

Maximal bifix decoding

¹ Valérie Berthé¹, Clelia De Felice², Francesco Dolce³, Julien Leroy⁴,
Dominique Perrin³, Christophe Reutenauer⁵, Giuseppina Rindone³

¹CNRS, Université Paris 7, ²Università degli Studi di Salerno,
³Université Paris Est, LIGM, ⁴Université du Luxembourg,
⁵Université du Québec à Montréal

³ September 21, 2014 22 h 39

Abstract

We consider a class of sets of words which is a natural common generalization of Sturmian sets and of interval exchange sets. This class of sets consists of the uniformly recurrent tree sets, where the tree sets are defined by a condition on the possible extensions of bispecial factors. We prove that this class is closed under maximal bifix decoding. The proof uses the fact that the class is also closed under decoding with respect to return words.

Contents

¹³ 1	Introduction	²
¹⁴ 2	Preliminaries	⁴
¹⁵ 2.1	Words	⁴
¹⁶ 2.2	Bifix codes	⁵
¹⁷ 2.3	Group codes	⁷
¹⁸ 2.4	Composition of codes	⁸
¹⁹ 3	Interval exchange sets	¹⁰
²⁰ 3.1	Interval exchange transformations	¹⁰
²¹ 3.2	Regular interval exchange transformations	¹¹
²² 3.3	Natural coding	¹²
²³ 4	Return words	¹⁴
²⁴ 5	Uniformly recurrent tree sets	¹⁶
²⁵ 5.1	Tree sets	¹⁶
²⁶ 5.2	The finite index basis property	¹⁸
²⁷ 5.3	Derived sets of tree sets	¹⁹

28	5.4	Tame bases	20
29	6	<i>H</i>-adic representations	22
30	6.1	<i>H</i> -adic representations	22
31	6.2	<i>H</i> -adic representation of tree sets	24
32	7	Maximal bifix decoding	24
33	7.1	Main result	24
34	7.2	Proof of the main result	26
35	7.3	Composition of bifix codes	29

36 1 Introduction

37 This paper studies the properties of a common generalization of Sturmian sets
 38 and regular interval exchange sets. We first give some elements on the back-
 39 ground of these two families of sets.

40 Sturmian words are infinite words over a binary alphabet that have exactly
 41 $n + 1$ factors of length n for each $n \geq 0$. Their origin can be traced back
 42 to the astronomer J. Bernoulli III. Their first in-depth study is by Morse and
 43 Hedlund [24]. Many combinatorial properties were described in the paper by
 44 Coven and Hedlund [11].

45 We understand here by Sturmian words the generalization to arbitrary al-
 46 phabets, often called strict episturmian words or Arnoux-Rauzy words (see the
 47 survey [20]), of the classical Sturmian words on two letters. A Sturmian sets is
 48 the set of factors of one Sturmian word. For more details, see [19, 23].

49 Sturmian words are closely related to the free group. This connection is
 50 one of the main points of the series of papers [2, 4, 5] and the present one. A
 51 striking feature of this connection is the fact that our results do not hold only
 52 for two-letter alphabets or for two generators but for any number of letters and
 53 generators.

54 Interval exchange transformations were introduced by Oseledec [25] following
 55 an earlier idea of Arnold [1]. These transformations form a generalization of
 56 rotations of the circle. The class of regular interval exchange transformations
 57 was introduced by Keane [22] who showed that they are minimal in the sense
 58 of topological dynamics. The set of factors of the natural codings of a regular
 59 interval exchange transformation is called an interval exchange set.

60 Even though they have the same factor complexity (that is, the same number
 61 of factors of a given length), Sturmian words and codings of interval exchange
 62 transformations have a priori very distinct combinatorial behaviours, whether
 63 for the type of behaviour of their special factors, or for balance properties and
 64 deviations of Birkhoff sums (see [9, 27]).

65 The class of tree sets, introduced in [4] contains both the Sturmian sets
 66 and the regular interval exchange sets. They are defined by a condition on the
 67 possible extensions of bispecial factors.

68 In a paper with part of the present list of authors on bifix codes and Sturmian
 69 words [2] we proved that Sturmian sets satisfy the finite index basis property,
 70 in the sense that, given a set S of words on an alphabet A , a finite bifix code
 71 is S -maximal if and only if it is the basis of a subgroup of finite index of the
 72 free group on A . The main statement of [5] is that uniformly recurrent tree sets
 73 satisfy the finite index basis property. This generalizes the result concerning
 74 Sturmian words of [2] quoted above. As an example of a consequence of this
 75 result, if S is a uniformly recurrent tree set on the alphabet A , then for any
 76 $n \geq 1$, the set $S \cap A^n$ is a basis of the subgroup formed by the words of length
 77 multiple of n (see Theorem 5.9).

78 Our main result here is that the class of uniformly recurrent tree sets is
 79 closed under maximal bifix decoding (Theorem 7.1). This means that if S is a
 80 uniformly recurrent tree set and f a coding morphism for a finite S -maximal
 81 bifix code, then $f^{-1}(S)$ is a uniformly recurrent tree set. The family of regular
 82 interval exchange sets is closed under maximal bifix decoding (see [5] Corollary
 83 5.22) but the family of Sturmian sets is not (see Example 7.2 below). Thus,
 84 this result shows that the family of uniformly recurrent tree sets is the natural
 85 closure of the family of Sturmian sets. The proof uses the finite index basis
 86 property of uniformly recurrent tree sets.

87 The proof of Theorem 7.1 uses the closure of uniformly recurrent tree sets
 88 under decoding with respect to return words (Theorem 5.12). This property,
 89 which is interesting in its own, generalizes the fact that the derived word of a
 90 Sturmian word is Sturmian [21].

91 The paper is organized as follows. In Section 2, we introduce the notation
 92 and recall some basic results. We define the composition of prefix codes.

93 In Section 3, we introduce one important subclass of tree sets, namely in-
 94 terval exchange sets. We recall the definitions concerning minimal and regular
 95 interval exchange transformations. We state the result of Keane expressing that
 96 regular interval exchange transformations are minimal (Theorem 3.4). We prove
 97 in [?] that the class of regular interval exchange sets is closed under maximal
 98 bifix decoding.

99 In Section 4, we define return words, derived words and derived sets and
 100 prove some elementary properties.

101 In Section 5, we recall the definition of tree sets. We also recall that a regular
 102 interval exchange set is a tree set (Proposition 5.4). We prove that the family of
 103 uniformly recurrent tree sets is closed under derivation (Theorem 5.12). We fur-
 104 ther prove that all bases of the free group included in a uniformly recurrent tree
 105 set are tame, that is obtained from the alphabet by composition of elementary
 106 positive automorphisms. (Theorem 5.18).

107 In Section 6, we turn to the notion of H -adic representation of sets, intro-
 108 duced in [17], using a terminology initiated by Vershik and coined out by B. Host
 109 (it is usually called S -adic). We deduce from the previous result that uniformly
 110 recurrent tree sets have a primitive H_e -adic representation (Theorem 6.5) where
 111 H_e is the finite set of positive elementary automorphisms of the free group.

112 In Section 7, we state and prove our main result (Theorem 7.1), namely the
 113 closure under maximal bifix decoding of the family of uniformly recurrent tree

¹¹⁴ sets.

¹¹⁵ Finally, in Section 7.3, we use Theorem 7.1 to prove ^{sectionComposition theoremNormal} a result concerning the
¹¹⁶ composition of bifix codes (Theorem 7.12) showing that the degrees of the terms
¹¹⁷ of a composition are multiplicative.

¹¹⁸ 2 Preliminaries

¹¹⁹ sectionPreliminaries

¹²⁰ In this section, we recall some notions and definitions concerning words, codes
¹²¹ and automata. For a more detailed presentation, see [2]. We also introduce the
notion of composition of codes.

¹²² 2.1 Words

¹²³ Let A be a finite nonempty alphabet. All words considered below, unless stated
¹²⁴ explicitly, are supposed to be on the alphabet A . We let A^* denote the set of
¹²⁵ all finite words over A and A^+ the set of finite nonempty words over A . The
¹²⁶ empty word is denoted by 1 or by ε . We let $|w|$ denote the length of a word w .
¹²⁷ For a set X of words and a word x , we denote

$$x^{-1}X = \{y \in A^* \mid xy \in X\}, \quad Xx^{-1} = \{z \in A^* \mid zx \in X\}.$$

¹²⁸ A word v is a *factor* of a word x if $x = uvw$. A set of words is said to be
¹²⁹ *factorial* if it contains the factors of its elements. Let S be a set of words on
¹³⁰ the alphabet A . For $w \in S$, we denote

$$\begin{aligned} L(w) &= \{a \in A \mid aw \in S\} \\ R(w) &= \{a \in A \mid wa \in S\} \\ E(w) &= \{(a, b) \in A \times A \mid awb \in S\} \end{aligned}$$

¹³¹ and further

$$\ell(w) = \text{Card}(L(w)), \quad r(w) = \text{Card}(R(w)), \quad e(w) = \text{Card}(E(w)).$$

¹³² These notions depend upon S but it is assumed from the context. A word w
¹³³ is *right-extendable* if $r(w) > 0$, *left-extendable* if $\ell(w) > 0$ and *biextendable* if
¹³⁴ $e(w) > 0$. A factorial set S is called *right-extendable* (resp. *left-extendable*, resp.
¹³⁵ *biextendable*) if every word in S is right-extendable (resp. left-extendable, resp.
¹³⁶ biextendable).

¹³⁷ A word w is called *right-special* if $r(w) \geq 2$. It is called *left-special* if $\ell(w) \geq$
¹³⁸ 2. It is called *bispecial* if it is both right and left-special.

¹³⁹ We let $\text{Fac}(x)$ denote the set of factors of an infinite word $x \in A^{\mathbb{N}}$. The set
¹⁴⁰ $\text{Fac}(x)$ is factorial and right-extendable. An infinite word $x \in A^{\omega}$ is *recurrent* if
¹⁴¹ for any $u \in \text{Fac}(x)$ there is a word v such that $uvu \in \text{Fac}(x)$.

¹⁴² A factorial set of words $S \neq \{1\}$ is *recurrent* if for every $u, w \in S$ there is
¹⁴³ a word $v \in S$ such that $uvw \in S$. For any recurrent set S there is an infinite
¹⁴⁴ word x such that $\text{Fac}(x) = S$.

145 For any infinite word x , the set $\text{Fac}(x)$ is recurrent if and only if x is recurrent
146 (see [2]).

147 Note that any recurrent set not reduced to the empty word is biextendable.

148 A set of words S is said to be *uniformly recurrent* if it is right-extendable
149 and if, for any word $u \in S$, there exists an integer $n \geq 1$ such that u is a factor
150 of every word of S of length n . A uniformly recurrent set is recurrent.

151 A *morphism* f from A^* to B^* is a monoid morphism from A^* into B^* . If
152 $a \in A$ is such that the word $f(a)$ begins with a and if $|f^n(a)|$ tends to infinity
153 with n , there is a unique infinite word denoted $f^\omega(a)$ which has all words $f^n(a)$
154 as prefixes. It is called a *fixed point* of the morphism f .

155 A morphism $f : A^* \rightarrow A^*$ is called *primitive* if there is an integer k such that
156 for all $a, b \in A$, the letter b appears in $f^k(a)$. If f is a primitive morphism, the
157 set of factors of any fixed point of f is uniformly recurrent (see [19, Proposition
158 1.2.3] for example).

159 An infinite word is *episturmian* if the set of its factors is closed under reversal
160 and contains for each n at most one word of length n which is right-special. It is
161 a *strict episturmian* word if it has exactly one right-special word of each length
162 and moreover each right-special factor u is such that $r(u) = \text{Card}(A)$.

163 A *Sturmian set* is a set of words which is the set of factors of a strict epistur-
164 mian word. Any Sturmian set is uniformly recurrent (see [2, Proposition 2.3.3]
165 for example).

exampleFibonacci
167 **Example 2.1** Let $A = \{a, b\}$. The Fibonacci word is the fixed point $x =$
168 $abaababa\dots$ of the morphism $f : A^* \rightarrow A^*$ defined by $f(a) = ab$ and $f(b) = a$.
169 It is a Sturmian word (see [23]). The set $\text{Fac}(x)$ of factors of x is the *Fibonacci*
set.

exampleTribonacci
171 **Example 2.2** Let $A = \{a, b, c\}$. The Tribonacci word is the fixed point $x =$
172 $f^\omega(a) = abacaba\dots$ of the morphism $f : A^* \rightarrow A^*$ defined by $f(a) = ab$,
173 $f(b) = ac$, $f(c) = a$. It is a strict episturmian word (see [21]). The set $\text{Fac}(x)$
of factors of x is the *Tribonacci* set.

174 2.2 Bifix codes

175 Recall that a set $X \subset A^+$ of nonempty words over an alphabet A is a *code* if
176 the relation

$$x_1 \cdots x_n = y_1 \cdots y_m$$

177 with $n, m \geq 1$ and $x_1, \dots, x_n, y_1, \dots, y_m \in X$ implies $n = m$ and $x_i = y_i$ for
178 $i = 1, \dots, n$. For the general theory of codes, see [3].

