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Abstract4

We describe in this paper a connection between bifix codes, symbolic5

dynamical systems and free groups. This is in the spirit of the connection6

established previously for the symbolic systems corresponding to Sturmian7

words. We introduce a class of sets of factors of an infinite word with linear8

factor complexity containing Sturmian sets and regular interval exchange9

sets, namely the class of tree sets. We prove as a main result that for a10

uniformly recurrent tree set S, a finite bifix code X on the alphabet A11

is S-maximal of S-degree d if and only if it is the basis of a subgroup of12

index d of the free group on A.13
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1 Introduction31

In this paper we study a relation between symbolic dynamical systems and bifix32

codes. The paper is a continuation of the paper with part of the present list of33

authors on bifix codes and Sturmian words [3]. We understand here by Sturmian34

words the generalization to arbitrary alphabets, often called strict episturmian35

words or Arnoux-Rauzy words (see the survey [12]), of the classical Sturmian36

words on two letters.37

As a main result, we prove that, under natural hypotheses satisfied by a38

Sturmian set S, a finite bifix code X on the alphabet A is S-maximal of S-39

degree d if and only if it is the basis of a subgroup of index d of the free group40

on A (Theorem 4.4 called below the Finite Index Basis Theorem).41

The proof uses the property, proved in [5], that the sets of first return words42

in a uniformly recurrent tree set containing the alphabet A form a basis of the43

free group on A (this result is referred to below as the Return Words Theorem).44

We actually introduce several classes of uniformly recurrent sets of words on45

k + 1 letters having all kn+ 1 elements of length n for all n ≥ 0.46

The smallest class (BS) is formed of the Sturmian sets on a binary alpha-47

bet, that is, with k = 1 (see Figure 1.1). It is contained both in the class of48

regular interval exchange sets (denoted RIE) and of Sturmian sets (denoted S).49

Moreover, it can be shown that the intersection of RIE and S is reduced to BS.50

Indeed, Sturmian sets on more than two letters are not the set of factors of an51

interval exchange transformation with each interval labeled by a distinct letter52

(the construction in [2] allows one to obtain the Sturmian sets of 3 letters as an53

exchange of 7 intervals labeled by 3 letters).54

The next one is the class of uniformly recurrent sets satisfying the tree condi-55

tion (T ), which contains the previous ones. The class of uniformly recurrent sets56

satisfying the neutrality condition (N) contains the class (T ). All these classes57

are contained in the class of uniformly recurrent sets of complexity kn + 1 on58

an alphabet with k + 1 letters.59

We have tried in all the paper to use the weakest possible conditions to prove60

our results. As an example, we prove that, under the neutrality condition, any61

finite S-maximal bifix code of S-degree d has 1 + d(Card(A) − 1) elements62

(Theorem 3.6 called below the Cardinality Theorem).63

The class RIE is closed under decoding by a maximal bifix code (Corollary64

7.2 in [7] referred to as the Bifix Decoding Theorem) but it is not the case for65

Sturmian sets. In contrast, the uniformly recurrent tree sets form a class of66

sets containing the Sturmian sets and the regular interval exchange sets which67

is closed under decoding by a maximal bifix code (see [6]) and for which the68

Finite Index Basis Theorem is true.69
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BS

RIE S

T

N

kn+ 1

CT RT BT BD

S yes yes yes no4

RIE yes yes yes yes
T yes yes yes yes
N yes no2 no3 ?5

kn+ 1 no1 no no no6

Figure 1.1: The classes of uniformly recurrent sets on k+1 letters: Binary Stur-
mian (BS), Regular interval exchange (RIE), Sturmian (S), Tree (T ), Neutral
(N), and finally of complexity kn+1 (1: see Example 3.10 below, 2: see Exam-
ple 5.9 in [5], 3: see Example 4.9 below, 4: see Example 4.4 in [7], 5: it can be
shown that the neutrality is preserved but it is not known whether the uniform
recurrence is, 6: see Example 3.11 below).

For each class, the array on the right of Figure 1.1 indicates whether it70

satisfies the Cardinality Theorem (CT ), the Return Words Theorem (RT ), the71

Finite Index Basis Theorem (BT ) or the Bifix Decoding Theorem (BD). All72

these classes are distinct.73

The paper is organized as follows.74

In Section 3, we introduce strong, weak and neutral sets. We prove the75

Cardinality Theorem in neutral sets (Theorem 3.6). We also prove a converse76

in the sense that a uniformly recurrent set S containing the alphabet and such77

that the Cardinality Theorem holds for any finite S-maximal bifix code is neutral78

(Theorem 3.12).79

In Section 4, we introduce acyclic and tree sets. The family of tree sets80

contains Sturmian sets and, as shown in [7], regular interval exchange sets.81

We prove, as a main result, that in uniformly recurrent tree sets the Finite82

Index Basis Theorem holds (Theorem 4.4), a result which is proved in [3] for a83

Sturmian set. The proof uses a result of [5] concerning bifix codes in acyclic sets84

(Theorem 4.2 referred to as the Saturation Theorem). It also uses the Return85

Words Theorem proved in [5].86
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Aspects”. We warmly thank the referee for his useful remarks on the first version92

of the paper.93
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2 Preliminaries94

In this section, we first recall some definitions concerning words, prefix codes95

and bifix codes. We give the definitions of recurrent and uniformly recurrent96

sets of words. We also give the definitions and basic properties of bifix codes97

(see [3] for a more detailed presentation).98

2.1 Words99

In this section, we give definitions concerning extensions of words. We define100

recurrent sets and sets of first return words. For all undefined notions, we refer101

to [4].102

2.1.1 Recurrent sets103

Let A be a finite nonempty alphabet. All words considered below, unless stated104

explicitly, are supposed to be on the alphabet A. We denote by A∗ the set of105

all words on A. We denote by 1 or by ε the empty word. We refer to [4] for the106

notions of prefix, suffix, factor of a word.107

A set of words is said to be prefix-closed (resp. factorial) if it contains the108

prefixes (resp. factors) of its elements.109

Let S be a set of words on the alphabet A. For w ∈ S, we denote110

L(w) = {a ∈ A | aw ∈ S}

R(w) = {a ∈ A | wa ∈ S}

E(w) = {(a, b) ∈ A×A | awb ∈ S}

and further111

ℓ(w) = Card(L(w)), r(w) = Card(R(w)), e(w) = Card(E(w)).

