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Abstract

In this paper, a cell based smoothed finite element method with discrete shear gap technique is employed to study
the static bending, free vibration, mechanical and thermal buckling behaviour of functionally graded material
(FGM) plates. The plate kinematics is based on the first order shear deformation theory and the shear locking
is suppressed by the discrete shear gap method. The shear correction factors are evaluated by employing the
energy equivalence principle. The material property is assumed to be temperature dependent and graded only in
the thickness direction. The effective properties are computed by using the Mori-Tanaka homogenization method.
The accuracy of the present formulation is validated against available solutions. A systematic parametric study
is carried out to examine the influence the gradient index, the plate aspect ratio, skewness of the plate and the
boundary conditions on the global response of the FGM plates. The effect of a centrally located circular cutout
on the global response is also studied.

Keywords: functionally graded material, cell based smoothed finite element method, discrete shear gap,
viscoelastic, boundary conditions, gradient index, circular cutout

1. Introduction

With the rapid advancement of engineering, there is an increasing demand for new materials which suits the harsh
working environment without loosing it’s mechanical, thermal or electrical properties. Engineered materials such
as the composite materials are used due to their excellent strength-to and stiffness-to-weight ratios and their
possibility of tailoring the properties in optimizing their structural response. But due to the abrupt change in
material properties from matrix to fibre and between the layers, these materials suffer from pre-mature failure or
by the decay in the stiffness characteristics because of delaminations and chemically unstable matrix and lamina
adhesives. On the contrary, another class of materials, called, the Functionally Graded Materials (FGM) are made
up of mixture of ceramics and metals and are characterized by smooth and continuous transition in properties from
one surface to another [IE]. As aresult, FGMs are preferred over the laminated composites for structural integrity.
The FGMs combine the best properties of the ceramics and the metals and this has attracted the researchers to
study the characteristics of such structures.
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Background. The tunable thermo-mechanical property of the FGM has attracted researchers to study the static
and the dynamic behaviour of structures made of FGM under mechanical , , @, ] and thermal load-
ing [@, Eé, , , , , ]. Praveen et al., [@] and Reddy et al,, [@] studied the thermo-elastic response of
ceramic-metal plates using first order shear deformation theory coupled with the 3D heat conduction equation.
Their study concluded that the structures made up of FGM with ceramic rich side exposed to elevated tempera-
tures are susceptible to buckling due to the through thickness temperature variation. The buckling of skewed FGM
plates under mechanical and thermal loads were studied in [IE, 111 employing the first order shear deformation
theory and by using the shear flexible quadrilateral element. Efforts has also been made to study the mechanical
behaviour of FGM plates with geometrical imperfection [Iﬂ]. Saji et al., [@] has studied thermal buckling of
FGM plates with material properties dependent on both the composition and temperature. They found that the
critical buckling temperatures are decreased when material properties are considered to be a function of tempera-
ture as compared to the results obtained where material properties are assumed to be independent of temperature.
Ganapati at al., [@] has studied the buckling of FGM skewed plate under thermal loading. Efforts has also been
made to study the mechanical behaviour of FGM plates with geometrical imperfection [41]. More recently, re-
fined models have been adopted to study the characteristics of FGM structures [B, @, E'].

Existing approaches in the literature to study plate and shell structures made up of FGMs uses finite element
method (FEM) based on Lagrange basis functions ], meshfree methods [@, @] and recently Valizadeh et
al., [@] used non-uniform rational B-splines based FEM to study the static and dynamic characteristics of FGM
plates in thermal environment. Tran et al., [Iﬂ] employed isogeometric finite element method to study thermal
buckling of functionally graded plates. Even with these different approaches, the plate elements suffer from shear
locking phenomenon and different techniques were proposed to alleviate the shear locking phenomenon. Another
set of methods have emerged to address the shear locking in the FEM. By incorporating the strain smoothing
technique into the finite element method (FEM), Liu et al., [@] have formulated a series of smoothed finite
element methods (SFEM), named as cell-based SFEM (CS-FEM) [@, ], node-based SFEM [Iﬂ], edge-based
SFEM [@], face-based SFEM [Iﬁ] and a-FEM [IE]. And recently, edge based imbricate finite element method
(EI-FEM) was proposed in [B] that shares common features with the ES-FEM. As the SFEM can be recast within
a Hellinger-Reissner variational principle, suitable choices of the assumed strain/gradient space provides stable
solutions. Depending on the number and geometry of the subcells used, a spectrum of methods exhibiting a
spectrum of properties is obtained. Interested are referred to the literature [Iﬂ, ] and references therein. Nguyen-
Xuan et al., [31] employed CS-FEM for Mindlin-Reissner plates. The curvature at each point is obtained by a
non-local approximation via a smoothing function. From the numerical studies presented, it was concluded that
the CS-FEM technique is robust, computationally inexpensive, free of locking and importantly insensitive to
mesh distortions. The SFEM was extended to various problems such as shells [@], heat transfer ], fracture
mechanics [@] and structural acoustics [IE] among others. In [@], CS-FEM has been combined with the extended
FEM to address problems involving discontinuities. The above list is no way comprehensive and interested readers
are referred to the literature and references therein and a recent review paper by Jha and Kant [IE] on FGM plates.

