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1 Informations générales

Titulaires : Norbert Poncin et Mourad Ammar

Contact : Toute question relative au cours peut étre adressée par email a norbert.poncin @uni.
lu ou 2 mourad.ammar@uni.lu

Lecons par semestre : 90

Crédits ECTS : 7 en filiere ‘mathématiques’, 6 en filiere ‘physique’
Langue d’enseignement : Francais

Type d’enseignement : Cours magistral et travaux dirigés

Evaluation : Examen écrit (examen oral, si le nombre d’étudiants en permet 1’organisation
pratique)

Niveau : Semestre 1
Compétences et contenu :

Le cours de Mécanique est aussi bien un cours de Mathématiques appliquées qu’un cours
de Physique théorique. Outre 1’assimilation de cette formation de base a la Physique, les
objectifs a atteindre sont les suivants. Apprendre a maitriser les compléments aux autres
cours de Mathématiques, enseignés a partir d’un point de vue intuitif et imagé. Se familiariser
avec I’utilisation pratique de 1’outillage mathématique abstrait. S’initier a la modélisation
mathématique. Intérioriser des concepts mathématiques généraux construits graduellement a
partir de situations concretes. Participer activement a un enseignement notamment grace aux
applications proposées.

Partie 1

1. Introduction mathématique a la Mécanique

2. Cinématique du point

3. Dynamique du point (référentiels inertiaux et non-inertiaux)
4. Intégrales premieres, diagramme du potentiel, plan de phase

5. Problemes classiques tels que particules chargées dans un champ électromagnétique,
mouvements planétaires, marées, satellites, pendule de Foucault, ...
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Partie 2

1. Cinématique et Statique du solide
2. Dynamique des systemes de points et des solides, tenseur d’inertie, ellipsoide d’inertie

3. Problemes classiques tels que probleme de Lagrange-Poisson, mouvements de la Terre,
boule de billard, ...

Support : Notes de cours

Préparation des cours : Il est recommandé aux étudiants de préparer les themes de chaque
séance avant le cours y relatif, en lisant attentivement la partie correspondante des notes de
cours.






Chapitre 1

Introduction mathématique a la Mécanique

Sauf mention explicite du contraire, nous nous placerons dans 1’espace vectoriel réel
tridimensionnel E des vecteurs de 1’espace ambiant (dans lequel une unité de longueur a
été choisie).

1 Algebre vectorielle

1.1 Produit scalaire

Définition 1. On appelle norme || i || ou module u d’un vecteur i € E, la longueur de ce
vecteur.

Les propriétés d’une norme sont bien connues et ne seront pas rappelées.

Définition 2. Soient i,V € E. Si ces vecteurs sont tous les deux non nuls, leur produit
scalaire U.V est défini par
uv=uvcos0 € R,

ou 0 désigne ’angle formé par les deux vecteurs. Si l’'un au moins des vecteurs est nul,
leur produit scalaire est nul.

Notons qu’ici 0 peut étre n’importe lequel des deux angles (ou méme des quatre, si
I’on tient compte des signes) definis par i et V.

On sait que ce produit scalaire est une forme bilinéaire symétrique définie positive:
Proposition 1. Soient ii,V,i;,v; € E et ¢; € R. Le produit scalaire est

e d valeurs réelles
uveR,
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e bilinéaire

et

o symétrique

e et défini positif

Il est clair que
Uv=0<=ulv (1)
et que
=1 )*=1.
Ainsi, le triplet de vecteurs (€1,€5,¢3) est une base othonormée (BON) si et seulement si
¢;.€;=0,Vi# jeté;.é; =1,Vi= j. Le symbole de Kronecker &;; défini par

6ij = " S? l 7&]:
I,sti=
rend les calculs plus élégants et les écritures plus compactes. Ainsi, (€1,¢;,€3) est une
BON si et seulement si
gpéiZZSU,VLj.

On obtient alors facilement 1’expression du produit scalaire et de la norme dans une
BON. Nous désignerons les composantes d’un vecteur # dans une base donnée systéma-
tiquement par (uy,un,uz)
€ R3. Sila base est (¢1,¢,,&3), ceci signifie que

Donc

ol nous avons utilisé la bilinéarité du produit scalaire et le caractere orthonormé de la
base. Comme la norme s’exprime moyennant le produit scalaire, #?> = (i#)?, on en déduit
de suite I’expression de la norme dans une BON.
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Proposition 2. Dans toute BON,
iV =Y uy; ()
et

u= Z(ui)z. 3)

Remarque 1. Sauf mention explicite du contraire, toutes les bases considérées dans la
suite seront des BON.

1.2 Produit vectoriel

Les notions de base directe (droite, positive) et de base indirecte (gauche, negative)
sont supposées connues.

Définition 3. Soient i,V € E. Si ces vecteurs ne sont pas colinéaires, le produit vectoriel
NV de i parV a la direction orthogonale au "plan" défini par u et V, est de module

N anv{|=[[@][[| V]|]sin6 [>0

(0: angle formé par ii et V) et son sens est tel que le triedre (i, V,u A\V) soit direct. Si i et
V sont colinéaires, leur produit vectoriel est nul.

On remarquera que

#AV=0<= i etV sont colinéaires, 4)

résultat qu’on comparera a (1),
e le produit vectoriel # AV est orthogonal a chacun des deux facteurs i et V,

e dans la définition du module || # AV || on peut supprimer la valeur absolue, si 1’on
convient de choisir 6 €]0, 7|,

e le module || # AV || coincide avec 1’aire du parallélogramme construit sur # et V,
e le sens de i A\ V peut étre déterminé a 1’aide de la régle du tire-bouchon,

e si ’on change I’orientation de 1’espace, i.e. si I’on appelle directes (respective-
ment indirectes) les précédentes bases indirectes (respectivement directes), le pro-
duit vectoriel change de signe.
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Le produit vectoriel changeant de signe, si I’orientation de 1’espace change, il ne s’agit
que d’un pseudo-vecteur ou vecteur axial. Par opposition, un vecteur ordinaire est parfois
appelé vecteur polaire.

Rappelons que le produit vectoriel est une multiplication bilinéaire et antisymétrique:
Proposition 3. Soient ii,Vv,i;,V; € E et ¢c; € R. Le produit vectoriel est

e a valeurs "vectorielles"”
UNve'"E",

e bilinéaire

et

e et antisymétrique

<y
>
<

VAUl = —

Soit a présent une base orthonormée directe (BOND) (€,¢;,€3). On vérifie aisément
que

eiNne; =0 é1Néy =¢é3 ey Né3 = —ér
érNég = —¢é3 érNér =0 érNész = ¢
é3Né| =é é3Néy =—¢e; é3Néz =0.

On notera que dans les résultats €] A é, = €3,6; N\ €3 = €1,é3 A\ é] = €, les indices appa-
raissent dans 1’ordre naturel. Les neuf relations ci-dessus peuvent étre condensées en une
seule, grace au symbole de Levi-Civita & (i, j,k variant comme toujours dans {1,2,3})
défini par

0, si deux au moins des indices i, j, k sont égaux,
& jk = { 1, siles indices i, j, k apparaissent dans 1’ordre naturel,

—1, sinon.
On vérifie que les neuf égalités se résument alors par

GiNE =Y € i, Vi,]. (5)
P
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Ceci étant, I’expression du produit vectoriel dans une BOND s’obtient comme suit,
les notations €tant les notations habituelles.

UNV :Zijuivj (Z,'/\é}')
= Yijk €ijkttiv j€k
=Yk (Zij EijkliV ) €k
= (upv3 —u3v2)€1 + (u3vy —u1v3)ér + (u1va — upvy)€3.

Les trois composantes dans une BOND du produit vectoriel s’obtiennent donc a partir des
composantes des deux facteurs

up uz uj

vi v2 vz )’

en biffant dans ce tableau successivement les trois colonnes et en prenant les déterminants
restants précédés des signes +, —, + respectivement.

Proposition 4. Dans toute BOND,

UNV = Z Si.jkl/tl'vj'gk. (6)
ijk

Remarque 2. Sauf mention explicite du contraire, toutes les bases considérées dans la
suite seront des BOND.

1.3 Produit mixte

Définition 4. On appelle produit mixte des vecteurs i, v, w, le pseudo-scalaire (i \V).w .

Les propriétés du produit mixte découlent de son expression dans une BOND. Comme

—

(UAV).W = (upv3 —uzva)wy + (uzvi —ugva)wa + (uvy — upvy)ws,
onala
Proposition 5. Dans toute BOND,

U Uy U3
(ﬁ/\V).vT/: vi Vo vy |. (7
wip wa w3

Vu les propriétés des déterminants, on en déduit la

—

Proposition 6. Pour tous vecteurs i, v et w,
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(d AV). W =0 <= U,V et W sont coplanaires. (8)
e Un produit mixte est invariant par permutation circulaire (paire),
(EAV) W= VAW).ii=(WAuU).V
et
(VAU).w= (HAW).V = (WAV).i,

mais deux produits quelconques de la premiéere et seconde lignes respectivement,
Sont opposés.

On comparera (8) aux résultats (1) et (4).
Le produit mixte admet une intéressante interprétation géométrique:

e La valeur absolue du produit mixte (i A V).w est égale au volume du parallélépipede
construit sur les vecteurs i, V et w.

e Le produit mixte (i AV).w est strictement positif (respectivement strictement né-
gatif) si et seulement si le triplet (i, V, w) est une base directe (respectivement indi-
recte).

Le produit mixte permet d’obtenir des relations utiles entre les symboles de Levi-
Civita et de Kronecker. Considérons une base (orthonormée directe) (€},;,¢3) et notons
que &; se décompose sous la forme &; =} ; §;;¢;. D’un coté, I’équation (6) donne

(51' A gj)-gk = &jjk-

De 'autre,
o1 On O
(giAZj).gk: 5j 5j2 5j3
o1 &2 O

Etant donné qu’un déterminant est invariant par transposition et que &;10,1 + 06,2 +
0in 6,3 = &;.é, = &, on obtient

Oir Ois O
EijkErst = 6]' 5]' 5]'
Or Oks On

Ceci étant, on vérifie sans peine les trois relations suivantes:

Proposition 7. On a
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Zgijkgrsk = 6ir6js - 5is6jra ©)
k

Y &gk =26,
ik

Y &iju€ije = 6.
ijk

1.4 Double produit vectoriel

Définition 5. On appelle doubles produits vectoriels, les vecteurs (polaires) (i \V) AW
etu N(VAW), i,v,w € E.

En appliquant deux fois de suite (6), puis (9) et (2), on trouve la
Proposition 8. On a

WA (FAW) = (id.i9) V — (il.7) .

Ces relations simplifient les doubles produits vectoriels. La seconde se déduit de la
premiere. Elles montrent que le double produit vectoriel n’est pas associatif ! On peut les
mémoriser comme suit: Le double produit vectoriel est égal au vecteur du milieu multiplié
par le produit scalaire des deux autres vecteurs, moins [’autre vecteur de la parenthese
multiplié par le produit scalaire des deux autres.

