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OPTIMAL CONVERGENCE RATES AND ONE-TERM EDGEWORTH
EXPANSIONS FOR MULTIDIMENSIONAL FUNCTIONALS OF
GAUSSIAN FIELDS

SIMON CAMPESE

ABSTRACT. We develop techniques for determining the exact asymptotic speed
of convergence in the multidimensional normal approximation of smooth func-
tions of Gaussian fields. As a by-product, our findings yield exact limits and
often give rise to one-term generalized Edgeworth expansions increasing the
speed of convergence. Our main mathematical tools are Malliavin calculus,
Stein’s method and the Fourth Moment Theorem. This work can be seen as
an extension of the results of [NP09a] to the multi-dimensional case, with the
notable difference that in our framework covariances are allowed to fluctuate.
We apply our findings to exploding functionals of Brownian sheets, vectors of
Toeplitz quadratic functionals and the Breuer-Major Theorem.

1. INTRODUCTION
Let X be an isonormal Gaussian process on some real, separable Hilbert space
H and (F,,) be a sequence of centered, real-valued functionals of X with converg-
. . L .
ing covariances. Moreover, assume that F;,, = Z, where Z is a centered Gauss-

jan random variable and =5 denotes convergence in law. In [NP09b], Nourdin
and Peccati used a combination of Stein’s method (see [NP12], [CGS11], [CS05],
[Rei05], [Ste86], [Ste72]) and Malliavin calculus (see [NP12], [Nua06], [Jan97]) to
derive the bound

(1.1) |E[g(Fn)] — Elg(2)]] < M(g) ¢(Fn)

and used it to prove estimates for several probabilistic distances d(F,, Z) (among
them the Fortet-Mourier, Kolmogorov and Wasserstein distances). The quantity
©(F},) in the bound (1.1) is defined by

p(Fy) = \/Var (DF,, —~DL-'F,); + [E[F2] - E [27],

where ¢ is a sufficiently smooth function, M (g) is a constant depending on g
and the random variable <DFn, —DL_IFn> 5 involves the Malliavin derivative

operator D and the pseudo-inverse L~! of the Ornstein Uhlenbeck generator L
(see for example [NP12] or [Nua06] for definitions).
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This approach was pushed further by the same two authors in [NP09a]. Dis-
regarding technicalities, they showed that if

(DF,,~DL™'F,), —E(DF,,~DL™'F,)
" /Var (DF,,, DL~ 1F,)

jointly converges in law to a Gaussian random vector (Z1, Z3), it holds that

(1.2) P(F, <z)—9(2) _ E [1(—oo,z} (Fn)] — ®(2) N 3(13(3) (2:),
p(Fn) p(Fn) 3
where p = E [Z; Z5] and ® is the cumulative distribution function of the Gauss-
ian random variable Z and ®(®) denotes its third derivative, thus providing exact
asymptotics for the difference P(F,, < z) — ®(z2).
Recently, Nourdin, Peccati and Réveillac showed in [NPR10b] that the bound (1.1)
also has a multidimensional version. It can still be written as

(1.3) |E[g(Fn)] — Elg(2)]] < M(g) ¢(Fn)

but now the functionals F,, and the normal Z are R%valued and the function
g has to be in C?(R%) with bounded first and second derivatives. Moreover, the
quantities ¢(F,) are now given by p(F,,) = Ap(Fy,) + Ac(F,), where

d
Ap(Fp) = | Y VarTy(F,),

ij=1
d
Ac(F) = | D (B[FnFn] — E[Z:Z))
ij=1

and I';;(F,,) = (DF,,, —DL_le,n>ﬁ. As every Lipschitz function can be ap-
proximated by C2 functions with bounded derivatives up to order two, (1.3) yields
an upper bound for the Wasserstein-distance (see [NPR10b]), which, to the knowl-
edge of the author, is the strongest distance that has been achieved via an ap-
proach based on Stein’s method (see the discussion before Theorem 4 in [CMO08]).
One should note that, using methods of Malliavin calculus, it is however pos-
sible to prove that, in several cases, the central limit theorems implied by the
bound (1.3) take place in the total variation distance (see [NP13b, Theorem 5.2]).
One should also note that another bound for the difference on the left hand
side of (1.1) is given by the maximum of the third and fourth cumulants of F,
(see [BBNP12]) and that this bound is in fact optimal in total variation distance,
if the sequence (F},) lives in a fixed Wiener chaos (see [NP13a]).

The main result of this paper is Theorem 3.2, which provides exact asymptotics
for the difference

E [Q(Fn)] —E [Q(Zn)]
o(Fn) ’

where (Z,,) is a sequence of Gaussian random vectors that has the same covari-
ance structure as (F),). Analogously to the one-dimensional case, the random

(1.4)

sequences <Fn, fij (Fy) = where fZ](Fn) is a normalized version of I';; (F7,),
n>

will play a crucial role.
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Assuming converging covariances, we are able to obtain an exact and explicit
limit for the quantity (1.4), where the Gaussian sequence (Z,,) is replaced by
a single Gaussian vector Z. This is Theorem 3.4, which can be seen as a multi-
dimensional analogue to (1.2). As a by-product, we obtain the optimality of ¢(F},)
for the Wasserstein distance dyy, by which we mean the existence of positive
constants ¢ and ¢y such that

dw (Fn, Z)

p(Fn)
for n > ng. Note that the mere existence of these constants is not hard to prove.
Indeed, a suitable upper bound ¢y can always obtained from (1.3) and by choosing
g in (1.3) to depend only on one coordinate, the problem of finding lower bounds
can essentially be reduced to the one-dimensional findings of [NP09a].

Taking these results a step further, we provide one-term generalized Edge-
worth expansions that speed up the convergence of (E [¢(F},)] — E[g(Z,)]) (or
the respective sequence with Z,, replaced by Z in the converging variances case)
towards zero.

As an important special case, we apply Theorems 3.2 and 3.4 and their im-
plications to random sequences (F},), whose components are elements of some
Wiener chaos (that can vary by component). In this case, the sufficient conditions
for our results simplify substantially and can exclusively be expressed in terms
of contractions of the respective kernels (or even cumulants in the case of the
second chaos). In many cases, the only contractions one has to look at are those
where all kernels are taken from the same component of F},, in the spirit of part
(B) of the Fourth Moment Theorem 2.8.

The remainder of the paper is organized as follows. In the preliminary Sec-
tion 2, we introduce the necessary mathematical theory and gather some results
from the existing literature. Our main results in a general framemork are pre-
sented in Section 3. In the following Section 4, these results are then specialized
to the case where all components of (F},) are multiple integrals. We conclude
by applying our methods to several examples, namely step functions, exploding
integrals of Brownian sheets, continuous time Toeplitz quadratic functionals and
the Breuer-Major Theorem.

1 > C2

2. PRELIMINARIES

2.1. Metrics for probability measures and asymptotic normality. We fix a
positive integer d and denote by P(R?) the set of all probability measures on
R, If X is a R%-valued random vector, we denote its law by Px. If (P,) C
P(R?) is a sequence of probability measures, weakly converging to some limit
P, we can always find an almost surely converging sequence (X,,) of R%-valued
random vectors, such that X,, has law P,,. This is the well-known Skorokhod
representation theorem, which we will state here for convenience.

Theorem 2.1 (Skorokhod representation theorem, [Sko56]). Let (P,,)n>0 C P(R?)

be a a sequence of probability measures such that P, £ Py. Then there exists a se-
quence (X,,)n>0 of R?-valued random vectors, defined on some common probability
space (¥, F*, P*), such that Px, = P,, and X,, — X P-almost surely.

Given a metric v on P(R?), we say that v metrizes the weak convergence
on P(RY), if for all P € P(R?) and sequences (P,) C P(R?) the following
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equivalence holds:
VP, P) =0 < P, 5P

Two prominent examples are the Prokhorov metric p and the Fortet-Mourier met-

ric 3, defined by
p(P,Q) = inf {a > 0: P(A) < Q(A®) +¢ for every Borel set A C Rd} ,
and
57.Q) = s { | [ 0P - @) Il + 111 < 1}

Here, A° = {z: ||z—y|| < eforsomey € A}, ||-|| is the e-hull with respect to the
Euclidean norm and ||-|| denotes the Lipschitz seminorm. For double sequences
of probability measures whose elements are asymptotically close with respect
to one of these two metrics, a result similar to the Skorokhod Representation
Theorem 2.1 holds.

Theorem 2.2 ([Dud02], Th. 11.7.1). Let (P)n>1, (Qn)n>1 € P(RY) be two se-
quences of probability measures. Then the following three conditions are equivalent.

a) B (Fn,Qn) =0

b) p(FPn,Qn) =0

c) There exist two sequences (X,,) and (Y;,) of R?-valued random vectors, defined
on some common probabilty space (2*, F*, P*), such that Px, = P, and
Py, = Qy forn > 1 and X,, — Y,, — 0 P-almost surely.

Note that the Skorokhod Representation Theorem 2.1 is not a simple corollary
of Theorem 2.2. Also, the distances /3 and p can not easily be replaced by other
metrics (see [Dud02, p.418] for details and counterexamples). Theorem 2.2 is the
motivation for our following definition of asymptotically close normality.

Definition 2.3. Let (X,,) be a sequence of R%-valued random vectors with finite
first and second moments. We say that (X, ) is asymptotically close to normal (in
short: ACN), if

B(Px,,Pz,) =0,

where the probabilty measures Py, are laws of d-dimensional Gaussian random
variables Z,,, whose first and second moments coincide with those of X,,.

Note that we consider (almost surely) constant random vectors as being “de-
generated” Gaussians. Thus, by the above definition, all sequences of random
vectors whose second moments eventually vanish are ACN. By Theorem 2.2, we
could of course replace the Fortet-Mourier metric 5 with the Prokhorov metric p.
It is clear that if (X,,) is ACN, the same is true for any of its components (Xj ).
Furthermore, if all first and second moments of (X,,) converge (or, as a special
case, are equal), being ACN is equivalent to converging in law to a Gaussian ran-
dom variable Z (with the limiting moments as parameters). Indeed, the triangle
inequality gives

p(PXn?PZ) S p(PXn?PZn) +p(PZn7PZ)

We will use the following asymptotic notation for two positive sequences (a,)
and (b,,) throughout the text. We write(a,) < (by), if there exists a positive
constant ¢ such that a,, < cb,, for n > ng and (a,,) =< (by), if (ay,) < (b,) and
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(bn) < (ay) holds. For brevity, we often drop the braces and just write a,, < by,
an = by, etc.

