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Disclaimer

This text is an uncorrected first draft and does not contain any new results. It is due to
P. Hilger, who presented it as his Master Thesis, and it is based on a series (50 hours) of
(post)doctoral seminars on Algebraic Operads given in 2011 by N. Poncin at the University of
Luxembourg in the seminar of the working group ’Algebraic Topology, Geometry and Physics’.
These lectures were themselves based upon a preprint of the monograph Algebraic Operads by
J.-L. Loday and B. Vallette [LV11]. An improved version of the present text is in works.



Introduction

Operads are to algebras, what algebras are to matrices, or, better, to representations.
More precisely, an operad encodes a type of algebras. It heaves the algebraic operations of
the considered type, their symmetries, their compositions, as well as the specific relations
they verify, on a more abstract and universal level, which is best thought of by viewing a
universal abstract operation as some tree with a finite number of leaves (or inputs) and one
root (or output). To be explicit, to any type of algebras — defined by multilinear operations
m : V>*™ — V on a vector space V (over a field of characteristic 0), where n may vary in N\ {0},
whose ‘defining relations’ read Y, c(vi,...,v,) = 0, for all v; € V, where ¢ is a composite of
‘generating operations’ m — we can associate an operad. The algebras over this operad, i.e. the
representations of the operad, form a category, which is equivalent to the category of algebras
of the initially considered type.

Operads can be traced back to works that appeared in the fifties and sixties. Let us mention
here at least the names of Boardman, MacLane, Stasheff, Vogt...Operads have first been
formally introduced by J. Peter May in [May72], who also proposed the denomination ‘operad’
This word is actually a contraction of ‘operation’ and ‘monad’ (but seems also due to the fact
that P. May’s mother was an opera singer). Regarding his creation, May wrote in [May97]:
“The name ‘operad’ is a word that I coined myself, spending a week thinking of nothing else.”

Operads were initially studied as a tool in homotopy theory, but found some thirty years
later interest in a number of other domains like homological algebra, category theory, algebraic
geometry, mathematical physics. .. Among various powerful aspects of operads, let us mention
that the operadic language simplifies not only the formulation of the mathematical results but
also their proofs, that it allows to gain a more conceptual and deeper insight into classical
theorems and to extend them to other types of algebras. .. E.g. if some construction is possible
‘mutatis mutandis’ for several types of algebras, it is a very enriching challenge to prove that
it goes through for operads (*).

Let us mention the example of homotopy, sh, or infinity algebras [Sta63], which are ho-
motopy invariant extensions of differential graded algebras (see (xx) below). This property
explains their origin in BRST of closed string field theory. One of the prominent applications
of Lie infinity algebras (Lq-algebras) [LS93] is their appearance in Deformation Quantization
of Poisson manifolds. The deformation map can be extended from differential graded Lie al-
gebras (DGLAs) to Leo-algebras and more precisely to a functor from the category Lo to the
category Set. This functor transforms a weak equivalence into a bijection. When applied to
the DGLAs of polyvector fields and polydifferential operators, the latter result, combined with
the formality theorem, provides the 1-to-1 correspondence between Poisson tensors and star
products.

As suggested above (see (%*)), homotopy algebras appear when examining whether a com-
patible algebraic structure on some chain complex can be transferred to a homotopy equivalent
complex (V,dy). For differential graded associative or Lie algebras, the naturally constructed
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product on V is no longer associative or Lie, but verifies the associativity or Jacobi condition
up to some homotopy. We thus obtain a sequence m,, : V" — V, n € N*, of multilinear maps
on the graded vector space V' that (have degree n — 2 and possibly some symmetry properties
and) verify a whole sequence of defining relations. We refer to these data as a (an associative or
Lie) homotopy algebra structure on V. It was understood quite quickly that the maps m,, can
be viewed as the corestrictions of a coderivation on the free graded associative or commutative
coalgebra over the suspended space sV and that, more surprisingly, the mentioned sequence
of defining relations can be encrypted in the unique requirement that this coderivation be
a codifferential. Hence, a (an associative or Lie) homotopy algebra can be interpreted as a
codifferential of an appropriate coalgebra.

In their celebrated paper on ‘Koszul duality for operads’ [GK94], V. Ginzburg and M.
Kapranov gave a conceptual approach to a broad family of homotopy algebras and extended
the preceding interpretation to any type of homotopy algebra whose corresponding algebra
type can be encoded in a so-called Koszul operad (see Remark (x) above).

The present text is intended to be on the one hand sufficiently concise and on the other
hand sufficiently complete and detailed to provide a short but understandable introduction to
the theory of algebraic operads, featuring elements of Koszul duality and finally portraying the
operadic approach to homotopy algebras.

Since the objective is to give an outline of the major aspects of the theory, the proofs are not
always given up to the last details, but sometimes only in a sketchy way, concentrating on the
most instructive and interesting points. Technical and too far reaching aspects will mostly be
omitted, and explanations will be provided in an intuitive, but accurate, manner. This allows
to concentrate on presenting the essential aspects, still giving the necessary precision whenever
it is needed.

In the first chapter, we give a short summary of representation theory of the symmetric
group, which is important for symmetric operads. In particular, the notion of induced repre-
sentation is treated in detail.

In the second chapter, we recall the concepts of algebras, coalgebras and (co)homology.
These being generally well-known basic notions, this chapter can be seen as fixing notations
and reminding the concepts appearing in the sequel.

In the third chapter, we deal with twisting morphisms and Koszul morphisms for associative
algebras and coalgebras. We take a special interest in the bar and cobar constructions, leading
to a model of the considered differential graded associative algebra A. This model is nothing
but the bar-cobar resolution of A.

The fourth chapter is dedicated to Koszul duality for associative algebras. The model
constructed in the preceding chapter being too large, we replace it, in the special case of
Koszul algebras A, by a smaller one, given by the cobar construction QAi of the Koszul dual
coalgebra Al of A.

In the fifth chapter, we first encounter operads — via their classical definition, which
views an operad as a multicategory with a unique object. Moreover, we construct the operads
corresponding to associative and to commutative algebras in an intuitive way. Later on, we
encounter the partial definition of an operad, which bares a considerable similarity to the
classical one.

Chapter six covers the functorial definition of operads. An operad will, in view of this
definition, be given as a monad in the category Vect of vector spaces, or, equivalently, a
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monoid in the monoidal category of endofunctors of Vect (or still a monoidal structure on an
endofunctor of Vect). We will then confine ourselves to operads over a Schur functor, which
is a specific endofunctor. This allows, in particular, to substitute the equivalent and often
advantageous viewpoint of S-modules to the one of endofunctors.

In the seventh chapter, we consider the free operad and also a fourth equivalent definition
of operads, namely the combinatorial definition. These two notions will provide a better un-
derstanding of the relationship between operads and tree diagrams, which we use throughout
this text to represent the abstract universal operations of operads.

Chapter eight is a small excursion to the world of PROPs and other generalizations of
operads. PROPs allow to encode the operations and cooperations of bialgebras.

In chapter nine, we deal with operadic twisting and Koszul morphisms. In the main, we
transfer all the above-mentioned results for associative algebras (see Chapter 3) to the op-
eradic setting. To do this we have to take some fundamental differences between operads and
associative algebras into account. One of the most important ones is that the tensor product
of vector spaces is additive with respect to both arguments, left and right. The monoidal ‘com-
position’ of endofunctors of Vect or of S-modules however, is only additive with respect to its
left argument.

Chapter ten outlines Koszul duality for operads. Similar to the preceding chapter, we adapt
the whole theory (see Chapter 4) to the operadic framework. For a quadratic Koszul operad P,
we will then dispose of a model P,, := QP! which allows to define P,.-algebras in a conceptual
way, as representations of the latter operad.

In the final chapter we deepen the just described operadic approach to infinity algebras
and treat the example of associative homotopy algebras in detail. On the one hand, we will,
starting from the nonsymmetric associative operad s, and using the previously introduced
cobar construction and Koszul duality, build the operad &7s,, := Q Zsi. On the other hand, we
will detail the construction of A..-algebras by means of the aforementioned homotopy transfer
theorem, and provide a quite direct description of the corresponding operad A.. Of course, the
two just mentioned approaches to associative infinity algebras should lead to the same concept
of sh algebra and the operads @s,, and A, should coincide. The description of these two
differential graded nonsymmetric operads in terms of the associahedron or Stasheff polytope
will show that this requirement actually holds true.



Chapter 1

Representation theory

In this chapter, we will collect some basic facts from representation theory, which will be
useful in the sequel. In particular, we will be interested in representations of the symmetric
group, which are important, as they will allow to encode the symmetry properties of the
abstract operations of operads.

We are working over a ground field K of characteristic 0. This convention will be used
throughout the whole text, although most constructions remain valid in any characteristic.

1.1 Tensor products

We first recall some facts from tensor algebra which will be needed in the following.

1.1.1 Tensor product of vector spaces

For two vector spaces V and W over a field K, the tensor product V ® W can be defined
by the following universal property: ® : V. x W — V ® W is the bilinear map, such that for
any K-vector space U and any bilinear map b: V x W — U, there exists a unique linear map
b:V @W — U, such that b = bo ®, i.e. such that the following diagram commutes:

VxW 22U

b

7
®J 7
_7b

VoW

In general, a solution of a universal property, if it exists, is unique (up to isomorphism).
In the case of the tensor product of vector spaces, the solution (in the case of finite-
dimensional vector spaces) is given by

VoW =%V x W K),

i.e. the tensor product is given by bilinear forms on the the dual.

1.1.2 Tensor product of modules over a commutative ring

We now want to extend the notion of tensor product to modules.

First note that for modules over a commutative ring R, the left module structure and the
right module structure are in one-to-one correspondence. For instance, given a module M over
the commutative ring R with a left module structure r - m, we can define a right module
structure by m - r :=r-m, for m € M and r € R. This gives indeed a right module structure,
since (m-r)-s=s-(r-m)=(sr)-m=m-(sr)=m-(rs), form € M and r,s € R.



Chapter 1 — Representation theory 6

We define the tensor product of two modules M and N over the same commutative ring R
among the same lines as previously, by the universal property: ® : M x N - M ®gr N is the
R-bilinear map, such that for any R-module U and any R-bilinear map b : M x N — U, there
exists a unique R-linear map b: M ®r N — U, such that b = bo ®, i.e. such that the following
diagram commutes:

M®RN

In order to construct the tensor product M ®pr N, consider the free R-module R[M X N|
generated by M x N, which is as set

R[M x N| = { > T<m,n>€<m,n>}7

meM
neN

where only a finite number of coefficients 7(,, ) € R are nonzero. Moreover, consider the
R-submodule generated by the elements

—€(m+m/n) T €mn) T €(m/n)y ~€mmtn’) T E(mn) T E(mn)

—€(rm,n) + T€(m,n)s —C€(m,rn) + T€(m,n)»

which represent R-bilinearity. We now define M ® g N as being the quotient of R[m x n| by this
R-submodule. This quotient, which is itself again an R-module, together with the R-bilinear
map

®@:Mx N> (m,n)—=men=em,] € M @p N

is the solution of the universal property.

1.1.3 Tensor product of modules over a noncommutative ring

In the case of modules over a noncommutative ring R, the left and right module structures
are not necessarily equivalent. Consider now a right R-module M and a left R-module N, then
the tensor product M ®pz N is only an abelian group, i.e. a Z-module.

It is defined, as previously, as being the quotient of the free Z-module Z[M x N], generated
by M x N, by the Z-submodule generated by the elements

—€(m+m/n) T €mn) T €m/ n)y ~€(mntn’) T E(mn) T E(mn)

_e(mr,n) + e(m,rn) )

which correspond to ‘weakened bilinearity’. Note that the last element corresponds to requesting
mr®n = m®rn, whereas the first two correspond to biadditivity. The tensor product Z-module
M ®gr N and the natural weakly bilinear map

®:Mx N33 (m,n)=men=[emn] € M@ N

are universal. This means that the functor — ® g N from Modgr to AbGrp is the left adjoint
of the functor Homy (N, —), where the right module structure on Homy(N, P) is defined by
(fr)(n) = f(rn), i.e. we have

Homyz (M ®g N, P) ~ Hompg(M,Homg(N, P)),
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functorially in M and P.

In general it is not possible to define an R-module structure on M ®g N. For instance,
consider a left R-action on M ®pz N, which can only be defined by r - (m ® n) = (m ® rn).
Then

r-(mr' @n)=mr'@rn=m®e (r'r)n,

but
r-(m®r'n)=me (r')n,

which are in general not the same, since R is noncommutative.

However, if M is an (S, R)-bimodule, i.e. M is an abelian group equipped with a left
S-module structure and a right R-module structure, which are compatible in the sense that
s(mr) = (sm)r, then we get a left S-module structure on M ®r N, where the left S-action is
defined by acting by s € S from the left on the left factor of the product, i.e. s-(m®n) := sm®n.
Indeed, this does not lead to a contradiction in view of the compatibility of the left and right
module structures, since

s+ (mr®mn)=s(mr)®n

and
s-(m®rn)=sm@rn=(sm)r@n=s(mr)Q n.

Similarly, if N is an (R,T)-bimodule, i.e. N is an abelian group equipped with a left R-
module structure and a right 7-module structure, which are compatible in the sense that
r(nt) = (rn)t, then M ®p N is a right T-module. The right T-action is defined by acting by
t € T from the right on the right factor, i.e. (m®n)-t:=m ® nt.

If M and N each have bimodule structures as above, then the tensor product M ®gr N is
an (S, T)-bimodule.

1.2 Representations of finite groups

In this section, we will recall the basic definitions and results concerning representation
theory of finite groups. In particular, representations of the symmetric group S, will later play
an important role.

1.2.1 Definitions and examples

Definition 1.1: A representation (V,p) of a finite group G on a finite-dimensional vector
space V over a field K is a group homomorphism

p:G— Aut(V).

This definition entails, in particular, that p(e) = idy and p(gg’) = p(g)p(g’), for any
9,9 € G. Here e denotes the identity element of the group G. As a direct consequence of these
two relations, we also get that p(g~!) = (p(g)) ", for any g € G.

Often, the representation space V will be called a representation. Moreover, we will mainly
use a more simple notation by writing g - v or gv instead of p(g)(v). The previous relations
thus become e-v =v and g- (¢’ -v) = (g¢’) - v, respectively ev = v and g(g'v) = (g4’)v, for any
9,9 € G.

This also justifies the terminology of G-modules and G-actions as synonyms for represen-
tations.
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Definition 1.2: A morphism between two representations V and Wisalinermap ¢ : V. — W,
such that ¢(gv) = gp(w), for any g € G,v € V. Such a map is also called a G-morphism or
a G-linear map. The space of G-morphisms between the representations V and W is denoted
by Homg(V, W).

Definition 1.3: A subrepresentation of a representation V is a vector subspace W C V', which
is invariant under the action of G, i.e. g-w € W, for any g € G,w € W.

Definition 1.4: A representation V is called ¢rreducible if V admits no proper G-invariant
subspace.

Let V and W be representations of the group G. Then the direct sum V & W and the
tensor product V @ W are also representations of G. The n'® tensor power ®"V = V&,
the n'® antisymmetric tensor power (or exterior product) A"V and n' symmetric tensor
power \/"V = S™V are also representations of GG, the later two being subrepresentations of
the first one. The dual V* = Hom(V,K) is a representation of G. Moreover, Hom(V, W) is a
representation via the identification Hom(V, W) = V* @ W.

Examples 1.1: Here are some first examples of representations, which will be useful later.

e The trivial representation, where V = K and the action of G is defined by

g-v=uw, foranyv eV, geaG.

o The regular representation, where V is generated by the base vectors {e, : g € G};
elements of V' are thus of the form /. kgey, where k; € K. The action of G is given by

g Z kgeq = Z kgegrg-

geG geG

o If G = 5, the signature representation is given by the one-dimensional vector space
V =K and the action g - v = sign(g)v.

The following theorem is fundamental in representation theory, as it allows to decompose
any (complex) representation into irreducible ones. It thus suffices to concentrate on the study
of irreducible representations.

Theorem 1.1: Any representation V' (over a field of characteristic 0) of a finite group can be
uniquely decomposed into a direct sum of irreducible representations V;, i.e.

v:‘/i@al @@Vk@ak

1.2.2 Group algebra

The group algebra K[G] is an important concept, which allows to formulate results of
representation theory of finite groups in terms of representations of associative unital algebras.

The group algebra K[G] consists of the vector space of formal linear combinations > ¢ kge,
with coeflicients k; € K, endowed with a (bilinear) multiplication given by e, - ey = eg4qr.
Note that he underlying vector space is the same as the representation space for the regular
representation.

A representation of the algebra K[G] on a vector space V' is a morphism p : K[G] — End(V)
of associative unital algebras.

Proposition 1.2: Representations of the group G and representations of the group algebra
K[G] are in one-to-one correspondence.
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Proof: First, assume that p : G — Aut(V) is given. We can define p : K[G] — End(V) by
P2 gea kgeg = Xgea kqgp(g). Using that p is a group morphism, it is easily checked that p is
a morphism of associative unital algebras.

Conversely, if p : K[G] — End(V) is given, we can define p : G — Aut(V') by p: g — p(eg).
Again we can easily check that this defines a group morphism. Moreover, we have to show that
the image of p really is Aut(V'). Therefore, we have to show that p(ey) admits an inverse. This
inverse is given by p(e,-1). Indeed, p(eg) o pleg—1) = plegeg-—1) = plegg—1) = p(1) = id and by
the same argument p(e,-1) o p(ey) = id. O

1.3 Induced representation

If H is a subgroup of G and V a representation of G, one can always restrict V in order
to obtain a representation of H, denoted by Resg V. This concept of restriction being quite
natural, we are more interested in the converse notion. Starting from a representation W of
the subgroup H, we want to construct a representation of the group G.

First, recall that G can be partitioned in left cosets gH, given by the right action of H on
G. In the following, we will denote the coset classes by o € /7 and choose a representative
go of each class. In particular, we will choose g = e.

Note that if V' is a representation of G and W a H-invariant subspace of V, then, for g € G,
the subspace g - W only depends on the left cosets gH, as (gh) - W =g-(h-W) =g -W.

Therefore, in order to construct the induced representation V', we will consider for each
coset o a copy W7 = g,W of W and define

V=mdGwW= P W= P gW
ce€G/H oc€G/H

In order to define the action of the group G on the representation space V = Indg W, note
that for every g € G and o € G/H, there exist a unique 7 € G/ 77 and a unique h € H, such
that gg» = g-h. For gow € g, W = W7 and g € G, we define

g - (gow) = g-(hw) € g:W,

where g, and h are those uniquely given by the previous relation. In particular, this proves the
uniqueness of the induced representation.

It remains to prove that the above defined induced representation is really a representation
and that by restricting to H, we get the initial action on W back. We have to show that

g (9 (9ows)) = (¢'9) - (9ows), for g,¢" € G. If ¢'g, = g,h’ for some p € G/H and h' € H,
then '+ (9 (9ows)) = g - (9 (hwy)) = g, (W' (hw,)). As (9'9)90 = 9'(995) = (9'g-)h = gp(R'h),
we get the requested result. Moreover, for h € H and w € W, the previously defined action

becomes h-w = h - (ew) = e - (hw) = hw, which is the initial action of H on W.
An alternative approach to the induced representation is given by
Proposition 1.3: The induced representation of a representation W of a subgroup H of a

group G is
KIGlon W =K Gyl ew

(equality of vector spaces), endowed with the canonical G-action.

The tensor product K[G] ® g W can be viewed as tensor product of vector spaces, or as
tensor product over the (not necessarily commutative) ring K[H]. Note that W is endowed
with a left K[H]-module structure (since it is a representation), whereas K[G] admits naturally
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a right K[H]-module structure and a left K[G]-module structure. These being compatible,
it admits a (K[G], K[H])-bimodule structure. Thus K[G] ® g W admits a left K[G]-module
structure, i.e. it can be viewed as a representation of G.

Proof: Concerning the representation space, we get, using the notations of the previous defi-
nition of the induced representation,

KIG@n W = {3 keg@w} = {> keg,h@w}
=Y keg, @ hw} = {3 key, @'}
=Pey, oW =EPw,

on one hand. On the other,
KIG) & W = {3 key, 0w’} =K [Gyy] @ W,
Concerning the G-action, we have
g (eg, ®W) = egg, W = €y, ® hw,

where gg, = g.-h as previously. O



Chapter 2

Algebras, coalgebras and homology

In this chapter, we will collect some simple facts from algebra and homological algebra,
which are needed in the following. We will deal with algebras and coalgebras, which are ‘dual’
to each other, as well as with graded and differential graded structures.

2.1 Algebras

The concepts related to algebras are well known, therefore this section is intended to fix
notations and terminology.

Definition 2.1: An associative algebra A is a vector space (over K) together with a linear
map

p:ARA— A,
called multiplication (or product), which is associative, i.e. verifies po (u®id) = po (id ®u).
An associative algebra A is said to be unital if there exists a map
u: K— A,
called wunit, such that po (u®id) = id = po (id @u).

Note that u sends 1k to 14 and thus K to K14 C A.
Associativity and unitality can be formulated by means of the following commutative dia-
grams:

id®u id @u

ARARA—AR®A and K® A AR A ARK.

= |» x |+ /

ApA—t A A

u®id

The multiplication can be represented by the tree diagram \/ and the unit by T

Associativity and unitality are then given by

Y

A morphism of algebras is a linear map which respects multiplication and units. Associative
algebras and algebra morphism form a category denoted by Alg.

11
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Definition 2.2: An associative unital algebra A is called augmented if it is an algebra of the
form B
A=Kly ® A.

This requirement can be encrypted in the existence of an algebra morphism ¢ : A — K,
called augmentation map. Looking at the decomposition to be proven, we set A :=kere (note
that A is an ideal), thus obtaining a short exact sequence of algebras

00— kere 4 A—-K—0.