A word w is right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biex-112

tendable if e(w) > 0. A factorial set S is called right-extendable (resp. left-113

extendable, resp. biextendable) if every word in S is right-extendable (resp.114

left-extendable, resp. biextendable).115

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥116

2. It is called bispecial if it is both right and left-special.117

A set of words S 6= {1} is recurrent if it is factorial and if for every u,w ∈ S118

there is a v ∈ S such that uvw ∈ S. A recurrent set is biextendable.119

A set of words S is said to be uniformly recurrent if it is right-extendable120

and if, for any word u ∈ S, there exists an integer n ≥ 1 such that u is a factor121

of every word of S of length n. A uniformly recurrent set is recurrent, and thus122

biextendable.123

A morphism f : A∗ → B∗ is a monoid morphism from A∗ into B∗. If a ∈ A124

is such that the word f(a) begins with a and if |fn(a)| tends to infinity with125

n, there is a unique infinite word denoted fω(a) which has all words fn(a) as126

prefixes. It is called a fixpoint of the morphism f .127
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A morphism f : A∗ → A∗ is called primitive if there is an integer k such that128

for all a, b ∈ A, the letter b appears in fk(a). If f is a primitive morphism, the129

set of factors of any fixpoint of f is uniformly recurrent (see [11], Proposition130

1.2.3 for example).131

A morphism f : A∗ → B∗ is trivial if f(a) = 1 for all a ∈ A. The image of132

a uniformly recurrent set by a nontrivial morphism is uniformly recurrent (see133

[1], Theorem 10.8.6 and Exercise 10.11.38).134

An infinite word is episturmian if the set of its factors is closed under reversal135

and contains for each n at most one word of length n which is right-special. It is136

a strict episturmian word if it has exactly one right-special word of each length137

and moreover each right-special factor u is such that r(u) = Card(A).138

A Sturmian set is a set of words which is the set of factors of a strict epis-139

turmian word. Any Sturmian set is uniformly recurrent (see [3]).140

Example 2.1 Let A = {a, b}. The Fibonacci word is the fixpoint x = fω(a) =141

abaababa . . . of the morphism f : A∗ → A∗ defined by f(a) = ab and f(b) = a.142

It is a Sturmian word (see [14]). The set F (x) of factors of x is the Fibonacci143

set.144

Example 2.2 Let A = {a, b, c}. The Tribonacci word is the fixpoint x =145

fω(a) = abacaba · · · of the morphism f : A∗ → A∗ defined by f(a) = ab,146

f(b) = ac, f(c) = a. It is a strict episturmian word (see [13]). The set F (x) of147

factors of x is the Tribonacci set.148

2.2 Bifix codes149

In this section, we present basic definitions concerning prefix codes and bifix150

codes. For a more detailed presentation, see [4]. We also describe an opera-151

tion on bifix codes called internal transformation and prove a property of this152

transformation (Proposition 2.9). It will be used in Section 3.3.153

2.2.1 Prefix codes154

A prefix code is a set of nonempty words which does not contain any proper155

prefix of its elements. A suffix code is defined symmetrically. A bifix code is a156

set which is both a prefix code and a suffix code.157

A coding morphism for a prefix code X ⊂ A+ is a morphism f : B∗ → A∗
158

which maps bijectively B onto X .159

Let S be a set of words. A prefix code X ⊂ S is S-maximal if it is not160

properly contained in any prefix code Y ⊂ S. Note that if X ⊂ S is an S-161

maximal prefix code, any word of S is comparable for the prefix order with a162

word of X .163

We denote by X∗ the submonoid generated by X . A set X ⊂ S is right164

S-complete if any word of S is a prefix of a word in X∗. Given a factorial set165

S, a prefix code is S-maximal if and only if it is right S-complete (Proposition166

3.3.2 in [3]).167
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A parse of a word w with respect to a set X is a triple (v, x, u) such that168

w = vxu where v has no suffix in X , u has no prefix in X and x ∈ X∗. We169

denote by δX(w) the number of parses of w with respect to X . Let X be a170

prefix code. By Proposition 4.1.6 in [3], for any u ∈ A∗ and a ∈ A, one has171

δX(ua) =

{

δX(u) if ua ∈ A∗X,

δX(u) + 1 otherwise.
(2.1)

2.2.2 Maximal bifix codes172

Let S be a set of words. A bifix code X ⊂ S is S-maximal if it is not properly173

contained in a bifix code Y ⊂ S. For a recurrent set S, a finite bifix code is174

S-maximal as a bifix code if and only if it is an S-maximal prefix code (see [3],175

Theorem 4.2.2).176

By definition, the S-degree of a bifix code X , denoted dX(S), is the maximal177

number of parses of a word in S. It can be finite or infinite.178

For S = A∗, we use the term ‘maximal bifix code’ instead of A∗-maximal bifix179

code and ‘degree’ instead of A∗-degree. This is consistent with the terminology180

of [4].181

Let X be a bifix code. The number of parses of a word w is also equal to the182

number of suffixes of w which have no prefix in X and the number of prefixes183

of w which have no suffix in X (see Proposition 6.1.6 in [4]).184

The set of internal factors of a set of words X , denoted I(X), is the set of185

words w such that there exist nonempty words u, v with uwv ∈ X .186

Let S be a set of words. A set X ⊂ S is said to be S-thin if there is a word187

of S which is not a factor of X . If S is biextendable any finite set X ⊂ S is188

