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Abstract4

We consider a class of sets of words which is a natural common gen-5

eralization of Sturmian sets and of interval exchange sets. This class of6

sets consists of the uniformly recurrent tree sets, where the tree sets are7

defined by a condition on the possible extensions of bispecial factors. We8

prove that this class is closed under maximal bifix decoding. The proof9

uses the fact that the class is also closed under decoding with respect to10

return words.11
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1 Introduction36

This paper studies the properties of a common generalization of Sturmian sets37

and regular interval exchange sets. We first give some elements on the back-38

ground of these two families of sets.39

Sturmian words are infinite words over a binary alphabet that have exactly40

n + 1 factors of length n for each n ≥ 0. Their origin can be traced back41

to the astronomer J. Bernoulli III. Their first in-depth study is by Morse and42

Hedlund [24]. Many combinatorial properties were described in the paper by43

Coven and Hedlund [11].44

We understand here by Sturmian words the generalization to arbitrary al-45

phabets, often called strict episturmian words or Arnoux-Rauzy words (see the46

survey [20]), of the classical Sturmian words on two letters. A Sturmian sets is47

the set of factors of one Sturmian word. For more details, see [19, 23].48

Sturmian words are closely related to the free group. This connection is49

one of the main points of the series of papers [2, 4, 5] and the present one. A50

striking feature of this connection is the fact that our results do not hold only51

for two-letter alphabets or for two generators but for any number of letters and52

generators.53

Interval exchange transformations were introduced by Oseledec [25] following54

an earlier idea of Arnold [1]. These transformations form a generalization of55

rotations of the circle. The class of regular interval exchange transformations56

was introduced by Keane [22] who showed that they are minimal in the sense57

of topological dynamics. The set of factors of the natural codings of a regular58

interval exchange transformation is called an interval exchange set.59

Even though they have the same factor complexity (that is, the same number60

of factors of a given length), Sturmian words and codings of interval exchange61

transformations have a priori very distinct combinatorial behaviours, whether62

for the type of behaviour of their special factors, or for balance properties and63

deviations of Birkhoff sums (see [9, 27]).64

The class of tree sets, introduced in [4] contains both the Sturmian sets65

and the regular interval exchange sets. They are defined by a condition on the66

possible extensions of bispecial factors.67
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In a paper with part of the present list of authors on bifix codes and Sturmian68

words [2] we proved that Sturmian sets satisfy the finite index basis property,69

in the sense that, given a set S of words on an alphabet A, a finite bifix code70

is S-maximal if and only if it is the basis of a subgroup of finite index of the71

free group on A. The main statement of [5] is that uniformly recurrent tree sets72

satisfy the finite index basis property. This generalizes the result concerning73

Sturmian words of [2] quoted above. As an example of a consequence of this74

result, if S is a uniformly recurrent tree set on the alphabet A, then for any75

n ≥ 1, the set S ∩ An is a basis of the subgroup formed by the words of length76

multiple of n (see Theorem
theoremGroupCode
5.9).77

Our main result here is that the class of uniformly recurrent tree sets is78

closed under maximal bifix decoding (Theorem
theoremNormal
7.1). This means that if S is a79

uniformly recurrent tree set and f a coding morphism for a finite S-maximal80

bifix code, then f−1(S) is a uniformly recurrent tree set. The family of regular81

interval exchange sets is closed under maximal bifix decoding (see [5] Corollary82

5.22) but the family of Sturmian sets is not (see Example
exampleTribonacci2
7.2 below). Thus,83

this result shows that the family of uniformly recurrent tree sets is the natural84

closure of the family of Sturmian sets. The proof uses the finite index basis85

property of uniformly recurrent tree sets.86

The proof of Theorem
theoremNormal
7.1 uses the closure of uniformly recurrent tree sets87

under decoding with respect to return words (Theorem
propositionReturns
5.12). This property,88

which is interesting in its own, generalizes the fact that the derived word of a89

Sturmian word is Sturmian [21].90

The paper is organized as follows. In Section
sectionPreliminaries
2, we introduce the notation91

and recall some basic results. We define the composition of prefix codes.92

In Section
sectionIntervalExchange
3, we introduce one important subclass of tree sets, namely in-93

terval exchange sets. We recall the definitions concerning minimal and regular94

interval exchange transformations. We state the result of Keane expressing that95

regular interval exchange transformations are minimal (Theorem
theoremKeane
3.4). We prove96

in [?] that the class of regular interval exchange sets is closed under maximal97

bifix decoding.98

In Section
sectionReturn
4, we define return words, derived words and derived sets and99

prove some elementary properties.100

In Section
sectionTreeNormal
5, we recall the definition of tree sets. We also recall that a regular101

interval exchange set is a tree set (Proposition
propositionExchangeTreeCondition
5.4). We prove that the family of102

uniformly recurrent tree sets is closed under derivation (Theorem
propositionReturns
5.12). We fur-103

ther prove that all bases of the free group included in a uniformly recurrent tree104

set are tame, that is obtained from the alphabet by composition of elementary105

positive automorphisms (Theorem
theoremTame
5.18).106

In Section
sectionSadic
6, we turn to the notion of H-adic representation of sets, intro-107

duced in [17], using a terminology initiated by Vershik and coined out by B. Host108

(it is usually called S-adic). We deduce from the previous result that uniformly109

recurrent tree sets have a primitive He-adic representation (Theorem
base tame
6.5) where110

He is the finite set of positive elementary automorphisms of the free group.111

In Section
sectionBifixDecoding
7, we state and prove our main result (Theorem

theoremNormal
7.1), namely the112

closure under maximal bifix decoding of the family of uniformly recurrent tree113
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sets.114

Finally, in Section
sectionComposition
7.3, we use Theorem

theoremNormal
7.1 to prove a result concerning the115

composition of bifix codes (Theorem
theoremCompositionBifix
7.12) showing that the degrees of the terms116

of a composition are multiplicative.117

2 Preliminaries118

sectionPreliminaries

In this section, we recall some notions and definitions concerning words, codes119

and automata. For a more detailed presentation, see [2]. We also introduce the120

notion of composition of codes.121

2.1 Words122

subsectionWords

Let A be a finite nonempty alphabet. All words considered below, unless stated123

explicitly, are supposed to be on the alphabet A. We let A∗ denote the set of124

all finite words over A and A+ the set of finite nonempty words over A. The125

empty word is denoted by 1 or by ε . We let |w| denote the length of a word w.126

For a set X of words and a word x, we denote127

x−1X = {y ∈ A∗ | xy ∈ X}, Xx−1 = {z ∈ A∗ | zx ∈ X}.

A word v is a factor of a word x if x = uvw. A set of words is said to be128

factorial if it contains the factors of its elements. Let S be a set of words on129

the alphabet A. For w ∈ S, we denote130

L(w) = {a ∈ A | aw ∈ S}
R(w) = {a ∈ A | wa ∈ S}
E(w) = {(a, b) ∈ A×A | awb ∈ S}

and further131

ℓ(w) = Card(L(w)), r(w) = Card(R(w)), e(w) = Card(E(w)).

These notions depend upon S but it is assumed from the context. A word w132

is right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if133

e(w) > 0. A factorial set S is called right-extendable (resp. left-extendable, resp.134

biextendable) if every word in S is right-extendable (resp. left-extendable, resp.135

biextendable).136

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥137

2. It is called bispecial if it is both right and left-special.138

We let Fac(x) denote the set of factors of an infinite word x ∈ AN. The set139

Fac(x) is factorial and right-extendable. An infinite word x ∈ Aω is recurrent if140

for any u ∈ Fac(x) there is a word v such that uvu ∈ Fac(x).141

A factorial set of words S 6= {1} is recurrent if for every u,w ∈ S there is142

a word v ∈ S such that uvw ∈ S. For any recurrent set S there is an infinite143

word x such that Fac(x) = S.144

4



For any infinite word x, the set Fac(x) is recurrent if and only if x is recurrent145

(see [2]).146

Note that any recurrent set not reduced to the empty word is biextendable.147

A set of words S is said to be uniformly recurrent if it is right-extendable148

and if, for any word u ∈ S, there exists an integer n ≥ 1 such that u is a factor149

of every word of S of length n. A uniformly recurrent set is recurrent.150

A morphism f from A∗ to B∗ is a monoid morphism from A∗ into B∗. If151

a ∈ A is such that the word f(a) begins with a and if |fn(a)| tends to infinity152

with n, there is a unique infinite word denoted fω(a) which has all words fn(a)153

as prefixes. It is called a fixed point of the morphism f .154

A morphism f : A∗ → A∗ is called primitive if there is an integer k such that155

for all a, b ∈ A, the letter b appears in fk(a). If f is a primitive morphism, the156

set of factors of any fixed point of f is uniformly recurrent (see [19, Proposition157