Note that € sends 14 to 1g. Moreover, € o u = idg and thus the sequence is split, resulting
in the required decomposition.

Definition 2.3: The tensor module over a vector space V' is defined by

TV) =PV =KoVaeV@a....
neN

The tensor module T'(V') together with the concatenation product, defined by
Ul...fup@wl...wq :ful...fupwl...wq E V®(p+Q)’

for elements vy - v, € V¥ and wy - - wy, € V&1, where the tensor multiplication is partially
omitted, defines an associative unital algebra, called tensor algebra.
Moreover, this algebra is augmented. The reduced tensor algebra is given by the reduced
tensor module
TV) =@ Vv=veV®ae...
neN*
and the concatenation product. Note that this is a nonunital associative algebra.

Free objects are the generalization to categories of the notion of a basis in a vector space,
in the sense that, if we consider a basis B of a vector space Vi and a linear map ¢ : B — V5,
where V5 is a second vector space, then then this linear map ¢ can be uniquely extended to a
linear map 0 Vi— Vs

Let C be a category, B a set (called basis), F' an object in C and i : B — F' a function (called
canonical injection). This definition should be written using a faithful functor % : C — Set.
We say that F'is the free object over the basis B (with respect to i) if and only if they satisfy
the universal property: For any object O and any function ¢ : B — O, there exists a unique
morphism ¢ : F' — O, such that ¢ = ¢ o4, i.e. the following diagram commutes:

B—'.F

I
X g
0.

Equivalently, one can define a free functor F' as being the left adjoint functor to the forgetful
functor.

Definition 2.4: The free associative algebra over a vector space V is the associative algebra
F (V) together with the linear map i : V' — F(V), such that for any associative algebra A and
any linear map ¢ : V' — A there exists a unique algebra morphism ¢ : F(V) — A such that
@ = @ oi, i.e. the following diagram commutes:

V—S F(V)

X i

I

I
3
A.
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Remark: The tensor algebra is free in the category of associative unital algebras.

Definition 2.5: A derivation is a linear map d : A — A that verifies Leibniz rule, i.e.
d(ab) = d(a)b+ ad(b),
for any a,b € A.

Proposition 2.1: Any linear map f : V. — T(V) can be uniquely extended to a derivation
d:T(V)— T(V) of the tensor algebra.

Proof: Tt suffices to set d(vy---vp) = >0 _qv1--- f(vg) - vp, for any vy ---v, € VEP, O

2.2 Coalgebras

The concept of ‘coalgebra’ is ‘dual’ to that of algebra. The (linear) dual of a coalgebra is
always an algebra, although the dual of an algebra is a coalgebra only in finite dimension.

Duality must be seen in the sense that the definition of a coassociative counital coalgebra
is obtained from that of an associative unital algebra by reversing all the arrows.

Definition 2.6: A coassociative coalgebra C' is a vector space (over K) together with a linear
map

A:C=>CxC,

called comultiplication (or coproduct), which is coassociative, i.e. verifies (A®id)oA = (id ®A)o
A.
A coassociative coalgebra C' is said to be counital if there exists a map

e:C =K,
called counit, such that (¢ ® id) o A =id = (id ®¢) o A.

Coassociativity and counitality can be formulated by means of the following commutative
diagrams:

C4A>C’®C and
Al J(id@A SN <
coctM ogowc CoK&® oo B Kke 0.

The comultiplication can be represented by the tree diagram /\ and the counit by i
Coassociativity and counitality are then given by

x|

A morphism of coalgebras is a linear map which respects comultiplication and counits.
Coassociative coalgebras and coalgebra morphisms form a category denoted by CoAlg.

Let us detail the dual correspondence between algebras and coalgebras in the finite-dimen-
sional case. Therefore, consider the map

w: VW — (Ve W),
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which is well-known to be an isomorphism if the vector spaces V and W are finite-dimensional.
Considering now an associative unital algebra A with multiplication 4 : A ® A — A and
unit v : K — A, then

A= A" 5 (AR A ~ A* @ A*
e=lu: A* 5 K*~K

defines a coassociative counital coalgebra structure on A*, if A is finite-dimensional.
However, if C' is a coassociative counital coalgebra with comultiplication A : C — C ® C
and counit € : C' — K, then

pi="Now:C*®C* = (CeC) - C*
ui=k:K*~K— C*

defines, in any dimension, an associative unital algebra structure on C*.
Note that K is itself a coalgebra, since as a vector space K is finite-dimensional.

Remark: In the following, we will mention the prefix ‘co-” only once.

Definition 2.7: An associative unital coalgebra C' is called coaugmented if it is a coalgebra
of the form B
C=CoKlg.

This requirement can be encrypted in the existence of a coalgebra morphism v : K — C,
called coaugmentation map. This means in particular that u respects the counits € of C' and
idg of K, i.e. € ou = idg. Observe that the augmentation map corresponds to the counit and
that the coaugmentation map corresponds to the unit.

Just like previously, setting C' := ker e, we obtain a split short exact sequence:

0 —=kere = C —=-K—=0.
Note that e(u(1g)) = 1k, thus setting 1o = u(1lk) gives e(1¢) = 1k.
Examples 2.1:

1. The tensor coalgebra T¢(V') is the tensor module T'(V') together with the deconcatenation
coproduct A defined by

A(vr--vp) = D (V1 0k) @ (Vg1 vp) € TS(V) @ T(V),

for elements vy - - - v, € VP C T¢(V). More precisely,
Alvp - vp) =1 (v vp) +v1 @ (V2 vp) + -+ (v1 -+ vp) @ L.

2. The reduced tensor coalgebra T(V) is the reduced tensor module T(V)) together with
the reduced deconcatenation coproduct A defined by

A(vrvp) = > (V1 0k) @ (V1 vp) € TS(V) @ T(V),

for elements vy - v, € V&P C T¢(V).
Note that
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More generally, if (C, A) is an augmented coalgebra, then C carries the comultiplication A
defined by A(z) = A(z) —1®z —2®1, for x € C. The fact that the reduced coproduct is
valued in C ® C' is easily checked by applying ¢ ® id and id ®e to A(x).

Definition 2.8: A coideal I of a coalgebra C' is a vector subspace I C C, such that I C kere
and A(z) e I C+C® 1, for any x € 1.

Remark: The reduced coalgebra C = kere is a coideal of the coalgebra C'. -
Indeed, A(z) = A(z) +1@2r+2@1 € CC+C0C+CR®C CC®C+C®C, for any
zeC.

The iterated coproduct A" : C' — C®(+1) is defined by A" = (A®id®--- @ id) o A1,
with Al = A and A® = id. Due to coassociativity, we have that A" = (id®--- ® id®A ®
id®---®id) o A", The reduced iterated coproduct A" is defined exactly among the same
lines.

Definition 2.9: Let C' be an augmented associative unital coalgebra. We say that C is conilpo-
tent if the filtration

FyC =Klg,
F.C=Klg®{zeC:A"z)=0Yn>r}, r>1,

is exhaustive.

Conilpotency means that each element of C is annihilated by some power of the reduced
coproduct A. Note also that a nilpotent coalgebra is augmented and hence also unital.

Definition 2.10: The cofree associative coalgebra over a vector space V is the nilpotent as-
sociative coalgebra F¢(V) together with the linear map p : F¢(V) — V, such that for any
nilpotent associative coalgebra C' and any linear map ¢ : C' — V, with ¢(1¢) = 0, there exists
a unique coalgebra morphism @ : C' — F¢(V) such that ¢ = po ¢, i.e. the following diagram
commutes:

C

! ®

@I

v p
FV)—V.

Remark: The tensor coalgebra is free in the category of nilpotent associative coalgebras.

Definition 2.11: Let C be a nilpotent coalgebra. A coderivation d : C — C of coalgebras is
a linear map such that
Aod=(d®id) o A+ (id®d) o A.

Proposition 2.2: A coderivation d : T¢(V) — T(V) is uniquely determined by its corestric-
tion f:T(V) — V, i.e. f=pr;od, where pry is the projection of T°(V') onto V.

Proof: Consider an element v € V' and note that, due to conilpotency, Av = 0. Moreover,
Adv = (d®id)Av = 0,

and thus dv € V. Therefore, dv = pry(dv) = fv.
For an element vw € V®2, we have

Ad(vw) = (dRid)(vew) =dv@w+v@dw = fv@w +v® fw = A((fv)w + v(fw)),
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and thus d(vw) = (fv)w+v(fw)+v', where v is an element of V. Moreover, this element v’ is
the component of d(vw) in V, i.e. v/ = pry(d(vw)) = f(vw). Again, d is completely determined
by f.
For an element vwx € V&3,
Ad(vwz) = (d ®id)(v ® (wz) + (vw) @ )
=dv® (wz) + dvw) @ x + v @ d(wz) + (vw) @ dz
= fo® (wr) + (fo)w @z + v(fw) @z + (fow) @
+0® (fw)z+v@w(fr)+v® flwr) + (vw) @ fx
= A((fo)wz +v(fw)z +vw(fe) + fow)z + v f(wz)),

and thus d(vwz) = (fv)wz + v(fw)z +vw(fz) + flow)z + v f(wz) + flvwz).
Similarly, d is completely determined by f for any higher tensor powers. O

2.3 Differential graded algebras and coalgebras

2.3.1 Graded vector spaces

We will now consider Z-graded vector spaces V = @,,c7 Vy,. Sometimes all the terms of
nonpositive degree are {0}, in this case the considered vector space is N-graded, i.e. V =
@,en Vi- If all the terms of nonnegative degree vanish, i.e. if V = @, oy V_rn, we set V" :=
V_p, so that V.= @, cy V" If the degrees of the subspaces are denoted by subscripts (resp.
superscripts), we say that the space is homologically (resp. cohomologically) graded.

We know that the category Vect of vector spaces and linear maps is a (symmetric) monoidal
category (i.e. a category with a tenor product, see also definition 6.1). Also the category grVect
of graded vector spaces and degree 0 linear maps is monoidal. The grading of the product VW
of two graded vector spaces is induced by the gradings of these spaces:

VoW = (EBV)@@(@WJ) =PVieow;) =P ( D W®Wj) = DV oW),.

ij n  \itj=n n

When considering the tensor module T'(V) = @,,cy V", we actually have two gradings,
the grading by the number n of factors (given by the tensor power), called the weight (or
cohomological degree), and the just detailed grading induced by that of V, called the degree
(or internal degree).

Remark: A graded vector space can also be viewed as a sequence of vector spaces (Vi,)nez
instead of a direct sum. This allows to avoid some difficulties, in particular to define the dual
of the sequence as the sequence of the duals, whereas the dual of a direct sum is the direct
sum of the duals only for finitely many summands.

Definition 2.12: The suspension of a graded vector space V is given by
sV=Ks®V,

where Ks denotes the one-dimensional graded vector space generated by the element s of degree
1. This implies a change of degree: (sV'); = V;_1.

Definition 2.13: The desuspension of a graded vector space V is given by
sTW=KstaV,

where Ks™! denotes the one-dimensional graded vector space generated by the element s~! of
degree —1. This implies a change of degree: (s71V); = Viy1.
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Definition 2.14: A braided monoidal category is a monoidal category equipped with a braid-
ing, i.e. with a family of natural isomorphisms y4p : A ® B — B ® A that satisfy some
axiom.

A symmetric monoidal category is a braided monoidal category, where the braiding verifies

-1
TB,A = TA,B-

The category grVect is symmetric. The braiding is given by the switching map 7 with
Koszul sign, defined by

TVOW sWeV, tvew)=(-1)"uwouw.

Here © and w denote the degree of the corresponding elements.
Recall that the Koszul sign rule states that, in a sign-graded setting, a sign, depending on
the degree of the involved elements, appears whenever two elements are interchanged.

2.3.2 Differential graded vector spaces

Definition 2.15: A differential graded vector space (or chain complex) (V,d) is a graded vector
space V together with a linear map d, called differential, of degree —1 and satisfying d? = 0.

d d d d d
= V=V eV =V =

A cochain compler is given by the cohomological grading V™ = V_,. In this case the
differential d is of degree 1.

d o1 d d d d
R - N A VA N V- S

Definition 2.16: A morphism f of chain complezxes (resp. cochain complexes) (V,d) and (W, d)
(or chain map, resp. cochain map) is a linear map f : V — W of degree 0 which commutes
with differentials, i.e. fod=4do f.

Considering a chain complex (V,d), it is sometimes useful to denote the differential (or
boundary map) d, in a more explicit way, by d,, : V,, — V,,_1. Note that d?> = 0 explicitly reads
as dp o dpy1 = 0, and thus imd,,+; C kerd,,. Elements of ker d,, are called cycles and elements
of im d,, 41 are called boundaries.

The n-th homology group is by definition

We denote Hq(V,d) = @,z Hn(V, d).

Similarly, for a cochain complex (V,d), the differential (or coboundary map) d reads, in a
more explicit way, d” : V® — V"1 and d?> = 0 becomes d” o d*~! = 0, and thus imd"~! C
ker d”. Elements of ker d" are called cocycles and elements of im d”~! are called coboundaries.

The n-th cohomology group is by definition

H (V,d) =Kkerds i

We denote H*(V,d) = @,,cz H*(V,d).
A (co)chain complex is called acyclic if its (co)homology is 0 everywhere.

Note that a (co)chain map f : V' — W induces a linear map f; in (co)homology; if this
map f; is an isomorphism, we say that f:V 5 W is a quasi-isomorphism.
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A (co)chain homotopy between two (co)chain maps f : (V,dy) — (W,dw) and g :
(V,dv) — (W,dw) — note that (co)chain complexes, (co)chain maps and (co)chain homo-
topies form a 2-category — is a map h of degree 1 (resp. —1), such that

hdy +dwh = f —g.

If two (co)chain maps are homotopic, the induced maps in (co)homology coincide. In par-
ticular, the application to id and 0 allows showing that a complex is acyclic.

A homotopy equivalence between two chain complexes (V,dy) and (W, dy) is a chain map
i:V — W, such that there exists a chain map p: W — V, such that p o i is homotopic to idy
and 7 o p is homotopic to idyy, i.e.

i

w(C (Vidy) == (W.dw) n,

poi—idy = h/dv + dvh, and ¢op—idw = hdw + dwh.

If W’ = 0, then the map i is injective and the map p is surjective, and the complex V is
called a deformation retract of W.

The category of chain complexes (in Vect) and chain maps is monoidal. The tensor product
V ® W of two chain complexes (V,dy) and (W, dy ) is defined by

i+j=n

which is equipped with the differential
d=dy ®id+id @dy .

This clearly defines a chain complex with a differential of degree —1.

Instead of considering only chain maps of degree 0, one can also consider chain maps of
arbitrary degree r. We denote the space of chain maps f : V' — W of degree r by Hom, (V, W),
and the space of all chain maps by Hom(V, W) = @, Hom,(V,W). Latter space is again a
chain complex, if (V,dy) and (W, dy ) are chain complexes. The differential 0 of this complex
is defined by

of =ld, fl:==dwo f—(=1)"fody,

for any f € Hom, (V, W). This clearly defines a differential of degree —1, since dy and dy are
differentials. Indeed,

O*f = [d,[d, f]] = [d, dw f] = (=1)"[d, fdv]
= (dfy — (=1)" " dw fdv) — (=1)"(dw fdv — (=1)" 7" fdi;) = 0.

2.3.3 Differential graded associative algebras and coalgebras

A differential graded associative (unital) algebra (DGAA) is a graded vector space with a
compatible associative unital algebra structure and a compatible differential. This means that
the bilinear multiplication is of degree 0 and respects the grading, i.e. ab = @ + b. Moreover,
the differential d is a linear map of degree 0, such that d> = 0 and d is a derivation for the
multiplication, i.e. verifies the graded Leibniz rule.

The definition of a differential graded associative (unital) coalgebra (DGAC) is similar to
that of a DGAA.
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Often the considered differential graded spaces have, in addition to the homological degree,
an extra grading, called weight. This weight-grading has again to be compatible with the un-
derlying structure. For instance, a weight-graded DGAA is a weight-graded differential graded
vector space, together with an associative algebra structure that respects the weight grading,
the homological grading, as well as the differential. A weight-graded DGAA A is denoted by
A =@,,, Am, when referring to the homological grading, and by A = @,, A when referring
to the weight grading.



Chapter 3

Twisting morphisms and Koszul
morphisms

This chapter deals with twisting and Koszul morphisms for associative algebras and coalge-
bras. Moreover, we take a special interest in the bar and cobar constructions, which will finally
provide a model (given by the bar-cobar resolution) of the considered differential graded asso-
ciative algebra.

3.1 Twisting morphisms and twisted tensor complexes

Let (A, p,u,d4) be a unital augmented DGAA and (C, A, g,d¢) a unital augmented nilpo-
tent DGAC.

3.1.1 Convolution

We will consider the space Homg (C, A) of K-linear maps from C to A, and equipped it with
a bilinear associative operation x, called convolution. Equipped with the adequate differential,
the considered space will be a unital DGAA.

The convolution f x g of f,g € Homg(C, A) is defined by

frxg=po(f®g)oA,

or pictorially,

Concerning degrees, we have m = f+ §. The unit for * is given by wopu € Homg (C, A).
Indeed, (uoe)xg =g, for any g € Homg(C, A), since

p((uoe)®g)Ac = plu®id)(id ®9) (e ®id)Ac = pu®id)(id ®9)(1®c) = p(u®id)(1® gc) = ge,

for any ¢ € C. Similarly, f x (uoe) = f, for any f € Homg(C, A).
The differential 0, defined by

of = [d, f] = daf — (1) fde,

is of degree —1 and it can be checked that this is a derivation for the convolution x.

20
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3.1.2 Twisting morphisms

Let G be a Lie group and g its Lie algebra, the Maurer-Cartan form is a differential one-
form w on G valued in g, which encodes information about the structure of G and verifies the
Maurer-Cartan equation

dw + 3w, w] = 0.

In the previously constructed convolution DGAA (Homg (C, A), x, 0), we can write a similar
equation:
Jda+axa =0, (3.1)

where o € Homg (C, A).

Note that we get a condition on the degree of a. If the two terms in (3.1) were of different
degree, they would be contained in different terms of the direct sum of the graded space
Homg (C, A), and the only possibility, in order to sum to zero, would be that they are both
equal to zero. Thus, in order to obtain interesting solutions of (3.1), the two terms have to be
of the same degree, i.e. o has to be of degree —1.

Definition 3.1: A twisting morphism o € Tw(C, A) is a morphism « € Homg (C, A) of degree
—1, that verifies the Maurer-Cartan equation (3.1) and vanishes on units and counits.

The last condition is of technical purpose and can be formulated as
aou=0 and coa=0,

where u : K — C denotes the coaugmentation map and € : A — K the augmentation map.
Recalling that kere = A, this means that

a(K)=0 and «a(C)C A

3.1.3 Twisted tensor complex

Consider the tensor complex (C' ® A, d), where d = d¢ ® id 4 id ®d 4. Moreover, consider a
morphism « € Homg (C, A) and define

do = (id®p) o (Id®a ®id) o (A ®id)

and
do = d+dg.
Pictorially,
cC ® A
sk |
_ C C A
do = ‘ o ‘ ‘ = «
C A A
| NG
cC ® A

Lemma 3.1: d2 = 0 if and only if « is a twisting morphism.

Definition 3.2: If o € Tw(C, A) is a twisting morphism, then C ®, A := (C® A, d,) is called
twisted tensor complex.
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Proof of lemma 3.1: We have that d2 = d? +do do +do od+ d?X. Obviously, d? = 0, since d is
a differential. Moreover,

(ii - == 6] = |« :Cza*aa
«

where we used associativity, coassociativity and the definition of the convolution. Similarly,
one shows that d o d, + d, o d = dy,. Finally, d?x = dpa+axa, Which equals 0 if and only if «
verifies the Maurer-Cartan equation (3.1), i.e. « is a twisting morphism. O

Theorem 3.2 (Comparison lemma for twisted tensor complexes):

o Let o« € Tw(C, A) and o' € Tw(C’, A") be twisting morphisms, f : C — C' a morphism
of augmented DGAC and g : A — A’ a morphism of augmented DGAA, such that the
following diagram commutes

C—25 A

b
Cl */> Al.

Then fR@g:C QA — C'®y A is a chain map, and thus induces a linear map (f @ g)y
in homolgy.

e Under some weight-graded assumptions (necessary for the use of some ‘spectral sequences’
type argument in the proof), we have: if two of the chain maps f, g and f ® g are quasi-
isomorphisms, then so is the third.

3.2 Bar and cobar complexes and adjunction

3.2.1 Bar construction

We detail the bar construction first for augmented (thus also unital) associative algebras
(concentrated in degree 0), then for augmented graded associative algebras, and finally for
augmented DGAA.

The idea is to encode the multiplication map (resp. the multiplication map and the dif-
ferential) of an associative algebra (resp. of a DGAA) in a square 0 degree —1 coderiva-
tion of the cofree coalgebra T¢(sA). This coding is realized via a suspension, an extension

and a summation. The depicted coderivation will then be the differential of the bar complex
BA = (T¢(sA),dpa).

Let A be an augmented associative algebra, we will consider the cofree algebra T¢(sA),
where the use of A instead of A is a technical decision due to the fact that we are trying to
represent Tw.
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To encode the bilinear multiplication p: A ® A — A of the ideal A, we first suspend:

A@A#

A
]

s[l@s[lTsfl.