2.2. Hermite polynomials, integration by parts and the transformation
U, c. Fix a positive integer d. Elements of the set N&, where Ny = N U {0}, will
be called (d-dimensional) multi-indices. We define |a| = Z?:l a; and call this
sum the order of c. For a d-dimensional vector x = (1, ...,24) € R? we define
% = H?:1 aclal Multi-indices of order one will sometimes be denoted by e;,
where the index ¢ marks the position of the non-zero entry. Thus, for example,
x% = x;. It is clear that every multi-index « can be written as a sum of |«
multi-indices [y, . .., [|4| of order one, and that this sum is unique up to the order
of the summands. We will call the set {l1,...,[} of these multi-indices the
elementary decomposition of «.. For example, the elementary decomposition for
the multi-index (2,0, 1) is {(1,0,0), (1,0,0), (0,0, 1) }.

For any multi-index «, the multidimensional Hermite polynomials H,(z, pi, C)

are defined by

(_1)‘a|aa¢d(w7 H, C)
¢d($7,u70) ’

where ¢4(z, 1, C') denotes the density of a d-dimensional Gaussian random vari-
able with mean vector i and positive definite covariance matrix C' (see for ex-
ample [McC87, Section 5.4]). Note that in the case 4t = 0 and d = C' = 1, this
definition yields the well known one-dimensional Hermite polynomials. The first
few multidimensional Hermite polynomials are given by Hy(z, u, C) = 1,

(2.1) Ho(z,p,C) =

d
Hei (:Ev 12 C) = Z Cik (gjk - ,uk)
k=1

and
HEH-E]' (z,1,C) = Hei(wau7 C) Hej (z,1,C) — Cijs

where 1 <i,j <dand C~! = (¢ij)1<i,j<d denotes the inverse of C.

The polynomial H, (x, 1, C') is of order || and one can show that for fixed
and C, the family {H, (z, 1,C): a € N&} is orthogonal in L2(R%, ¢4(x, i1, C)).
Furthermore, by integration by parts, we obtain the identity

(2.2) E [azf(Z) Ha(Zwu> C)] =E [f(Z) Ha—l—ei(ZHu? C)] )

where 1 <i < d,a € N¢, f € Lip(R?) with at most polynomial growth and 7 is
a Gaussian random variable with mean ¢ and covariance matrix C'. Note that the
left hand side of (2.2) is well-defined by Rademacher’s theorem, which guarantees
the differentiability of the Lipschitz continuous function f almost everywhere.
We will also make use of another integration by parts formula, which can be
verified by direct calculation, namely

d
(2.3) E(f(2)Z]| =) ElZ:Z]E0,{(Z)],
j=1

where 1 < ¢ < d, f as above and Z a d-dimensional Gaussian random variable
(with possibly singular covariance matrix).
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For a given Lipschitz function g: R¢ — R and a positive semi-definite and
symmetric matrix C' of dimension d x d, we define U, ¢ RY — R by

b,
24) Uyolr) = / 7;((;) (ElgV)] ~E|g (v +vT=?ON)|) at,
where N is a d-dimensional centered Gaussian random variable with covari-
ance C, —00 < a < b < oo and v: (a,b) — (0,1) is a diffeomorphism with
lim_, 44 v(t) = 0 (and therefore lim; ,;_ v(t) = 1). From the change of vari-
ables v(t) = s, we see that Uy ¢ does not depend on the particular choice of v
and by choosing v(t) = e~ on the interval (0, c0), we can write

Uyol) = /0 " (Py(@) - Pug(a)) dt,

where Pig(z) = E {g (e_tx +Vv1-— e—%Nﬂ, Pyog(z) = limy_oo Pig(x) =
E[g(N)] and N is defined as above. The operators P; form the well-known
Ornstein-Uhlenbeck semigroup on R? (see [NP12, Chapter 1] for details).

Before stating some properties of Uy, ¢, let us introduce some more notation.
If f € C*R?) and o € N¢ is a multi-index with elementary decomposition
{l1,1,. .. ,l|a‘}, we write O, f or 81112...l‘a‘f instead of the more cumbersome

alel ¢
Bacllamlz 8901‘&‘ :

Lemma 2.4. Let g: RY — R be a Lipschitz-function with at most polynomial
growth. Furthermore, let Z be a centered, d-dimensional Gaussian random variable
with covariance matrix C' and define U, ¢ via (2.4). Then the following is true.

a) The function Uy ¢ satisfies the multidimensional Stein equation
<C> Hess Ug,C(ﬂj»H_s, - (337 VUg,C(:E»Rd = g(l') -k [Q(Z)] .

b) If g is k-times differentiable with bounded derivatives up to order k, the same is
true for Uy c. In this case, for any o € N4 with |a| < k, the derivatives are given

by

2.5)  0aUyc(x) = / bv’(t)v|°‘|_1(t) E [aag (U(t)ac + mzv)} dt

a

and it holds that

10 9l
(2.6) 10U, ,C($)| < T
and
27) B [0aU,c(2)] = @ E[0a9(2)].

Proof. For a proof of part a) see [NPR10b]. Repeated differentiation under the in-
tegral sign (the first one being justified by the Lipschitz property of g) shows for-
mula (2.5), of which the bound (2.6) is an immediate consequence. To show (2.7),
we again use formula (2.5) and the fact that v(¢)Z + /1 — v?(¢) N has the same
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law as Z. This gives

E[0aU,c(2)] = / bU'(t)Ulal—l(t)E[aag (v(t)Z+ 1_U2(t)N>}dt

a

— /bvl(t)v|°‘|_1(t) dt E[0ag (Z)]

O

2.3. Isonormal Gaussian processes and Wiener chaos. For a detailed discus-
sion of the notions introduced in this section, we refer to [NP12] or [Nua06].

Fix a real separable Hilbert space ) and a family X = {X(h): h € $} of cen-
tered Gaussian random variables, defined on some probability space (2, F, P),
such that the isometry property E[X(g)X (h)] = (g,h)y holds for g,h € §.
Such a family X is called an isonormal Gaussian process over §). Without loss
of generality, we assume that the o-field F is generated by X. For ¢ > 1, we
denote the gth tensor product of §) by $®9 and the gth symmetric tensor prod-
uct of §) by H®4. Furthermore, we define H,, the Wiener chaos of order q (with
respect to X), to be the closed linear subspace of L?(§2, F, P) generated by the
set {Hy (X (h)): h € 9, ||h|ls = 1}, where Hy(x) = Hy(x,1) denotes the gth
Hermite polynomial, defined by (2.1). The mapping I,(h®9) = ¢!H,(X(h)),
where ||h]|z = 1, can be extended to a linear isometry between the symmet-
ric tensor product 9, equipped with the modified norm /¢! ||-| ¢eq, and the
gth Wiener chaos H,. Wiener chaoses of different orders are orthogonal. More
precisely, if f; € H®% and f; € HOU for ¢;, ¢; > 1 it holds that

(2.8) E [I,(fi) 1,;(f;)] = {g i Jib ;fz. ” Z].
i j-

Furthermore, the Wiener chaos decomposition tells us that the space L?(92, F, P)
can be decomposed into the infinite orthogonal sum of the H,. As a consequence,
any square-integrable random variable I’ € L?({), F, P) can be written as

(2.9) F=E[F]+ ZIq(fq)-
q=1

where the kernels f, € $®7 are uniquely defined. This identity is called the chaos
expansion of F'.

If {¢5.: k > 1} is a complete orthonormal system in 9, f; € H®%, f; € HOU
and r € {0,...,¢; A g;}, the contraction f; @, f; of f; and f; of order r is the
element of $H®(%+%=21) defined by

[e.e]

(210) fi@fi= > (fiuty, @@y )ner @ (fi 0 @ @Yy, ) gor -

1yelp=1

The contraction f; ®, f; is not necessarily symmetric. We denote its canonical
symmetrization by fiérfj € HO%UTU 2" Note that f; ®o f; is equal to the
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usual tensor product f; ® f; of f; and f;. Furthermore, if ¢; = ¢;, we have that
fi®q [j = (fis ) #®q;- The well known multiplication formula

qiNG;

(2-11) qb(fz qj f] Z /Bq“qJ qz+qJ—2T(f2®rfJ)

where

(2.12) Bap(r) =11 (‘;) <i>

gives us the chaos expansion of the product of two multiple integrals.

When $ = L%(A, A,v), where (A, A) is a Polish space, A is the associated
Borel o-field and the measure 4 is positive, o-finite and non-atomic, one can iden-
tify the symmetric tensor product ¢ with the Hilbert space L2(A4, A9, v®9),
which is defined as the collection of all »®%-almost everywhere symmetric func-
tions an A9, that are square-integrable with respect to the product measure v®9.
In this case, the random variable I,(h), h € $H®4, coinicides with the multi-
ple Wiener-It6 integral of order ¢ of h with respect to the Gaussian measure
B — X(1p), where B € A and v(A) < oco. Furthermore, the contraction (2.10)
can be written as

(2.13) (fz Sr fj)(th s 7tqz‘+q]'—27”)

fi(tla e >tqi—7‘> Slyeeny Sr)fj(tqi—r—l—la e ,tqH_qj_QT, Slyeeny 87«)
s

dv(sy)...dv(sy).

2.4. Operators from Malliavin calculus. In this section, we introduce the op-
erators D, I and L~! from Malliavin calculus, which will appear in the state-
ments of our main results. This exposition is by no means complete, most no-
tably, we do not introduce the divergence operator. Again, we refer to [NP12]
or [Nua06] for a full discussion.

If S is the set of all cylindrical random variables of the type

F=g(X(h),..., X(ht)),

where k > 1, h; e Hforl <i< kandg: R* — R is an infinitely differentiable
function with compact support, the Malliavin derivative D F’ with respect to X
is the element of L?((2, ) defined by

Za X (hi)) i

Iterating this procedure, we obtain higher derivatives D™ F' for any m > 2,
which are elements of L?(€2, $®™). For m,p > 1, D™P denotes the closure
of § with respect to the norm |||, ,,, which is defined by

1P, = EFP+ 3 E [IDFIE. .
i=1

If$H = L2 (A, A, v), with v non-atomic, the Malliavin derivative of a random
variable F having the chaos expansion (2.9) can be identified with the element of
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L?(A x Q) given by
(2.14) DiF =Y qly1(fy(1), teA
q=1

The Ornstein-Uhlenbeck generator L is defined by L = E;io —qJy. Here, J,
denotes the orthogonal projection onto the qth Wiener chaos. The domain of L
is D?2. Similarly, we define its pseudo-inverse L~ by L~! = Z(C;i1 —%Jq. This
pseudo-inverse is defined on L?(€2) and for any F' € L?(1) it holds that L™ F
lies in the domain of L. The name pseudo-inverse is justified by the relation

LL™'F =F —-EI[F],
valid for any F' € L?().

