

M. Weigelt, W. Keller

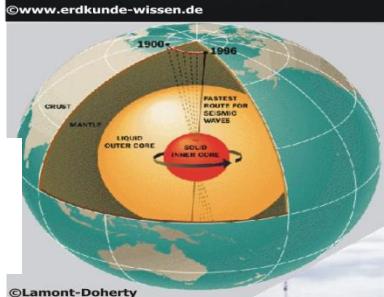
GRACE GRAVITY FIELD SOLUTIONS USING THE DIFFERENTIAL GRAVIMETRY APPROACH

Geophysical implications of the gravity field

Solid Earth

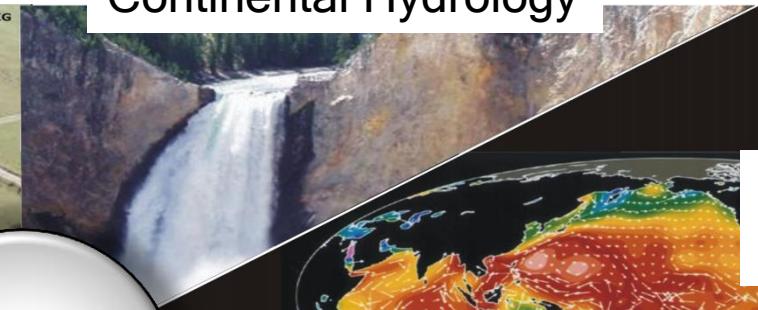
Geodesy

Earth core

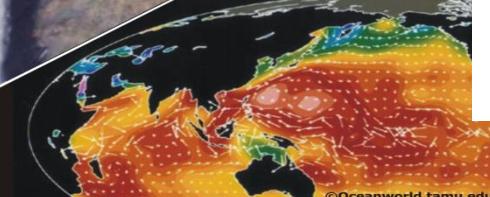


Tides

Continental Hydrology



Oceanography

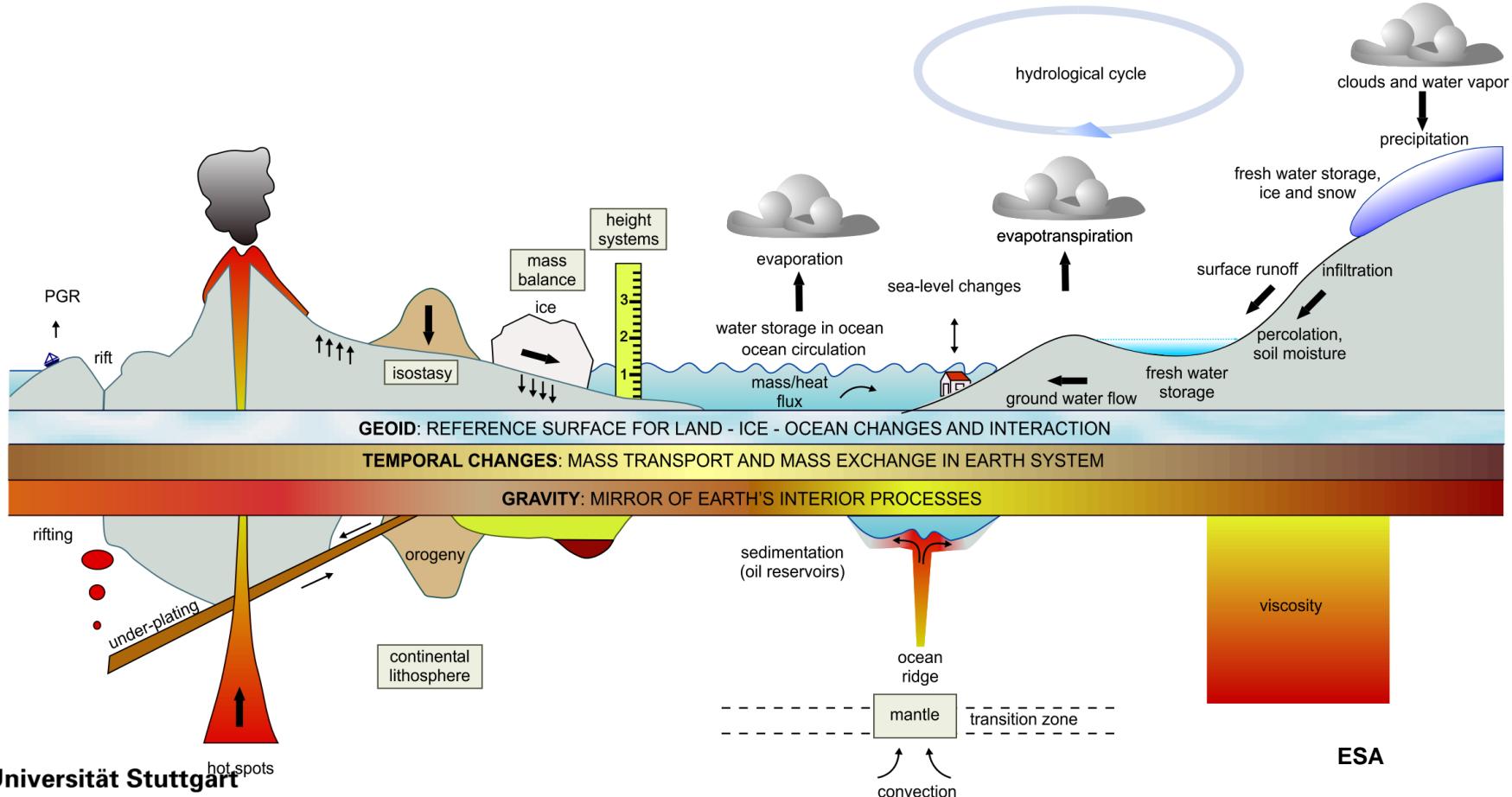


Glaciology

Geoid

Atmosphere

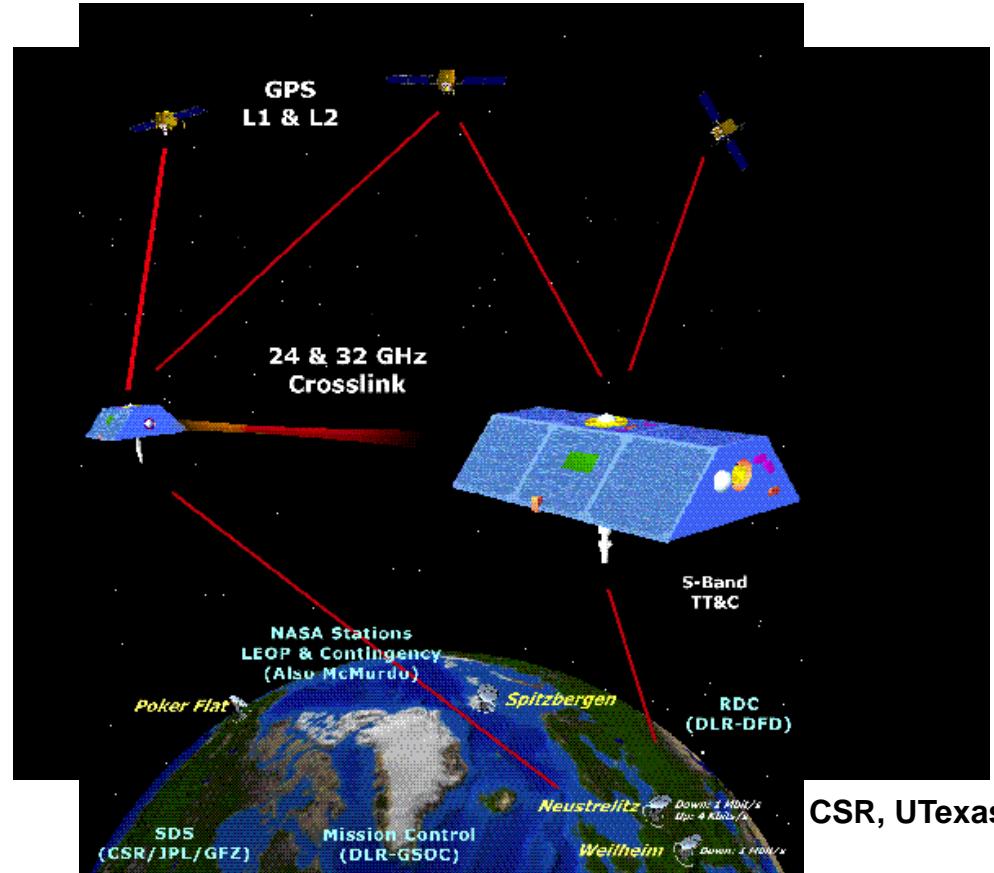
Geophysical implications of the gravity field



Observation system

GRACE = Gravity Recovery and Climate Experiment

