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Objective: determination of the gravity field of the Earth 
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Topography 

• Almost every geodetic measurement is connected to the plumb-
line and/or the geoid. 

• The geoid is a equipotential surface at mean sea level: 

a. Every mass has the same potential energy at this level. 

b. It indicates the flow of water (higher → lower potential). 

c. It connects GPS-heights (h) with leveled heights (H). 

Ellipsoid 



Determination of the potatoid  
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Jäggi et al, 2011  

Geoid height from 

AIUB-GRACE03s 



Gravity field modeling 
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with                 gravitational constant times mass of the Earth 

  radius of the Earth 

  spherical coordinates of the calculation point 

  Legendre function 

  degree, order 

  (unknown) spherical harmonic coefficients 



Spectral representation 
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Degree RMS represents 

the mean signal/error 

power per degree. 
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Spatial resolution 
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Spatial resolution 



Spatial resolution 
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Spatial resolution 
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Spatial resolution 
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Satellite missions 
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High-low SST 

Low-low SST 

Gradiometry 

CHAMP 

GRACE 
GOCE 

© GFZ-Potsdam 

© CSR Texas 

© ESA 



Spatial resolution 
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Spatial resolution 
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Geophysical implications of the gravity field 
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Mass change as a hydrological observable 
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Direct Water 

Balance - Project 

Balance 

P = precipitation 

ETa = evapotranspiration 

R = runoff 

         = divergence of 

vertically integrated 

moisture flux 

GRACE 



Examples of the comparisons 
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Fersch, KIT 

Amazon 

Central Australia 

Fersch, KIT 



Some aspects in detail: 

• CHAMP: time variability 

• Spatial aliasing 

• GRACE and GRACE Follow-on 
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PART I: CHAMP 



Motivation 

• Did we make use of the full potential of the CHAMP data? 

• Single satellite scenario: sampling investigations 

• Is the time variable gravity field really out of reach? 

 

 

 

 

 

 

 

• What do we learn for future satellite missions? 

• Can high-low SST serve as a transitory technology? 
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METHODOLOGY 



Approach 

• Acceleration approach: 

 

– accelerations by numerical differentiation 

– three dimensional (pseudo-) observations 

– evaluation in the LNOF (local North-oriented frame) 

• Least-squares adjustment: 

• Covariance information:  

– unit matrix 

– epochwise covariance information (only correlations between coordinates) 

– empirical covariance information (only correlations between epochs) 

– scaled empirical covariance information (only correlations between epochs) 

– full error propagation (numerical stability ?) 
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Data sources 
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Prange 2010 

• 10 s sampling 

• estimated absolute antenna phase 

center model 

• new IGS standards 

• …  

GPS positions: 

No accelerometer data needed! 

Background models: 

• JPL ephemeris DE405 

• Solid Earth tides (IERS conventions) 

• Solid Earth pole tides (IERS conventions) 

• Ocean tides (FES 2004) 

• Ocean pole tides (IERS conventions, Desai 2002) 

• Atmospheric tides (N1-model, Biancale and Bode 2006) 

• Relativistic corrections (IERS conventions) 

• AOD1B-product (Flechtner 2008) 



Differentiation 

• Ideal differentiator:  

• Numerical approximation by n-

point central difference 

differentiator 

 

 

• Filtering of high frequency noise 

– by lowpass filtering (warmup!) 

– inherently by the differentiator 

(varying the step size) 
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Outliers vs. poor observations 

26 

• Typically threshold based outlier detection based on residuals: 

? 

? 
? 

? 

• Localizing outlier detection: moving windows (time and space domain) 



Influence of outlier detection and covariance information 
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Difference degree RMS of CHAMP January 2003 w.r.t. EGM08 

Fully 

propagated 

solution 



STATIC SOLUTION 



CHAMP static gravity field 
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[m] 



MONTHLY SOLUTIONS 



CHAMP monthly gravity field solutions (1/4) 
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GPS! GPS! 



