

On complex-analytic $1|3$ -dimensional supermanifolds associated with \mathbb{CP}^1 .¹

E.G. Vishnyakova

Abstract

We obtain a classification up to isomorphism of complex-analytic supermanifolds with underlying space \mathbb{CP}^1 of dimension $1|3$ with retract (k, k, k) , where $k \in \mathbb{Z}$. More precisely, we prove that classes of isomorphic complex-analytic supermanifolds of dimension $1|3$ with retract (k, k, k) are in one-to-one correspondence with points of the following set:

$$\mathbf{Gr}_{4k-4,3} \cup \mathbf{Gr}_{4k-4,2} \cup \mathbf{Gr}_{4k-4,1} \cup \mathbf{Gr}_{4k-4,0}$$

for $k \geq 2$. For $k < 2$ all such supermanifolds are isomorphic to their retract (k, k, k) .

1 Introduction.

A classical result is that we can assign the holomorphic vector bundle, so called retract, to each complex-analytic supermanifold (see Section 2 for more details). Assume that the underlying space of a complex-analytic supermanifold is \mathbb{CP}^1 . By the Birkhoff-Grothendieck Theorem any vector bundle of rank m over \mathbb{CP}^1 is isomorphic to the direct sum of m line bundles: $\mathbf{E} \simeq \bigoplus_{i=1}^m L(k_i)$, where $k_i \in \mathbb{Z}$. We obtain a classification up to isomorphism of complex-analytic supermanifolds of dimension $1|3$ with underlying space \mathbb{CP}^1 and with retract $L(k) \oplus L(k) \oplus L(k)$, where $k \in \mathbb{Z}$. In addition, we give a classification up to isomorphism of complex-analytic supermanifolds of dimension $1|2$ with underlying space \mathbb{CP}^1 .

The paper is structured as follows. In Section 2 we explain the idea of the classification. In Section 3 we do all necessary preparations. The classification up to isomorphism of complex-analytic supermanifolds of dimension $1|3$ with underlying space \mathbb{CP}^1 and with retract (k, k, k) is obtained in Section 4. The last section is devoted to the classification up to isomorphism of complex-analytic supermanifolds of dimension $1|2$ with underlying space \mathbb{CP}^1 .

¹Supported by Fonds National de la Recherche Luxembourg

Mathematics Subject Classifications (2010): 51P05, 53Z05, 32M10.

The study of complex-analytic supermanifolds with underlying space \mathbb{CP}^1 was started in [BO]. There the classification of homogeneous complex-analytic supermanifolds of dimension $1|m$, $m \leq 3$, up to isomorphism was given. It was proven that in the case $m = 2$ there exists only one non-split homogeneous supermanifold constructed by P. Green [Gr] and V.P. Palamodov [B]. For $m = 3$ it was shown that there exists a series of non-split homogeneous supermanifolds, parameterized by $k = 0, 2, 3, \dots$.

In [V] we studied even-homogeneous supermanifolds, i.e. supermanifolds which possess transitive actions of Lie groups. It was shown that there exists a series of non-split even-homogeneous supermanifolds, parameterized by elements in $\mathbb{Z} \times \mathbb{Z}$, three series of non-split even-homogeneous supermanifolds, parameterized by elements of \mathbb{Z} , and a finite set of exceptional supermanifolds.

2 Classification of supermanifolds, main definitions

We will use the word "supermanifold" in the sense of Berezin – Leites [BL, L], see also [BO]. All the time, we will be interested in the complex-analytic version of the theory. We begin with main definitions.

Recall that a *complex superdomain of dimension $n|m$* is a \mathbb{Z}_2 -graded ringed space of the form $(U, \mathcal{F}_U \otimes \Lambda(m))$, where \mathcal{F}_U is the sheaf of holomorphic functions on an open set $U \subset \mathbb{C}^n$ and $\Lambda(m)$ is the exterior (or Grassmann) algebra with m generators.

Definition 1. A *complex-analytic supermanifold* of dimension $n|m$ is a \mathbb{Z}_2 -graded locally ringed space that is locally isomorphic to a complex superdomain of dimension $n|m$.