2 Dérivation et différentiation

2.1 Fonctions scalaires et vectorielles

Une fonction scalaire (respectivement vectorielle) de variables scalaires x,y,... € R
est un scalaire s(x,y, ...) (respectivement un vecteur V¥(x,y, ...)) univoquement défini pour
tout uplet (x,y,...) dans un certain domaine.

Afin de simplifier I’exposé, nous nous limitons d’abord aux fonctions d’une seule vari-
able scalaire, notée ¢ et pouvant étre interprétée comme étant le temps. Soient une fonction

vectorielle V(z) et une base (€1,¢;,€3) indépendante de t. La dérivée %\7 ou simplement



Cinématique du point; np2008 12

d;V ou—si t est effectivement le temps—méme ¥, étant définie comme d’habitude, on
constate facilement que si V(z) = Y, v;(¢)é;, alors
dt\_} = Z (d,v,-) E,'.

1

2.2 Théoremes de dérivation

Dans ce cours de Mécanique, toutes les fonctions sont systématiquement supposées
indéfiniment continiment dérivables (ou du moins suffisamment dérivables pour garantir
le sens des expressions écrites).

Les regles de dérivation usuelles se généralisent des fonctions scalaires aux fonctions
vectorielles. Ainsi, tous les produits de vecteurs et le produit s(¢)v(¢) d’un scalaire et d’un
vecteur se dérivent conformément a la regle de Leibniz. Pour le produit mixte de trois
fonctions i(t), ¥(t) et w(z) par exemple, on a

dy (i AV).#) = ((dii) AT). 0+ (@A (d5)) 5+ (i AT).(dF).

Rappelons la version mathématique du théoreme de dérivation d’une fonction com-
posée,
(gof) =(g'of) 1, (10)
ou "prime" désigne I’opération de dérivation. Considérons a présent trois grandeurs ¢, 7, v,
telles que r = r(¢) et v =v(r) et dérivons la fonction composée v = v(r(¢)). Il découle de
(10) que
div=d;(v(r(t))) =d,v dir. (11)

En vue de généraliser cette version physique du théoreme de dérivation des fonctions
composées, imaginons des grandeurs ¢, 7, s, V, telles que r = r(t), s = s(t) et v =¥(r,s). La
dérivée de la composée vV = V(r(t),s(t)) est alors donnée par

div =d; (¥(r(t),s(t))) = 0,V dir+ 0,V dys, (12)

ou la différence entre une dérivée totale et une dérivée partielle est supposée connue. Les
résultats (11) et (12) expriment que les fonctions composées se dérivent a 1’aide de la
regle en chaine.

La forme mathématique du théoreme de dérivation des bijections inverses se lit
| / o 1
(f ) o f/ o f—l ’
Si r et s sont des grandeurs telles que r = r(s) et si cette relation s’inverse en s = s(r), on
obtient immédiatement I’ écriture

(13)

1
drsza
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de (13) utilisée en Physique. Elle exprime que la dérivée de I’inverse est l’'inverse de la
dérivée.

Remarquons pour terminer que la dérivée d’un vecteur de norme constante est or-
thogonale a ce vecteur. De fait, si V(¢) est de norme || ¥(¢) || constante, on a 0 = d;(V.V) =
2V.(d;V). D’ou la these.

2.3 Différentielle

Considérons une fonction s = s(¢), notons 7 la valeur initiale de la variable 7 (double
emploi!) et désignons par At un accroissement infinitésimal (non nul) de la variable a
partir de cette valeur initiale. La différence

s(t+Ar) —s(t)
At

_ ) = % _ ) = e(Ar)

tend évidemment vers 0 avec 1’accroissement Af. On en déduit que
As =5'(t) At + At €(At). (14)

Posons ds := s'(t) Ar. L’application de cette définition 2 la fonction s = s(t) = ¢ donne
dt = At, si bien que la précédente définition prend sa forme finale:

Définition 6. Soient une fonction s = s(t), une valeur initiale t de sa variable et un ac-
croissement At de cette variable. On appelle alors différentielle de s et on note ds le
produit

ds=s'(t)dt

de la dérivée de s évaluée en la valeur initiale de la variable par de la différentielle
dt = At de la variable, donnée par I’accroissement de la variable.

Ainsi, I’équation (14) s’écrit
As = ds+ At €(At).

En négligeant I’infiniment petit Ar £(At) d’ordre supérieur a 1 en At par rapport a I’infini-
ment petit ds = s'(¢) At du premier ordre, on obtient

As ~ ds. (15)

En d’autres termes, la différentielle ds de s est ’accroissement As = s(f + At) — s(t) de
s (résultant d’un accroissement infinitésimal A¢ de t), calculé au premier ordre en A¢. De
maniere plus courte: la différentielle est un petit accroissement calculé au premier ordre.
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Voila I’aspect essentiel de la différentielle en Mécanique.

La définition de la différentielle et sa principale propriété (15) se généralisent sans
probléme. Ainsi, pour une fonction s = s(xy,...,x,) par exemple, on pose

ds = Zaxis dx;,
i

ou les dérivées partielles sont évaluées sur les valeurs initiales des variables et ou les
différentielles des variables représentent les petits accroissements de ces variables.

3 Gradient, divergence, rotationnel

On sait qu’un champ de vecteurs est un vecteur v = V(P) qui est fonction du point
P de I’espace (ou d’une région de 1’espace) ou on le considere. De méme un champ de
scalaires ou champ scalaire est un scalaire s = s(P) qui dépend point ol on I’évalue. Si
I’on fixe un repere (orthonormé) (RON) (0O, €, é;,¢3), ces champs peuvent étre considérés
comme des fonctions des coordonnées x = (x1,x2,x3) de P: vV = V(x) = V(x,x2,x3) et
s = s(x) = s(x1,x2,x3). Les définitions du gradient, de la divergence et du rotationnel sont
particulicrement agréables, si 1’on utilise I’opérateur de dérivation

V=Y e (16)

On remarquera que V n’est pas a vrai dire un vecteur, mais un vecteur-opérateur, double
nature qui est parfois responsable d’erreurs.

3.1 Gradient

_>
Définition 7. Le gradient (V s)(P) d’un champ scalaire s en un point P est défini par
_> —
(V5)(P) =) (9s9) (xp)e;, (17)
i

ou xp désigne le triplet des coordonnées de P.

On peut vérifier que cette définition est indépendante du RON considéré. Le gradient
est donc un ogérateur différentiel qui transforme un champ de scalaires s(P) en un champ
de vecteurs (V s)(P). Comme il est du premier ordre, il est naturel qu’on ait la

Proposition 9. Si r et s désignent deux champs scalaires,
- - =
V(r+s)=Vr+ Vs

?(rs) = (?r)s + r(?s).
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En vue de découvrir I’interprétation physique du gradient, nous commengons par ex-
primer la différentielle et la dérivée directionnelle d’un champ s en fonction de son gradi-
ent.

Proposition 10. Soient un champ scalaire s, une valeur initiale P de sa variable et un
accroissement dP de cette variable. La différentielle ds de s est alors donnée par

ds = (Vs)(P).dP.

De fait, si I’on se donne un RgN et si xp et (dxy,dxy,dx3) sont le triplet des coordon-
nées de P et les composantes de dP respectivement, on a

= —

ds = Z(axis) (xp)dx; = (Vs)(P).dP.

1

Proposition 11. La dérivée (dys)(P) d’un champ scalaire s dans la direction d’un vecteur
unitaire V en un point P est donnée par

—> —
(dys)(P) = (Vs)(P).V . (18)
On notera que dans un systeme d’axes cartésien (RON) ce résultat se lit

d;}S = Z v,-c?xl.s,
i

ol nous avons supprimé le point P.
Rappelons d’abord que la dérivée de s au point P dans la direction de Vv, définie
évidemment par .
(dys) (P) :}lli_r{(l) s(P—l—h\}? s(P)
(a condition que cette limite existe et soit finie), mesure au point P I’'importance de la
variation de s dans la direction de V. Comme

s(P+hv)—s(P) = ds+he(h)
— (V5)(P).hV +he(h)

(h ~0), le résultat est immédiat.

Relions a présent tous les points P ol le champ s = s(P) a une méme valeur. Nous
obtenons alors généralement des surfaces appelées surfaces de niveau de s (voir figure 1
de I’annexe). .

Considérons d’abord 1’accroissement s(P + dP) — s(P) de s résultant d’un accroisse-
ment infinitésimal cﬁ’ tangent en P a la surface de niveau passant par P. Au premier ordre,
cet accroissement de s est nul et égal a ds. Donc,

%
P.

0=ds=(Vs)(P).d (19)



Cinématique du point; np2008 16

Prenons maintenant un accroissement infinitésimal dP’ normal en P a la surface de niveau
et dirigé dans le sens des s croissants. Alors

= —
0<ds=(Vs)(P).dP'. (20)
In découle des équations (19) et (20) que I'on a la

%
Proposition 12. Le gradient (V s)(P) est normal en P a la surface de niveau de s passant
par P et pointe dans le sens des s croissants.

Le vecteur V étant unitaire, I’équation (18) implique que
%
[ (ds)(P) |= [[(V)(P)|| | cos® |,

= = ., .
0 € [0, 7] étant ’angle formé par (Vs)(P) et V. Par conséquent, en P la variation de s
dans la direction de V est maximale, si V est colinéaire a (V s)(P):

%
Proposition 13. La direction du gradient (V s)(P) est en P la direction du plus grand
changement de s.

3.2 Divergence, formule de Gauss-Ostrogradski

%
Définition 8. La divergence (V .V)(P) d’un champ de vecteurs vV en un point P est donnée
par

(V.5)(P) = ¥ (i) (xp), @)

i

ou xp représente les composantes de P.

Nous admettons que le second membre de (21) dépend uniquement de v et de P et non
du RON considéré. La divergence est un opérateur différentiel dg) premier ordre qui trans-
forme un champ de vecteurs V(P) en un champ de scalaires (V .V)(P). La proposition
suivante est facile a vérifier.

Proposition 14. Si s est un champ scalaire et V,w sont des champs vectoriels, on a
V.(V+w)=V.¥+V.w

et
- - -
V.(sV¥)=(Vs).V+s(V.V).
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Insistons sur le fait que les notions suivantes ne sont développées qu’avec la rigueur
qui est de mise dans un cours élémentaire de Mécanique.

En vue d’expliquer la signification physique de la divergence, considérons un élément
de surface dS et désignons par P un point de dS et par 7(P) un vecteur unitaire normal a dS
en P. Imaginons un fluide en régime permanent traversant dS a la vitesse v(P). On appelle
flux du fluide a travers dS et on note d.% le volume (éventuellement négatif) de fluide
traversant dS par unité de temps (voir figure 2 de I’annexe). Comme d.# = V(P).7i(P) dS,
le flux .# du fluide a travers une surface finie S orientable et orientée (par le choix cohérent
en chaque point P d’un vecteur unitaire normal 7i(P)) est donné par

F— /S 3(P).7(P) dS.

D’ou la définition suivante valable pour tout champ de vecteurs, vitesse de fluide ou non:

Définition 9. Soient un champ de vecteurs V et une surface orientée S placée dans ce
champ. On appelle flux de vV a travers S, 'intégrale

/ 3(P).7i(P) dS,
S

\ =

ou ii(P) désigne le vecteur unitaire normal a S en P.