Approach. In this paper, we study the static and the dynamic characteristics of FGM plates by using a cell-based
smoothed finite element method with discrete shear gap technique [@]. Three-noded triangular element is em-
ployed in this study. The effect of different parameters viz., the material gradient index, the plate aspect ratio, the
plate slenderness ratio and the boundary condition on the global response of FGM plates are numerically studied.
The effect of centrally located circular cutout is also studied. The present work focusses on the computational
aspects of the governing equations, hence, the attention has been restricted to Reissner-Mindlin plate theory. It is
noted that the extension to higher order theories is possible.

Outline. The paper is organized as follows, the next section will give an introduction to FGM and a brief overview
of Reissner-Mindlin plate theory. Section[3|presents an overview of the cell-based smoothed finite element method



with discrete shear gap technique. The efficiency of the present formulation, numerical results and parametric
studies are presented in Section ] followed by concluding remarks in the last section.

2. Theoretical Background

2.1. Reissner-Mindlin plate theory

The Reissner-Mindlin plate theory, also known as the first order shear deformation theory (FSDT) takes into
account the shear deformation through the thickness. Using the Mindlin formulation, the displacements u, v, w at
a point (x, y, z) in the plate (see Figure (I))) from the medium surface are expressed as functions of the mid-plane
displacements u,, v,, w, and independent rotations 6,, 6, of the normal in yz and xz planes, respectively, as:

u(x,y,z,1) Uo(x,y,1) + 20,(x, y,1)
V(-x, y’ Zs t) = V()(-x, y’ t) + Zey(x, y’ t)
wx,y,z2,1) = wy(x,y,1) (1)

where 7 is the time. The strains in terms of mid-plane deformation can be written as:

()2}

(a) (b)
Figure 1: (a) coordinate system of a rectangular FGM plate, (b) Coordinate system of a skew plate

The midplane strains &,, the bending strain &, and the shear strain &, in Equation (2]) are written as:

Up x Hx,x
&p = Vo,y > &p = Oy ’
Uoy + Vox Ory + Oy.x
Hx + W() X
& = . 3)
Oy + W,

where the subscript ‘comma’ represents the partial derivative with respect to the spatial coordinate succeeding it.
The membrane stress resultants N and the bending stress resultants M can be related to the membrane strains, &,
and bending strains g, through the following constitutive relations:
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where the matrices A = A;;, B = B;;and Dy, = D;;; (i, j = 1, 2, 6) are the extensional, bending-extensional coupling
and bending stiffness coefficients and are defined as:

{Aij, Bij, D,’j} :j:

h/2

h/2_
0,{1. 2. 2} dz (5)

Similarly, the transverse shear force Q = {Q,., O,.} is related to the transverse shear strains &, through the follow-
ing equation:

Qij = Eijé‘s (6)
h/2 —

where E = E;; = o Q;viv; dz; (i, j = 4,5) are the transverse shear stiffness coeflicients, v;, v; is the transverse
shear coefficient for non-uniform shear strain distribution through the plate thickness. The stiffness coefficients
Q,; are defined as:

_ _ E _ E _ _
O :Q22:%2 Qp = ;_—(2; Q6= 02 =0
— — — E
Qu = Oss = Qo = % (7N

where the modulus of elasticity E(z) and Poisson’s ratio v are given by Equation (20). The thermal stress resultant
N® and the moment resultant M™ are:

A !

Nt = { NB b= f 0,a(z,T){ 1 yAT(z) dz
N ) 0
7 RIA !

