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Abstract Recent development on distributed systems has

shown that a variety of fairness constraints (some of which

are only recently defined) play vital roles in designing self-

stabilizing population protocols. Existing model checkers are

deficient in verifying the systems as only limited kinds of fair-

ness are supported with limited verification efficiency. In this

work, we support model checking of distributed systems in

the toolkit PAT (process analysis toolkit), with a variety of

fairness constraints (e.g., process-level weak/strong fairness,

event-level weak/strong fairness, strong global fairness). It

performs on-the-fly verification against linear temporal prop-

erties. We show through empirical evaluation (on recent pop-

ulation protocols as well as benchmark systems) that PAT has

advantage in model checking with fairness. Previously un-

known bugs have been revealed against systems which are

designed to function only with strong global fairness.

Keywords model checking, fairness, PAT, verification tool,

formal methods

1 Introduction

In the area of distributed and concurrent system verification,

liveness means something “good” must eventually happen.
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For instance, a typical requirement for leader election proto-
cols is that one and only one leader must be elected even-
tually in a network. A counterexample to a liveness prop-
erty (against a finite state system) is a loop (or a deadlock

state, which can be viewed as a trivial loop) during which the

“good” thing never occurs. For instance, the network nodes

may repeatedly exchange a sequence of messages and never

elect a leader.

Fairness, which is concerned with a fair resolution of non-

determinism, is often necessary and important to prove live-

ness properties. Fairness is an abstraction of the fair scheduler

in a multi-threaded programming environment or the relative

speed of the processors in distributed systems. Without fair-

ness, verification of liveness properties often produces unre-

alistic loops during which one process or event is infinitely

ignored by the scheduler or one processor is infinitely faster

than others. It is important to rule out those counterexam-

ples and utilize computational resources to identify the real

bugs. However, systematically ruling out counterexamples

due to lack of fairness is highly non-trivial. It requires flex-

ible specification of fairness as well as efficient verification

with fairness. In this work, we focus on formal system anal-

ysis with fairness assumptions. The objective is to deliver a

toolkit which model checks linear temporal logic (LTL) prop-

erties against distributed systems functioning with a variety

of fairness constraints.

Fairness and model checking with fairness have attracted
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much theoretical interest for decades [1–5]. Their practi-

cal implications in system/software design and verification

have been discussed extensively. Recent development on dis-

tributed systems show that there are a family of fairness no-

tions, including a newly formulated fairness notion named

strong global fairness [6], which are crucial for design-

ing self-stabilizing distributed algorithms [6–9]. The popu-

lation protocol model has emerged as an elegant computa-

tion paradigm for describing mobile ad hoc networks [7].

Such networks consist of multiple mobile nodes which inter-

act with each other to carry out a computation. Application

domains of the protocols include wireless sensor networks

and biological computers. The interaction events among the

nodes are subject to fairness constraints. One essential prop-

erty of population protocols is that all nodes must eventu-

ally converge to the correct output values (or configurations).

A number of population protocols have been proposed and

studied [6–9]. Fairness plays an important role in the proto-

cols. For instance, in [6] it was shown that with the help of

an eventual leader detector (see details in Section 2), self-

stabilizing algorithms can be developed to handle two nat-

ural classes of network graphs: complete graphs and rings.

The algorithm for the complete graph works with event-level

strong fairness, whereas the algorithm for rings, only works

with strong global fairness. It has been proved that with only

event-level strong fairness or weaker, uniform self-stabilizing

leader election in rings is impossible [6]. Because the algo-

rithms are designed to function with fairness, model checking

of (implementations of) the algorithms thus must be carried

out with the respective fairness constraints.

Existing model checkers are ineffective with respect to fair-

ness. One way to apply existing model checkers for verifica-

tion with fairness constraints is to re-formulate the property

so that fairness constraints become premises of the property.

A liveness property φ is thus verified by showing the truth

value of the following formula:

f airness assumptions =⇒ φ

This practice is, though flexible, deficient for the reason be-

low. Model checking is PSPACE-complete in the size of the

formula. In particular, automata-based model checking relies

on constructing a Büchi automaton from the LTL formula.

The size of the Büchi automaton is exponential to the size of

the formulas. Thus, it is infeasible to handle large formulas,

whereas a typical system may have multiple or many fairness

constraints. There has been dedicated research on handling

large LTL formulae [10, 11].

In [12], Pang et al. applied the SPIN model checker to es-

tablish the correctness of a family of population protocols.

Only protocols relying on a notion of weak fairness oper-

ating on very small networks were verified because of the

problems discussed above. Protocols relying on a notion of

stronger fairness (e.g., strong fairness or strong global fair-

ness) are beyond the capability of SPIN even for the smallest

network (e.g., with three nodes). It is important to develop an

alternative approach and toolkit which can handle larger net-

works because real counterexamples may only be present in

larger networks, as shown in Section 5.

An alternative method is to design specialized verifica-

tion algorithms which take fairness into account while per-

forming model checking. The focus of existing model check-

ers has been on process-level weak fairness, which, infor-

mally speaking, states that every process shall make infinite

progress if always possible (see detailed explanation in Sec-

tion 2). For instance, SPIN has implemented a model check-

ing algorithm which handles this kind of fairness. The idea is

to copy the global reachability graph K + 2 times (for K pro-

cesses) so as to give each process a fair chance to progress.

Process-level strong fairness is not supported because of its

complexity. It has been shown that process-level fairness may

not be sufficient, e.g., for population protocols.

In this work, we enhance a toolkit PAT (process analysis

toolkit) to support on-the-fly model checking with a variety of

fairness constraints including process-level weak/strong fair-

ness, event-level weak/strong fairness, strong global fairness,

etc. Our model checking algorithm unifies previous work on

model checking based on finding strongly connected com-

ponents (SCC) and extends it to handle newly proposed no-

tions like strong global fairness and event-labeled fairness ef-

ficiently. After enhancement, PAT supports a rich modeling

language and an easy way of applying fairness. A PAT user

can choose one of the fairness constraints and apply it to the

whole system. Using PAT, we identified previously unknown

bugs in the implementation of population protocols [6, 13].

For experiments, we compare PAT with SPIN over recent dis-

tributed algorithms as well as benchmark systems. We show

that our approach handles fairness more flexibly and effi-

ciently.

The main contribution of this work is the enhancement of

PAT to support modeling, simulation and model checking of

distributed algorithms with fairness constraints. PAT is ap-

plied to a number of case studies including recently proposed

population protocols and have successfully found previously

unknown bugs. Another contribution is that we extend previ-

ously developed model checking algorithm with weak/strong

fairness to model check with a variety of fairness, including
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strong global fairness and event-labeled fairness.

The remainder of the article is organized as follows. Sec-

tion 2 shows a concrete motivating example and our compu-

tational model, together with a family of fairness constraints.