Evaluons le flux d’un champ V(P) a travers la surface d’un parallélépipede infinitési-
mal orientée de maniére que 7(P) soit en tout point dirigé vers I’extérieur (voir figure 3).
Le flux a travers la surface (PQRS) vaut

V(x1,x2,x3). (—€1) dxpdxs = —vi(x1,x2,x3) dxodx3
et celui a travers (P'Q'R’S’) est donné par

V(Xl —|—dX1,X2,X3).e_i dXQdX3 = (V(xl,XQ,)@) + (8xl \7)()61,)62,)63) dxl) .51 dedXQ,
= V1()C1,)C2,)C3) dxrdxs + (8xlv1)(x1,x2,x3) dx1dx>dxs.

Ainsi, si nous notons dV = dxjdxadxz le volume du parallélépipede, le flux a travers sa
surface est égal a
—> —
dF = (V.V)(P)dV.

Soit maintenant un volume fini V limité par une surface fermée S orientée par la normale
extérieure. Décomposons V' en une infinité de parallélépipedes infinitésimaux. La somme
des flux élémentaires a travers tous ces parallélépipedes est égale au flux a travers S,
car les flux a travers deux surfaces élémentaires adjacentes se compensent, les vecteurs
unitaires normaux étant opposés. Finalement, on a le
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Theoreme 1. Si un volume V limité par une surface fermée S orientée par la normale
extérieure 1i(P), est placé dans un champ de vecteurs V(P), on a

%
/ (V.5)(P) aV = 7( 3(P).7i(P) dS. (22)
Vv S
Ce résultat porte le nom de formule de Gauss-Ostrogradski. Elle permet de voir que

(23)

ou V désigne un volume contenant P et limité par la surface S. Si V(P) représente encore
la vitesse d’écoulement d’un fluide, la divergence de v au point P est donc le volume
de fluide traversant par unité de temps et de volume une surface fermée infinitésimale
contenant le point P: la divergence (V .V)(P) mesure ’intensité de source ou d’égout du
champ vV au point P.

3.3 Rotationnel, formule de Stokes

%
Définition 10. Le rotationnel (V A\V)(P) d’un champ de vecteurs V en un point P est le
pseudo-vecteur défini par

(VAD)(P) = Y &30(0v)) (xp)2,

ijk
avec les notations habituelles.

Le second membre de la précédente égalité dépend de vV, de P et de 1’orientation
choisie, mais est invariant lors d’un changement de RON au sein d’une méme orientation.
En pratique, les composantes d’un rotationnel s’obtiennent évidemment comme celles
d’un (vrai) produit vectoriel. Le rotationnel est un opérateur différentiel du premier ordre
qui transforme un champ vectoriel en un champ pseudo-vectoriel. On vérifie facilement
les résultats suivants.

Proposition 15. Quels que soient les champs s, V et w, on a

e = S
VAF+w) =V AV+

— —
V A(sV) = (Vs)AV+s(V AV).

Rappelons la notion de travail. Soit un point placé dans un champ de forces F. Si
le champ déplace le point de sa position P en P+ d7 (on pourra considérer 7 comme le
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vecteur position du point), il est logique de dire que le travail d#  effectué par la force
dans ce déplacement est
dW = F(P).d7.

Le travail du champ dans un déplacement du point d’une position Fy vers une position Py
le long d’une courbe % est donc donné par

W = F(P).d?,
PEP
ou I'intégrale est celle de Py a P; le long de €. Dans le cas ou ¢ est une courbe fermée et
orientée, cette intégrale est appelée circulation de V le long de € .

Définition 11. La circulation d’un champ de vecteurs v le long d’un contour fermé orienté

C est l’intégrale
74 V(P).d7 .
3 (P)

Afin de calculer la circulation d’un champ de vecteurs v le long d’un contour rect-
angulaire infinitésimal orienté (PQRS), donnons-nous un ROND (0, ¢},é,,¢3) tel que
(0,é,,€3) contienne le contour (PQORS) et tel que le sens de parcours défini par €; coin-
cide avec I’orientation choisie (voir figure 4). La circulation élémentaire dC cherchée
vaut alors

dc = V(xl,XQ,X3).52de+\7(xl,xZ—|—dXQ,X3).Z3dX3
—V(Xl,XQ,Xg —l—dX3).52 dX2—17(X1,XQ,X3).Z3 dxs
= ((dxv3)(xp) = (Iu3v2)(xp)) dxadxs.

Si I’orientation de la surface élémentaire dS, limitée par le contour élémentaire (PQRS),
est choisie de fagon cohérente avec celle du contour, la normale unitaire a dS est 7i(P) =
é1. Alors, _

dC = (V AV)(P).i(P) dS.

Insistons sur le fait que ce résultat est exact, a condition que les orientations du contour
rectangulaire et de la surface qu’il délimite soient compatibles.

Prenons maintenant un contour fermé orienté fini 4" délimitant une surface S orientée
conformément a 4. Décomposons S en une infinité de surfaces élémentaires (dont les
frontieres sont des contours rectangulaires élémentaires orientés (convenablement)) (voir
figure 5). La somme des circulations de v le long de tous ces contours est égale a sa
circulation le long de %, car les contributions d’un c6té commun de deux €léments de
surface se compensent, les sens de parcours étant différents. D’ou, le
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Theoreme 2. Si une surface orientée S limitée par un contour fermé € orienté de maniére
cohérente, est placée dans un champ de vecteurs v, on a

%
/(v AV)(P).7i(P) dS = 7{ 3(P).dF.
S 4

Ce résultat est célebre et connu sous le nom de formule de Stokes. Elle stipule donc
que le flux du rotationnel d’un champ de vecteurs a travers une surface orientée limitée
par un contour fermé orienté de facon cohérente, est égal a la circulation de ce champ le
long de ce contour. On en déduit que

M).d7

A R
V AV)(P).1n = lim =—————
(VAT)(P).7= iy =5

Y

ou S désigne un disque centré en P limité par la circonférence % tous deux orientés par
la normale unitaire 7, supposée invariable lors du passage a la limite. Il s’ensuit que
la composante suivant 7 du rotationnel au point P de v traduit au point P les propriétés
rotationnelles de v dans la direction 7: le rotationnel est un vecteur-tourbillon.

3.4 Exercices
3.4.1 Opérateurs du second ordre

Déterminer les opérateurs suivants du second ordre dans un systeme d’axes cartésiens
(ROND).

<!

A (Vs)

[ ]
<

°
<t

(V.7)

°
<t

(VAD)

o VA(VAT)

On appelle Laplacien scalaire 1’opérateur

—

As = %.(Vs).
Enfin
AV =V (V.V) =V A(VAY)
est le Laplacien vectoriel. Trouver 1’expression de ces opérateurs dans un systeme d’axes
cartésiens.
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3.4.2 Champs centraux et champs a symétrie sphérique

Soit O un point fixe et P un point variable. On pose 7 :0_>P et r = OP. Calculer les
grandeurs suivantes en travaillant dans une BOND et en utilisant si possible les regles
de calcul relatives aux opérateurs gradient, divergence et rotationnel. Peut-on prévoir
certains résultats grace aux interprétations connues du gradient, de la divergence et du
rotationnel.

o d,fVr=d,fI, df+2f, 0

NI

o« Rf+2df, (Ef+idf-31)

3.4.3 Equation de Laplace, fonctions harmoniques

L’équation
As=0

est appelée équation de Laplace, ses solutions sont les fonctions harmoniques.

Prouver, en appliquant les résultats de la section précédente, que A (%) =0 et que
A7 =0.
3.4.4 Identités remarquables

Prouver les identités suivantes en vous basant sur les définitions du gradient, de la
divergence et du rotationnel et en appliquant si nécessaire la relation fondamentale

Y. €ijk€ask = 8iabjp — SipBja-
%

o V.(FAW) =w.(VAY) —.(VAW)

o V) =FA(VAR) + WA (VAT + (FV)#+ (8.V)¥
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—

VA(ENF) =2¢C

<|i
—~~
ol
~
~
I
ol
<l
—
ol
>
~
N—
I
=

Suggestion : Dans les exemples contenant des “doubles produits vectoriels”, commencer
par développer ces produits.



Chapitre 2

Cinématique du point

La cinématique (du point) est I’étude des mouvements (d’un point) indépendamment
des causes qui le provoquent.

1 Grandeurs cinématiques fondamentales

On appelle référentiel et on note %, le solide de référence, i.e. le solide par rap-
port auquel les mouvements considérés sont étudiés. On suppose que Z est parsemé
d’horloges fixes, identiques et synchronisées, i.e. qui indiquent le méme temps a tout
instant. On dit que & est muni d’un temps. En mécanique classique le temps peut étre
considéré comme une notion absolue, i.e. indépendante du référentiel considéré. Pour
étudier un mouvement, on se donne généralement un ROND (0, €1,¢,,¢3) attaché a Z.

Soit a présent un point P en mouvement par rapport a Z#. On appelle grandeurs
cinématiques fondamentales, les trois vecteurs suivants :

e Le vecteur position de P par rapport a Z (lié en O),

7= 0? = inzi,
i

ou les x; sont les coordonnées de P dans le ROND considéré. La position P du point
P (double emploi) variant généralement au cours du temps £, ona P = P(t), ¥ = F(t)
etx; = xi(t )

e Le vecteur vitesse de P par rapport a %,

F=di=r=Y .
i

23
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. L. N = . F(t4+At)—7(t ey . N 1,
Bien évidemment V = v(¢) = limp,_0 V(+T2r(), si bien que V(t), considéré comme

vecteur 1ié en P(¢), est tangent a la trajectoire de P au point P(t) et est dirigé dans
le sens du mouvement.

e Le vecteur accélération de P par rapport a Z,
Y =v=r= Zjé,a-.
i

Nous obtiendrons plus tard des précisions relatives a direction et au sens de ¥ = ¥(r).