Let $\mathcal{M} = (\mathcal{M}_0, \mathcal{O}_{\mathcal{M}})$ be a supermanifold and

$$\mathcal{J}_{\mathcal{M}} = (\mathcal{O}_{\mathcal{M}})_{\bar{1}} + ((\mathcal{O}_{\mathcal{M}})_{\bar{1}})^2$$

be the subsheaf of ideals generated by odd elements in $\mathcal{O}_{\mathcal{M}}$. We put $\mathcal{F}_{\mathcal{M}} := \mathcal{O}_{\mathcal{M}}/\mathcal{J}_{\mathcal{M}}$. Then $(\mathcal{M}_0, \mathcal{F}_{\mathcal{M}})$ is a usual complex-analytic manifold, it is called the *reduction* or *underlying space* of \mathcal{M} . Usually we will write \mathcal{M}_0 instead of $(\mathcal{M}_0, \mathcal{F}_{\mathcal{M}})$. Denote by $\mathcal{T}_{\mathcal{M}}$ the *tangent sheaf* or the *sheaf of vector fields* of \mathcal{M} . In other words, $\mathcal{T}_{\mathcal{M}}$ is the sheaf of derivations of the structure sheaf $\mathcal{O}_{\mathcal{M}}$. Since the sheaf $\mathcal{O}_{\mathcal{M}}$ is \mathbb{Z}_2 -graded, the tangent sheaf $\mathcal{T}_{\mathcal{M}}$ also possesses the induced \mathbb{Z}_2 -grading, i.e. there is the natural decomposition $\mathcal{T}_{\mathcal{M}} = (\mathcal{T}_{\mathcal{M}})_{\bar{0}} \oplus (\mathcal{T}_{\mathcal{M}})_{\bar{1}}$.

Let \mathcal{M}_0 be a complex-analytic manifold and let \mathbf{E} be a holomorphic vector bundle over \mathcal{M}_0 . Denote by \mathcal{E} the sheaf of holomorphic sections of \mathbf{E} . Then the

ringed space $(\mathcal{M}_0, \bigwedge \mathcal{E})$ is a supermanifold. In this case $\dim \mathcal{M} = n|m$, where $n = \dim \mathcal{M}_0$ and m is the rank of \mathbf{E} .

Definition 2. A supermanifold $(\mathcal{M}_0, \mathcal{O}_\mathcal{M})$ is called *split* if $\mathcal{O}_\mathcal{M} \simeq \bigwedge \mathcal{E}$ (as supermanifolds) for a locally free sheaf \mathcal{E} .

It is known that any real (smooth or real analytic) supermanifold is split. The structure sheaf $\mathcal{O}_\mathcal{M}$ of a split supermanifold possesses a \mathbb{Z} -grading, since $\mathcal{O}_\mathcal{M} \simeq \bigwedge \mathcal{E}$ and the sheaf $\bigwedge \mathcal{E} = \bigoplus_p \bigwedge^p \mathcal{E}$ is naturally \mathbb{Z} -graded. In other words, we have the decomposition $\mathcal{O}_\mathcal{M} = \bigoplus_p (\mathcal{O}_\mathcal{M})_p$. This \mathbb{Z} -grading induces the \mathbb{Z} -grading in $\mathcal{T}_\mathcal{M}$ in the following way:

$$(\mathcal{T}_\mathcal{M})_p := \{v \in \mathcal{T}_\mathcal{M} \mid v((\mathcal{O}_\mathcal{M})_q) \subset (\mathcal{O}_\mathcal{M})_{p+q} \text{ for all } q \in \mathbb{Z}\}. \quad (1)$$

In other words, we have the decomposition: $\mathcal{T}_\mathcal{M} = \bigoplus_{p=-1}^m (\mathcal{T}_\mathcal{M})_p$. Therefore the superspace $H^0(\mathcal{M}_0, \mathcal{T}_\mathcal{M})$ is also \mathbb{Z} -graded. Consider the subspace

$$\text{End } \mathbf{E} \subset H^0(\mathcal{M}_0, (\mathcal{T}_\mathcal{M})_0).$$