Section 3 develops necessary theories for model checking.

Section 4 presents the algorithm for verification with fairness.

Section 5 presents the PAT model checking system, and ex-

periment results. Section 6 discusses the related work. Sec-

tion 7 concludes the paper.

2 Background

In this section, we start with introducing a concrete motivat-

ing example and then present our computational model as

well as formal definitions of fairness.

2.1 Motivating examples

Leader election is a fundamental problem in distributed sys-

tems. The problem is easily solved with the help of a cen-

tral coordinator. Nonetheless, there may not be a central

coordinator in domains like wireless sensor networks. Self-

stabilizing algorithms do not require initialization in order to

operate correctly and can recover from transient faults that

obliterate all state information in the system. In [6, 7, 13],

a number of algorithms have been proposed for the self-

stabilizing leader election problem. In particular, Fischer and

Jiang propose a self-stabilizing algorithm for ring networks

[6], which guarantees that one and only one leader will be

eventually elected given any initial configuration. The algo-

rithm relies on two assumptions. One is that the system sat-

isfies a rather strong fairness constraint called strong global

fairness [6]. The other one is that there exists a leader detec-

tor. The detector is a diagnostic device which tests network

nodes for certain information, which is required to eventually

(not necessarily immediately) detect the presence/absence of

a leader.

Figure 1 presents the PAT model of the algorithm presented

in [6]. PAT supports a modeling language which mixes high-

level specification language features (e.g., deterministic or

nondeterministic choice, alphabetized parallel, interleaving,

interrupt, etc.) with low-level programming language fea-

tures (arrays, while, if-then-else, etc.), so that the users are of-

fered with great expressiveness as well as flexibility. We skip

the details of the language as it is not the focus of this work.

Interested readers are referred to [14] for its design princi-

ples. Lines 1 – 6 of Fig. 1 declares constants and variables

of the model. In particular, constant N (of value 3) to models

the network size, i.e., the number of network nodes; correct

is an indicator which is of value 1 if and only if the leader de-

tector has started detecting correctly. guess is a Boolean flag

representing the current diagnostic result of the detector, i.e.,

true for the presence of a leader and false for the absence. Ar-

ray ld (short for leader), bu (short for bullet), and sh (short for

Fig. 1 Leader election protocol for rings
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shield) model the status of each node. For instance, the i bit of

ld[N] tells whether the ith node is a leader or not. We skip the

intuition behind these variables and refer the readers to [6].

Lines 7 and 8 declares two propositions. A proposition is

a synonymy of a Boolean formula, which may be used in the

model or the assertions. In particular, proposition oneLeader

is defined to be true if and only if there is one and only one

leader (i.e., ld[0] + ld[1] + ld[2] is 1). Proposition exist de-

notes the leader detector believes there is a leader in the net-

work. That is, if it has not starting detecting correctly (i.e.,

correct is 0), then it guesses there is a leader (i.e., guess is

1); otherwise if it detects correctly, then there is a leader in

the network (i.e., ld[0] + ld[1] + ld[2] > 0).

Lines 9 – 24 define three processes in the form of equa-

tions, which capture the essence of the algorithm. In partic-

ular, Lines 9 – 20 define process Node(i) which models the

behaviors of a network node. Every time there is an inter-

action event in the network, the initiator and responder must

update themselves according to a set of five pre-defined rules,

e.g., to become a leader if there is no leader (according to the

leader detector), to stop being a leader if both the initiator and

the responder are leaders, etc. The rules are specified using a

case statement of the following form,

case{
b0 : P0

b1 : P1

· · ·
bk : Pk

}
where bi is a condition and Pi is a process expression. The

conditions are evaluated in sequence until the first one which

evaluates to true, then the corresponding process is executed.

For instance, if the leader detector believes there is no leader

in the network, then the condition at Line 10 is true, and

therefore the process expression at Line 11 is executed. The

process expression takes the form of e{program} → P where

e is an event name, program is a sequential program attached

with the event and P is a process. Intuitively, the event is

taken and at the same time the program is executed atom-

ically together. Next, process P is executed. In general, an

event may be attached with a sequential program (with loops,

branches, etc.), which executes atomically. Equivalently,

oracle can be viewed as a label of the program (for easy ref-

erencing). For instance, if the process expression at Line 11

is taken, event rule1.i.(i + 1)%N is generated. At the same

time, bu[i], id[i] and sh[i] are all set to be 1. Afterwards, pro-

cess Node(i) is invoked so that the network node repeats from

the beginning. We skip the details of the rules and refer the

readers to [6].

Lines 21 – 23 define the leader Detector, where [] is the

unconditional choice operator borrowed from the classic CSP

[15]. The detector has three choices. It may be enlightened

(Line 21) through the event oracle and then detects correctly

ever-after. Or, it may take a guess, randomly stating that there

is a leader (Line 23) or there is not (Line 22). We remark that

there is no guarantee that the detector will eventually detect

correctly (e.g., the event oracle may never happen) unless

fairness is applied.

Line 24 models the leader election algorithm as process

LeaderElection. The algorithm firstly invokes process Init,

which initializes the system in every possible configuration,

e.g., each element in the arrays may be either assigned 0 or 1.

We omit the details of Init as it can be constructed straightfor-

wardly using the unconditional choice operator []. After the

initialization, the system behaves as the interleaving (mod-

eled by operator |||) of the leader detector and all the network

nodes.

The property of interest to all leader election algorithms

is ��oneLeader (defined as an assertion at Line 25), where

� and � are modal operators which read as “eventually” and

“always” respectively. In PAT, we support the state/event LTL

[16]. We remark that the assertion is false with no fairness,

process-level weak/strong fairness or event-level weak/strong

fairness. Counterexamples can be generated efficiently for

each of the cases using PAT. The assertion is true with strong

global fairness, as proved by PAT for bounded networks.

However, verifying the original algorithm is only as useful as

confirming the theorem proved. In order to show that an im-

plementation of the algorithm satisfies the property, it must be

verified with strong global fairness. To the best of our knowl-

edge, PAT is the only tool which is capable of finding bugs in

such a setting.

2.2 Models and definitions

We present the approaches in the setting of labeled transition

systems (LTS). Models in PAT are interpreted as LTSs implic-

itly by defining a complete set of operational semantics. Let

e be an event, which could be either an abstract event (e.g., a

synchronization barrier if shared by multiple processes) or a

data operation (e.g., a sequential program). Let Σ be the set

of all events.

Definition 1 A Labeled Transition System L is a 3-tuple

(S , init,→) where S is a set of system configurations/states,
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init ∈ S is the initial system configuration and→⊆ S × Σ× S

is a labeled transition relation.

We write s
e→ s′ to denote that (s, e, s′) is a transition in

→. enabledEvt(s) is the set of enabled events at s, i.e., e is in

enabledEvt(s) if and only if there exists s′ such that s
e→ s′.