2 Etude du mouvement en coordonnées polaires

Soit un point P animé d’un mouvement plane par rapport a un référentiel %. Notons
2 le plan du mouvement et soit (O,€],¢;) un ROND de . Nous supposons que la
trajectoire 4 de P ne passe pas par O. Alors que les coordonnées cartésiennes de P
dépendent du repere considéré, ses coordonnées polaires sont définies par rapport a un
axe appelé axe polaire et une orientation. L’origine de 1’axe s’appelle le péle. Ici nous
choisirons 1’axe polaire (O,¢€;) et ’orientation définie par (O,¢€},€;). Les coordonnées
polaires de P sont alors son rayon polaire r = OP et son angle polaire 6 qui est la mesure
dans [0, 27| de I’angle orienté (€1, OP) = (€},7). On remarquera qu’il s’agit du module et
d’un argument du nombre complexe représenté par P. La relation entre les coordonnées
cartésiennes (x1,x7) et les coordonnées polaires (r,0) de P est claire:

Xy =rcosB, x; =rsinf. (D)

Tout comme 1’utilisation des coordonnées cartésiennes implique des calculs dans le
ROND (0,¢€1,é,), celle des coordonnées polaires entraine des calculs dans le ROND
mobile (P, é,,€éy) défini par

—

— r — —
é, = —etég =dge,. )
r
Evidemment . ~
L X1€1+xe - .o
é— ——— = —=cosBé +sinbé
r
et
g = —sinBé| +cos b éy,

si bien que €, = €,(0) et €g = €g(0). Le caractere orthonormé de la base (é,,€g) résulte
de la précédente décomposition de ces vecteurs dans la base (€1,€;). On remarquera
cependant aussi que €, est unitaire par définition et que €g lui est orthogonal en tant que
dérivée d’un vecteur de norme constante. L’ observation

€9(0) = —sinB €| +cos 0 €, = cos <6+g> €1+ sin <9+g) é) =é, (94—%)
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facilite la représentation du repere (P,é,,€g) qui est donc bien un ROND mobile de .
Comme 7,V et ¥ sont situés dans &2, on peut les décomposer dans la base mobile (&,,&g).
Comme r=r(t),0 = 0(t),é, = €.(0(t)),ég = €9(6(t)), on obtient :

F=ré, V=ré +r08, 7= (F—r(0)%)e + (r0+210)e,. 3)

3 Etude du mouvement en coordonnées cylindriques

Soit un point P en mouvement par rapport a un référentiel & et soit (O,¢€1,¢é;,€3)
un ROND attaché a Z. Le point P est supposé bouger sans passer par 1’axe (O,€3). Les
coordonnées cylindriques de P sont alors les réels (p, 6,z), ou (p, 6) sont les coordonnées
polaires de la projection orthogonale P’ de P sur le plan (O, ¢1,é,) et ol z n’est autre que
la troisieme coordonnée cartésienne de P. On notera que le rayon polaire p de P’ est le

L . . .
module du vecteur position p = OP’ de P’, la notation r restant réservée au module du

vecteur position 7 = 573 de P. Les relations entre les coordonnées cartésiennes (xj,x7,x3)
et les coordonnées cylindriques (p, 6,z) de P sont évidemment

X1 =pcosO,x; =psinO,x3 =z. “4)

Comme dans le cas des coordonnées polaires, 1’utilisation des coordonnées cylin-
driques implique un travail dans une BOND mobile naturellement associée a ces coor-
données. Sa définition est

ool

é’p =,6p = dggp et e, = és. (%)
Le repere (P,ép,€g,¢€;) est visiblement un ROND variable. En vue de la décomposition
des vecteurs position, vitesse et accélération dans la nouvelle base, on notera que p =
p(t),0=0(t),z==z(t),ép =€,(0(t)),ép = €(0(t)),é; = &3. Finalement on trouve que

F=péy+18, V=peér+pBég+ze, ¥=(p—p(6)2)e,+(p0+200)es+7E,. (6)

4 Etude du mouvement en coordonnées sphériques

Considérons encore un point P en mouvement par rapport a un référentiel %, un
ROND (0,é,,¢,,
é3) (ou (Ox, 0y, 0z)) attaché a Z et tel que la trajectoire de P ne coupe pas I’axe (0, €3)
(respectivement Oz). Si P’ désigne de nouveau la projection orthogonale de P sur le plan
(Ox, Oy), les coordonnées sphériques de P sont les réels (r,0,¢), ou r = OP €]0,+cc|, 6
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est la mesure dans |0, 7] de I’angle { Oz, ﬁ} et ¢ est la mesure dans [0, 27| de I’angle ori-

enté (Ox, O_>P’ ). Notons que r fournit la sphere de centre O qui passe par P, que 6 donne le
parallele sur lequel est situé P et que ¢ détermine le méridien contenant P. Les relations
entre les coordonnées cartésiennes (x,x2,x3) et les coordonnées sphériques (r,0,¢) de P
sont

x; =rsin@cos @, xo =rsinOsin¢@, x3 =rcos6. (7)

La BOND mobile ou base locale naturellement associée aux coordonnées sphériques est
définie par

7o o 1 .

;, €g = (996,, €y — ﬁ 8¢e,. (8)
Il est facile de se convaincre de ce que €, = €,(0,0), €g = €¢(0,0), €y = €4(¢) et de ce
que (P,é,,éq,€y) est bien un ROND mobile. On remarquera que la division par sin6 (> 0)
est nécessaire pour rendre €, unitaire. Voici finalement la décomposition des vecteurs

cinématiques dans la base locale des coordonnées sphériques :

—

é, =

F=ré, V=ré +r0ég+rPsinbéy,

. . ) -2 5 . i . -2 -
Y= (r—r0 —rsin“0¢ )é,+ (2r0 +r6 —rsinOcosO¢P )éy 9
+(2isin9¢+2récos@¢+rsin9¢)é¢.

5 Etude intrinséque du mouvement, formules de Frenet-
Serret

Soit, par rapport a un référentiel % d’origine O, un point P en mouvement sur sa tra-
jectoire €. Choisissons sur %, qui est en général une courbe gauche, une origine Q et un
sens positif +. On appelle abscisse curviligne de P et on note s, la distance QQP mesurée
le long de & et comptée positivement dans le sens positif et négativement dans le sens
négatif. 1l est clair que s = s(¢). Afin de simplifier, nous supposons que la vitesse V et
’accélération ¥ de P sont linéairement indépendantes a tout instant. Il découle notamment
de cette hypothése qu’on a également 1 = £(s).

Nous définissons a présent quelques vecteurs utiles.
Comme ¢ = t(s), le vecteur position 7 de P peut étre considéré comme fonction de s,
7 =T7(s). Il est facile de voir que le vecteur

— 7 A —7
FimdF = lim [OTA) )
As—0 As

Y

que nous considérons comme li€ en P, est tangent a 4 en P, unitaire et dirigé dans le sens
+.
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Considérons, pour P’ € €, P’ ~ P, le plan (P,7(P),f(P')) et faisons tendre P’ vers P.
Le plan limite est appelé plan osculateur de ¢ en P. Ce plan contient la courbe gauche
% "au mieux" au voisinage de P. Dans la cas d’une courbe plane, il s’agit du plan de
la courbe. La normale a 4 en P contenue dans le plan osculateur est appelée normale
principale de € au point P.

Il est clair que le vecteur

—

— A _—»
47— lim f(s+As) —1(s)

As—0 As

est contenu dans le plan osculateur et est normal a ¢ en P. Il s’agit donc d’un vecteur
normal principal—visiblement dirigé vers la concavité—de % en P. Finalement,

d;f dZ*

[l a2

considéré encore comme li€¢ au point P, est unitaire, normal principal et dirigé vers la
concavité de € en P.
Le quadruplet (P,7,7,b), ou b = f A #i, est un ROND mobile appelé triedre de Frenet.

En vue de faire I’étude du mouvement dans le triedre de Frenet, nous établirons les
formules de Frenet.

On entrevoit que ||ds?H = HdSZ?H mesure la courbure de ¢ en P. 11 est donc naturel
d’appeler rayon de courbure de % en P, la grandeur
1 1
~ Jlastl] T3

D’ou la premiere formule de Frenet :

O
dst = r (10)
Interprétons ||dsb||. Comme b est de norme constante et que dsb = 7 A dii, la dérivée
dsb est orthogonale a b et a7, donc colindaire a i : db = kni, k € R. 1l est clair que
|k| = ||dyb|| mesure la vitesse de variation/rotation de b et donc la torsion de % en P. Dans
le cas d’une courbe plane, la torsion (ou seconde courbure) est évidemment nulle. Par
analogie avec la courbure 1/R, on note k = 1/T la torsion. On trouve ainsi la deuxiéme

formule de Frenet :

hd 1 —
dsb = T 11

La dérivée de 71 = b At est alors donnée par



Cinématique du point; np2008 28

C’est la troisieme formule de Frenet.
La formules de Frenet peuvent étre résumées comme suit :

dyt 0 0 4 7
b |=1 0o o 1 b (13)
dyii . i

Comme s = s(¢), nous obtenons immédiatement les expressions des vecteurs V et ¥
dans la BOND mobile (7,7, b) de Frenet :

.2
v:s?etq?:sﬂ%ﬁ, (14)

ou nous avons utilisé la premiere formule de Frenet. La premiere de ces relations confirme
que V est tangent a ¢ en P et dirigé dans le sens du mouvement. La seconde montre que
¥ est situé dans le plan osculateur et est dirigé vers la concavité de ¢ en P. Vu que

d, |V||> = d, (¥v.%) = 2v.7,

le mouvement est

accéléré >
uniforme p,siv.y< = 30
décéléré <

6 Exercices

1. Un point P se déplace sur un axe (O, ¢€), dans le sens de € et tel que v=rhx+b (x:
abscisse de P, v : vitesse de P, h € R*,b € R). Trouver I’équation du mouvement,
x = x(t), sachant qu’a 'instant ¢t = fy, P occupe la position x = xg.

2. Un point P se déplace dans un plan de maniere que x = ky et y = kx (x,y : coor-
données de P, k € R}). Trouver les équations du mouvement, x = x(z) et y = y(¢),
sachant qu’a I’instant = 0, P passe par le point de coordonnées (c,0) (¢ € R%).
Donner I’équation cartésienne de la trajection.

3. Un point P est animé d’un mouvement rectiligne sur un axe (O, €). Ce mouvement
esttel que Y= —ki'e (x : abscisse de P, k € R*). Trouver I’équation du mouvement,
sient =0,x=0etx=vp (vo € R").

4. Un point P se meut sur la parabole d’équation y* = 2px, de maniére que I’ hodographe
du mouvement par rapport a I’origine O (i.e. la trajectoire de I’extrémité de v con-
sidéré comme vecteur lié en O) soit cette parabole elle-méme. Déterminer les équa-
tions du mouvement et les coordonnées de V et de 7, sachant qu’en ¢ = 0, I’ordonnée
de P est égale au parametre de la parabole.
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5. Un point P parcourt la courbe d’équation polaire r = asin @ (a € R}), de maniere

. Soit la courbe d’équation polaire rcos

que ¢ = o (w € R). Calculer les composantes radiale et orthoradiale de V et de
¥ (i.e. leurs composantes dans la BOND variable (é7,éy), puis les coordonnées
cartésiennes de V et de 7.

2

S

=a (a € R}). Prouver que cette courbe
est une parabole.

Rappel : L’équation polaire d’'une conique de parametre p > 0 et d’excentricité

e > 0est
P

= 15
" 1+ ecos o’ (15)
si le pOle occupe un foyer et si I’axe polaire est dirigé vers le sommet le plus proche.
De maniere plus précise, sie =0, (0O <e < 1,e=1,e > 1), (15) est I’équation d’un
cercle (d’une ellipse, d’une parabole, d’une branche d’hyperbole).

Un point P décrit sa parabole de fagon que s = kr (k € R}) (le sens positif est le sens
des ¢ croissants). Déterminer la loi du mouvement ¢ = @ (), sachant que ¢(0) =0.

Réponses

_ hxot+b h(t—t b

L. x—OTe( 0)—71-
2 2
2. x=cchkt,y=cshkt, 5 -5 =1
3. x = gsin[kvot + 1].
4. x:§e4t,y:PeZ’,x:...,y:...,k:...,j}:...
5. awcos @ =awcos(wt + @), awsin@ =...; —2aw?sin@, 2aw’cos @; awcos2¢,
awsin2@; —2aw?sin2¢, 2aw’ cos2¢.