179 A *prefix code* is a set of nonempty words which does not contain any proper
180 prefix of its elements. A prefix code is a code.

181 A suffix code is defined symmetrically. A *bifix code* is a set which is both a
182 prefix code and a suffix code.

183 A *coding morphism* for a code $X \subset A^+$ is a morphism $f : B^* \rightarrow A^*$ which
184 maps bijectively B onto X .

185 Let S be a set of words. A prefix code $X \subset S$ is S -maximal if it is not
 186 properly contained in any prefix code $Y \subset S$ ¹. Equivalently, a prefix code
 187 $X \subset S$ is S -maximal if any word in S is comparable for the prefix order with
 188 some word of X .

189 A set of words M is called *right unitary* if $u, uv \in M$ imply $v \in M$. The
 190 submonoid M generated by a prefix code is right unitary. One can show that
 191 conversely, any right unitary submonoid of A^* is generated by a prefix code
 192 (see [3]). The symmetric notion of a *left unitary* set is defined by the condition
 193 $v, uv \in M$ implies $u \in M$.

194 We denote by X^* the submonoid generated by X . A set $X \subset S$ is *right*
 195 *S-complete* if every word of S is a prefix of a word in X^* . If S is factorial, a
 196 prefix code is S -maximal if and only if it is right S -complete [2, Proposition
 197 3.3.2].

198 Similarly a bifix code $X \subset S$ is S -maximal if it is not properly contained in
 199 a bifix code $Y \subset S$. For a recurrent set S , a finite bifix code is S -maximal as a
 200 bifix code if and only if it is an S -maximal prefix code [2, Theorem 4.2.2]. For
 201 a uniformly recurrent set S , any finite bifix code $X \subset S$ is contained in a finite
 202 S -maximal bifix code [2, Theorem 4.4.3].

203 A *parse* of a word $w \in A^*$ with respect to a set X is a triple (v, x, u) such
 204 that $w = vxu$ where v has no suffix in X , u has no prefix in X and $x \in X^*$. We
 205 denote by $d_X(w)$ the number of parses of w .

206 Let X be a bifix code. The number of parses of a word w is also equal to the
 207 number of suffixes of w which have no prefix in X and the number of prefixes
 208 of w which have no suffix in X [3, Proposition 6.1.6].

209 By definition, the S -degree of a bifix code X , denoted $d_X(S)$, is the maximal
 210 number of parses of all words in S with respect to X . It can be finite or infinite.

211 The set of *internal factors* of a set of words X , denoted $I(X)$ is the set of
 212 words w such that there exist nonempty words u, v with $uvv \in X$.

213 Let S be a recurrent set and let X be a finite S -maximal bifix code of S -
 214 degree d . A word $w \in S$ is such that $d_X(w) < d$ if and only if it is an internal
 215 factor of X , that is

$$I(X) = \{w \in S \mid d_X(w) < d\} \quad (2.1)$$

eqInternal

216 (Theorem 4.2.8 in [2]). Thus any word of X of maximal length has d parses.
 217 This implies that the S -degree d is finite.

218 **Example 2.3** Let S be a recurrent set. For any integer $n \geq 1$, the set $S \cap A^n$
 219 is an S -maximal bifix code of S -degree n .

220 The *kernel* of a set of words X is the set of words in X which are internal
 221 factors of words in X . We denote by $K(X)$ the kernel of X . Note that $K(X) =$
 222 $I(X) \cap X$.

223 For any recurrent set S , a finite S -maximal bifix code is determined by its
 224 S -degree and its kernel (see [2, Theorem 4.3.11]).

¹Note that in this paper we use \subset to denote the inclusion allowing equality.

exampleDegree12:

226

227

Example 2.4 Let S be a recurrent set containing the alphabet A . The only S -maximal bifix code of S -degree 1 is the alphabet A . This is clear since A is the unique S -maximal bifix code of S -degree 1 with empty kernel.

228
subsectionautomata

229

230

231

232

233

2.3 Group codes

We let $\mathcal{A} = (Q, i, T)$ denote a deterministic automaton with Q as set of states, $i \in Q$ as initial state and $T \subset Q$ as set of terminal states. For $p \in Q$ and $w \in A^*$, we denote $p \cdot w = q$ if there is a path labeled w from p to the state q and $p \cdot w = \emptyset$ otherwise (for a general introduction to automata theory, see [16] for example).

234

235

236

The set *recognized* by the automaton is the set of words $w \in A^*$ such that $i \cdot w \in T$. A set of words is *rational* if it is recognized by a finite automaton. Two automata are *equivalent* if they recognize the same set.

237

238

All automata considered in this paper are deterministic and we simply call them ‘automata’ to mean ‘deterministic automata’.

239

240

The automaton \mathcal{A} is *trim* if for any $q \in Q$, there is a path from i to q and a path from q to some $t \in T$.

241

242

An automaton is called *simple* if it is trim and if it has a unique terminal state which coincides with the initial state.

243

244

An automaton $\mathcal{A} = (Q, i, T)$ is *complete* if for any state $p \in Q$ and any letter $a \in A$, one has $p \cdot a \neq \emptyset$.

245

246

247

248

249

For a nonempty set $L \subset A^*$, we denote by $\mathcal{A}(L)$ the *minimal automaton* of L . The states of $\mathcal{A}(L)$ are the nonempty sets $u^{-1}L = \{v \in A^* \mid uv \in L\}$ for $u \in A^*$ (see Section 2.1 for the notation $u^{-1}L$). For $u \in A^*$ and $a \in A$, one defines $(u^{-1}L) \cdot a = (ua)^{-1}L$. The initial state is the set L and the terminal states are the sets $u^{-1}L$ for $u \in L$.

250

251

Let $X \subset A^*$ be a prefix code. Then there is a simple automaton $\mathcal{A} = (Q, 1, 1)$ that recognizes X^* . Moreover, the minimal automaton of X^* is simple.

252

Example 2.5 The automaton $\mathcal{A} = (Q, 1, 1)$ represented in Figure 2.1 is the minimal automaton of X^* with $X = \{aa, ab, ac, ba, ca\}$. We have $Q = \{1, 2, 3\}$,

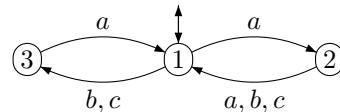


Figure 2.1: The minimal automaton of $\{aa, ab, ac, ba, ca\}^*$.

figureExampleAutomaton

253

254

255

$i = 1$ and $T = 1$. The initial state is indicated by an incoming arrow and the terminal one by an outgoing arrow.

256

257

Let X be a prefix code and let P be the set of proper prefixes of X . The *literal automaton* of X^* is the simple automaton $\mathcal{A} = (P, 1, 1)$ with transitions

258 defined for $p \in P$ and $a \in A$ by

$$p \cdot a = \begin{cases} pa & \text{if } pa \in P, \\ 1 & \text{if } pa \in X, \\ \emptyset & \text{otherwise.} \end{cases}$$

259 One verifies that this automaton recognizes X^* .

260 An automaton $\mathcal{A} = (Q, 1, 1)$ is a *group automaton* if for any $a \in A$ the map
261 $\varphi_{\mathcal{A}}(a) : p \mapsto p \cdot a$ is a permutation of Q .

262 The following result is proved in [2, Proposition 6.1.5].

propositionGroupAutomaton
263 **Proposition 2.6** *The following conditions are equivalent for a submonoid M of A^* .*

264 (i) M is recognized by a group automaton with d states.
265 (ii) $M = \varphi^{-1}(K)$, where K is a subgroup of index d of a group G and φ is a
266 surjective morphism from A^* onto G .
267 (iii) $M = H \cap A^*$, where H is a subgroup of index d of the free group on A .
268 If one of these conditions holds, the minimal generating set of M is a maximal
269 bifix code of degree d .

270 A bifix code Z such that Z^* satisfies one of the equivalent conditions of
271 **propositionGroupAutomaton**
272 Proposition 2.6 is called a *group code* of degree d .

273 2.4 Composition of codes

274 We introduce the notion of composition of codes (see [3] for a more detailed
275 presentation).

276 For a set $X \subset A^*$, we denote by $\text{alph}(X)$ the set of letters $a \in A$ which
277 appear in the words of X .

278 Let $Z \subset A^*$ and $Y \subset B^*$ be two finite codes with $B = \text{alph}(Y)$. Then the
279 codes Y and Z are *composable* if there is a bijection from B onto Z . Since Z is
280 a code, this bijection defines an injective morphism f from B^* into A^* . If f is
281 such a morphism, then Y and Z are called composable *through* f . The set

$$X = f(Y) \subset Z^* \subset A^* \tag{2.2} \quad \boxed{\text{eq1.6.1}}$$

282 is obtained by *composition* of Y and Z (by means of f). We denote it by

$$X = Y \circ_f Z,$$

283 or by $X = Y \circ Z$ when the context permits it. Since f is injective, X and Y
284 are related by bijection, and in particular $\text{Card}(X) = \text{Card}(Y)$. The words in
285 X are obtained just by replacing, in the words of Y , each letter b by the word
286 $f(b) \in Z$.

287 **Example 2.7** Let $A = \{a, b\}$ and $B = \{u, v, w\}$. Let $f : B^* \rightarrow A^*$ be the mor-
288 phism defined by $f(u) = aa$, $f(v) = ab$ and $f(w) = ba$. Let $Y = \{u, vu, vv, w\}$
289 and $Z = \{aa, ab, ba\}$. Then Y, Z are composable through f and $Y \circ_f Z =$
290 $\{aa, abaa, abab, ba\}$.

291 If Y and Z are two composable codes, then $X = Y \circ Z$ is a code [3, Proposition
 292 2.6.1] and if Y and Z are prefix (suffix) codes, then X is a prefix (suffix) code.
 293 Conversely, if X is a prefix (suffix) code, then Y is a prefix (suffix) code.

294 We extend the notation alph as follows. For two codes $X, Z \subset A^*$ we denote

$$\text{alph}_Z(X) = \{z \in Z \mid \exists u, v \in Z^*, u z v \in X\}.$$

295 The following is Proposition 2.6.6 in [3].

prop266
 296 **Proposition 2.8** *Let $X, Z \subset A^*$ be codes. There exists a code Y such that
 297 $X = Y \circ Z$ if and only if $X \subset Z^*$ and $\text{alph}_Z(X) = Z$.*

298 The following statement generalizes Propositions 2.6.4 and 2.6.12 of [3] for
 299 prefix codes.

propositionMaxPref
 300 **Proposition 2.9** *Let Y, Z be finite prefix codes composable through f and let
 301 $X = Y \circ_f Z$.*

- 302 (i) *For any set G such that $Y \subset G$ and Y is a G -maximal prefix code, X is
 303 an $f(G)$ -maximal prefix code.*
- 304 (ii) *For any set S such that $X, Z \subset S$, if X is an S -maximal prefix code, Y is
 305 an $f^{-1}(S)$ -maximal prefix code and Z is an S -maximal prefix code. The
 306 converse is true if S is recurrent.*

307 *Proof.* (i) Let $w \in f(G)$ and set $w = f(v)$ with $v \in G$. Since Y is G -maximal,
 308 there is a word $y \in Y$ which is prefix-comparable with v . Then $f(y)$ is prefix-
 309 comparable with w . Thus X is $f(G)$ -maximal.

310 (ii) Since X is an S -maximal prefix code, any word in S is prefix comparable
 311 with some element of X and thus with some element of Z . Therefore, Z is
 312 S -maximal. Next if $u \in f^{-1}(S)$, $v = f(u)$ is in S and is prefix-comparable with
 313 a word x in X . Assume that $v = xt$. Then t is in Z^* since $v, x \in Z^*$. Set
 314 $w = f^{-1}(t)$ and $y = f^{-1}(x)$. Since $u = yw$, u is prefix-comparable with y which
 315 is in Y . The other case is similar.

316 Conversely, assume that S is recurrent. Let w be a word in S of length
 317 strictly larger than the sum of the maximal length of the words of X and Z .
 318 Since S is recurrent, the set Z is right S -complete, and consequently the word
 319 w is a prefix of a word in Z^* . Thus $w = up$ with $u \in Z^*$ and p a proper prefix
 320 of a word in Z . The hypothesis on w implies that u is longer than any word of
 321 X . Let $v = f^{-1}(u)$. Since $u \in S$, we have $v \in f^{-1}(S)$. It is not possible that
 322 v is a proper prefix of a word of Y since otherwise u would be shorter than a
 323 word of X . Thus v has a prefix in Y . Consequently u , and thus w , has a prefix
 324 in X . Thus X is S -maximal. ■

325 Note that the converse of (ii) is not true if the hypothesis that S is recurrent is
 326 replaced by factorial. Indeed, for $S = \{1, a, b, aa, ab, ba\}$, $Z = \{a, ba\}$, $f^{-1}(S) =$
 327 $\{1, u, uu, v\}$, $Y = \{uu, v\}$, $f(u) = a$ and $f(v) = ba$, one has $X = \{aa, ba\}$ which
 328 is not an S -maximal prefix code.

329 Note also that when S is recurrent (or even uniformly recurrent), $G = f^{-1}(S)$
 330 need not be recurrent. Indeed, let S be the set of factors of $(ab)^*$, let $B = \{u, v\}$
 331 and let $f : B^* \rightarrow A^*$ be defined by $f(u) = ab$, $f(v) = ba$. Then $G = u^* \cup v^*$
 332 which is not recurrent.

