Introduction i atio Illustration Inference Implementation Introduction Models isa ratio Rank Illustration Inference Implementation

Some questions . ..

Disaggregation of bipolar-valued outranking relations

What is a bipolar-valued outranking relation?

Patrick Meyer
joi k with R. Bisdorff and J.-L. Marichal . . : : .
jolnt work wit sdort an ariene What data is underlying a bipolar-valued outranking relation?
TELECOM Bretagne
Can we help the decision maker to determine the parameters of the model?
8 September 2008
MCQO'08
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Structure of the presentation

Introduction

Models for the bipolar-valued outranking relation
Introductive considerations

Disaggregation of bipolar-valued outranking relation

On the rank of a bipolar-valued outranking relation

[llustrative examples

@ Usefulness in MCDA: inference of model parameters
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Notation and facts . .. Notation and facts ...

X is a finite set of n alternatives

@ xSy = “x outranks y”

N is a finite set of p criteria

@ Classically: xSy is assumed to be validated if there is a sufficient majority
gi(x) is the performance of alternative x on criterion of criteria which support an “at least as good as” preferential statement and
there is no criterion which raises a veto against it

w; € [0,1], rational, is the weight associated with criterion i of N,
st. Y w=1 @ S(x,y) € [-1,1] is the credibility of the validation of the statement xSy
iEN
@ g;, pi, wv; and v; are thresholds associated with each criterion i to model @ 5 is called the bipolar-valued outranking relation
local or overall at least as good as preferences
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Goals Goals

Primary objective

Disaggregate the bipolar-valued outranking relation to determine how the Secondary objective

underlying data looks like Infer model parameters based on a priori knowledge provided by the decision
maker

In other words:

Given S(x,y) Vx # y € X, determine the performances of alternatives In other words:

gi(x) Vx € X,Vi € N, the weights w; Vi € N and the thresholds Given the performances g;(x) Vx € X Vi € N and some a priori info from

gi, pi, wvi, vj Vi € N. the decision maker, determine the values of the thresholds and the weights

3 different models: Usefulness in Multiple Criteria Decision Analysis (MCDA):

Help to elicit the decision maker's preferences via questions on his

@ M: Model with a single preference threshold ) )
domain of expertise

@ M5: Model with two preference thresholds

@ M3: Model with two preference and two veto thresholds
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M: Model with a single preference threshold

A local “at least as good as” situation between two alternatives x and y of X, for
each criterion i of N is represented by the function C; : X x X — {0,1} defined
by:

. B 1 if gi(y) <a&i(x)+pi;
Ci(x,y) = { -1 otherwise ,

where p; €]0,1[ is a constant preference threshold associated with all the

Different models for the outranking relation : .
preference dimensions

Cl(x>y)
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M: Model with two preference thresholds My & M,
A local “at least as good as" situation between two alternatives x and y of X, for Bipolar-valued outranking relation
each criterion i of N is represented by the function C/ : X x X — {—1,0,1} s.t.:
= !
1 if g,-(y)<g;(x)+q,~; S(Xay):ZWiCi(X’y) VX#yGX
CGly)=4q -1 if gy)>g(x)+pi; ieN
0 otherwise ,
) K f ) ) Recall:
where g; €]0, p;[ is a constant weak preference threshold associated with all the S (x,y) € [-1,1] represents the credibility of the validation of the outranking situation
preference dimensions. xSy
1 -+
| C;(-’m ) ~/
! Meaning of S :
oS (x,y) = +1 means that statement xSy is clearly validated.
. Y Y oS (x,¥) = —1 means that statement xSy is clearly not validated.
gi(@) gi@+a  glo) e 6ily) @ 5'(x,y) > 0 means that statement xSy is more validated than not validated.
@ S'(x,y) < 0 means that statement xSy is more not validated than validated.
; : : 5 (x,y) = 0 means that statement xSy is indeterminate.
1 : o—
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M3: Model with two preference and two veto thresholds M3