6. r= 24 (pzir—4arctge_%.

~ l4cos¢@>






Chapitre 3

Dynamique du Point

1 Eléments cinétiques d’un point matériel

Un point matériel est un objet idéal, un corpuscule ponctuel P pourvu d’une masse m.
On notera 1’aspect contradictoire de cette définition. La masse est un scalaire positif, qui
est proportionnel a la quantité de matiere contenue dans P. Cette quantité de matiere peut
étre appréciée expérimentalement de deux facons différentes, par la répugnance de P a toute
modification de son mouvement, i.e. par I’inertie de P et par le poids de P, i.e. par la force
gravifique exercée sur P par la Terre. On fera une distinction de principe entre la masse inerte
et la masse gravifique, quoique 1’expérience montre que ces masses sont égales. L.a masse m
d’un point matériel P est évidemment indépendante du temps ¢ et du référentiel considéré Z.

Rappelons d’abord la notion de moment. Soit un vecteur 1ié (P, F ), donc un vecteur F
appliqué a un point P et soit un point arbitraire O. On appelle moment de (P, F ) par rapport
a 0, le vecteur

A (0) = OP A\F. (1)
On réfléchira a I’'information fournie par le sens et par le module OP.F .sinf (notations
habituelles) du vecteur moment.

Soit a présent un point matériel (P,m) en mouvement par rapport a un référentiel % a la
vitesse V. On appelle quantité de mouvement ou impulsion de P, le vecteur

7= mp. )

Si O est un point généralement supposé fixe dans %, on appelle moment cinétique de P par
rapport a O, le moment en O de la quantité de mouvement considérée comme vecteur lié a
P, donc le vecteur

o= OPAB. 3)

31
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Rappelons aussi que I’ énergie cinétique de P est définie par

1
E. = 3 mv?. “4)
Les grandeurs (2)-(4) sont bien connues et appelées les éléments cinétiques de P. Elles
dépendent du point P considéré, du référentiel Z utilisé et du temps 7. Le moment cinétique
(3) dépend en outre du point O par rapport auquel il est calculé (comme mentionné ce point

est généralement attaché a &, mais ceci n’est pas obligatoire).

2 Lois fondamentales de la Mécanique Classique

Ces lois ont été énoncées par I. Newton dans ses Philosophiae Naturalis Principia Math-
ematica (1687). 1l s’agit de postulats, mais leur validité est vérifiée depuis longtemps par
I’accord de leurs conséquences avec 1’expérience et 1’observation.

2.1 Premiere loi (principe d’inertie)

1l existe des référentiels privilégiés dans lesquels le mouvement d’un point isolé est rec-
tiligne et uniforme. Ces référentiels sont appelés référentiels d’inertie ou galiléens.

On montre que le référentiel de Copernic, qui a pour origine le centre de masse du systeme
solaire et dont les axes sont définis par trois étoiles “fixes", est un référentiel inertial.

Soit % le référentiel de Copernic et Z; un autre référentiel animé par rapport a %y d’un
mouvement de translation rectiligne et uniforme de vitesse (constante) V. Considérons un
point isolé arbitraire P. Son mouvement par rapport a % est rectiligne et uniforme, i.e.
Vo(P) est constant. Comme

\70(P) = W (P) +‘7,

ou V| (P) désigne la vitesse de P par rapport a %, la vitesse V| (P) est aussi constant, i.e.
P est également par rapport a % en mouvement rectiligne et uniforme. Ainsi %) est a son
tour inertial. Finalement, tout référentiel, animé par rapport au référentiel de Copernic d’un
mouvement de translation rectiligne et uniforme, est lui-méme inertial.

Signalons pour terminer que la Terre n’est évidemment pas un référentiel inertial, mais
qu’elle peut étre assimilée a un tel référentiel dans la plupart des applications pratiques. Nous
reviendrons sur ce point dans le chapitre consacré a la Mécanique du Point dans un référentiel
non inertial.
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2.2 Deuxieme loi (principe fondamental de la Dynamique du Point)

Si dans un référentiel inertial, un point matériel P n’est pas animé d’un mouvement rec-
tiligne et uniforme, i.e. si sa vitesse ¥ ou encore son impulsion p varient, il n’est pas isolé,
i.e. il est en interaction avec le reste de I’Univers. L’action qu’il subit de la part du reste de
I’Univers peut étre décrite par un vecteur, la force s’exercant sur le point. En d’autres termes,
dans un référentiel galiléen, la variation de la quantité de mouvement p d’un point matériel
P implique I’existence d’une force F agissant sur P et provoquant ainsi cette variation. Le
principe fondamental consiste en 1’identification de la variation de 7 et de la force F qui en
est la cause. De maniere plus précise,

Dans un référentiel inertial,

=

dp=F &)

i.e. la dérivée temporelle de la quantité de mouvement p d’un point matériel P est égale a la
résultante F de toutes les forces agissant sur P.

1l est clair que I’équation (5) s’écrit encore m7 = F. Dans les applications, la théorie
physique des forces donne F sous la forme F = F(¢,7,7). L’équation (5),

mr = F(t,7,7) (6)

est alors une équation différentielle vectorielle du second ordre, dont I’intégration fournit,
compte tenu des conditions initiales

7(0) = ?() et \7(0) = \7(),

la fonction inconnue ¥ = 7(t), i.e. le mouvement de P.
La relation fondamentale (6) sera appelée dans la suite I’équation de Newton ou la loi du
mouvement.

2.3 Troisieme loi (principe de I’action et de la réaction)

Soient P et P, deux points matériels en interaction. Le principe de 1’action et de la
réaction stipule que les forces F"lz exercée sur P; par P> et ﬁ21 exercée sur P> par P sont
directement opposées, 1.e. sont des vecteurs li€s a P et P, respectivement, opposés et portés
par la droite (P P»). C’est la version forte de la troisieme loi de Newton, admise en Mécanique
Classique.
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3 Théoremes généraux du mouvement d’un point matériel
dans un référentiel inertial

3.1 Théoreme de la quantité de mouvement

Le théoreme de la quantité de mouvement (TQM) est tout simplement I’équation de New-
ton (EN), voir Equation S) et Equation (6).
3.2 Théoreme du moment cinétique

Soit O un point fixe du référentiel inertial % considéré. Les autres notations sont les
mémes que ci-dessus. La résultante F' des forces appliquées au point matériel P de masse m
est considérée comme vecteur lié en P. Partons de la relation

Gp = O? AP.
Comme O est fixe, nous obtenons par dérivation
4,60 =V Ami+OPANdyj= OPNF = Mz(0).

Donc, dans un référentiel inertial,

;60 = Mz (0) )

1.e. la dérivée temporelle du moment cinétique de P par rapport a un point fixe O du référen-
tiel est égale au moment en O de la résultante F des forces agissant sur P. C’est le théoreme
du moment cinétique (TMC).

3.3 Théoreme de I’énergie cinétique

En dérivant I’égalité
Ec=-mv"=_-my-y

2 2

et en remarquant que le produit scalaire F -V n’est autre chose que la puissance instantanée
& de F, on obtient le théoreme de 1’énergie cinétique (TEC) :

Dans un référentiel inertial,

®)

i.e. la dérivée temporelle de I’énergie cinétique de P est égale a la puissance de la résultante
des forces s’exercant sur P.
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Remarquons pour terminer qu’en Mécanique du Point les mouvements s’obtiennent
généralement a partir de I’EN (5)-(6), alors que le TMC et le TEC fournissent des intégrales
premieres (IP). La notion d’IP est un concept fondamental en Physique et en Mathématiques.
Nous aurons 1’occasion de I’étudier en détail dans la suite. En Mécanique du Solide par con-
tre, ’utilisation conjointe des extensions de (généralement) deux des théoremes TQM, TMC
et TEC est nécessaire pour déterminer le mouvement du solide étudié.

4 Applications

4.1 Schéma de résolution

La résolution d’un probleme de Dynamique exige une certaine flexibilité. Le schéma de
résolution ci-dessous n’est donc qu’un guide sommaire.

1. Déterminer le nombre de degrés de liberté du point matériel étudié, i.e. le nombre de
parametres nécessaires pour décrire ses positions. Choisir un systeme d’axes “appro-
pri€” et des parametres ou coordonnées “adaptés” au probleme considéré.

2. Faire I’inventaire des forces appliquées au point matériel (force gravifique, forces de
liaisons, forces spécifiques, forces fictives [seulement dans un référentiel non inertial,
voir plus loin]...).

3. Utiliser un des théoremes généraux qui gouvernent le mouvement du point (souvent
I’EN). Exprimer toutes les grandeurs intervenant en fonction des parametres. Projeter
(éventuellement) I’équation vectorielle utilisée sur les axes choisis de maniere a la rem-
placer par trois équations scalaires (deux, dans le cas d’un probleme plane) plus simples
a manipuler. Déterminer les parametres (et donc le mouvement du point matériel) et
les autres inconnues éventuelles (forces de liaisons) en résolvant les équations différen-
tielles ainsi obtenues.

4.2 Exercices

(1) Une particule se déplace dans le champ de pesanteur, sur une circonférence verticale,
parfaitement lisse (pendule circulaire, pendule simple). Assimiler la Terre a un référen-
tiel inertial et déterminer de trois manieres différentes I’équation du mouvement de
cette particule. Résoudre cette équation dans le cas des oscillations de faible ampli-
tude.

Réponse : 06 +gsin6 = 0, £ : rayon de la circonférence; 6 = Op,xcos(@r — @), ® =
g

?
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(i)

(i)

(iv)

(v)

Une particule de masse m est projetée d’un point O dans un plan vertical. Sa vitesse
initiale V fait un angle o € |0, %[ avec I’horizontale. Négliger la résistance de I’air,
assimiler la Terre a un référentiel inertial et déterminer 1’équation et la nature de la
trajectoire, la portée, I’altitude maximale atteinte et le temps de vol.

o}
28

g 2vg sin @

55 Sin 2(X
2v}cos? a ’

2
Réponse : y=xtg o — x2, parabole, %0 sin2q,

Méme probleme que (ii), mais tenir compte de la résistance de I’air. On suppose que
la résistance de 1’air par unité de masse est proportionnelle a la vitesse, i.e. est donnée
par R = kgv (k € RY) (il en résulte évidemment que la force de résistance s’exergant
sur un point matériel de masse m, animé d’une vitesse V, est R= —kmgv). Trouver les
équations du mouvement.

Réponse : x = % (1—e78) y= —kvosli;;gH (1—ekery— 2t

Dans un milieu de résistance par unité de masse R = kgv? (k € R%.), une particule de
masse m est projetée verticalement vers le haut, avec une vitesse initiale vo. Montrer
que la particule retombe au point de projection avec une énergie cinétique diminuée

dans le rapport levZ’ i.e. que le rapport de 1’énergie cinétique finale a 1’énergie ciné-
0

L ity 1
tique initiale est égal a o

Rappelons qu’une particule chargée électriquement, de charge ¢, placée dans un champ
éléctromagnétique (E(P,1),B(P,t)) est soumise 2 la force de Lorentz

F =q(E+VAB),
ou vV désigne la vitesse de la particule. Généralement, ces forces électromagnétiques
sont suffisamment grandes pour que la force de pesanteur éventuelle soit négligeable
vis a vis de F'.
Considérons au voisinage de la surface terrestre, un champ purement magnétique (l:f =
0), uniforme (B est indépendant de P) et stationnaire (B est indépendant de ¢). Une
particule chargée (P,m,q) placée dans ce champ, part d’un point O avec une vitesse
initiale V.
Répondre aux questions suivantes, en assimilant la Terre a un référentiel inertial et en
négligeant la pesanteur et la résistance du milieu.