Since Tcgs/_l) is cofree, a coderivation is completely determined by its corestriction f :
T¢(sA) — sA. We set
fiT¢(sA) — (sA)®? B sA.
The unique extension of f to a coderivation ds is given by
n—1

da(sa1 @ -+ ® sa,) = Z(—l)isal ® - @ sp(ag,air1) @« -+ Q Sap.
i=1

It is clear that dy is a degree —1 coderivation of T¢(sA), and easily checked that d3 = 0 if and
only if p is associative. Indeed, consider for instance

da(da(sa; ® sas ® sag)) = da(—sp(ar,az) ® sag + say @ su(az,az))
= —S,LL(,U,(CLI’ CLQ), a/3) + S/’L(ah :u(a27 G3))-

Let A be an augmented graded associative algebra, then the construction is similar and the
formula for dy differs only in the sign:

n—1
da(say ® -+ ® sap) = Z(—1)1+a1+”'+“isa1 ® - @ sp(ai,air1) @+ Q Sap,.
i=1

Let A be an augmented DGAA, then we deal not only with a bilinear multiplication y, but
also with a linear differential d : A — A, which also must be encoded. Note that d : A — A,
since € : A — K is a DGAA morphism, where K is a DGAA concentrated in degree 0 with
differential zero, we thus have eod =0o0¢e =0, so that d : kere = A — kere = A.

To encode the linear differential d : A — A, we first suspend:

A—4 A

Then we extend :
f:T¢(sA) - sA 4 sA
to a unique coderivation d; given by
n

di(sa1 ® -+ @ sap) = Y (1)l @ @ sda; @ -+ @ sap.
=1

It is clear that d; is a degree —1 coderivation of T¢(sA), and d3 = 0 is due to the fact that
d* = 0.
Finally, we sum
dpa = di +d,
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in order to obtain a new degree —1 coderivation of T¢(sA), where
A%y = d3 + dydy + dody +d3 =0
is due to the fact of d being a derivation of p.

Definition 3.3: BA := (T°(sA),dpa) is called the bar construction (or the bar complex) of
A.

Proposition 3.3: The bar construction BA of the augmented DGAA is a conilpotent DGAC.
Actually, B is a functor from the category of augmented DGAAs to the category of conilpotent
DGACs:

B : augDGAlg — conilDGCoAlg.

3.2.2 Cobar construction

Consider now a conilpotent DGAC C with differential d¢. The cobar construction is similar
to the bar construction. More precisely,

Definition 3.4: QC := (T(s~1C), dqc) is called the cobar construction (or the cobar complez)
of C.

In this definition, the derivation do¢ is given by
dac = 01 + 02,

where §7 encodes the differential d¢ and_ 09 encodes the (reduced) comultiplication A. The
property d% = 0, resp. coassociativity of A entail that 67 = 0, resp. that 63 = 0.

5?20 = 5% + 0109 + 0201 + (53 =0
is a consequence of the fact that d¢ is a coderivation of A.

Proposition 3.4: The cobar construction QC of the conilpotent DGAC is an augmented
DGAA. Actually, Q is a functor from the category of conilpotent DGACs to the category of
augmented DGAAs:

Q0 : conilDGCoAlg — augDGAlg.

3.2.3 Adjunction
Definition 3.5:

e Two functors F': C — D and G : D — C are called adjoint functors, if there exists a family
ncp : Homp(FC, D) — Home(C,GD), C €C,D €D,
of bijections that are natural in C' and D.

e A functor F': C — Set (resp. a contravariant functor F' : C — Set) is representable, if it
is naturally isomorphic to Home(—, A) (resp. Hom¢(A, —)), for some object A € C.

Theorem 3.5 (Basic correspondences 1):
If C is nilpotent, then

HomgrAlg(T(s_lc_'), A) ~ Homg, 1 (C, A) ~ Homgrcoarg(C, TC(S/I)). (3.2)
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This claim is obvious, since algebra morphisms with source the free algebra (respectively
coalgebra morphisms with target the cofree coalgebra) are, just as derivations (respectively
coderivations), determined by their restrictions (respectively corestrictions).

Theorem 3.6 (Basic correspondences 2):
If C is nilpotent, then

HomDGAlg(QC, A) ~ TW(C, A) ~ HomDGCoAlg(C, BA) (33)

Here ~ denotes a bijection which is natural in C and A. It follows that Q and B are adjoint
functors and that Tw is representable in C and A.

3.3 Universal twisting morphisms

If we set A = QC in (3.3), the identity id : QC = T(s7'C) — QC restricts to a twisting
morphism i : C — QC, which is the injection of C' extended by 0 on K. If we set C' = BA in
(3.3), the identity id : BA — BA = T°(sA) corestricts to a twisting morphism 7 : BA — A,
which is the projection onto A viewed as valued in A.

These twisting morphism ¢ and 7 are called universal, since any twisting morphism « :
C — A factors through ¢ and 7. More precisely, there exist augmented DGAA and DGAC
morphisms f, and g, such that the following diagram commutes:

BA

2
gi 2 lﬂ
7 [0
C——A
/ﬁ
\ | fa
@ !
QC.
Proposition 3.7: The twisted tensor complexes C ®; QC and BA ®, A are acyclic.

Proof: This is proven by means of a chain homotopy between id and 0. O

3.4 Koszul morphisms and bar-cobar resolution

Definition 3.6: A twisting morphism o € Tw(C, A) is called a Koszul morphism, if the twisted
tensor complex C' ®, A is acyclic. The set of Koszul morphisms from C' to A is denoted by
Kos(C, A).

Theorem 3.8 (Fundamental theorem of twisting morphisms):
Under some weight-graded assumptions (necessary to apply the comparison lemma), we have,
for a twisting morphism o € Tw(C, A), that the following propositions are equivalent:

1. a € Kos(C, A), i.e. C®q A is acyclic,
2. fo:QC — A is a quasi-isomorphism,
3. go : C — BA is a quasi-isomorphism.

Proof: Concerning the first equivalence, we have the following commutative diagram:

c—.QC

J |

C—2 A
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Applying the comparison lemma to id, f, and id ® f,, we get that f, is a quasi-isomorphism
if and only if id®f, : C ®; QC — C ®, A is a quasi-isomorphism. Since C ®; QC is acyclic,
we get the requested equivalence.

Equivalence between the first and the last statement is obtained similarly. O

Theorem 3.9 (Basic correspondences 3):
If C is nilpotent, then

QISODGAlg(QC, A) ~ Kos(C, A) ~ QIsoDGCoAlg(C’, BA). (3.4)

Theorem 3.10: The counit of the bar-cobar adjunction, i.e. the DGAA morphism correspond-
ing to the identity of the DGAC BA, is a quasi-isomorphism of DGAAs:

QBA 5 A, (3.5)

We say that ¢ is a resolution of A, called bar-cobar resolution, and that QBA is a model of
A.

The philosophy of a ‘resolution’ or a ‘model’ is that the involved object is disentangled into
a simpler object (the model) that can be used to study various aspects of the initial object.
For instance, consider an orbifold, which is, roughly, a manifold with possible singularities. A
model of this object is given by a smooth manifold, having the same homology as the initial
object. In order to study the homology of the initial complicated object, one can thus also
study the homology of the nicer model.

The model QBA of A, considered here, is ‘too big’, i.e. not handy enough to be manipulated
and studied. Therefore, we will, in the following, replace it by a smaller and handier one.



Chapter 4

Koszul duality for associative
algebras

The objective of this chapter is to replace the previously constructed model by a ‘smaller’
one. However, we will then have to restrict ourselves to specific type of algebras, namely
‘quadratic Koszul algebras’.

4.1 Quadratic algebras and coalgebras

Definition 4.1: Quadratic data (V, R) consists of a graded vector space V and a graded vector
subspace R C V®2,

In order to simplify notations, let us first consider the nongraded situation, which can
always be obtained by considering a graded vector space V' concentrated in degree 0. The
graded situation is then completely similar.

Definition 4.2: The quadratic algebra A(V, R) associated to the quadratic data (V, R) is the
(associative) quotient algebra T(V)/( R) where (R) denotes the (two-sided) ideal generated by
R.

Note that
R =P > VVeRaV¥ (4.1)
n>2 i+j=n—2
and that
V®2 V®n
AV.R)=KeVe' /re &' / v yeigrgyei® (4.2)

i+j=n—2

= P A" (V,R).

n>0

Notice further that the sum > in (4.1) is not direct. For instance, if n = 3 the considered
sumis V ® R+ R® V, considering elements u,v,w € V, such that u® v € R and v® w € R,
then u®v@w € V@ RNR®V. Moreover, the ideal (R) is homogeneous for the weight grading,
which is actually the reason why A(V, R) is graded.

It is clear that the composite map R — T(V) — A(V,R) vanishes. Furthermore, any
algebra morphism ¢ : T(V) — A, such that R — T(V) — A vanishes, descends to the

quotient, i.e. defines a unique algebra morphism ¢ : A(V, R) = T(V)/( R) — A, such that the

27
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following diagram commutes

0

=
R——T(V)—» A(V,R)

This means that A(V, R) is the quotient algebra of T'(V') that is universal among all quotient
algebras A, such that R — T(V) — A vanishes.

The definition of the quadratic coalgebra is ‘dual’ to the definition of the quadratic algebra.
More precisely, it is defined as a subcoalgebra, not as a quotient, and by means of the dual

®2
composite 4 /p e T¢(V) —~C.

Definition 4.3: The quadratic coalgebra C(V, R) associated to the quadratic data (V) R) is
the subcoalgebra that is universal among all subcoalgebras C of T¢(V'), such that

®2
Ve e e To(V) —C

vanishes, i.e. such that the following diagram commutes

0
CVR) s To(v) 3 V.
¢
The quadratic coalgebra is given by
C(V,R)=KeVoR®(VeRNRV)®--@& (]| V¥RV a.. (4.3)
itj=n—2

=: @C(")(V, R).

n>0

Indeed, for instance, the fourth term is exactly what is needed for C'(V, R) to be a subcoal-
gebra. Consider uwwvw € V@ RN R ® V, where the tensor product is omitted, then

A(uvw) =1 @ uvw + u @ vw + uv @ w + uvw @ 1
EK@(VORNRRV)+VR®R+RV+(VORNRRV)®K
Cc C(V,R)® C(V,R).

Remark: The constructions of the quadratic algebra A(V,R) and the quadratic coalgebra
C(V,R) can be extended to the graded setting. Moreover, the so obtained graded algebra,
respectively graded coalgebra, can be endowed with the zero differential and thus become a
weight-graded DGAA, respectively a weight-graded DGAC. In the following, we will work in
this (differential) graded context.

4.2 Koszul dual coalgebra and algebra of a quadratic algebra

Definition 4.4: The Koszul dual coalgebra of a quadratic algebra A = A(V, R) is
Al = C(sV,s*R),

i.e. the quadratic coalgebra associated to the shifted quadratic data.
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Here s2R denotes the image of R by s : V®2 3 v @ w — sv ® sw € (sV)®2. The inverted
exclamation mark j is pronounced ‘anti-shriek’.

One might expect that the Koszul dual algebra is defined similarly, however it turns out
that a similar definition is only possible in finite dimension. The general definition is as follows:

Definition 4.5: The Koszul dual algebra of a quadratic algebra A = A(V, R) is defined by
A'(n) _ Sn(A‘*)(n)
The exclamation mark ! is pronounced ‘shriek’.

Remark: Note that the dual of an infinite sum is in general not the sum of the duals. Here

the dual means that we are taking the dual term by term. Hence, we could also write A —

s" (Ai(")>*.

Let us now take an interest in the previously mentioned finite-dimensional case. The
quadratic data (V, R) gives rise to the exact sequence

®2
R>—>V®2—»V /R

Dualizing gives the exact sequence

R* « (V*)®2 —~ <V®2/R>*,

where (V®2/R)* = {(V®2)* Sa:a(R) = 0} = R*, and we thus get new quadratic data
(V*,Rh).
Proposition 4.1: IfV is finite-dimensional, then A' = A(V*, R1).
Sketch of proof: Dualizing the coalgebra Al = C(sV,s?R) (term by term), we get
A" =Keas "W es *R'a--,
where, for instance, the third term s 2R* = S*Q(V*)W/RL, thus A" = A(s~'V*, s 2R"1). Note
also that the definition of the quadratic coalgebra is ‘dual’ to that of the quadratic algebra. [J
Examples 4.1: In the following examples, we consider a finite-dimensional vector space V.
1. Let R = {0}, then R+ = V**2 and
At =C(sV,0) = K& sV,
A = AV VO =K V.
2. Let R= (v @ w — w ®v), then s?R = (sv ® sw — sw @ sv), R+ = S2V*C V**2 and

A= C(sV, Ry =K@ sV a \'(sV)@- = \°(sV),

A= AV V) =Ra Ve N (V) @ = A(VY).

Definition 4.6: The Koszul dual algebra of a quadratic coalgebra C (V| R) is
Ci=A(s"'V,s72R).

One can verify that (Ai)i = A, (C1) = C and, in finite dimension, (4')" = A.



Chapter 4 — Koszul duality for associative algebras 30

4.3 First (co)homology groups of the bar and cobar construc-
tions in the quadratic case

Consider a quadratic algebra A = A(V, R), which, together with differential d4 = 0, is a
DGAA, so that we can take an interest in the bar construction

BA=TsA) =K@ sA® (sA)** - -

V®2 V®3
—K@S(V@ /R /V®R+R®V@“')

V®2 y®3 ®2

with differential dg4 = di + d2, where dy is the unique coderivation that extends d4, thus
dy = 0 and dp4 = dg, and where dj is the unique coderivation that extends the (concatenation)
product p.

In the following we will omit the suspension map s in order to simplify notations. The first
terms of the considered bar complex are given by the following diagram.

0 &V erirey = VeveveV Ty & vevev | o ;
3]
0 & Ve &2 ovev @ ¢
0 & 1 (1)
K (0)
3 2 1 0

— syzygy degree

Remarks:

1. Recall that ds is in general defined by
n—1

da(sa1 ® -+ ® sap) = Z +sa1 @ - @ sp(ai, aip1) @ - @ Sap,
i=1

where we use + as a simplified expression for the involved sign. Here, the differential do
is defined on tensor products of classes of tensor products.

For instance, dy can be applied to elements
ul @ ]@w] e VaVaelV,
/ ' n V2 ye?
u@v@w +eveouw]e” /peVeVe’ /g,
V®3
wevoul eV Ao ri Rev
which then gives
V®2 V®2
d(lu] ® ] @ [w]) = ue vl e peu eV poveveV

da([u @] @ [w] + W] @ [V @w']) =HuRv@w + v @v' @w] EV®3/V®R+R®Vv
da([u ®v®w]) = 0.
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2. Note that we are dealing with multiple degrees. The differential ds is of degree —1 with
respect to the degree induced by the grading of V, called the homological degree. The
weight refers, as usual, to the number of factors in the tensor product and is denoted
in parentheses. Moreover, we introduce an additional degree, called syzygy degree (lat.
syzygia: conjunction without loss of identity), which is defined as being the difference
between the weight and the number of involved classes.

Note further that the bar complex (BA,ds) is a cochain complex with respect to the
syzygy degree, which splits with respect to the weight. We denote (BkA)(”) the term of
BA of syzygy degree k and weight (n).

Theorem 4.2: Let (V,R) be quadratic data, A(V,R) the associated quadratic algebra, and
Al = C(sV, s®R) its Koszul dual coalgebra. By the termuwise injection

AI=K@osV®s’Ro (sV@s’RNS*RRsV) @ ---
— TsV) =K@ sV o (sV)2 @ (V)P g. ..

into the column corresponding to syzygy degree 0 in the above diagram, Al is a subcoalgebra
of T¢(sV). Hence, the inclusion A C BYA. More precisely, the first cohomology group of
(B.A, dg) 18

HY(B*A) = Ai, ie. HOB*A)™ =(4H™  vpeN

Proof: For instance, omitting the suspension, we get for n = 3:
®2 ®2 .
HO(B*A)® = ker (d2 Ve LV reveveV /R) =ReVNVeR= AN O

A similar result holds true for the first homology group of the cobar construction of a
quadratic coalgebra. More precisely, if C'= C(V, R), then

Ho(Q,C) = Cl, ie. Hy(Q,0)™ = (CH™, VneN.

4.4 Koszul algebras

We now replace, under certain conditions, the ‘big’ resolution QBA = A, by a smaller one,
namely QA! = A. In order to obtain such a quasi-isomorphism in QIsopgy1,(QAl, A), We need,
by (3.4), a Koszul morphism in Kos(Ai, A). For a quadratic algebra A = A(V, R), a canonical
candidate is X

K Al = C(sV,s’R) — sV 25 V — A(V,R) = A.

It is clear that k is a degree —1 morphism that vanishes on units and counits. Since Al
and A are viewed as DGAC and DGAA, respectively, with differential 0, the Maurer-Cartan
equation reduces to k x K = 0. Since x vanishes everywhere except on V, it suffices to check
this condition on R C V®?2:

k*k)(rr') = KK 1®rr’+r®r'+rr'®1
( )( K
= /L(HT‘ &® m"') = u(r ® r’) = [rr'] =0,

where we omitted the suspension, tensor products and involved signs. Thus xk € Tw(Ai, A) is
a twisting morphism.

Definition 4.7: Let A = A(V,R) be a quadratic algebra. The twisting morphism k €
Tw(Ail, A), defined above, defines two twisted tensor complexes Al ®,; A and A®,; Al called left
and right Koszul complezes of A = A(V, R).
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We are mainly interested in the left Koszul complex, which we will simply call Koszul
complex in the following.

Observe that the differential

(Ai)(i) ® AW

(ANED 40 40)

Y

AND @ 46+

with ¢ + 7 = n, of the Koszul complex has the typical shape of a Koszul differential.

Theorem 4.3 (Koszul criterion):
Let (V,R) be quadratic data, A = A(V,R) the associated quadratic algebra, At = C(sV, s*R)
the Koszul dual coalgebra, and k € Tw(Al, A) the twisting morphism defined above. Then the
following propositions are equivalent:

1. k € Kos(Al, A), i.e. the Koszul complex Al ®,, A is acyclic,
2. the projection p := f. : QAT — A is a quasi-isomorphism of DGAA,
3. the injection i := g, : Al — BA is a quasi-isomorphism of DGAC.

If these conditions hold true, we say that the quadratic algebra A is a Koszul algebra.
Moreover, Al — A is then a minimal resolution (i.e. QA! is a minimal model) of A, called
Koszul resolution.

Proof: 1t suffices to apply the fundamental theorem of twisting morphisms and to check mini-
mality, which comes from the fact that doai = d2, where 42 is the differential that encodes the
reduced coproduct A. O

Remarks:

1. Comparing with the first homology and cohomology groups of the bar and cobar con-
structions of quadratic algebras and coalgebras

HO(B®*A) = Al,  Hy(Q,A) = A,

we see that A is a Koszul algebra, i.e. H*(B®*A) ~ Al or He(QsAl) ~ A, if and only if
H"™(B*A) = 0, respectively Hy, (A1) =0, for all n > 1.

2. If f: A — A’is a quasi-isomorphism between augmented DGAAs, respectively, if g : C' —
('’ is a quasi-isomorphism between nilpotent DGACSs, then Bf : BA — BA’, respectively
Qg : QC — QC’, is a quasi-isomorphism.

For any quadratic algebra A = A(V, R), we have

QA2 OBA-—"% A and Ai»"QBQA 2% BA.

~ \_/

p %
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In view of the preceding criterion, A is a Koszul algebra, if and only if one of the maps
p, Qi, i and Bp is a quasi-isomorphism. In that case, all of the considered maps are
quasi-isomorphisms.

3. If A is a Koszul algebra, we can replace the ‘big’ model 2BA of A by the more handy
one QAL



Chapter 5

Classical definition of operads

We will now give a first definition of operads (the classical definition), using the notion
of multicategories. We will also explain why operads can be seen as abstractions of algebras.
Moreover, we will provide some examples of operads, in particular we give a detailed construc-
tion of the operads corresponding to associative and to commutative algebras. Finally, we will
give a second definition of an operad (the partial definition), which mainly differs from the

first one by the composition map.

5.1 Multicategories and operads

Categories are made up by objects and morphisms (which can be composed, composition
being associative and having units). The morphisms of categories have one input and one

output. Multicategory have morphisms with multiple inputs and one output.
Definition 5.1: A multicategory C is made up by

1. a set Cy of objects denoted by a,aq,ao, ...,

2. for any n € N, ay,...an,a, a set Hom(ay,...,an;a) of morphisms,

3. a composition map Vi, . k, :

Hom(ay,...,an;a) x Hom(aii,...,a1x;a) X --- x Hom(ani, - .., ank,; a)
— Hom(aii,...,ank,;a)
(0;01,...,0,) — 00 (01,...,0,),

4. for any a, an identity morphism 1, € Hom(a, a),

such that composition is associative and has identities.

It can be helpful to imagine the composition in terms of trees:

ail ai2 - @1k ag1 a2 - A2ky anl An2 - Qnky
y y y o
al az an

34
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The identity is given by the following tree:

The number of inputs is called the arity.

Multicategories should not be confused with higher categories. A morphism of multicate-
gories is a morphism of categories, i.e. a functor. Small multicategories and morphisms between
them form a category MultiCat.

An example of a multicategory is an operad. An operad is a multicategory with a unique
object. As our interest mainly lies in operads, let us give a more explicit definition.

Definition 5.2 (Classical definition of nonsymmetric operads):
A nonsymmetric operad (or operad without symmetry) P consists of

1. a sequence (P(n))nen of sets, whose elements are called abstract n-ary operations of P,

2. for each integers n, ki,...,k,, a map v, . &, :

P(n) x P(ky) x -+ x P(kn) = P(ky + -+ + k)
(0;61,...,00) — 00 (01,...,0,)

called composition,

3. an element 1 in P(1) called the identity,

satisfying the following associativity and identity properties:

90 (01 e} (9171,. . .,Hl’kl), e ,¢9n ¢} (anl,. . .,Gmkn))
= (90 (91,... ,Qn)) ©) (9171,.. . ,01,,@1,...,9”,1,... 79n,kn)

and
fo(l,....,1)=60=1080.

