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Introduction

Two important physical theories appeared during the �rst half of the last century: Gen-

eral Relativity and Quantum Mechanics. More recent theories are the standard model and

superstring theory. The standard model explains all the elementary particles from which we

know that they exist, as well as three of the four fundamental interactions, the electromagnetic

force, and the weak and the strong nuclear forces. It is however not able to explain the gravity,

which is the main actor in General Relativity. This is not surprising, since General Relativity

and Quantum Mechanics are notoriously incompatible. Superstring theory is currently often

considered as the best candidate for a uni�ed theory incorporating General Relativity and

Quantum Theory.

Relativity teaches us that the Universe should be thought of as a 4-dimensional Lorentzian

manifold, whereas superstring theory claims that it should be a Calabi-Yau manifold, i.e.,

a kind of 4-dimensional base manifold together with 7-dimensional �bers made of interlaced

circles. The �rst issue of this course is the study of the concept of �ber bundle and of vector

bundle. General Relativity says roughly that `matter tells space how to curve and that space

curvature tells matter how to move'. We thus take also an interest in curvature and torsion

of �ber and vector bundles. Whereas curvature and torsion of a curve in R3 can easily be

de�ned at the beginning of the Bachelor and depend only on the curve itself, in the case of

vector bundles, torsion is de�ned only for the tangent bundle and both, curvature and torsion,

are de�ned rather abstractly and do not only depend on the bundle but on the choice of a new

concept that can appear in three di�erent forms.

One of the key objectives of the course is the investigation of this new notion. If we think

of a plane and then of a sphere, we understand easily that curvature is related to parallel

transport. Remembering the Lie derivative, we realize that parallel transport is tightly linked

to a concept of `covariant' derivative, or, still, to the choice of a `connection'. To simplify,

we just identify these three notions in this introduction. Their de�nitions, properties and

relationships will be a major issue in this text. The problem is actually that in most situations

there is no canonical parallel transport or covariant derivative or connection, but there are

many of them. In view of what has been said above, the curvature and the torsion (if de�ned)

depend not only on the chosen vector bundle but on the considered parallel transport, covariant

derivative or connection, so that we have to study the curvature and torsion, not of a bundle,

but of a covariant derivative. In the case of a standard curve of R3 and of the tangent bundle

TR3, we do actually have a natural or privileged connection and its abstract curvature and

torsion, which we will de�ne, reduce to the above-mentioned elementary or concrete curvature

and torsion of the curve.

As for applications of the preceding notions and techniques, the simplest one consists in

the interpretation of the electromagnetic potential as a connection on a vector bundle over

the Universe. This new standpoint will allow to view Maxwell's equations � which govern

electromagnetism � in a new light. Indeed, Maxwell's equations can be written using the elec-

tromagnetic tensor and the latter then appears a the curvature of the covariant derivative that
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represents the potential. This viewpoint deepens our understanding of Maxwell's equations,

since two of the four equations are now just natural consequences of our general theory of

connections. In other words, in the new approach these two equations become completely

natural.

To make this very rough introduction a `closed circle', let us mention that electromagnetism

is a simple example of a so-called gauge theory. Gauge theories, which are tightly related

to connections, are of crucial importance in Theoretical Physics: for instance, the standard

model mentioned at the beginning of the introduction is a quantized Yang-Mills gauge theory.
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1 Vector bundles and �ber bundles

1.1 First examples

In this section, we choose an intuitive and informal approach to vector and �ber bundles,

looking at examples that we are already familiar with.

Example 1 (Möbius strip). Let us start with the Möbius strip E. It is obtained by taking

a rectangle, rotating one extremity of the rectangle 180%, and gluing the two extremities

together. Since the rectangle can be viewed as an amalgamation of vertical line segments

or intervals ] − 1, 1[ for instance, we can imagine the Möbius strip E as an amalgamation of

intervals ]−1, 1[⊂ R or manifolds over the unit circle S1. It is natural to refer to the manifolds

]− 1, 1[ as �bers and to call the amalgamation E a �ber bundle over the manifold S1.

 

Figure 1: Möbius strip

If we glue the extremities of the initial rectangle without rotating one of them, we get the

cylinder C = S1×] − 1, 1[. The cylinder C is of course also an amalgamation of manifolds

]− 1, 1[ over S1 and thus a �ber bundle over S1. Since this �ber bundle is a product manifold,

we say that it is a trivial bundle. Hence the question whether the Möbius strip E is also trivial,

i.e., is also a product manifold, or is at least di�eomorphic to a product manifold. One might

be tempted to claim that E is di�eomorphic to C or to the initial rectangle. However, this

is clearly wrong, since the transformation that leads from E to C or to the rectangle is not

smooth because it involves 'cutting' the Möbius strip. The situation changes when looking

at a `local piece' of E, at a slice of the Möbius strip. The latter can obviously be deformed

smoothly into a rectangle R = I×] − 1, 1[, where I denotes an open interval of R, and the

inverse of this transformation is of course smooth as well: a local piece of the �ber bundle E is

di�eomorphic to a product manifold R, i.e., E is locally trivial. This is the second important

aspect of �ber bundles: they are locally trivial, locally di�eomorphic to product manifolds.

On the other hand, as mentioned above, E is not globally trivial, i.e., the Möbius strip is a

non-trivial �ber bundle.

Example 2 (Tangent bundle of a manifold). Let M be an n-dimensional smooth manifold.

At any point m ∈M we can consider its tangent space TmM , which is an n-dimensional real

vector space. Recall now that a vector �eld ofM is a �eld of tangent vectors, i.e., we are given

a vector Xm ∈ TmM at any point m ∈ M . In other words, we are in the presence of a map
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X : M 3 m 7→ Xm ∈ TmM . Since the target of X must be independent of m, it is natural to

consider the disjoint union

TM =
⊔
m∈M

TmM .

Since the disjoint union TM is an amalgamation of vector spaces (n-dimensional real vector

spaces are n-dimensional smooth manifolds with one-chart-atlases) over M , it seems to be a

�ber bundle whose �bers are vector spaces, i.e., it seems to be a vector bundle. This idea

is corroborated by the fact that in Di�erential Geometry we called TM the tangent bundle of

the manifold M .

To achieve �nal con�rmation that TM is a bundle, we must still show that TM is locally

trivial. Actually we proved this already in Di�erential Geometry, when building an atlas for

TM thus establishing that TM is a manifold. Indeed, the proper mental picture of TM

imagines M as a horizontal line, TM as a rectangle over this line, and TmM as the vertical

line segment over m ∈ M . We denote by π : TM → M the projection map that associates

to any vector X ∈ TM the corresponding base point m ∈ M . The charts of TM can now be

easily obtained from the charts of M . Let

ϕ : M ⊃ U 3 m 7→ ϕ(m) = (x1, . . . , xn) ∈ ϕ(U) ⊂ Rn (1)

be a chart of M . Recall that, for any m ∈ U , this chart provides a basis of the n-dimensional

vector space TmM and that this basis is given by the derivations (∂xi |m) at m, i.e., by the

tangent vectors (∂xi |m) at m. Any vector X ∈ TmM , with m ∈ U , has thus coordinates

φ(X) := (X1, . . . , Xn) ∈ Rn (2)

in this basis. The map

Φ : π−1(U) ⊃ TmM 3 X 7→ (ϕ(m), φ(X)) ∈ ϕ(U)× Rn ⊂ R2n (3)

is obviously a chart of TM . The tuple (ϕ(m), φ(X)) are the coordinates of X in this chart

Φ. More precisely, we refer to ϕ(m) = (x1, . . . , xn) as the base coordinates of X and to

φ(X) = (X1, . . . , Xn) as the �ber coordinates of X. Finally, the composition

Φ : π−1(U)
Φ−→ ϕ(U)× Rn ϕ−1× id−−−−−→ U × Rn , X Φ7−→ (π(X), φ(X)) (4)

provides a di�eomorphism, since the resulting map is the composite of two di�eomorphisms:

the `local piece' π−1(U) ⊂ TM is di�eomorphic to the product manifold U × Rn ⊂ R2n.

Let us �rst emphasize that above and in the following, we use four di�erent letters phi,

namely ϕ, φ, Φ, and Φ. Note also that, for any �xed m ∈ U , we have TmM ⊂ π−1(U), so

that we can restrict Φ to TmM . This restriction, which we denote by Φm, reads

Φm : TmM 3 X 7→ (π(X), φ(X)) = (m,φ(X)) ' φ(X) ∈ Rn ,

i.e., it assigns to any vector X ∈ TmM its (�ber) coordinates (X1, . . . , Xn) in the basis (∂xi |m),

and it is therefore a vector space isomorphism.
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The preceding examples allowed to realize that a �ber bundle (resp., a vector bundle) is an

amalgamation of �bers that are �nite-dimensional smooth manifolds (resp., �nite-dimensional

real vector spaces), which is locally trivial, i.e., which is locally di�eomorphic to a product

manifold (resp., to a product manifold whose second factor is a �nite-dimensional real vector

space). In addition, in the case of a vector bundle, the restriction of this di�eomorphism to a

�ber is a vector space isomorphism.

1.2 Vector bundles

Remark 1. All manifolds considered in this text are �nite-dimensional smooth manifolds.

Also all other concepts (e.g., functions, tensor �elds) are systematically assumed to be smooth.