1.2.3] for example).158

An infinite word is episturmian if the set of its factors is closed under reversal159

and contains for each n at most one word of length n which is right-special. It is160

a strict episturmian word if it has exactly one right-special word of each length161

and moreover each right-special factor u is such that r(u) = Card(A).162

A Sturmian set is a set of words which is the set of factors of a strict epistur-163

mian word. Any Sturmian set is uniformly recurrent (see [2, Proposition 2.3.3]164

for example).165

exampleFibonacci Example 2.1 Let A = {a, b}. The Fibonacci word is the fixed point x =166

abaababa . . . of the morphism f : A∗ → A∗ defined by f(a) = ab and f(b) = a.167

It is a Sturmian word (see [23]). The set Fac(x) of factors of x is the Fibonacci168

set.169

exampleTribonacci Example 2.2 Let A = {a, b, c}. The Tribonacci word is the fixed point x =170

fω(a) = abacaba · · · of the morphism f : A∗ → A∗ defined by f(a) = ab,171

f(b) = ac, f(c) = a. It is a strict episturmian word (see [21]). The set Fac(x)172

of factors of x is the Tribonacci set.173

2.2 Bifix codes174

Recall that a set X ⊂ A+ of nonempty words over an alphabet A is a code if175

the relation176

x1 · · ·xn = y1 · · · ym
with n,m ≥ 1 and x1, . . . , xn, y1, . . . , ym ∈ X implies n = m and xi = yi for177

i = 1, . . . , n. For the general theory of codes, see [3].178

A prefix code is a set of nonempty words which does not contain any proper179

prefix of its elements. A prefix code is a code.180

A suffix code is defined symmetrically. A bifix code is a set which is both a181

prefix code and a suffix code.182

A coding morphism for a code X ⊂ A+ is a morphism f : B∗ → A∗ which183

maps bijectively B onto X .184
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Let S be a set of words. A prefix code X ⊂ S is S-maximal if it is not185

properly contained in any prefix code Y ⊂ S1. Equivalently, a prefix code186

X ⊂ S is S-maximal if any word in S is comparable for the prefix order with187

some word of X .188

A set of words M is called right unitary if u, uv ∈ M imply v ∈ M . The189

submonoid M generated by a prefix code is right unitary. One can show that190

conversely, any right unitary submonoid of A∗ is generated by a prefix code191

(see [3]). The symmetric notion of a left unitary set is defined by the condition192

v, uv ∈M implies u ∈M .193

We denote by X∗ the submonoid generated by X . A set X ⊂ S is right194

S-complete if every word of S is a prefix of a word in X∗. If S is factorial, a195

prefix code is S-maximal if and only if it is right S-complete [2, Proposition196

3.3.2].197

Similarly a bifix code X ⊂ S is S-maximal if it is not properly contained in198

a bifix code Y ⊂ S. For a recurrent set S, a finite bifix code is S-maximal as a199

bifix code if and only if it is an S-maximal prefix code [2, Theorem 4.2.2]. For200

a uniformly recurrent set S, any finite bifix code X ⊂ S is contained in a finite201

S-maximal bifix code [2, Theorem 4.4.3].202

A parse of a word w ∈ A∗ with respect to a set X is a triple (v, x, u) such203

that w = vxu where v has no suffix in X , u has no prefix in X and x ∈ X∗. We204

denote by dX(w) the number of parses of w.205

Let X be a bifix code. The number of parses of a word w is also equal to the206

number of suffixes of w which have no prefix in X and the number of prefixes207

of w which have no suffix in X [3, Proposition 6.1.6].208

By definition, the S-degree of a bifix code X , denoted dX(S), is the maximal209

number of parses of all words in S with respect to X . It can be finite or infinite.210

The set of internal factors of a set of words X , denoted I(X) is the set of211

words w such that there exist nonempty words u, v with uwv ∈ X .212

Let S be a recurrent set and let X be a finite S-maximal bifix code of S-213

degree d. A word w ∈ S is such that dX(w) < d if and only if it is an internal214

factor of X , that is215

I(X) = {w ∈ S | dX(w) < d} (2.1) eqInternal

(Theorem 4.2.8 in [2]). Thus any word of X of maximal length has d parses.216

This implies that the S-degree d is finite.217

Example 2.3 Let S be a recurrent set. For any integer n ≥ 1, the set S ∩ An
218

is an S-maximal bifix code of S-degree n.219

The kernel of a set of words X is the set of words in X which are internal220

factors of words in X . We denote by K(X) the kernel of X . Note that K(X) =221

I(X) ∩X .222

For any recurrent set S, a finite S-maximal bifix code is determined by its223

S-degree and its kernel (see [2, Theorem 4.3.11]).224

1Note that in this paper we use ⊂ to denote the inclusion allowing equality.
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exampleDegree1 Example 2.4 Let S be a recurrent set containing the alphabet A. The only225

S-maximal bifix code of S-degree 1 is the alphabet A. This is clear since A is226

the unique S-maximal bifix code of S-degree 1 with empty kernel.227

2.3 Group codes228

subsectionautomata

We let A = (Q, i, T ) denote a deterministic automaton with Q as set of states,229

i ∈ Q as initial state and T ⊂ Q as set of terminal states. For p ∈ Q and230

w ∈ A∗, we denote p · w = q if there is a path labeled w from p to the state q231

and p ·w = ∅ otherwise (for a general introduction to automata theory, see [16]232

for example).233

The set recognized by the automaton is the set of words w ∈ A∗ such that234

i · w ∈ T . A set of words is rational if it is recognized by a finite automaton.235

Two automata are equivalent if they recognize the same set.236

All automata considered in this paper are deterministic and we simply call237

them ‘automata’ to mean ‘deterministic automata’.238

The automaton A is trim if for any q ∈ Q, there is a path from i to q and a239

path from q to some t ∈ T .240

An automaton is called simple if it is trim and if it has a unique terminal241

state which coincides with the initial state.242

An automaton A = (Q, i, T ) is complete if for any state p ∈ Q and any letter243

a ∈ A, one has p · a 6= ∅.244

For a nonempty set L ⊂ A∗, we denote by A(L) the minimal automaton of245

L. The states of A(L) are the nonempty sets u−1L = {v ∈ A∗ | uv ∈ L} for246

u ∈ A∗ (see Section
subsectionWords
2.1 for the notation u−1L). For u ∈ A∗ and a ∈ A, one247

defines (u−1L) · a = (ua)−1L. The initial state is the set L and the terminal248

states are the sets u−1L for u ∈ L.249

LetX ⊂ A∗ be a prefix code. Then there is a simple automatonA = (Q, 1, 1)250

that recognizes X∗. Moreover, the minimal automaton of X∗ is simple.251

Example 2.5 The automaton A = (Q, 1, 1) represented in Figure
figureExampleAutomaton
2.1 is the252

minimal automaton of X∗ with X = {aa, ab, ac, ba, ca}. We have Q = {1, 2, 3},

3 1 2

a

a, b, cb, c

a

Figure 2.1: The minimal automaton of {aa, ab, ac, ba, ca}∗. figureExampleAutomaton

253

i = 1 and T = 1. The initial state is indicated by an incoming arrow and the254

terminal one by an outgoing arrow.255

Let X be a prefix code and let P be the set of proper prefixes of X . The256

literal automaton of X∗ is the simple automaton A = (P, 1, 1) with transitions257
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defined for p ∈ P and a ∈ A by258

p · a =











pa if pa ∈ P ,

1 if pa ∈ X ,

∅ otherwise.

One verifies that this automaton recognizes X∗.259

An automaton A = (Q, 1, 1) is a group automaton if for any a ∈ A the map260

ϕA(a) : p 7→ p · a is a permutation of Q.261

The following result is proved in [2, Proposition 6.1.5].262

propositionGroupAutomaton Proposition 2.6 The following conditions are equivalent for a submonoid M263

of A∗.264

(i) M is recognized by a group automaton with d states.265

(ii) M = ϕ−1(K), where K is a subgroup of index d of a group G and ϕ is a266

surjective morphism from A∗ onto G.267

(iii) M = H ∩ A∗, where H is a subgroup of index d of the free group on A.268

If one of these conditions holds, the minimal generating set of M is a maximal269

bifix code of degree d.270

A bifix code Z such that Z∗ satisfies one of the equivalent conditions of271

Proposition
propositionGroupAutomaton
2.6 is called a group code of degree d.272

2.4 Composition of codes273

We introduce the notion of composition of codes (see [3] for a more detailed274

presentation).275

For a set X ⊂ A∗, we denote by alph(X) the set of letters a ∈ A which276

appear in the words of X .277

Let Z ⊂ A∗ and Y ⊂ B∗ be two finite codes with B = alph(Y ). Then the278

codes Y and Z are composable if there is a bijection from B onto Z. Since Z is279

a code, this bijection defines an injective morphism f from B∗ into A∗. If f is280

such a morphism, then Y and Z are called composable through f . The set281

X = f(Y ) ⊂ Z∗ ⊂ A∗ (2.2) eq1.6.1

is obtained by composition of Y and Z (by means of f). We denote it by282

X = Y ◦f Z ,
or by X = Y ◦ Z when the context permits it. Since f is injective, X and Y283

are related by bijection, and in particular Card(X) = Card(Y ). The words in284

X are obtained just by replacing, in the words of Y , each letter b by the word285

f(b) ∈ Z.286

Example 2.7 Let A = {a, b} and B = {u, v, w}. Let f : B∗ → A∗ be the mor-287

phism defined by f(u) = aa, f(v) = ab and f(w) = ba. Let Y = {u, vu, vv, w}288

and Z = {aa, ab, ba}. Then Y, Z are composable through f and Y ◦f Z =289

{aa, abaa, abab, ba}.290
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If Y and Z are two composable codes, then X = Y ◦Z is a code [3, Proposition291

2.6.1] and if Y and Z are prefix (suffix) codes, then X is a prefix (suffix) code.292

Conversely, if X is a prefix (suffix) code, then Y is a prefix (suffix) code.293

We extend the notation alph as follows. For two codes X,Z ⊂ A∗ we denote294

alphZ(X) = {z ∈ Z | ∃ u, v ∈ Z∗, uzv ∈ X}.