1) Choisir un ROND approprié et déterminer les coordonnées (x,y,z) de P en fonc-
tion de ¢, des composantes de V) et de la fréquence de Larmor ® = %.

2) Vérifier que les projections P; et P> de P sur le plan xOy et I’axe Oz respective-
ment, sont animées de mouvements uniformes. Il en résulte évidemment que P
est a son tour en mouvement uniforme.
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(vi)

3) Déterminer la nature de la trajectoire de P. Traiter aussi les cas particuliers pou-
vant se présenter.

Réponse : ROND (0, ¢€1,¢;,¢3), tel que B = Bé;, ¥y = V0,2 €2 + V0,3 €3, avec v > 0;
__ Yoz __ Y02 _ ) 2 .2 . V0,212 2 __
x= - (l—coswt),y= 2= sinwt, z = v 31; Vi, = Vo2 VB = V035 (x——g ) +y =

2
V P . . J . .
—6322 mouvement hélicoidal; si vo, = 0, le mouvement est rectiligne; si vo3 = 0, il est

circulaire; si vgo = vo 3 = 0, la particule est au repos

Soit un oscillateur harmonique, i.e. soit dans le champ de pesanteur, un point matériel
(P,m) se déplacant sans frottement sur un axe horizontal fixe, sous I’action de la force
de rappel d’un ressort (une extrémité du ressort est attachée a 1’axe, 1’autre—mobile
par rapport a I’axe—est attachée au point matériel). Désignons par O le point de 1’axe
coincidant avec la particule P, lorsque le ressort est dans sa position naturelle, i.e. n’est
ni étiré, ni comprimé et notons € un vecteur directeur unitaire de I’axe. Nous supposons
la force de rappel linéaire, ¢’est-a-dire de la forme F; = —kx& (k > 0: constant, x :
abscisse de P dans le repére (O, €)).

(a) Déterminer x en fonction de ¢, de @ = \/g et des deux constantes d’intégration
(on assimilera la Terre a un référentiel d’inertie et on négligera la résistance du
milieu). Montrer que la période des oscillations vaut 7 = %”

(b) Considérons I’ oscillateur harmonique a I’état d’ équilibre (information donnant les
conditions initiales). Appliquons une force constante F> = mfé (f : constante)
pendant un temps égal au sixieme de la période T = %”, apres quoi cette force
cesse d’agir pendant un sixieéme de période, puis la force est a nouveau appliquée.
Montrer que I’oscillateur reste alors immobile.

Réponse : x =Cjcoswt +Cosinwt, T = %” Etudier le mouvement dans les intervalles

0, 860, [ 36] et [55, +oe






Chapitre 4

Intégrales premieres

1 Potentiels

Il résulte de la structure des équations de la Mécanique que les champs de forces ou,
plus généralement, les champs de vecteurs qui dérivent d’un potentiel, i.e. *“s’écrivent sous
forme de dérivées d’un (ou méme de plusieurs) autre(s) champ(s)”, occupent une position

privilégiée.

Définition 1. Un champ vectoriel ( resp. pseudo-vectoriel ) F dérive d’un potentiel scalaire
( resp. potentiel vectoriel ), s’il existe un champ scalaire ¢ (resp. un champ vectoriel A ), tel
que
F=-V¢ (resp. F = VA A).
Voici des conditions nécessaires et suffisantes pour qu’un champ de vecteurs (nous omet-
tons éventuellement le préfixe “pseudo”) dérive d’un potentiel.

Proposition 1. Un champ de vecteurs F dérive d’un potentiel scalaire si et seulement si F
est irrotationnel :
Jo:F=—-Vo = VAF =0,

et un champ de vecteurs F dérive d’un potentiel vectoriel si et seulement si F est indivergen-
tiel :
JA:F=VAA=V.F=0,

Les implications directes sont des conséquences immédiates des définitions des opéra-
teurs “gradient”, “divergence” et “rotationnel”. Les réciproques sont moins évidentes et im-
posent des conditions topologiques—sur lesquelles nous n’insisterons pas—a la région de
I’espace ou les champs sont définis. On notera que la premiere implication inverse est un
probleme de primitivation dans R3. En Géométrie différentielle, la précédente proposition

39
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admet une importante généralisation dans le cadre des théories (co)homologiques.

Exemple. En Physique, un champ électromagnétique (E,B) = (E(t,P),B(t,P)) fournit un
exemple faisant intervenir les deux types de potentiel, scalaire et vectoriel. En effet, la Propo-
sition 1 montre qu’il découle des équations de Maxwell

V.-B=0, VAE=-0,B

(en fait, les équations de Maxwell forment un systeme de quatre équations qui décrivent les
relations entre le champ électrique, le champ magnétique, la charge et le courant électriques;
ici nous n’utilisons que deux de ces quatre équations), que

B=VAAetqueE=-V¢—09A,

ou ¢ et A sont des potentiels appelés potentiels électromagnétiques.

Remarque. Signalons qu’il existe une condition nécessaire et suffisante, pour qu’un champ
de forces dérive d’un potentiel, basée sur la notion de travail. Considérons un point P en
mouvement, par rapport a un référentiel, dans un champ de forces F=F (P) et rappelons,
voir Chapitre 1, que le travail de F dans le déplacement de P le long de sa trajectoire €, entre
une position initiale P; = P(t;) et une position finale P, = P(t,), est donné par

15)

— 5 —
W — F(P)-d?:/zF(?(t))-d,?dt:/ P(t)dr.
PEP I3t

n

Si F dérive d’un potentiel, i.e. si F= —6(]), on obtient

W — _/ttz(W)(?(r)) -diFdt = _/t’z d (0 (F(1))dt = $(P) — 0 (Py) = —A9.

Ainsi, lorsqu’un champ de forces dérive d’un potentiel, son travail dans un déplacement ne
dépend que du point de départ P, et du point d’arrivée P>, mais non du chemin suivi entre P
et P», et vice versa. Pour la réciproque, voir Théoreme de Stokes, Chapitre 1.

2 Exercices

1. Prouver que le champ de gravitation terrestre g = g(P) dérive d’un potentiel ¢ = ¢ (P).
De maniere plus précise, démontrer que, dans une région suffisamment petite pour que
g puisse étre considéré comme constant, on a

¢ =¢(P) = ¢(x,y,2) = gz(+C),

ou C désigne une constante arbitraire et out (x,y,z) sont les composantes de P dans un
RON dont le troisieme axe est dirigé vers le Zénith. On remarquera que le potentiel,
comme toute “primitive”, est défini a une constante additive pres.
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2. Soit F =F (P) un champ de forces central de centre (fixe) O. Si 7= ﬁ), onaF =
F(A) =f (F)%, ol f désigne le module F' de F ou I’opposé de ce module. Evidemment,
on dira que F esta symétrie sphérique (autour de O), si

it

F=F() = f(r)",
i.e. sile module de F' est constant sur toute sphere de centre O. Prouver qu’un tel
champ central a symétrie sphérique dérive d’un potentiel ¢ et que ce potentiel

6 =9() =~ [ frar

est lui-méme a symétrie sphérique.

3 Intégrales premieres

3.1 Définition, exemple

Soit un point matériel (P,m) en mouvement par rapport a un référentiel inertial dans un
champ de force central F de centre O (que nous choisissons comme origine). Il découle du
Théoreme du moment cinétique, voir Chapitre 3, que d;Gp = M., #(0) = 0. En intégrant une
premiere fois cette équation différentielle du second ordre (relation du type R(¢,7,77) = 0),
on trouve que Gp = mrFA F= 6‘, C constant. En d’autres termes, le moment cinétique par
rapport & O est constant au cours de tout mouvement 7 = 7(¢). L’identité Gp = C (relation
du type S(¢,7, ?) = (), obtenue apres une premiere intégration, est appelée une intégrale pre-
miere.

Ainsi, une intégrale premiére (IP) d’une équation différentielle R(z,7,77) = O est une re-
lation S(¢,7,7) qui est constante sur toute solution 7 = 7(¢) de cette équation différentielle. Si
I’équation différentielle est une équation gouvernant le mouvement d’un point matériel, I'IP
S(t,7,7) représente une grandeur physique conservée au cours de tout mouvement du point
considéré.

Le concept d’intégrale premiere, fondamental aussi bien en Physique qu’en Mathéma-
tiques, est a I’origine de nombreux développements récents en Physique mathématique et
théorique. Son lien avec la notion de symeétrie sera mis en lumiere surtout dans les cours plus
avancés. Dans le cadre de cet enseignement introductif, I’importance des IP tient au fait que
I’intégration complete des équations du mouvement est généralement difficile, alors qu’une
premiere intégration est souvent relativement aisée. La connaissance d’une ou plusieurs IP
conduit a une meilleure compréhension du probleme, fournit d’intéressantes informations
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relatives aux mouvements, et simplifie parfois considérablement le calcul de la solution.

Dans le cas ci-dessus de la force centrale de centre O, I'IP FAF = h,  constant, implique
que le mouvement de la particule (P,m) est nécessairement plane.

Cette IP encode cependant encore d’autres informations sur les mouvements. De fait, si
on passe, dans le plan du mouvement, en coordonnées polaires en choisissant O comme pole,
I'IP s’écrit ré, A (i€, 4 r0éq) = hé,, i.e.

0 = h, (1)

ou la constante d’intégration h est évidemment déterminée par les conditions initiales du
mouvement. L’identité (1) est I’intégrale premiére des aires.

Afin de comprendre sa signification, nous déterminons I’aire A balayée par le vecteur
position 7(¢) de la particule (P,m) entre une position initiale 7(¢1) et une position finale 7(t,).
Notons d’abord qu’entre deux positions infiniment voisines 7(z) et 7(r 4 dt), cette aire dA
est donnée par la moitié de I’aire du parallélogramme construit sur les vecteurs 7(¢) et d¥ =
F(t+dt) —F(t):

dA = % \IF AdF|| .

Donc, si on prend dt > 0,

dA

1 dr
dr 2

1, 1
A = 20210 = |l
rAdJ' > " 161=5ln

Il en résulte que
1 1
A:/dA:/ dAdi =3 hl(6—1).
3]

Ainsi, I’aire balayée par le vecteur position au cours d’un intervalle de temps donné, est
proportionnelle a cet intervalle de temps, la constante de proportionnalité étant %\h| Cette
conséquence quasi-immédiate de I’IP de aires s’applique notamment aux planetes en mou-
vement dans le champ de gravitation (central) du Soleil. Cette loi de proportionnalité est
connue sous le nom de loi des aires (J. Kepler, 1609). Les planetes décrivant des trajectoires
elliptiques dont le Soleil occupe un foyer, il s’ensuit que la vitesse des planetes est maximale
au périhélie (point de I’ellipse le plus proche du Soleil) et est minimale a I’ aphélie (point le
plus éloigné).