Often, the operad P is ‘enriched’, i.e. the sets P(n) have an additional structure, for instance
that of modules over a commutative ring R, vector spaces over a field K, or more generally
objects of a symmetric monoidal category C. In this case the composition map = is also required
to be a R-multilinear map, a K-multilinear map, or generally a morphism of C where the
cartesian product is replaced by the tensor product given by the monoidal structure. In the
following we will mainly consider operads in the category Vect, i.e. operads P, where the sets
P(n) are vector spaces and composition is linear.

Operads form a full subcategory Operad of the category MultiCat.
Remark: Many authors refer to multicategories as coloured operads.

Examples 5.1: Let us now consider some examples of operads which will give us a better
understanding of this notion. Moreover, these examples will be of importance in the following.

e The tree operad .7 is made up by the sets .7 (n), n € N*, of planar trees with 1 root and

n leaves. For instance,
r0={V X/ V)

The composition is just the grafting of the roots of the trees 6y,...,0, to the leaves
1,...,n of the tree 6. Let us quote here Boardman and Vogt [BV73]: “[...] the trees are
inspired by the attempt to obtain a general composition operation from a collection of
indecomposable operations.” The identity is obviously given by | € 7 (1).
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e The endomorphism operad &nd(V) over a vector space V is made up by the vector
spaces End(V)(n) = £,(V x -+ x V,V) = Hom(V®", V) of n-linear maps on V, the
usual composition and the identity map idy .

e The symmetry operad . is made up by the sets .#(n) = S,. It is helpful to think of
permutations o € S, in terms of diagrams. For instance, the permutation o = (12 3%) € Ss

can be seen as
1 1
: <
3 3 -

In order to understand composition, consider the following example. Let ¢ € S3 be

as above, 1 = (13) € So, m» = (323) € S3 ,and 73 = (42) € S2. The composite

oo (11,72, 73) is, in terms of diagrams, given by

<52
>

We thus obtain the permutation

N O Ut R W N
N O Ot s W -

1

2 3 4
oo (11,72,T3) = 347 5

6 7

9 1) € Sy.

Note that this composite is a permutation of 24342 = 7 elements, this number is given
by the 7;. Moreover, we see that ¢ acts on 3 blocks consisting, respectively, of 2, 3 and 2
elements, and that the 7; act inside these blocks. In general, the composite oo (7, ..., 7;),

where o € Sj, and 7; € Sy,, is the permutation of ¢; 4 - - - + ¢}, elements, where o acts on
blocks of respective length /1, ..., ¢, and where the 7; act inside the i-th block.

The identity is given by id € S; = #(1).

)
6

Remark (Tree Guidelines 1):

Tree diagrams are quite helpful to understand some sophisticated notions related to op-
erads. It even turns out that trees are intrinsically linked to operads. Complicated operadic
concepts can be reduced to their essence and then be interpreted in terms of trees. Working
with trees is in most cases much easier than handling elaborate formulas, and, surprisingly,
equivalently rigorous. Therefore, we will occasionally spend some time to define the notions
related to trees, to fix the conventions and to explain the relationship between trees and oper-
ads.

In graph theory, trees are usually defined as being acyclic connected graphs (graphs are
made up by vertices and edges joining the vertices). We will slightly modify this definition: the
trees, which we consider here, have no external vertices, and thus the external edges become
half-edges (sometimes called flags). One of the half-edges will be called root and the others are
then called leaves. The choice of a root endows the considered tree with a natural direction from
the leaves (on top) to the root (at the bottom). In the following, if not otherwise mentioned,
vertices and edges always refer to internal ones.
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There exist some special types of trees. The trivial tree |, which has no vertex, and its

unique leaf is at the same time its root. Corollas are trees having exactly one vertex, the
number of leaves can vary in N. For instance,

LAY Y YT

are corollas. The first one, having no leaves, is sometimes called stump. The corolla with n
leaves is also called the n-corolla.

Abstract n-ary operations are usually represented by corollas with n leaves. The leaves
correspond to the inputs, whereas the root corresponds to the single output. Composition of
these operations is given by grafting the corresponding trees. Grafting means that the roots
of the trees to be grafted are identified with the leaves of tree on which they are grafted. For

. Y.<

Note that composition with the trivial tree does not change the initial tree, therefore the trivial
tree is the identity for this composition by means of grafting.

Often, we will not explicitly draw the vertices of trees (except for the stump).

As already mentioned, trees (in particular corollas) are used to represent abstract opera-
tions. In general, it is possible that we have to deal with multiple (different) abstract operations
having the same number of inputs. In the above example we considered, in particular, two trees
with two leaves. Suppose that they correspond to different operations. In order to be able to
distinguish the two trees, we decorate the vertex of the tree by the considered operation. If
the three operations, which we considered in the above example, are denoted by u, v1 and s,
respectively, then the corresponding trees are:

N/ NS N/
" 141 v2
|, \ and | .

Composing abstract operations gives rise to a new abstract operation. In the above example,
we obtained an abstract operation with 5 inputs. Denoting this operation by A, the equality

v(p; v1,v2) = A reads as N\
NN

N/
f |
\

5.2 Symmetric multicategories and symmetric operads

The action of the symmetric group S, on V®" can be defined in two different ways. Either,
one can define the left .Sj,-action by

g.(v1®...®vn):vol®...®va_n
and the right S,,-action by
(/U1®...®'Un).o':/ugl_1®...®/Uo_;1’
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or, one can define the left S,-action by

O_*. (’Ul@@vn) :Uo'l_l ®...®UU;1
and the right S,-action by

(U1®...®fvn).0*:fval ®...®fvo_n7

for any 0 € Sy, 11 @ --- Q@ v, € VO,

Remark: In the following we will prefer the latter convention and omit the adjoint symbol .
Note further that we are mainly interested in right S,-actions, therefore also representations of
the symmetric group will be considered as right S,,-modules, rather than the previously used
left S,,-modules.

In order to define symmetric operads, we will first define symmetric multicategories.

Definition 5.3: A symmetric multicategory C is a multicategory endowed with a family of
maps
— -0 :Hom(ay,...,ay,a) - Hom(ag,,...,as,,a),

o € Sy, satisfying usual action conditions

@-0)-T=0-(coT), (5.1)
0-id =0,

and the compatibility condition with composition

(9 ’ U) o (9001 "oy Pop 7rUn) = (9 0 (9017 s ’9071)) : (U o (77017 s aﬂ-an))’ (5'3)
where 6 and ¢; denote morphisms, and ¢ and m; denote permutations.
Remarks: Let us detail the axioms in this definition.

1. The conditions (5.1) and (5.2) entail that the maps — - o are bijections. The inverse of
— .o is given by —- o1,

2. The equivariance condition (5.3) roughly requires that the action commutes with com-
position. The precise meaning of this condition will be treated in the Tree Guidelines 2
on page 40.

Note also that the last permutation in (5.3) is a composite in the symmetry operad.

Definition 5.4 (Classical definition of symmetric operads):

A symmetric operad (or operad with symmetry) P (in the category Vect) is an operad (in
Vect), such that the vector spaces P(n) are endowed with a right S,-module structure which
is equivariant with respect to composition in the sense of (5.3).

Remarks:

e It is also possible to consider (symmetric or nonsymmetric) operads without unit, just
by forgetting about all conditions involving the unit in the definitions.

e It always possible to consider a symmetric operad as an operad without symmetry, just
by forgetting about all conditions involving symmetry.

e A sequence (P(n))pen of vector spaces P(n) with right S,-module structures, like in
the previous definition, is also called an S-module P. We will later deal a lot with such
S-modules.
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5.3 Morphisms and representations of operads

Operads are important through their representations. In order to define representations of
operads, we first have to define morphisms of operads.

Definition 5.5:

e A morphism ¢ : P — @Q of nonsymmetric operads (in the category Vect) consists of a
sequence of linear maps ¢, : P(n) — @Q(n) that respect composition and units, i.e.

on(@op (01,...,0,)) = ©n(8) o (0k, (61),- .., ¢k, (0n)) and ¢1(1p) = 14.

e A morphism ¢ : P — Q of symmetric operads (in the category Vect) consists of a
sequence of linear maps ¢y, : P(n) — Q(n) that respect composition and units and such
that

n(0-0) = n(0) - o,
for 0 € P(n), o € Sp.

A representation of an operad P is a morphism of operads p : P — &nd(V). Note that
this definition makes sense, since the endomorphism operad admits not only the structure of
a nonsymmetric operad, but also the structure of a symmetric operad. Indeed, we can define

the S,-module structure on &nd(V)(n) = £, (V x --- x V,V) = Hom(V®", V) by
@)@ Quy) =0(0-(11® - Quy)) = «9(1}0;1 ® - ®U,-1), (5.4)

for 0 € &nd(V)(n),0 € Sp,v1 @ -+ @ v, € VO We will detail equation (5.4) in the Tree
Guidelines 2 on page 40.
Let us give the precise definition of a representation of an operad.

Definition 5.6: A representation of a nonsymmetric operad P (in Vect) on a vector space V'
is a morphism of nonsymmetric operads p : P — &nd(V), i.e. made up by a family of linear
maps py, : P(n) = &nd(V)(n) = Hom(V®", V) that respects composition and identity.

Remark: The linear maps p,, : P(n) — &nd(V)(n) can also be viewed as
pn € Hom(P(n), Hom(V®™,V)) =~ % (P(n) x V", V) = Hom(P(n) ® V¥ V).

Definition 5.7: A representation of a symmetric operad P (in Vect) on a vector space V is
a morphism of symmetric operads p : P — &nd(V), i.e. made up by a family of linear maps
pn: P(n) — &nd(V)(n) = Hom(V®™ V) that respects composition and identities, and verifies
pn(0-0)=pp(0) -0, for 6 € P(n),c € 5,.

Remark: The S,-linear maps p,, can be viewed as p, € Hom(P(n) ®g, V", V). Note that the
tensor product, which is over K[S,,], encodes S),-linearity.
Indeed,

pu(0-0) (01 ® - @) = pu((6-0) & (11 @ D)) = a0 ® (0 (11 @ - D v)))
= (@) (0 (01 ® - D)) = (pu(8) - ) (V1 ® - D vy),

where the last equality comes from the symmetric structure on &nd(V).

As mentioned previously, operads are important through their representations. Indeed,
pn associates to abstract m-ary operations § € P(n) concrete m-ary operations on V, i.e.
pn(0) € Hom(V®™ V). Therefore, one can actually get an algebraic structure on V. More
precisely, it turns out that to any type of algebras (with operations having one output), one
can associate a specific operad. A representation of this operad on a vector space V endows
it with corresponding algebraic structure. This justifies the terminology ‘algebra over P’ and
‘P-algebra’, and allows understanding that an operad should be viewed as an algebraic theory.
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5.4 The commutative and associative operads

We will now construct the operads $om and @7ss corresponding to commutative and to
associative algebras. But first, we should get a better understanding of tree diagrams.

Remark (Tree Guidelines 2): A planar tree is a tree with a specified embedding in the plane.
Note that every tree can be embedded in the plane. In particular, such an embedding induces
a natural ordering (from left to right) on the leaves of the tree, and thus an ordering on the
inputs of an abstract operation.

In contrast, a nonplanar tree has to be viewed in (3-dimensional) space, where no implicit
ordering on the leaves is given. The ordering has thus to be specified explicitly.

For instance, for the planar corolla with 3 leaves, there exists a unique specification for the

leaf ordering:
1 2 3

but there are 6 different specifications for the nonplanar 3-corolla:
1 2 3 2 3 1 3 1 2 2 1 3 1 3 2 3 2 1
Y’Y’Y7Y7Y’Y. (5.5)
Note that for a given planar embedding of a nonplanar tree, all other ones are given by
permutations of the leaf ordering.

Planar trees are used to describe abstract operations of nonsymmetric operads, where no
symmetry is involved, whereas nonplanar trees are used to describe abstract operations of
symmetric operads. The symmetric group action on an abstract operation € can be seen as
permutation of the leaf ordering of the corresponding corolla.

In order to get a better idea of this symmetric group action, let us consider the example of

a concrete operation 6, which we will think of as an associative ternary multiplication. Applied
to elements a, b, ¢, we have 6 possibilities to define such an operation:

01(a,b,c) = abc, O2(a,b,c) = cadb, 03(a,b,c) = bca, ...

We easily see that these 6 possibilities come from a unique underlying operation 6. For instance,
if we take 0 = 61, then 6(a,b,c) = 6(c,a,b), O3(a,b,c) = 0(b,c,a), ... This means that for a
fixed operation, the other possibilities are obtained by permuting the inputs.

We also may identify the operations 6y, ..., 60 with corollas:
1 2 3 1 2 3 1 2 3 1 2 3
N1/ N/ N/ N1/
01 02 03 06
‘ 9 ‘ 9 ‘ ) 9 ‘ )
where
1 2 3 1 2 3 1 2 3 2 3 1 1 2 3 31 2
AN VN V4 AN AN V4 AN VN V4
01 - /] ’ 2 - 0 ’ 03 - 0 ’

Therefore, we identify

91:9-1(1, 92:9'0', 93:9'0‘/, ey
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where o = (3371), 0’ = (313), ...
Note that the leaf ordering of 6 - 0 can be seen as being obtained from the one of the

corresponding @ by applying o~ .

Recall the definition of the symmetric group action on the endomorphism operad (5.4). In
terms of tree diagrams, (6 -0)(v; ® --- ® v,,) reads, for n = 3 and o as above, as

vl V2 V3
1 2 3

N/
0-c

1

Since the input ordering of € - o is obtained from the one of 6 by applying o=, we can obtain

the one of 6§ by applying ¢ on the input ordering of 8 - 0. Thus, we get

which is the tree diagram corresponding to 6(v3 ® v ® v2), or generally O(v, -1 ® --- ®v_-1).
1 n

We are now able to understand the equivariance requirement (5.3).

Consider a 3-ary operation 6, a 5-ary operation (1, a 2-ary operation ¢, and a 4-ary
operation (3, which we think of as corollas with natural input ordering from left to right.
Moreover, we consider the permutations o = (1%3), m = (}33473), m = (12), and m3 =

(123%). Then the LHS
(9 : U) © (Q00'1 * Moy Pos * 770'2)800'3 : 7TU3)

of (5.3) corresponds to the tree diagram

1 2 1 2 3 4 1 2 3 4 5 2 1 1 4 2 3 5 1 2 3 4
\/ N\ // EANV/Z4 \/ ANV4 N\
p2-T2 313 Y111 ¥2 ¥3 ®1
| | | _ | |
1 2 3 2 3 1
\ 0.‘0 / \ g /
|

which we may then see as the 11-corolla

7 &\Kg\m/ 5/)/1// 4

For the rRHS
(9 © (‘7017 ¥2, 903)) : (O- ° (71-01’7['0277703))
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of (5.3), we have to consider the permutation o o (7s,, Tg,, Tes) given by

1 1
2 2
3
3 4
4 5
5
6 6
7
7
8 8
9 9
10 10
11 11
i.e.
oo (71-01’7[-0277703) = (%ggﬁ 8 1%%?%130 141)
Therefore,

IS\ \\\\\/////

(Bo(p1,2,3))(00(To oy T3 ) Bo(p1,02,03)

Finally, we get, for the LHS and the RHS, twice the same corolla with the same leaf ordering.

In the following, we would like to construct the operads «/ss and %om, corresponding

to associative, respectively commutative algebras. Therefore, we will try to identify abstract
operadic operations (pictured as trees) with concrete algebraic operations. In our case, this
will mostly be the bilinear multiplication p. The considered algebra will typically be denoted
by A, and its elements by a,ai,...,an,...

1. The operad %om is the symmetric operad associated with commutative associative non-

unital algebras.

The two abstract operations

1 2 2 1 1 2

N/ and =

0 o wer

correspond to

w(ay,az) = araz and g (a1, a2) == (u-7)(a1,a2) = plaz,a1) = asa;.

Here, 7 € Sy denotes the transposition. Due to commutativity, we should get that the two
operations are the same. This is obtained by choosing the trivial action as the symmetric
group action. In this case, any permutation acts as identity. Here, we have -7 = ¢/, but
due to the trivial action, we also have p -7 = u, thus we get the desired u = p’. Finally,
the two considered 2-ary operations are the same, thus, there is only one unique 2-ary
operation, and the vector space Gom(2) is the one-dimensional vector space generated
by this operation. We can thus identify $om(2) ~ K.

Moreover, there is only one 1-ary operation, namely id 4, represented by the trivial tree
|, i.e. the operadic unit. Therefore, also om(1) is a one-dimensional vector space, and

we have om(1) ~ K.
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Operations with 3 or more inputs are obtained by composing 2-ary and 1-ary operations.
Due to associativity, we have, for n = 3:

1 23 12 3
\/) K\/
2 2
\ - /o
Ju j
| |

Therefore, we can view 3-ary operations as corollas, i.e. we obtain the trees in (5.5). Again,
using commutativity, we get that $om(3) is generated by a unique 3-ary operation. Thus
tom(3) ~ K.

Similarly, for n-ary operations, n > 3, we get ¥om(n) ~ K. Finally,
¢om(n) ~K, forn>1

and
%om(0) = 0,

since there are no 0-ary operations. The symmetric group action on the spaces Gom(n)
is given by the trivial action.

2. The operad «7ss is the symmetric operad associated with associative nonunital algebras.

As previously, there are no 0-ary operations (i.e. @ss(0) = 0), and we have a unique
l-ary operation id 4, given by the operadic unit. Due to the lack of commutativity, the
binary multiplication p gives rise to two different binary operations

1 2 2 1 1 2

\/ \/ \/

L and =

Thus, </ss(2) is two-dimensional.

Concerning ternary operations, we get, using associativity as previously, the 6 corollas
n (5.5). As we have seen before, the symmetric group action changes the leaf ordering,
i.e. acting by a permutation ¢’ € S3 on one of these corollas, we obtain another corolla.
Since the corollas are only determined by their leaf ordering, we can identify each corolla
with an element ¢ of the symmetric group S3, or better with a base vector e, of the
vector space K[S3]. Thus, 27ss(3) = K[S3], and the symmetric group action is obviously
the regular action.

For n-ary operations, n > 3, the result is similar. Finally,
ss(n) ~K[S,], forn>1

and
ss(0) = 0.

The symmetric group action on the spaces o/ss(n) is given by the regular action.

We previously defined an 7ss-algebra as an operadic morphism p from 7ss to &nd(V).
We will now show, using the above constructed operad «ss, that such a representation
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actually provides an associative multiplication % := ps(id) € Hom(V®?2 V). Note that we
identify the basis of K[S,] with S,,. The proof of associativity is given by the following
commutative diagrams:

Sy X (S1 X Sa) 14 S3
id id id id
p{ p{ p{ p{
* id * ay * (az x as)

Hom(V®2 V) @  (Hom(V,V) ©  Hom(V®2V)) 22 Hom(V®3, V)

and

Sa X (So X S1) R Ss3
id id id id
p{ p{ p{ p{
« * id (a1 * ag) * as

Hom(V®2, V) ® (Hom(V®2, V) ® Hom(V,V)) 2% Hom(V®3,V).

Hence, we have the desired associativity: (a1 x az) * ag = p3(id) = a1 x (a2 * a3).

3. The operad ue/ss is the symmetric operad associated with associative unital algebras.

This operad is identical to the operad 7ss, except in arity 0. The unit u : K — A, 1g —
14 of the considered algebra A is an operation of arity 0. This is quite obvious, since we
have no input (in A), but one output, namely the algebraic unit 14 € A. This operation
corresponds to the 0-corolla T with no leaves, or, by decorating its unique vertex by the

considered operation u, to

Due to unitality 14 -a = a = a - 14, which corresponds to
u 1 1 1 u
(J=1-0/,
I I
\ \

we do not get any additional operations of arity n > 1. However, since we now also have
an operation of arity 0, ue/ss(0) is one-dimensional and we may identify

ud/ss(0) ~ K[So],

where Sy = {id}.
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We previously showed that a representation p from &/ss to &nd(V') provides an associative
multiplication x = po(id) € Hom(V®?2 V). We will now show, in a similar way, that
1 := po(id) € Hom(V®°, V) = Hom(K, V) defines a unit. The proof of unitality is given
by the following commutative diagrams:

So X (So X Sy)) 5

id id id id
p{ po[ p{ p{

* 1 id lxa=a

Hom(V®2, V) ® (Hom(K, V) ® Hom(V,V)) 2% Hom(V, V)

and

So X (S1 X So) 14 s St

id id id id
p{ p{ p{ p{

* id 1 axl=a

Hom(V®2 V) ©  (Hom(V,V) ®  Hom(K,V)) 22 Hom(V,V).
Hence, we have the desired unitality requirement: 1 xa =a = a % 1.

4. The operad u%om is the symmetric operad associated with commutative associative
unital algebras.

It is identical to the operad %om, except that the space u%om(0) ~ K. This is due to
the fact that we also have an operation of arity 0, namely the unit.

Remark: Let us notice that the action of the symmetric group encodes the symmetries of the
operations of the considered algebraic structure. More precisely, commutativity corresponds
to the trivial action, since any permutation of the factors still gives the same result. If no
symmetry is present, we get the regular action, since, in general, any permutation of the
factors gives another result. Following this idea, anticommutativity should correspond to the
signature action.

If no symmetry is present, we can also consider nonsymmetric operads. Following the
above philosophy, we have to consider planar trees instead of nonplanar ones. In the case of
associative algebras, the multiplication p corresponds to the unique (planar) corolla with 2
leaves. Similarly, any operation with 3 or more inputs corresponds to a unique corolla, so
that all the spaces /s(n), n > 0 are one dimensional. We usually denote the nonsymmetric
associative operad by .7s.