2.5. Cumulants. Recall the multi-index notation introduced in the first para-
graph of Section 2.2.

Let F = (FY,..., Fy) be a R%valued random vector. For a multi-index o, we
set Fo = [T¢_, F'* and, with slight abuse of notation, | F'|* = 14, | Fy|**. The
moments i, (F) of F' of order |« are then defined by p,(F) = E [F?], provided
that the expectation on the right hand side is finite. Analogously, one defines
the absolute moments ji (|F'|). We denote by ¢r(t) = E[exp (i (¢, F)ga)] the
characteristic function of F. If u, (| F'|) < oo, the joint cumulant k. (F') of order
|a| of F is defined by

Ka(F) = (=1)*'0, log ¢r (t)]i=o-
Given all joint cumulants k. (F') up to some order exist, we can compute the

moments up to the same order by Leonov and Shiryaev’s formula (see [PT11,
Proposition 3.2.1])

(2-15) Noz(F) = Z"ibl (F)"ibz (F) o libm(F)7

where the sum is taken over all partitions 7 = {Bj, ..., B,,} of the elementary
decomposition of o and the multi-indices by, are defined by by, = lee B, lj- For
example, if 1 < i,7,k < d, we get pie,(F) = ke, (F), ple;te;(F) = Keyre; (F) +
Ke; (F)ke, (F') and

He;j+ej+er, (F) = Re;+ej+er (F)
+ Ke; (F)Hej-i-ek (F) + Ke; (F)K/@i'f‘@k (F) + Fe,, (F)Hei-i-ej- (F)
+ Ke, (F)ke; (F) ke, (F)

for the moments of order one, two and three, respectively. Note that if F' is cen-
tered, all moments of order less than four coincide with the respective cumulants.

2.6. Generalized Edgeworth expansions. Let | and F, be two R%valued
random vectors with finite absolute moments up to some order m € Ny U {oo}
and consider the problem of approximating F} in terms of F5. The classical Edge-
worth expansion provides such an approximation in terms of formal “moments”,
which we will now describe.

For every multi-index « of order at most m, we define formal “cumulants”
Fa(F1, F3) by Ro(F1, Fo) = ko(F1) — ko(F2) and use Shiryaev’s formula (2.15)
to define corresponding formal “moments” i, (F7, F3). Two things are important
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to note at this point. In general, fi (F1, F5) # po(F1)—pa(F2) and the collection
{Ra(F1,F>): |a] < m} can not be represented as cumulants associated with
some random variable. If we now assume that F and F5 both have densities, say
f1 and fo, the classical Edgeworth expansion of order m for the density f; then
reads

—1)lel
(2.16) fi(z) ~ fa(z) + Z % fio(F1, F2)0q fa2().

1<|al<m

In the most prominent example where this is the case, F} is a normalized sum
of iid random variables and F5 is Gaussian. In this case, the Edgeworth expansion
can be used to improve the speed of convergence in the classical central limit
theorem. For details, we refer to [Hal92], [McC87, Chapter5] and [BRR86].

For our framework, however, the classical Edgeworth expansion is too rigid,
as we cannot assume the existence of (smooth) densities. Therefore, instead of
expanding the density f; in terms of f2 and its derivatives, we pass to the dis-
tributional operators g — E[g(F})] and g — E[g(F3)], defined on the space
of infinitely differentiable functions with compact support. The expansion (2.16)
becomes

a F >F
@17)  El(F)] ~ by B g g
1<]a|<m
Note that in the case of existing smooth densities it holds that E [¢(F})] =
[ g9(2) f1(z) dz and, by integration by parts,

E [Oag(Fy)] = /_ " Bugla) fale) da = (—1) / )0 fol2) da

so that (2.17) is obtained in a natural way from (2.16), by multiplying with the
test function g and integrating on both sides.
This leads us to the following definition of a generalized Edgeworth expansion.

Definition 2.5 (Generalized Edgeworth expansion). If g is m-times differentiable
and has bounded derivatives up to order m, we define the generalized mth order
Edgeworth expansion E,,(F1, F», g) of E [g(F1)] around E [g(F»)] by

(2.18) Em(F1, F,g) = + Y Bal P, 13) F1,F2 E[0ag(F2)] .

1<]a|<m

If Z is a d-dimensional centered normal with covariance matrix C' (the case
that we will exclusively consider in the sequel), formula (2.2) yields

EnF1 Z,0) =Elg @)+ S B pm, 2.0y,

where the Hermite polynomials H,, (z, C') are defined by (2.1) (recall our conven-
tion that we drop the mean as an argument if it is zero).

2.7. Cumulant formulas for chaotic random vectors. When dealing with
functionals of an isonormal Gaussian process, their cumulants can be general-
ized in terms of Malliavin operators. This (among other things) is the content
of [NP10] and [NN11] (see also [NP12, Chapter8]), which we will summarize
here.
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Let F = (Fy,..., Fy) be a R%-valued random vector whose components are
functionals of some isonormal Gaussian process X and let [1,ls, . .. be a sequence
of d-dimensional multi-indices of order one. If F'* € D2, we set I';, (F) = F;.
Inductively, if I';, 1, (F') is a well-defined element of L?(92) for some k > 1,
we define
(2.19) Fl17~~~7lk+1 (F) = <DFlk+17 _DL_IFl1,~~~,lk (F)>5§ .
The question of existence is answered by the following lemma.

Lemma 2.6 (Noreddine, Nourdin [NN11]). With the notation as above, fix an
integer j > 1 and assume that F; € D42’ for1 < ¢ < d. Then it holds that
Iy, 0, (F) is a well-defined element of DITRHL2TM Gl ke = 1, 4. In
particular, I';, ;1 (F) € DY2 C L2()) and the quantity E [Pll,...l (F)] is well-

J "

defined and finite.

Using these random elements, we can now state a formula for the cumulants

of F'.

Theorem 2.7 (Noreddine, Nourdin [NN11]). Let « be a d-dimensional multi-index
with elementary decomposition {l1,... 1o }. If Fi € plml,2!™! forl <i <d, then

(220) K’CV(F) = ZE |:Fllvla(2)7lo(3)7"'7l<7(a) (F) ?

where the sum is taken over all permutations o of the set {2,3,.. ., |al}.

We again stress that — as the labeling of the elementary decomposition is ar-
bitrary — we can freely choose the fixed first element /. For the case d = 1, this
formula has been proven in [NP10].

To simplify notation, we will frequently write I'; ;,...;, (F) instead of the more
cumbersome F3i1,3i27~~~7eik (F'). For example, the random variable I';, ,(F) =

<DF1, —DL™'F, >5§ will also be denoted by I'12(F).

If all components of F' are elements of (possibly different) Wiener chaoses,
formula (2.20) can be stated in terms of contractions. We state two special cases
here and refer to Noreddine and Nourdin [NN11] for a general formula. As a first
special case, assume that F; = I, (f;) where ¢; > 1 and f; € §®% for 1 < i < d.
In this case, for 1 < 4, j, k < d, the third-order cumulants are given by
(2.21)

~ . Z+ R

_ C<f’i®?“fj7fk>ﬁ®qk 1f7’::q qQJ = 6{17277%/\%},

Hei-l—e]-—i-ek - .
0 otherwise,

where ¢ is some positive constant depending on the chaotic orders ¢;, ¢; and
qk- As a second special case, assume that the components F; are all of the form
F; = Iy(f;), with f; € H92 for 1 < i < d. In this case, for any o € Ng with
|a| > 2 it holds that

(2.22)

FalF) = 27037 (o (@110 i) - )8 iy o Fioian )

fo2’

where the sum is taken over all permutations o of the set {2,3,...,|a|} and
the indices i1, ... ,14|q| are defined as follows: If {I1,... [} is the elementary
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decomposition of «, we set i; = kif I; = e, j = 1,...,|a|. To illustrate this
formula, we have for example
(2.23) K1) (F) = 8(f1®1f1, f2)gen

or, with a different labelling of the elementary decomposition,

@29 e (F) =8 ((A@1f2 1) ger + (FoB1f1, 1) o) -

One can verify by direct computations that the right hand sides of (2.23) and (2.24)
are indeed equal.

2.8. Limit theorems for vectors of multiple integrals. In this section, we
gather two results from the literature which we will use extensively in the se-
quel. The first is a version of the so called Fourth Moment Theorem (see [Pec07,
Theorem 3]) for fluctuating covariances, that is based on the findings in [NP05],
[NOL08] and [PT05] for the converging covariance case.

Theorem 2.8 (Fourth Moment Theorem, [Pec07]).

(A) Let ¢ > 1 and (F,)n>1 = (L4(fn))n>1 be a sequence of multiple integrals and
assume that there exists a constant M such that E [FT%] < M forn > 1. Then
the following conditions are equivalent.

(i) (Fn)nZI iSACN
(i) E[FY] —3E[F2)* -0
(iii) For1 <1 < q— 1 it holds that | fn ®y fllgeaa—r) — 0
(iv) Var (Fu(Fn)) -0
If the variance of F}, converges to some limit c, conditions (i)-(iv) are equivalent
to
i) F, i) 7, where Z is a centered normal with variance c.

(B) Let (Fy)p>1 = (Fin,---,Fan)n>1 be a random sequence such that F; ,, =

I, (fin), @i > 1, for 1 < i < d and the covariances of (F,,) are uniformly

bounded. Then (F,,) is ACN if and only if (F; ;,) is ACN for1 < i < d.

Secondly, we will make use of the following central limit theorem for the case
where one component of the random vectors F,, has a finite chaos expansion. As
this result is an immediate consequence of the findings in [Pec07], we omit the
proof.

