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1. Introduction

An important part of the classical theory of real or complex manifolds
is the theory of (smooth, real analytic or complex analytic) vector bundles.
With any vector bundle over a manifold (M,F) the sheaf of its (smooth, real
analytic or complex analytic) sections is associated which is a locally free
sheaf of F -modules, and in this way all the locally free sheaves of F -modules
over (M,F) can be obtained. In the present paper, locally free sheaves of
O-modules on a complex analytic supermanifold (M,O) (or, equivalently,
sheaves of sections of vector bundles over (M,O)) are studied.

It is well-known that any smooth supermanifold (M,O) is split, i.e., O '∧
F G, where G is the sheaf of sections of a certain vector bundle over M . In

the complex analytic case this statement is false, see [7]. However, we can
assign a certain split supermanifold (M, grO) (the retract of (M,O)) to any
complex analytic supermanifold (M,O). Given a locally free sheaf E of O-
modules on a complex analytic supermanifold (M,O), we construct a locally
free sheaf gr E of grO-modules on the retract (M, grO), which is called the
retract of E . It can be easily shown that gr E ' grO⊗Ered, where Ered is the
pullback of E with respect to the natural embedding of the manifold (M,F)
into (M,O). In Section 2 we obtained a classification of locally free sheaves
E of O-modules which have a given retract gr E in terms of non-abelian 1-
cohomology, see Theorem 2. In the special case O ' grO our classification
result can be simplified, see Theorem 3.

In Section 3 we study locally free sheaves of modules over projective su-
perspaces. In the case of complex projective spaces, the problem of the (in-
decomposable) bundle classification is far from being solved, see [11]. There
are two cases, however, in which all bundles are known to be direct sums of
line bundles — over CP1 by the classical Birkhoff – Grothendieck Theorem
and over CP∞ by the Barth – Van de Ven – Tyurin theorem. We study
similar questions in the super-context. In the case of CP1|m, m > 0, we show
that the Birkhoff – Grothendieck Theorem does not hold true. (The fact
that this theorem is false for some CP1|m was noticed in [10].) Furthermore,

1This work was partially supported by MPI Bonn, SFB TR |12, DFG 1388 and by the
Russian Foundation for Basic Research (grant no. 11-01-00465a).
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we obtain a result similar to the Barth – Van de Ven – Tyurin Theorem for
projective superspaces.

Section 4 is devoted to the study of the tangent sheaf T of a split super-
manifold (M,

∧G). The main result here is the equivalence of the triviality
of the 1-cohomology class corresponding to T and the existence of a holo-
morphic connection of the bundle corresponding to the locally free sheaf of
F -modules G.

In Subsection 5 a spectral sequence which connects the cohomology with
values in a locally free sheaf of O-modules E with the cohomology with val-
ues in its retract gr E is constructed. This spectral sequence permits us to
compute the cohomology group H∗(M, E) using the cohomology class corre-
sponding to E , given by Theorem 3, and the cohomology group H∗(M, gr E).
Note that gr E is a sheaf of sections of a certain vector bundle over M . Hence
to compute H∗(M, gr E) we may use the well elaborated tools of complex an-
alytic geometry. We describe the first two terms of the spectral sequence and
the first non zero differential.

A classification of locally free sheaves of O-modules over a smooth super-
manifold (M,O) was obtained in [17], Section 4.3. It was shown that any
locally free sheaf of O-modules E is isomorphic to gr E . The similar result for
fibre superbundles was proved in [20]. In [5] the split holomorphic case was
studied. In particular it was shown there that there exists a holomorphic
locally free sheaf of O-modules over a holomorphic supermanifold (M,O),
which is not isomorphic to its retract gr E . There a classification up to iso-
morphism of locally free sheaves of O-modules over a (holomorphic) split
supermanifold (M,O), O ' ∧G, is obtained in terms of the cohomology set
H1(M, GL(n,

∧G)). In the present paper we suggest a different approach
to the classification of locally free sheaves of O-modules over a split super-
manifold (Theorem 3) and more generally over a non-split supermanifold
(Theorem 2). Let us explain the difference in more detail. Clearly one has
a split homomorphism T : GL(n,

∧G) → GL(n,C) by taking the degree
zero part of GL(n,

∧G). It induces the map H1(T ) : H1(M, GL(n,
∧G)) →

H1(M, GL(n,C)). Denote by aE the element of H1(M, GL(n,
∧G)), which

corresponds to a locally free sheaf ofO-modules E . Then, in our notation, Ered

corresponds to H1(T )(aE). In our paper we classify all locally free sheaves E
such that Ered is fixed. Therefore, instead of computing H1(M, GL(n,

∧G)),
we suggest to use results concerning classification of holomorphic bundles over
a manifold, obtained in classical geometry, and consider locally free sheaves
with given retract on a split supermanifold. The idea to classify non-split
objects, more precisely, supermanifolds, using retracts first appeared in [7].

We would like also to mention that, as in the classical case, the line
superbundles can be described using the exp-map, see e.g. [2], Chapter VI,
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Section 2. The Picard groups of generic super-grassmannians were computed
in [16].

Notations.

(M,O) a complex analytic supermanifold
(M, grO) the retract of (M,O)
T = DerO the tangent sheaf of (M,O)
AutO the sheaf of automorphisms of the structure sheaf O

Aut0 grO the sheaf of automorphisms of grO preserving
the Z-grading of grO

gr E the retract of a locally free sheaf of O-modules E
AutRE the sheaf of automorphisms of a sheaf of R-modules E
AutR0 gr E the sheaf of automorphisms of a Z-graded sheaf of

R-modules gr E preserving the Z-grading of gr E
QAutE the sheaf of quasi-automorphisms of a locally free sheaf

of O-modules E
QAut0 gr E the sheaf of quasi-automorphisms of a Z-graded locally

free sheaf gr E preserving the Z-grading of gr E
AutF̄0 S the subsheaf of AutFS consisting of even automorphisms

of a Z2-graded sheaf S
EndOE the sheaf of endomorphisms of a sheaf of O-modules E

Acknowledgment. The idea to study locally free sheaves of modules over
complex supermanifolds was inspired by communications of the second au-
thor with I.B. Penkov during the Summer School ”Structures in Lie Repre-
sentation Theory”, Bremen 2009, Germany. The authors are also grateful to
V. Serganova for useful discussions.

2. Main definitions and classification theorems

2.1. Main definitions and classification of complex supermanifolds with a
given retract

We consider here complex analytic supermanifolds in the sense of Berezin
and Leites (see [4, 9]). Thus, a supermanifold (M,O) of dimension n|m
is a Z2-graded ringed space which is locally isomorphic to a superdomain
in Cn|m. The underlying complex manifold (M,F) is called the reduction
of (M,O). Sometimes we will denote it by M . A morphism (M,OM) →
(N,ON) between two supermanifolds with reductions (M,FM) and (N,FN)
is a morphism between Z2-graded ringed spaces, i.e., a pair F = (Fred, F

∗),
where Fred : M → N is a continuous mapping and F ∗ : ON → (Fred)∗OM is
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a homomorphism of sheaves of Z2-graded ringed spaces. A morphism F is
called an isomorphism if F is invertible.

We consider Z2-graded sheaves of O-modules S = S0̄ ⊕ S1̄ on (M,O).
Denote by Π(S) the same sheaf of O-modules S supplied with the following
Z2-grading:

Π(S)0̄ = S1̄, Π(S)1̄ = S0̄.