5.5 Partial definition of operads

The partial definition is an alternative way to define operads. The main difference to the
classical definition lies in the composition. We will only consider the case of symmetric operads,
since the nonsymmetric case can be obtained by forgetting about symmetry.
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Definition 5.8 (Partial definition of operads):
A symmetric operad consists of a sequence (P(n))nen of vector spaces endowed with a right
Sn-module structure, partial composition maps

—o0;—:P(m)® P(n) = P(m+n—1),

for 1 <i <m and n > 0, and a unit element 1p € P(1) satisfying associativity, equivariance
and unitality requirements given below.

In terms of trees, partial composition p o; ¥ means that the root of the tree corresponding
to v is grafted onto the i-th leaf of the tree corresponding to .

\\y//
\z‘u/

In order to formulate the associativity requirement, notice first that there are two possible
cases for partial composition of 3 operations. In terms of trees, these are

N ™~
\i}\/ \\

‘ and

Thus, the associativity requirement reads as

(Aojp) 0ipjorv=2Xo; (nuojv), forl1<i<(1<j<m,
(Noj ) oppak—1v = (Aogv)oyu, forl1<i<k<l,

for any A\ € P(¢), p € P(m), v € P(n).
The unitality requirement is given by

poilp=p and 1lpojpu=p,

for any p € P(n), 1 <i<n.

In order to be able to formulate the equivariance requirement, we have to define the partial
composition in the symmetry operad. For two permutations o € S,,, 7 € S,,, the permutation
00; T € Smin—1 is obtained by inserting 7 in the i-th place of 0. Equivariance is now given by

(1-0)0i (v-7) = (pogm v) - (70 7),

for any p € P(m), v € P(n), 0 € Sy, T € S,
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For instance, if m = 4, n = 3, 0 = (}
(- 0)o; (v-T) corresponds to

2 3 1
NI/ NI/

v-T

1.2 3 4 5 6 3.5 6 4 2 1
S\ | _ N\

(pro)oz(v-T) 1 2 3 4 3 4 2 1
| V% V% |
wo It
| |

The permutation o o; 7 is given by

1 1

2 2

3

4 3
4

5 5

6 6

and (p og(;) v) - (0 0; T) corresponds to

1 2 3 4 5 6 3 5 6 4 2 1
S /T _ SN LT

(poav)-(oo2T) poav

Finally, we find twice the same tree with the same leaf ordering.

The partial definition is equivalent to the classical definition. Since the main difference
between the two definitions lies in the composition maps, we will only detail this aspect.

Starting form the composition 7, we can define the partial compositions — o; — by
LOi V= Ym:1, Ani,..1(;id, ..., id, v, id, ..., id).
Conversely, the composition map ~ can be obtained by defining

Ver,ohn = (—01 (- (=op—1(=0p=))-+-)).
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Functorial definition of operads

In this chapter, we will consider a third equivalent definition of operads. An operad will
be given as a monoidal structure on an endofunctor in the category of vector spaces, more
precisely on a Schur functor, which is a special kind of endofunctor. This allows, in particular,
to substitute the equivalent and often advantageous viewpoint of S-modules to the one of
endofunctors.

6.1 Monoids, monads and Schur functors

Let us first explain some category theoretical concepts which are needed in order to give
this functorial definition of an operad.

Definition 6.1: A monoidal category C is a category with a bifunctor ® : C x C — C and an
object I called unit, satisfying associativity and unity requirements (up to a natural isomor-
phism).

Remark: If the natural isomorphisms mentioned in the above definition are given by identities,
then the considered monoidal category is called a strict monoidal category.

Examples 6.1: The two examples of monoidal categories considered here are in fact strict
monoidal categories.

e The category Vect of vector spaces over K with the usual tensor product ® and unit
I = K is a monoidal category.

e The category End(C)=[C,C] of endofunctors in C, whose objects are functors from C
to C and morphisms are natural transformations, is a monoidal category. The monoidal
structure ® is given by the composition o of endofunctors and the identity I is given by
the identity functor.

Definition 6.2: A monoid in a monoidal category (C,®,I) is an object P together with two
morphisms v : P ® P — P (called composition) and i : I — P (called identity), satisfying
associativity and unity requirements.

Example 6.2: An associative unital algebra with multiplication v and unit ¢ is a monoid in
(Vect, ®, K).

A monoid can not be defined in an arbitrary category C. However, it is always possible to
define a monoid in the category End(C), which is always a monoidal category. A monoid in
End(C) is also called a monad (or triple) in C.

48
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Definition 6.3 (Functorial definition of operads):
An operad is a monad in the category Vect, i.e. a monoid in the category End(Vect) (with
monoidal structure o).

More precisely, an operad P is an object in End(Vect), i.e. a functor P : Vect — Vect
together with two maps v : Po P — P and i : I — P, which are natural transformations,
satisfying associativity and unity requirements given by the following commutative diagrams:

Po(PoP)~(PoP)oP ? S pop and IoP

N N 9

PoP P P

Note that, for two endofunctors P, () € End(Vect), the composition o is obviously defined
by
(Po@)(V)=PQ(V)) and (PoQ)(£) = P(Q(L)),

for any vector space V and any linear map £. It is also possible to define additional operations
on endofunctors in Vect, namely the tensor product and the direct sum, by

(PoQ)(V)=PV)2Q(V)and (P Q)(¢) = P(f) © Q(f),

respectively

(PoQ)(V)=PV)®Q(V)and (P Q)(¢) = P(£) ® Q(L),

for any vector space V and any linear map .

6.2 S-modules

Definition 6.4: An S-module P is a sequence (P,),ecn of vector spaces endowed with right
Sp-module structures.

In view of the classical definition, operads are defined by means of S-modules. To an S-
module P, we can associate an endofunctor P : Vect — Vect, called Schur functor, by

P(V) = &P P(n) ®s, V"
neN
and

P(t) = P idwgs, (5" : P(V) — P(W),
neN

for any vector space V and any linear map £: V — W.

A Schur functor is thus a special kind of endofunctor in Vect, thus defines an operad in view
of the previously given functorial definition. In the following, we would like to limit ourselves to
operads given by Schur functors. Showing that Schur functors are in one-to-one correspondence
with S-modules will then allow us to use the functorial and the classical definition of operads
in an equivalent manner.

In particular, the identification of S-modules and Schur functors should respect the oper-
ations o, @ and ®. Therefore, we first have to define these operations for S-modules.

The direct sum of two S-modules P and @ is defined by

(P®Q)(n) = P(n)©Qn),
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concerning vector spaces, and by (u@®v)-o = (u-0) + (v-0), concerning the Sy,-action. From
this definition, it follows that

—~—

PeQ=PaQ.
The tensor product of two S-modules P and @ is defined by
(P2Q)n @ Ind5xs P(i) ® Q(5),
i+j=n

which is a right S,-module. It can be shown that from this definition, it follows that

PoQ=P®Q.
Remark: By proposition 1.3 we get that
PeQ)n) = @ PH®QH) K |5y « g | = @ Pi)© Q) ®Klsh(i, )]
i+j=n i+j=n

as vector space, where sh(i, ) denotes the space of (i,j)-shuffles, i.e. permutations of i + j =
n elements, where the first ¢ and the last j elements are respectively in natural order, i.e.
permutations o € Si;; with 01 < ... <o; and 0,41 < ... < 044j.

The composite of two S-modules P and @ is defined by
= P P(k) @5, Q¥ (n)

keN

=€BP<k>®sk( o Indﬁgx...xs%an@---@@m).

keN i1+ i =n

This is a right S,-module if Q®¥(n) carries a left Sj-module structure which is compatible
with the right S,-module structure.

Remark: As previously, we get by proposition 1.3 that
(Po@Q)n)= O Pk)@s, (Qlir) @ ©Q(ix)) @ K[sh(ir, ..., ix)]-

11+ tip=n
This space is spanned by equivalence classes (for the Si-action) of elements (u;v4, ..., vk 0),
where i € P(k), v; € Q(i;) and o € K[sh(i1,. .., )]

The left Sp-module structure on Q®*(n) is explained by the following example. Consider
the case k = 2, and let 7 € Sy be the transposition, then the action of 7 on

Q% (n) = P Q)@ Q(j) @ K[sh(i, 5)]

1+j=n

is given by
7 (v1,2,0) = (va,11,0"),

il lij j‘lH - H'J) Indeed, for instance, if i =3, j =2 and o = (§3317),
342)=(12342). Hence, roughly, the Sg-action on Q¥*(n) is given by the
action on Q(i;) ® --- ® Q(ix) and by changing the shuffle appropriately.

It can be shown that from this definition, it follows that

Po@Q=PoQ.
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Remark: Operads are abstractions of algebras, however, not all results can be transferred from
the algebraic to the operadic setting. The tensor product ®, providing the monoidal structure
on Vect is bilinear, whereas the composition o, providing the monoidal structure on End (Vect)
is only linear in the left factor. This is best seen in the above given formula for the composite of
S-modules, and due to the fact that the right factor @ appears multiple times in this composite.

This weakened form of bilinearity will be the source of several obstructions in the following.

An S-module morphism is a sequence of linear maps, commuting with the symmetric
group action. S-modules and S-module morphisms form a category S-Mod. This category is a
monoidal category with monoidal structure given by the composition o and the unit S-module
I=(0,K,0,0,...).

As the map ™ : {S-modules} — {Schur functors} respects all operations, we can identify
S-modules and Schur functors, provided this map is injective.
In order to proof injectivity, we need the following

Lemma 6.1: P(n) is the n-multilinear part of P(Kxy @ --- ® Kay,).

Proof: The k-th tensor power (Kz1 @ - - - @ Kz, )®* admits a basis made up by elements of the
form w;, - - - x;, (where the tensor product ® is omitted). Multilinear means that all the x;-s
are different and n-multilinear thus means that we only consider basis elements of the form
Toy T, 0 € Sp. The n-multilinear part .#Z"(P) is finally given by .#"(P) = P(n) ®s,,
> oes, k7o, - -+ Tg, . Consider now an element of the form 0®@7-(x1---2,) = (0-7)® (21 - - - xp),
which can also be viewed as an element of P(k) @ K(x1 - - - x,), where the latter factor is a one-
dimensional vector space. Finally, we can identify the considered element with -7 € P(n). O

Injectivity now follows immediately. Indeed, if the two Schur functors P and Q are equal,
they have to coincide on every vector space, in particular P(Kz; ®--- ®Kzy,) = Q(Kz1 @ - - - @
Kzy,), for any n, thus their n-multilinear parts are equal, for any n. Finally, P(n) ~ Q(n), for
any n, i.e. P~ Q.

Remark: We will now confine ourselves to operads given by Schur functors. This allows to view
an operad either as an S-module or as a Schur functor, using the most convenient standpoint
depending on the situation.

It can be shown that the functorial definition of an operad is ‘equivalent’ to the classical
definition. We will only give a rough description how the classical structure of an operad can
be obtained from the functorial one in the nonsymmetric case.

Using the S-module viewpoint, an operad P provides a sequence (P(n)),en of vector spaces.
The sequence of linear maps 7, : (P o P)(n) — P(n), where

(PoP)n)= @ Pk)®P(i1) - ® P(iy),
. keN
11+ tip=n
gives rise to the composition maps v;,,. 4, : P(k) ® P(i1) ® --- ® P(iy) — P(n), whereas the
sequence of linear maps i, : I(n) — P(n), where I(1) = K and I(n) = 0 for n # 1, gives rise
to the identity i; : K — P(1),1+ i1(1) =: 1p.

6.3 P-algebras

In the classical setting we considered P-algebras, which are representations of an operad
P on a vector space, i.e. a sequence of linear maps p, : P(n) ®g, V¥ — V that respects
composition and identity. In the functorial setting, we give, using the endofunctor standpoint,
the following
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Definition 6.5: A P-algebra is a vector space V together with a linear map vy : P(V) — V,
such that the following diagrams commute:

(PoP)V)=P(PV) vy 1v)2Y

P(W)J Jw X ‘L‘W

P(V) 1%

A%

The classical and the functorial definition of a P-algebra coincide (if P is a Schur functor).
Starting from the functorial definition, we get that a P-algebra is a vector space V together
with the linear map

w: P(V) = P(n) ®s, VE" =V,
neN

which is made up by a sequence of linear maps
W i P(n) ®g, V" =V, neN,

that respects composition and identity, which is encoded in the commutative diagrams.

Indeed, the triangle diagram encodes that the abstract identity is sent to the concrete one.
The square diagram encodes that ‘the concrete map associated to abstract composition’ (in
the upper and right parts of the diagram) and ‘composition of concrete maps’ (in the left and
lower parts) coincide.

Let us roughly explain what happens in the ‘composition of concrete maps’ Since com-
position of Schur functors coincides with the Schur functor associated to the composite of
S-modules, we essentially have

(PoP)(V)=Pk)®P(i1)®---® P(ix) ® V@it tix)
~ P(k) ® (P(il) ® V®"1) @ ® (P(ik) ® V@k)

P(yv)=id @2F
MP(k)@V@---@V:P(k)QQV@’“”—%M

where we omitted the direct sums in order to simplify notations.

Definition 6.6: Let (V,~y) and (W,~yw) be two P-algebras. A P-algebra morphism ¢ :
(V,vv) — (W, yw) is a linear map ¢ : V' — W, such that the following diagram commutes:

PV) X5V

P(w)l Jw

P(W)—— W.

w

P-algebras and P-algebra morphisms form a category P-Alg.

Definition 6.7: The free P-algebra over a vector space V' is the P-algebra F'(V') together with
the linear map i : V' — F(V'), such that for any P-algebra A and any linear map ¢ : V — A
there exists a unique P-algebra morphism ¢ : F(V) — A such that ¢ = ¢ o1, i.e. the following
diagram commutes:
V5 F(V)
X 5

I

I
3
A.
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If existence of the free P-algebra is proved, we get that F' is a functor from Vect to P-Alg
and that i : V' — F(V) is functorial in V, since for any linear map ¢ : V' — W, there exists a
unique P-algebra morphism F'(¢) : F(V) — F(W), such that the following diagram commutes:

VY FV)
|
¢ | F(0)

W —— F(W).

7%
Existence of the free P-algebra is given by the following

Proposition 6.2: The free P-algebra over V is the vector space P(V) = @,y P(n) ®g, VE"
given by the Schur functor P, endowed with the P-algebra structure ypy : P(P(V)) — P(V),
given by the monoidal composition (V) : (P o P)(V) — P(V), together with the linear map
iv : V. — P(V), given by i(V) : I(V) — P(V).

Remark: Operads are exactly what is needed to construct free algebras.
Example 6.3: We will now revisit the operads &/ss and $om.

1. In view of the previous proposition, the Schur functor 7ss applied to a vector space V
should provide the free associative nonunital algebra over V', which is the reduced tensor
algebra T'(V'). This means that we should have

ss(V) = EB dss(n) ®g, VO = @ Ve =T(V).
neN neN*

Recalling that the tensor product ®g, is actually over K[S,], we get that
ss(n) = K[Sy],
for n > 1 and #7ss(0) = 0. Hence, we obtain the same result as previously.

Concerning us/ss, the Schur functor u«/ss applied to a vector space V should provide
the free associative unital algebra over V| which is the tensor algebra T'(V'). This gives
again that uaZss(n) = K[S,], for n > 0.

2. The Schur functor ¢om applied to a vector space V' should provide the free commutative
nonunital algebra over V', which is the reduced symmetric algebra S(V'). Note that

SV)=@@ V=~ (V¥ ,

neN* neN*

i.e. given by tensors which are invariant under the symmetric group action. This means
that we should have

Gom (V') = @ Gom(n) ®g, V" = @ SV = S(V).
neN neN*

In view of the previously obtained form of %om, we should obtain that K ®g, V®" =
(Ven) s, » Where K is the trivial representation. Indeed, elements of K®g, V" are of the
form

Zk@(vl'--vn):Zk'a®(v1~-vn):Zk®a-(v1~-'vn):Zk@)(vgl—p--va#),
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which is also an element of (V®") s, » and vice versa. Hence, we have
om(n) =K,
for n > 1 and $om(0) = 0.

Concerning u%om, the Schur functor u%om applied to a vector space V should provide
the free commutative unital algebra over V', which is the symmetric algebra S(V'). This
gives again that uom(n) = K, for n > 0.



Chapter 7

Free operad and combinatorial
definition of operads

The notion of ‘free operad’ will be important in the following, as it allows to give an operad
using only some generating operations, from which all other ones will be freely constructed. A
type of algebras can thus be encoded in an operad, which is given as the quotient of a free one
(encoding the generating operations) by an operadic ideal (encoding the relations).

Moreover, we provide a fourth equivalent definition of operads, namely the combinatorial
definition, which will make the relationship between operads and tree diagrams explicit.

7.1 Free operad

7.1.1 Construction of the free operad

As operads can be regarded as abstractions of algebras, we would like to define the free
operad over an S-module in a similar way as we defined the free associative algebra over
a vector space. However, due to the lack of linearity in the right factor of the composition
of S-modules, this is not possible. Therefore, we will define the free operad using a limiting
procedure.

As for any free object, the free operad over an S-module M is defined by means of a
universal property. Namely, as being the operad F(M) together with the S-module morphism
i: M — F(M), such that for any operad P and any S-module morphism ¢ : M — P, there
exists a unique morphism of operads ¢ : F(M) — P, such that ¢ = @ o, i.e. such that the
following diagram commutes:

M —1 F(M)

|
(X%
XN’

P.

Equivalently, one can define the free operad functor S-Mod — Operad as being the left adjoint
functor to the forgetful functor Operad — S-Mod.

In order to construct the free operad, we will view the S-module M as a Schur functor and
define the sequence of Schur functors (7, M),en by

ToM =T
IAM=Td M
IM=IdMo(IdM))=I1I&(MoAM)

95
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TM =1& (Mo F,_1M)

Remark: In general, we cannot develop the above expressions, since the composition is only
left-additive. However, if it were biadditive, we could write Z,M = I &M S M2 @ -- - M°",
which would then give the operadic analogue of the tensor algebra, which is the free associative
algebra.

Moreover, we recursively define a sequence i, : I, 1M — J, M of natural transformations
by

ihW: M — M, I—-1IdM
and
in: I M =1 (MO <771_2]\4) — I M =1 (MO %—1M)) iy, = idy EB(ldM Oin—l)-

Note that i, is a split monomorphism. A monomorphism is a left-cancellable morphism,
i.e. a morphism f, such that fog = foh = g = h. In concrete categories, a monomorphism
is a slightly weaker concept than an injection, which is itself a slightly weaker concept than a
split monomorphism.

Finally, we have a direct system (7, M,i,) and we can take the direct limit (also called
inductive limit or colimit):

fM:@%M:H%M -,

where the equivalence relation ~ is given by the identification in the disjoint union of %, 1M
and its injection in 7, M. Thus, we can also see .7 M as being the increasing union (J,, 7, M.
This direct limit 7 M will play the role of the free operad over the S-module M.

Let us detail another viewpoint, using tree diagrams, of the free operad. In order to do this
we need some more information about the relationship between operads and trees.

Remark (Tree Guidelines 3): Recall that the composite P o @@ of two S-modules P and @ is
defined by

(Po@Q)(n)= P Pk) ®s, (QUi1) ®-- @ Qi) ® K[sh(i1, ..., )],
k
114 Fip=n

and that this space is spanned by (equivalence classes of) elements (u;v1, ...,V 0), where
uwe P(k‘), v; € Q(l]) and o € K[Sh(il, .. ,Zk)]

In order to simplify notations, we will often omit the shuffles in the following. An element
(501, ..., ) will be represented by

NI/ \/ \\// 0 o
\\#/ \\P/

‘ , respectively by ‘ ,

Q

if we are not interested in the chosen operation (and its arity), but only in the corresponding
space.



Chapter 7 — Free operad and combinatorial definition of operads 57

We will now apply this notation to the case of the free operad 7 M, which is sometimes
called the tree module.
The unique element id of oM = I is represented by the trivial tree |. If we consider, for

instance, an element (u;id, p1, po,id, u3) of M o (I & M) C F5M, it can be represented by
\u\l/ \\ // v y
\ \\ | //
, or, more generally, by ]\‘/1

Note that, in particular, elements
M_M M M M
M

of M°? are of this type, so that M°2 C %M. In general, .7, M is the space of trees with n
levels at most, whose vertices are labelled by (elements of) M. Furthermore, M°" C 7, M.

We have, by successive application of the iy-s, morphisms i, ,, : 7, M — 7, M. These give
rise to a morphism u : I — J M. Moreover, we have morphisms j, : M o 9, 1M — T, M
given by inclusion of the second term in the definition of .7, M. These give rise to a morphism
jiM— ITM.

Theorem 7.1: There is a composition morphism v, such that (F M,~,u) is an operad, which
together with j is the free operad over M.

Proof: Composition is defined on elements of 7 M o M, and since T M = |J,, T M, it is
defined on elements of the form

ImM T M T M ImM

\\ | /

In M

|
Therefore, we define v inductively on I, M o 7, M, by
IoM o TyyM = (I & (Mo T 1M))o IpyM ~ Ty, M & (M o (Fp—10 Ty M))

im,n+m @idlw OYn—1,m

e
s TnamM @ (M © Ty M) 2204ms g7 M.

Of course, one still has to check that the definition is independent of the choices of n and
m, and that all other conditions (associativity, unitality and universality) are verified. O

Remark: Note that in the above definition of the composition map ~, we used left-additivity
of the composition o of S-modules. Moreover, we used the associativity isomorphism

(Mo J, 1M)o Iy M ~ Mo (Fp_10T,M),

which bares some differences to its algebraic analogue. In particular, when working in a graded
context, this associativity isomorphism will lead to Koszul sign, since the switching map is
involved. Indeed, the associativity isomorphism identifies the component

(M (i) ® N(j1) ® N(j2)) ® P(k1) ® P(kz) ® P(k3) ® P(k4)
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in (M o N) o P with the component
M (i) © (N (j1) ® P(k1) ® P(k2)) ® (N(j2) @ P(k3) @ P(k4))

in M o (N o P). Elements of both (identified) components may be pictured as being of the type

P P P P
NN/
N N

N/

M

Example 7.1: Consider the S-module M = (0,W,0,...), where W is a vector space. The
corresponding Schur functor is, applied on a vector space V, M (V) = W ® V. Note that this
functor is linear, i.e. M(V & V') = M (V)& M(V'). We can thus write

ToM = I
TM=I®M
TM=T®(Mo(I®M)=10Mo M

IM=I&Mo Ty M)=IoM&---&M™"

as Schur functors, or, equivalently,
oM = (0,K,0,...)
M= (0,Ka W,0,...)
HBM=0,KaWaWw®.0,...)

