ZEITLICHE VARIATIONEN DES
ERDSCHWERFELDES AUS
SATELLITENBEOBACHTUNGEN

Kann die Lucke zwischen GRACE und GFO
geschlossen werden?

Matthias Weigelt



GRACE und GRACE Follow-On (GFO)
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Weitere Satellitenmissionen
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METHODIK AM BEISPIEL CHAMP



Schwerefeldmodellierung

Beschleunigungsansatz:

VV =2 — f3rdBody — fTides - fRel — fGra,v

00 +1 1
M _ _ _
V = GT (?) Z Py, (sin @) (Cgm cosmA\ + Sy, sin m)\)
(=0 m=0
mit GM Gravitationskonstante mal Erdmasse

R Radius der Erde
r, ¢, A\ spharische Koordinaten des Berechnungspunktes
P, Legendre-Funktion
[,m Grad, Ordnung

Cim,Stm  (unbekannte) Kugelfunktionskoeffizienten
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Spektrale Darstellung

Spherical harmonic spectrum of AIUB-GRACEQ3s
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MONATSLOSUNGEN



CHAMP state of the art
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GPS - Positionen: AIUB

« Messwerte alle 10 s

« Schatzung eines Models flrs
absolute Antennenphasenzentrum

* neue IGS Standards s

° of flight

Hintergrundmodelle: Prange 2010

« JPL ephemeris DE405

« Solid Earth tides (IERS conventions)

« Solid Earth pole tides (IERS conventions)

* Ocean tides (FES 2004)

« Ocean pole tides (IERS conventions, Desai 2002)

« Atmospheric tides (N1-model, Biancale and Bode 2006)
« Relativistic corrections (IERS conventions)

« AODI1B-product (Flechtner 2008)
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Difference degree RMS w.r.t. EGMO08

wte——— — — -
______________________________________________________________________ e :
CHAMP 1

PN B GRACE GFZ RLo4|
10 po oo N [l GIS-CHAMPO1s [

degree RMS

0 10 20 30 40 50 60 70
degree |

05. Juni 2012

10



atial RMS w.r.t. EGMO08
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Time series of SH-coefficients: GRACE vs. CHAMP (annual) — scaled by 1010
T T

— CHAMP

m=-5
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MODELLIERUNG



N
C(t) = Co+ %nL Z C cos (wpt) + C3™ sin (wy,t)

n=1

— f— = N .

S(t) = So+ %—I— Z S cos (wyt) + S5 sin (wy,t)
n=1

 Pro:
— einfach

— Kaorrelationen zwischen Koeffizienten

 Con:
— mittlere Zeitvariabilitat der Messperiode

— Frequenzen unbekannt

— Variationen der Frequenzen nicht moglich
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Zeitreihe der Koeffizienten

o

Time series of SH-coefficients: GRACE vs. CHAMP (annual) — scaled by 1010
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Time series for 82 , — scaled by 100
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KALMAN FILTER



. + Kalman Filtered
> >
Signal )® Filter Signal

L Trend L 1 pragiktion /

Annual

* Pro:
— Anwendung auf die Zeitreihen der Koeffizienten (einfache Umsetzung)

— Variationen von Amplitude und Phase mdglich

e Con:
— Ausreil3ersuche fur Pradiktionsmodell

— Vernachlassigung der Korrelationen zwischen Koeffizienten

— Verlust der Redundanz
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Kalman Filter Monatslosungen
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GRACE GFZ Rel. 4 CHAMP

Equivalent water height: 01 January 2003 Equivalent water height: 01 January 2003 X
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Amazonas Gronland Atlantik
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Zeitvariabilitat

GRACE GFZ Rel. 4 CHAMP
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Zusammenfassung

* Verbesserte Monatslosungen aus CHAMP aufgrund von
reprozessierten GPS-Daten

« zeitvariables Schweresignal sichtbar
« geringere Qualitdt gegentber einer GRACE Ldsung

« High-low Konzept als mdgliche Brickentechnologie bis GFO (Swarm,
Cosmic, Sentinel, ...)