A Z2-graded sheaf of O-modules on (M,O) is called free (locally free) of
rank p|q, p, q ≥ 0, if it is isomorphic (respectively, locally isomorphic) to the
Z2-graded sheaf of O-modules Op ⊕ Π(O)q. For example, the tangent sheaf
T = DerO of a supermanifold (M,O) of dimension n|m is a locally free sheaf
of O-modules of rank n|m.

The simplest class of supermanifolds is constituted by the so-called split
supermanifolds. We recall that a supermanifold (M,O) is called split if
O =

∧
F G, where G is a locally free sheaf of F -modules on M . With any

supermanifold (M,O) one can associate a split supermanifold (M, grO) of
the same dimension which is called the retract of (M,O). To construct it,
let us consider the Z2-graded sheaf of ideals J = J0̄ ⊕J1̄ ⊂ O generated by
O1̄. The structure sheaf of the retract is defined by

grO =
⊕
p≥0

grOp, where grOp = J p/J p+1, J 0 := O.

It can be easily shown that F ' O/J , grO1 is a locally free sheaf of F -
modules on M and grOp =

∧p
F grO1. We will use the following two locally

split exact sequences:

0 → J0̄ → O0̄ → F → 0;
0 → (J 2)1̄ → O1̄ → (grO)1 → 0.

(1)

Note that a supermanifold is split iff the sequences (1) are globally split.
Let (M,O) be a split supermanifold. Then any Z2-graded locally free

sheaf S = S0̄ ⊕ S1̄ of F -modules on M gives rise to a Z2-graded locally
free sheaf of O-modules E on (M,O). It is defined in the following way:
E := O ⊗F S. Its Z2-grading is given by

E0̄ = O0̄ ⊗F S0̄ ⊕O1̄ ⊗F S1̄,
E1̄ = O0̄ ⊗F S1̄ ⊕O0̄ ⊗F S1̄.

(2)

Let now E = E0̄ ⊕ E1̄ be a locally free sheaf of O-modules of rank p|q
on an arbitrary supermanifold (M,O). We are going to construct a locally
free sheaf of the same rank on the retract of (M,O). First, we note that
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S := E/J E is a locally free sheaf of F -modules on M . Moreover, S admits
the Z2-grading

S = S0̄ ⊕ S1̄

by two locally free sheaves of F -modules

S0̄ := E0̄/(J E) ∩ E0̄, S1̄ := E1̄/(J E) ∩ E1̄

of ranks p and q respectively. We have the following two locally split exact
sequences:

0 → JE ∩ E0̄ → E0̄
α→ S0̄ → 0;

0 → JE ∩ E1̄ → E1̄
β→ S1̄ → 0,

(3)

where α and β are the natural projection maps. The sheaf E possesses the
filtration:

E = E(0) ⊃ E(1) ⊃ E(2) ⊃ . . . , (4)

where
E(p) = J pE , p ≥ 1.

Using this filtration, we can construct the following locally free sheaf of grO-
modules on the retract (M, grO):

gr E =
⊕

p gr Ep, where

gr Ep = E(p)/E(p+1) ' grOp ⊗F S.

From grO =
∧

grO1 and grOp =
∧p grO1 it follows that

gr E '
∧

grO1 ⊗F S.

The sheaf gr E we will call the retract of E . By definition, the sheaf gr E is
Z-graded. It possesses also the Z2-grading given by (2).

Our aim now is to classify locally free sheaves of O-modules on super-
manifolds (M,O) assuming that (M, grO) is fixed. First we formulate the
well-known theorem of Green (see [4]) which classifies complex supermani-
folds (M,O) with a given retract up to isomorphism, inducing the identical
isomorphism of reductions. The main tool used in both classification theo-
rems is the 1-cohomology set H1(M,Q), where Q is a sheaf of non-abelian
groups on M . We denote by ε the unit element of H1(M,Q) which corre-
sponds to the unit 1-cocycle. (For more information about the non-abelian
cohomology see [14].)

In what follows, we denote by AutO the sheaf of automorphisms of the
sheaf of superalgebras O and by AutRE the sheaf of automorphisms of a
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sheaf of R-modules E on M , where R is a sheaf of (super)algebras on M .
The sheaf AutO possesses the filtration

AutO = Aut(0)O ⊃ Aut(2)O ⊃ . . . , (5)

where
Aut(2p)O = {a ∈ AutO | a(u) ≡ u modJ 2p}.

Furthermore, the group H0(M,Aut0 grO), where Aut0 grO is the sheaf of
automorphisms preserving the Z-grading of grO, acts on the sheaf Aut grO
by Int : (a, δ) 7→ a ◦ δ ◦ a−1, where δ ∈ Aut grO and a ∈ H0(M,Aut0 grO).
Clearly, the group H0(M,Aut0 grO) leaves invariant the subsheaves of groups
Aut(2p) grO. Hence this group acts on the sets H1(M,Aut(2p) grO), and the
unit element ε is fixed under this action.

Denote by [(M,O)] the class of supermanifolds which are isomorphic to
(M,O). (Here we consider complex supermanifolds up to isomorphisms in-
ducing the identical isomorphism of reductions.)

Theorem 1. [Green] Let (M,Ogr) be a split complex supermanifold. Then

{[(M,O)] | grO = Ogr} 1:1←→ H1(M,Aut(2) grO)/H0(M,Aut0 grO),

where (M,Ogr) corresponds to ε.

2.2. Classification theorems for locally free sheaves with a given retract
Let (M,O) and (M,O′) be two supermanifolds, E1 and E2 be two lo-

cally free sheaves of O-modules and O′-modules on M respectively. Suppose
that Ψ : O → O′ is a homomorphism of sheaves of superalgebras. A ho-
momorphism of Z2-graded sheaves of vector spaces Φ : E1 → E2 is called a
Ψ-morphism if

Φ(fv) = Ψ(f)Φ(v), f ∈ O, v ∈ E1.

In this case we write Φ = ΦΨ. A Ψ-morphism Φ : E → E is called a Ψ-
isomorphism if Φ is invertible. A Ψ-isomorphism Φ : E → E we also will
call a Ψ-automorphism of E . A homomorphism (isomorphism) of Z2-graded
sheaves of vector spaces Φ : E1 → E2 will be called a quasi-morphism (quasi-
isomorphism) if it is a Ψ-morphism (Ψ-isomorphism) for a certain Ψ. The
sheaves E1 and E2 will be called quasi-isomorphic if there exists a quasi-
isomorphism Φ : E1 → E2. A quasi-isomorphism E → E will be called a
quasi-automorphism of E . We will study the sheaf QAutE , where

QAutE(U) = {Φ | Φ is a quasi-automorphism of E|U} (6)
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for each open subset U ⊂ M . One verifies easily that ΦΨ ◦ ΘΥ, where
ΦΨ, ΘΥ ∈ QAutE , is a Ψ ◦Υ-morphism. It follows that QAutE is a sheaf of
groups. It possesses the double filtration by the subsheaves

QAut(p)(q)E := {ΦΨ ∈ QAutE | ΦΨ(v) ≡ v mod E(p), Ψ(f) ≡ f modJ q

for v ∈ E , f ∈ O}, p, q ≥ 0.

We also define the following subsheaves:

QAut0(gr E) := {ΦΨ | ΦΨ ∈ QAut(gr E),

ΦΨ preserves the Z-grading of gr E}. (7)

AutF̄0 S := {Φ | Φ ∈ AutFS, Φ preserves the Z2-grading ofS}, (8)

where S is a Z2-graded sheaf of F -modules.