- Initial orbit height: ~ 485 km
- Inclination: $\sim 89^\circ$
- Key technologies:
 - GPS receiver
 - Accelerometer
 - K-Band Ranging System
- Observed quantity:
 - range ρ
 - range rate $\dot{\rho}$



$$V(\lambda, \theta, r) = \frac{GM}{R} \sum_{n=0}^{\infty} \left(\frac{R}{r}\right)^{n+1} \sum_{m=0}^n \bar{P}_{nm}(\cos \theta) (\bar{C}_{nm} \cos m\lambda + \bar{S}_{nm} \sin m\lambda)$$

with GM gravitational constant times mass of the Earth

R radius of the Earth

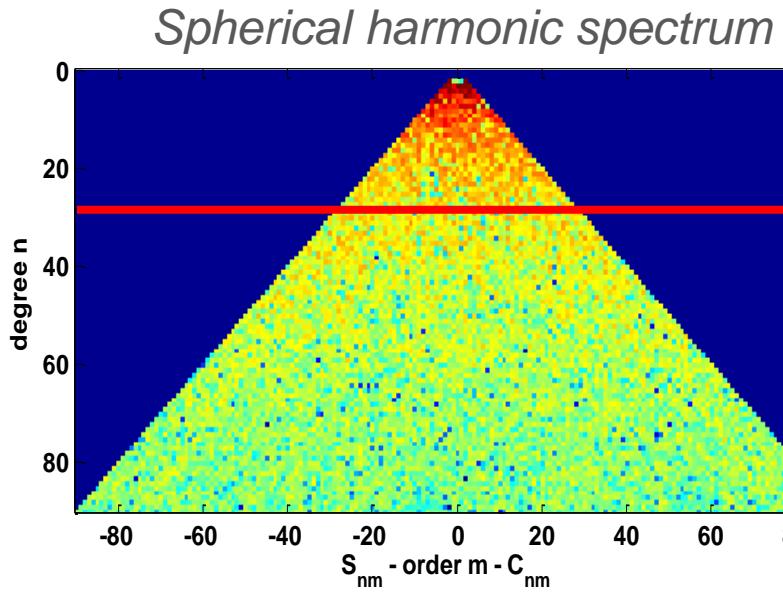
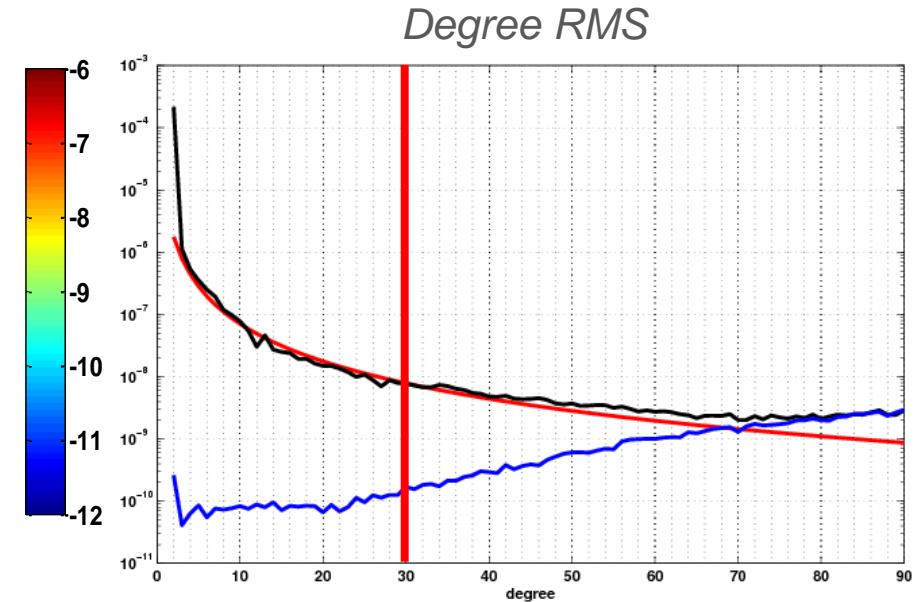
λ, θ, r spherical coordinates of the calculation point