Lemma 2.9. Let (Fy,)p>1 = (Fin,--., Fan)n>1 be a sequence of random vectors
such that F;,, = I,(F;y) forn > 1 and 1 < i < d. Furthermore, let G,, =

S Lilgkn) forn > 1. If

d gi—1
(2.25) SN 1 fin ®r finllgezi-—n — 0
i=1 r=1
and
M k-1
(2.26) D lgkin ®s grmllge2@, s — 0,
k=2 s=1

then (Fy,, Gy)n>1 is ACN.
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3. MAIN RESULTS

In this section, for some fixed positive integer d, we denote by (F},),>1 =
(Fv s Fom, - - Fan)n>1 a sequence of centered, R%-valued random vectors such
that F;, € DY for 1 < i < d. We also introduce a normalized sequence

(T35 (Fn))n>1 for 1 < 4,5 < d, which is defined by
T Fij(Fn) —E [Fzy(Fn)] Fij(Fn) —E[F; nan]

Tii(F.) — — , ’
Z]( n) VarFij(Fn) VarFij(Fn)
where I';;(F},) is given by (2.19). Furthermore, for 1 < 4,5 < d, let (Z,)n>1 =
(Zims -+ Zdn)n>1 be a centered sequence of Gaussian random variables such

that Z,, has the same covariance as F;, for n > 1. The following crucial identity
is the starting point of our investigations.

Theorem 3.1 ([NPR10a]). Let g € C*(R%) and Z be a d-dimensional normal
vector with covariance matrix C'. Then, for everyn > 1, it holds that

d
31 Elg(F)] —E9(2)] = Y E05Uc(F,) (Ty(F,) = Cy)l,

ij=1
where Uy ¢ is defined by (2.4).

Identity (3.1) has been derived in [NPR10a] by the so called “smart path method”
and Malliavin calculus. If the covariance matrix C is positive definite, one can
give an alternative proof by using Stein’s method (see [NPR10b, proof of Theo-
rem 3.5]).

A straightforward application of the Cauchy-Schwarz inequality to identity (3.1)
yields the bound

(3.2) [E[g(Fn)] — Elg(2)]] < g <81|1:p2|!3agHoo> oo (Fn),

where pc(F,) = Ar(F,) + Ac(F,) and the quantities Ap(F),) and Ac(F,),
that already appeared in the Introduction, are defined by

d
(3.3) Arp(Fp) = |T(Fn) — Cov(Fy)llas. = | Y Var Ty(Fy)

ij=1
and
d
(34)  Ac(Fn) =|[Cov(Fy) — Cov(2)|m.s. = | Y (B[EF;] - Cy).
i,j=1
Here, ||-||z7.s. denotes the Hilbert-Schmidt matrix norm. Note that Ac(F},) is

equal to zero if and only if F}, has covariance matrix C' and that Ap(F),) is equal
to zero if F), is Gaussian. The latter follows from the fact that |I';;(F},)] is con-
stant if F; ,, and F ,, are Gaussian, which can be seen by applying the bound (3.2)
to the vector (F; ,,, Fj ) and a centered Gaussian vector (Z, Z;) with the same
covariance.

Assume now that ¢ (F),) converges to zero. For the one-dimensional case
d = 1, an adaptation of the arguments in [NP09a] provides conditions under
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which the ratio
Elg(F)] — E[g(Z)]
'2¢} (Fn)
converges to some real number. If this number is non-zero, this implies in particu-
lar that the rate o (F},) is optimal, in the sense that there exist positive constants
c1, ¢o and ng such that

o < [EloE) - ElgIl _
'2¢} (Fn)
for n > ny. As already mentioned in the introduction, by approximating a Lips-
chitz function by functions with bounded derivatives, this implies that ¢ (F},) is
optimal for the one-dimensional Wasserstein distance (see [NP09a] for details).
By considering coordinate projections, optimality in multiple dimensions case
can immediately be reduced to the one-dimensional case. However, obtaining
exact asymptotics is a much more involved task, as the next two theorems show.

Theorem 3.2 (Exact asymptotics for the fluctuating variance case). Assume that
Ar(F,) — 0 and let g: R? — R be three times differentiable with bounded deriva-
tives up to order three. If, for 1 < i, < d, the random sequences (Fn, F” (Fn))

are ACN whenever \/Var I';;(F,,) < Ar(F,) it holds that

n>1

ﬁ@ [9(F)] = E[g(Zn)]

-z Z Wﬂzgkn zyng)])—)O'

,Jk 1

(3.5)

Here, the constants p;jy. ,, are defined by

Pijkn = E [Zij,nzkm}
whenever \/Var I';;(F,) < Ar(F),) holds and (Fx, FU n)n>1 is ACN with corre-
sponding Gaussian sequence (Z,,, Z”m) and p;ji,n = 0 otherwise.

Remark 3.3. Clearly, the condition \/Var I';;(F,,) =< Ap(F},) in the above Theo-
rem expresses the fact that we can neglect those summands of Ar(F},) that van-
ish “too fast” and therefore do not contribute to the overall speed of convergence

of Ap(F},).
Proof of Theorem 3.2. By applying Theorem 3.1, we get

E [Q(Fn)] —E [Q(Zn)]
Ar(F,)

(3.6)

d
/ Var I';;(F, ~
Z Al" F ) [aijUg,Cn (Fn) Fij (Fn) :
The bound (2.6) for the derivatives of U, ¢, and the fact that fij (F,) has unit
variance immediately implies that the expectations occuring in the sum on the
right hand side of (3.6) are bounded. Therefore, we only have to examine those
summands in the same sum, for which (??) is true (as all others vanish in the
limit). Now choose 1 < ¢,j < d such that (??) holds. Due to our assumption,
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Theorem 2.2 implies the existence of random vectors (F*, T’ ij(F)*) and Gauss-
ian random variables (Z;;, Z}; ,
such that (F);,I';;(F},)") has the same law as (F},,I';;(Fy)), (2%, Z; ,,) has the
same law as (Z, Z;j5,) and (Fy; — Z3, Ui (Fn)* — 275,

we can write

(37) B |04Up.c0 (Fa)Cig ()| = 1l 4+ 00+ 1

), defined on some common probability space,

) — 0 almost surely. Thus

where
Nijn=E [(aijUg,Cn (F7) = 0;Uq.c,.(Zy)) fij(Fn)*} :
=B |0Us0, () (T (o) = Z53, )|

and
T = E [05Usc, (Z0) 7]

The integration by parts formula (2.3) and Lemma 2.4b) yield

d
1 * % *
M = 3 2" [kaZij,n] E[0jxUg,c.(Z3)]
k=1

so that the proof is finished as soon as we have established that

n}j,n — 0 and nfjﬂ — 0.
But this is an immediate consequence of the Lipschitz continuity of 9;;U, c,,,
the fact that I';;(F},)* has unit variance (implying uniform integrability of the
sequences (I';; (Fy,)*)n>0 and (I';;(F,)* — Zij.n)n>0) and the bound (2.6). O
Theorem 3.4 (Exact asymptotics for the converging variance case). Assume that

Ar(F,,) — 0 and let g: R? — R be three times differentiable with bounded deriva-
tives up to order three. If there exists a covariance matrix C' such that Ac(F,) — 0

and, for1 < i, j < d, the random sequences (Fn, fij(Fn))n>1 converge in law to a

centered Gaussian random vector (Z, Z;j) whenever

(3.8) Var';;(Fy,) + |E [F; o Fj ] — Cij| < oc(Fr)
it holds that
(3.9) ! Elg(Fn)] —Elg(Z)] - . zd: (E[FinFjn] — Cij) E[0;9(Z)]
o (Fn) 2 i,5=1 o
L
—3 ”Zk::l Var T'y; (Fy) piji E [O4k9(Z)] | — 0.

Here, the constants p;;i. are defined by p;ji, = E [ZjZk] whenever (3.8) is true and
pijk = 0 otherwise.
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Proof. Theorem 3.1 implies

(3.10)

Blo()] —Blo(2) _ g~ (#lFn) —Cy gy
ec(Fn) _Z< oc(Fy) E[03;Ug,0(Fn)]

Var Pzg(Fn)
@C(Fn)

Arguing as in the proof of Theorem 3.2, we see that all expectations occuring in
the sum on the right hand side of (3.10) are bounded. Therefore, we can choose
1 <4,j < d and assume that (3.8) is true (as otherwise the corresponding sum-
mand would vanish in the limit). By the boundedness of the second derivatives
of Uy ¢ (see (2.6)) and our assumption of convergence in law, we get

E[0;;Uq,c(Fn)] = E[0;;Ug,0(Z))]

ij=1

E {aijUg,C(Fn) fij (Fn)}> .

and
E [%‘ Ug,C(Fn)fij(Fn)} —E [82']' Uyc(Z2)Zij| -
The integration by parts formula (2.3) and Lemma 2.4b) now yield

1
E[0;;Uq,c(2)] = o E [0:59(2))]
and
d
. 1 _
E a,-jUg,c(Z)Zij} -3YE [Zijzk} E (01 2],
k=1
finishing the proof. O

Remark 3.5. If the covariance C' of the Gaussian random variable Z is positive
definite, the Hermite polynomials H,(z,C) form an orthonormal basis for the
space L?(R%,~v¢), where ¢ is the density of Z, so that an expansion of the
form g(x) = Y, Ha(x,C) exists for all z € R%. Thus, the integration by parts
formula
E[0a9(2)] = E[g(2) HalZ,C)],

valid for any multi-index « up to order three, yields a neccessary condition for
the limit to be non-zero: g must not be orthogonal (in L?(R%, v¢)) to all second-
and third-order Hermite polynomials.

An immediate consequence of the Theorems 3.2 and 3.4 is the following corol-
lary.
Corollary 3.6 (Sharp bounds and exact limits).
a) In the setting of Theorem 3.2, the lim inf and lim sup of the sequence

(IE lg(Fn)] — E [Q(Zn)]|>
AF(FTL) n>1

coincide with those of the sequence

d

1
m Z Var I'y; (Fn)Pik,n E [aijkg(Zn)]

,J,k=1 n>1
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b) In the setting of Theorem 3.4, the lim inf and lim sup of the sequence

Efg(Fn)] - E [g(Z)]>
(11 < v (Fn) n>1
coincide with those of
1 & E[F,,Fj,) - C
(612) | ”zzjl 900an) LE[0;9(2)]

pijk E[0ijx9(Z)]

d
1 v/ Var;:(F,
ijhe1 ~PCOUn .

In particular, if the sequence (3.12) converges, it provides the exact limit of the
sequence (3.11).

If d = 1 and the F;, all have identical variances, the assumptions of Corol-
lary 3.6b) are always satisfied and one obtains an analogue of Theorem 3.1 in [NP09a].
If the third-order moments pi,(F,) of the random vectors F,, exist, the third
order Edgeworth expansion £3(F),, Z, g), introduced in section 2.5, is well-defined
for any Gaussian random vector Z and any three-times differentiable function g
with bounded derivatives up to order three. The next theorem shows how these

expansions can be used to increase the speed of convergence.