Lemma 1. We have an isomorphism of sheaves of groups

QAut0(gr E) ' AutF(grO1)×AutF̄0 Ered.

Proof. Let us define the mapping

Θ : AutF(grO1)×AutF̄0 Ered → QAut0(gr E)

by
(ψ, Φ) 7→ Φ∧ψ, ψ ∈ AutF(grO1), Φ ∈ AutF̄0 Ered,

where
Φ∧ψ(hv) := ∧ψ(h)Φ(v)

for h ∈ grO, v ∈ Ered and ∧ψ is the automorphism of the sheaf grO induced
by ψ. This is a homomorphism of sheaves of groups. In fact, suppose that
another pair (ψ′, Φ′), where ψ′ ∈ AutF(grO1), Φ′ ∈ AutF̄0 Ered, is given. Then
we have

(Φ∧ψ ◦ Φ′
∧ψ′)(hv) = Φ∧ψ(∧ψ′(h)Φ′

∧ψ′(v)) = ∧ψ(∧ψ′(h))Φ∧ψ(Φ′
∧ψ′(v))

= (Φ ◦ Φ′)∧ψ◦∧ψ′(hv)

for h ∈ grO, v ∈ Ered.
Let us prove that Ker Θ = (id, id). Suppose that Θ(ψ, Φ) = id. Then

Φ∧ψ(hv) = ∧ψ(h)Φ(v) = hv for all h ∈ grO, v ∈ Ered. Putting h = 1, we
see that Φ(v) = v, i.e., Φ = id. Since Ered is locally free, this implies that
∧ψ(h) = h, therefore, ψ = id. Thus, the homomorphism Θ is injective.

Let us now prove that it is surjective. Let ΦΨ ∈ QAut0(gr E) be given.
Let us show that ΦΨ ∈ Im Θ. Since ΦΨ|Ered : Ered → Ered and ΦΨ preserves
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the Z2-grading of gr E , we have Φ := ΦΨ|Ered ∈ AutF̄0 Ered. Furthermore, if
h ∈ grOp and v ∈ Ered, then

ΦΨ(hv) = Ψ(h)Φ(v) ∈ gr Ep.

It follows that Ψ(h) ∈ grOp, and hence Ψ preserves the Z-grading of grO.
We have ψ = Ψ|grO1 ∈ AutF(grO1) and ∧ψ = Ψ. The proof is complete.¤

We will use the above notation, fixing a split complex supermanifold
(M,Ogr) and a Z2-graded locally free sheaf of F -modules S on M . Our aim
is to classify locally free sheaves E of O-modules on complex supermanifolds
(M,O) with retract (M,Ogr), whose retract gr E coincides with Egr = Ogr⊗F
S.

The group H0(M,QAut0Egr) acts on the sheaf QAutEgr by the automor-
phisms δ 7→ a ◦ δ ◦ a−1, where a ∈ H0(M,QAut0Egr) and δ ∈ QAutEgr. It
is easy to see that this action leaves invariant the subsheaves QAut(p)(q)Egr

and hence induces an action of H0(M,QAut0Egr) on the cohomology set
H1(M,QAut(p)(q)Egr).

If φ : M → N is a holomorphic map of manifolds and p : E → N is a
vector bundle, we may define the pullback bundle φ∗(E) on M . The sheaf
corresponding to φ∗(E) is FM ⊗φ∗(FN ) φ∗(E), where E is the sheaf of sections
corresponding to E, FM and FN are the sheaves of holomorphic functions on
M and N respectively. Let π : (M,OM) → (N,ON) be a morphism of two
supermanifolds and E be a locally free sheaf of ON -modules on N of rank
p|q. Similarly, we can define the sheaf OM ⊗π∗red(ON ) π∗red(E). This sheaf is a
locally free sheaf of OM -modules on M of rank p|q, since

OM ⊗π∗red(ON ) π∗red(ON) ' OM .

Sometimes we will denote the sheaf OM ⊗π∗red(ON ) π∗red(E) by π̃(E). Note that
formally we do not use π∗ in the definition of π̃(E). But we consider here
the sheaf OM as π∗red(ON)-module and the module structure is defined by
(f, g) 7→ π∗(f)g, where f ∈ π∗red(ON), g ∈ OM .

Let us consider the special case (M,OM) = (N,ON), π = (id, π∗) and
π∗ ∈ H0(M,AutOM). We have

π̃(E) = OM ⊗id∗(ON ) id∗(E) = OM ⊗ON
E .

The sheaves π̃(E) and E are (π∗)−1-isomorphic, the (π∗)−1-isomorphism is
given by f ⊗ s 7→ (π∗)−1(f)s, where f ∈ OM and s ∈ E . Let ΦΨ∗ : E → E ′
be an Ψ∗-isomorphism of two locally free sheaves of OM -modules on M . We
put Ψ := (id, Ψ∗). We see that Ψ̃(E) and E ′ are id-isomorphic.
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Furthermore, let us consider the sheaf AutOE of automorphisms of the
sheaf of O-modules E . It possesses the filtration:

AutOE = AutO(0)E ⊃ AutO(1)E ⊃ . . . ,

where
AutO(p)E := {a ∈ AutOE | a(v) ≡ v mod E(p)}, p ≥ 0.

The group H0(M,AutO0 gr E) ' H0(M,AutF̄0 Ered) acts on the sheafAutO gr E
by δ 7→ a ◦ δ ◦ a−1, where a ∈ H0(M,AutO0 gr E) and δ ∈ AutO gr E . It
is easy to see that this action leaves the subsheaves AutO(p) gr E invariant

and hence induces an action of H0(M,AutO0 gr E) on the cohomology set
H1(M,AutO(p) gr E).

We have the exact sequence of sheaves of groups

id → AutOE → QAutE → AutO → id,

where the first homomorphism is the natural embedding (an automorphism
belonging to AutOE is regarded as an id-morphism) and the second one, say
F : QAutE → AutO, is defined by ΦΨ 7→ Ψ. Note that F (QAut(p)(q)E) ⊂
Aut(q)O and in the case E = gr E the restriction F |QAut0 gr E coincides with
the natural projection

QAut0(Egr) ' Aut0 grO ×AutF̄0 (Ered) → Aut0 grO

(see Lemma 1).
The homomorphism F commutes with the actions of H0(M,QAut0 gr E)

and H0(M,Aut0 grO) on QAut(p)(q)(gr E) and Aut(q)(grO), respectively.
More precisely,

F (a ◦ δ ◦ a−1) = F (a) ◦ F (δ) ◦ F (a−1),

where a ∈ H0(M,QAut0 gr E) and δ ∈ QAut gr E . It follows that F induces
a map of sets

F̃ : H1(M,QAut(1)(2) gr E)/H0(M,QAut0 gr E) →
H1(M,Aut(2) grO)/H0(M,Aut0 grO).

Let ΦΨ : E1 → E2 be a Ψ-morphism of locally free sheaves of O-modules.
Since Ψ(J p) ⊂ J p, we see that ΦΨ((E1)(p)) ⊂ (E2)(p), p ≥ 0. We denote by
gr(ΦΨ) : gr E1 → gr E2 the induced morphism. Let E be a locally free sheaf
of O-modules on M . Denote

[E ] = {E ′ | E ′ is quasi-isomorphic to E}.
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Theorem 2. Let (M,Ogr) be a split supermanifold, S = S0̄ ⊕ S1̄ be a Z2-
graded locally free sheaf of F-modules on M and Egr = Ogr ⊗F S.