It consists of all endomorphisms of the vector bundle \mathbf{E} inducing the identity morphism on \mathcal{M}_0 . Denote by $\text{Aut } \mathbf{E} \subset \text{End } \mathbf{E}$ the group of automorphisms of \mathbf{E} , i.e. the group of all invertible endomorphisms of \mathbf{E} . We have the action Int of $\text{Aut } \mathbf{E}$ on $\mathcal{T}_\mathcal{M}$ defined by

$$\text{Int } A : v \mapsto AvA^{-1}.$$

Clearly, the action Int preserves the \mathbb{Z} -grading (1), therefore, we have the action of $\text{Aut } \mathbf{E}$ on $H^1(\mathcal{M}_0, (\mathcal{T}_\mathcal{M})_2)$.

There is a functor denoting by gr from the category of supermanifolds to the category of split supermanifolds. Let us describe this construction. Let \mathcal{M} be a supermanifold and let as above $\mathcal{J}_\mathcal{M} \subset \mathcal{O}_\mathcal{M}$ be the subsheaf of ideals generated by odd elements of $\mathcal{O}_\mathcal{M}$. Then by definition we have $\text{gr}(\mathcal{M}) = (\mathcal{M}_0, \text{gr } \mathcal{O}_\mathcal{M})$, where

$$\text{gr } \mathcal{O}_\mathcal{M} = \bigoplus_{p \geq 0} (\text{gr } \mathcal{O}_\mathcal{M})_p, \quad (\text{gr } \mathcal{O}_\mathcal{M})_p = \mathcal{J}_\mathcal{M}^p / \mathcal{J}_\mathcal{M}^{p+1}, \quad \mathcal{J}_\mathcal{M}^0 := \mathcal{O}_\mathcal{M}.$$

In this case $(\text{gr } \mathcal{O}_\mathcal{M})_1$ is a locally free sheaf and there is a natural isomorphism of $\text{gr } \mathcal{O}_\mathcal{M}$ onto $\bigwedge (\text{gr } \mathcal{O}_\mathcal{M})_1$. If $\psi = (\psi_{\text{red}}, \psi^*) : (M, \mathcal{O}_\mathcal{M}) \rightarrow (N, \mathcal{O}_\mathcal{N})$ is a morphism of supermanifolds, then $\text{gr}(\psi) = (\psi_{\text{red}}, \text{gr}(\psi^*))$, where $\text{gr}(\psi^*) : \text{gr } \mathcal{O}_\mathcal{N} \rightarrow \text{gr } \mathcal{O}_\mathcal{M}$ is defined by

$$\text{gr}(\psi^*)(f + \mathcal{J}_\mathcal{N}^p) := \psi^*(f) + \mathcal{J}_\mathcal{M}^p \text{ for } f \in (\mathcal{J}_\mathcal{N})^{p-1}.$$

Recall that by definition every morphism ψ of supermanifolds is even and as consequence sends $\mathcal{J}_\mathcal{N}^p$ into $\mathcal{J}_\mathcal{M}^p$.

Definition 3. The supermanifold $\text{gr}(\mathcal{M})$ is called the *retract* of \mathcal{M} .

For classification of supermanifolds we use the following corollary of the well-known Green Theorem (see [Gr], [BO] or [DW] for more details):

Theorem 2.1 [Green] *Let $\mathcal{N} = (\mathcal{N}_0, \bigwedge \mathcal{E})$ be a split supermanifold of dimension $n|m$, where $m \leq 3$. The classes of isomorphic supermanifolds \mathcal{M} such that $\text{gr } \mathcal{M} = \mathcal{N}$ are in bijection with orbits of the action Int of the group $\text{Aut } \mathbf{E}$ on $H^1(\mathcal{M}_0, (\mathcal{T}_{\mathcal{N}})_2)$.*

Remark. This theorem allows to classify supermanifolds \mathcal{M} such that $\text{gr } \mathcal{M} = \mathcal{N}$ is fixed up to isomorphisms that induce the identity morphism on $\text{gr } \mathcal{M}$.

3 Supermanifolds associated with \mathbb{CP}^1

In what follows we will consider supermanifolds with the underlying space \mathbb{CP}^1 .