If the system is constituted by multiple processes running in

parallel, we write enabledPro(s) to be the set of enabled pro-

cesses, which may make a move given the system state s.

Given a transition s
e→ s′, we write engagedPro(s, e, s′) to

be the set of participating processes, which have made some

progress during the transition. Notice that if e is synchronized

by multiple processes, the set contains all the participating

processes. We write engagedEvt(s, e, s′) to denote {e}.
Because our targets are nonterminating distributed sys-

tems, and fairness affects infinite not finite system behav-

iors, we focus on infinite system executions in the follow-

ing. Finite behaviors are extended to infinite ones by ap-

pending infinitely many idling events at the rear. Given an

LTS L = (S , init,→), an execution is an infinite sequence

of alternating states and events E = 〈s0, e0, s1, e1, . . .〉 where

s0 = init and for all i si
ei→ si+1. Without fairness constraints,

a system may behave freely as long as it starts with an ini-

tial state and conforms to the transition relation. A fairness

constraint restricts the set of system behaviors to only those

fair. Given a property φ, verification with fairness is to verify

whether all fair executions of the system satisfy φ. In the fol-

lowing, we review a variety of different fairness constraints

and illustrate their differences using examples.

Definition 2 Let E = 〈s0, e0, s1, e1, . . .〉 be an execution. E

satisfies event-level weak fairness, if and only if for every

event e, if e eventually becomes enabled forever in E, then

ei = e for infinitely many i, i.e., ��e is enabled ⇒ � � e is

engaged.

Event-level weak fairness (EWF) [2] states that if an event

becomes enabled forever after some steps, then it must be en-

gaged infinitely often. An equivalent formulation is that ev-

ery computation should contain infinitely many positions at

which e is disabled or has just been engaged. The latter is

known as justice condition [17]. Intuitively, it means that an

enabled event shall not be ignored infinitely. Or equivalently

some state must be visited infinitely often (e.g., accepting

states in Büchi automata).

Definition 3 Let E = 〈s0, e0, s1, e1, . . .〉 be an execution. E

satisfies process-level weak fairness, if and only if for every

process p, if p eventually becomes enabled forever in E, then

p ∈ engagedProc(si, ei, si+1) for infinitely many i, i.e., ��p

is enabled⇒ � � p is engaged.

Process-level weak fairness (PWF) states that if a pro-

cess becomes enabled forever after some steps, then it must

be engaged infinitely often. From another point of view,

process-level weak fairness guarantees that each process is

only finitely faster than the others.

Weak fairness (or justice condition) has been well stud-

ied and verification with weak fairness has been supported

to some extent, e.g., process-level weak fairness is supported

by the SPIN model checker [18]. Given the LTS in Fig. 2(a),

the property � � a is engaged is true with event-level weak

fairness. Action a is always enabled and, hence, by definition

it must be infinitely often engaged. The property is, however,

false with no fairness or process-level weak fairness. The rea-

son that it is false with process-level weak fairness is that the

process W may make progress infinitely (by repeatedly en-

gaging in b) without ever engaging in event a. Alternatively,

if the system is modeled using two processes as shown in Fig.

2(b), � � a is engaged becomes true with process-level weak

fairness (or event-level weak fairness) because both processes

must make infinite progress and therefore both a and b must

be engaged infinitely. This example suggests that, different

from process-level weak fairness, event-level weak fairness

is not related to the system structure. In general, process-

level fairness may be viewed a special case of event-level

fairness. By a simple argument, it can be shown that process-

level weak fairness can be achieved by labeling all events in

a process with the same name and applying event-level weak

fairness. For simplicity, in the rest of the paper, we write �� a

(or �� a) to denote � � a is engaged (or �� a is engaged) un-

less otherwise stated.

Fig. 2 Event-level vs. process-level weak fairness

Definition 4 Let E = 〈s0, e0, s1, e1, . . .〉 be an execution. E

satisfies event-level strong fairness if and only if, for every

event e, if e is infinitely often enabled, then e = ei for in-

finitely many i, i.e., � � e is enabled⇒ � � e is engaged.

Event-level strong fairness (ESF) has been identified by

different researchers. It is named strong fairness in [19] (by

contrast to weak fairness defined above). In [6], it is named

strong local fairness (in comparison to strong global fair-
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ness defined below). It is also known as compassion condi-

tion [20]. Event-level strong fairness states that if an event is

infinitely often enabled, it must be infinitely often engaged.

This type of fairness is particularly useful in the analysis of

systems that use semaphores, synchronous communication,

and other special coordination primitives. Given the LTS in

Fig. 3(a), the property � � b is false with event-level weak

fairness but true with event-level strong fairness. The reason

is that b is not always enabled (i.e., it is disabled at the left

state) and thus the system is allowed to always take the c

branch with event-level weak fairness. It is infinitely often

enabled, and thus, the system must engage in b infinitely with

event-level strong fairness.

Fig. 3 Event-level vs. process-level strong fairness

Definition 5 Let E = 〈s0, e0, s1, e1, . . .〉 be an execution.

E satisfies process-level strong fairness if and only if, for

every process p, if p is infinitely often enabled, then p ∈
engagedProc(si, ei, si+1) for infinitely many i, i.e., � � p is

enabled⇒ � � p is engaged.

The process-level correspondence is process-level strong

fairness (PSF). Intuitively, process-level strong fairness

means that if a process is repeatedly enabled, it must even-

tually make some progress. Given the LTS in Fig. 3(b), the

property � � c is false with process-level weak fairness but

true with process-level strong fairness. The reason is that

event c is guarded by condition x = 1 and therefore is only

repeatedly enabled.

Verification with (event-level/process-level) strong fair-

ness (or compassion condition) has been discussed previ-

ously, e.g., in the setting of Streett automata [21,22], fair dis-

crete systems [23] or programming codes [24]. Nonetheless,

there is few established tool support for formal verification

with strong fairness [1] to the best of our knowledge. The

main reason is the computational complexity. For instance,

it is claimed too expensive to support in SPIN (page 182

of [18]). We, however, show that reasonably efficient model

checking with strong fairness can be achieved (refer to exper-

iment results in Section 5).

Definition 6 Let E = 〈s0, e0, s1, e1, . . .〉 be an execution. E

satisfies strong global fairness if and only if, for every s, e, s′

such that s
e→ s′, if s = si for infinite many i, si = s and

ei = e and si+1 = s′ for infinitely many i.