CHAMP monthly gravity field solutions (2/4) 
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Difference degree RMS w.r.t. EGM08 



CHAMP monthly gravity field solution (3/4) 
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Time series of SH-coefficients: GRACE vs. CHAMP (annual) – scaled by 1010 



CHAMP monthly gravity field solutions (4/4) 
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GRACE GFZ Rel. 4 CHAMP 



MODELING TIME VARIABILITY 



Modeling time variability 

• Pro:  

– simple 

– considering spatial correlations between coefficients 

• Con:  

– mean time-variable signal over the period of data 

– frequencies essentially unknown 

– variation of frequencies between coefficients 

– higher computational effort 
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Modeling time variability 
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Spectrum of time series of SH-coefficients: GRACE GFZ RL 04 – scaled by 109 



Modeled time-variable gravity field solution (1/4) 
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Time series of SH-coefficients: GRACE vs. CHAMP (annual) – scaled by 1010 



Modeled time-variable gravity field solution (2/4) 

02. April 2012 39 

Difference degree RMS w.r.t. EGM08 



Modeled time-variable gravity field solution (3/4) 
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GRACE GFZ Rel. 4 CHAMP 



Modeled time-variable gravity field solution (4/4) 

• additional trend estimation? 
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Time series of SH-coefficients: GRACE vs. CHAMP (annual + trend) – scaled by 1010 



Time series of a coefficient 
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? 



Time series of a coefficient 
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? 



Spectrum of the time series 
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FILTERED MONTHLY SOLUTIONS 



Filtering approach 

• Pro: 

– variation of frequencies between coefficients possible (within passband) 

– applicable to all degrees and orders 

– filter design 

• Con: 

– filter design 

– warmup 

– sophisticated outlier detection necessary 

– neglecting correlations between coefficients 
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Signal 

Trend 

Annual 

signal 

Bandpass 

Filtering 

Filtered 

Signal 

Annual 

signal 
Trend Filter 

+ 

+ 

+ 

- 



Filtered monthly gravity field solutions (2/6) 
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Time series of SH-coefficients: GRACE vs. CHAMP (filtered) – scaled by 1010 



Filtered monthly gravity field solutions (3/6) 
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Time series of SH-coefficients: GRACE vs. High-Low (filtered) – scaled by 1010 

Adding 

GRACE A and 

GRACE B as 

high-low 

observations 



Filtered monthly gravity field solutions (1/6) 

02. April 2012 49 



Filtered monthly gravity field solutions (4/6) 
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GRACE GFZ Rel. 4 CHAMP 

• Filtered monthly variations 



Filtered monthly gravity field solutions (5/6) 
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GRACE GFZ Rel. 4 CHAMP 



Filtered monthly gravity field solutions (6/6) 
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GRACE GFZ Rel. 4 CHAMP 



Summary Part I: CHAMP 

• Improved gravity field solution due AIUB - CHAMP position data 

including the time variability. 

• Evaluation of the quality of time-variable solution necessary 

• Processing refinements necessary (especially filtering) 

• High-low SST is as a transitory technology till GFO (Swarm, Cosmic, 

Sentinel, …) 

• Acceleration approach also suitable to satellite missions without 

accelerometer data 

• Other approaches ? 
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PART II: SPATIAL ALIASING 



CHAMP monthly gravity field solutions (1/4) 
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Influences on accuracy 

56 02. April 2012 

Quality of a 

gravity field 

solution 

Observation 

geometry 

Availability 

Observation 

errors 

Measurement 

bandwidth 

Orbit 

configuration 

Spatial aliasing 

Temporal aliasing 

… 



Colombo-Nyquist rule 
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    repeat orbit: 

•     orbits 

•     nodal days 

Example:   β= 47, α = 3   L = 23 
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  maximum spatial resolution: 
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However… 
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January 2003 June 2003 

CHAMP in a 

31/2  

repeat orbit 

02. April 2012 

January 2004 June 2003 



NEW CRITERION? 



Dependency on the parity (1/2) 
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Dependency on the parity (2/2) 
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Ascending equator crossings: 

First descending equator crossings: 

Condition: 

Solution only for           even, since all elements are integer. 