1)We have a bijection

{[E ] | grO = Ogr, gr E = Egr} 1:1←→ H1(M,QAut(1)(2)Egr)/H
0(M,QAut0Egr).

The unit ε ∈ H1(M,QAut(1)(2)Egr) is fixed with respect to the action of the
group H0(M,QAut0Egr).

2) Let a ∈ H1(M,Aut(2)Ogr)/H
0(M,Aut0Ogr). Then there is a bijection

between elements of the set F̃−1(a) and classes of isomorphic locally free
sheaves on supermanifolds which are contained in [(M,O)].

Proof. Let E be a locally free sheaf of O-modules on (M,O) and U = {Ui}
be an open covering of M such that (1) and (3) are split over Ui and E|Ui

are free. In this case (gr E)|Ui
are free sheaves of (grO)-modules, too. We fix

local bases (êi
j) and (f̂ i

k) of the sheaves of F -modules (Ered)0̄|Ui
and (Ered)1̄|Ui

,
Ui ∈ U , respectively.

We are going to define an isomorphism δi : E|Ui
→ (gr E)|Ui

. Let ei
j ∈ E0̄

such that α(ei
j) = êi

j and f i
k ∈ E1̄ such that β(f i

k) = f̂ i
k. Then (ei

j, f
i
k)

is a local basis of E|Ui
. A splitting of (1) determines local isomorphisms

σi : O|Ui
→ grO|Ui

. We put

δi(
∑

hje
i
j +

∑
gkf

i
k) =

∑
σi(hj)ê

i
j +

∑
σi(gk)f̂

i
k, hj, gk ∈ O.

Obviously, δi is an isomorphism. We put γij := σi◦σ−1
j and (gij)γij

:= δi◦δ−1
j .

It is clear that (γij) ∈ Z1(U ,Aut(2)(grO)) and

((gij)γij
) ∈ Z1(U ,QAut(1)(2)(gr E)).

Conversely, if ((gij)γij
) ∈ Z1(U ,QAut(1)(2)(gr E)), we can construct a lo-

cally free sheaf of O-modules on (M,O(γij)), where (M,O(γij)) is the su-
permanifold corresponding to the cocycle (γij) ∈ Z1(U ,Aut(2) grO) by the
Green Theorem. Indeed, we have to identify gr E|Ui

with gr E|Uj
over Ui ∩Uj

using (gij)γij
.

The standard calculation shows that if two cocycles ((gij)γij
) and ((g′ij)γ′ij)

are cohomologous, then the corresponding locally free sheaves of O-modules
are quasi-isomorphic and this quasi-isomorphism denoted by ΦΨ has the
property gr(ΦΨ) = idid. Conversely, if ΦΨ : E → E ′ is a quasi-isomorphism
of locally free sheaves of O-modules such that gr(ΦΨ) = idid, then the corre-
sponding cocycles are cohomologous.

Let E and E ′ be two locally free sheaves of O-modules on (M,O) such
that gr E = gr E ′ = Egr. Assume that ΦΨ : E → E ′ is an isomorphism. Then
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gr(ΦΨ) ∈ H0(M,QAut0 gr E). Suppose that E corresponds to (gij)γij
=

δi ◦ δ−1
j , where γij = σi ◦ σ−1

j , and E ′ corresponds to (g′ij)γ′ij = δ′i ◦ (δ′j)
−1,

where γ′ij = σ′i ◦ (σ′j)
−1. There exist isomorphisms (Φ̃i)eΨi

: gr E|Ui
→ gr E|Ui

such that the following diagram is commutative:

gr E|Ui

(eΦi)eΨi−−−−→ gr E|Ui

δi

x
xδ′i

E|Ui

ΦΨ−−−→ E|Ui

.

Since gr δi = gr δ′i, it follows that gr((Φ̃i)eΨi
) = gr(ΦΨ) and hence

(Θi)Ωi
:= gr(ΦΨ)−1 ◦ (Φ̃i)eΨi

∈ QAut(1)(2) gr E .

Further, we have

(g′ij)γ′ij = δ′i ◦ (δ′j)
−1 = (Φ̃i)eΨi

◦ δi ◦ (ΦΨ)−1 ◦ ΦΨ ◦ δ−1
j ◦ ((Φ̃j)eΨj

)−1 =

(Φ̃i)eΨi
◦ (gij)γij

◦ ((Φ̃j)eΨj
)−1 = gr(ΦΨ) ◦ (Θi)Ωi

◦ (gij)γij
◦ (Θ−1

j )Ω−1
j
◦ gr(ΦΨ)−1.

Hence, the cohomology classes corresponding to (gij)γij
and (g′ij)γ′ij belong to

the same orbit of the group H0(M,QAut0Egr).
Conversely, assume that b ∈ H0(M,QAut0Egr) and (g′ij)γ′ij = b ◦ (gij)γij

◦
b−1. Then δ′i ◦ (δ′j)

−1 = b ◦ δi ◦ δ−1
j ◦ b−1 and we can define the isomorphism

Γ : E → E ′ by Γ|Ui
:= (δ′i)

−1 ◦ b◦ δi, where E and E ′ correspond to (gij)γij
and

(g′ij)γ′ij respectively.

Let a ∈ H1(M,Aut(2)Ogr)/H
0(M,Aut0Ogr). By Theorem 1 we may as-

sign to each a the class of isomorphic supermanifolds [(M,O)]. From above

it follows that there is a bijection between elements of the set F̃−1(a) and
classes of isomorphic locally free sheaves on supermanifolds which are con-
tained in [(M,O)].¤
2.3. A classification theorem for locally free sheaves on a split supermanifold

Denote by [E ]id the class of id-isomorphic (i.e., isomorphic) to E locally
free sheaves of O-modules on a split complex supermanifold (M,O).

Theorem 3. Let (M,O) be a split supermanifold, S = S0̄⊕S1̄ be a Z2-graded
locally free sheaf of F-modules on M and Egr = O ⊗F S. Then

{[E ]id | gr E = Egr} 1:1←→ H1(M,AutO(1)Egr)/H
0(M,AutO0 Egr).

Moreover, the unit ε ∈ H1(M,AutO(1)Egr) is a fixed point with respect to the

action of the group H0(M,AutO0 Egr).
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Proof. Let us use the notations from the proof of Theorem 2. Since (M,O)
is split, we may assume that σi = σ|Ui

, where σ is determined by a global
splitting of (1). It follows that the cocycle (gij) lies in Z1(U ,AutO(1)Egr). The
rest of the proof is similar to that of Theorem 2.¤

Note that the results of this subsection also hold for smooth supermani-
folds. Recall that any smooth supermanifold is split by the Batchelor Theo-
rem, see [3].

3. Locally free sheaves of modules on projective superspaces

In this subsection we will discuss two remarkable theorems about locally
free sheaves on projective spaces, proved by Barth – Van de Ven – Tyurin
and Birkhoff – Grothendieck, in the super-context.

3.1. Exact sequences corresponding to AutOE
Let (M,O) be a split complex supermanifold and E be a locally free sheaf

of O-modules on M . Denote by EndOE the sheaf of O-endomorphisms of E .
This sheaf possesses the filtration

EndOE = EndO(0)E ⊃ EndO(1)E ⊃ . . . ,

EndO(p)E := {A ∈ EndOE | A(E(q)) ⊂ E(q+p) for all q ≥ 0}.
The map

exp : EndO(p)E → AutO(p)E ,

given by the usual exp-series is a bijection of sheaves of sets for all p ≥ 1
due to the fact that log = (exp)−1 is well defined. In general it is not a
homomorphism of sheaves of groups. We may define the map

λp : AutO(p)E → EndO(p)E/EndO(p+1)E , p ≥ 1,

given by
a 7→ A + EndO(p+1), where a = exp(A).