M® = MB o= f 0,a(z,T){ 1 $AT(z) zdz
MS; —h/2 0

®)

where the thermal coefficient of expansion a(z, T') is given by Equation (21) and AT (z) = T(z) — T, is the tem-
perature rise from the reference temperature and 7, is the temperature at which there are no thermal strains. The
strain energy function U is given by:

1
U(@d) = 3 L {sgAsp + &,Bg;, + £,Bg, + £,De;, + £, Eg, — g;,N" — ngth} dQ )



where 6 = {u,v,w,6,,6,} is the vector of the degree of freedom associated to the displacement field in a finite
element discretization. Following the procedure given in [@], the strain energy function U given in Equation (9)
can be rewritten as:

1
U(b) = 5(sTKé (10)
where K is the linear stiffness matrix. The kinetic energy of the plate is given by:
1 I
T =5 f {p( + 32 +W2) + 12 + 62)} dQ (11)
Q

where p = f_ };//22 p(2)dz, I = f_ };//22 7*p(z) dz and p(z) is the mass density that varies through the thickness of the

plate. When the plate is subjected to a temperature field, this in turn results in in-plane stress resultants, N, The
external work due to the in-plane stress resultants developed in the plate under a thermal load is given by:

2
@ (12)

W (62 02) N (6, + ) + 200 (0.0, + 0,6,) | a0

1
V(é) = f{— [NS;W?X + N;t;wz) + ZN;?,W’XW’),] +
2
24

Substituting Equation Q) - (I2) in Lagrange’s equation of motion, one obtains the following finite element equa-
tions:

Static bending:
Ko =F (13)
Free vibration:
Mo+ (K+Kg)d=0 (14)
Buckling analysis:
Mechanical Bucklingﬁ.
K+AyKz)d6=0 (15)
Thermal Buckling.
K+47Kp)6=0 (16)

where A, includes the critical value applied in-plane mechanical loading and A7 is the critical temperature dif-
ference and K, K¢ are the linear stiffness and geometric stiffness matrices, respectively. The critical temperature
difference is computed using a standard eigenvalue algorithm.

2.2. Functionally graded material

A rectangular plate made of a mixture of ceramic and metal is considered with the coordinates x,y along the
in-plane directions and z along the thickness direction (see Figure (dl)). The material on the top surface (z = h/2)
of the plate is ceramic rich and is graded to metal at the bottom surface of the plate (z = —h/2) by a power
law distribution. The effective properties of the FGM plate can be computed by using the rule of mixtures or
by employing the Mori-Tanaka homogenization scheme. Let V(i = ¢, m) be the volume fraction of the phase

ZPrebuckling deformations are assumed to be zero or negligible in the analysis (including those coming from in-plane and out-of-
plane coupling related to FGM and temperature variation through the thickness of the plate).



material. The subscripts ¢ and m refer to ceramic and metal phases, respectively. The volume fraction of ceramic
and metal phases are related by V. + V,, = 1 and V. is expressed as:

2z+h) (17)

2h
where n is the volume fraction exponent (n > 0), also known as the gradient index. The variation of the compo-

sition of ceramic and metal is linear for n =1, the value of n = 0 represents a fully ceramic plate and any other
value of n yields a composite material with a smooth transition from ceramic to metal.

Ve(2) = (

Mori-Tanaka homogenization method. Based on the Mori-Tanaka homogenization method, the effective Young’s
mo[(lﬁlus and Poisson’s ratio are computed from the effective bulk modulus K and the effective shear modulus G
as ]

Keff - Km _ Vc Geff - Gm _ Vc (18)
_ - 3(K0_Km) ’ — - (Gc_Gm)
Kc Km 1+ Vm 3K, 4G,y Gc Gm 1+ Vm Gt f)
where
Gm(gKm + 8Gﬂ‘l)
= 19
S 6(K,, + 2G,,) (19)
The effective Young’s modulus E.¢ and Poisson’s ratio veg can be computed from the following relations:
9K Gt 3K.q — 2G.
Ey = el Veir = Dt T SMeff (20)
3Keff + Geff 2(3Keff + Geff)

The effective mass density p.s is computed using the rule of mixtures (p.rr = p.Ve + pnVn). The effective heat
conductivity k.¢ and the coefficient of thermal expansion a.g is given by:

Keff — K _ Vc

Ke — Ky 1+ Vm —(Kg;:m)

1 1
Qeff — Ay (Kei'f Km) (2 1)
e — Ay (L _ L)

KC Kln

Temperature dependent material property. The material properties that are temperature dependent are written
as IE
P=P,(P. T +1+P\T+PT*+P;T) (22)

where P,, P_y, P;, P, and P; are the coeflicients of temperature 7' and are unique to each constituent material
phase.