A local veto situation for each criterion i of N is characterised by a veto function
Vi: X x X —{-1,0,1} s.t.:

1 if gi(y)>gi(x)+vi;

Vilx,y) =< -1 if giy) <gi(x)+wv; Bipolar-valued outranking relation
0 otherwise , N
1 = /
. X,y) = min w; C; (x —Vi(x cooy—Vi(x .
where wv; €]p;, 1] (resp. v; €]wv;, 1[) is a constant weak veto threshold (resp. S7(x:y) {ZN iGi06y) =Valy),..., = Val ’y)}
veto threshold) associated with all the preference dimensions '
g @------
Ci(z.y)
Note:
The min operator tranlsates the conjunction between the overall
concordance and the negated local veto indexes for each criterion
0 1 ® @ =wEsus <
9i(w) 9(7) +4q i(z) +p gi(w) +wo g +v o giy)
i Mew o— .
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How?

Objective

Disaggregate the bipolar-valued outranking relation to determine how the
underlying data looks like

Disaggregation of the outranking relation

How?
By mathematical programming)!

= Given S, determine gi(x) (Vi € N,Vx € X), w; (Vi € N) and
ai, Pi, WVj, Vj VieNlN.
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Disaggregation of M7 by mathematical programming Disaggregation of M7 by mathematical programming
Minimise the number of active criteria Minimise the number of active criteria
MIP1:
Variables &) wi € [0,1] Vie N, Vx € X If no solution exists:
V\/,,-,Cf(x,y)e{o,l} VieN,Vx#yeX
v e NS @ The selected maximal number n of criteria is too small
Parameters:
S(x,y) €[0,1] Vx#£y € X _ -
el @ The model with a constant preference threshold (M;) is too poor to
Objective function: represent the given 5
min Xn: W;
Consi.‘raim.“sI::1 o ...
s.t. i wi =1
i< Wi vien
—w; < w/(x,y) Vx#yeX,VieN
wi(x,y) < w; Vx#£y€EX,VieN
wi + CGi(x,y) — 1 < w/(x,y) Vx#y€eX,VieN
w/ (%, y) < —w; + Gi(x,y) +1 Vx#y€eX,VieN
;Wf(x,)/)=§(x,y) Vx#£y € X (b)
21— G, y)+ 5 < &) —g(y) +p Vx#yEX,VieN
gi(x) — &i(y) + pi < 2Ci(x,y) Vx#yeX,VieN
pi > vien
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Disaggregation of M; by mathematical programming Disaggregation of M; by mathematical programming
Minimise the number of active criteria Minimise the maximal gap between the given and the calculated S
MIP1bis:
Variables:
e>0
gi(x), w; € [0,1] Vi€ N,Vx € X
W;, Gi(x,y) € {0,1} Vi€ N,Vx#y € X
w! € [-1,1] vie N
pi €], 1] vieN
Parameters:
~ S(x,y) € [0,1] Vx#y e X
OK, but what if there are some slight errors in the given S 7 g €0, 1l
v €]6,1]
OPjective function:
Constraints:
s.t. 3 wi =1

i

1

.I'I. ~
Dwily) <S(xy)te  Vx#yE€X
1

Xn:Wi,(Xv}’)Zg(X,Y)—E Vx#yeX

i=1
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Disaggregation of M; by mathematical programming

Minimise the maximal gap between the given and the calculated S

Motivations:

@ By construction, S(x, y) is rational in [—1,1]

@ If the decimal expansion of a rational number r € [—1,1] is periodic, then r
is hardly representable as a float

@ Consequently, the value stored for g(x,y) might be an approximation

@ In such a case, MIP1 might have no solution

Discussion:

@ If = = 0, then there exist gij(x) (Vi € N,¥x € X) and associated weights w;
(Vi € N) and thresholds g;, p;, wv;, v; ¥i € N generating S via M,