Clearly, it is a surjective homomorphism of sheaves of groups, and we have
Ker λp = AutO(p+1)E . We will also consider the following subsheaves of

EndO gr E
EndOp gr E := {A ∈ EndO gr E | A(gr Eq) ⊂ gr Ep+q}, p ≥ 0.

Then
EndO(p) gr E =

⊕
q≥p

EndOq gr E .

12



It follows that
EndO(p) gr E/EndO(p+1) gr E ' EndOp gr E .

Hence, we get the exact sequence

0 → AutO(p+1) gr E → AutO(p) gr E λp→ EndOp gr E → 0, p ≥ 1. (9)

The following lemma gives a description of the sheaf EndOp gr E , p ≥ 1, in
terms of the sheaves O and Ered.

Lemma 2. We have

EndOp gr E '
{

grOp ⊗ ((Ered)0̄ ⊗ (Ered)
∗̄
1 ⊕ (Ered)1̄ ⊗ (Ered)

∗̄
0), p is odd;

grOp ⊗ ((Ered)0̄ ⊗ (Ered)
∗̄
0 ⊕ (Ered)1̄ ⊗ (Ered)

∗̄
1), p is even.

Proof. Firstly, note that an endomorphism A ∈ EndOp gr E is determined
by its restriction A|gr E0 . Secondly, A|gr E0 : gr E0 → gr Ep is an F -linear
map preserving the parity (2). The result follows from the relation gr Eq '
grOq ⊗ Ered. ¤

Now we can recover the following well-known result, see [10, 17]:

Proposition 1. Let (M,O) be a smooth supermanifold and E be a locally
free sheaf of O-modules on M . Then E ' O ⊗F Ered.

Proof. Indeed, (M,O) is split by the Batchelor Theorem, see [3]. In this case

H1(M, EndOp gr E) = {0}

by Lemma 2. Hence
H1(M,AutO(1) gr E) = {ε},

by (9) and our assertion follows from Theorem 3.¤

3.2. The Barth – Van de Ven – Tyurin Theorem for supermanifolds

Let us briefly recall the classical Barth – Van de Ven – Tyurin Theorem.
Consider the sequence of complex projective spaces

CP1 ϕ1−→ CP2 ϕ2−→ . . . ,

where ϕi are standard embeddings. (The inductive limit of this sequence
is also called the complex projective ind-space CP∞ (see [6, 21] and more
detailed [8].) We consider collections E = {EN}N≥1 of holomorphic vector
bundles EN of finite rank over CPN , N ≥ 1, such that ϕ̃N(EN+1) = EN .
(Here we use the notation introduced in Subsection 2.2.) Such collections are
also called vector bundles over CP∞. Note that because of the compatibility
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conditions ϕ̃N(EN+1) = EN all vector bundles EN have the same finite rank.
Hence the notion of rank is well-defined for a collection E. If E = {EN}N≥1

and E ′ = {E ′
N}N≥1 are two such collections, then the collection E ⊕ E ′ :=

{EN⊕E ′
N}N≥1 is called the direct sum of E and E ′. A morphism of collections

f : E → E ′ is a set {fN : EN → E ′
N}N≥1 of morphisms of vector bundles

such that ϕ̃N ◦ fN+1 = fN ◦ ϕ̃N . A morphism of two collections f : E → E ′

is called an isomorphism if it possesses the inverse morphism.

Theorem 4. [Barth – Van de Ven – Tyurin] Any collection E =
{EN}N≥1 of holomorphic vector bundles EN of finite rank over CPN is iso-
morphic to a direct sum of collections Ei = {Ei

N}N≥1 of vector bundles Ei
N

of rank 1.

For collections of rank 2 this result was proved by W. Barth and A. Van
de Ven in [1], and for collections of arbitrary finite rank by A. Tyurin in [21].

A similar question may be considered in the case of complex superman-
ifolds. Recall that the projective superspace (M,O) = CPn|m of dimension
n|m is a complex supermanifold with the reduction M = CPn and the struc-
ture sheaf O =

∧L(−1)m, where L(−1) is the sheaf of F -modules inverse
to the sheaf L(1), which corresponds to a hyperplane in CPn. The classical
homogeneous coordinates z0, ..., zn on CPn can be supplemented by odd ho-
mogeneous coordinates ζ1, ..., ζm, giving rise to the system of homogeneous
coordinates on CPn|m. (See [13] for details.)

Let us consider the sequence of projective superspaces

CP1|k1
ϕ1−→ CP2|k2

ϕ2−→ . . . ,

where ki ≤ ki+1 and ϕi are standard embeddings, i.e any map ϕi : CPi|ki →
CPi+1|ki+1 is given in homogeneous coordinates (zj, ζr) and (z′s, ζ ′t) on CPi|ki

and CPi+1|ki+1 respectively by

z′s = zs, s = 1, · · · , i, zi+1 = 0;
ζ ′t = ζt, t = 1, · · · , ki, ζ ′t = 0, t = ki + 1, · · · , ki+1.

We study collections E = {En}n≥1 of locally free sheaves En of finite rank
over CPn|kn , n ≥ 1, such that ϕ̃n(En+1) = En. A morphism of two collections
and their direct sum are defined similarly to the classical case. We are going
to prove the following theorem:

Theorem 5. Any collection E = {En}n≥1 of locally free sheaves En of finite
rank over CPn|kn is isomorphic to a direct sum of collections E i = {E i

n}n≥1

of locally free sheaves E i
n of rank 1|0 or 0|1.

Proof. Note that Ered = {(En)red} is the collection of locally free sheaves

such that (̃ϕi)red((Ei+1)red) = (Ei)red and (ϕi)red : CPi → CPi+1 are standard

14



embeddings. By Theorem 4 we have Ered '
⊕

r Sr, where Sr = {Sr
n} is

a collection of locally free sheaves of rank 1 (and of super-rank 1|0 or 0|1).
Hence the collection gr E = {gr En}, where we identify gr En = OCPn⊗(En)red,
is isomorphic to the collection {OCPn ⊗⊕

r Sr
n}.

Our aim is to show that E ' gr E . Using Lemma 2 and the well-known
fact: H1(CPn,L(r)) = {0} for n > 1 and any r ∈ Z, we conclude that
H1(CPn, EndOCPnp (gr En)) = {0} for p ≥ 1 and n > 1. Hence, by the sequence
(9) we get

H1(CPn,AutOCPn(1) (gr En)) = {ε} for n > 1.

It follows by Theorem 3 that the following isomorphisms

fn : En
∼−→ gr En =

∑
r

OCPn ⊗ Sr
n.

exist. Let us show that we can choose the isomorphisms fn in such a way
that they commute with pullbacks of the bundles. Fix an isomorphism fn.
Let us construct an isomorphism

f ′n+1 : En+1
∼−→ OCPn+1 ⊗ (En+1)red

such that ϕ̃n◦f ′n+1 = fn◦ϕ̃n. Denote by In the sheaf of ideals corresponding to

the subsupermanifold determined by the mapping ϕn : CPn|kn → CPn+1|kn+1 .
By definition we have

En = ϕ̃n(En+1) = (ϕn)∗red(En+1/InEn+1),
gr En = ϕ̃n(gr En+1) = (ϕn)∗red(gr En+1/In gr En+1).