Theorem 3.7 (One-term Edgeworth expansions). Let g: R? — R be three times
differentiable with bounded derivatives up to order three and assume that F), has
finite moments up to order three forn > 1, and moreover

(3.13) <M>
Var Fzy(Fn) ~1

is bounded whenever \/Var I';;(Fy,)/Ar(F,) — 0.

a) If all assumptions of Theorem 3.2a) are satisfied, it holds that
E [Q(Fn)] - 53(Fn7 Zn7g)
Ar(Fy)

b) If all assumptions of Theorem 3.2b) are satisfied, it holds that
@C(Fn)

Remark 3.8. The third order Edgeworth expansion &(F},, Z,, g) in (3.14) takes
the explicit form

(3.14) — 0.

(3.15) — 0.

d ..
610 E(FnZug) =Bloz) + Y P Bl 0z,
i,5,k=1 ’

whereas E3(F),, Z, g) in (3.15) is given by

d
Cij — 14 (Fr
(317) E[g(Z)]+ ) ———1- g”( )
i,j=1 i,j,k=1

d

B+ Y L a0z
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Proof of Theorem 3.7. By Theorem 3.2a), it is sufficient to show that

Var I, ijk(Fn
(3.18) Z \/7j (Pijk,n - Mk—”) E [03jkg(Zn)] =0,

irjok=1 Var I';;(F,)

Fix1<i,j<dIf
Var Pzg(Fn)
A B VN )
Ar(Fy)

the quantity
,Uijk(F n)
24/ Var Fij (Fn)
is bounded by assumption, so that the corresponding summand in the sum (3.18)
vanishes in the limit. If lim sup W )/Ar(F,) is positive, the sequence
(Fh, I‘w n)n>1 18 ACN. Thus, for n > 1, there exists Gaussmn random variables
(Zn, ZZ] n) with the same covariance as (F),, I‘w n). By definition, we get

E [Fenlsj(Fn)] _ B [Tij(Fn)]
\/Var Fzy(Fn) \/Var Fzy(Fn)

The cumulant formula (2.20) and the fact that Var I';;(F,,) = VarI';;(F},) now
yields

Pijkn = B [Zk,nZij,n] =

Kijk(Fn) _ pijk(Fn)
\/Var Pzg(Fn) \/VarF”(Fn)

Pijkmn + Pjikn =

so that (3.18) follows.
Likewise, by Theorem 3.4, it is sufficient for the proof of assertion b) to show
that

v/ Var Ui (Fy) Hijk(Fn)
3 19 ]zk:l F ) pwk — m B [aka(Z)] — O,

Again, by assumption, if 1 < 4,j < d is such that \/Var I';;(Fy,)/¢c(F,) — 0,
the corresponding summand in (3.19) vanishes in the limit. If, on the other hand,

VarI';;(Fy,) < @c(F)), the sequence (Fn,F”(Fn))nzl converges in law to
(Z, Z;j). Therefore,

(3.20) E [fij,an,n] —E [Z‘]Zk] = Pijk
for 1 < k < d. The cumulant formula (2.20) gives
pijk(Fn)  kie(Fn)

\/ Var F”(Fn) N \/ Var Pzg(Fn)

which together with (3.20) implies that

— T L s o+ P
Var Fij (Fn) Pijk Pjik

This immediatiely yields (3.19), finishing the proof. (]
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4. THE CASE OF MULTIPLE INTEGRALS

In this section, we specialize our results to the case where the components of
the sequence (F},),>1 are vectors of multiple integrals. As in the previous sec-
tion, we fix an integer d > 1 and study a sequence (F,)n>1 = (Fin, ..., Fgn)n>1
of R%-valued random vectors, but now each component Fj ,, is a multiple integral
of the form F},, = I, (fi ) where g; > 1 and f; ,, € H®%. Recall the definitions
for the random variables I';; (F}, ), fZ](Fn) and Z,, which were given in the first
paragraph of the previous section.

Let us begin by deducing explicit representations of some of the crucial quan-
tities of the last section. Using the product formula (2.11) and the orthogonality
property (2.8) of multiple integrals, we see that

1
(41) Ty(F,) = - (DFin, DF}j5)
J
qiNG;j

= 4 Bu-14;1r = 1) Iogy2r(Fin@r fjm)
r=1

and

(4.2) Var Fzy(Fn)
‘Zi/\qj'_‘sqiqj'
= Z (QZ + QJ - 27‘)’ qZZ ﬁgi—l,qj—l(r - 1) ||fi,n®7“fj,n||52§®(qi+qj727")7

r=1

where the positive constants (3, () are defined by (2.12).
As all constants in the sum on the right hand side of (4.2) are positive, this
implies that
Qi/\Qj_éqiqj

(4-3) Var Pij(Fn) = Z Hfi,nérfj,n”;@)(qiﬂjf%)

r=1

and therefore

d NG _6%61]‘ 1/2
- > 2
(44) AF(FTL) —~ Z Z Hfi,n®7“fj,n||5®(qi+qj72r)
ij=1  r=1
If, for some integers ¢, j, k with 1 < 4,4,k < d, it holds that r := W+qk €

{1,2,...,q; A\ g}, formula (2.21) and the Cauchy-Schwarz inequality yield

Hijk(Fn) = KerresreFn < cll fi®r fjll gocara—20) | frll goa -

Combining this with (4.3), we see that the quantity (3.13) from Theorem 3.7
is bounded and therefore one-term Edgeworth expansions are always possible
whenever the corresponding ACN-conditions from Theorems 3.2 and 3.4 are ver-
ified. Thus we have proven the following proposition.

Proposition 4.1 (Exact asymptotics and Edgeworth expansions for multiple in-
tegrals). In the above framework, let g: R® — R be three times differentiable with
bounded derivatives up to order three.
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a) If, for 1 <, j < d, the random sequence (F},,I';;(F},))n>1 is ACN whenever
limsup y/VarI';;(F,)/Ar(F,) > 0,
n

it holds that
E [Q(Fn)] B 53(Fn7 ng)
Ar(Fy)
b) If there exists a covariance matrix C such that Ac(F,,) — 0 and, for1 <i,j <
d, the random sequence (I, fij(Fn))n21 is ACN whenever

limsup y/Var';;(Fy,) + |E [F; n Fjn] — Cij| Jec(Fn) >0,

n

it holds that

— 0.

E [g(Fn)] — 53(Fn7 Z7 g)
@C(Fn)

Sufficient conditions for the sequences (F},,I';;(F},))n>1 to be ACN are given
by the following proposition.

— 0.

Proposition 4.2. The sequence (F,,I';;(Fy,))n>1 is ACN if

d qi—1
(4~5) Z Z Hfl,n r fi,n”sﬁ®2(qﬁr) —0
i=1 r=1
and
(4.6)

Qi/\qj'_éqiqj qi+qj—2r—1

) Zl 1(fin®r Fin) ©s (fin@r fin)llgeotara—2r-1-0
r= s=

qi/\qj_(sqiqj' "
Z Hfivn@rfjv"”%@(ququ'*QT)

r=1

Proof. This is a direct consequence of (4.1), (4.2) and Lemma 2.9. O

— 0.

If we assume that F; = I5(f;) for f; € $©2,1 < i < d, we can state conditions

for the ACN property of (F},,I';;(F5,))n>1 which only involve cumulants. This is
due to the well known formula (see [FT87])

(A7) Kpxe,(F) = 281 (k — 1) Tx (H]’f)

— k—1 — -
=2 k= DUl i fi) =2 - DY M
n=1
where Hy: § — § is the Hilbert-Schmidt operator defined by H(g) = f ®1 ¢
and {Af,: n > 1} are its eigenvalues.
In particular, we have

(4.8) Fige,(F) = 233! <fi ®§3) fis fi>ﬁ

= 2231 (f; ®1 fi, fi ®1 fi)g, = 2° 3L fi @1 fill},
and

@) nse(F) =27 (fi@f” fiufi) = 2T @1 f) @1 (fi @ £
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Using Propositions 4.1, 4.2 and the Cauchy-Schwarz inequality, we can now
deduce the following Proposition. We will however omit these elementary calcu-
lations, as the Proposition will also follow as a special case from Theorem 4.6 of
the forthcoming section.

Proposition 4.3. Let (F,) = (Fip,...,Fy,) be a sequence of random vectors
whose components are elements of the second chaos, g: R? — R be three times
differentiable with bounded derivatives up to order three and assume that

d
(4.10) > Kae,(Fn) = 0.
=1
a) If, for 1 < i < d, it holds that rie, (Fp) < S°% | ke, (Fy,) implies
Kge; (Fn)
4.11 —_— = 0
(4.11) Fae. (Fn)? — 0,
then

E [Q(Fn)] B 53(Fn7 ng)
Ar(Fy)
b) If there exists a covariance matrix C' such that Ac(F,) — 0 and, for1 < i <d,
the convergence (4.11) is implied by

"{461'(FTL) + ‘56i+6j (Fn) - CZ]|

— 0.

d d
2
= Z ’{4ei(Fn) + Z (K/ei—i-ej (Fn) - CZ]) )
i=1 i,j=1
then

146 (F n)
Note that in the case d = 1, part b) becomes a (weaker) version of Proposi-
tion 3.8 from [NPR10b]. Thus, in the second chaos, the joint speed of convergence
can be compeletely characterized by the coordinate sequences.

4.1. Majorizing integrals and the role of mixed contractions. We now turn
to the question whether the mixed contractions (i.e. those for which i # j) in
the numerator and denominator of condition (4.6) are neccessary to ensure that
(Fy, fij (F))n>1is ACN. It will turn out that in some cases, most notably the one
where all kernels are non-negative, we can replace condition (4.6) by a similar
fraction containing only non-mixed contractions. In these cases, the “interplay”
of the different kernels thus has no influence on the speed of convergence.

To be able to develop our theory, we assume that = L2 (A, A,v), where
(A, A) is a Polish space, A is the associated Borel o-field and the measure v is
positive, o-finite and non-atomic. This can be done without loss of generality
(see [NPO5, section2.2]). The components of the random vectors F}, under exam-
ination are still multiple integrals.