In view of the insight that we gained in the preceding subsection, it is natural to de�ne a

vector bundle as follows:

De�nition 1 (Vector bundle). A manifold E is called a vector bundle of rank r ∈ N \ {0}
over a base manifold M , with projection or foot map π : E →M , if and only if

• the map π is smooth and surjective,

• the �bers Em := π−1{m}, m ∈M , are real vector space of dimension r,

• for any m ∈ M , there exists an open neighborhood U ⊂ M of m and a di�eomorphism

� called local trivialization �

Φ : π−1(U) 3 s 7−→ (π(s), φ(s)) ∈ U × Rr ,

such that, for all n ∈ U , the restriction

Φn : En 3 s 7−→ φ(s) ∈ Rr

is a vector space isomorphism.

Remark 2. • Some authors denote a vector bundle by the pair (E,M) or the triple

(E,M, π) to remind the base manifold M and the projection π. Alternatively, we often

write π : E →M for a vector bundle E with base M and projection π.

• Although manifolds (of dimension n) can, when considered globally, have complicated

shapes, they are locally very simple, since they are locally di�eomorphic to open subsets

of Rn. A similar remark holds for vector bundles. They can be globally complicated, but

the are locally trivial, i.e., they are locally di�eomorphic to simple product manifolds.

The local trivialization or di�eomorphism Φ : π−1(U)→ U ×Rr identi�es the local piece
π−1(U) of the considered vector bundle with the trivial vector bundle U×Rr. Moreover,

the restrictions Φn : En → Rr of Φ are vector space isomorphisms and thus identify the

�bers En with Rr, which is therefore referred to as the typical �ber of the vector bundle.

Eventually, if we consider, in addition to the local trivialization

Φ : π−1(U)→ U × Rr (5)
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Figure 2: Vector bundle

of the bundle, a local coordinate system ϕ in the open subset U of M , the composite

(ϕ× id) ◦ Φ sends any s ∈ Em ⊂ π−1(U) to

(ϕ(m), φ(s)) = (x1, . . . , xn, s1, . . . , sr) , (6)

i.e., it associates to s its base and �ber coordinates.

Let us give some examples of vector bundles.

Example 3. • For a given manifold M , the tangent bundle TM (see Example 2), the

cotangent bundle T ∗M , the p-times contravariant and q-times covariant tensor bun-

dle ⊗pqTM (p, q ∈ N), and the anti-symmetric p-covariant tensor bundle ∧pT ∗M (p ∈
{0, . . . ,dimM}) are all vector bundles. They have been extensively studied in Di�eren-

tial Geometry.

• In view of Equations (1) and (3), the tangent rank n vector bundle TRn is not only locally
but even globally trivial. Indeed, the manifold Rn admits the global chart (U,ϕ) =

(Rn, id), so that the induced TRn-chart (π−1(U),Φ) = (TRn,Φ) is a di�eomorphism

from TRn to Rn×Rn. The same result holds, more generally, for any n-dimensional real

vector space V : TV ' V × Rn.

1.3 Fiber bundles

As suggested above, vector bundles are special �ber bundles. Indeed, the main di�erence

is the nature of the �bers, which are vector spaces in the case of vector bundles and manifolds
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in the case of �ber bundles. However, (�nite-dimensional real) vector spaces are particularly

simple manifolds.

De�nition 2 (Fiber bundle). A manifold E is called a �ber bundle over a base manifold M ,

with projection π : E →M , if and only if

• the map π is smooth and surjective,

• for any m ∈ M , there exists a manifold N , an open neighborhood U ⊂ M of m, and a

di�eomorphism � called local trivialization �

Φ : π−1(U) 3 s 7−→ (π(s), φ(s)) ∈ U ×N .

It can be shown that, if the requirements of this de�nition are met, the �bers Em = π−1(m)

are automatically manifolds. Moreover, the restriction Φm of Φ to a �ber Em, m ∈ U, is also
a di�eomorphism Φm : Em → N . If the base manifold is connected, all the �bers are thus

di�eomorphic to a unique and same manifold N , which is then called the typical �ber of E.

1.4 Transition maps and cocycle condition

1.4.1 Construction of a vector bundle

Recall that a manifold structure on a set M is given by an atlas (Uα, ϕα)α of M , i.e.,

essentially, by a cover of M by charts or coordinate systems (Uα, ϕα) (∪αUα = M), such

that the coordinate transformations ψβα := ϕβϕ
−1
α are smooth and satisfy the condition

ψγβψβα = ψγα (which is often referred to as the cocycle condition). Such an interpretation as

a cover by coordinate systems, together with coordinate transformations of a speci�c type,

which satisfy the cocycle condition, is not only possible for manifolds, but for many geometric

structures, in particular for vector bundles.

Indeed, a rank r vector bundle π : E →M is covered by local trivializations

Φα : π−1(Uα)→ Uα × Rr , (7)

i.e., by �ber coordinate systems (see Equations (5) and (6)). A �ber coordinate transformation

is here a map (see Figure: Vector bundle)

Ψβα := ΦβΦ−1
α : (Uα ∪ Uβ)× Rr → π−1(Uα ∩ Uβ)→ (Uα ∩ Uβ)× Rr ,

which can be viewed as a family

Ψβα(m) = Φβ,mΦ−1
α,m : Rr → Em → Rr (m ∈ Uα ∩ Uβ) ,

of vector space automorphisms, which send the �ber coordinates in the trivialization Φα to

the �ber coordinates in the trivialization Φβ . Such a family of automorphisms of Rr can be

identi�ed with a family of invertible r × r matrices, say

ηβα(m) ∈ GL(r,R) (m ∈ Uα ∩ Uβ) . (8)
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Hence, if we denote the �ber coordinates of s ∈ Em in Φα by Sα = (s1
α, . . . , s

r
α) and those in

Φβ by Sβ = (s1
β, . . . , s

r
β), the �ber coordinate transformation Ψβα(m) in a vector bundle is of

the type

Sβ = ηβα(m)Sα . (9)

If we choose as well coordinates ϕα in Uα and ϕβ in Uβ (see Figure: Vector bundle), the points

m ∈ Uα∩Uβ have base coordinates xα = (x1
α, . . . , x

n
α) in ϕα and xβ = (x1

β, . . . , x
n
β) in ϕβ . The

base coordinate transformation is a coordinate transformation in a manifold, hence it is of the

type

xβ = ψβα(xα) , (10)

where ψβα = ϕβϕ
−1
α is a smooth map and even a di�eomorphism. A full (base and �ber)

coordinate transformation in a vector bundle is thus of the type (see Equations (10), (9), (8))

x′ = ψ(x) (ψ ∈ Diff) ,

S′ = η(x )S (η(x) ∈ GL(r,R)) .
(11)

In principle we are interested here only in the �ber coordinate transformation, i.e., in the

second equation in (11). The �ber coordinate transformation or transition map Ψβα, or, still,

the matrix η or ηβα, encode the information how to glue the local pieces Uα×Rr and Uβ ×Rr

(see Figure: Vector bundle). Moreover, if we �rst glue Uα × Rr with Uβ × Rr and then glue

Uβ × Rr with Uγ × Rr, for some γ, we get the same result as when gluing directly Uα × Rr

with Uγ × Rr. Indeed, since Ψβα = ΦβΦ−1
α , we have

ΨγβΨβα = Ψγα . (12)

Hence, the cocycle condition is satis�ed. In matrix notation, it reads

ηγβ ηβα = ηγα . (13)

Finally, a vector bundle over M leads to an open cover of M by �ber coordinate system,

with �ber coordinate transformations of the type

Sβ = ηβα(m)Sα, ηβα(m) ∈ GL(r,R), m ∈ Uα ∩ Uβ ,

which satisfy the cocycle condition. Conversely,

Proposition 1. Consider an open cover (Uα)α of a manifold M by trivial pieces or �ber

coordinate systems Uα × Rr. Assume that transition maps

Ψβα : (Uα ∩ Uβ)× Rr 3 (m,S) 7→ (m,S′) ∈ (Uα ∩ Uβ)× Rr ,

of the type S′ = η(m)S, with η ∈ C∞(Uα ∩ Uβ,GL(r,R)), are given and satisfy the cocycle

condition. If we glue the trivial pieces Uα × Rr as encoded in the Ψβα, we get a rank r vector

bundle over M that is locally di�eomorphic to the Uα × Rr.

In view of what has been said above, this proposition rather natural.
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1.4.2 Construction of a �ber bundle

A similar result holds for �ber bundles.

Proposition 2. Take an open cover (Uα)α of a manifold M and assume that with any Uα
is associated a manifold Nα. If the di�erential structures of the trivial pieces Uα × Nα and

Uβ ×Nβ coincide over Uα ∩ Uβ, i.e., if there are transition di�eomorphisms

Ψβα : (Uα ∩ Uβ)×Nα → (Uα ∩ Uβ)×Nβ

that satisfy the cocycle condition, and if we glue the trivial pieces Uα × Vα as encoded in the

Ψβα, we get a �ber bundle over M that is locally di�eomorphic to the Uα ×Nα.

1.4.3 Applications

Since the tangent bundle of an n-dimensional manifold is a vector bundle of rank n, the

cocycle condition is satis�ed in this case. We now check the cocycle condition by direct

computation.