333 3 Interval exchange sets

334 In this section, we recall the definition and the basic properties of interval ex-
 335 change transformations.

336 3.1 Interval exchange transformations

337 Let us recall the definition of an interval exchange transformation (see [10]
 338 or [7]).

339 A *semi-interval* is a nonempty subset of the real line of the form $[\alpha, \beta) =$
 340 $\{z \in \mathbb{R} \mid \alpha \leq z < \beta\}$. Thus it is a left-closed and right-open interval. For two
 341 semi-intervals Δ, Γ , we denote $\Delta < \Gamma$ if $x < y$ for any $x \in \Delta$ and $y \in \Gamma$.

342 Let $(A, <)$ be an ordered set. A partition $(I_a)_{a \in A}$ of $[0, 1]$ in semi-intervals
 343 is *ordered* if $a < b$ implies $I_a < I_b$.

344 Let A be a finite set ordered by two total orders $<_1$ and $<_2$. Let $(I_a)_{a \in A}$ be
 345 a partition of $[0, 1]$ in semi-intervals ordered for $<_1$. Let λ_a be the length of I_a .
 346 Let $\mu_a = \sum_{b \leq 1a} \lambda_b$ and $\nu_a = \sum_{b \leq 2a} \lambda_b$. Set $\alpha_a = \nu_a - \mu_a$. The *interval exchange*
 347 *transformation* relative to $(I_a)_{a \in A}$ is the map $T : [0, 1] \rightarrow [0, 1]$ defined by

$$T(z) = z + \alpha_a \quad \text{if } z \in I_a.$$

348 Observe that the restriction of T to I_a is a translation onto $J_a = T(I_a)$, that
 349 μ_a is the right boundary of I_a and that ν_a is the right boundary of J_a . We
 350 additionally denote by γ_a the left boundary of I_a and by δ_a the left boundary
 351 of J_a . Thus

$$I_a = [\gamma_a, \mu_a), \quad J_a = [\delta_a, \nu_a).$$

352 Since $a <_2 b$ implies $J_a <_2 J_b$, the family $(J_a)_{a \in A}$ is a partition of $[0, 1]$
 353 ordered for $<_2$. In particular, the transformation T defines a bijection from
 354 $[0, 1]$ onto itself.

355 An interval exchange transformation relative to $(I_a)_{a \in A}$ is also said to be
 356 on the alphabet A . The values $(\alpha_a)_{a \in A}$ are called the *translation values* of the
 357 transformation T .

358 **Example 3.1** Let R be the interval exchange transformation corresponding to
 359 $A = \{a, b\}$, $a <_1 b$, $b <_2 a$, $I_a = [0, 1 - \alpha]$, $I_b = [1 - \alpha, 1]$. The transformation
 360 R is the rotation of angle α on the semi-interval $[0, 1]$ defined by $R(z) = z +$
 361 $\alpha \bmod 1$.

362 Since $<_1$ and $<_2$ are total orders, there exists a unique permutation π of A such
 363 that $a <_1 b$ if and only if $\pi(a) <_2 \pi(b)$. Conversely, $<_2$ is determined by $<_1$

364 and π , and $<_1$ is determined by $<_2$ and π . The permutation π is said to be
 365 *associated* with T .

366 Let $s \geq 2$ be an integer. If we set $A = \{a_1, a_2, \dots, a_s\}$ with $a_1 <_1 a_2 <_1 \dots <_1 a_s$, the pair (λ, π) formed by the family $\lambda = (\lambda_a)_{a \in A}$ and the permutation
 367 π determines the map T . We will also denote T as $T_{\lambda, \pi}$. The transformation T
 368 is also said to be an s -interval exchange transformation.

370 It is easy to verify that the family of s -interval exchange transformations is
 371 closed by composition and by taking inverses.

372 **Example 3.2** A 3-interval exchange transformation is represented in Figure B.1.
 373 One has $A = \{a, b, c\}$ with $a <_1 b <_1 c$ and $b <_2 c <_2 a$. The associated permu-
 374 tation is the cycle $\pi = (abc)$.

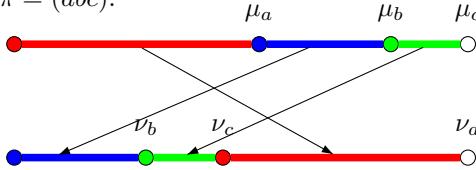


Figure 3.1: A 3-interval exchange transformation

figure3interval

374

375 3.2 Regular interval exchange transformations

376 The *orbit* of a point $z \in [0, 1]$ is the set $\{T^n(z) \mid n \in \mathbb{Z}\}$. The transformation T
 377 is said to be *minimal* if for any $z \in [0, 1]$, the orbit of z is dense in $[0, 1]$.

378 Set $A = \{a_1, a_2, \dots, a_s\}$ with $a_1 <_1 a_2 <_1 \dots <_1 a_s$, $\mu_i = \mu_{a_i}$ and $\delta_i =$
 379 δ_{a_i} . The points $0, \mu_1, \dots, \mu_{s-1}$ form the set of *separation points* of T , denoted
 380 $\text{Sep}(T)$.

381 An interval exchange transformation $T_{\lambda, \pi}$ is called *regular* if the orbits of
 382 the nonzero separation points μ_1, \dots, μ_{s-1} are infinite and disjoint. Note that
 383 the orbit of 0 cannot be disjoint of the others since one has $T(\mu_i) = 0$ for some
 384 i with $1 \leq i \leq s$.

385 There are several equivalent terms used instead of regular. A regular interval
 386 exchange transformation is also said to satisfy the *idoc* condition (where idoc
 387 stands for “infinite disjoint orbit condition”). It is also said to have the Keane
 388 property or to be without *connection* (see [8]).

389 **Example 3.3** The 2-interval exchange transformation R of Example B.1 which
 390 is the rotation of angle α is regular if and only if α is irrational.

391 The following result is due to Keane [22].

Theorem 3.4 *A regular interval exchange transformation is minimal.*

393 The converse is not true. Indeed, consider the rotation of angle α with α
 394 irrational, as a 3-interval exchange transformation with $\lambda = (1 - 2\alpha, \alpha, \alpha)$ and

395 $\pi = (132)$. The transformation is minimal as any rotation of irrational angle
 396 but it is not regular since $\mu_1 = 1 - 2\alpha$, $\mu_2 = 1 - \alpha$ and thus $\mu_2 = T(\mu_1)$.

397 3.3 Natural coding

398 Let T be an interval exchange transformation relative to $(I_a)_{a \in A}$. For a given
 399 real number $z \in [0, 1)$, the *natural coding* of T relative to z is the infinite word
 400 $\Sigma_T(z) = a_0a_1 \dots$ on the alphabet A defined by

$$a_n = a \quad \text{if} \quad T^n(z) \in I_a.$$

exampleFiboNatCoding 401
 402 **Example 3.5** Let $\alpha = (3 - \sqrt{5})/2$ and let R be the rotation of angle α on $[0, 1)$
 403 as in Example B.1. The natural coding of R with respect to α is the Fibonacci
 word (see [23, Chapter 2] for example).

404 For a word $w = b_0b_1 \dots b_{m-1}$, let I_w be the set

$$I_w = I_{b_0} \cap T^{-1}(I_{b_1}) \cap \dots \cap T^{-m+1}(I_{b_{m-1}}). \quad (3.1) \quad \text{eqIu}$$

405 Note that each I_w is a semi-interval. Indeed, this is true if w is a letter. Next,
 406 assume that I_w is a semi-interval. Then for any $a \in A$, $T(I_{aw}) = T(I_a) \cap I_w$ is a
 407 semi-interval since $T(I_a)$ is a semi-interval by definition of an interval exchange
 408 transformation. Since $I_{aw} \subset I_a$, $T(I_{aw})$ is a translate of I_{aw} , which is therefore
 409 also a semi-interval. This proves the property by induction on the length.

410 Then one has for any $n \geq 0$

$$a_n a_{n+1} \dots a_{n+m-1} = w \iff T^n(z) \in I_w \quad (3.2) \quad \text{eqIw}$$

411 If T is minimal, one has $w \in \text{Fac}(\Sigma_T(z))$ if and only if $I_w \neq \emptyset$. Thus the
 412 set $\text{Fac}(\Sigma_T(z))$ does not depend on z (as for Sturmian words, see [23]). Since it
 413 depends only on T , we denote it by $\text{Fac}(T)$. When T is regular (resp. minimal),
 414 such a set is called a *regular interval exchange set* (resp. a *minimal interval*
 415 *exchange set*).

416 Let T be an interval exchange transformation. The natural codings $\Sigma_T(z)$
 417 of T with $z \in [0, 1)$ are infinite words on A . The set A^ω of infinite words on
 418 A is a topological space for the topology induced by the metric defined by the
 419 following distance. For $x = a_0a_1 \dots, y = b_0b_1 \dots \in A^\omega$ with $x \neq y$, one sets
 420 $d(x, y) = 2^{-n(x, y)}$ if $n(x, y)$ is the least n such that $a_n \neq b_n$. Let X be the closure
 421 in the space A^ω of the set of all $\Sigma_T(z)$ for $z \in [0, 1)$ and let σ be the shift on X .
 422 The pair (X, σ) is a *symbolic dynamical system*, formed of a topological space
 423 X and a continuous transformation σ . Such a system is said to be minimal if
 424 the only closed subsets invariant by σ are \emptyset or X . It is well-known that (X, σ)
 425 is minimal if and only if the set $\text{Fac}(X)$ of factors of the $x \in X$ is uniformly
 426 recurrent (see for example [23] Theorem 1.5.9).

427 We have the commutative diagram of Figure B.2. [commutativeDiagram](#)

428 The map Σ_T is neither continuous nor surjective. This can be corrected by
 429 embedding the interval $[0, 1)$ into a larger space on which T is a homeomorphism

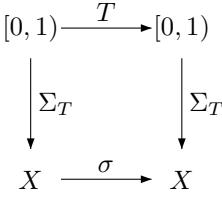


Figure 3.2: A commutative diagram.

commutativeDiagram

430 (see [22] or [7] page 349). However, if the transformation T is minimal, the
 431 symbolic dynamical system (X, σ) is minimal (see [7] page 392). Thus, we
 432 obtain the following statement.

propositionRegularUR
 434

Proposition 3.6 *For any minimal interval exchange transformation T , the set $\text{Fac}(T)$ is uniformly recurrent.*

exampleDivisions

436

Example 3.7 Set $\alpha = (3 - \sqrt{5})/2$ and $A = \{a, b, c\}$. Let T be the interval exchange transformation on $[0, 1)$ which is the rotation of angle $2\alpha \bmod 1$ on the three intervals $I_a = [0, 1 - 2\alpha)$, $I_b = [1 - 2\alpha, 1 - \alpha)$, $I_c = [1 - \alpha, 1)$ (see Figure B.3). The transformation T is regular since α is irrational. The words

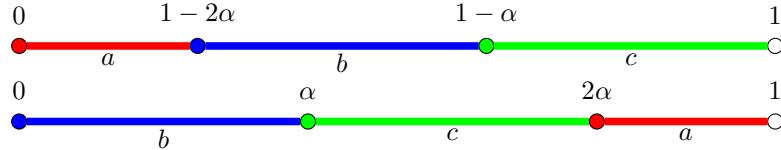


Figure 3.3: A regular 3-interval exchange transformation.

figure3interval12

438

of length at most 5 of the set $S = \text{Fac}(T)$ are represented in Figure B.4. Since

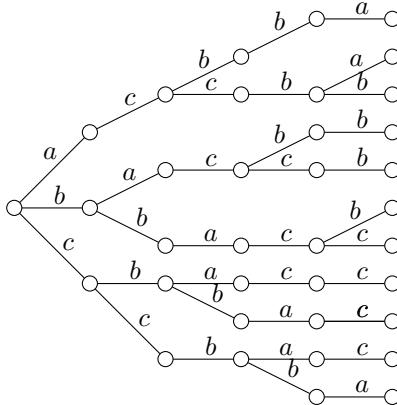


Figure 3.4: The words of length ≤ 5 of the set S .

figureSetF

439

440 $T = R^2$, where R is the transformation of Example B.5, the natural coding of T

relative to α is the infinite word $y = \gamma^{-1}(x)$ where x is the Fibonacci word and γ is the morphism defined by $\gamma(a) = aa$, $\gamma(b) = ab$, $\gamma(c) = ba$. One has

$$y = baccbaccbbacbbacbbacc\cdots \quad (3.3) \quad \boxed{\text{Eqy}}$$

Actually, the word y is the fixed-point $g^\omega(b)$ of the morphism $g : a \mapsto baccb$, $b \mapsto bacc$, $c \mapsto bacb$. This follows from the fact that the cube of the Fibonacci morphism $f : a \mapsto ab$, $b \mapsto a$ sends each letter on a word of odd length and thus preserves the set of words of even length.

4 Return words

sectionReturn

In this section, we introduce the notion of return and first return words. We prove elementary results about return words which extendably already appear in [12].