If f; € H9% and f; € HOU are two symmetric kernels and 1 < r < ¢; A g;,
then according to formula (2.13) we can write

(gingj)—r

(4'12) ”fié)rfj”%@qiﬂjf% = Z Cy Gr(fiafjau)7

u=0
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where the ¢, are some positive universal constants not depending on f; and f;
and each G, (f;, f;, u) is an integral of the form

(4.13) /////n Amfszy)fz(vx@)f](wy, w) f(@, ¥, w)
d

P () dp®" (w) dp®" (x) dp®"(Z) du® (y) du®" (),

where m = ¢; —r—wand n = g; —r —u. We can visualize each of these integrals
by an integer weighted, undirected graph

g—T—u
fi— i
(4.14) r Y r
u
f‘] qj—r—u f‘]

by identifying each kernel occuring in the integral with a vertex and drawing
an edge with weight [ between two functions, if [ variables of these two func-
tions coincide. For example, the edge with label ¢; — 7 — u in the above graph
corresponds to the variable v in the integral (4.13). Due to the symmetry of the
kernels involved, we can freely translate back and forth between the explicit no-
tation (4.13) and the visual notation (4.14) without losing any information. To
avoid cumbersome treatment of degenerate cases, we adopt the convention that
edges with weight zero are non-existent.
Analogously, we can write

(415) ||(f2®rf]) R (fiérfj)‘|52§®2(qi+qj72'r75) = Z C) GT,S(fi» f]v A)v

A€A

where A is some finite index set, the c) are positive constants and the G, s (f;, f;, A)
are integrals of the form

/ FOLOLOLOLOHOLOHE)

involving four copies of the kernels f; and f;, respectively, which are obtained
by first choosing 2(g; + g;) pairs of variables, then identifying variables that have
been paired and finally integrating with respect to the 2(g; + ¢;) resulting vari-
ables. The only constraint one has to obey is that two variables that stem from
the same kernel must not be paired. One could write this with a lot more rigour
(using, for example, diagrams and partitions, see [PT11], or a visual method sim-
ilar to ours, see [Mar08]) but for our purposes it is enough to know that each
of this integrals can be visualized as a graph with eight vertices (four of them
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labeled with f; and f;, respectively) that contains

u1

u2 u3
T Uq T

fi fi i

fi

fi - fi — fi - Ij

v2 v3

as a subgraph, where ), u; = >, v; = s and some of the u; and v; can be zero
(recall our convention that an edge with weight zero is non-existent). Note that in
the original graph there are always edges (to be precise, exactly 2(¢; +¢; —7) — s
of them) connecting the “upper” and “lower” groups of four edges.

If we are given an integral G occuring in the representations (4.12) or (4.15),
we can arbitrarily divide the four or eight kernels appearing in the integrands
into two sets A and B and use the Cauchy-Schwarz inequality to obtain a bound

of the type |G| < G}/ 2 G;/ ? where the integrals G; and G2 only involve kernels
in the set A and B, respectively. Of course, G1 and G2 can also be visualized by
graphs. In fact, these two graphs can be obtained without analytical detour by
the following, purely visual “cut-mirror-merge”-operation on the graph of G:

1) Divide the vertices of GG into two groups A and B.

2) Erase all edges that connect vertices of different groups, thus obtaining two
subgraphs. We refer to a vertex adjacent to an edge that has been erased as a
bordering vertex.

3) For each of these two subgraphs, take a copy of this subgraph and connect
each bordering vertex of the subgraph with the corresponding vertex in the
copy by an edge. The weight of this edge is equal to the sum of the weights of
all erased edges that were adjacent to this vertex and have been erased in step
two.

For example, starting from the integral given by the graph (4.14), if we choose

two identical sets consisting of one f; and one f;, respectively, the resulting
graphs for G and G5 are identical as well and given by

a4 -

fi—— fi

fj fj

q—r
Translated back into the language of integrals, this is just the well-known fact
that
”fi®7’fj ”f)®(qi+qu2f') < ”fz O fj ”f)®(qi+qu2f')7

which can of course be proven much more concisely by a direct calculation. How-
ever, the advantage of working with graphs reveals itself when dealing with the
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integrals on the right hand side of (4.15). We will see this when proving the
forthcoming Majorizing Lemma, that plays a key role in this section.

If f; = f;, some integrals appearing in the sum on the right hand side of (4.12)
are of special interest, as they dominate all others (in a sense that will be made
clear in the sequel). We title them majorizing integrals. They are defined as
follows.

Definition 4.4 (Majorizing integrals). For f € %9, 1 <r <g—1and0 < m <
q — r, the majorizing integrals M, (f, m) are given by the graph

T, T~
f———7F f——Ff
(4.16) q—r— q—r— q—r— q—r1—
f———Ff f——
~ -

Observe that the integrals M, (f, m) are non-negative and appear in the ex-
pansion of the type (4.15) for the norm ||(f®,.f) ®4 (férf)Hf)@zl(qfr)fQS. Also,
by grouping the inner four vertices in the graph (4.16) and applying “cut-mirror-
merge”, we see that

Mr(f7 m) S ”f ®r fo%®2(qfr')7
with equality if m € {0,q — r}.

Lemma 4.5 (Majorizing Lemma). Let ¢; and q; be two positive integers and f; €
HO fi € HOU be two symmetric kernels. For given integers r and s with 1 <
< @i Nqj — gy q; and 1 < 5 < q;+q; — 2r — 1, let Gy s(fi, fj, \) be one of the
summands in the representation (4.15). Then, for 1 < k < 4, there exists integers
ng € {0,1,...,¢; —r} andmy, € {0,1,...,q; —r} withmy, + ny, = s, such that

4
(4.17) Grs(fir f5,A)® < H (M, (fi, ) My (fj,m)).
k=1

Proof. We will iteratively apply Cauchy-Schwarz (using the visual method devel-
oped above) to obtain the chain
(4.18)

4
GT’,S(fiafj7)\)8 S (Gll G,1/)4 S (G,271 /2,2 G,2/71 /2,,2)2 S H (Mr’(fwmk) Mr(fj7nk))7
k=1

where all primed and double-primed quantities are integrals which will be de-
scribed by their corresponding graphs.

As already mentioned, a graph associated with an integral G, s(f;, f;, A) in the
sum (4.15) has eight vertices (four of them labeled with f;, the other four with f;)
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and contains

u2 u3
T Uq T

Ij fi

fi i

fi - fi — fi - Ij

v2 v3

as a subgraph, where > . u; = ) ,v; = s and some of the u; and v; can be
zero (recall our convention that an edge with weight zero is non-existent). We
now apply the Cauchy-Schwarz inequality for the first time, grouping the four
vertices connected by the u;- and v;-edges. The resulting bounding integrals G
and G are given by the graph

u1
u u3

usq r
fi fi i

by

Ji

a1 as ba ’

i " fi i — i . 1j

~ u2 i u3 =

where a1 + a2 + b1 + by = 2(q; + ¢; — ) — s > 0 and the same graph with
u; replaced by v;. We now continue to apply Cauchy-Schwarz to G. The exact
same operations then have to be performed with G/ to obtain the final result.

In the graph of G|, we group the four vertices connected by a;- and b;-edges
respectively and then apply Cauchy-Schwarz. This yields bounding integrals
G4 1, given by a “cube” of the form

fi—"—f; fi—— f;
(419) al a2 ail az s
fi—— fj fi———— fj
T~ >~

where 0 < a1 + a2 < 2(¢; +¢j —7)— 5,0 <uj,uz < sand g + up = s, and
G/272, given by the same graph with the a; replaced by b;.

From the graphs for G ; and G ,, by grouping the four f;- and f;-vertices
together and then applying Cauchy-Schwarz another time, we now obtain graphs
that represent majorizing integrals. For example, starting from the graph (4.19)
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for G ;, we obtain

o o
fim—— fi—— f
a1 a1 ai a1
fi—— /i fi—— fi
~ o~
Uy uy

with 0 < u; < sand a; = ¢; — r — uy and the same graph with f;, u; and a;
replaced by f;, u2 and ag, respectively.

Starting from G, the integrals G5 ; and G ; as well as the corresponding
majorizing integrals are obtained analogously. Finally, a careful inspection of the
single steps indicated above yields that the majorizing integrals obtained after the
final application of the Cauchy-Schwarz inequality are indeed of the form stated
in (4.17). O

We are now ready to prove the main theorem of this section.

Theorem 4.6. Let g: R® — R be three times differentiable with bounded deriva-
tives up to order three and assume that the following conditions are true.

(¥

d qi—1
Z Z Hfz,n Qr fi,an@Q(qi*T) — 0.
=1 r=1
(ii) Forthosei,j € {1,2,...,d}for which \/VarT';;(F, ) it holds that
qi—1 gi—1
(420) Z Hfi,n(grfim”f)@%qi*r) = Z ”fzm Qr fi,an@Z(qifr) .
r=1 r=1
and
QL_l qi—r—1 M
(4.21) i — D (fin: ) 0.
: Hfz n ®r fi n||~6®2(qﬁr)
Then it holds that
Elg(F,)| — F,. Z

Ar(F,)

If, in addition, there exists a covariance matrix C' such that Ac(F,,) < Ar(Fy),
then

@C(Fn)
Proof. Let i,j € {1,2,...,d} such that \/Var I';;(F},) < Ar(F,) and assume,

without loss of generality, that ¢; < g;.
We will show that

(4.24) Var I';; (F, \/Var Iy (Fy) Var L (Fy)

(4.23)
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and

Qi/\Qj_éqiqj qi+qj—2r—1

(4.25) Z Z || (fi,nérfj,n) ®s (fi,nérfj,n) H;®2(qi+qj—2r—s)
r=1 s=1

< \/Al,n + \/AZ,n + \/A?),na

where

¢i—12(gi—r)—1 q;—12(q;j—r)—1

Al,n = Z Z MT fz,ms) Z Z Mr f] n, S
¢i—1 aj—12(qj—r)-1
A2,n = (anz,n R fi,n||j4g)®2(qir)> Z Z Mr fy n, S

r=1

and

qj_l Q'L_l 2 QZ_T -1
4
Az = ZHJC]W Qr fj,nHﬁ(@z(qrr) Z Z My (fins )
r=1

As a consequence, we get

q/\q —dg, +q;—2r—1 = S
Z v qu o ”(fi,n@rfj,n) s (fi,n®rfj,n)Hﬁ®2(qz'+qj*2”"’1’5)

qiNg;—0q. q. ~
ZTL:IJ 1 ||fi7n®7‘fj,n”?ﬁ®(qi+qj-727“)

1/2
Ay + A + Az
<<\/ 10+ /A + 1/ 3,> N

Var F“(Fn) Var F]j(Fn)

where the convergence to zero is implied by assumptions (4.21) and (4.20). In
view of Proposition 4.2, this proves (4.22). By the same argument we obtain (4.23),
as Ac(F,) < Ar(F,) implies that

Var Fij(Fn) + |E [Fz‘,nFj,n] - CZ]| = @C(Fn)

is equivalent to /Var I';; (F},) < Ar(Fy).
To prove (4.24), note that the Cauchy-Schwarz inequality implies for 1 < r <
q; that

Hfi,n®rfj,n”;(@(qﬁqrw) < ”fzm Qr fij%@(qﬁqrw)
< ||fz,n Qr fi,n‘|5§®2(qrr) Hfj,n Qr fj,n‘|ﬁ®2(qur)'
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Therefore,
qiNg;—1
Z Hfivn@rfjv"“%@(‘li+q]‘72r)
r=1
qiNg;—1
S Z Hfz,n ®7” fi,n”y)®2(qifr-) ”fj,n ®T fjvnHﬁ‘X’ﬂqj*T')
r=1
q;i—1 g;—1
< (Z ||flm Qr fi,n||5§®2(qir)> Z Hfj,n Oy fj,nHﬁ@Q(qj,r)
r=1 r=1

Together with assumption (4.20), this gives
qiNq; _5qiqj

Varij(Fa) = ) 1 fin®rfinll?scsas-2n
r=1

1= b i@ Syl 20, +  Varia( Fu) Var; (Fy)
1- qqu)Hfz n®quj nHﬁ®(qJ ) T Varg; (Fy,) + Varj]( n)
'\< AF(FH)27

N

<

(
(

where we set §%° = R. As \/Var;;(F,) < Ap(F,), this shows

Varij(Fn) < (1= 04,0l fin®q, Fin o0, -a) + \/Varii(Fn) Varj; (Fy)

and therefore (4.24).