The following is Proposition 2.6.6 in [3].295

prop266 Proposition 2.8 Let X,Z ⊂ A∗ be codes. There exists a code Y such that296

X = Y ◦ Z if and only if X ⊂ Z∗ and alphZ(X) = Z.297

The following statement generalizes Propositions 2.6.4 and 2.6.12 of [3] for298

prefix codes.299

propositionMaxPref Proposition 2.9 Let Y, Z be finite prefix codes composable through f and let300

X = Y ◦f Z.301

(i) For any set G such that Y ⊂ G and Y is a G-maximal prefix code, X is302

an f(G)-maximal prefix code.303

(ii) For any set S such that X,Z ⊂ S, if X is an S-maximal prefix code, Y is304

an f−1(S)-maximal prefix code and Z is an S-maximal prefix code. The305

converse is true if S is recurrent.306

Proof. (i) Let w ∈ f(G) and set w = f(v) with v ∈ G. Since Y is G-maximal,307

there is a word y ∈ Y which is prefix-comparable with v. Then f(y) is prefix-308

comparable with w. Thus X is f(G)-maximal.309

(ii) Since X is an S-maximal prefix code, any word in S is prefix comparable310

with some element of X and thus with some element of Z. Therefore, Z is311

S-maximal. Next if u ∈ f−1(S), v = f(u) is in S and is prefix-comparable with312

a word x in X . Assume that v = xt. Then t is in Z∗ since v, x ∈ Z∗. Set313

w = f−1(t) and y = f−1(x). Since u = yw, u is prefix-comparable with y which314

is in Y . The other case is similar.315

Conversely, assume that S is recurrent. Let w be a word in S of length316

strictly larger than the sum of the maximal length of the words of X and Z.317

Since S is recurrent, the set Z is right S-complete, and consequently the word318

w is a prefix of a word in Z∗. Thus w = up with u ∈ Z∗ and p a proper prefix319

of a word in Z. The hypothesis on w implies that u is longer than any word of320

X . Let v = f−1(u). Since u ∈ S, we have v ∈ f−1(S). It is not possible that321

v is a proper prefix of a word of Y since otherwise u would be shorter than a322

word of X . Thus v has a prefix in Y . Consequently u, and thus w, has a prefix323

in X . Thus X is S-maximal.324

Note that the converse of (ii) is not true if the hypothesis that S is recurrent is325

replaced by factorial. Indeed, for S = {1, a, b, aa, ab, ba}, Z = {a, ba}, f−1(S) =326

{1, u, uu, v}, Y = {uu, v}, f(u) = a and f(v) = ba, one has X = {aa, ba} which327

is not an S-maximal prefix code.328
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Note also that when S is recurrent (or even uniformly recurrent),G = f−1(S)329

need not be recurrent. Indeed, let S be the set of factors of (ab)∗, let B = {u, v}330

and let f : B∗ → A∗ be defined by f(u) = ab, f(v) = ba. Then G = u∗ ∪ v∗331

which is not recurrent.332

3 Interval exchange sets333

sectionIntervalExchange
In this section, we recall the definition and the basic properties of interval ex-334

change transformations.335

3.1 Interval exchange transformations336

Let us recall the definition of an interval exchange transformation (see [10]337

or [7]).338

A semi-interval is a nonempty subset of the real line of the form [α, β) =339

{z ∈ R | α ≤ z < β}. Thus it is a left-closed and right-open interval. For two340

semi-intervals ∆,Γ, we denote ∆ < Γ if x < y for any x ∈ ∆ and y ∈ Γ.341

Let (A,<) be an ordered set. A partition (Ia)a∈A of [0, 1) in semi-intervals342

is ordered if a < b implies Ia < Ib.343

Let A be a finite set ordered by two total orders <1 and <2. Let (Ia)a∈A be344

a partition of [0, 1) in semi-intervals ordered for <1. Let λa be the length of Ia.345

Let µa =
∑

b≤1a
λb and νa =

∑

b≤2a
λb. Set αa = νa−µa. The interval exchange346

transformation relative to (Ia)a∈A is the map T : [0, 1) → [0, 1) defined by347

T (z) = z + αa if z ∈ Ia.

Observe that the restriction of T to Ia is a translation onto Ja = T (Ia), that348

µa is the right boundary of Ia and that νa is the right boundary of Ja. We349

additionally denote by γa the left boundary of Ia and by δa the left boundary350

of Ja. Thus351

Ia = [γa, µa), Ja = [δa, νa).

Since a <2 b implies Ja <2 Jb, the family (Ja)a∈A is a partition of [0, 1)352

ordered for <2. In particular, the transformation T defines a bijection from353

[0, 1) onto itself.354

An interval exchange transformation relative to (Ia)a∈A is also said to be355

on the alphabet A. The values (αa)a∈A are called the translation values of the356

transformation T .357

exampleRotation Example 3.1 Let R be the interval exchange transformation corresponding to358

A = {a, b}, a <1 b, b <2 a, Ia = [0, 1− α), Ib = [1 − α, 1). The transformation359

R is the rotation of angle α on the semi-interval [0, 1) defined by R(z) = z +360

α mod 1.361

Since <1 and <2 are total orders, there exists a unique permutation π of A such362

that a <1 b if and only if π(a) <2 π(b). Conversely, <2 is determined by <1363
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and π, and <1 is determined by <2 and π. The permutation π is said to be364

associated with T .365

Let s ≥ 2 be an integer. If we set A = {a1, a2, . . . , as} with a1 <1 a2 <1366

· · · <1 as, the pair (λ, π) formed by the family λ = (λa)a∈A and the permutation367

π determines the map T . We will also denote T as Tλ,π. The transformation T368

is also said to be an s-interval exchange transformation.369

It is easy to verify that the family of s-interval exchange transformations is370

closed by composition and by taking inverses.371

Example 3.2 A 3-interval exchange transformation is represented in Figure
figure3interval
3.1.372

One has A = {a, b, c} with a <1 b <1 c and b <2 c <2 a. The associated permu-373

tation is the cycle π = (abc). µa µb µc

νb νc νa

Figure 3.1: A 3-interval exchange transformation figure3interval

374

3.2 Regular interval exchange transformations375

The orbit of a point z ∈ [0, 1) is the set {T n(z) | n ∈ Z}. The transformation T376

is said to be minimal if for any z ∈ [0, 1), the orbit of z is dense in [0, 1).377

Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 . . . <1 as, µi = µai
and δi =378

δai
. The points 0, µ1, . . . , µs−1 form the set of separation points of T , denoted379

Sep(T ).380

An interval exchange transformation Tλ,π is called regular if the orbits of381

the nonzero separation points µ1, . . . , µs−1 are infinite and disjoint. Note that382

the orbit of 0 cannot be disjoint of the others since one has T (µi) = 0 for some383

i with 1 ≤ i ≤ s.384

There are several equivalent terms used instead of regular. A regular interval385

exchange transformation is also said to satisfy the idoc condition (where idoc386

stands for “infinite disjoint orbit condition”). It is also said to have the Keane387

property or to be without connection (see [8]).388

Example 3.3 The 2-interval exchange transformation R of Example
exampleRotation
3.1 which389

is the rotation of angle α is regular if and only if α is irrational.390

The following result is due to Keane [22].391

theoremKeane Theorem 3.4 A regular interval exchange transformation is minimal.392

The converse is not true. Indeed, consider the rotation of angle α with α393

irrational, as a 3-interval exchange transformation with λ = (1 − 2α, α, α)and394
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π = (132). The transformation is minimal as any rotation of irrational angle395

but it is not regular since µ1 = 1− 2α, µ2 = 1− α and thus µ2 = T (µ1).396

3.3 Natural coding397

Let T be an interval exchange transformation relative to (Ia)a∈A. For a given398

real number z ∈ [0, 1), the natural coding of T relative to z is the infinite word399

ΣT (z) = a0a1 · · · on the alphabet A defined by400

an = a if T n(z) ∈ Ia.

exampleFiboNatCoding Example 3.5 Let α = (3−
√
5)/2 and let R be the rotation of angle α on [0, 1)401

as in Example
exampleRotation
3.1. The natural coding of R with respect to α is the Fibonacci402

word (see [23, Chapter 2] for example).403

For a word w = b0b1 · · · bm−1, let Iw be the set404

Iw = Ib0 ∩ T−1(Ib1) ∩ · · · ∩ T−m+1(Ibm−1
). (3.1) eqIu

Note that each Iw is a semi-interval. Indeed, this is true if w is a letter. Next,405

assume that Iw is a semi-interval. Then for any a ∈ A, T (Iaw) = T (Ia)∩ Iw is a406

semi-interval since T (Ia) is a semi-interval by definition of an interval exchange407

transformation. Since Iaw ⊂ Ia, T (Iaw) is a translate of Iaw, which is therefore408

also a semi-interval. This proves the property by induction on the length.409

Then one has for any n ≥ 0410

anan+1 · · · an+m−1 = w ⇐⇒ T n(z) ∈ Iw (3.2) eqIw

If T is minimal, one has w ∈ Fac(ΣT (z)) if and only if Iw 6= ∅. Thus the411

set Fac(ΣT (z)) does not depend on z (as for Sturmian words, see [23]). Since it412

depends only on T , we denote it by Fac(T ). When T is regular (resp. minimal),413

such a set is called a regular interval exchange set (resp. a minimal interval414

exchange set).415

Let T be an interval exchange transformation. The natural codings ΣT (z)416

of T with z ∈ [0, 1) are infinite words on A. The set Aω of infinite words on417

A is a topological space for the topology induced by the metric defined by the418

following distance. For x = a0a1 · · · , y = b0b1 · · · ∈ Aω with x 6= y, one sets419

d(x, y) = 2−n(x,y) if n(x, y) is the least n such that an 6= bn. LetX be the closure420

in the space Aω of the set of all ΣT (z) for z ∈ [0, 1) and let σ be the shift on X .421

The pair (X, σ) is a symbolic dynamical system, formed of a topological space422

X and a continuous transformation σ. Such a system is said to be minimal if423

the only closed subsets invariant by σ are ∅ or X . It is well-known that (X, σ)424

is minimal if and only if the set Fac(X) of factors of the x ∈ X is uniformly425

recurrent (see for example [23] Theorem 1.5.9).426

We have the commutative diagram of Figure
commutativeDiagram
3.2.427

The map ΣT is neither continuous nor surjective. This can be corrected by428

embedding the interval [0, 1) into a larger space on which T is a homeomophism429
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[0, 1) [0, 1)

X X

T

ΣT

σ

ΣT

Figure 3.2: A commutative diagram. commutativeDiagram

(see [22] or [7] page 349). However, if the transformation T is minimal, the430

symbolic dynamical system (X, σ) is minimal (see [7] page 392). Thus, we431

obtain the following statement.432

propositionRegularUR Proposition 3.6 For any minimal interval exchange transformation T , the set433