Temperature distribution through the thickness. The temperature variation is assumed to occur in the thickness
direction only and the temperature field is considered to be constant in the xy-plane. In such a case, the temperature
distribution along the thickness can be obtained by solving a steady state heat transfer problem:

—i k(z)—|=0, T=T.atz=h/2, T=T,atz=-h/2 (23)
dz dz



The solution of Equation (23)) is obtained by means of a polynomial series ] as

T(Z) =Tn+ (TC - Tm)U(Z, h) (24)

where,

= L[[(2 Kem  (2z+h\""
ToW=Cc\ "2 )" s e, \ " 2
Kgm 2Z + l’l 2n+1 sz 2Z + h 3n+1 (25)
Qn+ D2\ 2n Gn+ i3\ 2n
K?m ZZ + h 4n+1 Ksm 2Z + /’l Sn+1
+ - ;
(4n+ it \ 2n (Sn+ i3\ 2n
C _ 1 Kem + K?m Kgm
 (m+ Dk, Qu+ D2 Gn+ DS
Kt K© (26)

Tan+ Dt (5n+ DS,

where k., = K, — Kp,.

3. Cell based smoothed finite element method with discrete shear gap technique

In this study, three-noded triangular element with five degrees of freedom (dofs) 6 = {u, v, w, 6, 6,} is employed.
The displacement is approximated by

u' = Z N6, Q27)
1
where §; are the nodal dofs and N, are the standard finite element shape functions given by

N=[1-¢-n, 1 €& (28)

In this work, the cell-based smoothed finite element method (CSFEM) is combined with stabilized discrete
shear gap method (DSG) for three-noded triangular element, called as ‘cell-based discrete shear gap method
(CS-DSG3Yy’ [@]. The cell-based smoothing technique decreases the computational complexity, whilst DSG sup-
presses the shear locking phenomenon when the present formulation is applied to thin plates. Interested readers
are referred to the literature and references therein for the description of cell-based smoothing technique [Iﬁ, ]
and DSG method [|I|]. In the CS-DSG3, each triangular element is divided into three subtriangles. The displace-
ment vector at the center node is assumed to be the simple average of the three displacement vectors of the three
field nodes. In each subtriangle, the stabilized DSG3 is used to compute the strains and also to avoid the transverse
shear locking. Then the strain smoothing technique on the whole triangular element is used to smooth the strains

on the three subtriangles. Consider a typical triangular element Q, as shown in Figure @). This is first divided
3

into three subtriangles A, A, and A; such that Q, = (J A;. The coordinates of the center point X, = (x,,Y,) is
i=1

given by:

1
(X0, Yo) = 3 (X1 1) (29)



Figure 2: A triangular element is divided into three subtriangles. A, A, and Aj are the subtriangles created by connecting the central
point O with three field nodes.

The displacement vector of the center point is assumed to be a simple average of the nodal displacements as

1
660 = 5661 (30)

The constant membrane strains, the bending strains and the shear strains for subtriangle A, is given by:

660
8[):[[’?1 P?‘ P?l] 0.1
662
660
e = by b by [ Ga
662
660
g =] st s s[4 6 31)
662

Upon substituting the expression for 8, in Equation (3I)), we obtain:

A _ 1A Ay 1A Ay 1A _ Ay
& _[Epl TPy 3P TPy 3P ] 0 =B,'d

g =] b by b bl Ibd | 6. { =By,
6e1
s;'+ 83 %s?‘] 0, ¢ =BY6,
6@3
(32)



where p;, i = 1,2,3),b;, (i =1,2,3)and s;, (i = 1, 2, 3) are given by:

1 b—-c 0 00O c 00O0O0 - 0O0O0O
»=75a d-a 0 0 0 0 -4 000 a 0O0O0O
‘ld-a b-c 000 -d ¢ 000 a -b 000

Pi P2 p3
1 0 00 b-c 0000 ¢ O0O0O0OO0-b O
Bh:ZA 0 00 0 d-a 000 O -dO0O0O0 0 a
10 00 d-a b—c 00 0 -d ¢ 000 a —-b

b[ b2 b3

o
S
[
)
o>

o
o

(33)

00 ¢ ac/2 bc/2 0 0 —=b -bd/2 -bc/2
0 0 -d -ad/2 -bd/2 0 0 a ad/2 ac/2

1[0
BS‘er[o 0 d-a 0 A

S1 S2 $3

where a = x,—x1;b = y,—y;; ¢ = y3—y; and d = x3—x; (see Figure (3))), A, is the area of the triangular element and
B; is altered shear strains ]. The strain-displacement matrix for the other two triangles can be obtained by cyclic
permutation. Now applying the cell-based strain smoothing [@], the constant membrane strains, the bending strains
and the shear strains are respectively employed to create a smoothed membrane strain &, smoothed bending strain
&, and smoothed shear strain £;0n the triangular element €, as:

A

\j

A
\j

b

Figure 3: Three-noded triangular element and local coordinates in discrete shear gap method.
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5, = f & ®.(x)dQ = )" &) f D, (x) dQ

i=1

Q, A;
3
&y = f &,0,(x) dQ = Z sﬁ" f o, (x) dQ
Q. =y
3
g, = f £,0,(x) dQ = > & f @,(x) dO (34)
Q. =y
where @, (x) is a given smoothing function that satisfies:
| 1/A, xeQ,
q)(X) - { 0 X ¢ Qc (35)

where A, is the area of the triangular element. The smoothed membrane strain, the smoothed bending strain and
the smoothed shear strain is then given by

(8,88 =" (36)

The smoothed elemental stiffness matrix is given by

K= f B,AB + B,BB, + B,BE. + B,DB, + B,EB. dQ
Q.

- (ﬁ,,Aﬁ,f +B,BB, + B,BB, + B,DB, +§3E§§)Ae 37)

where Ep, B, and B, are the smoothed strain-displacement matrix. The mass matrix M, is computed by following
the conventional finite element procedure. To further improve the accuracy of the solution and to stabilize the
shear force oscillation, the shear stiffness coefficients are multiplied by the following factor:

h3

ShearFac = m (3 8)

where « is a positive constant and 4, is the longest length of the edge of an element.

4. Numerical examples

In this section, we present the static bending response, the linear free vibration and buckling analysis of FGM
plates using cell based smoothed finite element method with discrete shear gap technique. The effect of various
parameters, viz., material gradient index n, skewness of the plate ¢, the plate aspect ratio a/b, the plate thickness
a/h and boundary conditions on the global response is numerically studied. The top surface of the plate is ceramic
rich and the bottom surface of the plate is metal rich. Here, the modified shear correction factor obtained based
on energy equivalence principle as outlined in [@] is used. The boundary conditions for simply supported and
clamped cases are : Simply supported boundary condition:

10



Up =w, =6,=0 on x=0,a; v,=w,=6,=0 on y=0,b 39)
Clamped boundary condition:

Up =Wy =6,=v,=60,=0 onx=0,a & y=0,b (40)

Skew boundary transformation. For skew plates, the edges of the boundary elements may not be parallel to the
global axes (x,y,z). In order to specify the boundary conditions on skew edges, it is necessary to use the edge
displacements (u),v,,w’) etc, in a local coordinate system (x’,y’,z") (see Figure (I))). The element matrices
corresponding to the skew edges are transformed from global axes to local axes on which the boundary conditions
can be conveniently specified. The relation between the global and the local degrees of freedom of a particular
node is obtained by:

60 =L,o 41)

where 6§ and & are the generalized displacement vector in the global and the local coordinate system, respectively.
The nodal transformation matrix for a node / on the skew boundary is given by:

cosy siny 0O 0 0
—siny cosy O 0 0
L, = 0 01 0 0 (42)
0 0 0 cosy siny
0 0 0 —siny cosy

where ¢ defines the skewness of the plate.

4.1. Static Bending

Let us consider a Al/ZrO, FGM square plate with length-to-thickness a/h = 5, subjected to a uniform load with
fully simply supported (SSSS) boundary conditions. The Young’s modulus for ZrO, is E. = 151 GPa and for
aluminum is E,, = 70 GPa. Poisson’s ratio is chosen as constant, v = 0.3. Table [Il compares the results from the
present formulation with other approaches available in the literature [IE, @, , ] and a very good agreement
can be observed. Next, we illustrate the performance of the present formulation for thin plate problems. A simply
supported square plate subjected to uniform load is considered, while the length-to-thickness (a/h) varies from 5
to 10*. Three individual approaches are employed: discrete shear gap method referred to as DSG3, the cell-based
smoothed finite element method with discrete shear gap technique (CSDSG3) and the stabilized CSDSG3. The
normalized center deflection w, = 100WC% is shown in Figure ). It is observed that the DSG3 results are
subjected to shear locking when the plate becomes thin (a/h > 100). However, the present formulation, CSDSG3
with stabilization is less sensitive to shear locking.