S-thin. Indeed, any long enough word of S is not a factor of X . The converse189

is true if S is uniformly recurrent. Indeed, let w ∈ S be a word which is not a190

factor of X . Then any long enough word of S contains w as a factor, and thus191

is not itself a factor of X .192

Let S be a recurrent set and let X be an S-thin and S-maximal bifix code of193

S-degree d. A word w ∈ S is such that δX(w) < d if and only if it is an internal194

factor of X , that is195

I(X) = {w ∈ S | δX(w) < d}

(Theorem 4.2.8 in [3]). Thus any word of S which is not a factor of X has d196

parses. This implies that the S-degree d is finite.197

Example 2.3 Let S be a recurrent set. For any integer n ≥ 1, the set S ∩ An
198

is an S-maximal bifix code of S-degree n.199

The kernel of a bifix code X is the set K(X) = I(X) ∩X . Thus it is the set of200

words of X which are also internal factors of X . By Theorem 4.3.11 of [3], an201

S-thin and S-maximal bifix code is determined by its S-degree and its kernel.202

Moreover, by Theorem 4.3.12 of [3], we have the following result.203
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Theorem 2.4 Let S be a recurrent set. A bifix code Y ⊂ S is the kernel of some204

S-thin S-maximal bifix code of S-degree d if and only if Y is not S-maximal and205

δY (y) ≤ d− 1 for all y ∈ Y .206

Example 2.5 Let S be the Fibonacci set. The set Y = {a} is a bifix code207

which is not S-maximal and δY (a) = 1. The set X = {a, baab, bab} is the208

unique S-maximal bifix code of S-degree 2 with kernel {a}. Indeed, the word209

bab is not an internal factor and has two parses, namely (1, bab, 1) and (b, a, b).210

The following proposition allows one to embed an S-maximal bifix code in a211

maximal one of the same degree.212

Proposition 2.6 Let S be a recurrent set. For any S-thin and S-maximal bifix213

code X of S-degree d, there is a thin maximal bifix code X ′ of degree d such that214

X = X ′ ∩ S.215

Proof. LetK be the kernel ofX and let d be the S-degree ofX . By Theorem 2.4,216

the set K is not S-maximal and δK(y) ≤ d− 1 for any y ∈ K. Thus, applying217

again Theorem 2.4 with S = A∗, there is a maximal bifix code X ′ with kernel218

K and degree d. Then, by Theorem 4.2.11 of [3], the set X ′∩S is an S-maximal219

bifix code.220

Let us show that X ∪ X ′ is prefix. Suppose that x ∈ X and x′ ∈ X ′ are221

comparable for the prefix order. We may assume that x is a prefix of x′ (the222

other case works symmetrically). If x ∈ K, then x ∈ X ′ and thus x = x′.223

Otherwise, δX(x) = d. Set x = pa with a ∈ A. Then, by equation (2.1),224

δX(x) = δX(p) and thus δX(p) = d. But since all the factors of p which are in225

X are in K, we have δX(p) = δK(p). Analogously, since all factors of p which226

are in X ′ are in K, we have δK(p) = δX′(p). Therefore δX′(p) = d. But, since227

X ′ has degree d, δX′(x) ≤ d. Then, by Equation (2.1) again, we have δX′(x) = d228

and x ∈ A∗X ′. Let z be the suffix of x which is in X ′. If x 6= x′, then z = x or229

z ∈ K and in both cases z ∈ X . Since X ′ is prefix and X is suffix, this implies230

z = x = x′.231

Since X and X ′ ∩ S are S-maximal prefix codes included in (X ∪ X ′) ∩ S,232

this implies that X = X ′ ∩ S.233

Example 2.7 Let S be the Fibonacci set. Let X = {a, baab, bab} be the S-234

maximal bifix code of S-degree 2 with kernel {a}. Then X ′ = a ∪ ba∗b is the235

maximal bifix code with kernel {a} of degree 2 such that X ′ ∩ S = X .236

2.2.3 Internal transformation237

We will use the following transformation which operates on bifix codes (see [4,238

Chapter 6] for a more detailed presentation). For a set of words X and a word239

u, we denote u−1X = {v ∈ A∗ | uv ∈ X} and Xu−1 = {v ∈ A∗ | vu ∈ X}240

the residuals of X with respect to u (one should not confuse this notation with241
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that of the inverse in the free group). Let X ⊂ S be a set of words and w ∈ S242

a word. Let243

G = Xw−1, D = w−1X, (2.2)

G0 = (wD)w−1 D0 = w−1(Gw), (2.3)

G1 = G \G0, D1 = D \D0. (2.4)

Note that Gw ∩wD = G0w = wD0. Consequently G∗
0w = wD∗

0 . The set244

Y = (X ∪ w ∪ (G1wD
∗
0D1 ∩ S)) \ (Gw ∪ wD) (2.5)

is said to be obtained from X by internal transformation with respect to w.245

When Gw ∩ wD = ∅, the transformation takes the simpler form246

Y = (X ∪ w ∪ (GwD ∩ S)) \ (Gw ∪ wD). (2.6)

It is this form which is used in [3] to define the internal transformation.247

Example 2.8 Let S be the Fibonacci set. Let X = S ∩ A2. The internal248

transformation applied to X with respect to b gives Y = {aa, aba, b}. The249

internal transformation applied to X with respect to a gives Y ′ = {a, baab, bab}.250

The following result is proved in [3] in the case G0 = ∅ (Proposition 4.4.5).251

Proposition 2.9 Let S be a uniformly recurrent set and let X ⊂ S be a finite252

S-maximal bifix code of S-degree d. Let w ∈ S be a nonempty word such that the253

sets G1, D1 defined by Equation (2.4) are nonempty. Then the set Y obtained254

as in Equation (2.5) is a finite S-maximal bifix code with S-degree at most d.255