Fac(T ) is uniformly recurrent.434

exampleDivision Example 3.7 Set α = (3 −
√
5)/2 and A = {a, b, c}. Let T be the interval435

exchange transformation on [0, 1) which is the rotation of angle 2α mod 1 on436

the three intervals Ia = [0, 1 − 2α), Ib = [1 − 2α, 1 − α), Ic = [1 − α, 1) (see437

Figure
figure3interval2
3.3). The transformation T is regular since α is irrational. The words

0 1− 2α 1− α 1

a b c

0 α 2α 1

b c a

Figure 3.3: A regular 3-interval exchange transformation. figure3interval2

438

of length at most 5 of the set S = Fac(T ) are represented in Figure
figureSetF
3.4. Since

a

b

c

c

a

b

b

c

b
c

c

a

a
b

b

b

b

b
c

c

c

a c

a

a
b

b

b

b
c

c

c

a
b

c

a

Figure 3.4: The words of length ≤ 5 of the set S. figureSetF

439

T = R2, where R is the transformation of Example
exampleFiboNatCoding
3.5, the natural coding of T440
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relative to α is the infinite word y = γ−1(x) where x is the Fibonacci word and441

γ is the morphism defined by γ(a) = aa, γ(b) = ab, γ(c) = ba. One has442

y = baccbaccbbacbbacbbacc · · · (3.3) Eqy

Actually, the word y is the fixed-point gω(b) of the morphism g : a 7→ baccb, b 7→443

bacc, c 7→ bacb. This follows from the fact that the cube of the Fibonacci444

morphism f : a 7→ ab, b 7→ a sends each letter on a word of odd length and445

thus preserves the set of words of even length.446

4 Return words447

sectionReturn

In this section, we introduce the notion of return and first return words. We448

prove elementary results about return words which extendablely already appear449

in [12].450

Let S be a set of words. For w ∈ S, let ΓS(w) = {x ∈ S | wx ∈ S∩A+w} be451

the set of right return words to w and let RS(w) = ΓS(w)\ΓS(w)A
+ be the set452

of first right return words to w. By definition, the set RS(w) is, for any w ∈ S,453

a prefix code. If S is recurrent, it is a w−1S-maximal prefix code.454

Similarly, for w ∈ S, we denote Γ′
S(w) = {x ∈ S | xw ∈ S ∩wA+} the set of455

left return words to w and R′
S(w) = Γ′

S(w)\A+Γ′
S(w) the set of first left return456

words to w. By definition, the set R′
S(w) is, for any w ∈ S, a suffix code. If S457

is recurrent, it is an Sw−1-maximal suffix code. The relation between RS(w)458

and R′
S(w) is simply459

wRS(w) = R′
S(w)w . (4.1) eqAutomo

Let f : B∗ → A∗ is a coding morphism for RS(w). The morphism f ′ : B∗ → A∗
460

defined for b ∈ B by f ′(b)w = wf(b) is a coding morphism for R′
S(w) called the461

coding morphism associated with f .462

Example 4.1 Let S be the uniformly recurrent set of Example
exampleDivision
3.7. We have463

RS(a) = {cbba, ccba, ccbba},
RS(b) = {acb, accb, b},
RS(c) = {bac, bbac, c}.

These sets can be read from the word y given in Equation (
Eqy
3.3). A coding464

morphism f : B∗ → A∗ with B = A for the set RS(c) is given by f(a) = bac,465

f(b) = bbac, f(c) = c.466

Note that ΓS(w) ∪ {1} is right unitary and that467

ΓS(w) ∪ {1} = RS(w)
∗ ∩ w−1S. (4.2) eqGamma1

Indeed, if x ∈ ΓS(w) is not in RS(w), we have x = zu with z ∈ ΓS(w) and468

u nonempty. Since ΓS(w) is right unitary, we have u ∈ ΓS(w), whence the469

conclusion by induction on the length of x. The converse inclusion is obvious.470
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propReturnsFinite Proposition 4.2 A recurrent set S is uniformly recurrent if and only if the set471

RS(w) is finite for all w ∈ S.472

Proof. Assume that all sets RS(w) for w ∈ S are finite. Let n ≥ 1. Let N be473

the maximal length of the words in RS(w) for a word w of length n, then any474

word of length N + 2n− 1 contains an occurrence of w. Conversely, for w ∈ S,475

let N be such that w is a factor of any word in S of length N . Then the words476

of RS(w) have length at most |w|+N − 1.477

Let S be a recurrent set and let w ∈ S. Let f be a coding morphism for RS(w).478

The set f−1(w−1S), denoted Df (S), is called the derived set of S with respect479

to f . Note that if f ′ is the coding morphism for R′
S(w) associated with f , then480

Df (S) = f ′−1(Sw−1).481

The following result gives an equivalent definition of the derived set.482

propositionRecurrent Proposition 4.3 Let S be a recurrent set. For w ∈ S, let f be a coding mor-483

phism for the set RS(w). Then484

Df (S) = f−1(ΓS(w)) ∪ {1}. (4.3) eqMagique

Proof. Let z ∈ Df (S). Then f(z) ∈ w−1S∩RS(w)
∗ and thus f(z) ∈ ΓS(w)∪{1}.485

Conversely, if x ∈ ΓS(w), then x ∈ RS(w)
∗ by Equation (

eqGamma1
4.2) and thus x = f(z)486

for some z ∈ Df(S).487

Let S be a recurrent set and x be an infinite word such that S = Fac(x).488

Let w ∈ S and let f be a coding morphism for the set RS(w). Since w appears489

infinitely often in x, there is a unique factorization x = vwz with z ∈ RS(w)
ω

490

and v such that vw has no proper prefix ending with w. The infinite word f−1(z)491

is called the derived word of x relative to f . If f ′ is the coding morphism for492

R′
S(w) associated with f , we have f−1(z) = f ′−1(wz) and thus f, f ′ define the493

same derived word.494

The following well-known result (for a proof, see [6] for example), shows in495

particular that the derived set of a recurrent set is recurrent.496

propositionDerived Proposition 4.4 Let S be a recurrent set and let x be a recurrent infinite word497

such that S = Fac(x). Let w ∈ S and let f be a coding morphism for the set498

RS(w). The derived set of S with respect to f is the set of factors of the derived499

word of x with respect to f , that is Df (S) = Fac(Df (x)).500

Example 4.5 Let S be the uniformly recurrent set of Example
exampleDivision
3.7. Let f be the501

coding morphism for the set RS(c) given by f(a) = bac, f(b) = bbac, f(c) = c.502

Then the derived set of S with respect to f is represented in Figure
figureDerived
4.1.503
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a

b

c

c

b
c

a
b

a
b

b
c

c

c

b

Figure 4.1: The words of length ≤ 3 of the derived set of S. figureDerived

5 Uniformly recurrent tree sets504

sectionTreeNormal
In this section, we recall the notion of tree set introduced in [?]. We recall that505

the factor complexity of a tree set on k + 1 letters is pn = kn+ 1.506

We recall a result concerning the decoding of tree sets (Theorem
InverseImageTree
5.7). We507

also recall the finite index basis property of uniformly recurrent tree sets (The-508

orems
theoremSIB
?? and

theoremGroupCode
5.9) that we will use in Section

sectionBifixDecoding
7. We prove that the family of509

uniformly recurrent tree sets is invariant under derivation (Theorem
propositionReturns
5.12). We510

further prove that all bases of the free group included in a uniformly recurrent511

tree set are tame (Theorem
theoremTame
5.18).512

5.1 Tree sets513

Let S be a fixed factorial set. For a biextendable word w, we consider the514

undirected graph G(w) on the set of vertices which is the disjoint union of L(w)515

and R(w) with edges the pairs (a, b) ∈ E(w). The graph G(w) is called the516

extension graph of w in S.517

Example 5.1 Let S be the Fibonacci set. The extension graphs of ε, a, b, ab518

respectively are shown in Figure
FigureExtensionGraph
5.1.

b

a b

a b

a b

a

a a

a

b

a

Figure 5.1: The extension graphs of ε, a, b, ab in the Fibonacci set. FigureExtensionGraph

519

Recall that an undirected graph is a tree if it is connected and acyclic.520

We say that S is a tree set (resp. an acyclic set) if it is biextendable and if521

for every word w ∈ S, the graph G(w) is a tree (resp. is acyclic).522

It is not difficult to verify the following statement (see [4], Proposition 4.3)523

which shows that the factor complexity of a tree set is linear.524
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propositionComplexity Proposition 5.2 Let S be a tree set on the alphabet A and let k = Card(A ∩525

S)− 1. Then Card(S ∩ An) = kn+ 1 for all n ≥ 0526

The following result is also easy to prove.527

propositionSturmianisNormal Proposition 5.3 A Sturmian set S is a uniformly recurrent tree set.528

Proof. We have already seen that a Sturmian set is uniformly recurrent. Let529

us show that it is a tree set. Consider w ∈ S. If w is not left-special there is a530

unique a ∈ A such that aw ∈ S. Then E(w) ⊂ {a}×A and thus G(w) is a tree.531

The case where w is not right-special is symmetrical. Finally, assume that w is532

bispecial. Let a, b ∈ A be such that aw is right-special and wb is left-special.533

Then E(w) = ({a} ×A) ∪ (A× {b}) and thus G(w) is a tree.534

Putting together Propositions
propositionRegularUR
3.6 and Proposition 5.8 in [5], we have the similar535

statement.536

propositionExchangeTreeCondition Proposition 5.4 A regular interval exchange set is a uniformly recurrent tree537

set.538

Proposition
propositionExchangeTreeCondition
5.4 is actually a particular case of a result of [18] which charac-539

terizes the regular interval exchange sets.540

We give an example of a uniformly recurrent tree set which is neither a541

Sturmian set nor an interval exchange set.542

exampleTribonacci21 Example 5.5 Let S be the Tribonacci set on the alphabet A = {a, b, c} (see543