Example 4. As announced we establish the cocycle condition (13) for the tangent bundle

E = TM of a base manifold M of dimension n. Since the �ber coordinates are read in the

basis (∂xi |m) of TmM , m ∈ Uα, induced by a base coordinate system (Uα, (x
1, . . . , xn)) of

M , and since the cocycle equation involves three �ber coordinate systems, we choose two

additional base coordinate systems (Uβ, (y
1, . . . , yn)) and (Uγ , (z

1, . . . , zn)), and consider the

induced bases (∂yi |m) and (∂zi |m) of the tangent spaces TmM at the points m ∈ Uβ and

m ∈ Uγ , respectively. According to Equation (4), a vector X ∈ π−1(Uα ∩ Uβ ∩ Uγ) has �ber

coordinates (Xi), (Y i), and (Zi) in all three bases (see Equation (2)):

X = Xi∂xi = Y j∂yj = Zk∂zk ,

where we omitted the summation symbol and the subscript m. In view of the chain rule

X = Y i∂yi = Xj∂xj = Xj∂xjy
i∂yi ,

so that

Y i = ∂xjy
iXj .

In other words, we have

ηYX(x) = (∂xjy
i)ij ,

where the RHS is the Jacobian matrix of the base coordinate transformation x � y. Hence,

ηYX(x) ∈ GL(n,R) and ηYX(x) depends smoothly on x (see Proposition 1). Similarly,

ηZY = (∂yjz
i)ij and ηZX = (∂xjz

i)ij ,

so that

(ηZY ηYX)ij = (ηZY )ik (ηYX)kj = ∂ykz
i∂xjy

k = ∂xjz
i = (ηZX)ij ,

due to the chain rule. Hence, the cocycle condition is satis�ed.
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In the second application, we glue the Möbius strip from local pieces, using Proposition 2.

Example 5. Let M = S1 be the unit circle and let

TP1 = U1×]− 1, 1[=]0, 2π[×]− 1, 1[

and

TP2 = U2×]− 1, 1[=]− π, π[×]− 1, 1[

be a cover of S1 by trivial pieces and more precisely by cylinders cut at 0 ' 2π and −π ' π,

respectively. The gluing map is de�ned on the intersection

U1 ∩ U2 =]0, 2π[∩ ]− π, π[=]0, π[∪ ]π, 2π[']0, π[∪ ]− π, 0[ .

Since we wish to get the Möbius strip after the gluing process, we glue the parts ]0, π[×]−1, 1[

of TP1 and TP2 and we glue their parts ]π, 2π[×] − 1, 1[ and ] − π, 0[×] − 1, 1[ after a 180%

rotation. This leads to the gluing map Ψ21, which is de�ned on the two connected components

of (U1 ∩ U2)×]− 1, 1[ by

Ψ21|]0,π[ : ]0, π[×]− 1, 1[3 (x, s) 7→ (x′, s′) = (x, s) ∈]0, π[×]− 1, 1[

and

Ψ21|]π,2π[ : ]π, 2π[×]− 1, 1[3 (x, s) 7→ (x′, s′) = (x,−s) ∈]− π, 0[×]− 1, 1[ .

It is clear that Ψ21 is a di�eomorphism. Further, no problem with the cocycle condition arises,

so that the gluing process leads to a �ber bundle and more precisely to the Möbius strip.

If we replace the interval ]− 1, 1[ above by the whole real line R, the trivial pieces or �ber
coordinate systems are U1 × R and U2 × R, and we should thus get a vector bundle. Indeed,

the �ber coordinate transformation is given by s′ = 1 · s on the �rst connected component of

U1 ∩ U2 and by s′ = (−1) · s on the second. Hence, it is given by

η(x) =

{
1 ∈ GL(1,R), ∀x ∈]0, π[

−1 ∈ GL(1,R), ∀x ∈]π, 2π[
.

In view of Proposition 1, the gluing process leads now to a vector bundle and more precisely

to a variant of the Möbius strip.

2 Sections and local frames

We start recalling the notion of section of a vector bundle. Let (E,M, π) be a vector

bundle and let U ⊂M be an open subset.

De�nition 3. A section of E over U is a smooth map s : U 3 m 7→ sm ∈ Em ⊂ E. The set of
all sections of E over U is denoted by Γ(U,E). If U = M , we write Γ(E) instead of Γ(M,E).
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The set Γ(U,E) carries two obvious algebraic structures. For s, s′ ∈ Γ(U,E), λ ∈ R, and
f ∈ C∞(U), we set:

s+ s′ : M 3 m 7→ (s+ s′)m := sm + s′m ∈ Em ⊂ E ,

λs : M 3 m 7→ (λs)m := λsm ∈ Em ⊂ E ,

fs : M 3 m 7→ (fs)m := f(m)sm ∈ Em ⊂ E .

Remark 3. The sets Γ(U,E), U open in M , are equipped with a real vector space structure

(�rst two operations) and with a C∞(U)-module structure (�rst and third operations).

E
sm

sm′

s

Em Em′

M
m m′

Figure 3: Section of a vector bundle

Consider a trivialization Φ : π−1(U) 3 s 7→ (π(s), φ(s)) ∈ U × Rr of E over U . It is now

easy to de�ne a basis of the vector space Em, m ∈ U . Indeed, denote by (e1, . . . , er) the

canonical basis of Rr. Since the restriction of Φ to Em, m ∈ U , is a vector space isomorphism

Φm : Em → Rr, the vectors

Φ−1
m (ei) =: σi,m ∈ Em , i ∈ {1, . . . , r} ,

form a basis (σ1,m, . . . , σr,m) of Em. As m is an arbitrary point of U , we get maps

σi : U 3 m 7→ σi,m ∈ Em ⊂ E ,

which are local sections σi ∈ Γ(U,E).

De�nition 4. A local frame is a family of sections (σi)i ∈ Γ(U,E) such that for all m ∈ U ,
the collection (σi,m)i is a basis of Em.

A local frame is thus made of local sections that de�ne at any point a basis of the �ber.

Example 6. Consider the tangent bundle TM of a manifold M of dimension n. Let ϕ : U 3
m 7→ (x1, . . . , xn) ∈ Rn be a chart of M . Then the partial derivatives (∂xi |m) provide a basis
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of TmM , m ∈ U . Remember from the Di�erential Geometry course that these derivatives

satisfy

∂xi |m ' (Tmϕ)−1(ei) ,

where Tmϕ is the vector space isomorphism Tmϕ : TmM → Rn. Therefore, the partial

derivatives ∂xi ∈ Γ(U, TM) form a local frame of TM over U .

Above we observed that a local trivialization allows to construct a local frame. The converse

is true as well. Let (σi)i be a local frame over U and try to build a trivialization over U , i.e.,

essentially, to assign �ber coordinates to any s ∈ Em, m ∈ U . Since (σi,m)i is a basis of Em,

s =
r∑
i=1

siσi,m ,

with s1, . . . , sr ∈ R. We can now de�ne

Φ : π−1(U) ⊃ Em 3 s 7→ (m, s1, . . . , sr) ∈ U × Rr ,

which turns out to be a trivialization of E over U .

Remark 4. Given a local frame, one can construct a local trivialization and vice-versa: we

sometimes identify local frames and local trivializations.

Let s ∈ Γ(E) be a global section and (σi)i be a local frame over U . For all m ∈ U , we can
decompose sm ∈ Em in the basis (σi,m)i :

sm =

r∑
i=1

si(m)σi,m . (14)

We know from the Di�erential Geometry course, that smoothness of the considered section s

(see De�nition 3) implies that the functions si : U 3 m 7→ si(m) ∈ R are smooth, i.e., that

si ∈ C∞(U). Equation (14) can thus be written

s|U =
r∑
i=1

siσi, s ∈ Γ(E), si ∈ C∞(U), σi ∈ Γ(U,E) ,

which is the local form of a section.

The preceding observations lead us to consider the map

Γ(U,E) 3 s 7→ (s1, . . . , sr) ∈ C∞(U,Rr) ,

which is an isomorphism of R-vector spaces and C∞(U)-modules:

Remark 5. We can identify local sections over a trivialization domain U with smooth func-

tions on U valued in the typical �ber Rr:

Γ(U,E) ' C∞(U,Rr) . (15)

For instance, Γ(M × Rr) = Γ(M,M × Rr) ' C∞(M,Rr) and, in particular, Γ(M × R) '
C∞(M × R) = C∞(M).
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3 Operations on vector bundles

Operations on vector spaces, e.g., duals, direct sums, tensor products..., give rise to new

vector spaces. Similar operations can be de�ned for vector bundles and they lead to new vector

bundles. Let E and E′ be vector bundles of ranks r and r′ over a same base manifold M .

As the �bers Em and �ber coordinate maps Φm : Em → Rr are the main ingredients of the

vector bundle E, we con�ne ourselves to specifying these data for the new dual, direct sum

and tensor product vector bundles.

Dual of a vector bundle.

The dual vector bundle E∗ of E is made of the �bers

(E∗)m := (Em)∗

and admits the �ber coordinate maps (Φ∗)m : (Em)∗ → (Rr)∗ ' Rr de�ned by

(Φ∗)m := (Φt
m)−1 ,

where Φt
m denotes the transpose of the linear map Φm. Since no confusion can arise, we write

E∗m instead of (E∗)m = (Em)∗. Note that E∗ is, just as E, a vector bundle of rank r.

Direct sum of vector bundles.

The direct sum E ⊕ E′ of E and E′ is given by the �bers

(E ⊕ E′)m := Em ⊕ E′m

and the �ber coordinate maps (Φ⊕)m : Em ⊕ E′m → Rr ⊕ Rr′ ' Rr+r′ de�ned by

(Φ⊕)m := Φm ⊕ Φ′m .