InM =0, KeWae- oW 0,...)

as S-modules. Finally, we get
ITM = (0,T(W),0,...),

and we recover the tensor algebra T'(W), i.e. the free associative algebra over W.

It is possible to introduce a weight grading on the free operad 7 M. This is done by defining
the weight of an element 1 € M (n) to be equal to one, and the weight of the element id € I(1)
to be zero. The weight of a general element of .7 M is then given by the number of operations
of M, which it is built from. In terms of trees, the weight is given by the number of vertices
(decorated by M). As usually, we denote the space of elements of weight k by ZM®). In
particular, we have that ZM© =1, ZM® = M, and that M c M°2 c ZM.

7.1.2 Free operad and types of algebras

The importance of the free operad lies in the fact that any operad can be given as the
quotient of a free operad by an operadic ideal. Indeed, the operad corresponding to some type
of algebras can be given as the quotient 7 M/( R) where the S-module M is determined by the
generating operations of the considered algebra, and R C .7 M is determined by the relations
that these operations verify.
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Let us be more precise. An algebra of type P is given by a vector space A and n-ary
operations p, : A®" — A, called generating operations, satisfying certain relations r; = 0.
Further, we assume that the relations are multilinear, i.e. of the form r; = >, ¢ = 0, where
¢y, is a composite of generating relations (and identities). The elements r; = >°; ¢ are called
relators. The category of algebras of type P is denoted by P-Alg.

Example 7.2: Let A be an algebra of type associative, i.e. an associative algebra, then there
is only one generating operation, namely the binary multiplication p : A®? — A, satisfying the
associativity relation

—po (p,id) + po (id, u) = 0.

The unique relator 7 is given by r = @1 + o = —p o (u,id) + o (id, p).

Let M be the S-module, whose arity n spaces are generated by the n-ary generating oper-
ations p,, and where the S,-module structure is given by the symmetries of these operations.
Since the relators are composites of these generating relations (and identity), they span a sub-
S-module R of the free operad 7 M. Let (R) denote the operadic ideal of 7 M generated by
R. The precise definition of operadic ideals is given as follows:

Definition 7.1: An operadic ideal I of an operad P is a sub-S-module of P, such that for any
family of operations {u;v1,...,v;} of P, we have that if one of these operations is in I, then
the composite vy(u;v1, ..., ) is also in 1.

This way, we have naturally constructed the operad 7 M/( R) which corresponds to alge-
bras of type P.

For algebras of type P, there exists the notion of free algebras of type P over a vector space
V. Let P denote the functor P : V +— P(V), which gives the free algebra of type P over V. As
we have seen in the previous chapter, this functor P is a Schur functor, and more precisely an
operad.

By construction (‘7 M/( R)) (V') also gives the free algebra of type P over the vector space

V. Since both constructions are functorial in V', the operads P and 7 M/( R) coincide. We get
the following

Proposition 7.2: A type P of algebras (whose relations are multilinear) determines an operad
P = ﬂM/(R). Moreover, the category P-Alg of algebras over this operad is equivalent to the
category P-Alg of algebras of the given type P.

7.2 Combinatorial definition of operads

The content of this section is of multiple interest. We will give a fourth definition for
operads, which is equivalent to the ones which we gave before. Moreover, this definition will
provide the justification for the previously used representation of abstract operations by means
of tree diagrams. More precisely, we will construct a monad of trees, and an operad will then
be defined as an algebra over this monad. Another important aspect of this definition is that
just by changing the underlying combinatorial objects, it is possible to define generalizations
of operads, as for instance PROPs, which we will encounter in the next chapter. Finally, this
combinatorial definition of operads is linked to the free operad, since the free operad can also
be given by means of the monad of trees which we consider in the combinatorial definition.

As we would like to make the relationship between operads and trees explicit, we shall forget
for the moment about all previously given identifications of trees and abstract operations. The
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definition of trees remains the same as previously, but we will, at the beginning, not label
vertices with abstract operations, nor specify any input ordering.

The set of rooted trees will be denoted by RT, for a tree t € RT, the set of its vertices is
denoted by vert(t), and, for a vertex v € vert(t), the set of its input edges is denoted by in(v).
The set of planar rooted trees will be denoted by PT, and the set of planar rooted trees with
n leaves by PT,,.

7.2.1 Combinatorial definition of nonsymmetric operads

Let us first consider the nonsymmetric case, which allows best to explain the idea, because
we do not have to deal with symmetries. The symmetric case will be dealt with afterwards.
Note that a symmetric operad is basically an S-module with composition. A nonsymmetric
operad — which is obtained by forgetting about symmetry — is thus a sequence of vector
spaces (indexed by the natural numbers N), or an N-graded vector space.

We will take more interest in the category of N-graded vector spaces, which we denote
by N-Mod. If we define the category N as the discrete category whose objects are the natural
numbers and whose only morphisms are the identity morphisms, the category N-Mod coincides
with the category [N,Vect] of functors between N and Vect.

The combinatorial definition of an operad defines an operad as an algebra over a monoidal
structure on an endofunctor of N-Mod (i.e. over a monoid in the category End(N-Mod) =
[N-Mod,N-Mod], or over a monad in the category N-Mod). The endofunctor in question is

T : N-Mod — N-Mod,
defined, for M = (M,)nen, by

T(M)n: @ Mt, where Mt: ® M|in(v)|'
tePTy, vevert(t)

Hence, it is natural to think of an element of 7 (M),, as a sum of planar trees with n leaves
whose vertices v are decorated by elements of M)y, (). If £ € Homg(M, N), the definition of
T (¢) € Homg(T (M), T(N)) is obvious.

To define a monoidal structure on 7, we must define two natural transformations
y:ToT =T and @:INwea— T.

For M given, i(M) consists of the sequence of linear maps (M), : M, — T(M),, and is
defined as follows. The linear map i(M),, sends u € M, to the n-corolla with vertex decorated

by p, which is an element of 7 (M),:
N 5 e e T(M)y.
|

(M) : My > p—

The natural transformation - is defined using the concept of substitution of trees. Note that
(M) : T(T(M)) — T(M) is made up by a sequence of linear maps v(M),, : T(T(M)), —
T (M), and that elements of T (7 (M)),, are (sums of) trees with n leaves, whose vertices are
labelled by elements of 7 (M), i.e by trees whose vertices are labelled by elements of M. The
substitution of trees y is given by replacing the vertices of the original tree by the corresponding
trees, and then viewing the resulting object as an element of 7 (M), i.e. as a tree with vertices
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labelled by elements of M. For instance, omitting decorations by M, the tree

whose vertices are labelled by the trees

7\T/7 Y

will then look like

where the circles indicate the vertices of the original tree. Finally, we get the following tree in

T(M):

Since associativity and unitality constraints are satisfied, (7,7,7) is a monad in N-Mod.

Definition 7.2 (Combinatorial definition of nonsymmetric operads):

A nonsymmetric operad is an algebra over the monad (7,7, 7). More precisely, a nonsymmetric
operad is an N-graded vector space M together with a morphism of N-graded vector spaces
vy 2 T (M) — M, that verifies the usual compatibility conditions with ~ and i.

Remark: Note that any monad (7,7,4) is completely determined by the category of algebras
over T together with the forgetful functor to the underlying category of 7.

The preceding combinatorial definition is equivalent to the other definitions of an operad.
We will give some details about its equivalence to the partial definition.
Let (M,~yr) be a T-algebra. We can define partial composition

Oi:Mn®Mm—>Mn+mfla 1§Z§n,
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for u € M,,, v € M,,, by

NIZ
WOi V=M \H// :
|

Conversely, if the partial compositions o; are given, we define v, for a tree

by
Ym(t) == Aoi (nojv) € M.

This way, yas may be seen as the contraction along the internal edges of the underlying tree,
using the partial compositions.

7.2.2 Combinatorial definition of symmetric operads

We will first detail an alternative viewpoint of S-modules. We define the category S as the
category whose objects are [n] := {1,...,n}, and whose morphisms are Hom([n], [m]) = &,
if n # m, and Hom([n], [n]) = S,. It is easily seen that the category S-Mod of S-modules is
nothing else than the category [S,Vect] of functors from the category S to the category Vect.
Indeed, M € [S,Vect] provides M (n) € Vect, n € N, and for o, : [n] — [n], M(0y,) : M(n) —
M (n), an automorphism of M (n), so an S,-module structure on M (n). Moreover, a morphism
n: M — N of [S,Vect] is a natural transformation, so, for o,, € Hom([n], [n]) C Mor S and
[n] € S, we have the following commutative diagram:

M(n) 2

so that, for p € M(n), nu(p - 0n) = (Mup) - o, ie. n provides an S-module morphism 7, :
M(n) — M(n), n € N.

Let now Bij denote the category of finite sets and bijections between them. Any S-module
M € [S,Vect] extends to a functor M € [Bij,Vect], and any functor of the latter type
restricts to an S-module. The restriction is obvious, since, if we know M (X) € Vect, for
any X € Bij, we know in particular M(n) := M([n]) = M({1,...,n}). To understand the
extension, let us think of M(2) as the space of abstract binary operations obtained, as in the
associative case, from a noncommutative concrete binary operation: a - b = p(a,b), b-a =
wu(b,a) = (- 7)(a,b). Hence, M(2) = Ku ® K(p - 7). If X = {a,b} = {b,a}, and we define
M (X) as the space of abstract binary operations labelled by X, we have no preferred ordering
and can use both: f: 1+~ a,2— band g : 1+ b2+ a, ie. we consider u(a,b) = (f;p),
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p(b,a) = (g;p), (w-7)(a,b) = (fsp-7), (n-7)(b,a) = (g;p - 7). In other words, we put all
orderings on an equal footing and take
B Mn)y.

feBij([n],X)

Of course, we then should identify (g;p) ~ (f;u-7) = (gom;pu-7) and (fi;p) ~ (g;p-7) =
(for;u-7). More generally, define on the preceding direct sum the S,-action

(f;H)'UnZ(fOO’n;M'O’n),

and set

M(X) = ( @ M(n)f) € Vect (7.1)
feBij([n],X) Sn

so to realize the mentioned identifications. This quite natural definition really goes through.

Indeed, observe first that if we extend and then reduce M, we recover M. Secondly, if o €

Bij(X,Y), then we can define the linear map
M(o) : M(X) = M(Y), by M(o)[(f;p)] = [(o 0 f;p)],

since (oo foou; - o)~ (00 f;u).

A similar problem, due to the absence of a preferred ordering, appears if we decompose
some finite set X = {a,b, ¢} into {{a, b}, c} =: {X}}1ecp, and wish to define @,z M (X}). The
solution is analogous as well:

&) M (Xp) = (M({a,b}) @ M({c})) & (M({c}) ® M({a,b})))s, -

beB

If n = |B|, the definition reads in the general case

beB fEBij([n],B)

®M(Xb) = ( @ M(Xf(l))®'”®M(Xf(n))> , (7.2)
S,

n

where the Sp-action is defined by (f;u1,. .., pn) 0n = (f00n; thop(1)s - - - s Hon(n)), SO to identify
in the quotient, e.g. p®@v € M({a,b}) @ M ({c}) with (u@v)-T=vep e M{c})®@M({a,b}).
In fact, we symmetrize the tensor product, so that the order of the factors plays no role.

We are now prepared to give the combinatorial definition of symmetric operads. We first

define an endofunctor
T : 5-Mod — S-Mod.

Let M € S-Mod ~ [§,Vect] and denote its extension to [Bij,Vect] by M as well. Define
T(M)on X €Bij by

TM)(X)= € M), where M(t)= Q) M(in(v)).
teRT(X) vevert(t)
Note that this definition uses (7.1) and (7.2). Here RT(X) denotes the set of rooted trees
whose leaves are labelled by the elements of the finite set X. Therefore, we may think about
an element of 7(M)(X) as a rooted tree with leaves labelled by the elements of X and with
vertices v decorated by elements [f; u] of M (in(v)). For instance, for n = 3, the identification
(fipu) = (foo;p-o)in M({a,b,c}) can, for f=(123), 0 =(123), be thought of as

abc

~

a b c b c a
N/ N |/
p = o '
| |
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This gives exactly the same identification of trees and abstract operations of a symmetric
operad, which we used previously.

Let us observe that not only an S-module M is equivalent to a functor M € [Bij,Vect],
but, moreover, an S-module morphism 7 : M — N, i.e. a family 5, : M(n) — N(n) of
Sp-module morphisms, is the same as a morphism of functors (or a natural transformation)
n: M — N, ie. afamily nx : M(X) — N(X) of linear maps such that the following diagram
commutes:

MOy

[

MO Ny

M(X

o

)
N(X)

~—

Indeed, let n,, be given and define

nx s M(X) = ( D M(n)f) > [(f; )] = [(fsmm)] € N(X).
feBij([n],X) Sn

This map is well-defined, since, if we use another representative (fo,; p-oy), we get (fon; (-
on)) = (fon; i) -0n) = (f;nnp). The commutativity of the diagram is obvious. The converse
construction of 7, out of nx should be clear as well.

If n: M — N denotes now an S-module morphism nx : M(X) — N(X), we define an
S-module morphism 7(n) : T(M) — T(N), or better, a linear map 7(n)x : T(M)(X) —
T(N)(X) in an obvious way. Hence T is a functor.

We now define a monoidal structure on 7. To define a natural transformation
i: I =T,

i.e. a linear map
(M, X): M(X)—T(M)(X),

note that the n-corolla is an element of RT(X) (for | X| = n), whenever a labelling of its leaves

by the elements of X is given. So, i(M, X) sends an element [f;u] € M(X) to such a corolla,

whose vertex is decorated by p, i.e. to an element of 7 (M)(X). Functoriality is easily checked.
As for the natural transformation

v:ToT =T,

i.e the linear map

V(M X)) T(T(M))(X) = T(M)(X),

it is again given by the substitution of trees. Note that this substitution is possible if, for any
vertex v of the ‘base tree’, we are given a tree t,, and a one-to-one correspondence between the
leaves of t,, and the input edges of v. The substitution then glues the inputs to the corresponding
leaves. It can be verified that this map is functorial in X and M, and that v and ¢ verify
associativity and unitality requirements. Finally, (7,7,%) is a monad in S-Mod.

Definition 7.3 (Combinatorial definition of symmetric operads):

A symmetric operad is an algebra over the monad (7,7, ). More precisely, a symmetric operad
is an S-module M together with a morphism of S-modules y5; : 7 (M) — M, that is compatible
with v and .
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The preceding combinatorial definition is equivalent to the other definitions of an operad.
We will give some details about its equivalence to the partial definition.
First,

M([n]) = (@ M(”)f) ~ M(n),
Sn

feSn

the identification being e.g. [(f; p)] = [id; - f~1] ~ p- f~1. Therefore, we may think of elements
of M([n]) ~ M (n) as corollas whose leaves are labelled by [n] = {1,...,n} (from left to right)
in natural order. This way, partial compositions o; can be defined, starting from the 7 -algebra
(M, ~ur), just like in the nonsymmetric case.

Conversely, if the partial compositions o; are given, we can define vy (X) : T(M)(X) —
M(X) as in the following example. Consider X = {a,b,c,d}, n = |X| =4,

then we can define v,/ (X)(t) by taking the equivalence class of pogv € M(4) in M(X). This is
well-defined, since, if we choose other representatives for [(f; 1)] and [(g;v)], say (foo1;p-01)
and (g o o9; v - 02), then we have to take (u-01)0; (v-02) = (1 O (i) v) - (o1 0; 02), due to the
equivariance property of partial composition. This element belongs to the same class of M (X).

Let us remark that there is a resemblance between the combinatorial definition of an operad
and an algebra over an operad. In the functorial definition, we defined an operad as a monad
(P,7,1) in Vect, and a P-algebra was defined as an algebra over this monad, i.e. as a vector
space V together with a linear map 7y : P(V) — V. In particular, the free P-algebra over V
was given by P(V'). Here, we constructed a monad (7,7,%) in S-Mod, and defined an operad
as an algebra over this monad, i.e. as an S-module M together with an S-module morphism
ya 2 T(M) — M. The free operad over M should thus be given by 7 (M). Indeed, this is the
case for the same reasons as in the algebraic case. The equality M = T (M) then gives the
justification for the interpretation of the free operad in terms of trees. In the other direction the
free operad provides an alternative approach to the combinatorial definition. The free operad
functor .7 : S-Mod — Operad is left adjoint to the forgetful functor Operad — S-Mod. In
general, any pair of adjoint functors gives rise to a monad. Here, we get, by composing the
two above functors, a functor T : S-Mod — S-Mod, which then allows to define the underlying
monad of the combinatorial definition.



Chapter 8

PROPs and other generalizations of
operads

Operads allow to encode algebraic operations with multiple inputs, but only one output.
However, there also exist more general algebraic structures, like, for instance, bialgebras, whose
operations have multiple outputs. These can be encoded using PROPs.

8.1 PROPs and bialgebras

The name PROP comes from product and permutation category.

Definition 8.1: A PROP is a symmetric strict monoidal category (P,®,I), such that the
objects are indexed by (or identified with) the set N of natural numbers, and the monoidal
product on objects is given by m ® n = m + n, hence, the monoidal unit is given by I = 0.

Moreover, we assume that this category is enriched over Vect, i.e. that the Hom-sets have
a vector space structure. For a PROP P, we denote P(m,n) := Hom(m,n). Note that the
symmetry induces, an (S,, S,)-bimodule structure each P(m,n). Therefore, a PROP P is a
sequence (P(m,n))m nen of (Sm, Sy)-bimodules with a horizontal composition

® : P(m1,n1) ® -+ @ P(my,ng) = P(my + - +mg, 1 + -+ +ny),

a vertical composition
o:P(m,n)®P(n,k) — P(m, k),

and a unit 1p € P(1,1), satisfying associativity, unitality, biequivariance and compatibility
conditions.

Remarks: Let us comment on some aspects of the above definition.

e Elements of P(m,n) will be seen as abstract operations with m outputs and n inputs.
The pair (m,n) is called the biarity. Such operations may be pictured using graphs with
m output edges and n input edges. We will later give a more precise description of the
considered graphs.

e The (S, Sp)-bimodule structure on P(m,n) is induced by the symmetry of the category
via the identifications m ~ 1¥™ and n ~ 19", Alternatively, one can also identify objects
m with finite sets via m ~ [m] := {1,...,m}, then the symmetry condition implies, in
particular, that Sy, is a subgroup of Hom([m], [m]) ~ P(m,m). Combining this with the
horizontal composition, we get the (Sy,, S, )-bimodule structure.

66
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e Note that the horizontal composition map comes from the monoidal product, whereas
the vertical composition comes from the categorical composition.

e We have, in fact, units id,, € P(n,n), for any n € N. These can be obtained by composing
1p = id; horizontally n times with itself. Note further that idg € P(0,0) is a unit for the
horizontal composition.

e The compatibility requirement in the definition is the following compatibility condition
between the horizontal and the vertical composition:

(nov)@ (Wov)=(nau)over),
for any p € P(m,n), v € P(n, k), @’ € P(m/,n'), v € P(n', k).

e There exists also a nonsymmetric version of a PROP, called PRO (from product cate-
gory). The definition is similar to the one of a PROP, and can be obtained by forgetting
about the symmetry condition.

e One can also define coloured PROPs (and PROs) by replacing the monoid of objects
(N, +,0) by the free monoid over a finite set. The original definition of a PROP is recov-
ered by taking the free monoid over a singleton.

A morphism f : P — Q of PROPs is a sequence fp, ,, : P(m,n) — Q(m,n), m,n € N, of
biequivariant linear maps, commuting with horizontal and vertical compositions, and respecting
identities. PROPs and morphisms of PROPs form a category PROP.

Example 8.1: An important example is the endomorphism PROP End(V') over a vector space
V', given by
End(V)(m,n) = Hom(V®" V&™),

(Note the change of order of m and n.) Horizontal composition is given by the tensor product
of linear maps, vertical composition is given by composition of linear maps, and the unit is
given by the identity map id € End(V)(1,1).

We are now able to define representations of PROPs:

Definition 8.2: A representation of a PROP P on a vector space V' is a morphism
p:P — End(V)
of PROPs. More precisely, it is a sequence

pmn : P(m,n) = End(V)(m,n) = Hom(V®", V&™),

)

m,n € N, of biequivariant linear maps, commuting with horizontal and vertical compositions,
and respecting identities.

A P-algebra structure on a vector space V is then given by a representation of the PROP
PonV.

For operads, we considered combinatorial objects, namely trees, to represent abstract op-
erations and their composites. For PROPs, we can also use some combinatorial objects to
accomplish the same task. These objects are graphs with some special properties. For ab-
stract operations of biarity (m,n), we consider graphs with m output (half-)edges and n input
(half-)edges. We will always put the input edges on top and the output edges at the bottom.
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Moreover, we consider oriented graphs; the orientation will only be specified if there is am-
biguity, otherwise the orientation is assumed to be given from top to bottom. Furthermore,
there are no directed cycles in the considered graphs. Often, we will also label the outputs by
{1,...,m} and the inputs by {1,...,n}.