\bar{P}_{nm} Legendre function

n, m degree, order

$\bar{C}_{nm}, \bar{S}_{nm}$ (unknown) spherical harmonic coefficients

Spectral representations

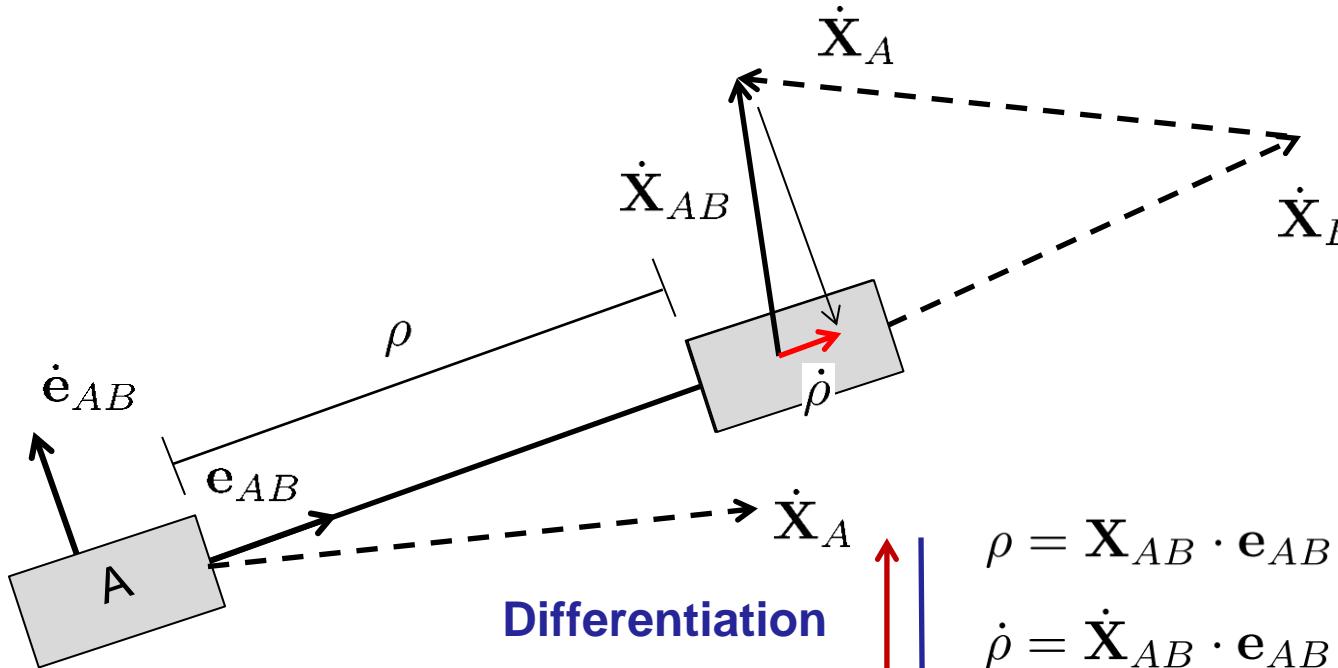


$$c_n = \sqrt{\frac{1}{n} \sum_{m=0}^n \bar{C}_{nm}^2 + \bar{S}_{nm}^2}$$

- GRACE geometry
- Solution strategies
 - Variational equations
 - Differential gravimetry approach
- What about the Next-Generation-GRACE?

Geometry of the GRACE system

Geometry of the GRACE system



Rummel et al. 1978

Differentiation
Integration

$$\rho = \mathbf{X}_{AB} \cdot \mathbf{e}_{AB}$$

$$\dot{\rho} = \dot{\mathbf{X}}_{AB} \cdot \mathbf{e}_{AB}$$

$$\ddot{\rho} = \boxed{\ddot{\mathbf{X}}_{AB} \cdot \mathbf{e}_{AB} + \dot{\mathbf{X}}_{AB} \cdot \dot{\mathbf{e}}_{AB}} = \nabla V_{AB}$$

Solution Strategies

Variational equations

 $\rho, \dot{\rho}$

Classical

(Reigber 1989, Tapley 2004)

 $\rho, \dot{\rho}, \Delta\rho$

Celestial mechanics approach

(Beutler et al. 2010, Jäggi 2007)

 $\rho, \dot{\rho}$

Short-arc method

(Mayer-Gürr 2006)

...

Numerical integration

In-situ observations

Energy Integral

(Han 2003, Ramillien et al. 2010)

 $\dot{\rho}$

Differential gravimetry

(Liu 2010)

 $\ddot{\rho}$

LoS Gradiometry

(Keller and Sharifi 2005)

 $\ddot{\rho}$ ρ

...

Analytical integration

Basic equation: Newton's equation of motion

$$\ddot{\mathbf{X}} = \nabla V + \sum_i \mathbf{g}_i$$

where \mathbf{g}_i are all gravitational and non-gravitational disturbing forces

In the general case: *ordinary second order non-linear differential equation*

Double integration yields:

$$\mathbf{X}(t) = f \left(\mathbf{X}(t_0), \dot{\mathbf{X}}(t_0), \bar{C}_{lm}, \bar{S}_{lm}, \dots \right) = f(p_i)$$

For the solution, linearization using a Taylor expansion is necessary:

$$\mathbf{X}(t, p_i) \approx \mathbf{X}(t, p_i^0) + \sum_i \left. \frac{\partial \mathbf{X}}{\partial p_i} \right|_{p_i^0, t} \Delta p_i$$

Types of partial derivatives:

- initial position

$$\left. \frac{\partial \mathbf{X}}{\partial x(t_0)}, \frac{\partial \mathbf{X}}{\partial y(t_0)}, \frac{\partial \mathbf{X}}{\partial z(t_0)} \right\}$$

Homogeneous
solution

- initial velocity

$$\left. \frac{\partial \mathbf{X}}{\partial \dot{x}(t_0)}, \frac{\partial \mathbf{X}}{\partial \dot{y}(t_0)}, \frac{\partial \mathbf{X}}{\partial \dot{z}(t_0)} \right\}$$

Homogeneous
solution

- residual gravity field
coefficients

$$\left. \frac{\partial \mathbf{X}}{\partial \bar{C}_{nm}}, \frac{\partial \mathbf{X}}{\partial \bar{S}_{nm}} \right\}$$

Inhomogeneous
solution

- additional parameter

...

Homogeneous solution

Homogeneous solution needs the partial derivatives:

$$\frac{\partial \mathbf{X}}{\partial x(t_0)}, \frac{\partial \mathbf{X}}{\partial y(t_0)}, \frac{\partial \mathbf{X}}{\partial z(t_0)}, \frac{\partial \mathbf{X}}{\partial \dot{x}(t_0)}, \frac{\partial \mathbf{X}}{\partial \dot{y}(t_0)}, \frac{\partial \mathbf{X}}{\partial \dot{z}(t_0)}$$

Derivation by integration of the variational equation

$$\frac{\partial^2}{\partial t^2} \begin{bmatrix} \frac{\partial x}{\partial x(t_0)} & \frac{\partial x}{\partial y(t_0)} & \cdots & \frac{\partial x}{\partial \dot{y}(t_0)} & \frac{\partial x}{\partial \dot{z}(t_0)} \\ \frac{\partial y}{\partial x(t_0)} & \frac{\partial y}{\partial y(t_0)} & \cdots & \frac{\partial y}{\partial \dot{y}(t_0)} & \frac{\partial y}{\partial \dot{z}(t_0)} \\ \frac{\partial z}{\partial x(t_0)} & \frac{\partial z}{\partial y(t_0)} & \cdots & \frac{\partial z}{\partial \dot{y}(t_0)} & \frac{\partial z}{\partial \dot{z}(t_0)} \end{bmatrix} = \text{Double integration !}$$

$$\begin{bmatrix} \frac{\partial^2 V}{\partial x^2} & \frac{\partial^2 V}{\partial x \partial y} & \frac{\partial^2 V}{\partial x \partial z} \\ \frac{\partial^2 V}{\partial x \partial y} & \frac{\partial^2 V}{\partial y^2} & \frac{\partial^2 V}{\partial y \partial z} \\ \frac{\partial^2 V}{\partial x \partial z} & \frac{\partial^2 V}{\partial y \partial z} & \frac{\partial^2 V}{\partial z^2} \end{bmatrix} \begin{bmatrix} \frac{\partial x}{\partial x(t_0)} & \frac{\partial x}{\partial y(t_0)} & \cdots & \frac{\partial x}{\partial \dot{y}(t_0)} & \frac{\partial x}{\partial \dot{z}(t_0)} \\ \frac{\partial y}{\partial x(t_0)} & \frac{\partial y}{\partial y(t_0)} & \cdots & \frac{\partial y}{\partial \dot{y}(t_0)} & \frac{\partial y}{\partial \dot{z}(t_0)} \\ \frac{\partial z}{\partial x(t_0)} & \frac{\partial z}{\partial y(t_0)} & \cdots & \frac{\partial z}{\partial \dot{y}(t_0)} & \frac{\partial z}{\partial \dot{z}(t_0)} \end{bmatrix}$$