 Multi-Satellitenmission

« weitere Prozessierungsverfeinerungen notwendig/maoglich
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BACKUP




PART Ill:
GRACE and GRACE Follow-0On



GIS

GRACE repeat cycles (2/2)

Area-weighted spatial RMS w.r.t. EGM08

.. ©|a,

o=

o o o
= o] o

[wo] urybiay proab

29

05. Juni 2012



05. Juni 2012

Differentiation

Integration

Rummel et al. 1978

p=XAB - €AB

\ p ' Ean + XaB - €an

= VVasg

30



SOLUTION STRATEGIES



Solution strategies

Variational equations

Classical

Ps P (Reigber 1989, Tapley 2004)

In-situ observations

Energy Integral 0
(Han 2003, Ramillien et al. 2010)

D Celestial mechanics approach
| (Beutler et al. 2010, Jaggi 2007)

Differential gravimetry f
(Liu 2010)

P, P

Short-arc method
(Mayer-Glrr 2006)

LoS Gradiometry B
(Keller and Sharifi 2005) 0

05. Juni 2012
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Motivation for in-situ observations: local modeling

« Boundary element method

surface mass density [kg/m 3
surface mass density [kg/m?

-600

: kgl
Latitude [deq] Longitude [deg] Latitude [deg] [kg/m?]

Longitude [deg]
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Water problems can only be solved on a basin scale.

(Robert Kandel - Water from Heaven)
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IN-SITU OBSERVATIONS:
DIFFERENTIAL GRAVITMETRY APPROACH



Nesiidy

alongtrack radial crosstrack
1+ - - 261,5+ - 1 - -
0.5 261,0 0.5
‘E z‘ -E e —————————————————
H OWAAV £ 2605 g O
-0.5 260,0 - -0.5
-1- : - 259,5 - : - 1 : -
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05. Juni 2012



In-situ observation

Range observables:
XAB=p-€4p

}ZAB:p'gﬁB+P'éﬁB
XAB:ﬁ‘€XB+2'ﬁ'éﬁB+P'éﬁB

Multiplication with unit vectors: GRACE

Xap-€sp=p -+ 0 + p-@%p-Eip

Xap-€ip=0 + 2-p-|€%5 + p-€%5-€ip

Xap-€a5=0 + 0 + p-é%5-€5p

05. Juni 2012
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IS Relative motion absolute motion neglected!

Edoch 1

o N
P €ap " €CAB — XAB'BEB —

= —p-l€isl°

2
&

p— —p-w
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Limitation
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l Residual quantities

« Orbit fitting using the homogeneous solution of the variational
equation with a known a priori gravity field

S  —— ——

estimated orbit

oo\

GPS-observations

/

true orbit

« Avoiding the estimation of empirical parameters by using short arcs
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GPS limited solution

degree RMS

-13

il:jI:
| — Signal ]
K-Band limited solution |-

.| === Residual-based solution |3
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GRACE FOLLOW-ON



Next generation GRACE

* New type of inter-satellite
distance measurement
based on laser
interferometry

* Noise reduction by
factor 10 expected
(factor 1000 possible)

05. Juni 2012

M. Dehne, Quest
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Variational equations for velocity term

Reduction to residual quantity insufficient

Modeling the velocity term by variational equations:

e 2 e
f === (IXan]? - /?)
of  Of 8:1:A+ Of Oxrp L N df 0zp

Op; Oxa Op;  Oxp Op; 0zp Op;

Application of the method of the variations of the constants

Alternatively: application of the Hill equations
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Results

« only minor improvements

» possibly the orbit fit to the GPS positions as a limiting factor

|| w— Signal
K-band-limited solution
= G PS—limited solution
107 | ; | m=———= Residual-based solution £
DI Next Generation K-Band-limited |-
.. | m m m Variational-equation
10_a e - S A A S A A ; ' """"""
-9 :
[7)] si
= 10 =
o i
” ;
%, i
o 107" =
10-11 : .:
10~ .: :
107" i
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ICCT




ICCT study group JSG 0.6

Applicability of current GRACE solution
strategies to the next generation of inter-
satellite range observations