Proof. By Proposition 2.6 there is a thin maximal bifix code X ′ of degree d256

such that X = X ′ ∩ S. Let Y ′ be the code obtained from X ′ by internal257

transformation with respect to w. Then258

Y ′ = (X ′ ∪w ∪ (G′
1wD

′
0
∗
D′

1)) \ (G
′w ∪ wD′)

with G′ = X ′w−1, D′ = w−1X ′, and G′
0 = (wD′)w−1, D′

0 = w−1(G′w), G′
1 =259

G′ \ G′
0, D′

1 = D′ \ D′
0. We have G = G′ ∩ Sw−1, D = D′ ∩ w−1S, and260

Di = D′
i∩w−1S, Gi = G′

i∩Sw−1 for i = 0, 1. In particular G1 ⊂ G′
1, D1 ⊂ D′

1.261

Thus G′
1, D

′
1 6= ∅. This implies that Y ′ is a thin maximal bifix code of degree d262

(see Proposition 6.2.8 and its complement page 242 in [4]).263

Since w ∈ S, we have Y = Y ′ ∩ S. By Theorem 4.2.11 of [3], Y is an S-264

maximal bifix code of S-degree at most d. Since S is uniformly recurrent, this265

implies that Y is finite.266

When G0 = ∅, the bifix code Y has S-degree d (see [3], Proposition 4.4.5). We267

will see in the proof of Theorem 3.12 another case where it is true. We have no268

example where it is not true.269

Example 2.10 Let S be the Fibonacci set, as in Example 2.8. Let X = S∩A2
270

and let w = a. Then Y = {a, baab, bab} is the S-maximal bifix code of S-degree271

2 already considered in Example 2.8.272
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3 Strong, weak and neutral sets273

In this section, we introduce strong, weak and neutral sets. We prove a theo-274

rem concerning the cardinality of an S-maximal bifix code in a neutral set S275

(Theorem 3.6).276

3.1 Strong, weak and neutral words277

Let S be a factorial set. For a word w ∈ S, let278

m(w) = e(w) − ℓ(w)− r(w) + 1.

We say that, with respect to S, w is strong if m(w) > 0, weak if m(w) < 0 and279

neutral if m(w) = 0.280

A biextendable word w is called ordinary if E(w) ⊂ a×A ∪ A× b for some281

(a, b) ∈ E(w) (see [8], Chapter 4). If S is biextendable, any ordinary word is282

neutral. Indeed, one has E(w) = (a× (R(w) \ b)) ∪ ((L(w) \ a)× b) ∪ (a, b) and283

thus e(w) = ℓ(w) + r(w) − 1.284

Example 3.1 In a Sturmian set, any word is ordinary. Indeed, for any bispecial285

word w, there is a unique letter a such that aw is right-special and a unique286

letter b such that wb is left-special. Then awb ∈ S and E(w) = a×A ∪ A× b.287

We say that a set of words S is strong (resp. weak, resp. neutral) if it is factorial288

and every word w ∈ S is strong or neutral (resp. weak or neutral, resp. neutral).289

The sequence (pn)n≥0 with pn = Card(S ∩ An) is called the complexity of290

S. Set k = Card(S ∩ A)− 1.291

Proposition 3.2 The complexity of a strong (resp. weak, resp. neutral) set S292

is at least (resp. at most, resp. exactly) equal to kn+ 1.293

Given a factorial set S with complexity pn, we denote sn = pn+1 − pn the294

first difference of the sequence pn and bn = sn+1− sn its second difference. The295

following is from [9] (it is also part of Theorem 4.5.4 in [8, Chapter 4] and also296

Lemma 3.3 in [5]).297

Lemma 3.3 We have298

bn =
∑

w∈An∩S

m(w) and sn =
∑

w∈An∩S

(r(w) − 1)

for all n ≥ 0.299

Proposition 3.2 follows easily from the following lemma.300

Lemma 3.4 If S is strong (resp. weak, resp. neutral), then sn ≥ k (resp.301

sn ≤ k, resp. sn = k) for all n ≥ 0.302
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Proof. Assume that S is strong. Then m(w) ≥ 0 for all w ∈ S and thus,303

by Lemma 3.3, the sequence (sn) is nondecreasing. Since s0 = k, this implies304

sn ≥ k for all n. The proof of the other cases is similar.305

We now give an example of a set of complexity 2n+ 1 on an alphabet with306

three letters which is not neutral.307

Example 3.5 Let A = {a, b, c}. The Chacon word on three letters is the308

fixpoint x = fω(a) of the morphism f from A∗ into itself defined by f(a) = aabc,309

f(b) = bc and f(c) = abc. Thus x = aabcaabcbcabc · · · . The Chacon set is the310

set S of factors of x. It is of complexity 2n+ 1 (see [11] Section 5.5.2).311

It contains strong, neutral and weak words. Indeed, S∩A2 = {aa, ab, bc, ca, cb}312

and thus m(ε) = 0 showing that the empty word is neutral. Next E(abc) =313

{(a, a), (c, a), (a, b), (c, b)} shows that m(abc) = 1 and thus abc is strong. Fi-314

nally, E(bca) = {(a, a), (c, b)} and thus m(bca) = −1 showing that bca is weak.315

3.2 The Cardinality Theorem316

The following result, referred to as the Cardinality Theorem, is a generalization317

of a result proved in [3] in the less general case of a Sturmian set. Since S ∩318

An is an S-maximal bifix code of S-degree n (see Example 2.3), it is also a319

generalization of Proposition 3.2.320

Theorem 3.6 Let S be a recurrent set containing the alphabet A and let X ⊂ S321

be a finite S-maximal bifix code. Set k = Card(A) − 1 and d = dX(S). If S is322

strong (resp. weak), then Card(X)− 1 ≥ dk (resp. Card(X)− 1 ≤ dk). If S is323

neutral, then Card(X)− 1 = dk.324

Note that, for a recurrent neutral set S, a bifix code X ⊂ S may be infinite325

since this may happen for a Sturmian set S (see [3], Example 5.1.4).326

We consider rooted trees with the usual notions of root, node, child and327

parent. The following lemma is an application of a well-known lemma on trees328

relating the number of its leaves to the sum of the degrees of its internal nodes.329