Example
exampleTribonacci
2.2). Let X = A2 ∩ S. Then X = {aa, ab, ac, ba, ca} is an S-maximal544

bifix code of S-degree 2. Let B = {x, y, z, t, u} and let f : B∗ → A∗ be the545

morphism defined by f(x) = aa, f(y) = ab, f(z) = ac, f(t) = ba, f(u) = ca.546

Then f is a coding morphism for X . We will see that the set G = f−1(S) is547

a uniformly recurrent tree set (this follows from Theorem
theoremNormal
7.1 below). It is not548

Sturmian since y and t are two right-special words of length 1. It is not either549

an interval exchange set. Indeed, for any right-special word w of G, one has550

r(w) = 3. This is not possible in a regular interval exchange set T since, ΣT551

being injective, the length of the interval Jw tends to 0 as |w| tends to infinity.552

Let S be a set of words. For w ∈ S, and U, V ⊂ S, let U(w) = {ℓ ∈ U | ℓw ∈553

S} and let V (w) = {r ∈ V | wr ∈ S}. The generalized extension graph of w554

relative to U, V is the following undirected graph GU,V (w). The set of vertices555

is made of two disjoint copies of U(w) and V (w). The edges are the pairs (ℓ, r)556

for ℓ ∈ U(w) and r ∈ V (w) such that ℓwr ∈ S. The extension graph G(w)557

defined previously corresponds to the case where U, V = A.558

The following result is proved in [4] (Proposition 4.9).559

PropStrongTreeCondition Proposition 5.6 Let S be a tree set. For any w ∈ S, any finite S-maximal560

suffix code U ⊂ S and any finite S-maximal prefix code V ⊂ S, the generalized561

extension graph GU,V (w) is a tree.562
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Let S be a recurrent set and let f be a coding morphism for a finite S-563

maximal bifix code. The set f−1(S) is called a maximal bifix decoding of S.564

The following result is Theorem 4.13 in [4].565

InverseImageTree Theorem 5.7 Any maximal bifix decoding of a recurrent tree set is a tree set.566

We have no example of a bifix decoding of a recurrent tree set which is not567

recurrent (in view of Theorem
theoremNormal
7.1 to be proved hereafter, such a set would be568

the decoding of a recurrent tree set which is not uniformly recurrent).569

5.2 The finite index basis property570

sectionNormal

Let S be a recurrent set containing the alphabet A. We say that S has the571

finite index basis property if the following holds. A finite bifix code X ⊂ S is572

an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup573

of index d of the free group on A.574

We recall the main result of [5] (Theorem 6.1).575

theoremFIB Theorem 5.8 A uniformly recurrent tree set containing the alphabet A has the576

finite index basis property.577

Recall from Section
subsectionautomata
2.3 that a group code of degree d is a bifix code X such578

that X∗ = ϕ−1(H) for a surjective morphism ϕ : A∗ → G from A∗ onto a finite579

group G and a subgroup H of index d of G.580

We will use the following result. It is stated for a Sturmian set S in [2]581

(Theorem 7.2.5) but the proof only uses the fact that S is uniformly recurrent582

and satisfies the finite index basis property. We reproduce the proof for the sake583

of clarity.584

For a set of words X , we denote by 〈X〉 the subgroup of the free group on585

A generated by X . The free group on A itself is consistently denoted 〈A〉.586

theoremGroupCode Theorem 5.9 Let Z ⊂ A+ be a group code of degree d. For every uniformly587

recurrent tree set S containing the alphabet A, the set X = Z ∩ S is a basis of588

a subgroup of index d of 〈A〉.589

Proof. By Theorem 4.2.11 in [2], the code X is an S-maximal bifix code of590

S-degree e ≤ d. Since S is a uniformly recurrent, by Theorem 4.4.3 of [2], X is591

finite. By Theorem
theoremFIB
5.8, X is a basis of a subgroup of index e. Since 〈X〉 ⊂ 〈Z〉,592

the index e of the subgroup 〈X〉 is a multiple of the index d of the subgroup593

〈Z〉. Since e ≤ d, this implies that e = d.594

As an example of this result, if S is a uniformly recurrent tree set, then595

S ∩ An is a basis of the subgroup formed by the words of length multiple of n596

(where the length is not the length of the reduced word but the sum of values597

1 for the letters in A and −1 for the letters in A−1).598

We will use the following results from [4]. The first one is Corollary 5.8 in [4].599
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theoremJulien Theorem 5.10 Let S be a uniformly recurrent tree set containing the alphabet600

A. For any word w ∈ S, the set RS(w) is a basis of the free group on A.601

The next result is Theorem 6.2 in [4]. A submonoid M of A∗ is saturated in602

a set S if M ∩ S = 〈M〉 ∩ S.603

propositionHcapF Theorem 5.11 Let S be an acyclic set. The submonoid generated by any bifix604

code X ⊂ S is saturated in S.605

5.3 Derived sets of tree sets606

We will use the following closure property of the family of uniformly recurrent607

tree sets. It generalizes the fact that the derived word of a Sturmian word is608

Sturmian (see [21]).609

propositionReturns Theorem 5.12 Any derived set of a uniformly recurrent tree set is a uniformly610

recurrent tree set.611

Proof. Let S be a uniformly recurrent tree set containing A, let v ∈ S and let612

f be a coding morphism for X = RS(v). By Theorem
theoremJulien
5.10, X is a basis of the613

free group on A. Thus f : B∗ → A∗ extends to an isomorphism from 〈B〉 onto614

〈A〉.615

Set H = f−1(v−1S). By Proposition
propositionRecurrent
4.3, the set H is recurrent and H =616

f−1(ΓS(v)) ∪ {1}.617

Consider x ∈ H and set y = f(x). Let f ′ be the coding morphism for618

X ′ = R′
S(v) associated with f . For a, b ∈ B, we have619

(a, b) ∈ G(x) ⇔ (f ′(a), f(b)) ∈ GX′,X(vy),

whereGX′,X(vy) denotes the generalized extension graph of vy relative toX ′, X .620

Indeed,621

axb ∈ H ⇔ f(a)yf(b) ∈ ΓS(v) ⇔ vf(a)yf(b) ∈ S ⇔ f ′(a)vyf(b) ∈ S.

The set X ′ is an Sv−1-maximal suffix code and the set X is a v−1S-maximal622

prefix code. By Proposition
PropStrongTreeCondition
5.6 the generalized extension graph GX′,X(vy) is a623

tree. Thus the graph G(x) is a tree. This shows that H is a tree set.624

Consider now x ∈ H \ 1. Set y = f(x). Let us show that ΓH(x) =625

f−1(ΓS(vy)) or equivalently f(ΓH(x)) = ΓS(vy). Consider first r ∈ ΓH(x).626

Set s = f(r). Then xr = ux with u, ux ∈ H . Thus ys = wy with w = f(u).627

Since u ∈ H \ {1}, w = f(u) is in ΓS(v), we have vw ∈ A+v ∩ S. This628

implies that vys = vwy ∈ A+vy ∩ S and thus that s ∈ ΓS(vy). Conversely,629

consider s ∈ ΓS(vy). Since y = f(x), we have s ∈ ΓS(v). Set s = f(r). Since630

vys ∈ A+vy∩S, we have ys ∈ A+y∩S. Set ys = wy. Then vwy ∈ A+vy implies631

vw ∈ A+v and therefore w ∈ ΓS(v). Setting w = f(u), we obtain f(xr) = ys =632

wy ∈ X+y ∩ ΓS(v). Thus r ∈ ΓH(x). This shows that f(ΓH(x)) = ΓS(vy) and633

thus that RH(x) = f−1(RS(vy)).634

Since S is uniformly recurrent, the set RS(vy) is finite. Since f is an isomor-635

phism, RH(x) is also finite, which shows that H is uniformly recurrent.636
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Example 5.13 Let S be the Tribonacci set (see Example
exampleTribonacci
2.2). It is the set637

of factors of the infinite word x = abacaba · · · which is the fixed point of the638

morphism f defined by f(a) = ab, f(b) = ac, f(c) = a. We have RS(a) =639

{a, ba, ca}. Let g be the coding morphism for RS(a) defined by g(a) = a,640

g(b) = ba, g(c) = ca and let g′ be the associated coding morphism for R′
S(a).641

We have f = g′π where π is the circular permutation π = (abc). Set z = g′−1(x).642

Since g′π(x) = x, we have z = π(x). Thus the derived set of S with respect to643

a is the set π(S).644

5.4 Tame bases645

An automorphism α of the free group on A is positive if α(a) ∈ A+ for every646

a ∈ A. We say that a positive automorphism of the free group on A is tame2647

if it belongs to the submonoid generated by the permutations of A and the648

automorphisms αa,b, α̃a,b defined for a, b ∈ A with a 6= b by649

αa,b(c) =

{

ab if c = a,

c otherwise
, α̃a,b(c) =

{

ba if c = a,

c otherwise

Thus αa,b places a b after each a and α̃a,b places a b before each a. The above650

automorphisms and the permutations of A are called the elementary positive651

automorphisms on A. The monoid of positive automorphisms is not finitely652

generated as soon as the alphabet has at least three generators (see [26]).653

A basis X of the free group is positive if X ⊂ A+. A positive basis X of the654

free group is tame if there exists a tame automorphism α such that X = α(A).655

Example 5.14 The set X = {ba, cba, cca} is a tame basis of the free group on656

{a, b, c}. Indeed,one has the following sequence of elementary automorphisms.657

(b, c, a)
αc,b−−→ (b, cb, a)

α̃2

a,c−−−→ (b, cb, cca)
αb,a−−−→ (ba, cba, cca).