Chair: Matthias Weigelt
Co-Chair: Adrian Jaggi
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Objectives

The objectives of the study group are to:

Investigate each solution strategy, identify approximations and
linearizations and test them for their permissibility to the next generation
of inter-satellite range observations,

i,: It Is not the Idea,
- to find the best approach!

force modeling,

\al

iInvestigate the interaction with global and local modeling,
extend the applicability to planetary satellite mission, e.g. GRAIL

establish a platform for the discussion and in-depth understanding of
each approach and provide documentation.
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Example: sensitivity to non-gravitational error sources

 (Calibration of the accelerometer:

— Calibration modgl for GRACE:

—

F=01+8)f+b

— Full calibration model for an accelerometer

—

F=(+8)Ff+Sf>+Nf+b
with: b bias
S1 linear scale matrix
So non-linear scale matrix

N misalignment matrix

« Calibration with GPS-positioning!

05. Juni 2012
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Basic Principle

Decomposition of the surface into elements with finite extend

(bound | ts)
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Basic principle

Example: Consider the single layer potential

—

o)
(XQ) .
:Q/ T ik

- Xal
N
Separation of the surface into elements: () — Z Q,
1=1
Assumption: K ¢ =
X — Z @’L,k}X’Lak
k=1

0 () = 3oty ()

The boundary elements are called isoparametric if @fk =

g

1,k
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IC principle

Example: Consider the single layer potential

Including transformation to the normal triangle and spherical
Integration

GR2 N E T T(Em) - Bur(€n) - cosd (En)
; _ b ’L_,' 9 ? dd
Z“”“/l_/l X (r6.M) "

1 k=1 —X (R7 ¢(£7n) 7)\ (fﬂ?)) ||

Integration by Gaussian quadrature

1 =£

// dndﬁéZZwlwm . with w,w,,, = 0 for m > [

Integratlon IS exact for a polynomlal of order 2L.
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Mathematical properties

Base functions are
— strictly space-limited (i.e. band-unlimited)
— compact
— continuous but not differentiable at the edges

— singular if the point of interest lies inside or on the
corner of the element

. . . 1
« Weak singularity for potential (—)
-

1
« Strong singularity for gradient (T_;g)
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Interaction between approaches and modeling

In collaboration with JSG 0.3:

Comparison of methodologies for regional gravity field modeling
Chair: M. Schmidt, Co-Chair: Ch. Gerlach

Users interest in regional mass variations, e.g. floodings:
Requirements are:

— enhanced spatial resolution,

— arbitrary regions of interests (river basins, etc.),

— combinations of measurement techniques (space gravity

missions, airborne, terrestrial, altimetry, other remote sensing, etc.).

05. Juni 2012
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Base function

Example: linear triangle

n

P,(-1,1)

P, (-1,1)
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Other base functions

Six node
triangle

t node quadrilateral:

G (1) F(O‘,1)

— H(-1,0)

E
(1.1

— D(1,0)

-1-1) B(b,—'] )

(1-1)

1 four node
D (1,1) ¢, Quadrilateral
A B 5
£ -1-1) (-1
nine node quadrilateral: infinite quadrilateral:
AT 4N A
G (1.1) F(O‘,1) E
i (1,1
- D(-1,0) e
(_1!0H)—— + — D(1,0)
(0,0)
A | c W& A B .
11 BO) -1 N G ) (1,-1) !
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Point Grids

Point grid: any (as long as a proper tessellation is possible)

Currently based on the maxima and minima of an a priori field

Surface mass densities from SH field %10
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Solution approach

Search for maxima and minima of an a priori field

Triangulation by Delaunay tessellation

Least-squares adjustment

— brute-force
— assembly of the normal matrix (singularity!)

— full consideration of the stochastic information

No regularization

— objective: avoid regularization by proper grid

— iterative search for vertices
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- Simulation study

Closed loop simulation: noisefree and h=0km
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Simulation study

losed loop simulation:
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Simulation study

Latitude [deg]
s &

&

Lengitude [deg]
Location of maxima and minima
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2
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i

Difference between input and calculation
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j 1 -
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