330

Lemma 3.7 Let S be a prefix-closed set. Let X be a finite S-maximal prefix331

code and let P be the set of its proper prefixes. Then Card(X) = 1+
∑

p∈P (r(p)−332

1).333

We order the nodes of a tree from the parent to the child and thus we have334

m ≤ n if m is a descendant of n. We denote m < n if m ≤ n with m 6= n.335

Lemma 3.8 Let T be a finite tree with root r on a set N of nodes, let d ≥ 1,336

and let π, α be functions assigning to each node an integer such that337

(i) for each internal node n, π(n) ≤
∑

π(m) where the sum runs over the338

children of n,339

(ii) for each leaf m of T , one has
∑

m≤n α(n) = d.340

10



Then
∑

n∈N α(n)π(n) ≥ dπ(r).341

Proof. We use an induction on the number of nodes of T . If T is reduced to342

its root, then d = α(r) implies α(r)π(r) = dπ(r) and the result is true. Assume343

that it holds for trees with less nodes than T . Since T is finite and not reduced344

to its root, there is an internal node such that all its children are leaves of T .345

Let m be such a node. Since
∑

x≤n α(n) = α(x) +
∑

m≤n α(n) has value d for346

each child x of m, the value v = α(x) is the same for all children of m. Let T ′
347

be the tree obtained from T by deleting all children of m. Let N ′ be the set of348

nodes of T ′. Let π′ be the restriction of π to N ′ and let α′ be defined by349

α′(n) =

{

α(n) if n 6= m

α(m) + v otherwise.

It is easy to verify that T ′, π′ and α′ satisfy the same hypotheses as T, π and α.350

Then351

∑

n∈N

α(n)π(n) =
∑

n∈N ′\m

α(n)π(n) + α(m)π(m) +
∑

x<m

vπ(x)

=
∑

n∈N ′\m

α′(n)π′(n) + α(m)π(m) + v
∑

x<m

π(x)

≥
∑

n∈N ′\m

α′(n)π′(n) + (α(m) + v)π(m)

=
∑

n∈N ′\m

α′(n)π′(n) + α′(m)π′(m) =
∑

n∈N ′

α′(n)π′(n)

whence the result by the induction hypothesis.352

A symmetric statement holds replacing the inequality in condition (i) by π(n) ≥353

∑

π(m) and the conclusion by
∑

n∈N α(n)π(n) ≤ dπ(r).354

355

Proof of Theorem 3.6. Assume first that S is strong. Let N be larger than the356

lengths of the words of X .357

Let U be the set of words of S of length at most N . By considering each358

word w as the father of aw for a ∈ A, the set U can be considered as a tree T359

with root the empty word ε. The leaves of T are the elements of S of length N .360

For w ∈ U , set π(w) = r(w) − 1 and let361

α(n) =

{

1 if n is a proper prefix of X

0 otherwise.

Let us verify that the conditions of Lemma 3.8 are satisfied. Let u be in U with362

|u| < N . Then since u is strong or neutral,
∑

a∈L(u)(r(au)− 1) = e(u)− ℓ(u) ≥363

r(u) − 1. This implies that
∑

au∈S π(au) ≥ π(u) showing that condition (i) is364

satisfied.365
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Let w be a leaf of T , that is, a word of S of length N . Since N is larger than366

the maximal length of the words of X , the word w is not an internal factor of367

X and thus it has d parses with respect to X . It implies that it has d suffixes368

which are proper prefixes of X (since X is right S-complete, this is the same369

as to have no prefix in X). Thus
∑

w≤u α(u) = d. Thus condition (ii) is also370

satisfied.371

By Lemma 3.8, we have
∑

n∈U α(n)π(n) ≥ dπ(ε). Let P be the set of proper372

prefixes of X . By definition of α, we have
∑

n∈U α(n)π(n) =
∑

p∈P π(p) and373

thus by definition of π, dπ(ε) = dk ≤
∑

p∈P (r(p) − 1). Since S is recurrent,374

X is an S-maximal prefix code. Thus, by Lemma 3.7, we have Card(X) =375

1 +
∑

p∈P (r(p)− 1) and thus we obtain Card(X) ≥ 1 + dk which is the desired376

conclusion.377

The proof that Card(X) − 1 ≤ dk if S is weak is symmetric, using the378

symmetric version of Lemma 3.8. The case where S is neutral follows then379

directly.380

We illustrate Theorem 3.6 in the following example.381

x

y

z

t

x

y

z

t

x

x

x

z
t

x

x

x

y

z

x

x
y

x

x

y

z

x

x
y

x

x
z
t

z

x

2

2

2

2

2

2

4 4

x

x

z

t

y
x

x

Figure 3.1: The words of length at most 4 of a neutral set G and the tree of
right-special words.

Example 3.9 Consider the set G of words on the alphabet B = {x, y, z, t}382

obtained as follows. Let S be the Fibonacci set and let X ⊂ S be the S-383

maximal bifix code of S-degree 3 defined by X = {a, baabaab, baabab, babaab}.384

We consider the morphism f : B∗ → A∗ defined by f(x) = a, f(y) = baabaab,385

f(z) = baabab, f(t) = babaab. We set G = f−1(S).386

The words of G of length at most 4 are represented in Figure 3.1 on the left.387

By the main result of [6], the set G is a uniformly recurrent neutral set. Indeed,388
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since S is Sturmian, it is a tree set (see the definition in Section 4) and thus G389

is a tree set, which implies that it is neutral.390

The tree of right-special words is represented on the right in Figure 3.1 with391

the value of r indicated at each node. The bifix codes392

Y = {xx, xyx, xz, xt, y, zx, tx}, Z = {x, yxy, yxz, zxxz, zxxt, txxz, txy}

are G-maximal and have both G-degree 2. In agreement with Theorem 3.6, we393

have Card(Y ) = Card(Z) = 1 + 2(Card(B) − 1) = 7. The codes Y and Z are394

represented in Figure 3.2. The right-special proper prefixes p of Y and Z are

3

3

x
y

z

t

x
y

z
t

x

x

x

3 1

1

1

x

y

z

t

x

x

x

y

z

x

x
y

z
t

z

Figure 3.2: Two G-maximal bifix codes of G-degree 2.