Nowlet 1 <7 < giAqj— 04,9 1 <5 < qi+q;—2r—1and Gy s(fin, fin, N
be an integral from the right hand side of representation (4.15). By the Majorizing
Lemma 4.5, we can find integers ny, € {0,1,...,¢; —r}andmy € {0,1,...,q; —
r} such that my +ng = sfor 1 < k < 4 and

Gr’s(fi,naana fl namk T(fjﬂhnk))1/8'

||,’:]~>

As clearly
Mr(fi,na mk) Mr(fj,na ’I’Lk) < Al,n + A2,n + A3,n7
this gives

4
Gr,s(fi,ny fj,rw )\) < H (Al,n + A2,n + A3,n)1/8 < \/Al,n + \/A2,n + \/A3,n'
k=1

The representation (4.15) thus yields

”(fz n®7’f] n) ®s (fz n®rfj n)Hﬁ®2(qz+qJ72r s5) N \/Al n + \/A2 n + \/A3 n s
wich immediately implies (4.25). U

Remark 4.7. a) Note that (4.20) is satisfied, if the kernels f; ,, are either all non-
negative or all non-positive for n > ny.

b) In the case where ¢; = 2 for 1 < i < d, we obtain Proposition 4.3 as a special
case of Theorem 4.6. Indeed, (4.20) is trivially satisfied, and, by (4.8) and (4.9),
conditions (i) and (ii) are equivalent to (4.10) and (4.11), respectively.
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5. EXAMPLES
In this section, we provide several examples that illustrate our techniques.

5.1. Step functions and matrix representations. We start with a counterex-
ample, that in a way shows that the kernels involved can not be too “simple” in
order for our techniques to work. Let $ = L2([0, 1), u), where y is the Lebesgue
measure and partition [0, 1) into N equidistant intervals oy, ag, ..., ay where
o = [%, %) for k = 1,..., N. Using this partition, we endow [0, 1)? with a

grid and define a symmetric kernel f € §©? that is constant on each sector by

N
(51) f(ﬂj,y) = Z Q5 1ai (x)laj (y)7
i,j=1
where the a;; are real constants and a;; = aj;. Of course, f is uniquely deter-
mined by the symmetric matrix A = (a;j)1<; j<n. If g is another kernel of the
type (5.1), given by a matrix B = (b;;)1<i j<n, we have

1 N N
Fongm = [ | 3 a5 la®la;@) | | 3 buley @10 ) | dult)
0 \jj=1 k=1
N

= Z a;j bjl u(aj) 1o, (w)locl (y)

1,7,l=1

and

~ 1
(f@19)(,y) = 557 D (@i bju+ ai; bji) Lo, (2)1a, (y)-
ij,l=1
Therefore, f ®1 g can be identified with the matrix C' = %AB and f®,g by
% (C’ + CT), where C7 denotes the transpose of C. Analogously, one can show

that

1 tr(ABT)
<f79>5§®2 = N2 <A7B>H,S_ = N2
By formula (4.7), it is now easy to see that for any m > 2 we get
_ tr A™
(5.2) fm(Ia(£)) = 27 (m = D! ——

and therefore, by the Cauchy-Schwarz inequality,
-1
312 kg(Ia(f)) _tr (A4®) _ (4 Do 1<k N et M S 1
2x 7 ka(Ia(f))? tr(4%)? do1<k<N A — 2

where (\;)1<ip<n denotes the eigenvalue sequence of A. Now fix d > 1 and
choose a sequence (NN,,) of positive integers greater than two. For n > 1, define

(5.3)

random vectors F, = (Ia2(fi,n),- -, I2(fan), where the kernels f; ,, are given by
symmetric (N,, X Ny )-matrices A; , 1 <i < d, such that
tr A;{n

i —0 (n — o0)
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for 1 <17 < d. Then, by the Fourth Moment Theorem 2.8, F};, converges in distri-
bution to a d-dimensional, centered Gaussian random vector. However, by (5.3),
condition (4.11) is never satisfied and thus Proposition 4.6 fails to provide optimal
rates of convergence.

Remark 5.1. The following explicit example illustrates how symmetrization can
drastically increase the speed of convergence (see [NR11], Remark 3.2(3) for an-
other example): If N = 2 and the kernels f and g are represented by the matrices

A= [(1) _ﬂ and B = [(1) (1)} ,
respectively, it holds that AB + BA = 0 and tr(ABBA) = 2. Therefore,
/19200 = 0 while |f 1 g2 = .
5.2. Exploding integrals of Brownian sheets. Let W = {W(¢1,...,%): 0 <

t1,...,t; < 1} be a standard Brownian sheet on [0, 1], i.e. a centered Gaussian
process such that

l
E[W(s1,....s)W(t1,...,t)] = [[(si A t)

i=1
for all (s1,...,s1),(t1,...,t) € [0,1]". We can identify the Gaussian space gen-
erated by T with an isonormal process X on $ = L?([0, 1]*) via

l
Wity ...,t;)) ~ X (H 1[07151']) .
1=1

For positive €, we now define
W(ty, ... t)?
0.1}t (bt~ 1)*°

An application of Jeulin’s lemma (see [Jeu80, Lemma 1, p. 44]) shows that F;
“explodes” in the limit, i.e. that P-almost surely

(5.4) F, = d(tl,...,tl).

F. — (e = 0).

However, for the normalized sequence F., defined by

~ F.—-E|[F,

(5.5) Fo=——== F]
E [FZ]

)

the central limit theorem
(5.6) F5Z~NO01)  (e—0).
holds. This is a consequence of the Fourth Moment Theorem 2.8 and the forth-
coming formula (5.12) that provides asymptotics for the cumulants of F.. For
slightly different exploding functionals of the above type, an analogous central
limit theorem was established in [PY04] for the case [ = 1, [DPY06] for the case
[ = 2 and [NPO5] for the case [ > 2. Exact asymptotics in the Kolmogorov
distance were provided in [NP09a]. Here, we are interested in vectors of such
functionals.

Routine calculations show that

~ F. — 1
Fo="=te o 2 (1),

O¢ O¢
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where

(57) f(xh-- wl7yl7"'7yl H/ Otk Otk](yk) dtk7

e =E [F} and 02 = [Fv2]
From (5.7) we conclude that if 1,9, ..., g are k positive numbers, then

(5-8) <( ((f61®1f62)®1f83)®1"')®1fak,17fak>5 :C(€17527---75k)l7

where

(5.9 Cf(er,e2,...,¢6x)

81 N\ 82)(82 A s3 Sk—1 N\ Sg)(Sk N s1
:/ ( )( G- )2 52( 2 er )( )d(sl,...,sk).
[0,1] S1 82 Sk
For convenience, we will write Cy(¢) = C(g, ..., ¢), if all k arguments are equal.

With this notation, we have p. = C(g)! and 02 = Cy(¢)!. By partitioning the
k-dimensional unit interval into simplexes, the integral (5.9) can be computed
explicitly. These calculations yield that

k!
E14 ... e,

Here, ¢(e1, . .., &}) is the canonical symmetrization of

(5.10) Cler,. ., ep) =cler, ... e5) X

clery ... ex) = ((1—|—€1)(1—|—61+€2)"'(1+€1 +€2+...+Ek_1))_1-

Observe that 0 < ¢(e1,...,e,) < land ¢(eq,...,ex) — Lifeq,..., e — 0.
Now fix d > 1 and, for €1, ...,e4 > 0, define 1?'(517.“7%) = (ﬁel, ey ,ﬁed).
As the inner product on the left hand side of (5.8) does not depend on the order in
which the k kernels f;,, f,,. .., fc, are contracted, the cumulant formula (2.22)
yields that
|af

(5.11) ka(Fiey . o) =217 (la] = D1 C(er, ety e ) [ Coler) ™72
k=1

where o € N¢ with elementary decomposition {l1,... slja|}- Identity (5.10)
shows that

( 1/2
_ 5l1 e gl\a\)

5.12 Ko (F) 7l =< )
(5.12) a(Fn) S

This allows us to apply Proposition 4.6 to the vector ﬁ(al,...,a )+ We obtain the
following explicit result.

Proposition 5.2. Forey,...,gq > 0, let ﬁal,...,ad = (ﬁ’al,...,}id) be defined
by (5.5) and let g: R? — R be a three times differentiable function with bounded
derivatives up to order three. Then it holds that

1) [g(ﬁel,...,sd)} - 83(FV€1,...,eda Zel,...,edy g)

d
>t Eil

(5.13)

— 0, (61,...,&}1—)0),
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where Z., . ., is a centered Gaussian random variable with the same covariance
matrix as Fio, .. If. in addition, for1 <1i,j < d it holds that

2
(5.14) — " (eryeea— 0),
/24_ /&5
g5 [ors
and
-1 2
d - p Ci;
> =1 ((\/ E_J 14/ %) - sz>
(5.15) Zleeil — 0, (e1,...,eq4 — 0),
where C;; > 0, then
E |:g(Fv(E1,...,£d))] - 83(Fv(81,...,8d)7 Z7 g)
—0 (61,...,&}1—)0)

d
D i1 Eil

and

o EB[o(Fe )] - Bla2)

S1enea 0 wc(ﬁ(alv---vad))
1
d ; ,
2 i k=1 (V% +/e t V%) E [04k9(Z)]
=4v6 lim .