4.2. Free flexural vibrations

In this section, the free flexural vibration characteristics of FGM plates with and without centrally located cutout
in thermal environment is studied numerically. Figure (3) shows the geometry of the plate with a centrally lo-
cated circular cutout. In all cases, we present the non-dimensionalized free flexural frequency defined as, unless
otherwise stated:

(43)
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Table 1: The normalized center deflection w, = 100W012(f+l23)1m4 for a simply supported Al/ZrO,-1 FGM square plate with a/h =5,
subjected to a uniformly distributed load p.

Method gradient index, n
0 1 2

4x4 0.1443 0.2356 0.2644
8x8 0.1648 0.2703 0.3029
16x16 0.1701 0.2795 0.3131
32x32 0.1714 0.2819 0.3158
40x40 0.1716 0.2822 0.3161
NS-DSG3 [32] 0.1721 0.2716 0.3107
ES-DSG3 [32] 0.1700 0.2680 0.3066
MLPG [12] 0.1671 0.2905 0.3280
kp—Ritz [18] 0.1722 0.2811 0.3221
MITC4 [32] 0.1715 0.2704 0.3093

IGA-Quadratic [45] 0.1717 0.2719 0.3115

0.18 —_— —————rry

— DSG3

—&— CSDSG3
0.16 —6— CSDSG3 with Stabilization
0.14 e

0.12

0.081

Normalized central deflection
o
=
T

0.06

0.04

0.02 L L L PR | L L L PR | L L L PR | L L L L
10 10 10 10 10
a/h

Figure 4: The normalized center deflection as a function of normalized plate thickness for a simply supported square FGM plate subjected
to a uniform load.
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Figure 5: Plate with a centrally located circular cutout. r is the radius of the circular cutout.

where w is the natural frequency, p., D, = % are the mass density and the flexural rigidity of the ceramic
phase. The FGM plate considered here is made up of silicon nitride (Si;N,4) and stainless steel (SUS304). The ma-
terial is considered to be temperature dependent and the temperature coefficients corresponding to SizN,/SUS304
are listed in Table [@, @]. The mass density (p) and the thermal conductivity (k) are p, = 2370 kg/m?, k. =
9.19 W/mK for SizNy4 and p,, = 8166 kg/m>, «,, = 12.04 W/mK for SUS304. Poisson’s ratio v is assumed to be
constant and taken as 0.28 for the current study [44]. Before proceeding with a detailed study on the effect of
gradient index on the natural frequencies, the formulation developed herein is validated against available analyt-
ical/numerical solutions pertaining to the linear frequencies of a FGM plate in thermal environment and a FGM
plate with a centrally located circular cutout. The computed frequencies: (a) for a square simply supported FGM
plate in thermal environment with a/h = 10 is given in Table 3 and (b) the mesh convergence and comparison of
linear frequencies for a square plate with circular cutout is given in Tables ] -[3 It can be seen that the numerical
results from the present formulation are found to be in very good agreement with the existing solutions. For the
uniform temperature case, the material properties are evaluated at 7. = T,, = 300K. The temperature is assumed
vary only in the thickness direction and determined by Equation (24)). The temperature for the ceramic surface is
varied, whist a constant value on the metallic surface is maintained (7,, = 300K) to subject a thermal gradient.
The geometric stiffness matrix is computed from the in-plane stress resultants due to the applied thermal gradient.
The geometric stiffness matrix is then added to the stiffness matrix and the eigenvalue problem is solved. The
effect of the material gradient index is also shown in Tables [3] & [3] and the influence of a centrally located cutout
is shown in Tablesd]-[3l The combined effect of increasing the temperature and the gradient index is to lower the
fundamental frequency, this is due to the increase in the metallic volume fraction. Figure (@) shows the influence
of the cutout size on the frequency for a plate in thermal environment (A7 = 100K). The frequency increases
with increasing cutout size. This can be attributed to the decrease in stiffness due to the presence of the cutout.
Also, it can be seen that with increasing gradient index, the frequency decreases. In this case, the decrease in
the frequency is due to the increase in the metallic volume fraction. It is observed that the combined effect of
increasing the gradient index and the cutout size is to lower the fundamental frequency. Increasing the thermal
gradient further decreases the fundamental frequency.

4.3. Buckling analysis

In this section, we present the mechanical and thermal buckling behaviour of functionally graded skew plates.

13



Table 2: Temperature dependent coeflicient for material Si3N4/SUS304, Ref [@, ].

Material Property P, P, P, P, P;
Si.N E(Pa) 348.43¢° 0.0 -3.070e™* 2.160e”7 -8.946¢7!!
131N4
@ (1/K) 5.8723e® 0.0 9.095¢* 0.0 0.0
E(Pa) 201.04¢° 0.0 3.079¢™* -6.534e”’ 0.0
SUS304
a (1/K)  12.330e® 0.0 8.086e™* 0.0 0.0

Table 3: The first normalized frequency parameter w for a fully simply supported SizN4/SUS304 FGM square plate with a/h = 10 in
thermal environment.