We observe that E ⊕ E′ is a vector bundle of rank r + r′.

Tensor product of vector bundles.

The tensor product E ⊗ E′ of E and E′ has the �bers

(E ⊗ E′)m := Em ⊗ E′m

and the �ber coordinate maps (Φ⊗)m : Em ⊗ E′m → Rr ⊗ Rr′ ' Rrr′ de�ned by

(Φ⊗)m := Φm ⊗ Φ′m .

Hence, the product E ⊗ E′ is a vector bundle of rank rr′.

Generalizing the preceding construction, we get the vector bundle

⊗pqE := E ⊗ . . .
(p)
⊗ E ⊗ E∗ ⊗ . . .

(q)
⊗ E∗ .



Geometric Methods in Mathematical Physics 17

4 Characterization of tensor �elds

In this Section, we prove a basic result that we will use throughout the present text.

Recall that for any vector space V and any non-negative integers p, q ∈ N, we de�ne the
vector space

⊗pqV = V ⊗ . . .
(p)
⊗ V ⊗ V ∗ ⊗ . . .

(q)
⊗ V ∗

of (p, q)-tensors, or p times contravariant and q times covariant tensors, as the vector space of

R-valued R-multilinear maps de�ned on the dual spaces

V ∗ × . . .
(p)
× V ∗ × V × . . .

(q)
× V :

⊗pqV = LR−(p+q)−lin(V ∗× . . .× V ∗× V × . . .× V,R) = LR−(p+q)−lin((V ∗)×p× V ×q,R) . (16)

The following theorem gives a similar characterization of tensor �elds, i.e., of sections

Γ(⊗pqE) of the tensor bundle ⊗pqE.

Theorem 1. Let (E,M, π) be a vector bundle and let p, q ∈ N. Then,

Γ(⊗pqE) ' LC∞(M)−(p+q)−lin(Γ(E∗)× . . .
(p)
× Γ(E∗)× Γ(E)× . . .

(q)
× Γ(E), C∞(M)) , (17)

i.e., tensor �elds can be viewed as function-valued function-multilinear maps de�ned on sections

of the dual bundles.

Note that, with respect to the characterization (16) of tensors, the preceding characteri-

zation (17) of tensor �elds (tensors depending on the point where they are `measured') just

replaces reals by functions (reals depending on the point where they are `measured') and

`vectors' by `vector' �elds (sections).

Proof. We just check that a tensor �eld can be interpreted as multilinear map and vice versa.

Let T ∈ Γ(⊗pqE). We have to de�ne a C∞(M)-multilinear map

T : Γ(E∗)× . . .
(p)
× Γ(E∗)× Γ(E)× . . .

(q)
× Γ(E) −→ C∞(M)

(t1, . . . , tp, s1, . . . , sq) 7→ T (t1, . . . , tp, s1, . . . , sq) .
(18)

Therefore, we must construct T (t1, . . . , tp, s1, . . . , sq)(m) ∈ R, for all m ∈M .

Since T is a tensor �eld T ∈ Γ(⊗pqE), it is a tensor Tm ∈ (⊗pqE)m = ⊗pqEm that depends

on m ∈M . It follows now from (16) that

Tm ∈ ⊗pqEm = LR−(p+q)−lin((E∗m)×p × (Em)×q,R) .

It is thus natural to set

T (t1, . . . , tp, s1, . . . , sq)(m) := Tm(t1m, . . . , t
p
m, s1,m, . . . , sq,m) ∈ R .
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It is easily seen that the map (18) is function-multilinear.

Conversely, let T be a function-multilinear map in the RHS of (17). To show that T is a

section in Γ(⊗pqE), we have to build a tensor Tm ∈ ⊗pqEm, m ∈M , i.e., again by (16), we have

to construct a multilinear map Tm ∈ LR−(p+q)−lin((E∗m)×p × (Em)×q,R), i.e., a multilinear

map

Tm : E∗m × . . .
(p)
× E∗m × Em × . . .

(q)
× Em −→ R

(τ1, . . . , τp, σ1, . . . , σq) 7→ Tm(τ1, . . . , τp, σ1, . . . , σq) .

Now, for all τ i ∈ E∗m and all σj ∈ Em, one can choose sections ti ∈ Γ(E∗) and sj ∈ Γ(E),

which pass at m through τ i and σj , respectively: t
i
m = τ i and sj,m = σj . Hence, it is natural

to set

Tm(τ1, . . . , τp, σ1, . . . , σq) := T (t1, . . . , tp, s1, . . . , sq)(m) ∈ R . (19)

However, the map Tm that we thus de�ned is not necessarily well-de�ned, since another choice

of the sections ti and sj could lead to a di�erent image.

It now su�ces to show that Tm is actually well-de�ned. There exists a rigorous proof,

but we prefer here a more intuitive approach � which is more instructive. It is known that

almost all operators that appear in Di�erential Geometry are local operators, i.e., operators T
such that the value T (t1, . . . , tp, s1, . . . , sq)(m) at m of the image only depends on restrictions

of the arguments ti, sj to a neighborhood of m. The prototypical local operators are the

di�erential operators. For the operators ∂xi for instance, the value ∂xif |m at m of the image

∂xif only depend on the restriction of f to a neighborhood of m. An important result, which

is referred to as Peetre's Theorem1 states roughly that the converse holds as well: any local

operator is (locally) a di�erential operator. Hence, if we assume that the multilinear map

or multilinear operator T is, as most operators, a local one, it follows from Peetre's result

that T is a di�erential operator. Consider for simplicity that T has only one argument, say

f ∈ Γ(U × R) ' C∞(U) (U coordinate domain of M). Then,

T (f) =
∑
|α|≤k

gα ∂
α
x f ,

with gα ∈ C∞(U) and k ∈ N. Since T belongs to the RHS of (17), it is function-multilinear,

i.e., for any h ∈ C∞(U), we have T (hf) = hT (f) = T (fh) = fT (h). Taking in particular

h = 1, we obtain

T (f) = T (f · 1) = f
∑
|α|≤k

gα ∂
α
x 1 = f · g0 ,

or, still,

T (f)(m) = f(m)g0(m) .

We thus see that T (f)(m), not only depends only on the restriction of f to a neighbor-

hood of m, but even depends only on the value of f at the point m. In our situation,

1Jaak Peetre (1935−) is a Swedish mathematician.
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this means that T (t1, . . . , tp, s1, . . . , sq)(m) (see Equation (19)) only depends on the values

of t1, . . . , tp, s1 . . . , sq at m, i.e., on

t1m = τ1, . . . , tpm = τp, s1,m = σ1, . . . , sq,m = σq .

Therefore, the de�nition (19) does not depend on the choice of ti and sj , so that the map Tm
is well-de�ned.

Here are two applications of Theorem 1.

Example 7. 1. Any section s ∈ Γ(E) = Γ(⊗1
0E) can be viewed as a map

s ∈ LC∞(M)− lin(Γ(E∗), C∞(M)) .

2. Let us interpret the map ∆ ∈ LC∞(M)− lin(Γ(TM),Γ(E)) as a tensor �eld. In view of

Point 1, we can view ∆ as a map

∆ : Γ(TM)
C∞(M)−lin−−−−−−−→

(
Γ(E∗)

C∞(M)−lin−−−−−−−→ C∞(M)

)
,

or, equivalently, as a map

∆ ∈ LC∞(M)−bilin(Γ(TM)× Γ(E∗), C∞(M)) .

It follows now from Theorem 1 that ∆ ∈ Γ(T ∗M ⊗ E):

LC∞(M)− lin(Γ(TM),Γ(E)) ' Γ(T ∗M ⊗ E) .

In the following, we will write LC∞(M) instead of LC∞(M)−lin, LC∞(M)−bilin ...

5 Covariant derivative on a vector bundle

In this section, we introduce the notion of covariant derivative ∇Xs of a section s ∈ Γ(E)

of a vector bundle π : E →M in the direction of a vector �eld X ∈ Γ(TM).

5.1 Motivation

Take M = R3 and π : E = R3 × R→ R3 = M , and consider the temperature τm ∈ R at a

point m ∈ R3. We view τ as a function τ ∈ C∞(R3) = C∞(M) ' Γ(E). Let us compute the

derivative ∇Xτ of τ in the direction of a vector �eld X ∈ Γ(TM) = Γ(R3×R3) ' C∞(R3,R3).

Since a derivative does not change the nature of the object that it derives, the derivative ∇Xτ
is, just as τ, a section ∇Xτ ∈ Γ(E) ' C∞(M) = C∞(R3). To determine the derivative

(∇Xτ)m ∈ R at a point m ∈ R3 in the direction of X, we follow the standard idea of a

derivative, and measure the temperature τm at m, then the temperature τm′ at a point m′

close to m and in the direction of Xm, and compute �nally the limit for m′ → m of the

relative di�erence of these values. It is clear that the result depends only on Xm and not on
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the whole vector �eld X or its values around m. As understood in Section 4, this means that

the derivative ∇Xτ is function-linear in X. The latter property is a natural and fundamental

requirement for the directional or covariant derivative ∇Xs of a section s in the direction of a

vector �eld X: for any f ∈ C∞(M), we must have

∇fXs = f∇Xs .

We now examine the concept of covariant derivative in the case of simple vector bundles

π : E →M or simple section spaces Γ(E).