Introducing the concept of unique equator crossings: 



Time series criterion 
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• Spatial representation: 

 

• Time series representation: 

 

 with                           

• Non-overlapping frequency condition: 

 

• Nyquist criterion for spatial resolution: 
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SIMULATION STUDY 



Simulation study: odd parity 46/3  

64 
02. April 2012 



Simulation study: even parity 47/3 

65 



Noise impact 
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IMPACT ON CHAMP AND GRACE 



CHAMP repeat cycles (1/2) 

68 

Time Parity h [km] Old:  

139 9 January 2002 Even 409 139 69 69 

31 2 May 2002 Odd 393 62 30 15 

October 2002 

June 2003 

109 7 July 2004 Even 372 109 54 54 

47 3 November 2005 Even 345 47 23 23 

January 2007 

63 4 September 

2008 

Odd 321 126 62 31 

79 5 October 2009 Even 307 79 39 39 
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CHAMP repeat cycles (2/2) 
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GRACE repeat cycles (1/2) 

70 

Time Parity h [km] Old: 

76 5 September 2002 Odd 485 152 75 37 

137 9 April 2003 Even 478 137 68 68 

61 4 September 2004 Odd 470 122 60 30 

229 15 January 2006 Even 465 229 114 114 

107 7 December 2009 Even 459 107 53 53 

199 13 Even 453 199 99 99 

46 3 Odd 445 92 45 22 

169 11 Even 436 169 84 84 

… … … … … … … 
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GRACE repeat cycles (2/2) 
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TEMPORAL ALIASING 



Temporal aliasing? 

• Closed loop simulation: GRACE 

• Difference of ocean tide models (EOT10a –FES2004) as the 

only noise source 
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© Bohan Wu 

Closed loop simulation: difference output - input 



Summary Spatial Aliasing 
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• Refinement of Colombo-Nyquist rule necessary 

• Nyquist criterion separately applicable to longitude and latitude 

direction due to near polar (limit?) orbits in gravity field missions 

• Limitation practically on the maximum order  M 

• New rule of thumb describes only the influence due to the 

spatial aliasing of the static field. 

• Signal higher than maximum order M ? 

• Dependency on the observation quantity? 

• Criterion ?  



PART III: 

GRACE and GRACE Follow-On 



Geometry of the GRACE system 

76 

Differentiation 

Integration 

Rummel et al. 1978 



SOLUTION STRATEGIES 



Solution strategies 

78 

Variational equations In-situ observations 

Classical 
(Reigber 1989, Tapley 2004) 

Celestial mechanics approach 
(Beutler et al. 2010, Jäggi 2007) 

Short-arc method 
(Mayer-Gürr 2006) 

… 

Energy Integral 
(Han 2003, Ramillien et al. 2010) 

Differential gravimetry 
(Liu 2010) 

LoS Gradiometry 
(Keller and Sharifi 2005) 

… 



Motivation for in-situ observations: local modeling 

• Boundary element method 

79 



Motivation for in-situ observations: local modeling 

Water problems can only be solved on a basin scale. 
(Robert Kandel – Water from Heaven) 
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IN-SITU OBSERVATIONS: 

DIFFERENTIAL GRAVITMETRY APPROACH 



Instantaneous relative reference frame 
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In-situ observation 
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Range observables: 

Multiplication with unit vectors: 
GRACE 



Relative motion 

84 

absolute motion neglected! 

Epoch 1 

Epoch 2 K-Band 

GPS 



Limitation 
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Combination of highly 

precise K-Band 

observations with 

comparably low accurate 

GPS relative velocity 



Residual quantities 

• Orbit fitting using the homogeneous solution of the variational  

equation with a known a priori gravity field 

 

 

 

 

 

 

 

• Avoiding the estimation of empirical parameters by using short arcs 
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true orbit 
GPS-observations 

estimated orbit 



Residual quantities 

87 

ratio ≈ 1:2 

ratio ≈ 25:1 



Approximated solution 

88 



GRACE FOLLOW-ON 



Next generation GRACE 
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• New type of inter-satellite 

distance measurement 

based on laser 

interferometry 

• Noise reduction by  

factor 10 expected  

(factor 1000 possible) 

M. Dehne, Quest 



Solution for next generation GRACE 
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Variational equations for velocity term 

• Reduction to residual quantity insufficient 

• Modeling the velocity term by variational equations: 

 

 

 

 

 