Denote by Bn the sheaf of automorphisms of the sheaf of (ϕn)red ∗(OCPn) =
OCPn+1/InOCPn+1-modules gr En+1/In gr En+1 and by (Bn)(1) the following
subsheaf of Bn:

(Bn)(1) := {a ∈ Bn | a(v) = v mod(gr En+1/In gr En+1)(1)},
where (gr En+1/In gr En+1)(1) is the image of (gr En+1)(1) by the natural homo-
morphism gr En+1 → gr En+1/In gr En+1. Note that we have supp((Bn)(1)) =

ϕred(CPn) and ϕ∗red((Bn)(1)) = AutOCPn(1) (gr En).

Further, any automorphism from AutOCPn(1) (gr En+1) preserves In gr En+1.
Hence, we have a homomorphism of sheaves

Fn : AutOCPn(1) (gr En+1) → (Bn)(1),

which is surjective, because we always can find local preimages of elements of
(Bn)(1). Denote by An the kernel of Fn. Let us choose a Stein cover U = {Ui}
of CPn+1 such that

0 → An(Ui) → Aut
OCPn+1

(1) (gr En+1)(Ui) → (Bn)(1)(Ui) → 0.
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is exact for any i. Assume also that U satisfies the conditions mentioned in
the proof of Theorem 2. Denote by

(gn
ij) ∈ Z1(U , (Bn)(1)) and (gn+1

ij ) ∈ Z1(U ,AutOCPn(1) (gr En+1))

the cocycles corresponding to En and En+1 by Theorem 3. Recall that gn
ij =

δn
i ◦ (δn

j )−1, where δn
i : En|Ui

→ gr En|Ui
is the isomorphism from Theorem 2

assuming in addition that σi = id for any i. Similarly, gn+1
ij = δn+1

i ◦(δn+1
j )−1.

Since ϕ̃(En+1) = En, we may assume that ϕ̃n ◦δn+1
i |Ui

= δn
i ◦ ϕ̃n|Ui

. Therefore,
Fn(gn+1

ij ) = gn
ij.

We have shown that (gn
ij) ∼ ε, hence there are αn

i ∈ B(1)(Ui) such that

(αn
i )−1 ◦ gn

ij ◦ αn
j = id. Using the surjectivity of Fn|Ui

, we may choose αn+1
i ∈

F−1
n (αn

i ). Then (hij) ∈ H1(U ,An), where hij = (αn+1
i )−1 ◦ gn+1

ij ◦ αn+1
j . It is

easy to see that

An = exp( (In)0̄ ⊗ ((Ered)0̄ ⊗ (Ered)
∗̄
1 ⊕ (Ered)1̄ ⊗ (Ered)

∗̄
0)⊕

(In)1̄ ⊗ ((Ered)0̄ ⊗ (Ered)
∗̄
0 ⊕ (Ered)1̄ ⊗ (Ered)

∗̄
1).

Therefore, we get, as for AutOCPn(1) (gr En), that H1(CPn+1,An) = {ε}. There-

fore, there are βi ∈ An(Ui) such that hij = βi ◦ β−1
j . Denote

f ′n+1|Ui
:= β−1

i ◦ (αn+1
i )−1 ◦ δn+1

i .

By construction, we have ϕ̃n ◦ f ′n+1 = fn ◦ ϕ̃n. The proof is complete.¤
3.3. About the Birkhoff – Grothendieck Theorem for supermanifolds.

In this subsection we will show that the Birkhoff – Grothendieck Theorem:

Any finite rank vector bundle on the complex projective space CP1 is isomor-
phic to a direct sum of line bundles

does not hold true for the projective superspace CP1|n, where n ≥ 1. Denote
byOn the structure sheaf of CP1|n and by in the standard embedding CP1|1 →
CP1|n, n ≥ 1. Clearly, there is a map jn : CP1|n → CP1|1, n ≥ 1, such that
j∗n : O1 → On is injective and jn ◦ in = id. Let E1 be a locally free sheaf of
O1-modules. Denote

En := On ⊗j∗n(O1) E1.

Then En is also locally free and En is an extension of E1. In other words,
we have proved that any locally free sheaf on CP1|1 admits an extension to
CP1|n. It follows that to prove our assertion it is sufficient to show that there
exists a locally free sheaf of O1-modules of rank ≥ 2, which is not a direct
sum of two locally free sheaves of rank 1|0 or 0|1.

Let us study firstly line bundles on CP1|1. By (9) we get thatAutO1

(1) gr E '
EndO1

1 gr E for any rank and from Lemma 2 it follows that EndO1
1 gr E = {0}

16



if rank gr E = 1|0 or 0|1. Therefore, by Theorem 3 any line bundle E is
isomorphic to gr E .

Further, let (Ered)0̄ = L(0), (Ered)1̄ = L(−1) and Egr = O1 ⊗ ((Ered)0̄ ⊕
(Ered)1̄). Then

H1(CP1, EndO1
1 Egr) ' H1(CP1,L(−2)) ' C.

Using the fact that the unit 1-cohomology class is a fixed point for the action
of H0(CP1,AutO1

0 Egr) on H1(CP1,AutO1

(1)Egr), we see that there is a locally
free sheaf of O1-modules E such that gr E = Egr, but E is not isomorphic to
Egr.

4. The tangent sheaf of a split supermanifold.

Let us recall some well-known facts about the tangent sheaf T = DerO
of a split supermanifold (M,O) ' (M,

∧G). First, the sheaf T is Z-graded
(not only Z2-graded):

T =
⊕
p≥−1

Tp,

where
Tp := {v ∈ T | v(Oq) ⊂ Op+q for all q ≥ 0}, p ≥ −1.

Second, the following sequence

0 →
p+1∧

G ⊗ G∗ δ−→ Tp
γ−→

p∧
G ⊗Θ → 0, p ≥ −1, (10)

where Θ is the tangent sheaf of M , is exact (see [15] or [19], Formula (12)).
The mapping γ is the restriction of a derivation of degree p onto the subsheaf
F ⊂ O of (holomorphic) functions on M , see Subsection 2, and δ identifies
any sheaf homomorphism G → ∧p+1 G with a derivation of degree p that is
zero on F .

Denote by G the (holomorphic) vector bundle corresponding to G. It is
well known that the sequence (10) is split iff G possesses a (holomorphic)
connection, see e.g. [19], Formula (13). More precisely, by a (holomorphic)
connection in a vector bundle G→ M over a complex manifold M we mean
a bilinear map

∇ : Θ× G → G
satisfying the following conditions:

• ∇fXs = f∇Xs,
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• ∇X(fs) = f∇Xs + X(f)s,

where f ∈ F , X ∈ Θ and s ∈ G. If ∇ and ∇′ are connections in G → M
and G′ → M respectively, the tensor product connection ∇⊗∇′ in G⊗G′ is
well defined. Recall that

(∇⊗∇′)X(s⊗ s′) = ∇X(s)⊗ s′ + s⊗∇′
X(s′).

It is easy to see that the tensor product connection ∇⊗· · ·⊗∇ in G⊗· · ·⊗G
(p-times) induces the wedge product connection ∧p∇ in

∧pG, p > 0.
Let ∇ be a connection on G. Then to each X ∈ Θ we may assign a vector

field YX on (M,O) ' (M,
∧G) of degree 0 defined by

YX(f) = X(f), f ∈ F , YX(f) = (∧p∇)X(f), f ∈
p∧
G,

The Leibniz rule for YX follows from the definitions of a connection and of a
wedge product connection. Consider the sequence (10) for p = 0

0 → G ⊗ G∗ δ−→ T0
γ−→ Θ → 0. (11)

We have just shown that the connection ∇ defines a splitting of (11) by
X 7→ YX . The converse statement is also true: if we have a splitting i of
(11), we may define the connection ∇i by

(∇i)X(s) := i(X)(s), s ∈ G.