Let S be a set of words. For $w \in S$, let $\Gamma_S(w) = \{x \in S \mid wx \in S \cap A^+w\}$ be the set of *right return words* to w and let $\mathcal{R}_S(w) = \Gamma_S(w) \setminus \Gamma_S(w)A^+$ be the set of *first right return words* to w . By definition, the set $\mathcal{R}_S(w)$ is, for any $w \in S$, a prefix code. If S is recurrent, it is a $w^{-1}S$ -maximal prefix code.

Similarly, for $w \in S$, we denote $\Gamma'_S(w) = \{x \in S \mid xw \in S \cap wA^+\}$ the set of *left return words* to w and $\mathcal{R}'_S(w) = \Gamma'_S(w) \setminus A^+\Gamma'_S(w)$ the set of *first left return words* to w . By definition, the set $\mathcal{R}'_S(w)$ is, for any $w \in S$, a suffix code. If S is recurrent, it is an Sw^{-1} -maximal suffix code. The relation between $\mathcal{R}_S(w)$ and $\mathcal{R}'_S(w)$ is simply

$$w\mathcal{R}_S(w) = \mathcal{R}'_S(w)w. \quad (4.1) \quad \boxed{\text{eqAutomo}}$$

Let $f : B^* \rightarrow A^*$ be a coding morphism for $\mathcal{R}_S(w)$. The morphism $f' : B^* \rightarrow A^*$ defined for $b \in B$ by $f'(b)w = wf(b)$ is a coding morphism for $\mathcal{R}'_S(w)$ called the coding morphism *associated* with f .

Example 4.1 Let S be the uniformly recurrent set of Example B.7. We have **exampleDivision**

$$\begin{aligned} \mathcal{R}_S(a) &= \{cbba, ccba, ccbba\}, \\ \mathcal{R}_S(b) &= \{acb, accb, b\}, \\ \mathcal{R}_S(c) &= \{bac, bbac, c\}. \end{aligned}$$

These sets can be read from the word y given in Equation (3.3). A coding morphism $f : B^* \rightarrow A^*$ with $B = A$ for the set $\mathcal{R}_S(c)$ is given by $f(a) = bac$, $f(b) = bbac$, $f(c) = c$. **Eqy**

Note that $\Gamma_S(w) \cup \{1\}$ is right unitary and that

$$\Gamma_S(w) \cup \{1\} = \mathcal{R}_S(w)^* \cap w^{-1}S. \quad (4.2) \quad \boxed{\text{eqGamma1}}$$

Indeed, if $x \in \Gamma_S(w)$ is not in $\mathcal{R}_S(w)$, we have $x = zu$ with $z \in \Gamma_S(w)$ and u nonempty. Since $\Gamma_S(w)$ is right unitary, we have $u \in \Gamma_S(w)$, whence the conclusion by induction on the length of x . The converse inclusion is obvious.

propReturnsFinite:
472

Proposition 4.2 *A recurrent set S is uniformly recurrent if and only if the set $\mathcal{R}_S(w)$ is finite for all $w \in S$.*

473 *Proof.* Assume that all sets $\mathcal{R}_S(w)$ for $w \in S$ are finite. Let $n \geq 1$. Let N be
474 the maximal length of the words in $\mathcal{R}_S(w)$ for a word w of length n , then any
475 word of length $N + 2n - 1$ contains an occurrence of w . Conversely, for $w \in S$,
476 let N be such that w is a factor of any word in S of length N . Then the words
477 of $\mathcal{R}_S(w)$ have length at most $|w| + N - 1$. \blacksquare

478 Let S be a recurrent set and let $w \in S$. Let f be a coding morphism for $\mathcal{R}_S(w)$.
479 The set $f^{-1}(w^{-1}S)$, denoted $D_f(S)$, is called the *derived set* of S with respect
480 to f . Note that if f' is the coding morphism for $\mathcal{R}'_S(w)$ associated with f , then
481 $D_f(S) = f'^{-1}(Sw^{-1})$.

482 The following result gives an equivalent definition of the derived set.

propositionRecurrent:
484

Proposition 4.3 *Let S be a recurrent set. For $w \in S$, let f be a coding mor-
484 phism for the set $\mathcal{R}_S(w)$. Then*

$$D_f(S) = f^{-1}(\Gamma_S(w)) \cup \{1\}. \quad (4.3)$$

485 *Proof.* Let $z \in D_f(S)$. Then $f(z) \in w^{-1}S \cap \mathcal{R}_S(w)^*$ and thus $f(z) \in \Gamma_S(w) \cup \{1\}$.
486 Conversely, if $x \in \Gamma_S(w)$, then $x \in \mathcal{R}_S(w)^*$ by Equation (4.2) and thus $x = f(z)$
487 for some $z \in D_f(S)$. \blacksquare

488 Let S be a recurrent set and x be an infinite word such that $S = \text{Fac}(x)$.
489 Let $w \in S$ and let f be a coding morphism for the set $\mathcal{R}_S(w)$. Since w appears
490 infinitely often in x , there is a unique factorization $x = vwz$ with $z \in \mathcal{R}_S(w)^\omega$
491 and v such that vw has no proper prefix ending with w . The infinite word $f^{-1}(z)$
492 is called the *derived word* of x relative to f . If f' is the coding morphism for
493 $\mathcal{R}'_S(w)$ associated with f , we have $f'^{-1}(z) = f'^{-1}(wz)$ and thus f, f' define the
494 same derived word.

495 The following well-known result (for a proof, see [6] for example), shows in
496 particular that the derived set of a recurrent set is recurrent.

propositionDerived:
498
499
500

Proposition 4.4 *Let S be a recurrent set and let x be a recurrent infinite word
498 such that $S = \text{Fac}(x)$. Let $w \in S$ and let f be a coding morphism for the set
499 $\mathcal{R}_S(w)$. The derived set of S with respect to f is the set of factors of the derived
500 word of x with respect to f , that is $D_f(S) = \text{Fac}(D_f(x))$.*

501 **Example 4.5** Let S be the uniformly recurrent set of Example 3.7. Let f be the
502 coding morphism for the set $\mathcal{R}_S(c)$ given by $f(a) = bac$, $f(b) = bbac$, $f(c) = c$.
503 Then the derived set of S with respect to f is represented in Figure 4.1.

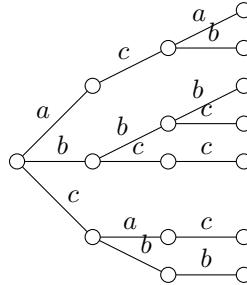


Figure 4.1: The words of length ≤ 3 of the derived set of S .

figureDerived

5 Uniformly recurrent tree sets

504

sectionTreeNormal

505

In this section, we recall the notion of tree set introduced in [?]. We recall that the factor complexity of a tree set on $k + 1$ letters is $p_n = kn + 1$.

506

507

508

509

510

511

512

We recall a result concerning the decoding of tree sets (Theorem [b.7](#)). We also recall the finite index basis property of uniformly recurrent tree sets (Theorems [5.7](#) and [5.9](#)) that we will use in Section [7](#). We prove that the family of uniformly recurrent tree sets is invariant under derivation (Theorem [5.12](#)). We further prove that all bases of the free group included in a uniformly recurrent tree set are tame (Theorem [5.18](#)).

513

5.1 Tree sets

514

515

516

517

Let S be a fixed factorial set. For a biextendable word w , we consider the undirected graph $G(w)$ on the set of vertices which is the disjoint union of $L(w)$ and $R(w)$ with edges the pairs $(a, b) \in E(w)$. The graph $G(w)$ is called the *extension graph* of w in S .

518

Example 5.1 Let S be the Fibonacci set. The extension graphs of ε, a, b, ab respectively are shown in Figure [5.1](#).

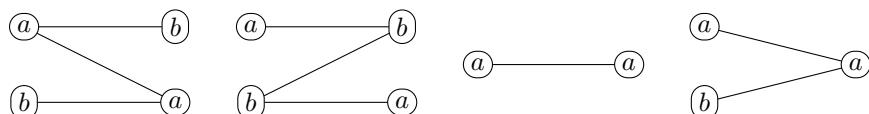


Figure 5.1: The extension graphs of ε, a, b, ab in the Fibonacci set.

FigureExtensionGraph

519

Recall that an undirected graph is a tree if it is connected and acyclic.

520

We say that S is a *tree set* (resp. an acyclic set) if it is biextendable and if for every word $w \in S$, the graph $G(w)$ is a tree (resp. is acyclic).

521

522

523

524

It is not difficult to verify the following statement (see [4], Proposition 4.3) which shows that the factor complexity of a tree set is linear.

propositionComplexity214 **Proposition 5.2** Let S be a tree set on the alphabet A and let $k = \text{Card}(A \cap S) - 1$. Then $\text{Card}(S \cap A^n) = kn + 1$ for all $n \geq 0$

526 **527** The following result is also easy to prove.

propositionSturmianisNormal214 **Proposition 5.3** A Sturmian set S is a uniformly recurrent tree set.

529 **530** **531** **532** **533** **534** *Proof.* We have already seen that a Sturmian set is uniformly recurrent. Let us show that it is a tree set. Consider $w \in S$. If w is not left-special there is a unique $a \in A$ such that $aw \in S$. Then $E(w) \subset \{a\} \times A$ and thus $G(w)$ is a tree. The case where w is not right-special is symmetrical. Finally, assume that w is bispecial. Let $a, b \in A$ be such that aw is right-special and wb is left-special. Then $E(w) = (\{a\} \times A) \cup (A \times \{b\})$ and thus $G(w)$ is a tree. ■

535 Putting together Propositions [5.6](#) and [Proposition 5.8](#) in [5], we have the similar **536** statement.

tionExchangeTreeConditions214 **538** **Proposition 5.4** A regular interval exchange set is a uniformly recurrent tree set.

539 **540** [propositionExchangeTreeCondition](#) **541** Proposition [5.4](#) is actually a particular case of a result of [18] which characterizes the regular interval exchange sets.

542 We give an example of a uniformly recurrent tree set which is neither a Sturmian set nor an interval exchange set.

exampleTribonacci214 **544** **exampleTribonacci** **545** **546** **547** **548** **549** **550** **551** **552** Let S be the Tribonacci set on the alphabet $A = \{a, b, c\}$ (see Example [2.2](#)). Let $X = A^2 \cap S$. Then $X = \{aa, ab, ac, ba, ca\}$ is an S -maximal bifix code of S -degree 2. Let $B = \{x, y, z, t, u\}$ and let $f : B^* \rightarrow A^*$ be the morphism defined by $f(x) = aa$, $f(y) = ab$, $f(z) = ac$, $f(t) = ba$, $f(u) = ca$. Then f is a coding morphism for X . We will see that the set $G = f^{-1}(S)$ is a uniformly recurrent tree set (this follows from Theorem [7.1](#) below). It is not Sturmian since y and t are two right-special words of length 1. It is not either an interval exchange set. Indeed, for any right-special word w of G , one has $r(w) = 3$. This is not possible in a regular interval exchange set T since, Σ_T being injective, the length of the interval J_w tends to 0 as $|w|$ tends to infinity.

553 Let S be a set of words. For $w \in S$, and $U, V \subset S$, let $U(w) = \{\ell \in U \mid \ell w \in S\}$ and let $V(w) = \{r \in V \mid wr \in S\}$. The *generalized extension graph* of w relative to U, V is the following undirected graph $G_{U,V}(w)$. The set of vertices is made of two disjoint copies of $U(w)$ and $V(w)$. The edges are the pairs (ℓ, r) for $\ell \in U(w)$ and $r \in V(w)$ such that $\ell wr \in S$. The extension graph $G(w)$ defined previously corresponds to the case where $U, V = A$.

554 **555** **556** **557** **558** The following result is proved in [4] (Proposition 4.9).

PropStrongTreeCondition214 **560** **561** **562** **Proposition 5.6** Let S be a tree set. For any $w \in S$, any finite S -maximal suffix code $U \subset S$ and any finite S -maximal prefix code $V \subset S$, the generalized extension graph $G_{U,V}(w)$ is a tree.

563 Let S be a recurrent set and let f be a coding morphism for a finite S -
 564 maximal bifix code. The set $f^{-1}(S)$ is called a *maximal bifix decoding* of S .
 565 The following result is Theorem 4.13 in [4].

InverseImageTree66

Theorem 5.7 *Any maximal bifix decoding of a recurrent tree set is a tree set.*

567 We have no example of a bifix decoding of a recurrent tree set which is not
 568 recurrent (in view of Theorem 7.1 to be proved hereafter, such a set would be
 569 the decoding of a recurrent tree set which is not uniformly recurrent).

5.2 The finite index basis property

570 **sectionNormal**
 571 Let S be a recurrent set containing the alphabet A . We say that S has the
 572 *finite index basis property* if the following holds. A finite bifix code $X \subset S$ is
 573 an S -maximal bifix code of S -degree d if and only if it is a basis of a subgroup
 574 of index d of the free group on A .

575 We recall the main result of [5] (Theorem 6.1).

theoremFIB67

576 **Theorem 5.8** *A uniformly recurrent tree set containing the alphabet A has the
 577 finite index basis property.*

578 Recall from Section 2.3 that a *group code* of degree d is a bifix code X such
 579 that $X^* = \varphi^{-1}(H)$ for a surjective morphism $\varphi : A^* \rightarrow G$ from A^* onto a finite
 580 group G and a subgroup H of index d of G .