5.1.1 Covariant derivative of a function in the direction of a vector �eld

Let �rst π : E = M × R→M , and consider X ∈ Γ(TM) and f ∈ Γ(E) = C∞(M). Since

the Lie derivative LXf , which has been studied in Di�erential Geometry, is also interpreted

as the derivative of f in the direction of X, it is natural to set

∇Xf := LXf = (df)(X) ∈ C∞(M) , (20)

where d is the de Rham di�erential. Recall that the di�erential of a di�erential 0-form f ∈
Ω0(M) = C∞(M) is a di�erential 1-form df ∈ Ω1(M) = Γ(T ∗M), so that, in view of Theorem

1,

df ∈ LC∞(M)(Γ(TM), C∞(M)) .

It follows that df(X) ∈ C∞(M) as announced, and that the covariant derivative ∇Xf de�ned

in (20) satis�es

∇gXf = g∇Xf ,

for any g ∈ C∞(M). Since our main condition for a covariant derivative is thus ful�lled, we

can accept Equation (20) as the de�nition of the covariant derivative of functions.

5.1.2 Covariant derivative of a vector �eld in the direction of a vector �eld

After the case π : E = M × R = ⊗0
0TM → M , we study the case π : E = ⊗1

0TM =

TM → M , and consider X ∈ Γ(TM) and Y ∈ Γ(E) = Γ(TM), i.e., we consider two vector

�elds X,Y . Let us see whether the covariant derivative ∇XY can also be de�ned as the Lie

derivative, that is, whether we can set

∇XY := LXY = [X,Y ] = X ◦ Y − Y ◦X ∈ Γ(TM) , (21)

where, in the RHS, X,Y are viewed as derivations, i.e., X,Y ∈ Der(C∞(M)) ' Γ(TM). The

question is whether this derivative satis�es our function-linearity requirement with respect

to X. When writing X and Y in local coordinates (x1, . . . , xn), we get X =
∑

iX
i∂xi and

Y =
∑

j Y
j∂xj , so that Equation (21) reads

[X,Y ] =
∑
j

∑
i

(Xi∂xiY
j − Y i∂xiX

j)∂xj .
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Therefore, for g ∈ C∞(M), we have locally

∇gXY = [gX, Y ] =
∑
j

∑
i

(gXi∂xiY
j − Y i∂xi(gX

j))∂xj = g∇XY −
∑
j

∑
i

Y iXj(∂xig)∂xj ,

so that the covariant derivative of vector �elds de�ned as the Lie derivative of vector �elds is

not function-linear. Hence, we must reject the de�nition proposed in Equation (21)!

5.1.3 Covariant derivative of an arbitrary section in the direction of a vector �eld

Let π : E → M be an arbitrary vector bundle, in particular a tensor bundle π : E =

⊗pqTM → M , and consider X ∈ Γ(TM) and s ∈ Γ(E). Try now to de�ne the covariant

derivative ∇Xs so that it satis�es the function-linearity condition. Since we cannot use the

Lie derivative (it works only for (p, q) = (0, 0), but, for instance, not for (p, q) = (1, 0)), we

try to mimic the usual de�nition of a derivative or here of a directional derivative, i.e., the

one used already above in the case of the temperature. In other words, to de�ne ∇Xs ∈ Γ(E)

or (∇Xs)m ∈ Em, we consider the value sm of s at m and the value sm′ of s at a point m′

close to m in the direction of Xm, and compute the limit of the relative di�erence of these

values. However, since sm ∈ Em and sm′ ∈ Em′ , these vectors belong to di�erent vector spaces
and their di�erence does not make sense. Therefore, we must transport sm′ into the vector

space Em by means of some transportation rule � we call it a parallel transport. Di�erently

stated, we need some rule that connects the �bers Em and Em′ , i.e., we need a connection on

E. But which parallel transport or connection should we choose? In Di�erential Geometry, we

encountered the same problem for E = ⊗pqTM , and the searched transport was implemented

by the maximal integral curves ϕXt (m) ofX. Indeed, the map ϕXt : M →M is (at least locally)

a di�eomorphism with inverse ϕX−t, so that, if m
′ = ϕXt (m) with t ' 0, the derivative Tm′ϕ

X
−t :

Tm′M → TmM is a vector space isomorphism, which can be extended to an isomorphism

T⊗m′ϕ
X
−t : ⊗pqTm′M → ⊗pqTmM , or, still, T⊗m′ϕ

X
−t : Em′ → Em. The point is that if we use

the transportation rule T⊗m′ϕ
X
−t , the value (∇Xs)m depends, as immediately seen, on the

values of the vector �eld X in a neighborhood of m, instead of only depending on the value

of X at m. Another way to understand this is to observe that with the transportation rule

T⊗m′ϕ
X
−t we do get exactly the Lie derivative of the considered tensor �eld s, i.e., we obtain

(∇Xs)m = (LXs)m, what is not acceptable since the Lie derivative is not function-linear.

The preceding discussion shows that to be able to de�ne a `covariant derivative' ∇, we
need a convenient rule of `parallel transport' or a `connection' between the �bers. Actually,

the notions of `covariant derivative', `parallel transport', and `connection' are three di�erent

concepts, but they are in some sense equivalent and are thus sometimes even used as synonyms.

However, which appropriate parallel transport rule should we choose? It turns out that there

are many such rules, but that in general there is no privileged one, i.e., no canonical rule

of parallel transport. This means that there exist in general many covariant derivatives or

connections, but that none is more natural than the others. Therefore, we will de�ne a

covariant derivative by listing all the properties it should have, then we will show that it is

always possible to de�ne many such derivatives.
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5.2 De�nition and existence

Let π : E →M be a vector bundle over M .

De�nition 5. A covariant derivative (or connection) on E is an R-bilinear map

∇ : Γ(TM)× Γ(E) 3 (X, s) 7→ ∇Xs ∈ Γ(E) ,

such that, for any X ∈ Γ(TM), s ∈ Γ(E), and f ∈ C∞(M) ,

∇fXs = f∇Xs (22)

and

∇X(fs) = (LXf)s+ f∇Xs . (23)

Since for functions ∇Xf = LXf = (df)(X), the condition (23) is nothing but the Leibniz

rule.

There exists an equivalent formulation of this de�nition. Indeed, as explained in Example

7, the map

∇ : Γ(E)
R−lin−−−→ Γ(TM)

C∞(M)−lin−−−−−−−→ Γ(E)

can be viewed as a map

∇ : Γ(E)
R−lin−−−→ Γ(T ∗M ⊗ E) .

Hence the following reformulation of De�nition 5:

De�nition 6. A covariant derivative (or connection) on E is an R-linear map

∇ : Γ(E) 3 s 7→ ∇s ∈ Γ(T ∗M ⊗ E) ,

such that, for any s ∈ Γ(E) and f ∈ C∞(M) ,

∇(fs) = df ⊗ s+ f∇s . (24)

Remark 6. 1. In De�nition 6, we consider ∇ as a map of the variable s ∈ Γ(E) only, the

variable X ∈ Γ(TM) being encrypted in the target space

Γ(T ∗M ⊗ E) = LC∞(M)(Γ(TM),Γ(E)) .

This target space encodes also the condition (22). Moreover, we use the notation df ⊗ s,
since, when considering ∇Xs, we get (df ⊗ s)(X), which is, according to the standard

de�nition of the tensor product of maps, given by (df)(X)s = (LXf)s.

2. Equations (22) and (23) mean that ∇ is a di�erential operator of order 0 with respect

to the variable X and a di�erential operator of order 1 with respect to the variable s.

Hence, the operator ∇ is a local operator and it can thus be restricted to any open subset

U ⊂M . This means that, starting from

∇ : Γ(TM)× Γ(E)→ Γ(E) ,
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we can, via common di�erential geometric methods, de�ne

∇U : Γ(U, TM)× Γ(U,E)→ Γ(U,E) ,

in a way such that

(∇Xs)|U = ∇UX|U s|U .

3. Let E = ⊗pqTM be the vector bundle of p-times contravariant and q-times covariant

tensors. Then

∇ : Γ(⊗pqTM) 3 s 7→ ∇s ∈ Γ(T ∗M ⊗ (⊗pqTM)) = Γ(⊗pq+1TM) ,

i.e., ∇ increases the covariant degree of a tensor �eld by 1. This observation motivates

the name of covariant derivative.

Example 8. Let π : E →M be a trivial vector bundle of rank r over a base manifold M , so

that E 'M × Rr. Due to Equation (15), we have

Γ(E) ' C∞(M,Rr) = (C∞(M))×r .

This shows that in the special case of a trivial bundle, the sections that ∇ derives are tuples

of smooth functions. Therefore, in contrast with ordinary vector bundles, there exists, on a

trivial bundle, a canonical covariant derivative, namely, as mentioned above, the derivative

∇ = d, where d is the de Rham di�erential.

Proposition 3. A trivial vector bundle admits a privileged covariant derivative � the de Rham

di�erential. This canonical derivative ∇ = d is referred to as the trivial covariant derivative

on the considered trivial bundle.

To construct a covariant derivative on an arbitrary vector bundle, we need the next

Lemma 1. Let (∇i)i ( resp., (fi)i ) be a family of covariant derivatives on a vector bundle

π : E → M ( resp., a family of smooth functions on M ). The linear combination
∑

i fi∇i

is again a covariant derivative on E if and only if it is an a�ne combination of covariant

derivatives, i.e., if and only if
∑

i fi = 1.