Note that the curvature tensor of ∇ = ∇i

R(X, Y ) = ∇X ◦ ∇Y −∇Y ◦ ∇X −∇[X,Y ] = ([i(X), i(Y )]− i([X, Y ]))|G
measures the failure of i to be a homomorphism of sheaves of Lie algebras.

Theorem 6. Let (M,OM) ' (M,
∧G) be a (holomorphic) split supermani-

fold and T the tangent sheaf. The following conditions are equivalent:

1. the sheaf T corresponds to the unit 1-cohomology class with values in
AutO(1) gr T by Theorem 3;

2. G possesses a (holomorphic) connection.

Proof. By the discussion above we have only to prove that T corresponds
to the trivial 1-cocycle of H1(M,AutO(1) gr T ) if and only if the sequence (11)

splits. Let θ0 : Θ → T0 be a splitting of (11). Then the sequence (10)
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splits for all p ≥ 0, we may define the splitting θp :
∧p G ⊗ Θ → Tp by

θp(f ⊗ v) = fθ0(v). It follows that

Tp '
p∧
G ⊗Θ⊕

p+1∧
G ⊗ G∗.

Hence,

T '
∧
G ⊗ (G∗ ⊕Θ) '

∧
G ⊗ (Tred) = gr T .

Conversely, since the unit cocycle of H1(M,AutO(1) gr T ) is a fixed point

with respect to the action of H0(M,AutO0 gr T ), there is an isomorphism
Φ : T → gr T such that gr Φ = id (see proof of Theorem 2). It follows that
the following diagram is commutative

T0̄

Φ|T0̄−−−→ (gr T )0̄

π

y
ypr

T0̄/(J T )0̄ T0̄/(J T )0̄

,

where pr is the projection of

gr T =
⊕
p≥0

(J pT )0̄/(J p+1T )0̄ ⊕
⊕
p≥0

(J pT )1̄/(J p+1T )1̄

onto T0̄/(J T )0̄ and π is the natural projection. Further, by the definitions
of the morphisms the following diagram is also commutative

T0̄
π−−−→ T0̄/(J T )0̄

prT0

y
yτ

T0
γ−−−→ Θ

,

where τ is an isomorphism defined by v + (J T )0̄ 7→ prF ◦v|F . Denote by i
the natural embedding T0̄/(J T )0̄ ↪→ (gr T )0̄. We may define a splitting of
(11) by prT0

◦(Φ|T0̄
)−1 ◦ i ◦ τ−1. The proof is complete.¤

5. A spectral sequence

An important problem is to calculate the cohomology group H∗(M, E)
with values in a locally free sheaf of O-modules E on a supermanifold (M,O).
If (M,O) is split, then E is a locally free sheaf of F -modules on M , and the
cohomology group can be calculated in many cases using the well elaborated
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tools of complex analytic geometry. In the non-split case these methods
cannot be applied directly, but we can use the associated split supermanifold
(M, grO) and the sheaf gr E .

In this section we construct a spectral sequence using the filtration (4)
by the procedure suggested by Leray. This spectral sequence converges to
the graded algebra associated to the filtration of H∗(M, E). The main result
of the section is a description of the first non-zero coboundary operator dr,
r ≥ 0.

5.1. Quasi-derivations.
Let (M,O) be an arbitrary supermanifold and E a locally free sheaf

on (M,O). Let us take an even vector field Γ ∈ T0̄(U) on a superdo-
main (U,O|U) ⊂ (M,O). A Z2-graded vector spaces sheaf homomorphism
AΓ : E|U → E|U is called a Γ-derivation if AΓ(fv) = Γ(f)v+fAΓ(v), f ∈ O|U
and v ∈ E|U . A homomorphism of Z2-graded sheaf of vector spaces B : E → E
will be called a quasi-derivation if it is a Γ-derivation for a certain Γ. Denote
by QDerE the sheaf of quasi-derivations. It is a sheaf of Lie algebras with
respect to the commutator [AΓ, BΥ] := AΓ ◦BΥ−BΥ ◦AΓ. The sheaf QDerE
possesses the double filtration by the subsheaves:

QDer(p)(q)E := {AΓ ∈ QDerE | AΓ(E(r)) ⊂ E(r+p), Γ(J s) ⊂ J s+q

for all r, s ∈ Z}.
The map

exp : QDer(1)(2)E → QAut(1)(2)E
given by the usual exp-series is a bijection of sheaves of sets due to the fact
that log = exp−1 is well defined. Let us consider the subsheaf QDerk,k gr E
of QDer(k)(k) gr E defined by

QDerk,k gr E := {AΓ ∈ QDer(k)(k) gr E | AΓ(gr Er) ⊂ gr Er+k,

Γ(grOs) ⊂ grOs+k for all r, s ∈ Z}.
Note that QDerk,k gr E = EndgrO

k gr E if k is odd.
Denote by µk, k ≥ 1, the following sheaf homomorphism:

µk : QAut(k)(2) gr E → QDerk,k gr E ,
µk(aγ) =

⊕
q prq+k ◦AΓ ◦ prq,

(12)

where aγ = exp(AΓ) and prk : gr E → gr Ek is the natural projection. The
sheaf homomorphism µk is surjective, because locally we can always find
preimages. The kernel of this map is QAut(k+1)(2) gr E . Hence, the following
sequence

0 → QAut(k+1)(2) gr E −→ QAut(k)(2) gr E µk−→ QDerk,k gr E → 0
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is exact. Denoting by H(k)(gr E) the image of the natural mapping

H1(M,QAut(k)(2) gr E) → H1(M,QAut(1)(2) gr E),

we get the filtration:

H1(M,QAut(1)(2) gr E) = H(1)(gr E) ⊃ H(2)(gr E) ⊃ . . . .

Take aγ ∈ H(1)(gr E). We define the order of aγ to be the greatest integer k
such that aγ ∈ H(k)(gr E). The order of a locally free sheaf E of O-modules
on a supermanifold (M,OM) is by definition the order of the corresponding
cohomology class.

5.2. The spectral sequence.
Let E be a locally free sheaf on a supermanifold (M,O) of dimension n|m.

Now we will construct a spectral sequence for the cohomology with values
in the sheaf E . We fix an open Stein cover U = (Ui)i∈I of M and consider
the corresponding Čech cochain complex C∗(U, E) =

⊕
p≥0 Cp(U, E). The

filtration (4) for E gives rise to the filtration

C∗(U, E) = C(0) ⊃ . . . ⊃ C(m+1) = 0, where C(p) = C∗(U, E(p)). (13)

Denoting by H∗(M, E)(p) the image of the natural mapping H∗(M, E(p)) →
H∗(M, E), we get the filtration

H∗(M, E) = H∗(M, E)(0) ⊃ . . . ⊃ H∗(M, E)(p) ⊃ . . . . (14)

Denote by gr H∗(M, E) =
⊕

pq grp Hq(M, E) the bigraded group associated
with the filtration (14), here

grp Hq(M, E) := Hq(M, E)(p)/H
q(M, E)(p+1).