T.T, gradient index n
0 1 5 10

Present 18.3570 11.0690 9.0260 8.5880
300,300

Ref. [25] 18.3731 11.0288 9.0128 8.5870

Present 17.9778 10.7979 8.8626 8.3182
400,300

Ref. [25] 17.9620 10.7860 8.7530 8.3090

Present 17.1205 10.1679 8.1253 7.6516
600,300

Ref. [25] 17.1050 10.1550 8.1150 7.6420

Table 4: Convergence of fundamental frequency (Q - [;ﬂg ,hf:) ]1/4) with mesh size for an isotropic plate with a central cutout.
Number of nodes Mode 1 Mode 2
333 6.1025 8.6297
480 6.0805  8.5595
719 6.0663 8.5192
1271 6.0560 8.4852
Ref. [35] 6.1725 8.6443
Ref. [14] 6.2110 8.7310

Table 5: Comparison of fundamental frequency for a simply supported FGM plate with a/h =5 and r/a = 0.2.

T, gradient index, n
0 1 2 5 10
Ref. [35] 17.6855 10.6681 9.6040 8.7113 8.2850
Present  17.7122 10.6845 9.6188 8.7246 8.2976
Ref. [35] 17.4690 10.5174 9.4618 8.5738 8.1484
Present  17.5488 10.5775 9.5197 8.6309 8.2059

300

400
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Figure 6: Effect of the cutout size on the fundamental frequency (Q2) for a square simply supported FGM plate with a central circular
cutout in thermal environment AT = 100K (7, = 400K, T, = 300K) for different gradient index 7.

Mechanical Buckling

The FGM plate considered here consists of Aluminum (Al) and Zirconium dioxide (ZrO;). The material is
considered to be temperature independent. The Young’s modulus (E) for ZrO, is E. = 151 GPa and for Al is
E,, = 70 GPa. For mechanical buckling, we consider both uni- and bi-axial mechanical loads on the FGM plates.
In all cases, we present the critical buckling parameters as, unless otherwise specified:

— N, xxcrb2
cru 71'2 Dc
NO b?
_ Mlyyer
/lcrb - 71'2 DC (44)

where A, and Ay, are the critical buckling parameters for uni- and bi-axial load, respectively, D, = E.h*/(12(1 —
v?)). The critical buckling loads evaluated by varying the skew angle of the plate, volume fraction index and
considering mechanical loads (uni- and biaxial compressive loads) are shown in Tables |6 for a/h = 100. The
efficacy of the present formulation is demonstrated by comparing our results with those in ]. It can be seen
that increasing the gradient index decreases the critical buckling load. A very good agreement in the results can
be observed. It is also observed that the decrease in the critical value is significant for the material gradient index
n < 2 and that further increase in n yields less reduction in the critical value, irrespective of the skew angle.
The effect of the plate aspect ratio and the gradient index on the critical buckling load is shown in Figure ()
for a simply supported FGM plate under uni-axial mechanical load. It is observed that the combined effect of
increasing the gradient index and the plate aspect ratio is to lower the critical buckling load. Table [7] presents the
critical buckling parameter for a simply supported FGM with a centrally located circular cutout with r/a = 0.2. It
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can be seen that the present formulation yields comparable results. The effect of increasing the gradient index is to
lower the critical buckling load. This can be attributed to the stiffness degradation due to increase in the metallic
volume fraction. Figure (8)) shows the influence of a centrally located circular cutout and the gradient index on
the critical buckling load under two different boundary conditions, viz., all edges simply supported and all edges
clamped. In this case, the plate is subjected to a uni-axial compressive load. It can be seen that increasing the
gradient index decreases the critical buckling load due to increasing metallic volume fraction, whilst, increasing
the cutout radius decreases the critical buckling load in the case of simply supported boundary conditions. This
can be attributed to the stiffness degradation due to the presence of a cutout and the simply supported boundary
condition. In case of the clamped boundary condition, the critical buckling load first decreases with increasing
cutout radius due to stiffness degradation. Upon further increase, the critical buckling load increases. This is
because, the clamped boundary condition adds stiffness to the system which overcomes the stiffness reduction
due to the presence of a cutout.

Table 6: Critical buckling parameters for a thin simply supported FGM skew plate with a/h = 100 and a/b = 1.