The fact that X is a basis can be check directly by the fact that c = (cba)(ba)−1,658

c−2(cca) = a and finally (ba)a−1 = b.659

The following result will play a key role in the proof of the main result of this660

section (Theorem
theoremTame
5.18).661

propAuxiliary Proposition 5.15 A set X ⊂ A+ is a tame basis of the free group on A if and662

only if X = A or there is a tame basis Y of the free group on A and u, v ∈ Y663

such that X = (Y \ v) ∪ uv or X = (Y \ u) ∪ uv.664

Proof. Assume first that X is a tame basis of the free group on A. Then665

X = α(A) where α is a tame automorphism of 〈A〉. Then α = α1α2 · · ·αn where666

the αi are elementary positive automorphisms. We use an induction on n. If667

n = 0, then X = A. If αn is a permutation of A, then X = α1α2 · · ·αn−1(A)668

2The word tame (as opposed to wild) is used here on analogy with its use in ring theory.
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and the result holds by induction hypothesis. Otherwise, set β = α1 · · ·αn−1669

and Y = β(A). By induction hypothesis, Y is tame. If αn = αa,b, set u = β(a)670

and v = β(b) = α(b). Then X = (Y \u)∪uv and thus the condition is satisfied.671

The case were αn = α̃a,b is symmetrical.672

Conversely, assume that Y is a tame basis and that u, v ∈ Y are such that673

X = (Y \ u) ∪ uv. Then, there is a tame automorphism β of 〈A〉 such that674

Y = β(A). Set a = β−1(u) and b = β−1(v). Then X = βαa,b(A) and thus X is675

a tame basis.676

We note the following corollary.677

corollaryTame Corollary 5.16 A tame basis which is a bifix code is the alphabet.678

Proof. Assume that X is a tame basis which is not the alphabet. By Proposi-679

tion
propAuxiliary
5.15 there is a tame basis Y and u, v ∈ Y such that X = (Y \ v) ∪ uv or680

X = (Y \ u) ∪ uv. In the first case, X is not prefix. In the second one, it is not681

suffix.682

The following example is from [26].683

exampleWen Example 5.17 The set X = {ab, acb, acc} is a basis of the free group on684

{a, b, c}. Indeed, accb = (acb)(ab)−1(acb) ∈ 〈X〉 and thus b = (acc)−1accb ∈685

〈X〉, which implies easily that a, c ∈ 〈X〉. The set X is bifix and thus it is not686

a tame basis by Corollary
corollaryTame
5.16.687

The following result is a remarkable consequence of Theorem
theoremFIB
5.8.688

theoremTame Theorem 5.18 Any basis of the free group included in a uniformly recurrent689

tree set is tame.690

Proof. Let S be a uniformly recurrent tree set. Let X ⊂ S be a basis of the free691

group on A. Since A is finite, X is finite (and of the same cardinality as A).692

We use an induction on the sum λ(X) of the lengths of the words of X . If X is693

bifix, by Theorem
theoremFIB
5.8, it is an S-maximal bifix code of S-degree 1. Thus X = A694

(see Example
exampleDegree1
2.4). Next assume for example that X is not prefix. Then there695

are nonempty words u, v such that u, uv ∈ X . Let Y = (X \ uv) ∪ v. Then Y696

is a basis of the free group and λ(Y ) < λ(X). By induction hypothesis, Y is697

tame. Since X = (Y \ v) ∪ uv, X is tame by Proposition
propAuxiliary
5.15.698

Example 5.19 The set X = {ab, acb, acc} is a basis of the free group which is699

not tame (see Example
exampleWen
5.17). Accordingly, the extension graph G(ε) relative to700

the set of factors of X is not a tree (see Figure
figureWen
5.2).701
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Figure 5.2: The graph G(ε) figureWen

6 H-adic representations702

sectionSadic
In this section we study H-adic representations of tree sets. This notion was703

introduced in [17], using a terminology initiated by Vershik and coined out by704

B. Host (it is usually called S-adic but we already use here the letter S for705

sets of words). We first recall a general construction allowing to build H-adic706

representations of any uniformly recurrent aperiodic set (Proposition
prop: S-adic UR set
6.1) which707

is based on return words. Using Theorem
theoremTame
5.18, we show that this construction708

actually provides He-representations of uniformly recurrent tree sets (Theo-709

rem
base tame
6.5), where He is the set of elementary positive automorphisms of the free710

group on A.711

6.1 H-adic representations712

Let H be a set of morphisms and h = (σn)n∈N be a sequence in HN with713

σn : A∗
n+1 → A∗

n. We let Sh denote the set of words
⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)).714

We call a factorial set S an H-adic set if there exists h ∈ SN such that S = Sh.715

In this case, the sequence h is called an H-adic representation of S.716

A sequence of morphisms (σn)n∈N is said to be everywhere growing if mina∈An
717

|σ0 · · ·σn−1(a)| goes to infinity as n increases. A sequence of morphisms (σn)n∈N718

is said to be primitive if for all r ≥ 0 there exists s > r such that all letters of719

Ar occur in all images σr · · ·σs−1(a), a ∈ As. Obviously any primitive sequence720

of morphisms is everywhere growing.721

A uniformly recurrent set S is said to be aperiodic if it contains at least one722

right-special factor of each length. The next (well-known) proposition provides723

a general construction to get a primitive S-adic representation of any aperiodic724

uniformly recurrent set S.725

prop: S-adic UR set Proposition 6.1 An aperiodic factorial set S ⊂ A∗ is uniformly recurrent if726

and only if it has a primitive H-adic representation for some (possibly infinite)727

set H of morphisms.728

Proof. Let H be a set of morphisms and h = (σn : A∗
n+1 → A∗

n)n∈N ∈ HN be729

a primitive sequence of morphisms such that S =
⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)).730

Consider a word u ∈ S and let us prove that u ∈ Fac(v) for all long enough731

v ∈ S. The sequence h being everywhere growing, there is an integer r > 0732

such that mina∈Ar
|σ0 · · ·σr−1(a)| > |u|. As S =

⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)),733

there is an integer s > r, two letters a, b ∈ Ar and a letter c ∈ As such that734

u ∈ Fac(σ0 · · ·σr−1(ab)) and ab ∈ Fac(σr · · ·σs−1(c)). The sequence h being735

primitive, there is an integer t > s such that c occurs in σs · · ·σt−1(d) for all d ∈736
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At. Thus u is a factor of all words v ∈ S such that |v| ≥ maxd∈At
|σ0 · · ·σt−1(d)|737

and S is uniformly recurrent.738

Let us prove the converse. Let (un)n∈N ∈ SN be a non-ultimately periodic739

sequence such that un is suffix of un+1. By assumption, S is uniformly recurrent740

so RS(un+1) is finite for all n. The set S being aperiodic, RS(un+1) also has741

cardinality at least 2 for all n. For all n, let An = {0, . . . ,Card(RS(un))−1} and742

let αn : A∗
n → A∗ be a coding morphism forRS(un). The word un being suffix of743

un+1, we have αn+1(An+1) ⊂ αn(A
+
n ). Since αn(An) = RS(un) is a prefix code,744

there is a unique morphism σn : A∗
n+1 → A∗

n such that αnσn = αn+1. For all n745

we get RS(un) = α0σ0σ1 · · ·σn−1(An) and S =
⋂

n∈N
Fac(α0σ0 · · ·σn(A∗

n+1)).746

Without loss of generality, we can suppose that u0 = ε and A0 = A. In that747

case we get α0 = id and the set S thus has an H-adic representation with748

H = {σn | n ∈ N}.749

Let us show that h = (σn)n∈N is everywhere growing. If not, there is a750

sequence of letters (an ∈ An)n≥N such that σn(an+1) = an for all n ≥ N . This751

means that the word r = σ0 · · ·σn(an) ∈ S is a first return word to un for all752

n ≥ N . The sequence (|un|)n∈N being unbounded, the word rk belongs to S for753

all positive integers k, which contradicts the uniform recurrence of S.754

Let us show that h is primitive. The set S being uniformly recurrent, for755

all n ∈ N there exists Nn such that all words of S ∩ A≤n occur in all words of756

S∩A≥Nn . Let r ∈ N and let u = σ0 · · ·σr−1(a) for some a ∈ Ar. Let s > r be an757

integer such that minb∈As
|σ0 · · ·σs−1(b)| ≥ N|u|. Thus u occurs in σ0 · · ·σs−1(b)758

for all b ∈ As. As σ0 · · ·σs−1(As) ⊂ σ0 · · ·σr−1(A
+
r ) and as σ0 · · ·σr−1(Ar) =759

RS(ur) is a prefix code, the letter a ∈ Ar occurs in σr · · ·σs−1(b) for all b ∈ Ar.760

761

Remark 6.2 In the continuation of the proof of the above proposition, we could762

also consider a sequence (an ∈ An)n∈N of letters such that σn(an+1) ∈ anA
∗
n763

(such a sequence exists by application of König’s lemma). By doing so, we764

would build a uniformly recurrent infinite word w = limn→+∞ σ0 · · ·σn(an+1)765

with S for set of factors. According to Durand [12], w is substitutive if and766

only if there is a sequence of words (un)n∈N that makes the sequence (σn)n∈N767

be ultimately periodic.768

Remark 6.3 In the proof of the previous proposition, the same construction769

works if we define the sequence (un)n∈N such that un is prefix of un+1 and if we770

consider R′
S(un) instead of RS(un).771

Remark 6.4 Still in the continuation of the proof, we can also slightly mod-772

ify the construction in such a way that the sequence (σn)n∈N is proper, that773

is, for all n, there is an integer m > n and two letters a, b ∈ An such that774

σn · · ·σm−1(Am) ⊂ aA∗
n ∩ A∗

nb. According to Durand [13, 14], if H is finite,775

then S is linearly recurrent if and only if there is an integer k ≥ 0 such that776

for all n ∈ N, all letters of An occur in σn · · ·σn+k(a) for all a ∈ An+k+1 (this777

property is called strong primitiveness) and there are two letters a, b ∈ An such778

that σn · · ·σn+k(An+k+1) ⊂ aA∗
n ∩ A∗

nb.779
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6.2 H-adic representation of tree sets780