By the general procedure, invented by Leray, the filtration (13) gives rise to
a spectral sequence of bigraded groups Er converging to E∞ ' gr H∗(M, E).
(For more information about spectral sequences see for example [22].)

Let us recall main definitions. For any p, r ≥ 0, define the vector spaces

Cp
r = {c ∈ C(p) | dc ∈ C(p+r)}.

The r-th term of the spectral sequence is defined by

Er =
m⊕

p=0

Ep
r , r ≥ 0, where Ep

r = Cp
r /C

p+1
r−1 + dCp−r+1

r−1 .
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Since d(Cp
r ) ⊂ Cp+r

r , d induces a derivation dr of Er of degree r such that d2
r =

0. Then Er+1 is naturally isomorphic to the homology algebra H(Er, dr).
Denoting Zr = Ker dr, we have the natural mapping κr

r+1 : Zr → Er+1.
The superspaces Er are endowed with Z-gradings. Namely, for any q ∈ Z,

set
Cp,q

r = Cp
r ∩ Cp+q(U, E),

Ep,q
r = Cp,q

r /Cp+1,q−1
r−1 + dCp−r+1,q+r−2

r−1 .

Clearly, dr(E
p,q
r ) ⊂ Ep+r,q−r+1

r for any r, p, q. One sees easily that Cp,q
r = 0

for all p and r if q ≤ −(m + 1). Therefore, for a fixed q, we have d(Cp,q
r ) = 0

for all r ≥ q+m+2. This implies that κr
r+1 : Ep,q

r → Ep,q
r+1 is an isomorphism

for all p and r ≥ r0(q) = q+m+2. Setting Ep,q
∞ = Ep,q

r0(q), we get the bigraded
superspace

E∞ =
⊕
p,q

Ep,q
∞ .

Now we mention certain properties of the spectral sequence (Er). Some
of them are well known and are valid in a more general situation.

Proposition 2. The first two terms of the spectral sequence (Er) can be
identified with the following bigraded spaces:

E0 = C∗(U, gr E), E1 = H∗(M, gr E).

Here
Ep,q

0 = Cp+q(U, (gr E)p), Ep,q
1 = Hp+q(M, (gr E)p).

Proof. By Theorem B for Stein manifolds it follows that the sequence

0 → E(p+1)(U) → E(p)(U) → gr Ep(U) → 0

is exact for any Stein open subset U ⊂ M . The rest of the proof follows from
the definitions.¤

By the standard argument we get.

Proposition 3. There is the following identification of bigraded algebras:

E∞ = gr H∗(M, E), where Ep,q
∞ = grp Hp+q(M, E).

If M is compact, then

dim Hk(M, E) =
∑

p+q=k

dim Ep,q
∞ .

Now we prove the main result of this section concerning the first non-
zero coboundary operators among d1, d2, . . .. We may suppose that for each
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i ∈ I there exists an isomorphism of sheaves σi : O|Ui
→ grO|Ui

, inducing
the identity isomorphism grO|Ui

→ grO|Ui
.

By Theorem 2, a locally free sheaf of O-modules E on (M,O) corresponds
to the cohomology class aγ of the 1-cocycle ((aγ)ij) ∈ Z1(U,QAut(1)(2) gr E),
where (aγ)ij = δi ◦ δ−1

j . If the order of aγ is equal to k, then we may choose
δi, i ∈ I, in such a way that ((aγ)ij) ∈ Z1(U,QAut(k)(2) gr E).

We will identify the differential spaces (E0, d0) and (C∗(U, gr E), d) via the
isomorphism of Proposition 2. Clearly, δi : E(p)|Ui

→ gr E(p)|Ui
=

⊕
r≥p gr Er|Ui

is an isomorphism of sheaves for any i ∈ I, p ≥ 0. These local sheaf isomor-
phisms permit us to define an isomorphism of graded cochain groups

ψ : C∗(U, E) → C∗(U, gr E)

such that
ψ : C∗(U, E(p)) → C∗(U, gr E(p)), p ≥ 0.

We give it by
ψ(c)i0...iq = δi0(ci0...iq)

for any (i0, . . . , iq) such that Ui0∩. . .∩Uiq 6= ∅. In general, ψ is not an isomor-
phism of complexes. Nevertheless, we can express explicitly the coboundary
d of the complex C∗(U, E) by means of d0 and aγ.

Proposition 4. For any c ∈ Cq(U, gr E) =
⊕

p Eq−p,p
0 , we have

(ψ(dψ−1(c)))i0...iq+1 = (d0c)i0...iq+1 + ((aγ)i0i1 − id)(ci1...iq+1).

Proof. We can write

(dψ−1(c))i0...iq+1 =

q+1∑
α=0

(−1)αψ−1(c)i0...̂iα...iq+1

=

q+1∑
α=1

(−1)αψ−1(c)i0...̂iα...iq+1
+ ψ−1(c)i1...iq+1

= δ−1
i0

(

q+1∑
α=1

(−1)αci0...̂iα...iq+1
) + δ−1

i1
(ci1...iq+1)

= δ−1
i0

((d0c)i0...iq+1 − ci1...iq+1) + δ−1
i1

(ci1...iq+1).

Therefore

(ψ(dψ−1(c)))i0...iq+1 = δi0(dψ−1(c))i0...iq+1

= (d0c)i0...iq+1 − ci1...iq+1 + (aγ)i0i1(ci1...iq+1)

= (d0c)i0...iq+1 + ((aγ)i0i1 − id)(ci1...iq+1).
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This implies our assertion.¤
This proposition makes it possible to calculate the spectral sequence (Er)

whenever d0 and the cochain aγ are known. Now we find the explicit form
of the first non-zero coboundary operator dr, r ≥ 1. Denote by

µ∗k : H1(M,QAut(k)(2) gr E) → H1(M,QDerk,k gr E)

the map induced by (12).

Theorem 7. Suppose that the locally free sheaf of O-modules E on (M,OM)
has order k and denote by aγ the cohomology class corresponding to E by
Theorem 2. Then dr = 0 for r = 1, . . . , k − 1, and dk = µ∗k(aγ).

Proof. Take a cocycle c ∈ Ep,q−p
0 , d0c = 0, and denote by c∗ its cohomology

class in Ep,q−p
1 . Clearly, c and c∗ are represented by the cochain ψ−1(c) ∈ Cp

0 .
By Proposition 4,

(ψ(dψ−1(c)))i0...iq+1 = ((aγ)i0i1 − id)(ci1...iq+1).

Now we see that

(ψ(dψ−1(c)))i0...iq+1 = µk(aγ)i0i1(ci1...iq+1) + ui0...iq+1 ,

where u ∈ C(p+k+1). This means that

ψ(dψ−1(c)) = µ∗k(aγ)(c) + u,

whence d1 = d2 = . . . = d(k−1) = 0. Identifying Ek with E1, we also see that
dkc

∗ is represented by the cochain ψ−1(µ∗k(aγ)(c)). It follows that

dkc
∗ = µ∗k(aγ)(c

∗).¤
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MA, 2002.

[9] Leites D.A. Introduction to the theory of supermanifolds. Russian Math.
Surveys 35 (1980), 1-64.

[10] Manin Yu.I. Gauge field theory and complex geometry, Grundlehren
der Mathematischen Wissenschaften, V. 289, Springer-Verlag, Berlin,
second edition, 1997.

[11] Okonek C., Schneider M., Spindler H. Vector bundles on complex pro-
jective spaces. Corrected reprint of the 1988 edition. With an appendix
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