3.1 Supermanifolds with underlying space \mathbb{CP}^1

Let \mathcal{M} be a supermanifold of dimension $1|m$. Denote by U_0 and U_1 the standard charts on \mathbb{CP}^1 with coordinates x and $y = \frac{1}{x}$, respectively. By the Birkhoff-Grothendieck Theorem we can cover $\text{gr } \mathcal{M}$ by two charts

$$(U_0, \mathcal{O}_{\text{gr } \mathcal{M}}|_{U_0}) \text{ and } (U_1, \mathcal{O}_{\text{gr } \mathcal{M}}|_{U_1})$$

with local coordinates x, ξ_1, \dots, ξ_m and y, η_1, \dots, η_m , respectively, such that in $U_0 \cap U_1$ we have

$$y = x^{-1}, \quad \eta_i = x^{-k_i} \xi_i, \quad i = 1, \dots, m,$$

where k_i are integers. Note that a permutation of k_i induces the automorphism of $\text{gr } \mathcal{M}$. We will identify $\text{gr } \mathcal{M}$ with the set (k_1, \dots, k_m) , so we will say that a supermanifold has the retract (k_1, \dots, k_m) . In this paper we study the case: $m = 3$ and $k_1 = k_2 = k_3 =: k$. From now on we use the notation $\mathcal{T} = \bigoplus \mathcal{T}_p$ for the tangent sheaf of $\text{gr } \mathcal{M}$.

3.2 A basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2)$.

Assume that $m = 3$ and that $\mathcal{M} = (k_1, k_2, k_3)$ is a split supermanifold with the underlying space $\mathcal{M}_0 = \mathbb{CP}^1$. Let \mathcal{T} be its tangent sheaf. In [BO] the following decomposition

$$\mathcal{T}_2 = \sum_{i < j} \mathcal{T}_2^{ij} \tag{2}$$

was obtained. The sheaf \mathcal{T}_2^{ij} is a locally free sheaf of rank 2; its basis sections over $(U_0, \mathcal{O}_M|_{U_0})$ are:

$$\xi_i \xi_j \frac{\partial}{\partial x}, \quad \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l}; \quad (3)$$

where $l \neq i, j$. In $U_0 \cap U_1$ we have

$$\begin{aligned} \xi_i \xi_j \frac{\partial}{\partial x} &= -y^{2-k_i-k_j} \eta_i \eta_j \frac{\partial}{\partial y} - k_l y^{1-k_i-k_j} \eta_i \eta_j \eta_l \frac{\partial}{\partial \eta_l}, \\ \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l} &= y^{-k_i-k_j} \eta_i \eta_j \eta_l \frac{\partial}{\partial \eta_l}. \end{aligned} \quad (4)$$

The following theorem was proven in [V]. For completeness we reproduce it here.

Theorem 3.1 *Assume that $i < j$ and $l \neq i, j$.*

1. *For $k_i + k_j > 3$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is:*

$$\begin{aligned} x^{-n} \xi_i \xi_j \frac{\partial}{\partial x}, \quad n &= 1, \dots, k_i + k_j - 3, \\ x^{-n} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l}, \quad n &= 1, \dots, k_i + k_j - 1; \end{aligned} \quad (5)$$

2. *for $k_i + k_j = 3$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is:*

$$x^{-1} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l}, \quad x^{-2} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l};$$

3. *for $k_i + k_j = 2$ and $k_l = 0$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is:*

$$x^{-1} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l};$$

4. *if $k_i + k_j = 2$ and $k_l \neq 0$ or $k_i + k_j < 2$, we have $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij}) = \{0\}$.*