Strong global fairness (SGF) was suggested in [6]. It states

that if a step (from s to s′ by engaging in event e) can

be taken infinitely often, then it must actually be taken in-

finitely often1). Different from the previous notions of fair-

ness, strong global fairness concerns about both events and

states, instead of events only. It can be shown by a simple

argument that strong global fairness is stronger than event-

level strong fairness. Because it concerns about both events

and states, it is “event-level” and “process-level”. Strong

global fairness requires that an infinitely enabled event must

be taken infinitely often in all contexts, whereas event-level

strong fairness only requires the enabled event to be taken

in one context. It can be shown that strong global fairness

coincides event-level strong fairness when every transition is

labeled with a different event. This observation implies that

we can uniquely label all transitions with different events and

then apply model checking algorithm for strong fairness to

deal with global fairness. We show however, model check-

ing with global fairness can be solved using a more efficient

approach.

Figure 4 illustrates the difference with two examples. Un-

der event-level strong fairness, state 2 in Fig. 4(a) may never

be visited because all events are engaged infinitely often if the

left loop is taken infinitely. As a result, property � � state 2

is false. Under strong global fairness, all states in Fig. 4(a)

must be visited infinitely often and therefore � � state 2

is true. Figure 4(b) illustrates their difference when there is

non-determinism. Both transitions labeled a must be taken

infinitely with strong global fairness, which is not necessary

with event-level strong fairness or weak fairness. Thus, prop-

erty �� b is true only with strong global fairness. Many popu-

lation protocols rely on strong global fairness, e.g., protocols

presented in [6, 7]. As far as the authors know, there are no

previous works on model checking with strong global fair-

ness.

Fig. 4 Strong global fairness

3 Loop/SCC searching

Given an LTS L and an LTL formula φ, model checking

1) The definition in [6] is for unlabeled transition systems. We slightly changed it so as to suit the setting of LTS.
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is about searching for an execution of L which fails φ. In

automata-based model checking, the negation of φ is trans-

lated to an equivalent Büchi automatonB, which is then com-

posed with the LTS representing the system model. Model

checking with fairness is to search for an infinite execution

which is accepted by the Büchi automaton and at the same

time satisfies the fairness constraints. In the following, we

write L � φ to mean that the LTS satisfies the property with

no fairness, i.e., every execution of L satisfies φ. We write

L �EWF φ (L �PWF φ) to mean that L satisfies φ with event-

level (process-level) weak fairness; L �ESF φ (L �PSF φ) to

mean thatL satisfies φwith event-level (process-level) strong

fairness, and L �SGF φ to mean that L satisfies φ with strong

global fairness.

We assume that L contains only finite states. By a simple

argument, it can be shown that L contains an infinite execu-

tion if and only if there exists a loop. A lasso in the prod-

uct of L and B, denoted as R j
i , is a sequence of alternating

states/events

〈(s0, b0), e0, . . . , (si, bi), ei, . . . , (s j, b j), e j, (s j+1, b j+1)〉,

such that si is a state of L, bi is a state of B, si = s j+1 and

bi = b j+1. We skip the details on constructing the product

and refer the readers to [18]. R j
i is accepting if and only if the

sequence 〈b0, e0, b1, e1, . . . , bk, ek, . . .〉 is accepting to B, i.e.,

the sequence visits at least one accepting state of B infinitely

often. R j
i is fair with certain notion of fairness if and only if

the sequence 〈s0, e0, s1, e1, . . . , sk, ek, . . .〉 is. Furthermore, we

define the following sets:

alwaysEvt(R j
i ) = {e|∀k : {i, . . . , j} e ∈ enabled(sk)},

alwaysPro(R j
i ) = {p|∀k : {i, . . . , j} p ∈ enabledPro(sk)},

onceEvt(R j
i ) = {e|∃k : {i, . . . , j} e ∈ enabled(sk)},

oncePro(R j
i ) = {p|∃k : {i, . . . , j} p ∈ enabledPro(sk)},

engagedEvt(R j
i ) = {e|∃k : {i, . . . , j} e = ek},

engagedPro(R j
i ) = {p|∃k : {i, . . . , j} p ∈

engagedPro(sk, ek, sk+1)}.

Intuitively, set alwaysEvt(R j
i ) (alwaysPro(R j

i )) is the set of

events (processes) which are always enabled during the loop.

Set onceEvt(R j
i ) (oncePro(R j

i )) is the set of events (pro-

cesses) which are enabled at least once during the loop. Set

engagedEvt(R j
i ) (engagedPro(R j

i )) is the set of events (pro-

cesses) which are engaged during the loop.

Lemma 1 Let L = (S , init,→) be an LTS; B be a Büchi

automaton equivalent to the negation of an LTL formula φ.

• L �EWF φ if and only if there does not exist R j
i s.t.

alwaysEvt(R j
i ) ⊆ engagedEvt(R j

i ) and R j
i is accepting.

• L �PWF φ if and only if there does not exist R j
i s.t.

alwaysPro(R j
i ) ⊆ engagedPro(R j

i ) and R j
i is accepting.

• L �ESF φ if and only if, there does not exist R j
i s.t.

onceEvt(R j
i ) ⊆ engagedEvt(R j

i ) and R j
i is accepting.

• L �PSF φ if and only if there does not exist R j
i s.t.

oncePro(R j
i ) ⊆ engagedPro(R j

i ) and R j
i is accepting.

The lemma can be proved straightforwardly by contradic-

tion. By the lemma, a system fails the property with certain

fairness if and only if there exists a loop which satisfies the

fairness and at the same time fails the property. Modeling

checking with fairness is hence reduced to loop searching.

Given a transition system, a subgraph is strongly connected

if there is a path from each state in the subgraph to every

other state in the subgraph. A SCC is a maximal strongly

connected subgraph. Given the product ofL andB, let S be a

set of states which, together with the transitions among them,

forms a strongly connected subgraph. In an abuse of nota-

tions, we refer to S as the strongly connected subgraph in the

following. To further abuse notations, we write alwaysEvt(S )

(alwaysPro(S ), onceEvt(S ), oncePro(S ), engagedEvt(S ) or

engagedPro(S )) to denote the set obtained by applying the

function to a loop which traverses through all states of the

subgraph. We say S is accepting if and only if there exists

one state (s, b) in S such that b is an accepting state of B.

Lemma 2 LetL be an LTS;B be a Büchi automaton equiv-

alent to the negation of an LTL formula φ.

• L �ESF φ if and only if there does not exist a reach-

able strongly connected subgraph S in the product of

L and B such that S is accepting and onceEvt(S ) ⊆
engagedEvt(S ).

• L �PSF φ if and only if there does not exist a reach-

able strongly connected subgraph S in the product of

L and B such that S is accepting and oncePro(S ) ⊆
engagedPro(S ).

The above lemma can be proved by a simple argument. It

shows that model checking with strong fairness can be re-

duced to strongly connected subgraph (not SCC) searching.

Lemma 3 LetL be an LTS;B be a Büchi automaton equiv-

alent to the negation of an LTL formula φ.

• L �EWF φ if and only if there does not exist a reach-

able SCC S in the product of L and B such that S is
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accepting and alwaysEvt(S ) ⊆ engagedEvt(S ).