581 We will use the following result. It is stated for a Sturmian set S in [2]
 582 (Theorem 7.2.5) but the proof only uses the fact that S is uniformly recurrent
 583 and satisfies the finite index basis property. We reproduce the proof for the sake
 584 of clarity.

585 For a set of words X , we denote by $\langle X \rangle$ the subgroup of the free group on
 586 A generated by X . The free group on A itself is consistently denoted $\langle A \rangle$.

theoremGroupCode68

587 **Theorem 5.9** *Let $Z \subset A^+$ be a group code of degree d . For every uniformly
 588 recurrent tree set S containing the alphabet A , the set $X = Z \cap S$ is a basis of
 589 a subgroup of index d of $\langle A \rangle$.*

590 *Proof.* By Theorem 4.2.11 in [2], the code X is an S -maximal bifix code of
 591 S -degree $e \leq d$. Since S is uniformly recurrent, by Theorem 4.4.3 of [2], X is
 592 finite. By Theorem 5.8, X is a basis of a subgroup of index e . Since $\langle X \rangle \subset \langle Z \rangle$,
 593 the index e of the subgroup $\langle X \rangle$ is a multiple of the index d of the subgroup
 594 $\langle Z \rangle$. Since $e \leq d$, this implies that $e = d$. ■

595 As an example of this result, if S is a uniformly recurrent tree set, then
 596 $S \cap A^n$ is a basis of the subgroup formed by the words of length multiple of n
 597 (where the length is not the length of the reduced word but the sum of values
 598 1 for the letters in A and -1 for the letters in A^{-1}).

599 We will use the following results from [4]. The first one is Corollary 5.8 in [4].

theoremJulien601

Theorem 5.10 *Let S be a uniformly recurrent tree set containing the alphabet A . For any word $w \in S$, the set $\mathcal{R}_S(w)$ is a basis of the free group on A .*

602

603

The next result is Theorem 6.2 in [4]. A submonoid M of A^* is *saturated* in a set S if $M \cap S = \langle M \rangle \cap S$.

propositionHcap604

605

Theorem 5.11 *Let S be an acyclic set. The submonoid generated by any bifix code $X \subset S$ is saturated in S .*

606

5.3 Derived sets of tree sets

607

608

609

We will use the following closure property of the family of uniformly recurrent tree sets. It generalizes the fact that the derived word of a Sturmian word is Sturmian (see [21]).

propositionReturns610

611

Theorem 5.12 *Any derived set of a uniformly recurrent tree set is a uniformly recurrent tree set.*

612

613

614

615

Proof. Let S be a uniformly recurrent tree set containing A , let $v \in S$ and let f be a coding morphism for $X = \mathcal{R}_S(v)$. By Theorem 5.10, X is a basis of the free group on A . Thus $f : B^* \rightarrow A^*$ extends to an isomorphism from $\langle B \rangle$ onto $\langle A \rangle$.

616

617

Set $H = f^{-1}(v^{-1}S)$. By Proposition 4.3, the set H is recurrent and $H = f^{-1}(\Gamma_S(v)) \cup \{1\}$.

618

619

Consider $x \in H$ and set $y = f(x)$. Let f' be the coding morphism for $X' = \mathcal{R}'_S(v)$ associated with f . For $a, b \in B$, we have

$$(a, b) \in G(x) \Leftrightarrow (f'(a), f(b)) \in G_{X', X}(vy),$$

620

621

where $G_{X', X}(vy)$ denotes the generalized extension graph of vy relative to X', X . Indeed,

$$axb \in H \Leftrightarrow f(a)yf(b) \in \Gamma_S(v) \Leftrightarrow vf(a)yf(b) \in S \Leftrightarrow f'(a)vyf(b) \in S.$$

622

623

624

The set X' is an Sv^{-1} -maximal suffix code and the set X is a $v^{-1}S$ -maximal prefix code. By Proposition 5.6 the generalized extension graph $G_{X', X}(vy)$ is a tree. Thus the graph $G(x)$ is a tree. This shows that H is a tree set.

625

626

627

Consider now $x \in H \setminus \{1\}$. Set $y = f(x)$. Let us show that $\Gamma_H(x) = f^{-1}(\Gamma_S(vy))$ or equivalently $f(\Gamma_H(x)) = \Gamma_S(vy)$. Consider first $r \in \Gamma_H(x)$. Set $s = f(r)$. Then $xr = ux$ with $u, ux \in H$. Thus $ys = wy$ with $w = f(u)$.

628

629

630

631

632

633

634

Since $u \in H \setminus \{1\}$, $w = f(u)$ is in $\Gamma_S(v)$, we have $vw \in A^+v \cap S$. This implies that $vys = vwy \in A^+vy \cap S$ and thus that $s \in \Gamma_S(vy)$. Conversely, consider $s \in \Gamma_S(vy)$. Since $y = f(x)$, we have $s \in \Gamma_S(v)$. Set $s = f(r)$. Since $vys \in A^+vy \cap S$, we have $ys \in A^+y \cap S$. Set $ys = wy$. Then $vwy \in A^+vy$ implies $vw \in A^+v$ and therefore $w \in \Gamma_S(v)$. Setting $w = f(u)$, we obtain $f(xr) = ys = wy \in X^+y \cap \Gamma_S(v)$. Thus $r \in \Gamma_H(x)$. This shows that $f(\Gamma_H(x)) = \Gamma_S(vy)$ and thus that $\mathcal{R}_H(x) = f^{-1}(\mathcal{R}_S(vy))$.

635

636

Since S is uniformly recurrent, the set $\mathcal{R}_S(vy)$ is finite. Since f is an isomorphism, $\mathcal{R}_H(x)$ is also finite, which shows that H is uniformly recurrent. ■

637 **Example 5.13** Let S be the Tribonacci set (see Example 2.2). It is the set
 638 of factors of the infinite word $x = abacaba\cdots$ which is the fixed point of the
 639 morphism f defined by $f(a) = ab$, $f(b) = ac$, $f(c) = a$. We have $\mathcal{R}_S(a) =$
 640 $\{a, ba, ca\}$. Let g be the coding morphism for $\mathcal{R}_S(a)$ defined by $g(a) = a$,
 641 $g(b) = ba$, $g(c) = ca$ and let g' be the associated coding morphism for $\mathcal{R}'_S(a)$.
 642 We have $f = g'\pi$ where π is the circular permutation $\pi = (abc)$. Set $z = g'^{-1}(x)$.
 643 Since $g'\pi(x) = x$, we have $z = \pi(x)$. Thus the derived set of S with respect to
 644 a is the set $\pi(S)$.

645 5.4 Tame bases

646 An automorphism α of the free group on A is *positive* if $\alpha(a) \in A^+$ for every
 647 $a \in A$. We say that a positive automorphism of the free group on A is *tame*²
 648 if it belongs to the submonoid generated by the permutations of A and the
 649 automorphisms $\alpha_{a,b}$, $\tilde{\alpha}_{a,b}$ defined for $a, b \in A$ with $a \neq b$ by

$$\alpha_{a,b}(c) = \begin{cases} ab & \text{if } c = a, \\ c & \text{otherwise} \end{cases}, \quad \tilde{\alpha}_{a,b}(c) = \begin{cases} ba & \text{if } c = a, \\ c & \text{otherwise} \end{cases}$$

650 Thus $\alpha_{a,b}$ places a b after each a and $\tilde{\alpha}_{a,b}$ places a b before each a . The above
 651 automorphisms and the permutations of A are called the *elementary* positive
 652 automorphisms on A . The monoid of positive automorphisms is not finitely
 653 generated as soon as the alphabet has at least three generators (see [26]).

654 A basis X of the free group is *positive* if $X \subset A^+$. A positive basis X of the
 655 free group is *tame* if there exists a tame automorphism α such that $X = \alpha(A)$.

656 **Example 5.14** The set $X = \{ba, cba, cca\}$ is a tame basis of the free group on
 657 $\{a, b, c\}$. Indeed, one has the following sequence of elementary automorphisms.

$$(b, c, a) \xrightarrow{\alpha_{c,b}} (b, cb, a) \xrightarrow{\tilde{\alpha}_{a,c}^2} (b, cb, cca) \xrightarrow{\alpha_{b,a}} (ba, cba, cca).$$

658 The fact that X is a basis can be checked directly by the fact that $c = (cba)(ba)^{-1}$,
 659 $c^{-2}(cca) = a$ and finally $(ba)a^{-1} = b$.

660 The following result will play a key role in the proof of the main result of this
 661 section (Theorem 5.18). theoremTame

propAuxiliary 62 **Proposition 5.15** A set $X \subset A^+$ is a tame basis of the free group on A if and
 633 only if $X = A$ or there is a tame basis Y of the free group on A and $u, v \in Y$
 664 such that $X = (Y \setminus v) \cup uv$ or $X = (Y \setminus u) \cup uv$.

665 *Proof.* Assume first that X is a tame basis of the free group on A . Then
 666 $X = \alpha(A)$ where α is a tame automorphism of $\langle A \rangle$. Then $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n$ where
 667 the α_i are elementary positive automorphisms. We use an induction on n . If
 668 $n = 0$, then $X = A$. If α_n is a permutation of A , then $X = \alpha_1 \alpha_2 \cdots \alpha_{n-1}(A)$

²The word *tame* (as opposed to *wild*) is used here on analogy with its use in ring theory.

669 and the result holds by induction hypothesis. Otherwise, set $\beta = \alpha_1 \cdots \alpha_{n-1}$
 670 and $Y = \beta(A)$. By induction hypothesis, Y is tame. If $\alpha_n = \alpha_{a,b}$, set $u = \beta(a)$
 671 and $v = \beta(b) = \alpha(b)$. Then $X = (Y \setminus u) \cup uv$ and thus the condition is satisfied.
 672 The case where $\alpha_n = \tilde{\alpha}_{a,b}$ is symmetrical.

673 Conversely, assume that Y is a tame basis and that $u, v \in Y$ are such that
 674 $X = (Y \setminus u) \cup uv$. Then, there is a tame automorphism β of $\langle A \rangle$ such that
 675 $Y = \beta(A)$. Set $a = \beta^{-1}(u)$ and $b = \beta^{-1}(v)$. Then $X = \beta\alpha_{a,b}(A)$ and thus X is
 676 a tame basis. \blacksquare

677 We note the following corollary.

corollaryTame **Corollary 5.16** *A tame basis which is a bifix code is the alphabet.*

679 *Proof.* Assume that X is a tame basis which is not the alphabet. By Proposition
 680 [propAuxiliary](#) [b.15](#) there is a tame basis Y and $u, v \in Y$ such that $X = (Y \setminus v) \cup uv$ or
 681 $X = (Y \setminus u) \cup uv$. In the first case, X is not prefix. In the second one, it is not
 682 suffix. \blacksquare

683 The following example is from [26].

exampleWen **Example 5.17** The set $X = \{ab, acb, acc\}$ is a basis of the free group on
 684 $\{a, b, c\}$. Indeed, $accb = (acb)(ab)^{-1}(acb) \in \langle X \rangle$ and thus $b = (acc)^{-1}accb \in$
 685 $\langle X \rangle$, which implies easily that $a, c \in \langle X \rangle$. The set X is bifix and thus it is not
 686 a tame basis by Corollary [b.16](#). [corollaryTame](#)

688 The following result is a remarkable consequence of Theorem [b.8](#). [theoremFIB](#)

theoremTame **Theorem 5.18** *Any basis of the free group included in a uniformly recurrent
 690 tree set is tame.*

691 *Proof.* Let S be a uniformly recurrent tree set. Let $X \subset S$ be a basis of the free
 692 group on A . Since A is finite, X is finite (and of the same cardinality as A).
 693 We use an induction on the sum $\lambda(X)$ of the lengths of the words of X . If X is
 694 bifix, by Theorem [b.8](#), it is an S -maximal bifix code of S -degree 1. Thus $X = A$
 695 (see Example [b.4](#)). Next assume for example that X is not prefix. Then there
 696 are nonempty words u, v such that $u, uv \in X$. Let $Y = (X \setminus uv) \cup v$. Then Y
 697 is a basis of the free group and $\lambda(Y) < \lambda(X)$. By induction hypothesis, Y is
 698 tame. Since $X = (Y \setminus v) \cup uv$, X is tame by Proposition [b.15](#). \blacksquare

699 **Example 5.19** The set $X = \{ab, acb, acc\}$ is a basis of the free group which is
 700 not tame (see Example [b.17](#)). Accordingly, the extension graph $G(\varepsilon)$ relative to
 701 the set of factors of X is not a tree (see Figure [b.2](#)). [figureWen](#)

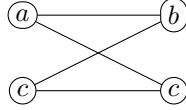


Figure 5.2: The graph $G(\varepsilon)$

figureWen

6 H -adic representations

sectionSadic

702 In this section we study H -adic representations of tree sets. This notion was
 703 introduced in [17], using a terminology initiated by Vershik and coined out by
 704 B. Host (it is usually called S -adic but we already use here the letter S for
 705 sets of words). We first recall a general construction allowing to build H -adic
 706 representations of any uniformly recurrent aperiodic set (Proposition 6.1) which
 707 is based on return words. Using Theorem 6.18, we show that this construction
 708 actually provides \mathcal{H}_e -representations of uniformly recurrent tree sets (Theo-
 709 rem 6.5), where \mathcal{H}_e is the set of elementary positive automorphisms of the free
 710 group on A .
 711

6.1 H -adic representations

712 Let H be a set of morphisms and $\mathbf{h} = (\sigma_n)_{n \in \mathbb{N}}$ be a sequence in $H^{\mathbb{N}}$ with
 713 $\sigma_n : A_{n+1}^* \rightarrow A_n^*$. We let $S_{\mathbf{h}}$ denote the set of words $\bigcap_{n \in \mathbb{N}} \text{Fac}(\sigma_0 \cdots \sigma_n(A_{n+1}^*))$.
 714 We call a factorial set S an H -adic set if there exists $\mathbf{h} \in S^{\mathbb{N}}$ such that $S = S_{\mathbf{h}}$.
 715 In this case, the sequence \mathbf{h} is called an H -adic representation of S .