Proof. We use the Čech cochain complex of the cover $\mathfrak{U} = \{U_0, U_1\}$ as in 3.1, hence, 1-cocycle with values in the sheaf \mathcal{T}_2^{ij} is a section v of \mathcal{T}_2^{ij} over $U_0 \cap U_1$. We are looking for *basis cocycles*, i.e. cocycles such that their cohomology classes form a basis of $H^1(\mathfrak{U}, \mathcal{T}_2^{ij}) \simeq H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$. Note that if $v \in Z^1(\mathfrak{U}, \mathcal{T}_2^{ij})$ is holomorphic in U_0 or U_1 then the cohomology class of v is equal to 0. Obviously, any $v \in Z^1(\mathfrak{U}, \mathcal{T}_2^{ij})$ is a linear combination of vector fields (3) with holomorphic in $U_0 \cap U_1$ coefficients. Further, we expand these coefficients in a Laurent series in x and drop

the summands x^n , $n \geq 0$, because they are holomorphic in U_0 . We see that v can be replaced by

$$v = \sum_{n=1}^{\infty} a_{ij}^n x^{-n} \xi_i \xi_j \frac{\partial}{\partial x} + \sum_{n=1}^{\infty} b_{ij}^n x^{-n} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l}, \quad (6)$$

where $a_{ij}^n, b_{ij}^n \in \mathbb{C}$. Using (4), we see that the summands corresponding to $n \geq k_i + k_j - 1$ in the first sum of (6) and the summands corresponding to $n \geq k_i + k_j$ in the second sum of (6) are holomorphic in U_1 . Further, it follows from (4) that

$$x^{2-k_i-k_j} \xi_i \xi_j \frac{\partial}{\partial x} \sim -k_l x^{1-k_i-k_j} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l}.$$

Hence the cohomology classes of the following cocycles

$$\begin{aligned} x^{-n} \xi_i \xi_j \frac{\partial}{\partial x}, \quad n = 1, \dots, k_i + k_j - 3, \\ x^{-n} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l}, \quad n = 1, \dots, k_i + k_j - 1, \end{aligned}$$

generate $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$. If we examine linear combination of these cocycles which are cohomological trivial, we get the result. \square

Remark. Note that a similar method can be used for computation of a basis of $H^1(\mathbb{CP}^1, \mathcal{T}_q)$ for any odd dimension m and any q .

In the case $k_1 = k_2 = k_3 = k$, from Theorem 3.1, it follows:

Corollary 3.2 *Assume that $i < j$ and $l \neq i, j$.*

1. *For $k \geq 2$ the basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2^{ij})$ is*

$$\begin{aligned} x^{-n} \xi_i \xi_j \frac{\partial}{\partial x}, \quad n = 1, \dots, 2k - 3, \\ x^{-n} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_l}, \quad n = 1, \dots, 2k - 1. \end{aligned} \quad (7)$$

2. *If $k < 2$, we have $H^1(\mathbb{CP}^1, \mathcal{T}_2) = \{0\}$.*

3.3 The group $\text{Aut } \mathbf{E}$

This section is devoted to the calculation of the group of automorphisms $\text{Aut } \mathbf{E}$ of the vector bundle \mathbf{E} in the case (k, k, k) . Here \mathbf{E} is the vector bundle corresponding to the split supermanifold (k, k, k) .

Let (ξ_i) be a local basis of \mathbf{E} over U_0 and A be an automorphism of \mathbf{E} . Assume that $A(\xi_j) = \sum a_{ij}(x) \xi_i$. In U_1 we have

$$A(\eta_j) = A(y^{k_j} \xi_j) = \sum y^{k_j - k_i} a_{ij}(y^{-1}) \eta_i.$$

Therefore, $a_{ij}(x)$ is a polynomial in x of degree $\leq k_j - k_i$, if $k_j - k_i \geq 0$ and is 0, if $k_j - k_i < 0$. We denote by b_{ij} the entries of the matrix $B = A^{-1}$. The entries are also polynomials in x of degree $\leq k_j - k_i$. We need the following formulas:

$$\begin{aligned} A(\xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_k}) A^{-1} &= \det(A) \sum_s b_{ks} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_s}; \\ A(\xi_i \xi_j \frac{\partial}{\partial x}) A^{-1} &= \det(A) \sum_{k < s} (-1)^{l+r} b_{lr} \xi_k \xi_s \frac{\partial}{\partial x} + \\ &\quad + \det(A) \sum_s b'_{ls} \xi_i \xi_j \xi_l \frac{\partial}{\partial \xi_s}, \end{aligned} \quad (8)$$

where $i < j$, $l \neq i, j$ and $r \neq k, s$. Here we use the notation $b'_{ls} = \frac{\partial}{\partial x}(b_{ls})$. By (8), in the case $k_1 = k_2 = k_3 = k$, we have:

Proposition 1. Assume that $k_1 = k_2 = k_3 = k$.