@ Else there exists no solution to the problem via the selected representation,
and the output of MIP1bis is an approximation of S by M;j
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Disaggregation of M, and M3

Similar as M via mixed integer programs by minimising ¢

MIP2:

Variables:
e>0
gi(x) €[0,1] Vie N,Vx € X
w; €]0,1] vieN
aj(x,y) € {0,1} Vie N,Vx#y e X
Bi(x,y) € {0,1} Vi€ N,Vx#y € X
al(x,y) € {0,1} Vie N,Vx#y e X
Bl(x,y) € {0,1} Vi e N,Vx#y € X
w!'(x,y) € [-1,1] Vi€ N,Vx#y € X
zi(x,y) € {0,1} Vie NU{0},Vx #y e X
a;i € [v,pil vieN
pi €lai, wv;[ vie N
wv; €]pj, vil VieN
vi €]lwy;, 1] VieN

Parameters:
S (x,y) € 0,1] Vx #y € X
§ €]o, 1]
v €15, 1]

Objective function:

min €

Constraints:
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On the rank of the outranking relation
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On the rank of a bipolar-valued outranking relation

Definition

The rank of a bipolar-valued outranking relation is given by the minimal
number of criteria necessary to construct it via the selected model.

Practical determination:

@ MIP1: the objective function gives the rank of S.
e MIP1bis, MIP2, MIP3:
- n:=0;
- do{
N+
- solve the optimisation problem;
} while ¢ > 0;
- rank = n;

Note: The algorithm might never stop, if S cannot be constructed by the
chosen model
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[llustration
MIP1 & MIP1bis (§ = 0.001, v = 0.1, n = 5):

81 &2 83 8a
5, | a b c 2 [ 1.000 0.000 0.100 0.000
3 . 0258 -0.186 b | 0.500 0.000 0.000 1.000
, b lo3a . 0556 c | 0.000 0.000 0200 0.100
lllustrative examples c o778 0036 . wi | 0111 0296 0222 0371
b | 0500 1.000 0.100 0.100

MIP1: there exists an optimal solution for 4 criteria

MIP1bis:

@ for n > 4: optimal solution with ¢ =0

@ for n < 4: optimal solutions with £ > 0

= rank(S;) = 4 under M,
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[llustration
MIP2 & MIP3 (¢ =0.1, p=0.2, ww = 0.6 and v = 0.8, § = 0.001, n = 5):

=MIP2
_ S, a b c 81 82
S, a b c a . 0.407 0.407 | 0.290 0.000
2 0258 -0.186 b 0.296 . 1.000 | 0.100 0.100
c -0.407  0.407 . 0.000 0.01
wi : : On the inference of model parameters
c | -1.000 0.036 . qgi 0.100 0.100
pi 0.200 0.200
MIP2: for n = 5: opt. sol. with ¢ = 0.593
MIP3 81 &2 83 &
MIP3: a 0.600 0.690 0.000 0.420
. . . b 1.000 0.000 0.200 0.210
@ forn 2 4. optlmal solution with ¢ =0 c 0.800 0.890 0.100 0.000
@ for n < 4: optimal solution with € > 0 wi 0.186 0222 0370 0.222

~ qi 0.100 0.100 0.100 0.100

= rank(S2) = 4 under M3 pi | 0200 0200 0210 0.220
wv; 0.410 0.900 0.310 0.320

Note: Veto between ¢ and a on criterion 4 Vi 0.510 1.000 0.410 0.420

(5(c,a) = 1)
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Usefulness in MCDA: inference of model parameters A priori information

In our context, the a priori preferences of the decision maker could take
the form of:

@ a partial weak order over the credibilities of the validation of

In real-world decision problems involving multiple criteria: :
outrankings;
@ Performances g;(x) (Vi € N, Vx € X) are known @ a partial weak order over the importances of some criteria;

@ Weights and thresholds are usually unknown @ quantitative intuitions about some credibilities of the validation of
outrankings;