395

indicated in black in Figure 3.2 with the value of r(p)−1 indicated for each one.396

In agreement with Lemma 3.7, the sum of the values of r(p) − 1 is 6 in both397

cases.398

The following example illustrates the necessity of the hypotheses in Theo-399

rem 3.6.400

Example 3.10 Consider again the Chacon set S of Example 3.5. Let X =401

S ∩ A4 and let Y, Z be the S-maximal bifix codes of S-degree 4 represented in402

Figure 3.3. The first one is obtained from X by internal transformation with403

respect to abc . The second one with respect to bca. We have Card(Y ) = 10 and404

Card(Z) = 8 showing that Card(Y ) − 1 > 8 and Card(Z) − 1 < 8, illustrating405

the fact that S is neither strong nor weak.406

The following example shows that the class of sets of factor complexity kn+1407

is not closed by maximal bifix decoding.408

Example 3.11 Let S be the Chacon set and let f : B∗ → A∗ be a coding409

morphism for the S-maximal bifix code Z of S-degree 4 with 8 elements of410

Example 3.10. One may verify that Card(B2 ∩ f−1(S)) = Card(Z2 ∩ S) = 17.411

This shows that the set f−1(S) does not have factor complexity 7n+ 1.412

3.3 A converse of the Cardinality Theorem413

We end this section with a statement proving a converse of the Cardinality414

Theorem.415
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c

b

c
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Figure 3.3: Two S-maximal bifix codes of S-degree 4.

Theorem 3.12 Let S be a uniformly recurrent set containing the alphabet A.416

If any finite S-maximal bifix code of S-degree d has d(Card(A)−1)+1 elements,417

then S is neutral.418

Proof. We may assume that A has more than one element. We argue by419

contradiction. Let w ∈ S be a word which is not neutral. We cannot have420

w = ε since otherwise the S-maximal bifix code X = S ∩ A2 has not the good421

cardinality.422

Set n = |w| and X = S ∩ An+1. The set X is an S-maximal bifix code of423

S-degree n + 1. Let Y be the code obtained by internal transformation from424

X with respect to w and defined by Equation (2.5). Note that G = L(w) and425

D = R(w).426

We distinguish two cases.427

Case 1. Assume that Gw ∩wD = ∅.428

The code Y is defined by Equation (2.6) and we have Card(GwD∩S) = e(w).429

Since D0 = G0 = ∅, the hypotheses of Proposition 2.9 are satisfied and Y has430

S-degree n+ 1 (by Proposition 4.4.5 in [3]). This implies Card(X) = Card(Y ).431

On the other hand432

Card(Y ) = Card(X) + 1 + e(w)− ℓ(w)− r(w) = Card(X) +m(w).

Since w is not neutral, we have m(w) 6= 0 and thus we obtain a contradiction.433

Case 2. Assume next that Gw ∩ wD 6= ∅. Then w = an with n > 0 for434

some letter a and the sets G0, D0 defined by Equation 2.3 are G0 = D0 = {a}.435

Moreover an+1 ∈ X .436

Since w is not neutral, it is bispecial. Thus the sets G1, D1 are nonempty and437

the hypotheses of Proposition 2.9 are satisfied. Since S is uniformly recurrent438

and since S 6= a∗, the set a∗ ∩ S is finite. Set a∗ ∩ S = {1, a, . . . , am}. Thus439

m ≥ n+ 1.440
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Let b 6= a be a letter such that amb ∈ S. Then, δY (a
m) = n since am has441

n suffixes which are proper prefixes of Y . Moreover, amb has no suffix in Y .442

Indeed, if atb ∈ Y , we cannot have t ≥ n since an ∈ Y . And since all words443

in Y except an have length greater than n, t < n is also impossible. Thus by444

Equation (2.1), we have δY (a
mb) = δY (a

m)+1 and thus δY (a
mb) = n+1. This445

shows that the S-degree of Y is n+ 1 and thus that Card(Y ) = Card(X) as in446

Case 1.447

We may assume that n is chosen maximal such that an is not neutral. This448

is always possible if am is neutral. Otherwise, Case 1 applies to X = S ∩Am+1
449

and w = am.450

For n ≤ i ≤ m− 2 (there may be no such integer i if n = m− 1), since ai+1
451

is neutral, we have452

Card(G1a
iD1 ∩ S) = e(ai)− ℓ(ai+1)− r(ai+1) + 1 = e(ai)− e(ai+1).

Moreover, Card(G1a
m−1D1∩S) = e(am−1)−r(am)−ℓ(am) = e(am−1)−e(am)−453

1 and Card(G1a
mD1 ∩ S) = e(am). Thus454

Card(G1a
na∗D1 ∩ S) =

m−2
∑

i=n

(e(ai)− e(ai+1)) + e(am−1)− e(am)− 1 + e(am)

= e(an)− 1.

Thus Card(Y )− Card(X) evaluates as455

1 + Card(G1a
na∗D1 ∩ S)− Card(Gan)− Card(anD) + 1

= 1 + e(an)− 1− ℓ(an)− r(an) + 1

= m(an)

(the last +1 on the first line comes from the word an+1 counted twice in456

Card(Gw) + Card(wD)). Since m(an) 6= 0, this contradicts the fact that X457

and Y have the same number of elements.458

4 Tree sets459

We introduce in this section the notions of acyclic and tree sets. We state and460

prove the main result of this paper (Theorem 4.4). The proof uses results from461

[5].462

4.1 Acyclic and tree sets463

Let S be a set of words. For w ∈ S, the extension graph of w is the undirected464

bipartite graph G(w) on the set of vertices which is the disjoint union of L(w)465

and R(w) with edges the pairs (a, b) ∈ E(w). An edge (a, b) ∈ E(w) goes from466

a ∈ L(w) to b ∈ R(w).467

Recall that an undirected graph is a tree if it is connected and acyclic.468
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Let S be a biextendable set. We say that S is acyclic if for every word469

w ∈ S, the graph G(w) is acyclic. We say that S is a tree set if G(w) is a tree470

for all w ∈ S.471

Clearly an acyclic set is weak and a tree set is neutral.472

Note that a biextendable set S is a tree set if and only if the graph G(w) is473

a tree for every bispecial non-ordinary word w. Indeed, if w is not bispecial or474

if it is ordinary, then G(w) is always a tree.475

Proposition 4.1 A Sturmian set S is a tree set.476

Indeed, S is biextendable and every bispecial word is ordinary (see Example 3.1).477