For instance, the following graph can be used to represent an element of P(3,4):

X

Horizontal composition of an element of P(3,4) with an element of P(5,2) can be seen as

Kek=A

whereas vertical composition of an element of P(5,2) with an element of P(2,3) can be seen as

Ko X=K

The identities id,, € P(n,n) can be seen as the graph
IR

i.e. as a union of n trivial trees.
The set of graphs with m input edges and n output edges verifying the above properties
— such graphs are also called directed (m,n)-graphs — is denoted by ¢(m,n).

Remark: For operads, we have seen that the identification with combinatorial objects (trees)
is justified by the combinatorial definition. For PROPs, there exists also a combinatorial def-
inition, which is, in the main, obtained from the one of operads by changing the underlying
combinatorial objects, i.e. replacing trees by (directed) graphs.

While operads may be seen as abstractions of algebras, in the sense that they encode
algebraic operations with multiple inputs and one output, and their symmetries, PROPs may
be seen as abstractions of bialgebras, in the sense that they encode algebraic operations with
multiple inputs and multiple outputs with their symmetries.

Definition 8.3: An associative (nonunital) bialgebra is a vector space B equipped with an
associative multiplication y : B® B — B and a coassociative comultiplication A : B - B® B
which are compatible.

Compatibility means that the multiplication y is a coalgebra morphism or equivalently that
the comultiplication is an algebra morphism. This means that A(a-b) = A(a)-A(b), where the
dot - denotes the multiplication u, respectively the multiplication induced on B ® B, which is
given as (a1 ® az) - (b1 ® ba) = (a1 - b1) ® (az - b2). Finally, the compatibility condition can also
be written as

Aop=(p®@p)o(ildor®id)o (A® A),
where 7 denotes the switching map given by 7(a ® b) = b ® a.

The PROP B corresponding to associative (nonunital) bialgebras can be given as the quo-

tient of the free PROP generated by \/ and /\, corresponding to p and A, by the PROPic
ideal generated by

N A A e 0%



Chapter 8 — PROPs and other generalizations of operads 69

which encodes associativity, coassociativity and compatibility of p and A.

Similarly, one can construct the PROPs corresponding to Hopf algebras, Lie bialgebras,
and other types of algebras with operations having multiple inputs and outputs. For algebras
whose operations have only one output, we should get the concept of operads back. Indeed,
PROPs can be seen as a generalization of operads, since any operad P gives rise to a unique
PROP P, where P(1,n) = P(n).

8.2 More generalizations of operads

There exist numerous generalizations of operads, which can all be given by means of their
underlying combinatorial objects. For a wide-ranging overview, we refer to [Mar08]. We will
just give a brief outline of some of these concepts and the corresponding combinatorial objects.

Cyclic operads (introduced by E. Getzler and M. Kapranov) are similar to operads, but
make no clear distinction between inputs and output. Roughly speaking, they are operads
with an additional symmetry which interchanges the output with one of the inputs. Cyclic
operads have the underlying structure of cyclic S-modules, i.e. of ST-modules; S;' is the group
of permutations of {0,1,...,n} and is thus isomorphic to S,+1. The combinatorial objects
corresponding to cyclic operads are cyclic (or unrooted) trees.

We have already seen that PROPs are generalizations of operads. However, PROPs are,
compared to operads, quite large objects. This can be seen using the underlying combinatorial
objects: For operads, there exists only a finite number of trees with n leaves (if one omits
composites with 1-corollas), whereas for PROPs, the number of (m,n)-graphs is generally
infinite. Therefore, the arity-components of free PROPs are generally infinite-dimensional.
This is the reason why smaller versions of PROPs play a quite important role.

Properads (introduced by B. Vallette) form one example of this type. The difference between
PROPs and properads is that for properads only connected graphs are allowed. This being a
quite small change, properads are still very similar to PROPs. For instance, the endomorphism
properad is the same as the endomorphism PROP. Algebras over properads are defined, as
usually, as a properad morphism to the endomorphism properad. Note that in the previously
treated example of associative bialgebras, one could consider a properad instead of a PROP,
since the considered graphs are connected.

Still properads are quite big, a smaller version of PROPs is given by dioperads. For diop-
erads the considered graphs are required to be connected and simply-connected. In particular,
Lie bialgebras and infinitesimal bialgebras can be seen as algebras over a dioperad. However
associative bialgebras can not be defined as algebras over dioperads, since not all considered
graphs are simply-connected.

An even smaller version is given by %PROPS. The considered combinatorial objects are
% graphs. The algebraic structures which can be defined over %PROPS are typically %bialgebras.

In fact, one has the following chain of inclusions of full subcategories:
Operad C %PROP C diOperad C Properad C PROP.
Let us remark that not only operads and their generalizations can be defined by means of

combinatorial objects, but also associative algebras admit such a description. The graphs to
consider for algebras are ladders, which are composites of 1-corollas.
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Labelling the vertices by elements of the considered algebra, the multiplication can be seen
as contraction along internal edges. Associativity is encoded in the fact that the order in which

these contractions are done plays no role:

po(p®id): eb izb > +(ab)c7

S Q
1
—o—o—
IS}

1
—o—
Q
s
ey

po (id® p) :
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Operadic twisting morphisms and
Koszul morphisms

Operadic twisting and Koszul morphisms will be dealt with, by transferring the correspond-
ing results for associative algebras to the operadic setting.

9.1 Infinitesimal composite

Recall that the category (S-Mod,o,I), where I = (0,K,0,...), is a monoidal category. In
particular, the composition o is — as well as many other involved operations — a (bi)functor.
Recall further the definition of the composite P o () of two S-modules P and Q:

<Po@><n>=@P<k>®5k( @ Indégx...xs%Q(za)@...@@(ik))
k

114 Fig=n

= B P os Qi) ®---©Qir) ®K[sh(i,. .., ix)]
K
t1+-+ig=n

:@P ®Q/L1 ®Q(“€)®Sh(ll7)2k‘)a
where the last line uses a simplified notation. This space is spanned by equivalence classes (for
the Sk-action) of elements (u; vy, ..., vg; o). In the following, we will often simplify the notation
by omitting the shuffles in the above considered tensor product; elements will then reads as

(;v1, ..., V). Moreover, we will represent elements (u;v1, ..., 1), by the corresponding tree
diagrams (see also Tree Guidelines 3 on page 56)

NNVARY ANY4 0 o
\\M/ \\P/

‘ , or, more generally, by ‘

Q

Remember also that the composite of S-modules is additive only in the left factor. However,
in order to do homological algebra on S-modules, we need a linearized version of this composite,
which will be the infinitesimal composite, constructed in the following.

If we consider a polynomial a + bz + cz? + - - -, the linear part in z is given by bz, i.e. the
term containing exactly one x. The linear part of a composite of S-modules will be defined
analogously. For S-modules P, ()1 and ()2, we have

(Po(Q1®Q2)(n) = Pk)® (Q1(i1) ® Qa(i1)) ® - -~ ® (Qu(ix) ® Q2(ir))-
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For instance, the term for k = 2 is given by

P(n) @ (Q1(i1) ® Q2(i1)) ® (Q1(i2) ® Q2(i2))
= (P(n) ® Q1(i1) ® Q1(i2)) ® (P(n) ® Q1(i1) ® Q2(i2))
© (P(n) ® Q2(i1) ® Q1(i2)) @ (P(n) ® Q2(i1) ® Q2(i2)),

where the linear part in ()9 is made up by the terms containing ()2 exactly once, i.e. the
second and the third term in the above sum. The linear part in Q2 of P o (Q1 ® Q2), denoted
by P o (Q1;Q2), is thus made up by linear combinations of elements of the form

Qi Q1 Q2 @

NS
|

Note that Po (Q1;Q2) is a sub-S-module of P o (Q1® Q2). Moreover, this construction defines
a functor

(P,Q1,Q2) € (S-Mod)*3 — S-Mod > P o (Q1;Q2).
Remarks:
1. The above constructed P o (Q1;@2) is linear in P and in Q2.
2. Taking Q1 = Q2 = Q gives rise to

idp o(idg +idg)

Po(Q;Q)——Po(QaQ) Poq@, (9.1)

which allows identifying P o (Q; Q) with P o Q.

Definition 9.1:

e The infinitesimal composite Po 1)@ of two S-modules P and @ is the S-module Po (1;Q).
Its elements are of the form (u;id,...,id,v,id,...,id), generally represented by

\\P/Q/
‘ .

e The corresponding composite f oy g of two S-module morphisms f : P; — P> and
g: Q1 — Q2 is defined by

o g:Pioqy@Q1— Paon) Qo
(u;id, ..., id, v, id,...,id) — (f(w);id,...,id, g(v),id,...,id).

Instead of linearizing the space Po (), we can as well linearize the morphism fog. Applying
fogtoan element (u;vi,..., V), consists in applying f to u and g to every v;. Therefore we
can identify fog with f ® (¢ ® --- ® g), which leads to the following

Definition 9.2: The infinitesimal composite f o' g of two S-module morphisms f : P; — Py
and g : Q1 — Q)2 is defined by

folg=2.19(doe 6 g0 @) FloQi= P (@)
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Applying f o' g to an element (u;v1,...,v) € P1 o Q1, we get

k

(f o s, vm) =Y H(f(W)ivas - gwi), ),

i=1
where + is a simplified notation for the involved sign.

If Q1 = Q2 = Q, we can, using (9.1), consider the map

P1OQ&P2O(Q;Q)1“P2OQ-

9.2 Differential graded S-modules

Definition 9.3:

e A graded S-module P is a sequence (P,)nen of graded S,-modules P(n), i.e. of graded
vector spaces (Pp(n))pez endowed with a degree preserving Sp-action. The label n refers
to the arity, whereas the label p refers to the degree.

o A morphism f: P — @ of degree r between graded S-modules P and (@ is a sequence
fn t P(n) = Q(n), n € N, of degree r S,-module morphisms, i.e. a sequence of S,,-
equivariant linear maps fp,, : Pp(n) = Qptr(n), p € Z. The space of such morphisms is
denoted by Hom’s (P, Q).

Remark: The composite product o can be extended to graded S-modules by

(PoQ)s(n)= @  Pylk)®Q; (i) @ ® Qj(in)-
qtji+-+Jjr=s

Moreover, I = (0,K,0,...) can be viewed as a graded S-module concentrated in degree 0. The
category (grS-Mod, o, I) of graded S-modules is thus a monoidal category.

Definition 9.4:

o A differential graded S-module (P, d) is a graded S-module P endowed with a differential
d, i.e an endomorphism d : P — P of degree —1 of graded S-modules, such that d? = 0.

e A morphism f : (P,dp) — (Q,dg) of differential graded S-modules is a morphism
f P — Q of degree 0 of graded S-modules that commutes with the differential, i.e.

fdp =dof.

Remark: The composite product P o @ of two differential graded S-modules P and @ is a
differential graded S-module for the differential

dpog = dp oidg +idp O/dQ,

where the last term maps P o @ to itself, in view of (9.1). The category (DGS-Mod,o,I) of
differential graded S-modules is a monoidal category.



Chapter 9 — Operadic twisting morphisms and Koszul morphisms 74

9.3 Differential graded operads and differential graded coop-
erads

We know that an operad is a monoidal structure on an S-module. In other words, it is a
monoid in the monoidal category (S-Mod, o, I) of S-modules. Similarly, we have the following

Definition 9.5: A differential graded operad is a monoid (P, dp,,u) in the monoidal cate-
gory (DGS-Mod, o, I'). More precisely, (P, dp) is a differential graded S-module with differential
graded S-module morphisms

vy:PoP — P, u:l — P,
that verify associativity and unitality constraints.

Remark: The requirement for v to be a differential graded S-module morphism means that it
is a morphism of degree 0, such that

dpy = vdpop = ’y(dp oidp +idp O/dp),
i.e., on an element (u;p1, ..., k),

k ~ i—1 ~
dP(W(Ma i, .- 7,“’]6)) - ’Y(dp/,L, M- ,,U,k-) + Z(_l)#—i_zezl HZ’Y(M) Hiy -y dP,u’ia ceey /’Lk))
=1

This means that dp is a derivation for ~, which is completely analogous to the algebraic case.

Definition 9.6: A differential graded cooperad is a comonoid (¢, dy, A, ) in the monoidal
category (DGS-Mod, o, I). More precisely, (¢, d¢) is a differential graded S-module with differ-
ential graded S-module morphisms

A:C—CoF, €16 —1,
called decomposition and counit, that verify coassociativity and counitality constraints.
Remark: Note that the decomposition map A is given by a sequence
Ap:€(n) = (€o€)(n) =P Ek) @ (€(ir) ® - © (i),
n € N. On an element, this reads as

NN N1/

B N\ﬂ% i Zm<\ﬂ/uk7

ie. Ayt = > (, 1, - -, pg). Obviously, the p on the RHS and the p on the LHS are not the
same, we use this quite abusive notation to remind ourselves that the sum on the RHS is the
image of u by A,,.

Under this notation, the requirement for A to be a differential graded S-module morphism
means, in particular, that

Ady = dgegA = (dcg oidy +idy O/dcg)A,

i.e., on an element p € €(n),

Aldy (1) = dgog Y (1 pi1s - - - 1)

k ~ i—1 ~
=3 (depss s pi) + 0D (IR e (s g degp, - )
=1

This means that dy is a coderivation for A, which is completely analogous to the coalgebraic
case.
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9.4 Operadic twisting morphisms

To extend the theory of twisting morphism to operads, we need the linearization of the
composition map v : Po P — P of an operad, and of the decomposition map A : ¢ — € o€
of a cooperad.

The infinitesimal composition map of a (differential graded) operad P is given by

idp o(u;idp) (9.1)
—_—

Po (P;P) PoP—15p

"}/(1) : PO(I)P:PO(I,P)
The infinitesimal decomposition map of a (differential graded) cooperad € is given by

ide o' ide ide o(g;ide)
I

Apy:€—2% 0% ¢ o (€;%) Co ;%) =% on)%.

From now on, we will require the differential graded operad (P, dp,~,u) to be augmented,
i.e. there exists a morphism 7 : P — [ of differential graded operads, i.e. a morphism of
differential graded S-modules that respects composition v and unit . The differential graded
cooperad (%, dy, A, e) will also be required to be coaugmented, i.e. there exists a morphism
i : I — € of differential graded cooperads, i.e. a morphism of differential graded S-modules
that respects decomposition A and counit ¢; if necessary, the cooperad % is also assumed to
be conilpotent.

9.4.1 Differential graded convolution operad

We will now construct a differential graded ‘convolution’ operad structure.

Consider
Homg (%, P) = (Homg (%' (n), P(n))),ex »

which is a sequence of graded vector spaces, endowed with an S,-action that preserves the
grading. This action is, for a morphism f : €,(n) — P,1.(n), given by

(f-0)@)=flz-07") 0 € Bpr(n).
Therefore, Homg (¢, P) is a graded S-module. We denote
A (n) = Homg (¥, P)(n) = Homg (€' (n), P(n)).

In order to make 7 a graded operad, we have to define a composition I' and a unit U. The
composition has to be defined as a morphism of graded S-modules

[: (o) (n @jf )@ (1) ® - @ H (i) — H(n).
This means that applied to an element (f;g1,...,9%), with f € Homg (%' (k), P(k)) and g; €
Homg (€ (i5), P(ij)), I'(f; 91, ..., gx) has to be defined to be an element of Homg (% (n ) ( ))

L(f391,-- . 95) : € (n) =2 (€ 0 ) (n) —» Ck) @ (€(i1) © - @ Ciy))

f®(91®'“®9k)P(k) © (P(i1) ® - -~ ® Pliy))
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Let us admit that all remaining details can be verified and that (Homg (%, P),T,U) is a
graded operad, called the graded convolution operad.
We now endow this operad with the differential 0 defined by

8f:[d7f] :dPOf_(_l)Tfodcga

for any morphism f : 6,(n) — P,1,(n). Since 0f : €,(n) = Pyyr—1(n), 0 is of degree —1. It
can be verified that 0 is an S-module morphism, that 9> = 0, and that I" and U respect 0
(in particular, this means that 0 is a derivation for I'). Finally, Homg (%, P) is a differential
graded operad, called the differential graded convolution operad.

9.4.2 Twisting morphisms and twisted composite complexes

To write down the Maurer-Cartan equation for o € Homg (%, P), i.e.
1
Jda+a*xa=0a+ i[a,a} =0,
we need on Homg (%, P) an associative or a pre-Lie structure x. There exist functors

(DG)Operad — (DG)pre-LieAlg — (DG)LieAlg

that allow to define a pre-Lie structure on the space [],,cy &(n) of any (DG) operad & In the
case & = Homg (%, P) we can define this structure without further details about this functor.

Definition 9.7: For f,g € [[,,cy Homg (€' (n), P(n)) ~ Homg (%, P), the convolution is given
by

(1)

A o
f*g:%&%o(l)%h—l)%Po(l)PHP

To be able to extend f € Hom (%, P) to Homgroperad(ﬂ(sfl%f),P), S0 in particu-
lar to a morphism of S-modules, we must start from f € Homgl(%, P). It turns out that
Homg(%, P) := I],eny Homg, (€' (n), P(n)) is stable for x and 0, and that (Homg (¥, P),*,0)
is a DG pre-Lie algebra (that defines a DGLA).

Definition 9.8: An operadic twisting morphism o € Tw(%, P) is a solution a € Homgl(%, P)
of the Maurer-Cartan equation da 4+ a x o = 0, which verifies

¢—2sp "7 and I—s¥-°>,p.

— —

The composite complex (€ o P,dgop), where dgop = dygoidp +idy o'dp, is a DG S-module.
For a € Homg' (%, P) define d, by

_ A(qyoid ideg o(1yar)oid
dy:€oP O s (Fomb)oP (idw oy @)elde (6 o) P)o P~% o (P;PoP)
o) oo (P P) ~ % o P.

Using tree diagrams, this reads, for instance, as

Py P, P; Py Py P | Ps Py

P1 P2 P3 P4 \ / \ / P1 P2 P@
\\Cg/ / = \ P @ - \

P NS

| i |
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If dy = dgop + dy defines a differential, i.e. if d? = 0, which is the case if and only if
a € Tw(%, P), then € o, P := (¢ o P,d,) is a DG S-module called twisted composite complez.
The comparison lemma remains valid for twisted composite complexes.

9.4.3 Operadic bar and cobar constructions

These constructions are similar to the corresponding ones in the algebraic context. The bar
construction is a functor

B : augDGOperad — augDGCoOperad,
whereas the cobar construction is a functor
2 : augDGCoOperad — augDGOperad.

The bar and the cobar functor are adjoint functors.

Let us detail the cobar construction. Consider an augmented DG cooperad (¢, A, ¢, d¢),
i.e., in particular, we have ¢ = I & €. The cobar construction Q% is, similar to the algebraic
case, an augmented DG operad structure on .7 (s~1%’), where .7 is the functor .7 : S-Mod —
Operad that to any S-module associates the free operad over this S-module. The differential
on .7 (s71¥) is given by the sum 1 + 2, where &; extends the differential dy and d extends
the infinitesimal decomposition Aj). More precisely,

_ — 4. _ -1 _ _
sTIC S G LG § S I s T (571
and

_ Ay - P o L
sfl%iﬁﬁ—(;%o(l)%—is1(50(1)31%>—>31‘€os ¢ — 7(s71%)

uniquely extend, since .7 (s~ %) is free, to derivations §; and dy of T (s~1%).

Finally, (Q%, 61 + d2) is a DG operad.

The definition of the bar construction BP of an augmented DG operad is similar. The
basic correspondences and the fundamental theorems detailed in the algebraic context can be
extended to the operadic setting. For instance,

Theorem 9.1 (Fundamental theorem of operadic twisting morphisms):
Under some weight-graded assumptions, we have, for an operadic twisting morphism o €
Tw(¥, P), that the following propositions are equivalent:

1. a € Kos(¥,P), i.e. € @4 P is acyclic,
2. fo € Hompgoperaa(Q2€, P) is a quasi-isomorphism,
3. ga € Hompgeogperad(€, BP) is a quasi-isomorphism.

Corollary 9.2: Taking € = BP (resp. P = Q% ), we find that QBP = P (resp. that € =
BQE).



Chapter 10

Koszul duality for operads

We will adapt the results of Koszul duality for algebras to operads. This will lead, for a
quadratic Koszul operad P, to a model P, := QPi, which then allows to define P..-algebras
(or homotopy P-algebras) as representations of this operad.

10.1 Quadratic operads and cooperads

Definition 10.1: Operadic quadratic data (E,R) consists of a graded S-module E and a
graded sub-S-module R ¢ .7 (E)?).

Here .7 (E)®) refers to the weight 2 part of the free operad .7 (E), i.e. to the graded
sub-S-module of 7 (E), which is spanned by composites of two elements of E.

We will use the same terminology as in the algebraic setting and refer to elements of E as
generating operations and to elements of R as relations, or better relators.

Definition 10.2: The quadratic operad P(E, R) associated to the operadic quadratic data
(E, R) is the quotient operad T(E )/( R)’ where (R) denotes the operadic ideal generated by

RcC 7(E)®.

The quadratic operad P(E, R) is the quotient operad of .7 (F) that is universal among all
quotient operads P of .7 (F), such that the composite

R J(E)»P

vanishes. More precisely, there exists a unique morphism of operads P(E, R) — P, such that
the following diagram commutes

0

T
R—— J(FE)—» P(

N

0

R)

Definition 10.3: The quadratic cooperad € (E, R) associated to the operadic quadratic data
(E, R) is the subcooperad of the cofree cooperad 7 ¢(E), that is universal among all subcoop-
erads C of J¢(E), such that the composite

¢ 7o(E) - T B

78
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vanishes. More precisely, there exists a unique morphism of cooperads C — % (FE, R), such that
the following diagram commutes

0
3 c
C(E,R) s T°(E) —» 7B
4\
|
|

\

C

Remark: The cofree cooperad .7¢(E) is as S-module the same as the free operad .7 (F). We
refer to the next chapter for more information about decomposition map of the cofree cooperad.
A detailed description of the cofree cooperad and its decomposition map can be found in [LV11].