1. We have

$$\text{Aut } \mathbf{E} \simeq \text{GL}_3(\mathbb{C}).$$

In other words

$$\text{Aut } \mathbf{E} = \{(a_{ij}) \mid a_{ij} \in \mathbb{C}, \det(a_{ij}) \neq 0\}.$$

2. The action of $\text{Aut } \mathbf{E}$ on \mathcal{T}_2 is given in U_0 by the following formulas:

$$\begin{aligned} A(\xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_k}) A^{-1} &= \det(A) \xi_1 \xi_2 \xi_3 \sum_s b_{ks} \frac{\partial}{\partial \xi_s}; \\ A(\xi_i \xi_j \frac{\partial}{\partial x}) A^{-1} &= \det(A) \sum_{k < s} (-1)^{l+r} b_{lr} \xi_k \xi_s \frac{\partial}{\partial x}, \end{aligned} \quad (9)$$

where $i < j$, $l \neq i, j$ and $r \neq k, s$. Here $B = (b_{ij}) = A^{-1}$

4 Classification of supermanifolds with retract (k, k, k)

In this section we give a classification up to isomorphism of complex-analytic supermanifolds with underlying space \mathbb{CP}^1 and with retract (k, k, k) using Theorem 2.1. In previous section we have calculated the vector space $H^1(\mathbb{CP}^1, \mathcal{T}_2)$, the group $\text{Aut } \mathbf{E}$ and the action Int of $\text{Aut } \mathbf{E}$ on $H^1(\mathbb{CP}^1, \mathcal{T}_2)$, see Theorem 3.2 and Proposition 1. Our objective in this section is to calculate the orbit space corresponding to the action Int :

$$H^1(\mathbb{CP}^1, \mathcal{T}_2) / \text{Aut } \mathbf{E}. \quad (10)$$

By Theorem 2.1 classes of isomorphic supermanifolds are in one-to-one correspondence with points of the set (10).

Let us fix the following basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2)$:

$$\begin{aligned} v_{11} &= x^{-1} \xi_2 \xi_3 \frac{\partial}{\partial x}, & v_{12} &= -x^{-1} \xi_1 \xi_3 \frac{\partial}{\partial x}, & v_{13} &= x^{-1} \xi_1 \xi_2 \frac{\partial}{\partial x}, \\ \dots & & \dots & & \dots & \\ v_{p1} &= x^{-p} \xi_2 \xi_3 \frac{\partial}{\partial x}, & v_{p2} &= -x^{-p} \xi_1 \xi_3 \frac{\partial}{\partial x}, & v_{p3} &= x^{-p} \xi_1 \xi_2 \frac{\partial}{\partial x}, \end{aligned} \tag{11}$$

$$\begin{aligned} v_{p+1,1} &= x^{-1} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_1}, & \dots & & v_{p+1,3} &= x^{-1} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_3}, \\ \dots & & \dots & & \dots & \\ v_{q1} &= x^{-a} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_1}, & \dots & & v_{q3} &= x^{-a} \xi_1 \xi_2 \xi_3 \frac{\partial}{\partial \xi_3}, \end{aligned} \tag{12}$$

where $p = 2k - 3$, $a = 2k - 1$ and $q = p + a = 4k - 4$. (Compere with Theorem 3.2.) Let us take $A \in \text{Aut } \mathbf{E} \simeq \text{GL}_3(\mathbb{C})$, see Proposition 1. We get that in the basis (11) - (12) the automorphism $\text{Int } A$ is given by

$$\text{Int } A(v_{is}) = \frac{1}{\det B} \sum_j b_{sj} v_{ij}.$$

Note that for any matrix $C \in \text{GL}_3(\mathbb{C})$ there exists a matrix B such that

$$C = \frac{1}{\det B} B.$$

Indeed, we can put $B = \frac{1}{\sqrt{\det C}} C$. We summarize these observations in the following proposition:

Proposition 2. Assume that $k_1 = k_2 = k_3 = k$. Then

$$H^1(\mathbb{CP}^1, \mathcal{T}_2) \simeq \text{Mat}_{3 \times (4k-4)}(\mathbb{C})$$

and the action Int of $\text{Aut } \mathbf{E}$ on $H^1(\mathbb{CP}^1, \mathcal{T}_2)$ is equivalent to the standard action of $\text{GL}_3(\mathbb{C})$ on $\text{Mat}_{3 \times (4k-4)}(\mathbb{C})$. More precisely, Int is equivalent to the following action:

$$D \longmapsto (W \longmapsto DW), \tag{13}$$

where $D \in \text{GL}_3(\mathbb{C})$, $W \in \text{Mat}_{3 \times (4k-4)}(\mathbb{C})$ and DW is the usual matrix multiplication.

Now we prove our main result.

Theorem 4.1 *Let $k \geq 2$. Complex-analytic supermanifolds with underlying space \mathbb{CP}^1 and retract (k, k, k) are in one-to-one correspondence with points of the following set:*

$$\bigcup_{r=0}^3 \mathbf{Gr}_{4k-4,r},$$

where $\mathbf{Gr}_{4k-4,r}$ is the Grassmannian of type $(4k-4, r)$, i.e. it is the set of all r -dimensional subspaces in \mathbb{C}^{4k-4} .

In the case $k < 2$ all supermanifolds with underlying space \mathbb{CP}^1 and retract (k, k, k) are split and isomorphic to their retract (k, k, k) .

Proof. Assume that $k \geq 2$. Clearly, the action (13) preserves the rank r of matrices from $\text{Mat}_{3 \times (4k-4)}(\mathbb{C})$ and $r \leq 3$. Therefore, matrices with different rank belong to different orbits of this action. Furthermore, let us fix $r \in \{0, 1, 2, 3\}$. Denote by $\text{Mat}_{3 \times (4k-4)}^r(\mathbb{C})$ all matrices with rank r . Clearly, we have

$$\text{Mat}_{3 \times (4k-4)}(\mathbb{C}) = \bigcup_{r=0}^3 \text{Mat}_{3 \times (4k-4)}^r(\mathbb{C}).$$

A matrix $W \in \text{Mat}_{3 \times (4k-4)}^r(\mathbb{C})$ defines the r -dimensional subspace V_W in \mathbb{C}^{4k-4} . This subspace is the linear combination of lines of W . (We consider lines of a matrix $X \in \text{Mat}_{3 \times (4k-4)}(\mathbb{C})$ as vectors in \mathbb{C}^{4k-4} .) Therefore, we have defined the map F_r :

$$W \longmapsto F_r(W) = V_W \in \mathbf{Gr}_{4k-4,r}.$$

The map F_r is surjective. Indeed, in any r -dimensional subspace $V \in \mathbf{Gr}_{4k-4,r}$, where $r \leq 3$, we can take 3 vectors generating V and form the matrix $W_V \in \text{Mat}_{3 \times (4k-4)}^r(\mathbb{C})$. In this case the matrix W_V is of rank r and $F_r(W_V) = V$. Clearly, $F_r(W) = F_r(DW)$, where $D \in \text{GL}_3(\mathbb{C})$. Conversely, if W and $W' \in F_r^{-1}(V_W)$, then there exists a matrix $D \in \text{GL}_3(\mathbb{C})$ such that $DW = W'$. It follows that orbits of $\text{GL}_3(\mathbb{C})$ on $\text{Mat}_{3 \times (4k-4)}^r(\mathbb{C})$ are in one to one correspondence with points of $\mathbf{Gr}_{4k-4,r}$. Therefore, orbits of $\text{GL}_3(\mathbb{C})$ on

$$\text{Mat}_{3 \times (4k-4)}(\mathbb{C}) = \bigcup_{r=0}^3 \text{Mat}_{3 \times (4k-4)}^r(\mathbb{C})$$

are in one-to-one correspondence with points of $\bigcup_{r=0}^3 \mathbf{Gr}_{4k-4,r}$. The proof is complete. \square

5 Appendix. Classification of supermanifolds with underlying space \mathbb{CP}^1 of odd dimension 2.

In this Section we give a classification up to isomorphism of complex-analytic supermanifolds in the case $m = 2$ and $\text{gr } \mathcal{M} = (k_1, k_2)$, where k_1, k_2 are any integers. As far as we know the classification in this case does not appear in the literature, but it is known for specialists.