The following example shows that there are neutral sets which are not tree478

sets.479

Example 4.2 Let A = {a, b, c} and let S be the set of factors of a∗{bc, bcbc}a∗.480

The set S is biextendable. One has S ∩ A2 = {aa, ab, bc, cb, ca}. It is neutral.481

Indeed the empty word is neutral since e(ε) = Card(S∩A2) = 5 = ℓ(ε)+r(ε)−1.482

Next, the only nonempty bispecial words are bc and an for n ≥ 1. They are483

neutral since e(bc) = 3 = ℓ(bc) + r(bc) − 1 and e(an) = 3 = ℓ(an) + r(an) − 1.484

However, S is not acyclic since the graph G(ε) contains a cycle (and has two485

connected components, see Figure 4.1).

a a

b

bc

c

Figure 4.1: The graph G(ε) for the set S.

486

In the last example, the set is not recurrent. We present now an example, due487

to Julien Cassaigne [10] of a uniformly recurrent set which is neutral but is not488

a tree set (it is actually not even acyclic).489

Example 4.3 Let A = {a, b, c, d} and let σ be the morphism from A∗ into itself490

defined by491

σ(a) = ab, σ(b) = cda, σ(c) = cd, σ(d) = abc.

Let B = {1, 2, 3} and let τ : A∗ → B∗ be defined by492

τ(a) = 12, τ(b) = 2, τ(c) = 3, τ(d) = 13.

Let S be the set of factors of the infinite word τ(σω(a)) (see Figure 4.2).493

It is shown in [5] (Example 4.5) that S is a uniformly recurrent neutral set.494

It is not a tree set since G(ε) is neither acyclic nor connected.495
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Figure 4.2: The words of length at most 4 of the set S.

4.2 Finite index basis property496

Let S be a recurrent set containing the alphabet A. We say that S has the497

finite index basis property if the following holds: a finite bifix code X ⊂ S is an498

S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of499

index d of the free group on A.500

We will prove the following result, referred to as the Finite Index Basis501

Theorem.502

Theorem 4.4 Any uniformly recurrent tree set S containing the alphabet A503

has the finite index basis property.504

Note that the Cardinality Theorem (Theorem 3.6) holds for a set S satis-505

fying the finite index basis property. Indeed, by Schreier’s formula a basis of a506

subgroup of index d of a free group on s generators has (s − 1)d + 1 elements507

(actually we use Theorem 3.6 in the proof of Theorem 4.4).508

We denote by by FG(A) the free group on the set A and by 〈X〉 the subgroup509

generated by a set of words X . A submonoid M of A∗ is called saturated in S if510

M ∩S = 〈M〉∩S. We recall the following result from [5] (Theorem 6.2 referred511

to as the Saturation Theorem).512

Theorem 4.5 Let S be an acyclic set. The submonoid generated by a bifix code513

included in S is saturated in S.514

Actually, by a second result of [5] (Theorem 6.1 referred to as the Freeness515

Theorem), if S is acyclic, any bifix code X ⊂ S is free, which means that it is516

a basis of the subgroup 〈X〉. We will not use this result here and thus we will517

prove directly that if S is a uniformly recurrent tree set, any finite S-maximal518

bifix code is free.519

17



Before proving Theorem 4.4, we list some related results. The first one is520

the main result of [3].521

Corollary 4.6 A Sturmian set has the finite index basis property.522

Proof. This follows from Theorem 4.4 since a Sturmian set is a uniformly re-523

current tree set (Proposition 4.1).524

The following examples shows that Theorem 4.4 may be false for a set S525

which does not satisfy some of the hypotheses.526

The first example is a uniformly recurrent set which is not neutral.527

Example 4.7 Let S be the Chacon set (see Example 3.5). We have seen that528

S is not neutral and thus not a tree set. The set S ∩ A2 = {aa, ab, bc, ca, cb} is529

an S-maximal bifix code of S-degree 2. It is not a basis since ca(aa)−1ab = cb.530

Thus S does not satisfy the finite index basis property.531

In the second example, the set is neutral but not a tree set and is not uniformly532

recurrent.533

Example 4.8 Let S be the set of Example 4.2. It is not a tree set (and it is534

not either uniformly recurrent). The set S ∩ A2 is the same as in the Chacon535

set. Thus S does not satisfy the finite index basis property.536

In the last example we have a uniformly recurrent set which is neutral but537

not a tree set.538

Example 4.9 Let S be the set on the alphabet B = {1, 2, 3} of Example 4.3.539

We have seen that S is neutral but not a tree set.540

Let X = S ∩B2. We have X = {12, 13, 22, 23, 31}. The set X is not a basis541

since 13 = 12(22)−123. Thus S does not satisfy the finite index basis property.542

We close this section with a converse of Theorem 4.4.543

Proposition 4.10 A biextendable set S such that S ∩ An is a basis of the544

subgroup 〈An〉 for all n ≥ 1 is a tree set.545

Proof. Set k = Card(A) − 1. Since An generates a subgroup of index n, the546

hypothesis implies that Card(An ∩ S) = kn + 1 for all n ≥ 1. Consider w ∈ S547

and set m = |w|. The set X = AwA ∩ S is included in Y = S ∩Am+2. Since Y548

is a basis of a subgroup, X ⊂ Y is a basis of the subgroup 〈X〉.549

This implies that the graph G(w) is acyclic. Indeed, assume that (a1, b1, . . . ,550

ap, bp, a1) is a cycle in G(w) with p ≥ 2, ai ∈ L(w), bi ∈ R(w) for 1 ≤ i ≤ p and551

a1 6= ap. Then a1wb1, a2wb1, . . . , apwbp, a1wbp ∈ X . But552

a1wb1(a2wb1)
−1a2wb2 · · · apwbp(a1wbp)

−1 = 1

contradicting the fact that X is a basis.553
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Since G(w) is an acyclic graph with ℓ(w)+ r(w) vertices and e(w) edges, we554

have e(w) ≤ ℓ(w) + r(w) − 1. But then555

Card(Am+2 ∩ S) =
∑

w∈Am∩S

e(w) ≤
∑

w∈Am∩S

(ℓ(w) + r(w) − 1)

≤ 2Card(Am+1 ∩ S)− Card(Am ∩ S)

≤ k(m+ 2) + 1.