Note that when we are working over graded S-modules, the above defined quadratic operad
(respectively cooperad) is not only endowed with an arity grading and a weight grading (coming
from the free, respectively, cofree operad), but also with a degree.

10.2 Koszul dual cooperad and operad of a quadratic operad
Definition 10.4: The Koszul dual cooperad of a quadratic operad P = P(E, R) is

Pl =€ (sE,s’R),
i.e. the quadratic cooperad associated to the shifted operadic quadratic data.

Here sFE denotes the shifted S-module, obtained from E by shifting the degree in each arity.

In order to define the Koszul dual operad, we need some preliminary remarks.
First, the Hadamard product P® Q) of two S-modules is given by (P®Q)(n) = P(n)®Q(n),
H H

for any n € N. The action of the symmetric group is given by the diagonal action, i.e. (u®v)-c =
(w-0)® (v-0), forany p € P(n), v € Q(n), o € Sy,. Moreover, the Hadamard product of
operads has a natural operad structure.

Second, the suspension of an operad, obtained by suspending the underlying S-module,
is, in general, not an operad. Therefore, we will define an ‘operadic suspension’ Let S :=
&nd(sK) be the endomorphism operad over the suspended ground field. This means that
S(n) = Hom((sK)®", sK); note that this space contains morphisms of degree —n + 1. The
symmetric group action is given by the signature action. We also denote S~! := &nd(s~'K)
and S¢ := &nd°(sK), where &nd®(sK) is the endomorphism cooperad, which is as S-module
the same as the endomorphism operad, but equipped with a decomposition map.

Finally, we define the operadic suspension of an operad P by S % P. The operadic desus-

pension is given by S™! ® P. For a cooperad %, the cooperadic suspension is given by S¢ ® €.
H H

The operadic suspension has the property that a vector space V is equipped with a P-algebra
structure, if and only if the suspended vector space sV is equipped with a & ® P-algebra
H

structure.

Definition 10.5: The Koszul dual operad of a quadratic operad P = P(FE, R) is defined by
P' = (8°® Pi)*.
H

The dual means here that we take the linear dual in each arity.
Let us mention that the P' is quadratic in a certain case. More precisely,
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Proposition 10.1: Let P = P(E, R) be a quadratic operad, generated by a reduced S-module
E which is of finite dimension in each arity. Then the Koszul dual operad P' admits the
quadratic presentation P' = P(s~'S™! @ E* R1).

H

|
Moreover, we have that, under the assumptions of the previous proposition, (P!)' = P.

10.3 Koszul operads

For given operadic quadratic data (F, R), we have that P(E, R)()) = E and ¢(E, R)(") =
E, and we can define the morphism s by

k:€(sE,s*R) — sE S B P(E,R).

This morphism is clearly of degree —1, and verifies (for the same reasons as in the algebraic
case) k x k = 0. Therefore, k € Tw is an operadic twisting morphism.

This defines a Koszul complex Pio, P := (Pio P,d). We thus have a sequence of chain
complexes of Sy,-modules ((Pio P)(n),d,), called Koszul complexes in arity n.

A quadratic operad P is called a Koszul operad if the corresponding Koszul complex Pio, P
is acyclic.

Let us mention that there exist many Koszul operads, in particular fss, $om, Lie and
Pois are Koszul operads.

Just as we have for Koszul algebras A, a resolution QA = A, we obtain, for Koszul operads
P, a resolution QP! = P. The operad QP is the Py-operad. Hence, to a P-algebra structure
on a vector space V, given by P — &nd(V'), corresponds via

Py :=QPi —=— P

~. |

End(V)

a P-algebra (also called homotopy P-algebra) structure on V.



Chapter 11

Infinity algebras over a quadratic
Koszul operad

For any operad P, a homotopy P-algebra has been defined as an algebra over the DG operad
P, = QP! On the other hand, homotopy associative algebras or As.-algebras have been
introduced independently and the corresponding DG operad A, can easily be constructed.
The objective of this chapter is to show that the operad /s is Koszul and that two DG
operads /s, := Qf/sl and A, coincide.

11.1 The operad s

As neither the generating operation u of an associative algebra, nor the defining relation
w(p,id) = p(id, p) involve any symmetry, the category of associative algebras can be encrypted
into a nonsymmetric operad 7s. To emphasise that we are considering a nonsymmetric operad,
i.e. an operad whose spaces of n-ary operations are just vector space without Sy-action, we
will denote these spaces by &7s,,.

Since the free associative algebra over a vector space V is

TV)= P Ve =EPp Kaver,
neN* neN*

we see that o7s,, is isomorphic to K. More precisely,
sy = Ky, ,n>1,
where u, is the n-ary operation given by
pn(ai, ... an) =aj---ap.

In particular, pus = p and pp = id.
The operad s is quadratic, i.e. it has a presentation «7s = P(F, R) = g(E)/(R), where
E is the vector space of generating operations and R C (E)(Q) the subspace of defining

relations. Clearly, E = Ku and R = Kas, where as := —p o (u,id) 4+ po (id, ) is the associator.
We also have that

H(E)=IC A(E)=18E
CHRE)=I®Ec(I®E)
CHBE)=I0FEoc(I®Eoc(I®E))C---

81
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Denoting i by the 2-corolla \/, it follows for the first arity-spaces of the free operad 7 (FE)

that 7 (E)y = {0}, Z(E)1 =K |, Z(E),=KY, Z(E); = K\y@ Kv,

9(E)4=KW@ K\Y/@ KV@ KW@ KV,

These spaces are visibly isomorphic to the vector spaces spanned by planar binary trees,
ie. 7(F), ~ K[PBT,|, where PBT,, denotes the set of planar binary trees with n leaves.
Note that the space .7 (E)®?) of operations of weight 2 coincides with .7 (E)s. In general,
T (E)™ = F(E),11. Moreover,

R—Kas—K(—\y+\</) c 7(E)?,

The operads s and T(E )/( R) coincide, since, in the quotient all n-ary operations given by

planar binary trees with n leaves coincide and define a unique n-ary operation p, represented
by the n-corolla. Composition in the two operads coincides as well.

11.2 The cooperad 7si

Since /s = P(E,R), E = Ku, R = Kas, its Koszul dual cooperad @si = ¢(sE,s’R),
sE = sKu = Ksp =: Ku¢, s?R = s?Kas, is the subcooperad of .7¢(sE) that is universal
among all subcooperads € of .7 ¢(sE) such that the composite

)= 7B

% — T(sE 2p

vanishes.

Note first that the cooperation u€ is of arity 2 and of degree 1. Just as .7 (E),, ~ K[PBT,],
we have J¢(sE), = T°Ku), ~ K[PBT,] as vector space. We will show that &/si is made
up by a family of subspaces o/si, = Ku¢ C 7¢Ku°),, ~ K[PBT,]. The definition of the u¢
involves a sign that is based on the concept of leveled planar binary trees.

Remark: The vertices of any planar binary tree are arranged in levels. A leveled planar binary
tree is a planar binary tree having exactly one vertex at each level.

For instance W is not leveled, whereas V/ and K%/ are the leveled trees corresponding

to the considered tree. Among these trees, the first one is leveled upwards.
Hence, the set PBTy of leveled planar binary trees with 4 leaves consists of

YNV NN

Numbering the levels from top to bottom and taking the vertices from left to right, we can
assign to an element of PBT4 a unique permutations of S3. For the above leveled trees, the
considered permutations are

1,2,3], [2,1,3], [2,3,1], [1,3,2], [3,1,2], [3,2,1].

This association is actually a one-to-one correspondence S — P:Eff4. In general, we have a
bijection S,,_1 — PBT,,.



Chapter 11 — Infinity algebras over a quadratic Koszul operad 83

Define now

=1, ws=Y, pi=- Y sign(d)t, n>3,
tePBT,,

where ¢ = t is t is already leveled, and ¢ is the upward leveled tree corresponding to t, if ¢ is
not leveled. Of course, the signature of a leveled tree is obtained by identifying the leveled tree
with the corresponding permutation. For instance,

u§=—V+\y
oYY Y

In order to show that the family of vector spaces Kuf forms a subcooperad of the cofree
cooperad 7 ¢(Kpu°), we need some more information about the cofree cooperad.

and

Remark (The cofree cooperad): The cofree cooperad (M) over an N-graded vector space
(resp. S-module in the symmetric case) M is defined by the usual universal property defining
cofree objects. As a vector space (resp. S-module), it is equal to .7 (M). The main difference
lies in the decomposition map A : T(M) — T¢(M) o T¢(M). The idea behind this map is
to decompose any operation of the cofree cooperad in all possible ways, such that composing
again gives the initial operation back. In particular, for an operation u, one has that

Ap) = (3id, ..., id) + Ap) + (id; p),

where A takes the nontrivial decompositions into account.

In terms of trees, the map A consists in degrafting the initial tree by means of cutting.
This cutting has, of course, to be done such that grafting again gives the initial tree back.
Moreover, cutting the initial tree into smaller trees is done such that the root of the first one
of the obtained trees is the root of the initial tree, and such that the leaves of the latter trees
are the leaves of the initial tree. The example below will clarify the idea.

For further information about the cofree cooperad and the decomposition map, we refer to
[LV11].

In our present situation, where A is the decomposition map of 7¢(Kuc), we have, for
instance,

Aps) = (15 1) = (p5; 1),

Aws) = (Y5 1o 1)+ (15Y) = (s 5, ) + (153 155).

For p§, consider first

A ) = (VY1) e AN )= (VLY.

A(pg) = (ps; 1], 15, 1) — (s ps, ) + (35 ug, ps) + (g 1s),

where the signs come from the definition of p§.

S )= (/1) < (W),

Thus
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()= () (Vo)
A<W> = (XY ) = (V5 )+ (VYY)
S(W)= (Vv )+ (1)
AN )= (Vi) + (1),

Notice the negative sign in the third line, which is a Koszul sign coming from the fact that u¢
is of degree 1. This sign can be seen appearing in the precise definition of the decomposition
map, which we did not give here. Using the definition of ug, it follows that

Apg) = (s p1s 15, 115 15) + (85 pg, 05, 17) — (33 15 i, 1) + (135 1T, 15 13)
+ (w23 g, 1) + (s 1y, pu3) — (s g, pg) + (k15 1g)-
It may appear surprising that we use linearity in the RHS, but in fact we are just applying

the definition of the decomposition map.
Generalizing the preceding computations, we obtain

Alpg) = > (s, u,)

11+ Fig=n

Hence, A (KuS),ens) € (Kpub)pene © (Kus)ene so that (Kuf), oy« is a subcooperad of
T¢(Ku). Moreover, the composite

c e o TERuc)@
(K, ene — TE(Kp) — (Kpu) V2K as

clearly vanishes, since the projection onto 7 C(K,uc)(z) vanishes everywhere except on u§, but
p§ vanishes in the considered quotient. By universality, this operad coincides with o7si, i.e.
st = Kug,, n > 1.

It can be proven that the complex (sl o @7s,d,;), where

K olst = €(Kut, s°Kas) — Ku = sKu i) Ku — P(Ku,Kas) = s,

is acyclic, so that /s is a quadratic Koszul operad. Moreover,

s = (SC ® Jzisi> = /5.
H

11.3 A, -algebras

Axo-algebras have been introduced by Jim Stasheff in [Sta63]. If (V,dy ) is a deformation
retract of (A,d4), i.e. if both chain complexes are homotopy equivalent and the homotopy of
V' vanishes, then a DGAA structure on (A, d4) induces an A-structure on (V, dy).

7

(Vodv) 7 (A, da) D
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More precisely, if one tries to transfer the DGAA structure on (A, d4) to (V,dy), the most
natural definition for the binary multiplication map on V is

m2(u7 U) = plu’(i(u)v i(v))’

where p is the multiplication on A. However, this operation mq is not associative in general,
but only ‘associative up to higher homotopy’. This means that there exists a ternary operation
mg, such that the associativity condition is replaced by

mg o (mg,id) — mg o (id, m2) = Oms,

where Omg := dyms+msdyes = dyms+ms(dy®id ® id + id ®@dy ®id + id ® id @dy ). Similarly,
we will get an operation my4 of arity 4 when trying to write down conditions involving the
operations mgy and mg. This whole process will continue and lead to an infinite sequence of
operations and conditions. This structure will then be called an A..-algebra or homotopy
associative algebra.

For the above mentioned deformation retract, we have that a DGAA structure on (A, d4)
induces an A-structure on (V, dy ). However, an A-structure on (A, d,4) will induce an Ao-
structure on (V,dy ). This transfer theorem can be extended to other types, and is one of the
most important properties of infinity algebras. For instance, if (L, dr,) and (V, dy) are homotopy
equivalent chain complexes, a Lie infinity (Lo ) structure on (L, dy) induces an Ly-structure
on (V,dy).

Let us give a more precise description of A,.-algebras. An A..-algebra is a graded vector
space A endowed with a family of maps m), € Hom(A®* A) of degree k — 2, k > 1, that verify
the following family of conditions

> (DPTm(id, . id,mg,id, . id) =0, n> 1 (11.1)
pHqtr=n N—— N——r
pH1+r=Fk (») ()

k,q>1

If we view the operations as maps
my, : (sA)®F = sA,
they all become maps of degree —1. These m;, define a map

m:T¢(sA) = GB(SA)QNC — sA,
k>1

which — since T¢(sA) is the cofree coalgebra over sA — extends uniquely to a degree —1
coderivation B
m € CoDer_;(T¢(sA)).

The astonishing fact is that the family of relations (11.1) is encrypted in the unique condi-
tion mom = 0. The converse result is true as well: to any codifferential m € CoDiff _;(T¢(sA))
corresponds a unique A..-structure on A.

This correspondence of infinity structures and codifferentials (coalgebraic approach to in-
finity algebras) has an algebraic variant in finite dimension (algebraic approach) and can be
extended to other types of algebras. This generalization is the celebrated Ginzburg-Kapranov
result:



Chapter 11 — Infinity algebras over a quadratic Koszul operad 86

Theorem 11.1 (Ginzburg-Kapranov [GK94]):
Let P be a quadratic Koszul operad. A Py -structure on a graded vector space V , in the sense
of a representation on V of the differential graded operad Py := QP is equivalent (in the
finite-dimensional setting) to an endomorphism of the free graded P'-algebra over sV*, which
is of degree 1, squares to 0, and is a derivation with respect to any binary operation in P'.
Hence,

Py-structures on V <> m € Der; (ﬂ’fj(sV*)) ,m? =0.

Similarly, a Pso-structure on' V' (here, no finite-dimensional requirement is needed) is equiv-
alent to an endomorphism of ylng’c(sV), which is of degree —1, squares to 0, and is a coderiva-
tion. Hence,

Py -structures on V' <> m € CoDer_; (Qg’c(s‘/)) ,m?=0.

The derivation requirement in this theorem means that in the case @7s' = ofs, Lie' = Gom,
or Pois' = Pois, the endomorphism be a derivation of the associative, the commutative, or
the Lie and commutative products, respectively.

11.4 The operad A,

Just as associative algebras are algebras over a naturally constructed nonsymmetric operad,
A-algebras can be viewed as algebras over a quite obvious nonsymmetric operad A, which
we will now describe.

Let (A,m1,ma,...), my € Hom(A®* A), degmy = k — 2, be an A,.-algebra. For n = 1,
the relation (11.1) reads mjom; = 0, so that d := —m; € End_;(A) endows the graded vector
space A with a chain complex structure. Hence, A®" is a chain complex for the differential
dgon =114 r=p 1d®P @d ® id®". This entails that Hom(A®", A) is a chain complex for the
differential 0 = [d, —] = [-m1, —|. Therefore,

8mn = —m (mn) + (_]-)nian Z id@p @M1 & id@r )
p+14+r=n

and the relations (11.1), for n > 2, read

omn, = > (=1)PTmy (id®P @mg @ id®"). (11.2)

ptgtr=n

pt+l+r=Fk

k,q>2
As an A.-algebra is a chain complex (A, d) endowed with operations m,, € Hom(A®", A) of
degree n—2, n > 2, that verify the relations (11.2), the corresponding operad is a nonsymmetric
DG operad A . Its generating operations, i.e. the operations which are not composites of other
ones, are ., as usually represented by corollas, and correspond to the m,, n > 2. It is clear
that the differential of the operad Ay, is defined by (11.2). Hence, no relations must be encoded
via quotiening by some operadic ideal, and A is the free DG operad 7 (EBn>2 Kun) together
with the mentioned differential 0. Of course, we should check that O respects the grading (i.e.
is of degree —1) and composition (i.e. is a derivation). The first condition follows immediately
from (11.2), since k — 2+ ¢ —2 = n — 3, and the second is part of the definition of 0.

On one hand, we have

m € CoDiff _; (TC(SA)) < Aso-structures on A
<> representations of the DG operad A on (A,d).
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On the other hand, it follows from Ginzburg-Kapranov that

m € CoDiff_; (TC(SA)) > 2/Seo-structures on A
+ representations of the DG operad .@s., = Q.a/s! on A.

This suggest already that the operads A,, and @7s,, coincide. In the following, we will
provide a direct proof of the fact that A, = @se.. The conclusion will actually follow from
the description of the two operads in terms of the associahedron.

11.5 Stasheff polytope or associahedron

The polytope K™, n > 0 is a cell complex of dimension n that is homeomorphic to a ball
and whose cells are in one-to-one correspondence with planar trees with n + 2 leaves. Note
that the set PT,, of planar trees with m leaves is graded by the number of vertices; we denote
the set of planar trees with m leaves and ¢ vertices by PT,, ¢. In fact, we have that the cells
of dimension k of the polytope are in bijection with elements of PT,, 19 ,41—_%. The k-chains,
whose space is denoted by Ci(K"), are formal linear combinations with coefficients in K of the
k-cells.

Ca(KO) :
Y
Ca(K! .
A2 IRV
Co(KC2) = =

Observe that we pass from the top 0-cell to the bottom 0-cell by transforming ‘left leaves’ into
‘right leaves’ in two different ways.
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Of course, the boundary operator d of Co(K™) assigns to any chain or cell the cell boundary.
For instance, for the n-cell identified with the n-corolla, we have, for n = 1,

(Y)-X-V

and, for n = 2,

()X Y NN N

Note that C1(K!) does not contain any 1-cycle, so that the homology vanishes in degree 1. On

the other hand, any 0-chain in
Co(Kh) = KX/ o K\y

is a O-cycle, whereas the O-boundaries are

dcy (K :Kd\y = K(Y/ - \Y)

It follows that Ho(K!) ~ K.

11.5.1 Description of the operad A, in terms of the associahedron

Roughly, the DG operad A is made up by a family (A ), of graded vector spaces, a
composition map, and a differential. Since A, is the free graded operad 7 (69722 K,un>,
where p, is identified with the n-corolla, it is clear that

(As)2 K'Y = K[PTy] ~ Co(K?),
(Ase)s = K{\V X/ V} — K[PT3] ~ Ca(K),
(Aoo)n > K[PT,) ~ Co(K" ),
Note that composition in A, is encrypted in the preceding description. As for the differential

of Ay, it is given by (11.2). For instance,

8#4 = _(M27 1d7 /1’3) - (/1’27 K3, ld) + (/’L37 1d7 1d7 /1’2) - (/1’37 1d7 12, ld) + (N37 K2, 1d7 1d)7

NN SN N

ie.

and

O(po;id, p3) = (Ope;id, p3) + (p2;id, Ops)
= (po;id, (p2; po,id) — (po;id, pu2))
= (p2;id, (p2; p2,id)) — (u2;id, (u2;id, p2)),
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6\>V _ \?/ ~ \>Y
Hence, the differential @ of (Ax )4 (and more generally of (As)n) coincides with the boundary
operator d of Co(K?) (and more generally of Co(K"2)).

ie.

11.5.2 Description of the operad /s, in terms of the associahedron

The cobar construction of an augmented DG cooperad has been described previously. Recall
that, in general, Q% = 7 (s7'€), and § = 6; + 2, where §; (resp. &2) is the extension of dg
(resp. A(l)) to a derivation of .7 (s~1%). However, in our situation ¢ = &/si = € (sF, s’R) and
d¢ = 0. Hence, roughly, the DG operad /s, = Q47sl is made up by a family of graded vector
spaces (S )n, @ composition map, and the differential § = Js.

Since (500)n = 7 (s Lafs), is the space of n-ary operations of the free graded operad
over @/si = Ku§@Ku§®- - -, uf being the unique n-ary operation (represented by the n-corolla)
in &7si, it is clear that

(o0 )n ~ K[PT,] ~ C.(IC”_Q).

If we now prove that the differential 0 of (/s ), coincides with the boundary operator d
of Co(K"~2), we can conclude that A, ~ /s, as DG operads. As mentioned, § is a derivation
for composition in /s, whereas d (resp. 0) is a derivation for composition of trees (resp. in
Aso). It therefore suffices to prove that ¢ and d coincide on generators pS, (identified with the
n-corolla), n > 2.

On uf,, ¢ coincides with A(l), where

Ay €2 C 0 ~%o(%;¢) LY,

Co(l;€)=%ConC.

In other words, Ay is A followed by a replacement of all but one ‘upper’ elements of ¢ by
id, and A(l) is similarly obtained from A (recall that A(u) = A(u) — (1;id, . . ., id) — (id; u)).
Thus, using the formula

Alpg) = > Egsps,, 0,

114+ig=n

we get

S(i5) = Ay(u5) = S0 (ufaid, . id i id, . id) = d(pS). n>2,
pgtr=a ) (r)

p+1+r=k
k,q>2

where the conditions k,q > 2 come from the fact that we linearize A. We have thus proved
that 0 and d coincide.
Finally, we have proved the following

Theorem 11.2: The operads Ase and o/s., = Qulsi coincide. Moreover, the categories of
Aso-algebras and o/s.-algebras are the same.
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