Let us compute the 1-cohomology with values in the tangent sheaf \mathcal{T}_2 . The sheaf \mathcal{T}_2 is a locally free sheaf of rank 1. Its basis section over $(U_0, \mathcal{O}_M|_{U_0})$ is $\xi_1 \xi_2 \frac{\partial}{\partial x}$. The transition functions in $U_0 \cap U_1$ are given by the following formula:

$$\xi_1 \xi_2 \frac{\partial}{\partial x} = -y^{2-k_1-k_2} \eta_1 \eta_2 \frac{\partial}{\partial y}.$$

Therefore, a basis of $H^1(\mathbb{CP}^1, \mathcal{T}_2)$ is

$$x^{-n}\xi_1\xi_2\frac{\partial}{\partial x}, \quad n = 1, \dots, k_1 + k_2 - 3.$$

Let (ξ_i) be a local basis of \mathbf{E} over U_0 and A be an automorphism of \mathbf{E} . As in the case $m = 3$, we have that $a_{ij}(x)$ is a polynomial in x of degree $\leq k_j - k_i$, if $k_j - k_i \geq 0$ and is 0, if $k_j - k_i < 0$. We need the following formulas:

$$A(x^{-n}\xi_1\xi_2\frac{\partial}{\partial x})A^{-1} = (\det A)x^{-n}\xi_1\xi_2\frac{\partial}{\partial x}.$$

Denote

$$v_n = x^{-n}\xi_1\xi_2\frac{\partial}{\partial x}, \quad n = 1, \dots, k_1 + k_2 - 3.$$

We see that the action Int is equivalent to the action of \mathbb{C}^* on $\mathbb{C}^{k_1+k_2-3}$, therefore, the quotient space is $\mathbb{CP}^{k_1+k_2-4} \cup \{\text{pt}\}$ for $k_1 + k_2 \geq 4$ and $\{\text{pt}\}$ for $k_1 + k_2 < 4$. We have proven the following theorem:

Theorem 5.1 *Assume that $k_1 + k_2 \geq 4$. Complex-analytic supermanifolds with underlying space \mathbb{CP}^1 and retract (k_1, k_2) are in one-to-one correspondence with points of*

$$\mathbb{CP}^{k_1+k_2-4} \cup \{\text{pt}\}.$$

In the case $k_1 + k_2 < 4$ all supermanifolds with underlying space \mathbb{CP}^1 and retract (k_1, k_2) are split and isomorphic to their retract (k_1, k_2) .

Acknowledgment

The author is grateful to A. L. Onishchik for useful discussions.

References

- [B] *Berezin F.A.* Introduction to superanalysis. Edited and with a foreword by A. A. Kirillov. With an appendix by V. I. Ogievetsky. Mathematical Physics and Applied Mathematics, 9. D. Reidel Publishing Co., Dordrecht, 1987.
- [BL] *Berezin F.A., Leites D.A.* Supermanifolds. Soviet Math. Dokl. 16, 1975, 1218-1222.
- [BO] *Bunegin V.A. and Onishchik A.L.* Homogeneous supermanifolds associated with the complex projective line. Algebraic geometry, 1. J. Math. Sci. 82 (1996), no. 4, 3503-3527.

[DW] *Donagi R. and Witten E.* Supermoduli space is not projected. arXiv:1304.7798, 2013.

[Gr] *Green P.* On holomorphic graded manifolds. Proc. Amer. Math. Soc. 85 (1982), no. 4, 587-590.

[L] *Leites D.A.* Introduction to the theory of supermanifolds. Russian Math. Surveys 35 (1980), 1-64.

[V] *Vishnyakova E. G.* Even-homogeneous supermanifolds on the complex projective line. Differential Geometry and its Applications 31 (2013) 698-706.

Elizaveta Vishnyakova
University of Luxembourg
E-mail address: VishnyakovaE@googlemail.com