716 A sequence of morphisms $(\sigma_n)_{n \in \mathbb{N}}$ is said to be *everywhere growing* if $\min_{a \in A_n} |\sigma_0 \cdots \sigma_{n-1}(a)|$ goes to infinity as n increases. A sequence of morphisms $(\sigma_n)_{n \in \mathbb{N}}$
 717 is said to be *primitive* if for all $r \geq 0$ there exists $s > r$ such that all letters of
 718 A_r occur in all images $\sigma_r \cdots \sigma_{s-1}(a)$, $a \in A_s$. Obviously any primitive sequence
 719 of morphisms is everywhere growing.

720 A uniformly recurrent set S is said to be *aperiodic* if it contains at least one
 721 right-special factor of each length. The next (well-known) proposition provides
 722 a general construction to get a primitive S -adic representation of any aperiodic
 723 uniformly recurrent set S .

prop: S-adic UR set

724 **Proposition 6.1** *An aperiodic factorial set $S \subset A^*$ is uniformly recurrent if
 725 and only if it has a primitive H -adic representation for some (possibly infinite)
 726 set H of morphisms.*

727 *Proof.* Let H be a set of morphisms and $\mathbf{h} = (\sigma_n : A_{n+1}^* \rightarrow A_n^*)_{n \in \mathbb{N}} \in H^{\mathbb{N}}$ be
 728 a primitive sequence of morphisms such that $S = \bigcap_{n \in \mathbb{N}} \text{Fac}(\sigma_0 \cdots \sigma_n(A_{n+1}^*))$.
 729 Consider a word $u \in S$ and let us prove that $u \in \text{Fac}(v)$ for all long enough
 730 $v \in S$. The sequence \mathbf{h} being everywhere growing, there is an integer $r > 0$
 731 such that $\min_{a \in A_r} |\sigma_0 \cdots \sigma_{r-1}(a)| > |u|$. As $S = \bigcap_{n \in \mathbb{N}} \text{Fac}(\sigma_0 \cdots \sigma_n(A_{n+1}^*))$,
 732 there is an integer $s > r$, two letters $a, b \in A_r$ and a letter $c \in A_s$ such that
 733 $u \in \text{Fac}(\sigma_0 \cdots \sigma_{r-1}(ab))$ and $ab \in \text{Fac}(\sigma_r \cdots \sigma_{s-1}(c))$. The sequence \mathbf{h} being
 734 primitive, there is an integer $t > s$ such that c occurs in $\sigma_s \cdots \sigma_{t-1}(d)$ for all $d \in$

737 A_t . Thus u is a factor of all words $v \in S$ such that $|v| \geq \max_{d \in A_t} |\sigma_0 \cdots \sigma_{t-1}(d)|$
738 and S is uniformly recurrent.

739 Let us prove the converse. Let $(u_n)_{n \in \mathbb{N}} \in S^{\mathbb{N}}$ be a non-ultimately periodic
740 sequence such that u_n is suffix of u_{n+1} . By assumption, S is uniformly recurrent
741 so $\mathcal{R}_S(u_{n+1})$ is finite for all n . The set S being aperiodic, $\mathcal{R}_S(u_{n+1})$ also has
742 cardinality at least 2 for all n . For all n , let $A_n = \{0, \dots, \text{Card}(\mathcal{R}_S(u_n)) - 1\}$ and
743 let $\alpha_n : A_n^* \rightarrow A^*$ be a coding morphism for $\mathcal{R}_S(u_n)$. The word u_n being suffix of
744 u_{n+1} , we have $\alpha_{n+1}(A_{n+1}) \subset \alpha_n(A_n^+)$. Since $\alpha_n(A_n) = \mathcal{R}_S(u_n)$ is a prefix code,
745 there is a unique morphism $\sigma_n : A_{n+1}^* \rightarrow A_n^*$ such that $\alpha_n \sigma_n = \alpha_{n+1}$. For all n
746 we get $\mathcal{R}_S(u_n) = \alpha_0 \sigma_0 \sigma_1 \cdots \sigma_{n-1}(A_n)$ and $S = \bigcap_{n \in \mathbb{N}} \text{Fac}(\alpha_0 \sigma_0 \cdots \sigma_n(A_{n+1}^*))$.
747 Without loss of generality, we can suppose that $u_0 = \varepsilon$ and $A_0 = A$. In that
748 case we get $\alpha_0 = \text{id}$ and the set S thus has an H -adic representation with
749 $H = \{\sigma_n \mid n \in \mathbb{N}\}$.

750 Let us show that $\mathbf{h} = (\sigma_n)_{n \in \mathbb{N}}$ is everywhere growing. If not, there is a
751 sequence of letters $(a_n \in A_n)_{n \geq N}$ such that $\sigma_n(a_{n+1}) = a_n$ for all $n \geq N$. This
752 means that the word $r = \sigma_0 \cdots \sigma_N(a_n) \in S$ is a first return word to u_n for all
753 $n \geq N$. The sequence $(|u_n|)_{n \in \mathbb{N}}$ being unbounded, the word r^k belongs to S for
754 all positive integers k , which contradicts the uniform recurrence of S .

755 Let us show that \mathbf{h} is primitive. The set S being uniformly recurrent, for
756 all $n \in \mathbb{N}$ there exists N_n such that all words of $S \cap A^{\leq n}$ occur in all words of
757 $S \cap A^{\geq N_n}$. Let $r \in \mathbb{N}$ and let $u = \sigma_0 \cdots \sigma_{r-1}(a)$ for some $a \in A_r$. Let $s > r$ be an
758 integer such that $\min_{b \in A_s} |\sigma_0 \cdots \sigma_{s-1}(b)| \geq N_{|u|}$. Thus u occurs in $\sigma_0 \cdots \sigma_{s-1}(b)$
759 for all $b \in A_s$. As $\sigma_0 \cdots \sigma_{s-1}(A_s) \subset \sigma_0 \cdots \sigma_{r-1}(A_r^+)$ and as $\sigma_0 \cdots \sigma_{r-1}(A_r) =$
760 $\mathcal{R}_S(u_r)$ is a prefix code, the letter $a \in A_r$ occurs in $\sigma_r \cdots \sigma_{s-1}(b)$ for all $b \in A_r$.
761 ■

762 **Remark 6.2** In the continuation of the proof of the above proposition, we could
763 also consider a sequence $(a_n \in A_n)_{n \in \mathbb{N}}$ of letters such that $\sigma_n(a_{n+1}) \in a_n A_n^*$
764 (such a sequence exists by application of König's lemma). By doing so, we
765 would build a uniformly recurrent infinite word $\mathbf{w} = \lim_{n \rightarrow +\infty} \sigma_0 \cdots \sigma_n(a_{n+1})$
766 with S for set of factors. According to Durand [12], \mathbf{w} is substitutive if and
767 only if there is a sequence of words $(u_n)_{n \in \mathbb{N}}$ that makes the sequence $(\sigma_n)_{n \in \mathbb{N}}$
768 be ultimately periodic.

769 **Remark 6.3** In the proof of the previous proposition, the same construction
770 works if we define the sequence $(u_n)_{n \in \mathbb{N}}$ such that u_n is prefix of u_{n+1} and if we
771 consider $\mathcal{R}'_S(u_n)$ instead of $\mathcal{R}_S(u_n)$.

772 **Remark 6.4** Still in the continuation of the proof, we can also slightly mod-
773 ify the construction in such a way that the sequence $(\sigma_n)_{n \in \mathbb{N}}$ is *proper*, that
774 is, for all n , there is an integer $m > n$ and two letters $a, b \in A_n$ such that
775 $\sigma_n \cdots \sigma_{m-1}(A_m) \subset a A_n^* \cap A_n^* b$. According to Durand [13, 14], if H is finite,
776 then S is linearly recurrent if and only if there is an integer $k \geq 0$ such that
777 for all $n \in \mathbb{N}$, all letters of A_n occur in $\sigma_n \cdots \sigma_{n+k}(a)$ for all $a \in A_{n+k+1}$ (this
778 property is called *strong primitiveness*) and there are two letters $a, b \in A_n$ such
779 that $\sigma_n \cdots \sigma_{n+k}(A_{n+k+1}) \subset a A_n^* \cap A_n^* b$.

780 6.2 H -adic representation of tree sets

Even for uniformly recurrent sets with linear factor complexity, the set of morphisms $S = \{\sigma_n \mid n \in \mathbb{N}\}$ considered in Proposition 6.1 is usually infinite as well as the sequence of alphabets $(A_n)_{n \in \mathbb{N}}$ is usually unbounded (see [15]). For tree sets S , the next theorem significantly improves the only if part of Proposition 6.1: For such sets, the set H can be replaced by the set \mathcal{H}_e of elementary positive automorphisms. In particular, A_n is equal to A for all n .

Theorem 6.5 *If S is a uniformly recurrent tree set over an alphabet A , then it has a primitive \mathcal{H}_e -adic representation.*

789 *Proof.* For any non-ultimately periodic sequence $(u_n)_{n \in \mathbb{N}} \in S^{\mathbb{N}}$ such that $u_0 = \varepsilon$
 790 and u_n is suffix of u_{n+1} , the sequence of morphisms $(\sigma_n)_{n \in \mathbb{N}}$ built in the proof of
 791 prop: S_{adic} UR set Proposition 6.1 is a primitive H -adic representation of S with $H = \{\sigma_n \mid n \in \mathbb{N}\}$.
 792 Therefore, all we need to do is to consider such a sequence $(u_n)_{n \in \mathbb{N}}$ such that
 793 σ_n is tame for all n . theoremJulien

Let $u_1 = a^{(0)}$ be a letter in A . By Theorem 5.10, the set $\mathcal{R}_S(u_1)$ is a basis of the free group on A . Therefore, by Theorem 5.18, the morphism $\sigma_0 : A_1^* \rightarrow A_0^*$ is tame ($A_0 = A$). Let $a^{(1)} \in A_1$ be a letter and set $u_2 = \sigma_0(a^{(1)})$. Thus $u_2 \in \mathcal{R}_S(u_1)$ and u_1 is a suffix of u_2 . By Theorem 5.12, the derived set $S^{(1)} = \sigma_0^{-1}(S)$ is a uniformly recurrent tree set on the alphabet A . We thus reiterate the process with $a^{(1)}$ and we conclude by induction with $u_n = \sigma_0 \cdots \sigma_{n-2}(a^{(n-1)})$ for all $n \geq 2$. \blacksquare

7 Maximal bifix decoding

In this section, we state and prove the main result of this paper (Theorem [7.1](#)).
 In the first part, we prove two results concerning morphisms onto a finite group.
 In the second one we prove a sequence of lemmas leading to a proof of the main result.

7.1 Main result

The family of uniformly recurrent tree sets contains both the Sturmian sets and the regular interval exchange sets. The second family is closed under maximal bifix decoding (see [5], Corollary 5.22) but the first family is not (see Example [exampleTribonacci2](#) below). The following result shows that the family of uniformly recurrent tree sets is a natural closure of the family of Sturmian sets.

Theorem 7.1 *The family of uniformly recurrent tree sets is closed under maximal bifix decoding.*

Note that, in contrast with Theorem 5.7, assuming the uniform recurrence, instead of simply the recurrence, implies the same property for the decoding.

We illustrate Theorem 7.1 by the following example.

exampleTribonacci21

818

Example 7.2 Let G be as in Example 6.5. The set G is a uniformly recurrent tree set by Theorem 7.1.

819

820

We prove two preliminary results concerning the restriction to a uniformly recurrent tree set of a morphism onto a finite group (Propositions 7.3 and 7.5).

propositionGroup2

822

823

Proposition 7.3 Let S be a uniformly recurrent tree set containing the alphabet A and let $\varphi : A^* \rightarrow G$ be a morphism from A^* onto a finite group G . Then $\varphi(S) = G$.