• L �PWF φ if and only if there does not exist a reach-

able SCC S in the product of L and B such that S is

accepting and alwaysPro(S ) ⊆ engagedPro(S ).

The proof of the lemma follows previous results (see

for example Chapter 6 of [25]). In the following, we ar-

gue the event-level weak fairness part of the lemma and re-

mark that the other part can be proved similarly. It can be

shown that a system fails φ with event-level weak fairness

if and only if there exists one reachable strongly connected

subgraph C such that C is accepting and alwaysEvt(C) ⊆
engagedEvt(C). Hence, it is sufficient to show that there ex-

ists such a C if and only if there exists a reachable SCC S

such that S is accepting and alwaysEvt(S ) ⊆ engagedEvt(S ).

If there exists such an SCC S , then we simply let C be S .

If there exists such subgraph C, the SCC S which contains

C is accepting and satisfies alwaysEvt(S ) ⊆ engagedEvt(S )

since alwaysEvt(S ) ⊆ alwaysEvt(C) and engagedEvt(C) ⊆
engagedEvt(S ). This concludes the proof.

The lemma shows that model checking with weak fairness

can be reduced to SCC searching. The following lemma re-

duces model checking with strong global fairness to search-

ing for a terminal SCC inL. An SCC is terminal if and only if

any transition starting from a state in the SCC must end with

a state in the SCC. Notice that a terminal SCC in the product

of L and B may not be constituted by a terminal SCC in L.

Lemma 4 LetL be an LTS;B be a Büchi automaton equiv-

alent to the negation of an LTL formula φ. L �SGF φ if and

only if there does not exist a reachable SCC S in the product

of L and B such that S is accepting and for all (s, b) ∈ S ,

if there exists e and s′ such that s
e→ s′, then there exists

(s′, b′) ∈ S such that (s, b)
e→ (s′, b′).

Proof L fails φ with strong global fairness if and only

if there exists R j
i in the product of L and B such that R j

i

satisfies strong global fairness and R j
i is accepting. L fails

φ with strong global fairness if and only if there exists a

reachable strongly connected subgraph C such that a loop

which travels through all states/transitions in C (and no other

states/transitions) infinitely often satisfies strong global fair-

ness and C is accepting. Hence, it is sufficient to show that

there exists such a subgraph C if and only if there exists an

SCC S such that S which satisfies the constraint.

if: This is proved trivially.

only if: Assume that there exists such a subgraph C. Let

x(C) = {s|∃b (s, b) ∈ C} be the states of L which constitute

C and t(C) = {(s, e, s′)|s ∈ x(C) ∧ s′ ∈ x(C) ∧ ∃(s, b), (s, b′) :

C (s, b)
e→ (s′, b′)} be the transitions of L which constitute

the strongly connected subgraph. By contradiction, it can be

shown that x(C) (together with the transitions in t(C)) forms

one terminal SCC in L. Let S be the SCC containing C. It

can be shown that x(S ) (together with the transitions in t(S ))

forms the same terminal SCC. Therefore, S must satisfy the

constraint.

4 Modeling checking with fairness

There are two groups of methods for loop searching. One is

based on nested depth-first-search (DFS) and the other one

is based on identifying SCCs. Nested DFS has been imple-

mented in SPIN. The basic idea is to perform a first DFS to

reach a target state (i.e., an accepting state in the setting of

Büchi automata) and then perform a second DFS from that

state to check whether it is reachable from itself. It has been

shown the nested DFS works efficiently for model checking

with no fairness [18]. Nonetheless, it is not suitable for verifi-

cation with fairness because whether an execution is fair de-

pends on the whole path instead of one state. In recent years,

model checking based on SCC has been re-investigated and it

has been shown that it yields comparable performance [26].

In this work, we extend the existing SCC-based model check-

ing algorithms to cope with different notions of fairness. The

algorithm is inspired by early work on emptiness check of

Streett automata [22].

4.1 A unified algorithm

Figure 5 presents the algorithm. It is based on Tarjan’s algo-

rithm for identifying SCCs (which is linear time in the num-

ber of graph edges [27]). It searches for fair strongly con-

nected subgraph on-the-fly. The basic idea is to identify one

SCC at a time and then check whether it is fair or not. If it is,

Fig. 5 Algorithm for model checking with fairness
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the search is over. Otherwise, the SCC is partitioned into mul-

tiple smaller strongly connected subgraphs, which are then

checked recursively one by one. Figure 6 presents a running

example, i.e., the product of an LTS and a Büchi automaton.

Notice that state 2 is an accepting state.

Fig. 6 Model checking example

Assume for now that S is the set of states and T is the set

of transitions. The method takes three inputs, i.e., S , T and

a fairness type F (of value either EWF, PWF, ESF, PSF or

SGF). At Line 1, a set visited, which stores the set of vis-

ited states, is initialized to be empty. The main loop is from

Lines 2–13. At Line 3 Tarjan’s algorithm (improved and im-

plemented as method findSCC(S , T )) is used to identify one

SCC within S and T . Identifying S and T for compositional

systems or software programs requires reachability analysis.

In order to perform on-the-fly verification, findSCC is de-

signed in such a way that if no S and T are given, it will ex-

plore states and transitions on-the-fly until one SCC is iden-

tified. We skip the details of findSCC as it largely resembles

the algorithm presented in [21]. Given the LTS presented in

Fig. 6, findSCC identifies two SCCs, i.e., scc1 which is com-

posed of state 1 only and scc2 which is composed of state 0,

2, and 3. The order in which SCCs are found is irrelevant to

the correctness of the algorithm.

At Line 4, we mark scc_states as visited so that the SCC

is not examined again. At Line 5, we check whether the SCC

is accepting. Only accepting SCCs may contain a bad loop

which constitutes a counterexample. For instance, scc1 is not

accepting and therefore ignored. Function prune (at Line 6)

is used to prune bad states from the SCC. Bad states are the

reasons why the SCC is not fair. For instance, state 0 (where

the event a is enabled) is a bad state in scc2 with event-based

strong fairness because event a is never engaged in scc2 (i.e.,

a is not in engagedEvt(ssc2)). State 3 is a bad state with

strong global fairness because the step from state 3 to state

1 via c is not part of the SCC. The intuition behind the prun-

ing is that there may be a fair strongly connected subgraph

in the remaining states after eliminating the bad states. By

simply modifying the prune method, the algorithm can be

used to handle different fairness constraints. Refer to details

in Section 2.

If the SCC does satisfy the fairness assumption, no state is

pruned and thus the size of the SCC remains the same (Line

7 of Fig. 5). In such a case, a fair loop which traverses all

states/transitions in the SCC is generated as a counterexam-

ple and we conclude that the property is not true at Line 8.

We skip the details on generating the path in this paper and

remark that it could be a non-trivial task (see [23]). If some

states have been pruned, a recursive call is made to check

whether there is a fair strongly connected subgraph within the

remaining states. The recursive call terminates in two ways.