Objective @ quantitative intuitions about the importance of some criteria;
Show how these parameters can be determined from a priori knowledge

tod by the decic ’ @ quantitative intuitions about some thresholds;
provided by the decision maker

@ subsets of criteria important enough for the validation of an
outranking situation;

@ subsets of criteria not important enough for the validation of an
outranking situation;

@ etc.
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A priori information: constraints A priori information: constraints

@ a quantitative intuition about the credibility of the validation of xSy
can be translated as 7,y < S(x,y) < 0(y,,), where
Nixy) < Oixy) € [—1,1] are to be fixed by the DM;

@ a quantitative intuition about the importance of criterion i can be
translated as n,, < w; < 6,,, where n,, <60, €]0,1] are to be fixed
by the DM;

@ a quantitative intuition about the preference threshold p; of criterion |

_ T ) can be translated as 1, < p; < 6, where 1, < 6, € [0, 1] are to be
@ the importance of criterion i is similar to that of j can be translated fixed by the DM:

as —0 < w; — w; <0;

o the validation of wSx is strictly more credible than that of ySz can be
translated as S(w, x) — S(y, z) > ¢;

o the validation of wSx is similar to that of ySz can be translated as
-6 < S(w,x) —S(y,z) <;

@ the importance of criterion i is strictly higher than that of j can be
translated as w; — w; > 9;

@ the fact that the subset M C N of criteria is sufficient (resp. not

where w,x,y,z € X, i,j € N and § is a non negative separation sufficient) to validate an outranking statement can be translated as
parameter. ST wi > (resp. > w; < —nu), where ny €]0, 1] is a parameter
ieM iem

of concordant coallition which is to be fixed by the DM.
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MIP3-MCDA:

Variables: - | | | UStI’atlon
w; €]o,1] Vien Starting point:
q; €]0, pi[ vieN
pi €la;, 1[ vieN
PP vien g & & &
5 (x,y) € 0,1] Vx#£y € X a | 0.000 0.000 0.000 1.000
o b | 0.400 0.100 0.090 0.590
Parameters: ) C 0.200 0.290 0.000 0.000
&i(x) € 0,1] Vie N,Vx € X
é €]0, q[
o , Unknown:
OPJectlve function:
ow, VieN

MIP3 (some of them linearised) .
® g;,pi,w,w; VieN

Constraints of a priori information (informal):

g(w, x) — g(y, z) >4 for some pairs of alternatives - .

-85 < S(w,x) — S(y,2) < § for some pairs of alternatives A prion preferences'

wi—w; >4 for some pairs of weights

—d<w—w; <9 for some pairs of weights P

N(x,y) < S(x,y) < O(x,y) for some pairs of alternatives 53 a b Cc

Nw;, < w; < Oy, for some weights

npil <p < 0,,’,/ for some thresholds and some weights a 6]07 05] € [_057 O[
ieZM w; > ny for some subsets M of weights b 6107 05] . 6]05’ 1]
S w < —nm for some subsets M of weights c =1 c [_01’ 0]_]

ieM
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[llustration

Output of MIP3-MCDA:

81 82 &3 &4
§3 a b c w; | 0.120 0.380 0.250 0.250
a : 0.500 -0.010 gi | 0.970 0270 0.000 0.000 A few words on the implementation
b | 0.500 . 1.000 pi | 0.980 0.280 0.090 0.410
c | -1.000 0.000 . wy; | 0.990 0.290 0.990 0.590
vi | 1.000 0.300 1.000 0.600

Table: S3 ~
Table: Model parameters for Sz via M3

Note: S3(c,a) = —1 (resp S3(c, b) = 0) results from a veto (resp. weak
veto) situation on criterion 4.
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Implementation Implementation

On the implementation

@ Implemented in the GNU MathProg programming language

@ Simple examples of this presentation have been solved on a standard That’s all folks
desktop computer with Glpsol

@ Harder examples are solved with ILOG CPLEX 11.0.0

@ Very time consuming!
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