Proof. Function-linearity of ∇ :=
∑

i fi∇i is obvious. The condition that the combination be

a�ne appears when one checks the Leibniz rule. Indeed,

∇X(fs) =
∑
i

fi∇iX(fs) =
∑
i

fi(LXf)s+
∑
i

fif∇iXs = (LXf)s
∑
i

fi + f∇Xs .

This shows that ∇ is a covariant derivative if and only if
∑

i fi = 1.

A priori the families in the preceding lemma are �nite. However, the lemma still holds in

the in�nite case, provided there are no convergence issues.

The next theorem guarantees the existence of covariant derivatives on any vector bundle.
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Theorem 2. Covariant derivatives do exist on any vector bundle.

Proof. Let π : E → M be a rank r vector bundle and let (Uα)α be an open cover of M by

local trivialization domains.

Each trivial bundle π−1(Uα) ' Uα ×Rr admits the trivial covariant derivative ∇Uα given,

for any XUα ∈ Γ(Uα, TM) and any sUα ∈ Γ(Uα, E) , by

∇UαXUαsUα := (dsUα) (XUα) ∈ Γ(Uα, E)

(see Proposition 3).

Consider now a locally �nite partition of unity (ψα)α subordinate to the cover (Uα)α , let

X ∈ Γ(TM) and s ∈ Γ(E), and set

∇Xs :=
∑
α

ψα∇UαX|Uαs|Uα ∈ Γ(E) . (25)

Indeed, in view of the standard argument ψα∇UαX|Uαs|Uα ∈ Γ(E), although ∇UαX|Uαs|Uα ∈
Γ(Uα, E). Further, since the partition of unity is locally �nite, the sum over α does not

give rise to convergence problems, so that the RHS of (25) is actually a section in Γ(E). By

Lemma 1, the operator ∇ de�ned by (25), is indeed a covariant derivative, since
∑

α ψα = 1

and the ∇Uα are covariant derivatives.

The next result discloses the structure of the set C(E,M) of all covariant derivatives on a

vector bundle π : E →M .

Let ∇,∇′ ∈ C(E,M) and consider their naturally de�ned di�erence

∇′ −∇ : Γ(TM)× Γ(E) 3 (X, s) 7→ (∇′ −∇)Xs := ∇′Xs−∇Xs ∈ Γ(E) .

For all X ∈ Γ(TM), f ∈ C∞(M), and s ∈ Γ(E), we have

(∇′ −∇)X(fs) = ∇′X(fs)−∇X(fs) = (LXf)s+ f∇′Xs− (LXf)s− f∇Xs = f(∇′ −∇)Xs .

In other words, the di�erence ∇′ − ∇ is not only function-linear in X but also in s. Since

Γ(E) = LC∞(M)(Γ(E∗), C∞(M)), the di�erence ∇′ −∇, viewed as map

∇′ −∇ : Γ(TM)× Γ(E)× Γ(E∗)→ C∞(M) ,

is function-linear in all three variables. Hence,

∇′ −∇ ∈ Γ(T ∗M ⊗ E∗ ⊗ E) = Γ(T ∗M ⊗ End(E)) .

Indeed, since for a �nite-dimensional vector space V , we have V ∗ ⊗ V = L(V, V ) = End(V ),

we de�ne the endomorphism bundle End(E) by End(E) := E∗ ⊗ E.

Eventually we de�ned a subtraction

− : C(E,M)× C(E,M) 3 (∇′,∇) 7→ ∇′ −∇ ∈ Γ(T ∗M ⊗ End(E)) ,
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i.e., a subtraction on C(E,M) valued in the vector space Γ(T ∗M ⊗End(E)). Recall now that

if a subtraction `−' de�ned on a set A and valued in a vector space V satis�es Weyl's axioms

∀a ∈ A, ∀v ∈ V, ∃! a′ ∈ A : a′ − a = v ,

∀a, b, c ∈ A, (c− b) + (b− a) = c− a ,

the set A is an a�ne space modelled on the vector space V . It is straightforwardly checked

that the di�erence considered above satis�es these axioms, so that:

Theorem 3. The set of all covariant derivatives on a vector bundle π : E → M is an a�ne

space modelled on the vector space Γ(T ∗M ⊗ End(E)) of di�erential 1-forms on M valued in

the endomorphism bundle of E.

5.3 Coordinate form of a covariant derivative � connection 1-form

Let ∇ be a covariant derivative on a rank r vector bundle π : E → M . As explained in

Item 2 of Remark 6, the derivative ∇ can be localized to any open subset U ⊂M . Recall also

that if this localization

∇U : Γ(U, TM)× Γ(U,E) 3 (XU , sU ) 7→ ∇UXU sU ∈ Γ(U,E)

is computed, not on an arbitrary XU and sU but on restrictions XU = X|U and sU = s|U of

globally de�ned sections X ∈ Γ(TM) and s ∈ Γ(E), we have

∇UX|U s|U = (∇Xs)|U .

Let now U be a trivialization domain with trivialization Φ or, equivalently, with local frame

(σi)i . Any section sU ∈ Γ(U,E) can be decomposed in this frame,

sU =
r∑
i=1

siσi , (26)

with si ∈ C∞(U). We take now an interest in the coordinates of the section ∇UXU sU ∈ Γ(U,E),

which we denote in the following simply by ∇Xs. In view of (26) and (23), we obtain

∇Xs = ∇X
∑
i

siσi =
∑
i

(LXs
i)σi +

∑
i

si∇Xσi . (27)

Of course, the sections ∇Xσi ∈ Γ(U,E) can also be decomposed in the considered frame:

∇Xσi =
∑
j

A(X)
∣∣j
i
σj ,

where A(X)
∣∣j
i
∈ C∞(U). We thus get maps

A
∣∣j
i

: Γ(U, TM) 3 X 7→ A(X)
∣∣j
i
∈ C∞(U) ,
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which are C∞(U)-linear since the ∇Xσi are C∞(U)-linear in X. It follows that

A
∣∣j
i
∈ Γ(U, T ∗M) = Ω1(U) ,

i.e., that the A
∣∣j
i
are di�erential 1-forms on U . Finally A is an r × r matrix with entries in

Ω1(U). We also say that A is a di�erential 1-form on U with values in r × r matrices and

write

A ∈ Ω1(U)⊗ gl(r,R) .

Remember also that

A(X) ∈ C∞(U)⊗ gl(r,R) .

Having the matrix A at hand, we can rewrite Equation (27) as follows:

∇Xs =
∑
i

(LXs
i)σi +

∑
i

si
∑
j

A(X)
∣∣j
i
σj

=
∑
i

(LXs
i)σi +

∑
i

∑
j

A(X)
∣∣i
j
sjσi

=
∑
i

LXsi +
∑
j

A(X)
∣∣i
j
sj

σi .

This means that the coordinates of ∇Xs in the frame (σi)i are

LXs
i +
∑
j

A(X)
∣∣i
j
sj , i ∈ {1, . . . , r} .

The isomorphism (15) between sections of E over U and functions on U with values in the

typical �ber of E, is valid for a domain U of a local trivialization Φ or local frame (σi)i. We

therefore denote this isomorphism by Φ:

Φ : Γ(U,E) 3 s =
∑
i

siσi 7→ sΦ = (s1, . . . , sr) ∈ C∞(U)×r .

When writing now sΦ (resp., (∇Xs)Φ) for the coordinates of s (resp., ∇Xs) in the considered

trivialization Φ, we eventually obtain

(∇Xs)Φ = LX(sΦ) +A(X)sΦ . (28)

Theorem 4. Let ∇ be a covariant derivative or connection on a vector bundle π : E →M of

rank r. Locally, in a trivialization Φ of E over an open subset U of M , the connection reads

(∇Xs)Φ = LX(sΦ) +A(X)sΦ

(X ∈ Γ(U, TM), s ∈ Γ(U,E) ), where A is a matrix A ∈ Ω1(U) ⊗ gl(r,R) with entries in

di�erential 1-forms. This shows that locally in a trivialization a connection ∇ is completely

characterized by the 1-form A with values in matrices. We refer to A as the connection 1-form

of ∇ in the considered trivialization.
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5.3.1 Transformation rule for connection 1-forms � construction of a connection

from connection 1-forms

Recall that a vector v of an n-dimensional real vector space V has in every basis (ei)i of V
coordinates V = t(v1, . . . , vn), and that these coordinates transform according to the rule

V = AV ′ , (29)

where V and V ′ are the coordinates of v in a basis (ei)i and a basis (e′i)i, respectively, and

where A is the transition matrix from the basis (ei)i to the basis (e′i)i, i.e., the matrix whose

column j is made of the coordinates of e′j in the basis (ei)i .

Conversely, if we are given, for any basis of V, an n-tuple V of real numbers and if these

tuples satisfy the transformation rule V = AV ′, then these tuples are the coordinates of a

unique vector v ∈ V, i.e., the tuples de�ne a vector v. We can thus construct a vector from

tuples of real numbers that satisfy the transformation rule (29).

Similarly, a connection ∇ on a rank r vector bundle E has in every trivialization Φ of E

the coordinate form (28) characterized by its connection 1-form A. Our goal is to �nd the

transformation rule that allows passing from the connection 1-form Aβ in a trivialization Φβ

over an open subset Uβ to the connection 1 form Aα in a trivialization Φα over Uα .