One is that a fair subgraph is found (at Line 9) and the other is

all states are pruned (at Line 14). If the recursive call returns

true, there is no subgraph satisfying the fairness condition and

we continue with another SCC until all states are checked.

4.2 Coping with different notions of fairness

In this section, we show how to customize the prune func-

tion so as to handle different fairness constraints. Let S be a

strongly connected subgraph and T be the transition among

the states. The following defines the pruning methods for

event-based weak fairness.

prune(S , T,EWF) = S ,

if alwaysEvt(S ) ⊆ engagedEvt(S );

prune(S , T,EWF) = ∅,
otherwise.

If there exists an event e which is always enabled (i.e.,

e ∈ alwaysEvt(S )) but never engaged (i.e., e not in

engagedEvt(S )), by definition S does not satisfy event-level

weak fairness. If an SCC does not satisfy event-level weak

fairness, none of its subgraphs do, because e is always en-

abled in any of its subgraphs but never engaged. As a result,

either all states are pruned or none of them is. Similarly, the

following defines the pruning function for process-level weak

fairness.

prune(S , T, PWF) = S ,

if alwaysPro(S ) ⊆ engagedPro(S );

prune(S , T, PWF) = ∅,
otherwise.

In the case of event-level (process-level) strong fairness,

a state is pruned if and only if there is an event (process)

enabled at this state but never engaged in the subgraph. By

pruning the state, the event (process) may become never en-

abled and therefore not required to be engaged. The following

defines the pruning function for event-level and process-level
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strong fairness.

prune(S , T,ESF)

= {s : S |enabledEvt(s) ⊆ engagedEvt(S )};
prune(S , T, PSF)

= {s : S |enabledPro(s) ⊆ engagedPro(S )}.

By Lemma 4, an SCC may constitute a counterexample to

a property with strong global fairness if and only if the SCC

satisfies strong global fairness and is accepting. Therefore,

we prune all states if it fails strong global fairness.

prune(S , T, SGF) = S ,

if ∀(s, b) ∈ S ∀e, s′ s
e→ s′ ⇒ s′ ∈ S ;

prune(S , T, SGF) = ∅,
otherwise.

We remark that the time complexity of the prune functions

are all linear in the number of edges of the SCC. Given the

example in Fig. 6, with event-level strong fairness, state 0

is pruned from scc2 because enabledEvt(state 0) = {a, c} �
engagedEvt(scc2). After that the only remaining strongly

connected subgraph contains states 2 and 3, now state 3

where c is enabled is considered as a bad state because c is

not engaged in the subgraph. State 2 is then pruned for being

a trivial strongly connected subgraph which fails event-level

strong fairness.

4.3 Complexity and soundness

The time complexity for verification with no fairness, event-

level or process-level weak fairness or strong global fairness

are similar, i.e., all linear in the number of transitions in the

product automaton. All states in one SCC are discarded at

once in all cases and, therefore, no recursive call is neces-

sary. Furthermore, the prune function is linear in the number

of transitions of an SCC. SPIN’s model checking algorithm

with process-level weak fairness increases the run-time ex-

pense of a verification run by a factor that is linear in the

number of running processes. In comparison, our algorithm is

less expensive for weak fairness. This becomes evident by the

experiment results presented in Section 5. Verification with

event-level or process-level strong fairness is in general ex-

pensive. In the worst case (i.e., the whole system is strongly

connected and only one state is pruned every time), the find-

SCC method may be invoked at most #S times, where #S

is the number of system states. Thus, the time complexity is

bounded by #S ×#T where #T is the number of transitions. In

practice, however, if the property is false, a counterexample

is usually identified quickly, because our algorithm constructs

and checks SCCs on-the-fly. Even if the property is true, our

experience suggests that the worse case scenario is rare in

practice. Instead of performing detailed complexity analysis

(see the discussion presented in [22]), we illustrate the per-

formance of our algorithm using real systems in Section 5.

Next, we argue the total correctness of the algorithm. The

algorithm is terminating because by assumption, the number

of states is finite, and the number of visited states and pruned

states are monotonically increasing.

Theorem 1 Let L be an LTS. Let φ be a property. Let F be

a fairness type (i.e., EWF, PWF, ESF, PSF or SGF). L �F φ

if and only if the algorithm returns true.

Proof

Case EWF: By Lemma 1, L �EWF φ if and only if

there does not exist an SCC S such that alwaysEvt(S ) ⊆
engagedEvt(S ) and S is accepting. Given any SCC S , the

algorithm returns false if and only if it does so at Line 8 be-

cause the recursive call at Line 9 always returns true (by the

definition of prune(S , T,EWF)). Therefore, it returns false if

and only if S is accepting (so that the condition at Line 5 is

true) and alwaysEvt(S ) ⊆ engagedEvt(S ) (so that the condi-

tion at Line 7 is true). If there does not exist such an SCC,

the algorithm returns true. If the algorithm returns true, there

must not be such an SCC. Therefore,L �EWF φ if and only if

the algorithm returns true.

Case PWF: Similar to the above.

Case ESF: By Lemma 3, L �ESF φ if and only if there

does not exist a strongly connected subgraph C such that

onceEvt(C) ⊆ engagedEvt(C) and C is accepting. If C itself

is an SCC, it must be found (by the correctness of Tarjan’s

algorithm and function prune(S , T,ESF)) and the algorithm

returns false if C is accepting. If it is contained in one (and

only one) SCC, by the correctness of prune(S , T,ESF), its

states are never pruned. As a result, it is identified when all

other states in the SCC are pruned or a fair strongly connected

subgraph containing all its states is identified. In either case,

the algorithm returns false if and only if such a fair strongly

connected subgraph is found. Equivalently, it returns true if

and only if there are no such subgraphs. Therefore, L �ESF φ

if and only if the algorithm returns true.

Case PSF: Similar to the above.

Case SGF: By Lemma 4,L �SGF φ if and only if there does

not exist an SCC S such that S satisfies strong global fairness

and S is accepting. The algorithm returns false if and only

if it is at Line 8 because the recursive call at Line 9 always
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returns true (by the definition of prune(S , T, SGF)). By defi-

nition of prune(S , T, SGF), the control reaches Line 8 if and

only if the SCC is terminal and is accepting. Thus, L �SGF φ

if and only if it returns true.

5 Implementation and experiments

The main contribution of the work is the model checking

with fairness capability in the PAT model checker. PAT is

designed for systematic validation of distributed/concurrent

systems using state-of-art model checking techniques. Its

main functionalities include simulation, explicit on-the-fly

model checking, and verification with fairness. It has three

main components. The editor features all standard text edit-

ing functionalities. The simulator allows users to interac-

tively drive the system execution. The model checker com-

bines complementary model checking techniques for sys-

tem verification. In the following, we show its performance

on both benchmark systems as well as recently developed

population protocols, which require fairness for correctness.