Since Card(Am+2 ∩ S) = k(m + 2) + 1, we have e(w) = ℓ(w) + r(w) − 1 for556

all w ∈ Am. This implies that G(w) is a tree for all w ∈ S. Thus S is a tree557

set.558

Corollary 4.11 A uniformly recurrent set which has the finite index basis prop-559

erty is a tree set.560

Proof. Let S be a uniformly recurrent set having the finite index basis property.561

For any n ≥ 1, the set S ∩ An is an S-maximal bifix code of S-degree n (Ex-562

ample 2.3). Thus it is a basis of a subgroup of index n. Since it is included in563

the subgroup generated by An, which has index n, it is a basis of this subgroup.564

This implies that S is a tree set by Proposition 4.10.565

4.3 Proof of the Finite Index Basis Theorem566

Let S be a set of words. For w ∈ S, let567

ΓS(w) = {x ∈ S | wx ∈ S ∩ A+w}

be the set of right return words to w. When S is recurrent, the set ΓS(w) is568

nonempty. Let569

RS(w) = ΓS(w) \ ΓS(w)A
+

be the set of first right return words.570

The proof of Theorem 4.4 uses several other results, among which Theo-571

rem 4.5 and the following result from [5] (Theorem 5.6).572

Theorem 4.12 Let S be a uniformly recurrent tree set containing the alphabet573

A. For any w ∈ S, the set RS(w) is a basis of the free group on A.574

Proof of Theorem 4.4. Assume first that X is a finite S-maximal bifix code of575

S-degree d. Let P be the set of proper prefixes of X . Let H be the subgroup576

generated by X .577

Let u ∈ S be a word such that δX(u) = d, or, equivalently, which is not an578

internal factor of X . Let Q be the set formed of the d suffixes of u which are in579

P .580

Let us first show that the cosetsHq for q ∈ Q are disjoint. Indeed, Hp∩Hq 6=581

∅ implies Hp = Hq. Any p, q ∈ Q are comparable for the suffix order. Assuming582

that q is longer than p, we have q = tp for some t ∈ P . Then Hp = Hq implies583
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Figure 4.3: A word y ∈ RS(u).

Ht = H and thus t ∈ H ∩ S. By Theorem 4.5, since S is acyclic, this implies584

t ∈ X∗ and thus t = ε. Thus p = q.585

Let586

V = {v ∈ FG(A) | Qv ⊂ HQ} .

For any v ∈ V the map p 7→ q from Q into itself defined by pv ∈ Hq is a587

permutation of Q. Indeed, suppose that for p, p′ ∈ Q, one has pv, p′v ∈ Hq for588

some q ∈ Q. Then qv−1 is in Hp∩Hp′ and thus p = p′ by the above argument.589

The set V is a subgroup of FG(A). Indeed, 1 ∈ V . Next, let v ∈ V . Then590

for any q ∈ Q, since v defines a permutation of Q, there is a p ∈ Q such that591

pv ∈ Hq. Then qv−1 ∈ Hp. This shows that v−1 ∈ V . Next, if v, w ∈ V , then592

Qvw ⊂ HQw ⊂ HQ and thus vw ∈ V .593

We show that the set RS(u) is contained in V . Indeed, let q ∈ Q and594

y ∈ RS(u). Since q is a suffix of u, qy is a suffix of uy, and since uy is in S595

(by definition of RS(u)), also qy is in S. Since X is an S-maximal bifix code,596

it is an S-maximal prefix code and thus it is right S-complete. This implies597

that qy is a prefix of a word in X∗ and thus there is a word r ∈ P such that598

qy ∈ X∗r. We verify that the word r is a suffix of u. Since y ∈ RS(u), there599

is a word y′ such that uy = y′u. Consequently, r is a suffix of y′u, and in fact600

the word r is a suffix of u. Indeed, one has |r| ≤ |u| since otherwise u is in the601

set I(X) of internal factors of X , and this is not the case. Thus we have r ∈ Q602

(see Figure 4.3). Since X∗ ⊂ H and r ∈ Q, we have qy ∈ HQ. Thus y ∈ V .603

By Theorem 4.12, the group generated byRS(u) is the free group on A. Since604

RS(u) ⊂ V , and since V is a subgroup of FG(A), we have V = FG(A). Thus605

Qw ⊂ HQ for any w ∈ FG(A). Since 1 ∈ Q, we have in particular w ∈ HQ.606

Thus FG(A) = HQ. Since Card(Q) = d, and since the right cosetsHq for q ∈ Q607

are pairwise disjoint, this shows that H is a subgroup of index d. Since S is608

acyclic and recurrent, by Theorem 3.6, we have Card(X) ≤ d(Card(A)− 1)+1.609

But since X generatesH , it contains a basis ofH . In view of Schreier’s Formula,610

this implies that X is a basis of H .611

Assume conversely that the finite bifix code X ⊂ S is a basis of the group612

H = 〈X〉 and that H has index d. Since X is a basis of H , by Schreier’s613

Formula, we have Card(X) = (k− 1)d+1, where k = Card(A). The case k = 1614

is straightforward; thus we assume k ≥ 2. By Theorem 4.4.3 in [3], if S is615

a uniformly recurrent set, any finite bifix code contained in S is contained in616

a finite S-maximal bifix code. Thus there is a finite S-maximal bifix code Y617

containing X . Let e be the S-degree of Y . By the first part of the proof, Y is618

a basis of a subgroup K of index e of the free group on A. In particular, it has619

(k − 1)e + 1 elements. Since X ⊂ Y , we have (k − 1)d + 1 ≤ (k − 1)e + 1 and620

20



thus d ≤ e. On the other hand, since H is included in K, d is a multiple of e621

and thus e ≤ d. We conclude that d = e and thus that X = Y .622
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