Le précédent exemple permet d’apprécier la valeur des IP et motive leur étude systéma-
tique dans la section suivante.
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3.2 Lois de conservation

Theoreme 1. Soit une particule (P,m) en mouvement par rapport a un référentiel inertial #
et soumise a une résultante de forces F.

1. SiF=0,1 "impulsion p de P par rapport a Z est conservée au cours des mouvements
de P.

2. Si Mp(0)=0, ie. si F estun champ de forces central de centre O, le moment cinétique
Gp de P par rapport a O et Z est conservé au cours des mouvements.

3. Si F est constamment orthogonal a un axe fixe A, la composante de ['impulsion p
suivant A, i.e. la projection de p sur A, est conservée au cours des mouvements.

4. Si F s’appuie constamment sur un axe fixe A, la composante du moment cinétique Gop
(par rapport a un point fixe O de A) suivant A est conservée.

5. Si F ne travaille pas, i.e. sila puissance P (F) = F -V (oi V désigne la vitesse de P
par rapport a Z) est nulle, I’énergie cinétique de P par rapport a % est conservée.

6. Si F = F| + P, oit Fy ne travaille pas (2 (F,) = 0) et ot F» dérive d’un potentiel ¢
(F, = —V¢), I'énergie totale E. + ¢ de P par rapport & Z est conservée.

Preuve. Les points 1, 2 et 5 sont des conséquences immédiates des Théoremes de Newton,
du moment cinétique et de 1’énergie cinétique respectivement. Pour 3, remarquons que si €
désigne un vecteur unitaire directeur de A, il résulte de I’Equation de Newton que (d;p)-é=
F-2=0. Ainsi, ’axe A étant fixe et son vecteur directeur € de ce fait constant par rapport au
temps, on a d;(p-€) = (d;p) - € = 0, si bien que la composante py = p- € de p suivant A est
constante. Dans le cas 4, on a

di(60.a) = dy(8o &) = (i) & = M(0)-&= (OPNF) -8 =0,

Pour 6 finalement, il suffit de noter que

<!

dE =P =P F)+PF)=F-v=-V¢-F=—d9,

de sorte que di(E.+¢)=0.m

Exemple. Le pendule simple, voir Chapitre 3, est sollicité par la force de pesanteur et par la
réaction normale de la circonférence. Le poids dérivant d’un potentiel, voir ci-dessus, et la
réaction normale ne travaillant pas, I’ intégrale premiere de I’énergie E. + ¢ = E, E constant,
est valable. Si on choisit le ROND (0, ¢},é,), ou O est le centre de la circonférence et €] est
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dirigé vers le bas, si 0 désigne 1’angle polaire de la particule, m sa masse et ¢ le rayon de la
circonférence, I'IP de I’énergie s’écrit :

1

52
2m€ 0 —mglcosO =E.

Par dérivation (intégrale premiére !), on retrouve 1’équation du mouvement 6 + (g//)sin 6 =
0.

Imaginons maintenant que le pendule est animé d’un mouvement oscillatoire périodique.
Au cours du mouvement, il y a en permanence conversion d’énergie cinétique en énergie
potentielle (passages de 6 =02 0 = Oy et de 8 =0 a O = —6,¢) Ou vice versa (passages
de 0 = Opax 2 0 =0etde O = —0Opax 2 6 = 0), mais de telle sorte que la somme E. + ¢ des
deux types d’énergie reste constante.

L’étude des mouvements de la Terre constitue un bel exemple d’application des intégrales
premieres. Nous renvoyons le lecteur intéressé au probleme de Lagrange-Poisson traité en
Mécanique du Solide.

4 Exercices

1. Une bille métallique de masse m, assimilée a un point matériel, est astreinte a se mou-
voir a I'intérieur d’un bol hémisphérique parfaitement lisse, placé dans un champ de
pesanteur ou la résistance du milieu est négligeable. Supposer que la bille ait été€ lachée
au bord du bol sans vitesse initiale et déterminer la réaction R du bol (2 un instant quel-
conque), ainsi que la valeur maximale R, de cette réaction.

Réponses : R = 3mgsin 0, Ry,x = 3mg

2. Une particule P de masse m se déplace dans le champ de pesanteur terrestre sur un
anneau vertical € de faible section, parfaitement lisse, de centre O et de rayon r.
Désignons par A, B et D les points de 4 de coordonnées cartésiennes respectives
(r,0),(0,—r) et (0,r) dans un repére orthonormé direct (O,€},€,), €| étant horizon-
tal et dirigé vers la droite. La particule est soumise de la part du point B a une force
d’attraction f dirigée vers B et de module f = kPB, k constant, proportionnel a la
distance qui sépare cette particule P du point B.

e Déterminer la vitesse v4(P) de la particule P au point A, nécessaire pour que P
atteigne D avec une vitesse nulle.

e Déterminer la réaction R exercée par 1’anneau sur la particule lorsque celle-ci
passe par B, sachant que la vitesse en A est celle calculée a la question précédente.
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Réponses : v4(P) = %(mg +kr), R =5mg+ 4kr

3. Une particule P de masse unitaire est soumise de la part d’un point fixe O a une at-
traction dirigée vers O et de module égal a %, ou U est une constante strictement
positive et ou r dénote la distance OP. On projette P d’un point A a la distance d de
O perpendiculairement 3 OA avec la vitesse d~2( % /.L)l/ 2. Montrer que I’orbite de P
est une ciconférence ayant OA pour diametre et que le temps pour passer de A a O est
dPr(8u)~1/2.

5 Diagramme du potentiel

Au Chapitre 3, les mouvements d’un point matériel par rapport a un référentiel inertial
ont été déterminés grice a la résolution de 1’Equation de Newton. L’intégration compléte
de cette équation différentielle du second ordre étant souvent compliquée, nous avons étudié
les mouvements ci-dessus moyennant des intégrales premieres, qui encodent d’importantes
informations. Nous présentons a présent bricvement un autre outil élémentaire permettant
d’obtenir des renseignements sur les mouvements de la particule considérée: le diagramme
du potentiel.

L’IP de I’énergie est particulierement utile lorsque le point matériel étudié ne possede
qu’un seul degré de liberté. Prenons par exemple une particule (P,m) en mouvement par rap-
port a un référentiel inertial et astreinte a se mouvoir sur une courbe fixe, parfaitement lisse,
placée dans un champ de forces dérivant d’un potentiel ¢. Choisissons comme parametre une
abscisse curviligne s de P. Alors ¢ = @ (s) et I'IP de I’énergie s’écrit

1
3 ms*+¢(s)=E, ie §*=

2

m

[E—=9(s)]- ()

En dérivant cette identité par rapport au temps, on retrouve 1’Equation de Newton :

s=—Lay. 3)
m

Portons a présent le potentiel ¢ en ordonnée et le parametre s en abscisse et représentons
la courbe du potentiel € : ¢ = ¢ (s). Tragons également la droite d’énergie totale A: ¢ = E. 11
découle de I’Equation (2) que “la particule ne peut occuper de position en laquelle la courbe
du potentiel € est située au-dessus de la droite d’énergie totale A”. Les parties correspon-
dantes de ¢ sont appelées des barrieres de potentiel. Les parties de € situées en-dessous de
A sont des puits de potentiel.

Les points d’intersection de la courbe du potentiel et de la droite d’énergie totale, i.e. les
racines de I’équation ¢ (s) = E, revétent une importance particuliere.
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Rappelons d’abord la définition

Un réel x est une racine de multiplicité n, (n € N*), de I’équation f(x) =0, si

f(x0) = (duf)(x0) = ... = (dy ™" f)(x0) = 0, mais (d} f)(x0) # O

et les résultats d’analyse

Sl.ne{ {2,46...} } { (f)(20) = .= (74150 =0 }etsi

, Si

{3,5,7...} (@2 f)(x0) = ... = (d¢ " f)(x0) =
{ (d?f)(x0) # 0 (resp. <0,>0) }
(dyf)(x0) #0 ’

extrémum (resp. maximum, minimum) relatif
point d’inflexion

f admet en xy un { @)

qui sont des conséquences immédiates de la formule de Taylor.
Nous sommes a présent capables de fournir une “classification mécanique” des racines de
I’équation ¢ (s) = E.

1)

2)

2a)

Si a est une racine simple (i.e. de multiplicité 1) de I’équation ¢ (s) =E (i.e. si¢(a) =FE
et (ds¢)(a) # 0, ou encore si la courbe du potentiel et la droite d’énergie totale se
coupent en a et la tangente a la courbe du potentiel au point a n’est pas horizontale),
alors a est un point de réflexion.

En effet, si 1’abscisse curviligne s de P prend en ¢t = 1 la valeur s(tp) = a, il résulte de
I’Identité (2) écrite a I’instant t = 7y que $(zp) = O et de 1’Identité (3) écrite au méme
instant que §(fp) # 0. Le Théoréme 4 permet alors d’affirmer que s admet en 7y un
maximum ou un minimum relatif, ce qui justifie la dénomination “point de réflexion".

Si a est une racine multiple (i.e. de multiplicité supérieure a 1) de I’équation ¢ (s) = E
(i.e. si ¢(a) =E et (ds9)(a) =0, ou encore si la courbe du potentiel et la droite
d’énergie se coupent en a et la tangente au point a a la courbe est horizontale), alors a
est un point d’équilibre.

En effet, si s(tg) = a, il découle des Identités (2) et (3) que s(zp) = §(tp) = 0.

Si a est une racine de multiplicité n > 1 de I’équation @(s) = E (i.e. si @(a)
E,(d®)(a) = ... = (d"'¢)(a) = 0, (d"¢)(a) # 0), avec n paire et (d"¢)(a) >

alors a est un point d’équilibre stable.

0,

En effet, ¢ admet alors en @ un minimum relatif (on imaginera la courbe %" : ¢ = ¢(s)
du potentiel et la droite A : ¢ = E d’énergie totale au voisinage de a) et un 1éger apport
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d’énergie cinétique (impulsion communiquée a la particule) fait passer 1’énergie totale
de E a une valeur supérieure E’, de sorte que P ne peut s’écarter que de treés peu de sa
position d’équilibre (barrieres de potentiel).

2b) Si a est une racine de multiplicité n > 1, avec n paire et (d?¢)(a) < 0, ou avec n
impaire, alors a est un point d’équilibre instable.

En effet, a ce moment, ¢ admet en a un maximum relatif ou un point d’inflexion a
tangente horizontale et si une légere perturbation transforme 1’énergie totale en E’, P
peut s’écarter beaucoup de sa position d’équilibre.

Considérons pour terminer deux puits de potentiel entre deux abscisses curvilignes a et
b, I’'un limité par deux points de réflexion, 1’autre par un point de réflexion en a et un point
d’équilibre instable en b (imaginer les figures correspondantes en veillant a la différence en
b). Soit ¢ une abscisse curviligne entre a et b, supposons la particule P de masse m “lancée
de ¢ vers b” et proposons-nous de déterminer la durée D du déplacement cb. Vu I'Equation

@),
ds = ,/%(E— 0 (s))dr

D:\/g/cb\/%q)(s)ds.