Solution of the inhomogeneous part by the method of the *variation of the constant* (Beutler 2006):

$$\begin{aligned}\mathbf{z}_{p_i}(t) &= \alpha_{p_i,1}\mathbf{z}_1(t) + \alpha_{p_i,2}\mathbf{z}_2(t) + \alpha_{p_i,3}\mathbf{z}_3(t) \\ &+ \alpha_{p_i,4}\mathbf{z}_4(t) + \alpha_{p_i,5}\mathbf{z}_5(t) + \alpha_{p_i,6}\mathbf{z}_6(t)\end{aligned}$$

with $\mathbf{z}_i(t)$ being the columns of the matrix of the variational equation of the homogeneous solution at each epoch.

Estimation of \mathbf{R} by solving the equation system at each epoch:

$$[\mathbf{z}_1(t) \mathbf{z}_2(t) \mathbf{z}_3(t) \mathbf{z}_4(t) \mathbf{z}_5(t) \mathbf{z}_6(t)] \dot{\alpha}_{p_i} = \begin{pmatrix} \mathbf{0} \\ \frac{\partial \nabla V}{\partial p_i} \end{pmatrix}$$

In case of GRACE, the observables are range and range rate:

$$\rho = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2 + (z_b - z_a)^2}$$

$$\dot{\rho} = \frac{1}{\rho} [(\dot{x}_b - \dot{x}_a)(x_b - x_a) + (\dot{y}_b - \dot{y}_a)(y_b - y_a) + (\dot{z}_b - \dot{z}_a)(z_b - z_a)]$$

Chain rule needs to be applied:

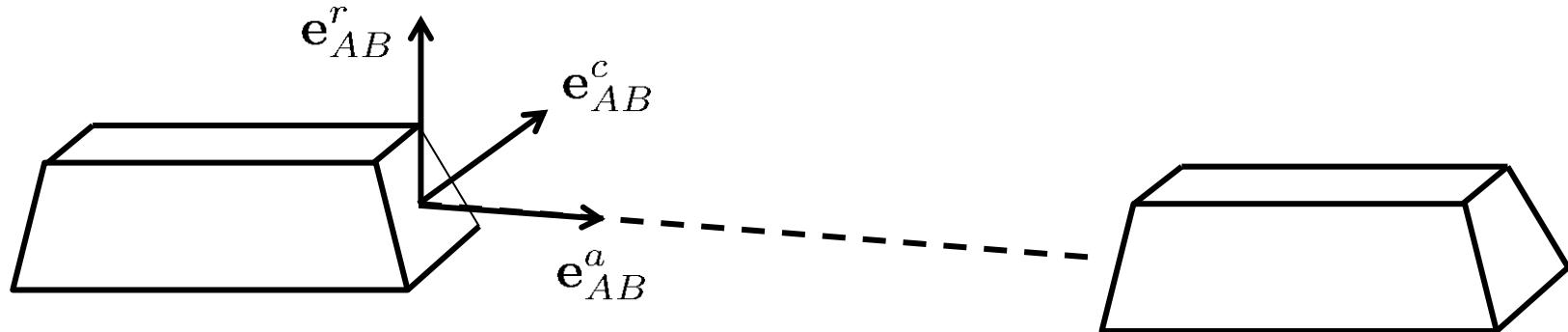
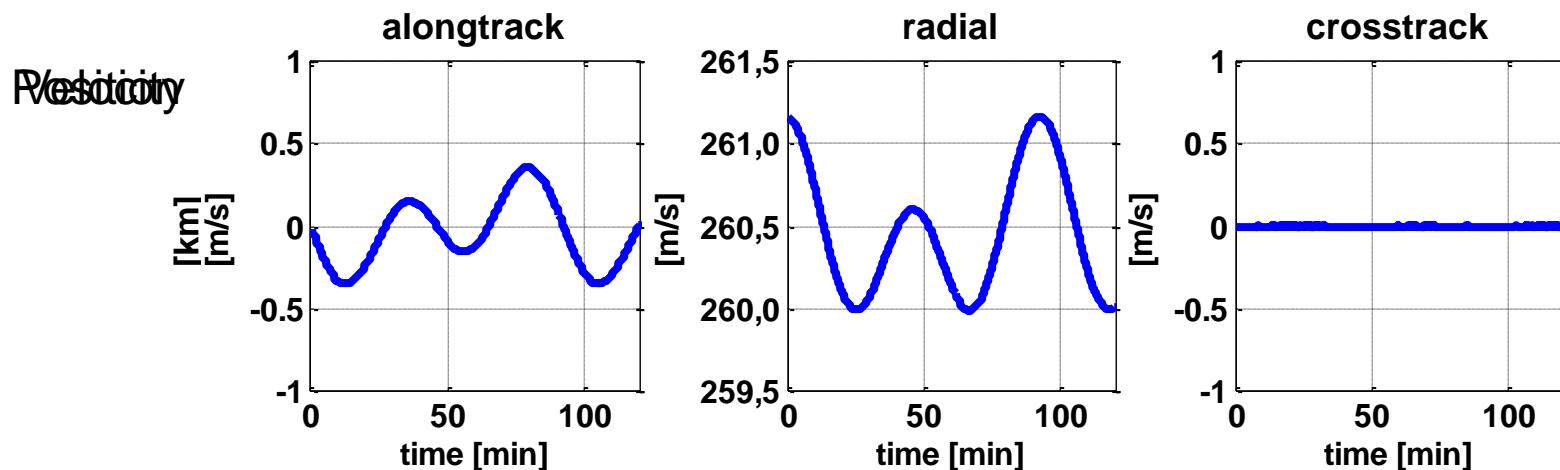
$$\frac{\partial \rho}{\partial p_i} = \frac{\partial \rho}{\partial x_a} \frac{\partial x_a}{\partial p_i} + \frac{\partial \rho}{\partial x_b} \frac{\partial x_b}{\partial p_i} + \dots + \frac{\partial \rho}{\partial z_b} \frac{\partial z_b}{\partial p_i}$$

$$\frac{\partial \dot{\rho}}{\partial p_i} = \frac{\partial \dot{\rho}}{\partial x_a} \frac{\partial x_a}{\partial p_i} + \frac{\partial \dot{\rho}}{\partial x_b} \frac{\partial x_b}{\partial p_i} + \dots \dots \dots + \frac{\partial \dot{\rho}}{\partial \dot{z}_b} \frac{\partial \dot{z}_b}{\partial p_i}$$