824

825

826

827

828

829

830

831

832

833

Proof. Since the submonoid $\varphi^{-1}(1)$ is right and left unitary, there is a bifix code Z such that $Z^* = \varphi^{-1}(1)$. Let $X = Z \cap S$. By Theorem 6.9, X is a basis of a subgroup of index $\text{Card}(G)$. Let x be a word of X of maximal length (since X is a basis, it is finite and has $\text{Card}(A)$ elements). Then x is not an internal factor of X and thus it has $\text{Card}(G)$ parses. Let $S(x)$ be the set of suffixes of x which are prefixes of X . If $s, t \in S(x)$, then they are comparable for the suffix order. Assume for example that $s = ut$. If $\varphi(s) = \varphi(t)$, then $u \in X^*$ which implies $u = 1$ since s is a prefix of X . Thus all elements of $S(x)$ have distinct images by φ . Since $S(x)$ has $\text{Card}(G)$ elements, this forces $\varphi(S(x)) = G$ and thus $\varphi(S) = G$ since $S(x) \subset S$. ■

834

We illustrate the proof on the following example.

835

836

837

838

Example 7.4 Let $A = \{a, b\}$ and let φ be the morphism from A^* onto the symmetric group G on 3 elements defined by $\varphi(a) = (12)$ and $\varphi(b) = (13)$. Let Z be the group code such that $Z^* = \varphi^{-1}(1)$. The group automaton corresponding to the regular representation of G is represented in Figure 7.1. Let S be the Fibonacci set. The code $X = Z \cap S$ is represented in Figure 7.2. The word

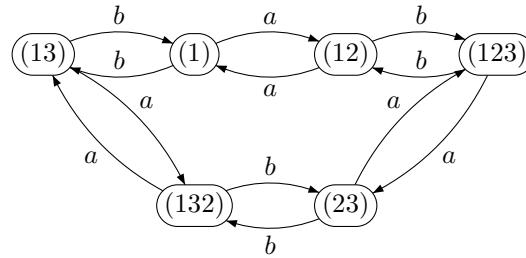


Figure 7.1: The group automaton corresponding to the regular representation of G .

figGroupAutomaton

839

840

841

842

$w = ababa$ is not an internal factor of X . All its 6 suffixes (indicated in black in Figure 7.2) are proper prefixes of X and their images by φ are the 6 elements of the group G .

propGamma2

844

845

Proposition 7.5 Let S be a uniformly recurrent tree set containing the alphabet A and let $\varphi : A^* \rightarrow G$ be a morphism from A^* onto a finite group G . For any $w \in S$, one has $\varphi(\Gamma_S(w) \cup \{1\}) = G$.

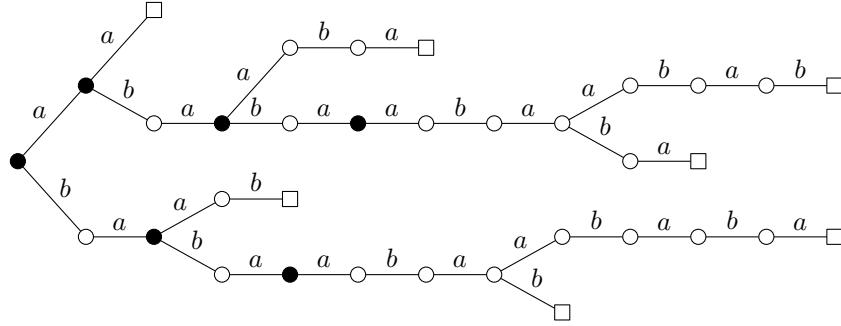


Figure 7.2: The code $X = Z \cap S$

figCodeX

846 *Proof.* Let $\alpha : B^* \rightarrow A^*$ be a coding morphism for $\mathcal{R}_S(w)$. Then $\beta = \varphi \circ \alpha : 847 B^* \rightarrow G$ is a morphism from B^* into G . By Theorem 5.10, the set $\mathcal{R}_S(w)$ is a 848 basis of the free group on A . Thus $\langle \alpha(B) \rangle = \langle A \rangle$. This implies that $\beta(\langle B \rangle) = G$. 849 This implies that $\beta(B)$ generates G . Since G is a finite group, $\beta(B^*)$ is a 850 propositionReturns subgroup of G and thus $\beta(B^*) = G$. By Theorem 5.12, the set $H = \alpha^{-1}(w^{-1}S)$ 851 is a uniformly recurrent tree set. Thus $\beta(H) = G$ by Proposition 7.3. This 852 implies that $\varphi(\Gamma_S(w) \cup \{1\}) = G$. ■

853 7.2 Proof of the main result

854 Let S be a uniformly recurrent tree set containing A and let $f : B^* \rightarrow A^*$ be a 855 coding morphism for a finite S -maximal bifix code Z . By Theorem 5.8, Z is a 856 basis of a subgroup of index $d_S(Z)$ and, by Theorem 5.11, the submonoid Z^* is 857 saturated in S .

858 We first prove the following lemma.

lemma154

Lemma 7.6 *Let S be a uniformly recurrent tree set containing A and let $f : B^* \rightarrow A^*$ be a coding morphism for an S -maximal bifix code Z . The set $K = f^{-1}(S)$ is recurrent.*

862 *Proof.* Since S is factorial, the set K is factorial. Let $r, s \in K$. Since S is 863 recurrent, there exists $u \in S$ such that $f(r)uf(s) \in S$. Set $t = f(r)uf(s)$. Let 864 G be the representation of $\langle A \rangle$ on the right cosets of $\langle Z \rangle$. Let $\varphi : A^* \rightarrow G$ be the 865 natural morphism from A^* onto G . By Proposition 7.5, we have $\varphi(\Gamma_S(t) \cup \{1\}) = 866 G$. Let $v \in \Gamma_S(t)$ be such that $\varphi(v)$ is the inverse of $\varphi(t)$. Then $\varphi(tv)$ is the 867 identity of G and thus $tv \in \langle Z \rangle$.

868 Since S is a tree set, it is acyclic and thus Z^* is saturated in S by Theorem 5.11. 869 Thus $Z^* \cap S = \langle Z \rangle \cap S$. This implies that $tv \in Z^*$. Since $tv \in A^*t$, 870 we have $f(r)uf(s)v = f(r)qf(s)$ and thus $uf(s)v = qf(s)$ for some $q \in S$. Since 871 Z^* is right unitary, $f(r), f(r)uf(s)v \in Z^*$ imply $uf(s)v = qf(s) \in Z^*$. In turn, 872 since Z^* is left unitary, $qf(s), f(s) \in Z^*$ imply $q \in Z^*$ and thus $q \in Z^* \cap S$.

873 Let $w \in K$ be such that $f(w) = q$. Then rws is in K . This shows that K is
 874 recurrent. \blacksquare

875 We prove a series of lemmas. In each of them, we consider a uniformly
 876 recurrent tree set S containing A and a coding morphism $f : B^* \rightarrow A^*$ for
 877 an S -maximal bifix code Z . We set $K = f^{-1}(S)$. We choose $w \in K$ and set
 878 $v = f(w)$. Let also $Y = R_K(w)$. Then Y is a $w^{-1}K$ -maximal prefix code. Let
 879 $X = f(Y)$ or equivalently $X = Y \circ_f Z$. Then, since $f(w^{-1}K) = v^{-1}S$, by
 880 Proposition 2.9 (i), X is a $v^{-1}S$ -maximal prefix code.

881 Finally we set $U = \mathcal{R}_S(v)$. Let $\alpha : C^* \rightarrow A^*$ be a coding morphism for U .
 882 Since $X \subset \Gamma_S(v)$, we have $X \subset U^*$. Since $uU^* \cap X \neq \emptyset$ for any $u \in U$, we have
 883 $\text{alph}_U(X) = U$. Thus, by Proposition 2.8, we have $X = T \circ_\alpha U$ where T is the
 884 prefix code such that $\alpha(T) = X$.

lemma3: **Lemma 7.7** *We have $X^* \cap v^{-1}S = U^* \cap Z^* \cap v^{-1}S$.*

886 *Proof.* Indeed, the left handside is clearly included in the right one. Conversely,
 887 consider $x \in U^* \cap Z^* \cap v^{-1}S$. Since $x \in U^* \cap v^{-1}S$, $\alpha^{-1}(x)$ is in $\alpha^{-1}(v^{-1}S) =$
 888 $\alpha^{-1}(\Gamma_S(v)) \cup \{1\}$ by Proposition 4.3. Thus $x \in \Gamma_S(v) \cup \{1\}$. Since $x \in Z^*$,
 889 $f^{-1}(x) \in \Gamma_K(w) \cup \{1\} \subset Y^*$. Therefore x is in $f(Y^*) = X^*$. \blacksquare

890 We set for simplicity $d = d_S(Z)$. Set $H = \alpha^{-1}(v^{-1}S)$. By Proposition 5.12, H
 891 is a uniformly recurrent tree set. **propositionReturns**

lemma4: **Lemma 7.8** *The set T is a finite H -maximal bifix code and $d_H(T) = d$.*

893 *Proof.* Since X is a prefix code, T is a prefix code. Since X is $v^{-1}S$ -maximal,
 894 T is $\alpha^{-1}(v^{-1}S)$ -maximal by Proposition 2.9 (ii) and thus H -maximal since
 895 $H = \alpha^{-1}(v^{-1}S)$.

896 Let $x, y \in C^*$ be such that $xy, y \in T$. Then $\alpha(xy), \alpha(y) \in X$ imply $\alpha(x) \in$
 897 Z^* . Since on the other hand, $\alpha(x) \in U^* \cap v^{-1}S$, we obtain by Lemma 7.7 that
 898 $\alpha(x) \in X^*$. This implies $x \in T^*$ and thus $x = 1$ since T is a prefix code. This
 899 shows that T is a suffix code.

900 To show that $d_H(T) = d$, we consider the morphism φ from A^* onto the
 901 group G which is the representation of $\langle A \rangle$ on the right cosets of $\langle Z \rangle$. Set
 902 $J = \varphi(Z^*)$. Thus J is a subgroup of index d of G . By Theorem 5.10, the set
 903 U is a basis of the free group on A . Therefore, since G is a finite group, the
 904 restriction of φ to U^* is surjective. Set $\psi = \varphi \circ \alpha$. Then $\psi : C^* \rightarrow G$ is a
 905 morphism which is onto since $U = \alpha(C)$ generates the free group on A . Let V
 906 be the group code of degree d such that $V^* = \psi^{-1}(J)$. Then $T = V \cap H$, as we
 907 will show now.

908 Indeed, set $W = V \cap H$. If $t \in T$, then $\alpha(t) \in X$ and thus $\alpha(t) \in Z^*$.
 909 Therefore $\psi(t) \in J$ and $t \in V^*$. This shows that $T \subset W^*$. Conversely, if $t \in W$,
 910 then $\psi(t) \in J$ and thus $\alpha(t) \in Z^*$. Since on the other hand $\alpha(t) \in U^* \cap S$, we
 911 obtain $\alpha(t) \in X^*$ by Lemma 7.7. This implies $t \in T^*$ and shows that $W \subset T^*$.

912 Thus, since H is a uniformly recurrent tree set, by Theorem 5.9, T is a basis
 913 of a subgroup of index d . Thus $d_H(T) = d$ by Theorem 5.8. \blacksquare

lemma51 **Lemma 7.9** *The set Y is finite.*

915 *Proof.* Since T and U are finite, the set $X = T \circ U$ is finite. Thus $Y = f^{-1}(X)$
 916 is finite. \blacksquare

917 *Proof of Theorem 7.1.* Let S be a uniformly recurrent tree set containing A and
 918 let $f : B^* \rightarrow A^*$ be a coding morphism for a finite S -maximal bifix code Z . Set
 919 $K = f^{-1}(S)$. **theoremNormal**

920 By Lemma 7.6, K is recurrent. By Lemma 7.9 any set of first return words
 921 $Y = R_K(w)$ is finite. Thus K is uniformly recurrent. By Theorem 5.7, K is a
 922 tree set. **inverseImageTree**

923 Thus we conclude that K is a uniformly recurrent tree set. \blacksquare

924 Note that since K is a uniformly recurrent tree set, the set Y is not only
 925 finite as asserted in Lemma 7.9 but in fact a basis of the free group on B , by
 926 Theorem 5.10. **lemmas**

927 We illustrate the proof with the following example.

928 **Example 7.10** Let S be the Fibonacci set on $A = \{a, b\}$ and let $Z = S \cap A^2 =$
 929 $\{aa, ab, ba\}$. Thus Z is an S -maximal bifix code of S -degree 2. Let $B = \{c, d, e\}$
 930 and let $f : B^* \rightarrow A^*$ be the coding morphism defined by $f(c) = aa$, $f(d) = ab$
 931 and $f(e) = ba$. Part of the set $K = f^{-1}(S)$ is represented in Figure 7.3 on the
 932 left. **figureSetK**

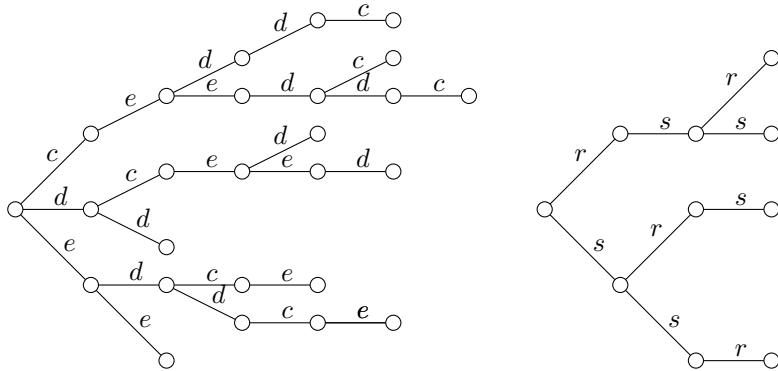


Figure 7.3: The sets K and H . **figureSetK**

933 The set $Y = R_K(c)$ and $X = f(Y)$ are

$$Y = \{eddc, eedc, eeddc\}, \quad X = \{baababaa, babaabaa, babaababaa\}.$$

934 On the other hand, the set $U = \mathcal{R}_S(aa)$ is $U = \{baa, babaa\}$. Let $C = \{r, s\}$
 935 and let $\alpha : C^* \rightarrow A^*$ be the coding morphism for U defined by $\alpha(r) = baa$, **figureSetK**
 936 $\alpha(s) = babaa$. Part of the set $H = \alpha^{-1}((aa)^{-1}S)$ is represented in Figure 7.3
 937 on the right. Then we have $T = \{rs, sr, ss\}$ which is an H -maximal bifix code
 938 of H -degree 2 in agreement with Lemma 7.8. **lemma4**

939 The following example shows that the condition that S is a tree set is nec-
 940 essary.

example5114:

942 **Example 7.11** Let S be the set of factors of $(ab)^*$. The set S does not satisfy
 943 the tree condition since $G(\epsilon)$ is not connected. Let $X = \{ab, ba\}$. The set X is
 944 a finite S -maximal bifix code. Let $f : \{u, v\}^* \rightarrow A^*$ be the coding morphism for
 945 X defined by $f(u) = ab$, $f(v) = ba$. Then $f^{-1}(S) = u^* \cup v^*$ is not recurrent.