Even for uniformly recurrent sets with linear factor complexity, the set of mor-781

phisms S = {σn | n ∈ N} considered in Proposition
prop: S-adic UR set
6.1 is usually infinite as782

well as the sequence of alphabets (An)n∈N is usually unbounded (see [15]). For783

tree sets S, the next theorem significantly improves the only if part of Proposi-784

tion
prop: S-adic UR set
6.1: For such sets, the set H can be replaced by the set He of elementary785

positive automorphisms. In particular, An is equal to A for all n.786

base tame Theorem 6.5 If S is a uniformly recurrent tree set over an alphabet A, then787

it has a primitive He-adic representation.788

Proof. For any non-ultimately periodic sequence (un)n∈N ∈ SN such that u0 = ε789

and un is suffix of un+1, the sequence of morphisms (σn)n∈N built in the proof of790

Proposition
prop: S-adic UR set
6.1 is a primitiveH-adic representation of S withH = {σn | n ∈ N}.791

Therefore, all we need to do is to consider such a sequence (un)n∈N such that792

σn is tame for all n.793

Let u1 = a(0) be a letter in A. By Theorem
theoremJulien
5.10, the set RS(u1) is a basis of794

the free group on A. Therefore, by Theorem
theoremTame
5.18, the morphism σ0 : A∗

1 → A∗
0795

is tame (A0 = A). Let a(1) ∈ A1 be a letter and set u2 = σ0(a
(1)). Thus796

u2 ∈ RS(u1) and u1 is a suffix of u2. By Theorem
propositionReturns
5.12, the derived set S(1) =797

σ−1
0 (S) is a uniformly recurrent tree set on the alphabet A. We thus reiterate the798

process with a(1) and we conclude by induction with un = σ0 · · ·σn−2(a
(n−1))799

for all n ≥ 2.800

7 Maximal bifix decoding801

sectionBifixDecoding
In this section, we state and prove the main result of this paper (Theorem

theoremNormal
7.1).802

In the first part, we prove two results concerning morphisms onto a finite group.803

In the second one we prove a sequence of lemmas leading to a proof of the main804

result.805

7.1 Main result806

subsectionMainResult

The family of uniformly recurrent tree sets contains both the Sturmian sets and807

the regular interval exchange sets. The second family is closed under maximal808

bifix decoding (see [5], Corollary 5.22) but the first family is not (see Example
exampleTribonacci2
7.2809

below). The following result shows that the family of uniformly recurrent tree810

sets is a natural closure of the family of Sturmian sets.811

theoremNormal Theorem 7.1 The family of uniformly recurrent tree sets is closed under max-812

imal bifix decoding.813

Note that, in contrast with Theorem
InverseImageTree
5.7, assuming the uniform recurrence,814

instead of simply the recurrence, implies the same property for the decoding.815

We illustrate Theorem
theoremNormal
7.1 by the following example.816
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exampleTribonacci2 Example 7.2 Let G be as in Example
exampleTribonacci21
5.5. The set G is a uniformly recurrent817

tree set by Theorem
theoremNormal
7.1.818

We prove two preliminary results concerning the restriction to a uniformly re-819

current tree set of a morphism onto a finite group (Propositions
propositionGroup
7.3 and

propGamma
7.5).820

propositionGroup Proposition 7.3 Let S be a uniformly recurrent tree set containing the alphabet821

A and let ϕ : A∗ → G be a morphism from A∗ onto a finite group G. Then822

ϕ(S) = G.823

Proof. Since the submonoid ϕ−1(1) is right and left unitary, there is a bifix code824

Z such that Z∗ = ϕ−1(1). Let X = Z ∩ S. By Theorem
theoremGroupCode
5.9, X is a basis of825

a subgroup of index Card(G). Let x be a word of X of maximal length (since826

X is a basis, it is finite and has Card(A) elements). Then x is not an internal827

factor of X and thus it has Card(G) parses. Let S(x) be the set of suffixes of x828

which are prefixes of X . If s, t ∈ S(x), then they are comparable for the suffix829

order. Assume for example that s = ut. If ϕ(s) = ϕ(t), then u ∈ X∗ which830

implies u = 1 since s is a prefix of X . Thus all elements of S(x) have distinct831

images by ϕ. Since S(x) has Card(G) elements, this forces ϕ(S(x)) = G and832

thus ϕ(S) = G since S(x) ⊂ S.833

We illustrate the proof on the following example.834

Example 7.4 Let A = {a, b} and let ϕ be the morphism from A∗ onto the835

symmetric groupG on 3 elements defined by ϕ(a) = (12) and ϕ(b) = (13). Let Z836

be the group code such that Z∗ = ϕ−1(1). The group automaton corresponding837

to the regular representation of G is represented in Figure
figGroupAutomaton
7.1. Let S be the838

Fibonacci set. The code X = Z ∩ S is represented in Figure
figCodeX
7.2. The word

(13) (1) (12) (123)

(132) (23)

b

b

a

a

b

b

a

a b

b

a

a

Figure 7.1: The group automaton corresponding to the regular representation
of G. figGroupAutomaton

839

w = ababa is not an internal factor of X . All its 6 suffixes (indicated in black in840

Figure
figCodeX
7.2) are proper prefixes of X and their images by ϕ are the 6 elements841

of the group G.842

propGamma Proposition 7.5 Let S be a uniformly recurrent tree set containing the alphabet843

A and let ϕ : A∗ → G be a morphism from A∗ onto a finite group G. For any844

w ∈ S, one has ϕ(ΓS(w) ∪ {1}) = G.845
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Figure 7.2: The code X = Z ∩ S figCodeX

Proof. Let α : B∗ → A∗ be a coding morphism for RS(w). Then β = ϕ ◦ α :846

B∗ → G is a morphism from B∗ into G. By Theorem
theoremJulien
5.10, the set RS(w) is a847

basis of the free group on A. Thus 〈α(B)〉 = 〈A〉. This implies that β(〈B〉) = G.848

This implies that β(B) generates G. Since G is a finite group, β(B∗) is a849

subgroup of G and thus β(B∗) = G. By Theorem
propositionReturns
5.12, the set H = α−1(w−1S)850

is a uniformly recurrent tree set. Thus β(H) = G by Proposition
propositionGroup
7.3. This851

implies that ϕ(ΓS(w) ∪ {1}) = G.852

7.2 Proof of the main result853

Let S be a uniformly recurrent tree set containing A and let f : B∗ → A∗ be a854

coding morphism for a finite S-maximal bifix code Z. By Theorem
theoremFIB
5.8, Z is a855

basis of a subgroup of index dS(Z) and, by Theorem
propositionHcapF
5.11, the submonoid Z∗ is856

saturated in S.857

We first prove the following lemma.858

lemma1 Lemma 7.6 Let S be a uniformly recurrent tree set containing A and let f :859

B∗ → A∗ be a coding morphism for an S-maximal bifix code Z. The set K =860

f−1(S) is recurrent.861

Proof. Since S is factorial, the set K is factorial. Let r, s ∈ K. Since S is862

recurrent, there exists u ∈ S such that f(r)uf(s) ∈ S. Set t = f(r)uf(s). Let863

G be the representation of 〈A〉 on the right cosets of 〈Z〉. Let ϕ : A∗ → G be the864

natural morphism from A∗ ontoG. By Proposition
propGamma
7.5, we have ϕ(ΓS(t)∪{1}) =865

G. Let v ∈ ΓS(t) be such that ϕ(v) is the inverse of ϕ(t). Then ϕ(tv) is the866

identity of G and thus tv ∈ 〈Z〉.867

Since S is a tree set, it is acyclic and thus Z∗ is saturated in S by Theo-868

rem
propositionHcapF
5.11. Thus Z∗ ∩ S = 〈Z〉 ∩ S. This implies that tv ∈ Z∗. Since tv ∈ A∗t,869

we have f(r)uf(s)v = f(r)qf(s) and thus uf(s)v = qf(s) for some q ∈ S. Since870

Z∗ is right unitary, f(r), f(r)uf(s)v ∈ Z∗ imply uf(s)v = qf(s) ∈ Z∗. In turn,871

since Z∗ is left unitary, qf(s), f(s) ∈ Z∗ imply q ∈ Z∗ and thus q ∈ Z∗ ∩ S.872
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Let w ∈ K be such that f(w) = q. Then rws is in K. This shows that K is873

recurrent.874

We prove a series of lemmas. In each of them, we consider a uniformly875

recurrent tree set S containing A and a coding morphism f : B∗ → A∗ for876

an S-maximal bifix code Z. We set K = f−1(S). We choose w ∈ K and set877

v = f(w). Let also Y = RK(w). Then Y is a w−1K-maximal prefix code. Let878

X = f(Y ) or equivalently X = Y ◦f Z. Then, since f(w−1K) = v−1S, by879

Proposition
propositionMaxPref
2.9 (i), X is a v−1S-maximal prefix code.880

Finally we set U = RS(v). Let α : C∗ → A∗ be a coding morphism for U .881

Since X ⊂ ΓS(v), we have X ⊂ U∗. Since uU∗ ∩X 6= ∅ for any u ∈ U , we have882

alphU (X) = U . Thus, by Proposition
prop266
2.8, we have X = T ◦α U where T is the883

prefix code such that α(T ) = X .884

lemma3 Lemma 7.7 We have X∗ ∩ v−1S = U∗ ∩ Z∗ ∩ v−1S.885

Proof. Indeed, the left handside is clearly included in the right one. Conversely,886

consider x ∈ U∗ ∩ Z∗ ∩ v−1S. Since x ∈ U∗ ∩ v−1S, α−1(x) is in α−1(v−1S) =887

α−1(ΓS(v)) ∪ {1} by Proposition
propositionRecurrent
4.3. Thus x ∈ ΓS(v) ∪ {1}. Since x ∈ Z∗,888

f−1(x) ∈ ΓK(w) ∪ {1} ⊂ Y ∗. Therefore x is in f(Y ∗) = X∗.889

We set for simplicity d = dS(Z). Set H = α−1(v−1S). By Proposition
propositionReturns
5.12, H890

is a uniformly recurrent tree set.891

lemma4 Lemma 7.8 The set T is a finite H-maximal bifix code and dH(T ) = d.892

Proof. Since X is a prefix code, T is a prefix code. Since X is v−1S-maximal,893

T is α−1(v−1S)-maximal by Proposition
propositionMaxPref
2.9 (ii) and thus H-maximal since894