- additional parameters
 - compensate errors in the initial conditions
 - counteract accumulation of errors
- outlier detection difficult
- limited application to local areas
- high computational effort
- difficult estimation of corrections to the initial conditions in case of GRACE (twice the number of unknowns, relative observation)

In-situ observations:
Differential gravimetry approach

Instantaneous relative reference frame



Range observables:

$$\mathbf{X}_{AB} = \rho \cdot \mathbf{e}_{AB}^a$$

$$\dot{\mathbf{X}}_{AB} = \dot{\rho} \cdot \mathbf{e}_{AB}^a + \rho \cdot \dot{\mathbf{e}}_{AB}^a$$

$$\ddot{\mathbf{X}}_{AB} = \ddot{\rho} \cdot \mathbf{e}_{AB}^a + 2 \cdot \dot{\rho} \cdot \dot{\mathbf{e}}_{AB}^a + \rho \cdot \ddot{\mathbf{e}}_{AB}^a$$

Multiplication with unit vectors:

GRACE

$$\ddot{\mathbf{X}}_{AB} \cdot \mathbf{e}_{AB}^a = \ddot{\rho} + 0 + \rho \cdot \ddot{\mathbf{e}}_{AB}^a \cdot \mathbf{e}_{AB}^a$$

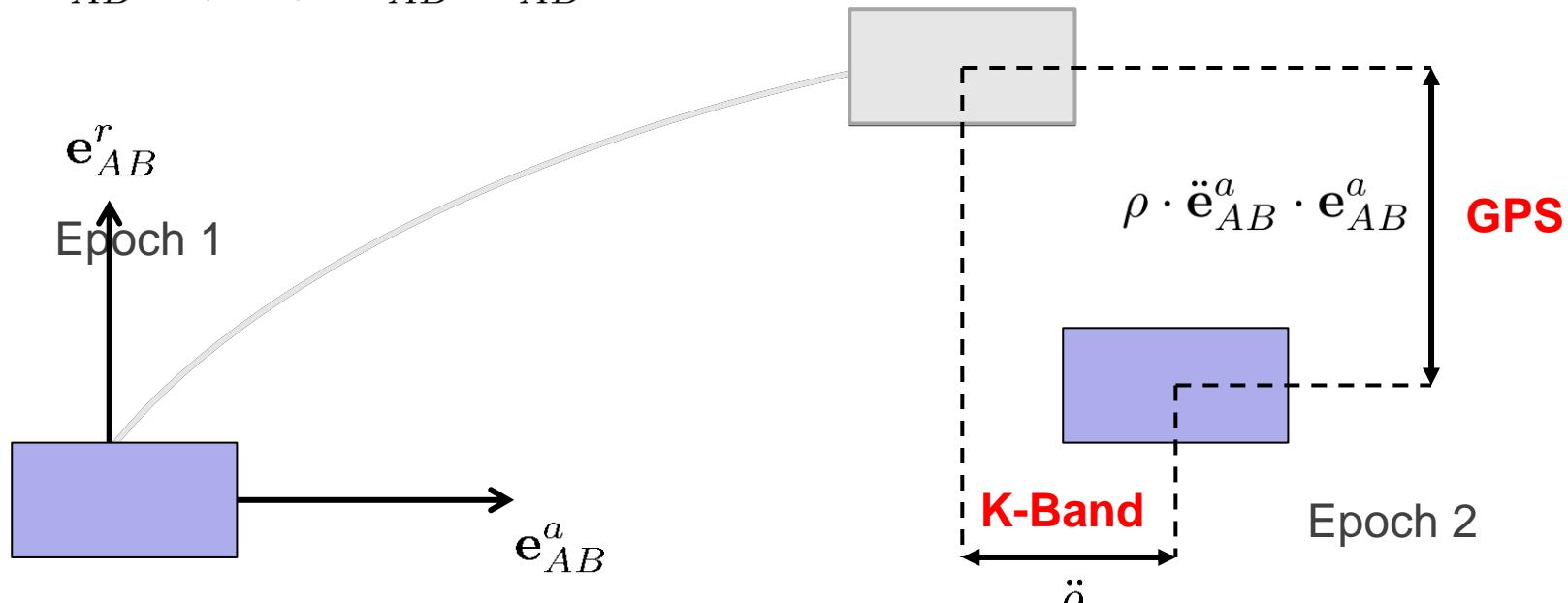
$$\mathbf{X}_{AB} \cdot \mathbf{e}_{AB}^r = 0 + 2 \cdot \dot{\rho} \cdot \|\dot{\mathbf{e}}_{AB}^a\| + \rho \cdot \ddot{\mathbf{e}}_{AB}^a \cdot \mathbf{e}_{AB}^r$$

$$\dot{\mathbf{X}}_{AB} \cdot \mathbf{e}_{AB}^c = 0 + 0 + \rho \cdot \ddot{\mathbf{e}}_{AB}^a \cdot \mathbf{e}_{AB}^c$$

Relative motion between two epochs

$$\ddot{\mathbf{X}}_{AB} \cdot \mathbf{e}_{AB}^a = \ddot{\rho} + \rho \cdot \ddot{\mathbf{e}}_{AB}^a \cdot \mathbf{e}_{AB}^a$$

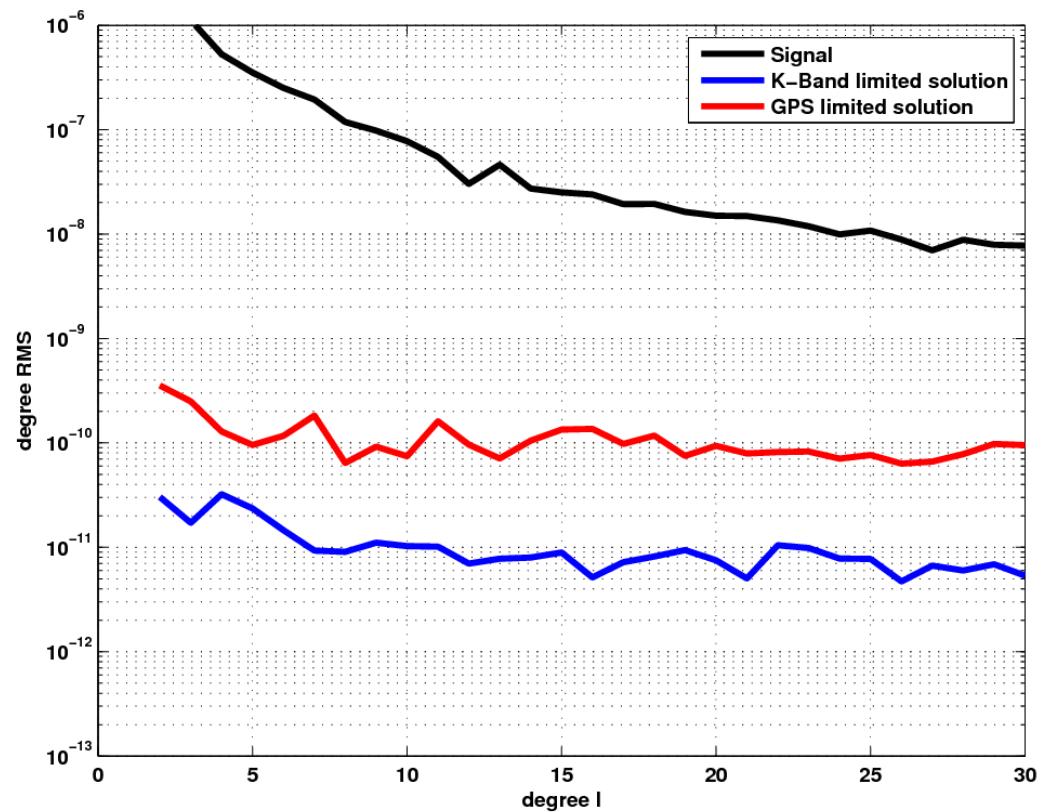
absolute motion neglected!