945 sectionComposition

7.3 Composition of bifix codes

946 In this section, we use Theorem 7.1 to prove a result showing that in a uniformly
 947 recurrent tree set, the degrees of the terms of a composition of maximal bifix
 948 codes are multiplicative (Theorem 7.12).

949 The following result is proved in [3] for a more general class of codes (includ-
 950 ing all finite codes and not only finite bifix codes), but in the case of $S = A^*$
 951 (Proposition 11.1.2).

952 **Theorem 7.12** *Let S be a uniformly recurrent tree set and let $X, Z \subset S$ be
 953 finite bifix codes such that X decomposes into $X = Y \circ_f Z$ where f is a coding
 954 morphism for Z . Set $G = f^{-1}(S)$. Then X is an S -maximal bifix code if and
 955 only if Y is a G -maximal bifix code and Z is an S -maximal bifix code. Moreover,
 956 in this case*

$$d_X(S) = d_Y(G)d_Z(S). \quad (7.1) \quad \text{eqDegreesMult}$$

957 *Proof.* Assume first that X is an S -maximal bifix code. By Proposition 2.9 (ii),
 958 Y is a G -maximal prefix code and Z is an S -maximal prefix code. This implies
 959 that Y is a G -maximal bifix code and that Z is an S -maximal bifix code.

960 The converse also holds by Proposition 2.9.

961 To show Formula (7.1), let us first observe that there exist words $w \in S$ such
 962 that for any parse (v, x, u) of w with respect to X , the word x is not a factor
 963 of X . Indeed, let n be the maximal length of the words of X . Assume that the
 964 length of $w \in S$ is larger than $3n$. Then if (v, x, u) is a parse of w , we have
 965 $|u|, |v| < n$ and thus $|x| > n$. This implies that x is not a factor of X .

966 Next, we observe that by Theorem 7.1, the set G is a uniformly recurrent
 967 tree set and thus in particular, it is recurrent.

968 Let $w \in S$ be a word with the above property. Let $\Pi_X(w)$ denote the set of
 969 parses of w with respect to X and $\Pi_Z(w)$ the set of its parses with respect to Z .
 970 We define a map $\varphi : \Pi_X(w) \rightarrow \Pi_Z(w)$ as follows. Let $\pi = (v, x, u) \in \Pi_X(w)$.
 971 Since Z is a bifix code, there is a unique way to write $v = sy$ and $u = zr$ with
 972 $s \in A^* \setminus A^*Z$, $y, z \in Z^*$ and $r \in A^* \setminus ZA^*$. We set $\varphi(\pi) = (s, yxz, r)$. The triples
 973 (y, x, z) are in bijection with the parses of $f^{-1}(yxz)$ with respect to Y . Since
 974 x is not a factor of X by the hypothesis made on w , and since G is recurrent,
 975 there are $d_Y(G)$ such triples. This shows Formula (7.1). ■

exampleCodeGiuseppina7:

977 **Example 7.13** Let S be the Fibonacci set. Let $B = \{u, v, w\}$ and $A = \{a, b\}$.
 978 Let $f : B^* \rightarrow A^*$ be the morphism defined by $f(u) = a$, $f(v) = baab$ and

978 $f(w) = bab$. Set $G = f^{-1}(S)$. The words of length at most 3 of G are represented on Figure 7.4.

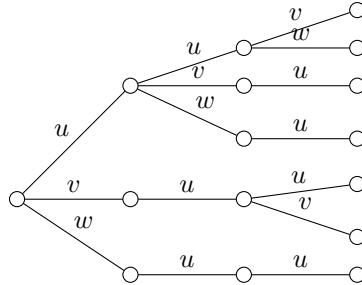


Figure 7.4: The words of length at most 3 in G .

figureG

979 The set $Z = f(B)$ is an S -maximal bifix code of S -degree 2 (it is the unique
 980 S -maximal bifix code of S -degree 2 with kernel $\{a\}$). Let $Y = \{uu, uvu, uw, v, wu\}$,
 981 which is a G -maximal bifix code of G -degree 2 (it is the unique G -maximal bifix
 982 code of G -degree 2 with kernel $\{v\}$).
 983

984 The code $X = f(Y)$ is the S -maximal bifix code of S -degree 4 shown on Figure 7.5.

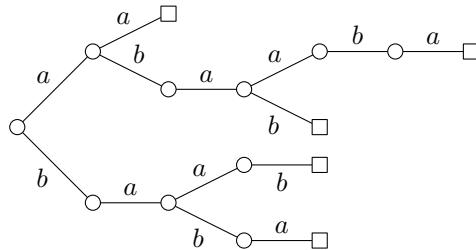


Figure 7.5: An S -maximal bifix code of S -degree 4.

figureCodeGiuseppina

Example 7.14 shows that Formula (7.1) does not hold if S is not a tree set.

exampleNotMult88 **Example 7.14** Let $S = F(ab)^*$ (see Example 7.11). Let $Z = \{ab, ba\}$ and let $X = \{abab, ba\}$. We have $X = Y \circ_f Z$ for $B = \{u, v\}$, $f : B^* \rightarrow A^*$ defined by $f(u) = ab$ and $f(v) = ba$ with $Y = \{uu, v\}$. The codes X and Z are F -maximal bifix codes and $d_F(Z) = 2$. We have $d_X(F) = 3$ since $abab$ has three parses. Thus $d_F(Z)$ does not divide $d_X(F)$.

992 References

Arnold1963:
994
995 [1] Vladimir I. Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics. *Uspehi Mat. Nauk*, 18(6 (114)):91–192, 1963.

errinReutenauerRindone2012⁹⁹⁶
997
998
erstelPerrinReutenauer2009⁹⁹
1000
1001
rinReutenauerRindone2013¹⁰⁰
1003
1004
rrinReutenauerRindone2013¹⁰¹
1006
1007
rinReutenauerRindone2013¹⁰²
1009
1010
BertheRigo2010¹⁰³
1012
1013
BoissyLanneau2009¹⁰⁴
1015
1016
aigneFerencziMessaoudi2008¹⁰⁵
1018
1019
CornfeldFominSinai1982¹⁰⁶
1021
1022
1023
CovenHedlund1973¹⁰⁷
1025
Durand1998¹⁰⁸
1027
Durand2000¹⁰⁹
1029
1030
Durand2003¹¹⁰
1032
1033
1034
Durand-Leroy-Richomme¹¹¹
1036
1037
Eilenberg1974¹¹²
1039
1040
Ferenczi1996¹¹³
1042

[2] Jean Berstel, Clelia De Felice, Dominique Perrin, Christophe Reutenauer, and Giuseppina Rindone. Bifix codes and Sturmian words. *J. Algebra*, 369:146–202, 2012.

[3] Jean Berstel, Dominique Perrin, and Christophe Reutenauer. *Codes and Automata*, volume 129 of *Encyclopedia Math. Appl.* Cambridge University Press, 2009.

[4] Valérie Berthé, Clelia De Felice, Francesco Dolce, Julien Leroy, Dominique Perrin, Christophe Reutenauer, and Giuseppina Rindone. Acyclic, connected and tree sets. 2014. to appear in *Monatsh. Math.*

[5] Valérie Berthé, Clelia De Felice, Francesco Dolce, Julien Leroy, Dominique Perrin, Christophe Reutenauer, and Giuseppina Rindone. The finite index basis property. 2014. to appear in *J. Pure Appl. Algebra*.

[6] Valérie Berthé, Clelia De Felice, Francesco Dolce, Dominique Perrin, Christophe Reutenauer, and Giuseppina Rindone. Two-sided Rauzy induction. 2013.

[7] Valérie Berthé and Michel Rigo. *Combinatorics, automata and number theory*, volume 135 of *Encyclopedia Math. Appl.* Cambridge Univ. Press, Cambridge, 2010.

[8] Corentin Boissy and Erwan Lanneau. Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials. *Ergodic Theory Dynam. Systems*, 29(3):767–816, 2009.

[9] Julien Cassaigne, Sébastien Ferenczi, and Ali Messaoudi. Weak mixing and eigenvalues for Arnoux-Rauzy sequences. *Ann. Inst. Fourier (Grenoble)*, 58(6):1983–2005, 2008.

[10] Issai P. Cornfeld, Serguei V. Fomin, and Yakov G. Sinai. *Ergodic theory*, volume 245 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ.

[11] Ethan M. Coven and Gustav A. Hedlund. Sequences with minimal block growth. *Math. Systems Theory*, 7:138–153, 1973.

[12] Fabien Durand. A characterization of substitutive sequences using return words. *Discrete Math.*, 179(1-3):89–101, 1998.

[13] Fabien Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. *Ergodic Theory Dynam. Systems*, 20(4):1061–1078, 2000.

[14] Fabien Durand. Corrigendum and addendum to: “Linearly recurrent subshifts have a finite number of non-periodic subshift factors” [Ergodic Theory Dynam. Systems **20** (2000), no. 4, 1061–1078; MR1779393 (2001m:37022)]. *Ergodic Theory Dynam. Systems*, 23(2):663–669, 2003.

[15] Fabien Durand, Julien Leroy, and Gwenael Richomme. Do the properties of an S -adic representation determine factor complexity? *J. Integer Seq.*, 16(2):Article 13.2.6, 30, 2013.

[16] Samuel Eilenberg. *Automata, languages, and machines. Vol. A*. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974. Pure and Applied Mathematics, Vol. 58.

[17] Sébastien Ferenczi. Rank and symbolic complexity. *Ergodic Theory Dynam. Systems*, 16(4):663–682, 1996.

FerencziZamboni2008⁸⁴
 1044
 PytheasFogg2002⁴³
 1046
 1047
 GlenJustin2009⁴⁴
 1049
 JustinVuillon2000⁵⁰
 1051
 Keane1975⁵²
 1053
 Lothaire2002⁵⁴
 1055
 MorseHedlund1940⁵⁵
 1057
 Oseledec1966⁵⁶
 1059
 TanWenZhang2004⁶⁰
 1061
 1062
 Zorich1997⁶³
 1064

[18] Sébastien Ferenczi and Luca Q. Zamboni. Languages of k -interval exchange transformations. *Bull. Lond. Math. Soc.*, 40(4):705–714, 2008.
 [19] N. Pytheas Fogg. *Substitutions in dynamics, arithmetics and combinatorics*, volume 1794 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
 [20] Amy Glen and Jacques Justin. Episturmian words: a survey. *Theor. Inform. Appl.*, 43:403–442, 2009.
 [21] Jacques Justin and Laurent Vuillon. Return words in Sturmian and episturmian words. *Theor. Inform. Appl.*, 34(5):343–356, 2000.
 [22] Michael Keane. Interval exchange transformations. *Math. Z.*, 141:25–31, 1975.
 [23] M. Lothaire. *Algebraic Combinatorics on Words*. Cambridge University Press, 2002.
 [24] Marston Morse and Gustav A. Hedlund. Symbolic dynamics II. Sturmian trajectories. *Amer. J. Math.*, 62:1–42, 1940.
 [25] V. I. Oseledec. The spectrum of ergodic automorphisms. *Dokl. Akad. Nauk SSSR*, 168:1009–1011, 1966.
 [26] Bo Tan, Zhi-Xiong Wen, and Yiping Zhang. The structure of invertible substitutions on a three-letter alphabet. *Adv. in Appl. Math.*, 32(4):736–753, 2004.
 [27] Anton Zorich. Deviation for interval exchange transformations. *Ergodic Theory Dynam. Systems*, 17(6):1477–1499, 1997.