In view of Theorem 4, we have

(∇Xs)Φα = LX(sΦα) +Aα(X)sΦα (30)

and

(∇Xs)Φβ = LX(sΦβ ) +Aβ(X)sΦβ (31)

(here X and s are de�ned on Uα ∪ Uβ). Recall the �ber coordinate transformation (9) in a

vector bundle:

sΦα = ηαβ s
Φβ and sΦβ = ηβα s

Φα , (32)

where ηαβ ∈ C∞(Uα ∩ Uβ,GL(r,R)) is an invertible matrix depending smoothly on m ∈
Uα ∩ Uβ and whose inverse is ηβα (the preceding equalities hold on Uα ∩ Uβ). Applying this

transformation rule to the �ber coordinates (∇Xs)Φα and (∇Xs)Φβ of the section ∇Xs, we
obtain

(∇Xs)Φα = ηαβ (∇Xs)Φβ . (33)

It follows from (33), (31), and (32) that

(∇Xs)Φα = ηαβ LX(sΦβ ) + ηαβ Aβ(X)sΦβ

= ηαβ LX(ηβα s
Φα) + ηαβ Aβ(X) ηβα s

Φα

= ηαβ LX(ηβα) sΦα + ηαβ ηβα LX(sΦα) + ηαβ Aβ(X) ηβα s
Φα

= ηαβ d(ηβα)(X) sΦα + LX(sΦα) + ηαβ Aβ(X) ηβα s
Φα ,

where we used the de�nition (20) of the Lie derivative of a function since the matrix ηβα is a

matrix of functions. When comparing now the latter result with the result (30), we �nd

Aα(X) sΦα = ηαβ d(ηβα)(X) sΦα + ηαβ Aβ(X) ηβα s
Φα ,
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and when omitting the variables X and sΦα , we �nally obtain the searched transformation

rule:

Aα = ηαβ d(ηβα) + ηαβ Aβ ηβα . (34)

The rule (34) for connections corresponds to the rule (29) for vectors. Just as we can

construct a vector from tuples V that satisfy the transformation rule (29), we can construct

a connection from connection 1-forms A that satisfy the transformation rule (34) (note that

(32) is actually the geometric variant of (29)).

Theorem 5. Let π : E → M be a vector bundle of rank r. If ∇ is a connection on E, the

connection 1-forms Aα and Aβ, which characterize ∇ locally in trivializations (Uα,Φα) and

(Uβ,Φβ), are related by the transformation rule

Aα = ηαβ d(ηβα) + ηαβ Aβ ηβα , (35)

where d is the de Rham di�erential of M , where ηαβ ∈ C∞(Uα ∩ Uβ,GL(r,R)) is the �ber

coordinate transition matrix from coordinates sΦβ to coordinates sΦα, and where ηβα = η−1
αβ .

Conversely, if Uα is a family of trivialization domains that cover M , if Aα ∈ Ω1(Uα)⊗gl(r,R)

is a family of connection 1-forms, and if this family satis�es the transformation rule (35), then

the local connections de�ned by the Aα can be glued so as to de�ne a unique connection ∇ on

E.

5.4 Induced covariant derivatives

We will explain that a covariant derivative ∇ on a vector bundle E → M induces a

covariant derivative on each tensor bundle ⊗pqE .

Induced covariant derivative on the dual bundle ⊗0
1E = E∗. A covariant derivative

∇∗ on E∗ is a map

∇∗ : Γ(TM)× Γ(E∗) 3 (X, t) 7→ ∇∗Xt ∈ Γ(E∗) , (36)

where

Γ(E∗) = LC∞(M)(Γ(E), C∞(M)) . (37)

Therefore, we must de�ne, for any s ∈ Γ(E), a function (∇∗Xt)(s) ∈ C∞(M) . We set

(∇∗Xt)(s) := LX(t(s))− t(∇Xs) ∈ C∞(M) . (38)

Note that we de�ned ∇∗ in a way that the Lie derivative of the interior product t(s) is given

by the Leibniz rule, i.e., in a way that

LX(t(s)) = (∇∗Xt)(s) + t(∇Xs) .

It is easily seen that the map ∇∗Xt de�ned by (38) is C∞(M)-linear in s, so that ∇∗Xt ∈ Γ(E∗)

in view of (37). We now have a map ∇∗ of the type (36) and must still prove that ∇∗ has the
two properties of a covariant derivative, i.e., that it is C∞(M)-linear in X and satis�es the

Leibniz rule with respect to ft. We leave these proofs as an exercise to the reader.
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Induced covariant derivative on the tensor bundle ⊗pqE. A covariant derivative ∇⊗

on ⊗pqE is a map

∇⊗ : Γ(TM)× Γ(⊗pqE) 3 (X,T ) 7→ ∇⊗XT ∈ Γ(⊗pqE) , (39)

where

Γ(⊗pqE) = LC∞(M)(Γ(E∗)×p × Γ(E)×q, C∞(M)) .

Let (t1, . . . , tp, s1, . . . , sq) ∈ Γ(E∗)×p × Γ(E)×q and de�ne

(∇⊗XT )(t1, . . . , tp, s1, . . . , sq) := LX(T (t1, . . . , tp, s1, . . . , sq))

−
p∑
i=1

T (t1, . . . ,∇∗Xti, . . . , tp, s1, . . . , sq)

−
q∑
j=1

T (t1, . . . , tp, s1, . . . ,∇Xsj , . . . , sq) .

This de�nition of ∇⊗ is based, as the above one of ∇∗, on the idea that the Leibniz rule should

hold for the Lie derivative of an interior product, here the product T (t1, . . . , tp, s1, . . . , sq) ∈
C∞(M). Further, the same checks as above are necessary here to show that ∇⊗ is indeed a

covariant derivative on ⊗pqE .

5.5 Christo�el's symbols

Let π : E →M be a vector bundle and let ∇ be a covariant derivative on E. Locally, in a

trivialization (U,Φ) of E, the connection ∇ is completely determined by its local connection

1-form A:
(∇Xs)Φ = LXs

Φ +A(X)sΦ .

Hence, the ith component of ∇Xs reads

(∇Xs)i = LXs
i +A(X)

∣∣i
k
sk . (40)

We now further reduce the data needed for the complete local determination of ∇. Therefore,
let ϕ : U 3 m 7→ x = (x1, . . . , xn) ∈ ϕ(U) be a coordinate system of M in the trivialization

domain U of Φ (it su�ces to reduce U if necessary). The vector �eld X (which is de�ned in

U) then reads X =
∑

j X
j∂xj and, since

(∇Xs)i =
∑
j

Xj(∇∂
xj
s)
i ,

it is enough to know the components (∇∂
xj
s)i, which are given by

(∇∂
xj
s)i = ∂xjs

i +A(∂xj )
∣∣i
k
sk ,

where we identi�ed the derivation L∂
xj
∈ Der(C∞(U)) with the vector �eld ∂xj ∈ Γ(U, TM),

as we often do2. It follows that:
2Actually ∂xj is a derivation viewed as vector �eld, i.e., ∂xj is in fact L−1

∂
xj
, so that L∂

xj is in fact L
L−1

∂
xj

= ∂xj .
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Proposition 4. A covariant derivative ∇ on a vector bundle E →M is, in the domain U of

a trivialization Φ of E and a chart ϕ of M , completely de�ned by the functions A(∂xj )
∣∣i
k
∈

C∞(U). For E = TM , these functions are referred to as Christo�el's symbols and they are

denoted by Γijk:

Γijk := A(∂xj )
∣∣i
k
. (41)

Over U , we then have

(∇∂
xj
s)i = ∂xjs

i + Γijks
k . (42)

5.6 Christo�el's symbols in Mathematical Physics

5.6.1 Christo�el's symbols as trivial connection

Formula (42) is actually known from elementary Mathematical Physics. To see this, con-

sider the vector bundle E = TR2 ' R2 × R2. Recall that any coordinate system x = (x1, x2)

of R2 � the canonical system of cartesian coordinates, the system of polar coordinates ... �

induces the frame ∂x = (∂x1 , ∂x2) of the tangent bundle TR2 made of the vector �elds

∂xj = ∂xj |x .

It follows that any section s ∈ Γ(E), i.e., any vector �eld s ∈ Γ(TR2) reads

s =
∑
k

sk∂xk ,

where both, the component functions sk and the �elds ∂xk depend (smoothly) on x. This

aspect should be kept in mind! Since the considered bundle TR2 ' R2 × R2 is trivial, we

choose on TR2 the trivial covariant derivative ∇ given by the Lie derivative L and compute

as in Equation (42) the component

(∇∂
xj
s)i = (L∂

xj
s)i = (∂xjs)

i .

Without any knowledge of vector bundles and covariant derivatives, one gets in elementary

courses

∂xjs = ∂xj (s
k∂xk) = (∂xjs

k)∂xk + sk∂xj (∂xk)

and

(∂xjs)
i = ∂xjs

i + sk∂xj (∂xk)
∣∣i . (43)

Since the derivative ∂xj (∂xk) of the vector �eld ∂xk is again a vector �eld, one can decompose

the latter in the frame of the partial derivatives and one sets

∂xj (∂xk) =
∑
i

Γijk∂xi ,

so that the coordinate function ∂xj (∂xk)
∣∣i is

∂xj (∂xk)
∣∣i = Γijk . (44)
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Combining (43) and (44), one obtains that

(∂xjs)
i = ∂xjs

i + Γijks
k ,

refers to ∂xjs as a covariant derivative, uses the notation ∇∂
xj
s instead of ∂xjs, and �nally

writes

(∇∂
xj
s)i = ∂xjs

i + Γijks
k ,

which is the same equation as (42). The preceding computation is the origin of covariant

derivatives. In Equation (42), we recover this origin as a local aspect of our general theory of

connections on vector bundles.