All the models (with configurable parameters) are embed-

ded in the PAT package and available online at our web site

http://pat.comp.nus.edu.sg.

Table 1 summarizes the verification statistics on recently

developed population protocols. The experiments are made

on a 3.0 GHz Pentium IV CPU and 2 GB memory execut-

ing SPIN 4.3. Notice that “–” means either out of memory or

more than four hours; column “Size” represents the number

of network nodes; result “Yes” means there is no counterex-

ample; result “No” means there is a counterexample; the ver-

ification times for PAT and SPIN are measured in seconds.

We compare PAT with the SPIN model checker mainly be-

cause SPIN targets at similar systems and it adopts similar

model checking approaches (i.e., automata-based on-the-fly

LTL model checking). Note that there are improvements on

model checking techniques which have not been incorporated

in SPIN, e.g., on handling large LTL formulae [10, 11] or on

nested DFS [26].

The protocols include leader election for complete net-

works (LE_C) [6], for rooted trees (LE_T ) [9], for odd sized

rings (LE_OR) [13], for network rings (LE_R) [6] and token

circulation for network rings (TC_R) [7]. The descriptions

of these protocols are built in the PAT model checker [28].

The property is that eventually always there is one and only

one leader in the network, i.e., ��oneLeader. Correctness of

all these algorithms relies on different notions of fairness. For

simplicity, fairness is applied to the whole system. We remark

that event-level fairness or strong global fairness is required

for these examples.

Table 1 Experiment results on population protocols

Model Size EWF ESF SGF

Result PAT SPIN Result PAT Result PAT

LE_C 5 Yes 4.7 35.7 Yes 4.7 Yes 4.1

LE_C 6 Yes 26.7 229 Yes 26.7 Yes 23.5

LE_C 7 Yes 152.2 1 190 Yes 152.4 Yes 137.9

LE_C 8 Yes 726.6 5 720 Yes 739.0 Yes 673.1

LE_T 5 Yes 0.2 0.7 Yes 0.2 Yes 0.2

LE_T 7 Yes 1.4 7.6 Yes 1.4 Yes 1.4

LE_T 9 Yes 10.2 62.3 Yes 10.2 Yes 9.6

LE_T 11 Yes 68.1 440 Yes 68.7 Yes 65.1

LE_T 13 Yes 548.6 3 200 Yes 573.6 Yes 529.6

LE_OR 3 No 0.2 0.3 No 0.2 Yes 11.8

LE_OR 5 No 1.3 8.7 No 1.8 − −
LE_OR 7 No 15.9 95 No 21.3 − −
LE_R 3 No 0.1 < 0.1 No 0.2 Yes 1.5

LE_R 4 No 0.3 < 0.1 No 0.7 Yes 19.5

LE_R 5 No 0.8 < 0.1 No 2.7 Yes 299.0

LE_R 6 No 1.8 0.2 No 4.6 − −
LE_R 7 No 4.7 0.6 No 9.6 − −
LE_R 8 No 11.7 1.7 No 28.3 − −
TC_R 3 Yes < 0.1 < 0.1 Yes < 0.1 Yes < 0.1

TC_R 5 No < 0.1 < 0.1 No < 0.1 Yes 0.6

TC_R 7 No 0.2 0.1 No 0.2 Yes 13.7

TC_R 9 No 0.4 0.2 No 0.4 Yes 640.2

As discussed in Section 2, process-level weak fairness is

different from event-level weak fairness. In order to compare

PAT with SPIN for verification with event-level weak fair-

ness, we twist the models so that each event in population

protocols is modeled as a process. By a simple argument, it

can be shown that for such models, event-level weak fair-

ness is equivalent to process-level weak fairness. Nonethe-

less, model checking with process-level weak fairness in

SPIN increases the verification time by a factor that is linear

in the number of processes. By modeling each event as a pro-

cess, we increase the number of processes and therefore un-

avoidably increase the SPIN verification time by a factor that

is constant (in the number of events per process for network

rings) or linear (in the number of network nodes for complete

network). SPIN has no support for event-level/process-level

strong fairness or strong global fairness. Thus, the only way

to model check with strong fairness or strong global fairness

in SPIN is to encode the fairness constraints as part of the

property. However, even for the smallest network (with three

nodes), SPIN needs significant amount of time to construct

(very large) Büchi automata from the property. Therefore, we

conclude that it is infeasible to use SPIN for such a purpose

and omit the experiment results from the table. We remark

that in theory, strong fairness can be transformed to weak
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fairness by paying the price of one Boolean variable [23].

Nonetheless, the property needs to be augmented with ad-

ditional clauses after the translation, which is again infeasi-

ble. In [4], we carried out some experiments on using the ap-

proach in [23] and the results show that it is very inefficient.

All of the algorithms fail to satisfy the property with-

out fairness. The algorithm for complete networks (LE_C)

or trees (LE_T ) requires at least event-level weak fairness,

whereas the rest of the algorithms require strong global fair-

ness. It is thus important to be able to verify systems with

strong fairness or strong global fairness. Notice that the to-

ken circulation algorithm for network rings (TC_R) functions

correctly for a network of size 3 with event-level weak fair-

ness. Nonetheless, event-level weak fairness is not sufficient

for a network with more nodes, as shown in the table. The rea-

son is that a particular sequence of message exchange which

satisfies event-level weak fairness only needs the participa-

tion of at least four network nodes. This suggests that our im-

provement in terms of the performance and ability to handle

different forms of fairness has its practical value. We high-

light that previously unknown bugs in implementation of the

leader election algorithms for odd-sized ring [13] have been

revealed using PAT.

A few conclusions can be drawn from the results in the

table. Firstly, in the presence of counterexamples, PAT usu-

ally finds one quickly (e.g., on LE_R and TC_R with event-

level weak fairness or strong fairness). It takes longer to find

a counterexample for LE_OR mainly because there are too

many possible initial configurations of the system (exactly

25N where N is network size) and a counterexample is only

present for particular initial configurations. Secondly, verifi-

cation with event-level strong fairness is more expensive than

verification with no fair, event-level weak fairness or strong

global fairness. This conforms to theoretical time complexity

analysis. The worse case scenario is absent from these ex-

amples (e.g., there are easily millions of transitions/states in

many of the experiments). Lastly, PAT is worse than SPIN

on LE_R and TC_R with event-level weak fairness. This is

however not indicative as when there is a counterexample, the

verification time depends on the searching order. PAT outper-

forms the current practice of verification with fairness. PAT

offers comparably better performance on verification with

weak fairness (e.g., on LE_C and LE_T ) and makes it fea-

sible to verify with strong fairness or strong global fairness.

This allows us to discover bugs in systems functioning with

strong fairness. Experiments on LE_C and LE_T (for which

the property is only false with no fairness) show minor com-

putational overhead for handling a stronger fairness.