• Application of the method of the variations of the constants 

• Alternatively: application of the Hill equations 

92 



Results 

93 

• only minor improvements 

• possibly the orbit fit to the GPS positions as a limiting factor 



ICCT 



ICCT study group JSG 0.6 

Applicability of current GRACE solution 

strategies to the next generation of inter-

satellite range observations 
 

Chair: Matthias Weigelt 

Co-Chair: Adrian Jäggi 
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Objectives 
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The objectives of the study group are to:  

• investigate each solution strategy, identify approximations and 

linearizations and test them for their permissibility to the next generation 

of inter-satellite range observations,  

• identify limitations or the necessity for additional and/or more accurate 

measurements,  

• quantify the sensitivity to error sources, e.g. in tidal or non-gravitational 

force modeling,  

• investigate the interaction with global and local modeling,  

• extend the applicability to planetary satellite mission, e.g. GRAIL  

• establish a platform for the discussion and in-depth understanding of 

each approach and provide documentation.  

 

It is not the idea,  

to find the best approach! 



Example: sensitivity to non-gravitational error sources 

• Calibration of the accelerometer: 

– Calibration model for GRACE:  

 

– Full calibration model for an accelerometer 

 

    with:        bias 

  linear scale matrix 

  non-linear scale matrix 

  misalignment matrix 

• Calibration with GPS-positioning! 
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Interaction between approaches and modeling 

In collaboration with JSG 0.3:  

Comparison of methodologies for regional gravity field modeling 

Chair: M. Schmidt, Co-Chair: Ch. Gerlach 

Users interest in regional mass variations, e.g. floodings:  

Requirements are: 

– enhanced spatial resolution, 

– arbitrary regions of interests (river basins, etc.), 

– combinations of measurement techniques (space gravity 

missions, airborne, terrestrial, altimetry, other remote sensing, etc.).  
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Methodology 

• Simulation 
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Conclusions 

Are we prepared for future satellite missions? 

• Yes, but we should also make use of the time.  

– e.g. applicability of approaches to GFO 

• Satellite systems (…) need to be better understood. 

– e.g. spatial aliasing 

• Thinking outside of the box 

– e.g. high-low SST as transitory technology 
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BACKUP 



CHAMP + GRACE A + GRACE B 
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CHAMP + GRACE A + GRACE B 
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Time series of SH-coefficients: GRACE vs. CH+GA+GB (annual) – scaled by 1010 



CHAMP 
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Time series of SH-coefficients: GRACE vs. CHAMP (annual) – scaled by 1010 



Decomposition of the surface into elements with finite extend 

(boundary elements) 
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e.g. blocks 

e.g. triangles 

Basic Principle 



Example: Consider the single layer potential 

 

 

 

 

Separation of the surface into elements: 
 

Assumption: 

 

 

 

 

The boundary elements are called isoparametric if  

Basic principle 

107  



Basic principle 
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Example: Consider the single layer potential 
 

Including transformation to the normal triangle and spherical 
integration 

 

 

 

Integration by Gaussian quadrature 

 

 

 

Integration is exact for a polynomial of order 2L. 

 



Base functions are 

– strictly space-limited (i.e. band-unlimited) 

– compact 

– continuous but not differentiable at the edges 

– singular if the point of interest lies inside or on the 

corner of the element 

• Weak singularity for potential 

 

• Strong singularity for gradient 

 

Mathematical properties 
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Example: linear triangle  

Base function 
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Other base functions 
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six node 

triangle 

four node 

quadrilateral 

eight node quadrilateral: nine node quadrilateral: infinite quadrilateral: 



Point grid: any (as long as a proper tessellation is possible) 

Currently based on the maxima and minima of an a priori field 

Point Grids 

112 



• Search for maxima and minima of an a priori field 

• Triangulation by Delaunay tessellation  

• Least-squares adjustment  

– brute-force 

– assembly of the normal matrix (singularity!) 

– full consideration of the stochastic information 

• No regularization  

– objective: avoid regularization by proper grid 

– iterative search for vertices 

 

Solution approach 
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Closed loop simulation: noisefree and h=0km 

Simulation study 
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Closed loop simulation: noise=1% and h=400km 

Simulation study 
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Simulation study 
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