€1y-.0sq—0 Zd i+i -1
Lj=1\e; ' g

Here, SDC(F(sl,...,ed))z = Z?:l el and Z is a d-dimensional, centered Gaussian

random variable with covariance C' = (C; ')gljzl.

Note that by (5.11) and (5.10), the Edgeworth expansions 53(ﬁ51,m75d, Zey.eqr9)

and &(F;,, . c,, Z,g) can be calculated explicitly.
To illustrate this, we choose a positive sequence (a,),>1 converging to zero

and two positive numbers ¢ and (. Then it holds that F, (€-an.C-an) Das covariance

()
p=———.

Thus, the conditions (5.14) and (5.15) are trivially satisfied and all conclusions of
Proposition 5.2 hold.

for all n > 1, where

5.3. Continuous time Toeplitz quadratic functionals. Let (X;):>o be a cen-
tered, real valued Gaussian process with a covariance function r of the form

r(t) = E[ Xy Xyt = f(t), where f: R — Ris an integrable, even function, cus-
tomarily called the spectral density of the process (X;) and f denotes its Fourier
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transform ¢ — [ e f(z)dx. If h: R — R is another integrable even func-

tion with Fourier transform h and T > 0, we define the Toeplitz functional Q7
associated with A and T by

Qnr = / h(t — )X X, d(s, t).
[0,T)2

and denote a normalized version by

~  Qunr—E[QnT]
Qr = :
vT
In the following, we want to apply our results to sequences of random vectors
whose components are (normalized) Toeplitz functionals, analogous to the treat-
ment in [NP09a] for the one-dimensional case.
For T > 0 and ¢ € L*(R), the truncated Toeplitz operator Br (1)), defined on

L?(R), is given by

T ~
Br()(w(®) = [ u()i(t - o)da,
0
As usual, if 91, ..., ¥, € LY(R) and j > 1, we write
Br(Ym)Br(¥m-1) - - - Br(¢1) = Br(¢¥m) o Br(¢¥m—1) 0 - 0 Br(¢1)

and
(Br(42)Br(¥1))’ = Br(wb2)Br(41) . .. Br(who) Br(i1)

7 times

for its operator products and powers, respectively. Explicitly, the above operator
product takes the form

(Br(¢m)Br(m—1) - - Br(y1)(w))(t)
T T T N R N
:/ / / w(x1)1(vo—x1) W2 (x3—22) - - - Yy (t—2p ) Ay g - - - Ay
0 o Jo

To adapt the setting to our framework, we introduce the Hilbert space of
complex-valued, square integrable and even functions h: R — C, equipped with
the inner product (h1,ho)g = [ hi(x)ha(z) f(z) dz. The process (X;)i>o
can then be identified with an isonormal Gaussian process on the real subspace
9 generated by the family {z ++ e#*: t > 0}. This allows us to represent the

normalized Toeplitz functional @, 7 as a multiple integral of second order with
kernel ¢, 7, which is given by

(5.16) onr(2y) = / ﬁ(t — 5)el (7T g dt.
(0,772

We now choose even functions h1,...,hg € L'(R) be even functions and
define a random vector Fr = (Fir,...,F;r) by setting F; 7 = @hi,T for
1 <i < dand T > 0. The following Theorem collects some results from
the literature.

Theorem 5.3. Let o € N& be a multi-index with || > 2 and elementary decom-
position {11, ...,l|o }. Then the following is true.
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a) The cumulant k. (Fr) is given by

|al

(5.17)  ka(Fr) =T 122l (o) - D)V Tr | Br(£) T Br(t,)
=1

b) Iff € LY(R)NLY(R) and h; € L*(R)N L% (R) such that1/qo+1/q; < 1/ |a|
forl < i <d, then

|a|

(5.18)  lim T1/27 1k (Fp) = 219171 (|a| — 1)!/oo fol@) T b, () da.

T—o00 -
=1

¢) If f € LY(R)N L®(R) and h; € L'(R) N L% (R) such that1/qo +1/q; < 1/2
forl < i <d, then

(5.19) JIN N(0,0), (T — o0),

where the covariance matrix C = (C;;)1<i j<d is given by

Cy =2 /0 " P(2)hs(@)hy () da.

Proof. Part a) follows from a straightforward adaptation of the arguments in [GS84,
Chapter 11] to multiple dimensions. Part b) follows from a) and [Gin94, Theo-
rem la)]. Finally, part c) is a consequence of part b) and the Fourth Moment

Theorem 2.8. For the one-dimensional case (d = 1), part c¢) was first proven
in [Gin94]. Weaker conditions for the convergence (5.19) to take place can be
found in [GS07]. U

We are now able to prove the following Edgeworth expansion.

Proposition 5.4. In the above framework, assume that f € L'(R) N L% (R),
h; € LYR)NLY%(R) such that1/qo+1/q; < 1/8 for1 <i < dandletg: R — R
be three times differentiable with bounded derivatives up to order three. Then it holds
that

Elg(Fr)] — &(Fr, Z, g)
wc(Fr)
where Z is a d-dimensional Gaussian random variable with covariance matrix C =

(Cij)i<ij<a given by Cij = 2 [ f*(x)hi(x)hj(x) dz.

Proof. By Theorem 5.3b), we immediately verify the conditions of Proposition 4.6b)
and obtain the result. (]

(5.20) -0 (T — o0),

5.4. Edgeworth expansions for the Breuer-Major Theorem. Define B =
{By: = > 0} to be a fractional Brownian motion with Hurst index H € (0, %),
i.e. a centered Gaussian process with covariance
1

5 <w2H+y2H_ ’x_y‘ZH) ’ T,y > 0.
For fixed H € (0, %), the Gaussian space generated by B can be identified with an
isonormal Gaussian process X = {X (h): h € $}, where the real and separable
Hilbert space ) is the closure of the set of all R-valued step functions on R with
respect to the inner product

(Lo,0)s Loy)) g = E[BaBy].

E[B,B)) =
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In particular, we have B, = X (1jg,) for z > 0. For more details on fractional
Brownian motion see for example [NP12], [Nua06] or [Nou12]. We denote the
covariance function of the stationary increment process (Bg+1 — Bg)z>0 by

1
p(t) = E[Botis (Bosres — Basa)] = 5 (It 4+ 1P + e = 1P = 2>").

Now choose d integers g; > 2 and, for 7' > 0, define the centered random vectors
Fr = (Fl,Ta . 7Fd,T) by

1 T

We immediately see that the covariance matrix C7 = (Cyj1)1<i j<a of Fr is
given by

Cijr=E[FrFjr| = 5qiqjq% / P (u —v) d(u, v)
[0,T]2

and converges to C' = (Cjj)1<; j<a for T — oo, where

o0
Cij = 5%‘%‘ Qi!/ pli(z) dz.
—00
It is well known (see for example [BM83] or [GS85]) that for each component
F; T the central limit theorem

Fir 5 N(0,Ci), (T — o)

holds and the Fourth Moment Theorem 2.8A therefore implies the joint conver-
gence of F towards a centered d-dimensional Gaussian random vector Z with
covariance C. By applying our methods, we are able to derive a fluctuating and
non-fluctuating Edgeworth expansion for Fr, which in many cases yield exact
asymptotics.

Theorem 5.5. If, in the above setting, g is three times differentiable with bounded
derivatives up to order three it holds that

Elg(Fr)] — &(Fr, Z, g)
1/VT

Remark 5.6. For a non-trivial application of Theorem 5.5 at least one of the inte-
gers g; should be even. Indeed, otherwise the Edgeworth expansion & (Fr, Z7, g)
(or &(Fr, Z, g), respectively) would merely reduce to the expectation E [g(Z7)]
(or E [g(Z)))-

(5.22) 50, (T — o).

Proof of Theorem 5.5. . We want to apply Theorem 4.6. Observe that by the well-
known relation H, (By+1 — By) = [q(li‘zﬂ}) we can represent each compo-
nent F; 7 by a multiple integral I, ( f; 1), where the kernels f; 1 are given by

I
_ q
fir = \/T/o Ly e
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Straightforward calculations now yield

1 fir @ firllZ so00, -
1

=72 o p(v1 —u1)" p(vg — ug)"

p(va — 1)1 " plug — u1)? ™" dlur, ug, v, v2)
1 _ _
T / p(x1)"p(@2)" p(x3)® " p(w1 — w2 + 3)4 7" (@1, 22, 23),
[_TvT]3

where the integral in the last line, which has been obtained by a change of vari-
ables, converges for ' — oo (due to the restriction H € (0,1/2)). As symmetriz-
ing only changes the exponents of the factors of the integrand, we see that

~ 1
(5.23) | fir @ firllgeza-n < | fir®r firllgo,-n < N

Moreover,for1 <r < g, —1land1 < m < ¢; —r — 1, we see that the majorizing
integrals M, (f; T, s) are given by

M, (fir,s) = % /[0 - (p(v1r — u1)p(v2 — uz)p(vs — ug)p(vs — ug))"

s

(p(uz — ur)p(vy — v1)p(us — uz)p(vg — v3))

(p(us — ur)p(vs — v1)p(us — uz)p(vg —v2)) """
d(ul,...,U4,U1,... ,U4)
1 r
= — P\T1)pP\T2)p\(X3)P (T4
75 [y (Pa0pa)ppton)
(p(xs)p(w2 + x5 — 1) p(6) (T4 + 16 — 23))°
(p(z7)p(as + 7 — 21)pl26 + 27 — T5)
p(zs + a6+ 27 — 25 — 22)) " °

d(a:l, e ,x7).

By the same argument as before, the integral converges for " — oo and we get

1
(5.24) Mr(fi,T; s) =< T3

Together with the asymptotic relation (5.23), this shows that conditions condi-
tions (i) and (ii) of Theorem 4.6 are satisfied. It remains to show that A¢(Fr) <
Ar(Fr), so that (5.22) follows. by Theorem 4.6. A linear change of variables
allows us to write

a! [T .
Cijr — Cij = d45q; T /0 /(_Oo . % (w) dw dv.

Using the well known asymptotic relation p(t) < t2(H-1)

g L 2(H-1)q;+1
CZJ,T - CZJ -~ 5qz'q]‘T ‘

, we get

and thus
AC(FT) — T1+2(H_1)Qmin.

As, by (5.23), Ar(Fr) < 1/VT and 1 + 2(H — 1)gmin < —1/2, the proof is
finished. g
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