H = α−1(v−1S).895

Let x, y ∈ C∗ be such that xy, y ∈ T . Then α(xy), α(y) ∈ X imply α(x) ∈896

Z∗. Since on the other hand, α(x) ∈ U∗ ∩ v−1S, we obtain by Lemma
lemma3
7.7 that897

α(x) ∈ X∗. This implies x ∈ T ∗ and thus x = 1 since T is a prefix code. This898

shows that T is a suffix code.899

To show that dH(T ) = d, we consider the morphism ϕ from A∗ onto the900

group G which is the representation of 〈A〉 on the right cosets of 〈Z〉. Set901

J = ϕ(Z∗). Thus J is a subgroup of index d of G. By Theorem
theoremJulien
5.10, the set902

U is a basis of the free group on A. Therefore, since G is a finite group, the903

restriction of ϕ to U∗ is surjective. Set ψ = ϕ ◦ α. Then ψ : C∗ → G is a904

morphism which is onto since U = α(C) generates the free group on A. Let V905

be the group code of degree d such that V ∗ = ψ−1(J). Then T = V ∩H , as we906

will show now.907

Indeed, set W = V ∩ H . If t ∈ T , then α(t) ∈ X and thus α(t) ∈ Z∗.908

Therefore ψ(t) ∈ J and t ∈ V ∗. This shows that T ⊂W ∗. Conversely, if t ∈W ,909

then ψ(t) ∈ J and thus α(t) ∈ Z∗. Since on the other hand α(t) ∈ U∗ ∩ S, we910

obtain α(t) ∈ X∗ by Lemma
lemma3
7.7. This implies t ∈ T ∗ and shows that W ⊂ T ∗.911

Thus, since H is a uniformly recurrent tree set, by Theorem
theoremGroupCode
5.9, T is a basis912

of a subgroup of index d. Thus dH(T ) = d by Theorem
theoremFIB
5.8.913
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lemma5 Lemma 7.9 The set Y is finite.914

Proof. Since T and U are finite, the set X = T ◦U is finite. Thus Y = f−1(X)915

is finite.916

Proof of Theorem
theoremNormal
7.1. Let S be a uniformly recurrent tree set containing A and917

let f : B∗ → A∗ be a coding morphism for a finite S-maximal bifix code Z. Set918

K = f−1(S).919

By Lemma
lemma1
7.6, K is recurrent. By Lemma

lemma5
7.9 any set of first return words920

Y = RK(w) is finite. Thus K is uniformly recurrent. By Theorem
InverseImageTree
5.7, K is a921

tree set.922

Thus we conclude that K is a uniformly recurrent tree set.923

Note that since K is a uniformly recurrent tree set, the set Y is not only924

finite as asserted in Lemma
lemma5
7.9 but in fact a basis of the free group on B, by925

Theorem
theoremJulien
5.10.926

We illustrate the proof with the following example.927

Example 7.10 Let S be the Fibonacci set on A = {a, b} and let Z = S ∩A2 =928

{aa, ab, ba}. Thus Z is an S-maximal bifix code of S-degree 2. Let B = {c, d, e}929

and let f : B∗ → A∗ be the coding morphism defined by f(c) = aa, f(d) = ab930

and f(e) = ba. Part of the set K = f−1(S) is represented in Figure
figureSetK
7.3 on the931

left.932
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s
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Figure 7.3: The sets K and H . figureSetK

The set Y = RK(c) and X = f(Y ) are933

Y = {eddc, eedc, eeddc}, X = {baababaa, babaabaa, babaababaa}.

On the other hand, the set U = RS(aa) is U = {baa, babaa}. Let C = {r, s}934

and let α : C∗ → A∗ be the coding morphism for U defined by α(r) = baa,935

α(s) = babaa. Part of the set H = α−1((aa)−1S) is represented in Figure
figureSetK
7.3936

on the right. Then we have T = {rs, sr, ss} which is an H-maximal bifix code937

of H-degree 2 in agreement with Lemma
lemma4
7.8.938

28



The following example shows that the condition that S is a tree set is nec-939

essary.940

example511 Example 7.11 Let S be the set of factors of (ab)∗. The set S does not satisfy941

the tree condition since G(ǫ) is not connected. Let X = {ab, ba}. The set X is942

a finite S-maximal bifix code. Let f : {u, v}∗ → A∗ be the coding morphism for943

X defined by f(u) = ab, f(v) = ba. Then f−1(S) = u∗ ∪ v∗ is not recurrent.944

7.3 Composition of bifix codes945

sectionComposition

In this section, we use Theorem
theoremNormal
7.1 to prove a result showing that in a uniformly946

recurrent tree set, the degrees of the terms of a composition of maximal bifix947

codes are multiplicative (Theorem
theoremCompositionBifix
7.12).948

The following result is proved in [3] for a more general class of codes (includ-949

ing all finite codes and not only finite bifix codes), but in the case of S = A∗
950

(Proposition 11.1.2).951

theoremCompositionBifix Theorem 7.12 Let S be a uniformly recurrent tree set and let X,Z ⊂ S be952

finite bifix codes such that X decomposes into X = Y ◦f Z where f is a coding953

morphism for Z. Set G = f−1(S). Then X is an S-maximal bifix code if and954

only if Y is a G-maximal bifix code and Z is an S-maximal bifix code. Moreover,955

in this case956

dX(S) = dY (G)dZ(S). (7.1) eqDegreesMult

Proof. Assume first that X is an S-maximal bifix code. By Proposition
propositionMaxPref
2.9 (ii),957

Y is a G-maximal prefix code and Z is an S-maximal prefix code. This implies958

that Y is a G-maximal bifix code and that Z is an S-maximal bifix code.959

The converse also holds by Proposition
propositionMaxPref
2.9.960

To show Formula (
eqDegreesMult
7.1), let us first observe that there exist words w ∈ S such961

that for any parse (v, x, u) of w with respect to X , the word x is not a factor962

of X . Indeed, let n be the maximal length of the words of X . Assume that the963

length of w ∈ S is larger than 3n . Then if (v, x, u) is a parse of w, we have964

|u|, |v| < n and thus |x| > n. This implies that x is not a factor of X .965

Next, we observe that by Theorem
theoremNormal
7.1, the set G is a uniformly recurrent966

tree set and thus in particular, it is recurrent.967

Let w ∈ S be a word with the above property. Let ΠX(w) denote the set of968

parses of w with respect to X and ΠZ(w) the set of its parses with respect to Z.969

We define a map ϕ : ΠX(w) → ΠZ(w) as follows. Let π = (v, x, u) ∈ ΠX(w).970

Since Z is a bifix code, there is a unique way to write v = sy and u = zr with971

s ∈ A∗\A∗Z, y, z ∈ Z∗ and r ∈ A∗\ZA∗. We set ϕ(π) = (s, yxz, r). The triples972

(y, x, z) are in bijection with the parses of f−1(yxz) with respect to Y . Since973

x is not a factor of X by the hypothesis made on w, and since G is recurrent,974

there are dY (G) such triples. This shows Formula (
eqDegreesMult
7.1).975

exampleCodeGiuseppina Example 7.13 Let S be the Fibonacci set. Let B = {u, v, w} and A = {a, b}.976

Let f : B∗ → A∗ be the morphism defined by f(u) = a, f(v) = baab and977
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f(w) = bab. SetG = f−1(S). The words of length at most 3 ofG are represented978

on Figure
figureG
7.4.
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u

u

u
v

u

Figure 7.4: The words of length at most 3 in G. figureG

979

The set Z = f(B) is an S-maximal bifix code of S-degree 2 (it is the unique980

S-maximal bifix code of S-degree 2 with kernel {a}). Let Y = {uu, uvu, uw, v, wu},981

which is a G-maximal bifix code of G-degree 2 (it is the unique G-maximal bifix982

code of G-degree 2 with kernel {v}).983

The code X = f(Y ) is the S-maximal bifix code of S-degree 4 shown on984

Figure
figureCodeGiuseppina
7.5.
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a

b

a
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Figure 7.5: An S-maximal bifix code of S-degree 4. figureCodeGiuseppina

985

Example
exampleNotMult
7.14 shows that Formula (

eqDegreesMult
7.1) does not hold if S is not a tree set.986

exampleNotMult Example 7.14 Let S = F (ab)∗ (see Example
example511
7.11). Let Z = {ab, ba} and let987

X = {abab, ba}. We have X = Y ◦f Z for B = {u, v}, f : B∗ → A∗ defined by988

f(u) = ab and f(v) = ba with Y = {uu, v}. The codes X and Z are F -maximal989

bifix codes and dF (Z) = 2. We have dX(F ) = 3 since abab has three parses.990

Thus dF (Z) does not divide dX(F ).991
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BertheRigo2010 [7] Valérie Berthé and Michel Rigo. Combinatorics, automata and number1011

theory, volume 135 of Encyclopedia Math. Appl. Cambridge Univ. Press,1012

Cambridge, 2010.1013

BoissyLanneau2009 [8] Corentin Boissy and Erwan Lanneau. Dynamics and geometry of the1014

Rauzy-Veech induction for quadratic differentials. Ergodic Theory Dynam.1015

Systems, 29(3):767–816, 2009.1016
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