguments on the left or on
the right of these strings. Now, suppose that the equality still holds when adding
identical arguments at any place. We then have the following definition.



10 JEAN-LUC MARICHAL AND BRUNO TEHEUX

Definition 4.12. We say that a function F ∶X∗ → Y is strongly preassociative if
for every xx′yzz′ ∈X∗ we have

(3) F (xz) = F (x′z′) ⇒ F (xyz) = F (x′yz′).

Clearly, Definition 4.12 remains unchanged if we assume that ∣y∣ = 1.
As we could expect, strongly preassociative functions are exactly those preasso-

ciative functions which are symmetric, i.e., invariant under any permutation of the
arguments.

Proposition 4.13. A function F ∶X∗ → Y is strongly preassociative if and only if
it is preassociative and Fn is symmetric for every n ∈ N.

Proof. We only need to prove the necessity. Taking z = z′ = ε or x = x′ = ε in
Eq. (3) shows that F is preassociative. Taking z = x′ = ε and z′ = x, we obtain
F (xy) = F (yx) for every xy ∈ X∗. Then, by strong preassociativity we also
have F (uxvyw) = F (uyvxw) for every uxvyw ∈ X∗, which shows that F is
symmetric. �

5. Concluding remarks and open problems

We have proposed a relaxation of associativity for multiple-arity functions, namely
preassociativity, and we have investigated this new property. In particular, we
have presented characterizations of those preassociative functions which are unar-
ily quasi-range-idempotent.

This area of investigation is intriguing and appears not to have been previously
studied. We have just skimmed the surface, and there are a lot of questions to be
answered. Some are listed below.

(1) Find necessary and sufficient conditions on a class of preassociative func-
tions for each element of this class to be completely determined inside the
class by its first two components (cf. Remark 4).

(2) Find a generalization of Theorem 4.9 without the unary quasi-range-idem-
potence property.

(3) Find necessary and sufficient conditions on F1 for a function F of the form
F = F1 ○H, where H is associative, to be preassociative (cf. Remark 6(b)).
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