$$\rho \ddot{\mathbf{e}}_{AB}^a \cdot \mathbf{e}_{AB} = \mathbf{X}_{AB} \cdot \ddot{\mathbf{e}}_{AB}^a = -\dot{\mathbf{X}}_{AB} \cdot \dot{\mathbf{e}}_{AB}^a = -\dot{\rho} \|\dot{\mathbf{e}}_{AB}^a\|^2 = -\frac{1}{\rho} \left(\dot{\mathbf{X}}_{AB} \cdot \dot{\mathbf{X}}_{AB} - \dot{\rho}^2 \right)$$

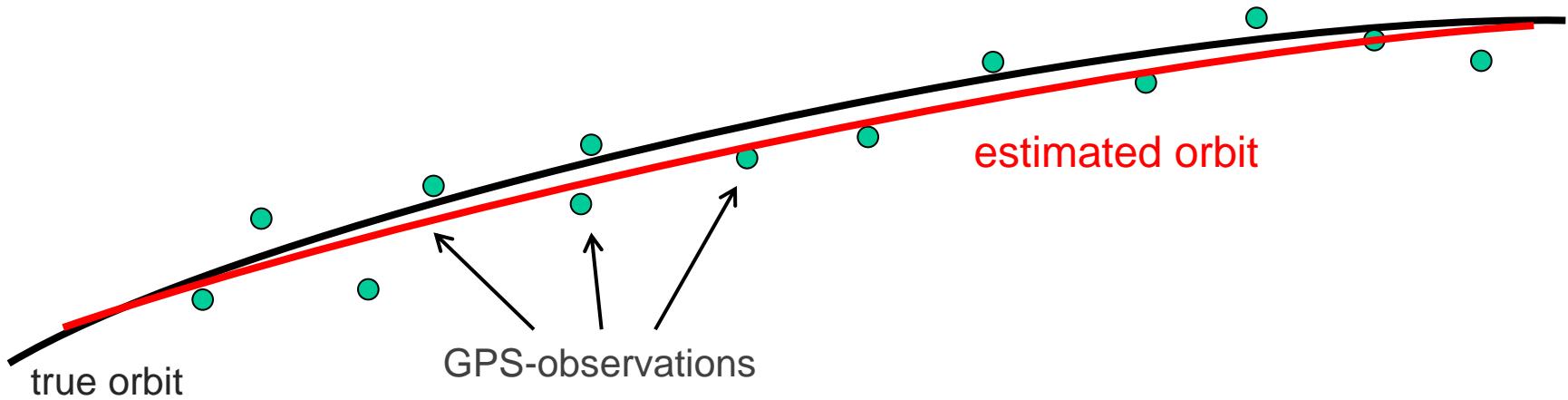
Limitation

Combination of highly precise K-Band observations with comparably low accurate GPS relative velocity



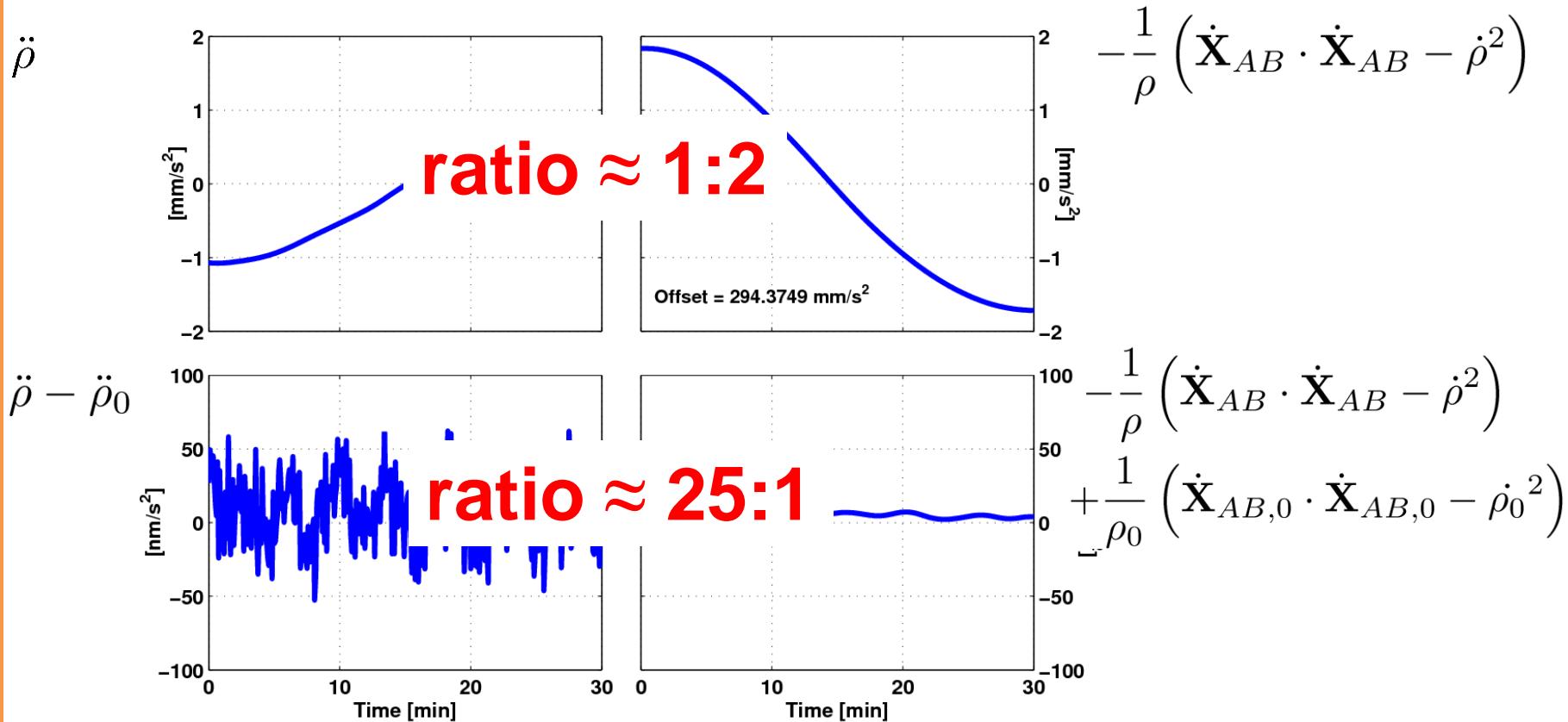
Residual quantities

- Orbit fitting using the homogeneous solution of the variational equation with a known a priori gravity field