Table 2 shows verification statistics of benchmark systems

to show other aspects of our algorithm. Notice that the prop-

erty “bounded bypass” means a process which is interested

in getting into the critical section will be in the critical sec-

tion; the verification times for PAT and SPIN are measured

in seconds. Because of the deadlock state, the dining philoso-

phers model (dp(N) for N philosophers and forks) does not

guarantee that a philosopher always eventually eats (��eat0)

whether with no fairness or strong global fairness. This exper-

iment shows PAT takes little extra time for handling the fair-

ness assumption. We remark that PAT may spend more time

than SPIN on identifying a counterexample in some cases.

This is both due to the particular order of exploration and the

difference between model checking based on nested DFS and

model checking based on identifying SCCs. PAT’s algorithm

relies on SCCs. If a large portion of the system is strongly

connected, it takes more time to construct the SCC before

testing whether it is fair or not. In this example, the whole

system contains one large SCC and a few trivial ones includ-

ing the deadlock state. If PAT happens to start with the large

one, the verification may take considerably more time.

Table 2 Experiment results on benchmark systems

Model Property Result Fairness PAT SPIN

dp(10) � � eat0 No No 0.8 < 0.1

dp(13) � � eat0 No No 9.8 < 0.1

dp(15) � � eat0 No No 56.1 < 0.1

dp(10) � � eat0 No SGF 0.8 −
dp(13) � � eat0 No SGF 9.8 −
dp(15) � � eat0 No SGF 56.0 −
ms(10) � � work0 Yes ESF 9.3 −
ms(12) � � work0 Yes ESF 105.5 −
peterson(3) bounded bypass Yes PWF 0.1 1.25

peterson(4) bounded bypass Yes PWF 1.7 > 671

peterson(5) bounded bypass Yes PWF 58.9 −

Milner’s cyclic scheduler algorithm (ms(N) for N pro-

cesses) is a showcase for the effectiveness of PAT, in which

we apply event-level strong fairness to the whole system. Pe-

terson’s mutual exclusive algorithm (peterson(N)) requires

at least process-level weak fairness to guarantee bounded by-

pass [29], i.e., if a process requests to enter the critical sec-

tion, it eventually will. The property is verified with process-

level weak fairness in PAT and process-level weak fairness in

SPIN. PAT outperforms SPIN in this setting as well.

6 Related work

This work is the full version of the tool paper about the PAT

model checker published at CAV09 [30]. In this article, we
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present a comprehensive list of fairness notations and how

they are supported efficiently in the PAT model checker. The

research on categorizing fairness/liveness, motivated by sys-

tem analyzing of distributed or concurrent systems, has a long

history [2,17,31,32]. A rich set of fairness notions have been

identified during the last decades, e.g., weak or strong fair-

ness in [2], justice or compassion conditions in [17], hyper-

fairness in [19, 33], strong global or local fairness recently

in [6], etc. This work summarizes a number of fairness no-

tions which are closely related to distributed system verifi-

cation and provides a framework to model check with dif-

ferent fairness constraints. Other works on categorizing fair-

ness/liveness have been evidenced in [20, 34–36].

This work is related to research on system verification with

fairness [1,2,6]. In automata theory, fairness/liveness is often

captured using the notion of accepting states. For instance, an

execution of a Büchi automaton (which is an automaton with

justice conditions) must visit at least one accepting state in-

finitely often. An execution of a Streett automaton (which is

an automata with compassion conditions) must infinite states

in a set F if infinitely many states in E is visited, where E

and F are subsets of states. Our model checking algorithm is

related to previous works on emptiness checking for Büchi

automata [18, 21] and Streett automata [21–23, 37]. Two dif-

ferent groups of methods have been proposed for checking

emptiness of Büchi automata, i.e., one based in nested DFS

[38] and the other based on identifying SCCs [21]. As dis-

cussed in Section 4, nested DFS is not feasible for verifica-

tion with strong fairness. Similar to [21], our work is based

on Tarjan’s algorithm for identifying SCCs. We generalize

the idea to handle different fairness constraints. In [22], an

algorithm for checking emptiness of Streett automata is pro-

posed. In this work, we apply the idea to the automata-based

model checking framework and generalize it to handle differ-

ent fairness constraints. In this way, our algorithm integrates

the two algorithms presented in [21, 22] and extends them in

a number of aspects to suit our purpose. Furthermore, model

checking algorithms with strong fairness have been proposed

in [21] and [37]. In both works, a similar pruning process is

involved. Besides, some research has been done on combin-

ing fairness and state reduction techniques, e.g., combining

symmetry reduction with global fairness assumptions [39],

applying partial order reduction during model checking with

fairness assumption [4], etc.

This work is also related to previous work on CTL model

checking with fairness, which also relies on identifying a fair

strongly connected component. For instance, the basic fixed-

point computation algorithm for the identification of fair ex-

ecutions was presented in [40] and independently developed

in [41] for fair CTL. Nonetheless, our algorithm is designed

for automata-based on-the-fly model checking, with a variety

of fairness constraints including the recently emerged strong

global fairness. Different from the previous works [42,43] on

symbolic model checking with fairness, our approach is de-

signed for LTL model checking. This work is also related to

the recent work on designing a strong fair scheduler for con-

current programs testing presented [24]. The fair scheduler

presented [24] generates only partial fair executions, which

works for testing but not formal verification. In addition, this

work is remotely related to the work on handling large LTL

formulae [11] as well as our previous work on verifying con-

current systems [44–46].

7 Conclusion and future work

In summary, we developed a method and a self-contained

toolkit for (distributed) system analysis with a variety of fair-

ness constraints. We showed that our method and the toolkit

are effective enough to prove or disprove not only benchmark

systems but also newly proposed distributed algorithms.

We are actively developing PAT. One future work of par-

ticular interest is to investigate refinement with fairness con-

straints. Refinement checking is an alternative way of system

verification. Instead of showing that a system implementation

satisfies some critical property, refinement checking may be

used to show that the implementation satisfies its own speci-

fication (often in the same language). The main motivation is

that refinement with a fair scheduler or in a distributed sys-

tem is different from refinement under scheduling with no

fairness. For instance, trace refinement with event-level weak

fairness prevents removing a transition which is always en-

abled and trace refinement with strong global fairness pre-

vents removing a nondeterministic choice. The consequence

of a fair scheduler over program refinement is worth investi-

gating. In order to handle non-trivial systems, efficient algo-

rithms for refinement checking with fairness must be devel-

oped.

Another line of future work is to investigate how to verify

infinite-state systems with fairness. For instance, how to inte-

grate our method with abstraction techniques which are used

to build finite state models. In particular, we will investigate

abstract schema which are proposed for parameterized sys-

tems so that our method can be extended to verify population

protocols with many or even infinite network nodes.
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