Skew angle A, Gradient index, n
0 1 5 10
Ref. [11] Present Ref.[11] Present
Aew  4.0010  4.0034 1.7956  1.8052 1.2624 1.0846

’ Aev  2.0002  2.0017  0.8980 0.9028 0.6312 0.5423
15° A 43946 44007 19716 19799 1.3859 1.1915

Aoy 2.1154 21187 09517 0.9561 0.6683 0.5741
30° Aew  5.8966 59317  2.6496 2.6496 1.8586 1.6020

Aeb  2.5365 25491  1.1519  1.1520 0.8047 0.6909

Table 7: Comparison of critical buckling load A, = % for a simply supported FGM plate with a/h = 100 and r/a = 0.2. The
effective material properties are computed by rule of mixtures. In order to be consistent with the literature, the properties of the metallic
phase is used for normalization.

gradient index, n Ref. [52] Present % difference

0 52611  5.2831 -0.42
0.2 4.6564  4.6919 -0.76
1 3.6761 3.663 0.36
2 3.3672  3.3961 -0.86
5 3.1238  3.1073 0.53
10 29366  2.8947 1.43

Thermal Buckling
The thermal buckling behaviour of simply supported functionally graded skew plate is studied next. The top
surface is ceramic rich and the bottom surface is metal rich. The FGM plate considered here consists of aluminum
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Figure 7: Effect of plate aspect ratio a/b and gradient index on the critical buckling load for a simply supported FGM plate under
uni-axial compression with a/h = 10.
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Figure 8: Variation of the critical buckling load, A, = Iirf";‘[fz with cutout dimensions for a square FGM plate with a/h=10 subjected to

uniaxial compressive loading for different gradient index n and various boundary conditions.
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and alumina. The Young’s modulus, the thermal conductivity and the coefficient of thermal expansion for alumina
is E. =380 GPa, K, =10.4 W/mK, @, = 7.4 x 107° 1/°C, and for aluminum, E,, = 70 GPa, K,, = 204 W/mK, «,, =
23 x 107 1/°C, respectively. Poisson’s ratio is chosen as constant, v = 0.3. The temperature rise of T,, = 5°C in
the metal-rich surface of the plate is assumed in the present study. In addition to nonlinear temperature distribution
across the plate thickness, the linear case is also considered in the present analysis by truncating the higher order
terms in Equation (23). The plate is of uniform thickness and simply supported on all four edges. Table[Blshows the
convergence of the critical buckling temperature with mesh size for different gradient index, n. It can be seen that
the results from the present formulation are in good very agreement with the available solution. The influence of
the plate aspect ratio a/b and the skew angle ¢ on the critical buckling temperature for a simply supported square
FGM plates are shown in Figures (@) and (I0). It is seen that increasing the plate aspect ratio decreases the critical
buckling temperature for both linear and nonlinear temperature distribution through the thickness. The critical
buckling temperature increases with increase in the skew angle. The influence of the gradient index n is also
shown in Figure (I0). It is seen that with increasing gradient index, n, the critical buckling temperature decreases.
This is due to the increase in the metallic volume fraction that degrades the overall stiffness of the structure. Figure
() shows the influence of the cutout radius and the material gradient index on the critical buckling temperature.
Both linear and nonlinear temperature distribution through the thickness is assumed. Again, it is seen that the
combined effect of increasing the gradient index n and the cutout radius r/a is to lower the buckling temperature.
For gradient index n = 0, there is no difference between the linear and the nonlinear temperature distribution
through the thickness as the material is homogeneous through the thickness. While, for n > 0, the material is
heterogeneous through the thickness with different thermal property.

Table 8: Convergence of the critical buckling temperature for a simply supported FGM skew plate with a/h = 10 and a/b = 1. Nonlinear
temperature rise through the thickness of the plate is assumed.

Mesh Gradient index, n
0 1 5 10
8%8 3383.40 2054.61 1539.24 1496.36

16x16 3286.90 1995.07 1495.25 1453.99
32x32 326391 1980.96 1484.76 1443.86
40x40 3261.17 1979.30 1483.51 1442.60
Ref. [10] 3257.47 1977.01 1481.83 1441.02

5. Conclusion

In this paper, we applied the cell-based smoothed finite element method with discrete shear gap technique to study
the static and the dynamic response of functionally graded materials. The first order shear deformation theory was
used to describe the plate kinematics. The efficiency and accuracy of the present approach is demonstrated with
few numerical examples. This improved finite element technique shows insensitivity to shear locking and produce
excellent results in static bending, free vibration and buckling of functionally graded plates.
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