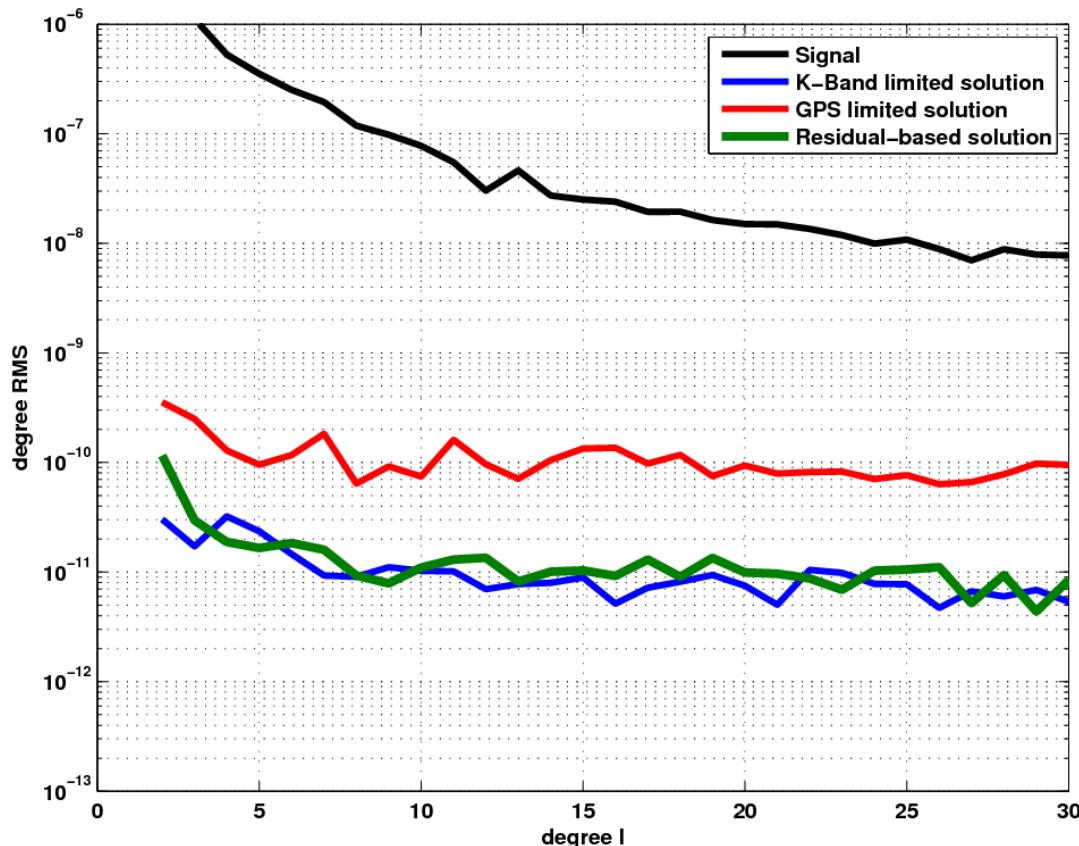


- Avoiding the estimation of empirical parameters by using short arcs

Residual quantities

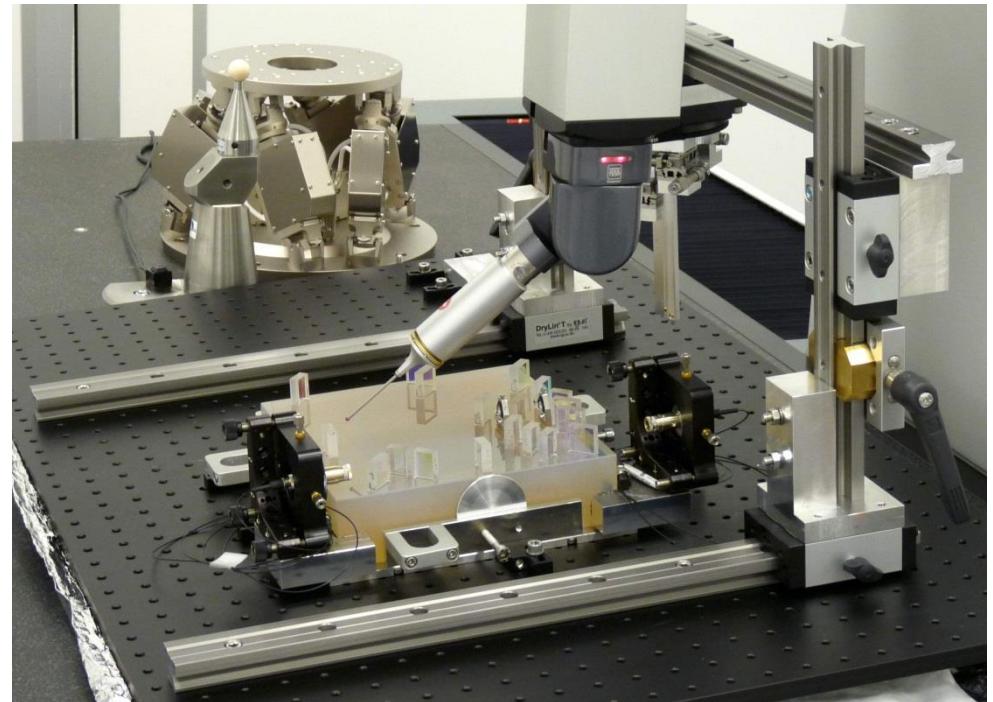


Approximated solution



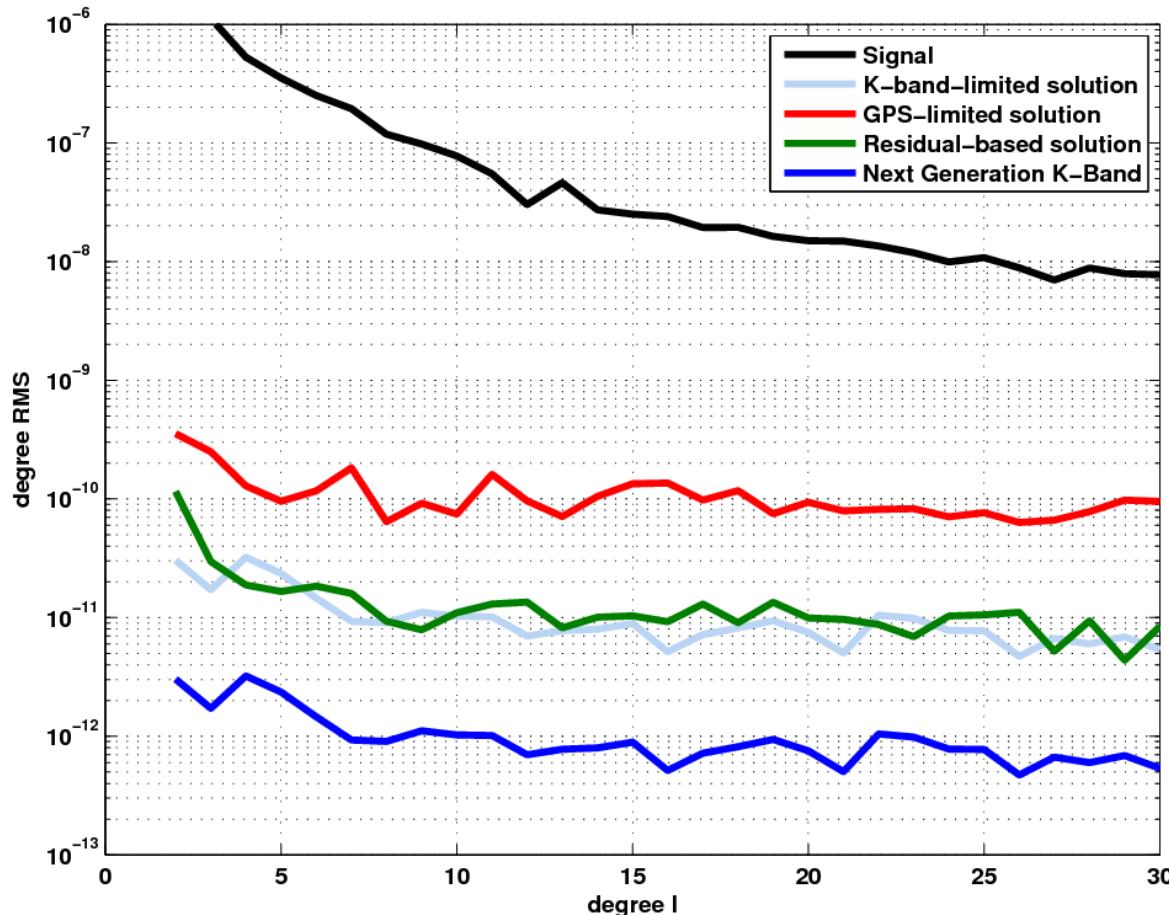
Next generation GRACE

- New type of intersatellite distance measurement based on laser interferometry
- Noise reduction by a factor 10 expected



M. Dehne, Quest

Solution for next generation GRACE



- Reduction to residual quantity insufficient
- Modeling the velocity term by variational equations:

$$f = -\frac{1}{\rho} \left(\dot{\mathbf{X}}_{AB} \cdot \dot{\mathbf{X}}_{AB} - \dot{\rho}^2 \right)$$

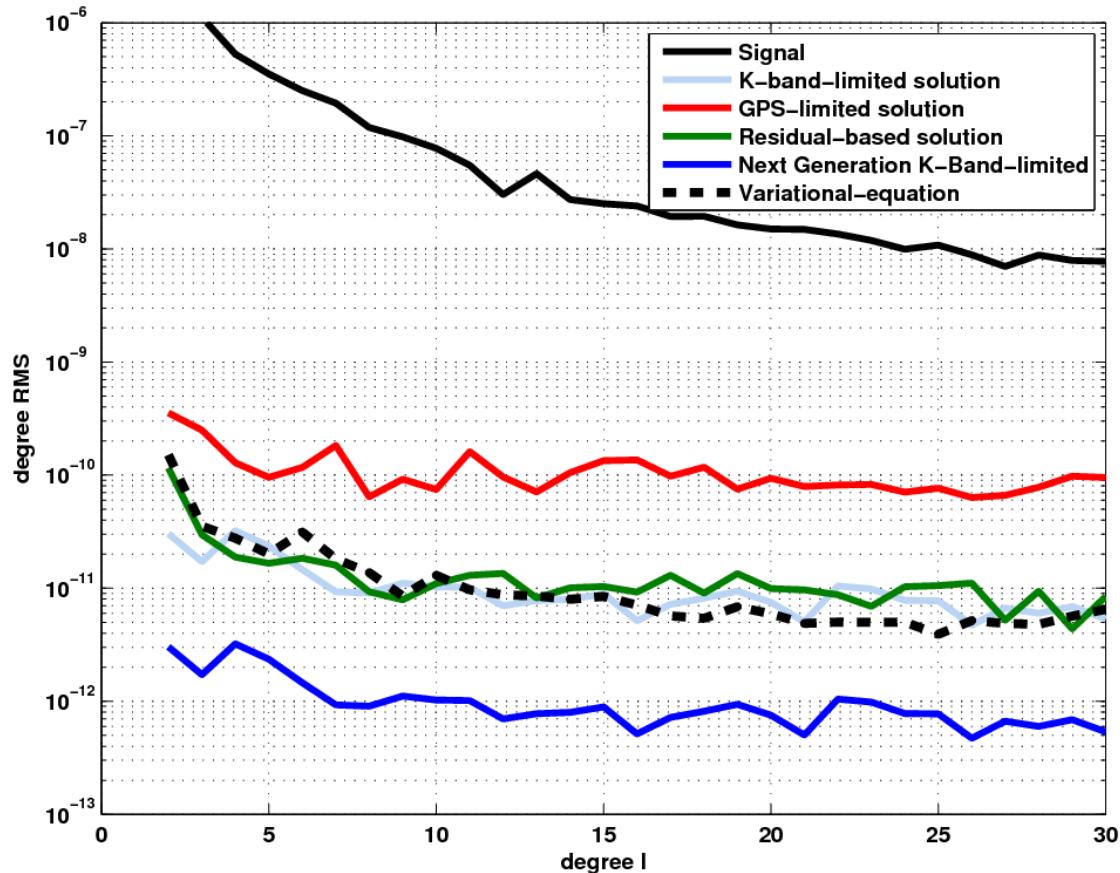
$$\frac{\partial f}{\partial p_i} = \frac{\partial f}{\partial x_a} \frac{\partial x_a}{\partial p_i} + \frac{\partial f}{\partial x_b} \frac{\partial x_b}{\partial p_i} + \dots \dots \dots + \frac{\partial f}{\partial \dot{z}_b} \frac{\partial \dot{z}_b}{\partial p_i}$$

- Application of the method of the variations of the constants

Results

- Only minor improvements by incorporating the estimation of corrections to the spherical harmonic coefficients due to the velocity term
- Limiting factor is the orbit fit to the GPS positions

→ additional estimation of corrections to the initial conditions necessary



- The primary observables of the GRACE system (range & range rate) are connected to gravity field quantities through variational equations (numerical integration) or through in-situ observations (analytical integration).
- Variational equations pose a high computational effort.
- In-situ observations demand the combination of K-band and GPS information.
- Next generation GRACE instruments pose a challenge to existing solution strategies.