5.6.2 Christo�el's symbols in cartesian and polar coordinates

We compute Christo�el's symbols Γijk for the trivial covariant derivative L on the trivial

bundle TR2 ' R2×R2 in cartesian and polar coordinates of R2 (and the corresponding frames

of TR2).

Cartesian coordinates. Let x = (x1, x2) be the canonical cartesian coordinates of R2. The

corresponding frame ∂x = (∂x1 , ∂x2) of TR2 is, in view of its de�nition

∂xi |m = (Tmϕ)−1(ei)

in the case of an arbitrary smooth n-dimensional manifoldM (where ϕ is a chart ofM around

m and (ei)i is the standard basis of Rn) and in view of the fact that the chart ϕ is in our case

M = R2 the global chart ϕ = id, given by

∂xi |x = ei

(points of M = R2 are not denoted by m but by x). Since the basis (e1, e2) = ((1, 0), (0, 1)) is

constant with respect to x, we obtain

Γijk = ∂xj (ek)
∣∣i = 0 ,

i.e., for the trivial connection of TR2 all Christo�el symbols vanish in cartesian coordinates.

Polar coordinates. Let (r, θ) be the polar coordinates of R2, given by x1 = r cos θ, x2 =

r sin θ (these are not really global coordinates, but are coordinates in the open subset U =

R2 \ [O, e1); see Figure: Polar Coordinates). The chain rule provides the decomposition of

the corresponding frame (∂r, ∂θ) of TR2 in the frame (∂x1 , ∂x2) = (e1, e2) of the preceding

paragraph: (
er
eθ

)
:=

(
∂r
∂θ

)
=

(
∂rx

1

∂θx
1

)
∂x1 +

(
∂rx

2

∂θx
2

)
∂x2 ,

so that
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(r, θ)

∂r =: er

∂θ =: eθ

x1

x2

r

θ

e1

e2

Figure 4: Polar coordinates

(
er
eθ

)
=

(
cos θ

−r sin θ

)
e1 +

(
sin θ

r cos θ

)
e2 .

These decompositions show that ∂r = er = er(θ) and that ∂θ = eθ = eθ(r, θ) are, in contrast

with ∂x1 = e1 and ∂x2 = e2, not constant. It follows that

Γθrθ = ∂r(eθ)
∣∣θ = ∂r(−r sin θe1 + r cos θe2)

∣∣θ = (− sin θe1 + cos θe2)
∣∣θ =

1

r
eθ
∣∣θ =

1

r
.

The other Christo�el symbols are obtained similarly:

Γθrθ = Γθθr =
1

r
, Γrθθ = −r, and Γθrr = Γθθθ = Γrrr = Γrrθ = Γrθr = 0 .

5.7 Transformation rule for Christo�el's symbols

Let π : TM → M be the tangent bundle of an n-dimensional manifold M and let ∇ be a

covariant derivative on TM . Any coordinate system (U, x) of M implements a frame (U, ∂x),

or, equivalently, a trivialization (U,Φ) of TM , and the connection ∇ is in U completely de�ned

by its Christo�el symbols Γijk = Γijk(x) ∈ C∞(U).

In Di�erential Geometry and Mathematical Physics, it's well-known that such packages of

functions Γijk, Γ′abc ... obtained in di�erent frames ∂x, ∂x′ ... (induced by di�erent coordinate

systems x, x′ ...) de�ne a (unique) (1, 2)-tensor �eld, if they transform into each other via the

(1, 2)-tensor rule

Γijk = AiaA
′b
j A
′c
k Γ′abc , (45)

where A is the transition matrix from the frame ∂x to the frame ∂x′ , whereas A
′ is the inverse

of A. Column j of the transition matrix A is made of the components of the new frame
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vector ∂x′j in the old frame ∂x. Since ∂x′j = ∂x′jx
i∂xi , we see that Aij = ∂x′jx

i, or, still,

that A = ∂x′x is the Jacobian matrix of the di�eomorphism or coordinate transformation

x = x(x′) � x′ = x′(x). Hence, the inverse matrix A′ is given by A′ = ∂xx
′. The (1, 2)-tensor

�eld transformation condition (45) thus reads

Γijk = ∂x′ax
i∂xjx

′b∂xkx
′cΓ′abc , (46)

or, completely precisely,

Γijk(x) = ∂x′ax
i|x′=x′(x) ∂xjx

′b ∂xkx
′c Γ′abc(x

′(x)) .3 (47)

However, this transformation condition cannot hold for Christo�el's symbols. Indeed, the com-

putations of Subsection 5.6.2 show that, in the case of the trivial connection of TR2, Christof-

fel's symbols Γ′abc in cartesian coordinates (and the corresponding frame of partial derivatives

or the corresponding trivialization Φβ) vanish, whereas the three Christo�el symbols Γijk in

polar coordinates (and the corresponding frame of partial derivatives or the corresponding

trivialization Φα) with exactly two θ-indices don't vanish. However, would the condition (46)

be satis�ed, the annihilation of all the Γ′abc would imply the annihilation of all the Γijk � what

is not the case. Hence, Christo�el's symbols don't satisfy the condition (46) and are thus not

tensorial, i.e., they are not the components of a (1, 2)-tensor �eld.

We establish now the correct transformation rule for Christo�el's symbols. By de�nition,

Γijk = Aα(∂xj )
∣∣i
k

and Γ′abc = Aβ(∂x′b)
∣∣a
c
, (48)

where x and x′ refer to the considered coordinate systems ofM and the superscripts α and β to

the corresponding trivializations Φα and Φβ of TM . The transformation rule for Christo�el's

symbols is a direct consequence of the transformation rule for connection 1-forms:

Aα = ηαβd(ηβα) + ηαβAβηβα .

Recall that over a trivialization domain U of a rank r vector bundle E → M that is

also a chart domain of the underlying n-dimensional manifold M , the elements s ∈ E over

U are characterized by their base coordinates x ∈ Rn and their �ber coordinates S ∈ Rr,
and that the transformation of these coordinates for two such domains U and U ′ is given by

x = x(x′) � x′ = x′(x), for the base coordinates, and by

Sα = ηαβ(x)Sβ , (49)

with ηαβ(x) ∈ GL(r,R), for the �ber coordinates.

In the case E = TM that we consider here, any coordinate chart x on U induces a

trivialization Φα or frame ∂x over U , so that an element s ∈ TM over U ∩ U ′ reads

s = Sα,i∂xi = Sβ,j∂x′j = Sβ,j∂x′jx
i∂xi .

3If x (resp., x′) are the coordinates of a system (U,ϕ) (resp., (U ′, ϕ′)), the transformation di�eomorphism

ϕ′ϕ−1 : x 7→ x′(x) is de�ned on ϕ(U ∩ U ′) and the condition (47) must thus hold in ϕ(U ∩ U ′).
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This means that Sα,i = ∂x′jx
iSβ,j , or, still, that

Sα = ∂x′xS
β ,

so that the comparison with (49) shows that, in the case E = TM , we have ηαβ = ∂x′x and

ηβα = η−1
αβ = ∂xx

′. Therefore,

Γijk = Aα(∂xj )
∣∣i
k

= [(∂x′x)d(∂xx
′)(∂xj )]

∣∣i
k

+ [(∂x′x)Aβ(∂xj )∂xx
′]
∣∣i
k

= ∂x′ax
id(∂xx

′)(∂xj )
∣∣a
k

+ ∂x′ax
iAβ(∂xj )

∣∣a
c
∂xkx

′c

= ∂x′ax
i∂xj∂xkx

′a + ∂x′ax
iAβ(∂xj )

∣∣a
c
∂xkx

′c .

In view of Equation (48), we write

Aβ(∂xj )
∣∣a
c

= Aβ(∂xjx
′b∂x′b)

∣∣a
c

= ∂xjx
′bAβ(∂x′b)

∣∣a
c

= ∂xjx
′b Γ′abc ,

where we used the fact that the connection 1-form is function-linear. We have thus the fol-

lowing proposition, which is similar to Theorem 5:

Proposition 5. Consider the tangent bundle TM of a manifold M . If ∇ is a connection on

TM , Christo�el's symbols of ∇ in two coordinate systems x and x′ of M (and in the induced

trivializations ∂x and ∂x′ of TM) satisfy the transformation rule

Γijk = ∂x′ax
i ∂xjx

′b ∂xkx
′c Γ′abc + ∂x′ax

i ∂xj∂xkx
′a . (50)

Equation (50) is the tensor rule (46) corrected by the second term of the RHS. It proves that

Christo�el's symbols are not the components of a tensor �eld. Conversely, if Uα is a family of

coordinate domains that covers M , if (Γα)ijk ∈ C∞(Uα) is a family indexed by α of packages

of functions indexed by i, j, k, and if this family of packages satis�es the transformation rule

(50), then the local connections of TUα, which are de�ned by the Γα via (42), can be glued so

as to de�ne a unique connection ∇ on TM .

6 Remark

The second part of the lecture notes is not displayed in this reading sample...