On entrevoit que dans les deux cas la fonction 1/(1/E — ¢(s)) tend, lorsque s tend vers b,
vers +oo, mais beaucoup moins rapidement dans le premier cas que dans le second. Ainsi,
on comprend que la durée D (I’aire sous la courbe entre c et b) est finie pour le puits limité
a droite par un point de réflexion et infinie pour celui limité par un point d’équilibre instable
(qui n’est donc théoriquement jamais atteint).

et

6 Exercice

Etudier le diagramme du potentiel du pendule simple.






Chapitre 5

Application : Les mouvements planétaires

1 Formules de J.P.M. Binet

En guise d’application des techniques acquises dans les précédents chapitres, nous
étudierons ici les mouvements dans des champs de forces centraux, en particulier les mouve-
ments planétaires. Deux courts préliminaires relatifs aux coniques et aux formules de Binet
sont indispensables.

En Géométrie, on prouve dans les cours de base que les différents types de coniques pos-
sedent une équation cartésienne (relation caractéristique entre les coordonnées cartésiennes
(x1,x2) des points de la conique) spécifique pour un choix approprié du repere cartésien. Un
résultat similaire existe en coordonnées polaires. L’ équation polaire d’une conique (relation
caractéristique entre les coordonnées polaires (r, 0) des points de la conique) de paramétre p

et d’excentricité e s’écrit »

" 1¥ecosd’ M
a condition que le pdle soit situé en un foyer de la conique et que 1’axe polaire soit dirigé
vers le sommet le plus proche de la conique. Inversement, une équation de la forme (1), avec
p > 0ete >0, est I’équation polaire d’une conique. Sie =0 (resp. 0 <e<l,e=1,e > 1),
cette conique est un cercle (resp. une ellipse, une parabole, une branche d’hyperbole). Ainsi,
I’ excentricité e mesure le défaut de circularité de la conique, alors que le parameétre p est la
distance, mesurée perpendiculairement a I’axe principal, d’un foyer de la conique a la conique
elle-méme.

Nous établissons a présent les formules de Binet, qui donnent, pour une particule dans un

champ de forces central étudiée en coordonnées polaires (r,0), la vitesse V et 1’accélération
¥ en fonction de u := 1/r et des dérivées de u par rapport a 8. En effet, si 1’on se propose

49
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de prouver que les planetes suivent bien des trajectoires elliptiques autour du Soleil, donc
que I’équation polaire de ces trajectoires est de la forme (1), on remarque d’abord que cette
équation (1) suggere d’étudier u = 1/r plutét que r lui-méme. Ensuite, afin de trouver, a
partir de I’Equation de Newton % (7,?,?) = 0, non pas le mouvement, i.e. 7 en fonction de
t, mais 1’équation de la trajectoire, i.e. u = 1/r en fonction de 0, il s’impose de calculer 7,
7, 7, dans la base naturelle é,,€g associée aux coordonnées polaires, en fonction de u et des
dérivées dgu, d%u de u par rapport a 0, de maniere a obtenir une équation différentielle du
type . (u,dgu,d3u) = 0.

Proposition 1. Soit un point matériel en mouvement par rapport a un référentiel inertial
dans un champ de forces central. Si (r,0) désignent des coordonnées polaires dans le plan du
mouvement définies a partir d’un pdle choisi au centre de force, la vitesse V et [’accélération
Y de cette particule sont données par les deux formules de Binet

ou (é,€g) est la base naturelle associée aux coordonnées polaires considérées, ou h est la
constante des aires, et ot u = %

Preuve. 11 suffit de dériver I’identité 7 = re, = %Er deux fois de suite par rapport au temps
et d’utiliser I’intégrale premiére des aires sous la forme 6 = hu? pour exprimer les résultats
en fonction de u et de ses dérivées par rapport a 6 exclusivement. m

2 Mouvements dans un champ central en rlz

Considérons un point matériel (P,m) étudié par rapport a un référentiel inertial et soumis
a I’action d’une force centrale F de centre O. Les variables (r,0) utilisées ci-dessous sont
évidemment encore des coordonnées polaires dans le plan du mouvement. Clairement, aussi
bien le pdle que I’origine du référentiel sont a choisir au centre de force O. Nous supposons

de plus que la force F est attractive et de module proportionnel a rl—z En d’autres termes,

F = F(7) est un champ de forces du type

I
F=-—=
72

~ S

k
- — 7 2
30 (2)

ou k est une constante strictement positive. Le champ F étant ainsi un champ de forces central
a symétrie sphérique, ce champ, voir Chapitre 4, dérive d’un potentiel
- =d k
F= _V(Pa (P =T

7
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ou nous avons choisi la constante d’intégration de maniere que le potentiel soit nul a I’infini.
On notera que la force d’attraction gravifique exercée par un “point” matériel (O, m) (p.ex. le
Soleil) sur le “point” matériel (P,m) (p.ex. une planéte) est bien slir un cas particulier d’une
force attractive en %2

La résultante des forces F sollicitant la particule (P,m) étant centrale et dérivant d’un
potentiel, les IP des aires (IPA) et de I’énergie (IPE) sont simultanément applicables :

. 1 . k
?0=h et —m(*+r*6*) —-=E.
2 r
On sait que dans le cas d’un probléme a un seul degré de liberté, I'IPE conduit au diagramme
du potentiel, voir Chapitre 4. Or, en éliminant 0 dans I'IPE ci-dessus grace a I’IPA, on écrit
cette IPE sous la forme
2 1 Wk
%) N
=—(E—® oud(r)=-—m—=—-. 3
P = 2 (E=®(r)), ou d(r) = ym 5~ G)
Comme ®(r) — +oo (resp. ®(r) — 07), lorsque r — 0 (resp. r — +o0), on obtient, si
I’on porte ¢ en ordonnée et r en abscisse et trace le diagramme du potentiel ® = P(r), une

courbe admettant une asymptote verticale en 0 et une asymptote horizontale en +oo. En outre,
mh?

on vérifie que cette courbe est décroissante jusqu’en r = %, ou sa valeur est minimale et
z N 2 . . . . . . .
égale a —%%, et qu’ensuite elle est croissante. La suivante classification des trajectoires

découle du précédent diagramme :
(G) Si E > 0,r — +oo, sit — +oo : la trajectoire est ouverte.

(gj) Si —% # < E <0, r appartient en permanence a un intervalle [rpin, "max] : 1a trajec-
toire est fermée.

TR, 2 2 Lo . .
(gj) SiE= —% &= r vaut constamment /= : la trajectoire est circulaire.
mh k

Déterminons a présent la nature précise des trajectoires possibles. Pour cela, combinons—

comme annoncé ci-dessus—I’Equation de Newton
s . k7 3
mr =F=—-—-= —ku®e,

rer

et la seconde formule de Binet. On trouve alors
) _k

dgu—+u= —et
1.e. une équation harmonique a second membre constant. Sa solution générale s’écrit

k
u:Ccos(G—(p)—f—m,
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ou C > 0 et ¢ sont les constantes d’intégration. C’est 1’équation attendue d’une conique. En

effet, si I’on choisit la demi-droite d’angle polaire ¢ comme nouvel axe polaire, 0 se substitue
1

a 6 — @, et si on revient alors a la variable r = -, on obtient
mh?
k
r= . 4)
Cmh?
1+ m cos 6

Finalement, la trajectoire est donc bien une conique, de parametre p = ’"Thz et d’excentricité

= CmThz, un de ses foyers est situé au pdle, i.e. au centre de force, et I’axe polaire est dirigé
vers son sommet le plus proche. Afin de comparer ce résultat aux informations déduites
ci-dessus du diagramme du potentiel, il s’impose d’exprimer 1’excentricité e, non plus en
fonction de la constante d’intégration C, mais en fonction de la constante d’intégration E, i.e
de I’énergie totale de la particule. Pour cela, nous écrivons I’Equation 3) et I’Equation @ a
“I’instant O = 0". De fait, étant donné qu’a cet instant 7 = 0, la premiere identité fournit une
relation entre r et E, et la seconde une relation entre r et e. Si I’on élimine r et résoud par

rapport a e, il vient

2Emh?
e = 1 + k—2 (5)
D’ou une classification améliorée des trajectoires :
. . . 2 . . . . 2
(1) Sie=0,1e. E= —% #, la trajectoire est une circonférence de rayon %
() Si0<e<1,1e. —% # < E <0, la trajectoire est une ellipse.

(iii)) Sie=1,1i.e. E =0, la trajectoire est une parabole.
(iv) Sie>1,1i.e. E > 0, la trajectoire est une branche d’hyperbole.

En vue de I’étude des mouvements planétaires, nous investigons briecvement le mouve-
ment elliptique.

Déterminons d’abord le demi-grand et le demi-petit axes de I’ellipse. Si P (resp. P»)
désigne le périhélie (resp. I’aphélie) de la trajectoire, les Equations (4) et (5) donnent

pP p
rP) =1, et r(P) =1,
ot p=mh?/kete= 1+2E/§h2.D0nc,
P

a= 3 (r(P) +r(P) = 2
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et
pe
1 —e2’

c:=a—r(P)=

Comme a? = b2 + 2, il vient

b/ —2—_P .
V1—e?

Appliquons maintenant la loi des aires, voir Chapitre 4, au mouvement elliptique. Etant
donné que 1’aire délimitée par une ellipse de demi-grand axe a et de demi-petit axe b est égale
a wab (pour a = b on retrouve évidemment 1’aire délimitée par un cercle), on obtient

1
b=—|hT
mab = |h|T,

ou 7 est la période du mouvement. Il s’ensuit que

T2_47r2m
a ok

(6)

si on utilise les valeurs ci-dessus de a, b et p. Cette égalité est connue sous le nom de loi
harmonique (J. Kepler, 1619). Afin d’apprécier ce résultat a sa juste valeur, il importe de
I’appliquer au cas particulier des mouvements planétaires. En effet, la loi newtonienne de
la gravitation entraine que la constante de proportionnalité k, voir Equation (2), vaut a ce
moment k = GM-m, ou G désigne la constante gravitationnelle, M, la masse du Soleil ©, et
m la masse de la planete étudiée. La loi harmonique (6) prend alors la forme

T? 47

- 7
a3 GM@ ()

et stipule que le rapport du carré de la période et du cube du demi-grand axe est une constante
indépendante de la planete considérée.

3 Mouvements planétaires, lois de J. Kepler

En vue d’étudier le mouvement d’une planete autour du Soleil par rapport aux axes de
Copernic, nous assimilerons le Soleil et la planéte a des points matériels (on peut penser que
cette facon de procéder est justifiée par le fait que les diametres de ces corps sont petits par
rapport a la distance qui les sépare; en réalité la pertinence de cette hypothese découle du
Théoreme du Centre de Masse, voir plus loin, de la Théorie newtonienne de la Gravitation,
de la possibilité de considérer le Soleil et la planéte comme des distributions de matiere a
symétrie sphérique, ...), nous supposerons que la planéte est soumise uniquement a la force
d’attraction du Soleil, i.e. que les forces gravifiques que les autres corps du systeme solaire
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exercent sur la planete considérée peuvent étre négligées (ceci est licite, la masse du Soleil
étant beaucoup plus grande que celle des planetes et de leurs satellites) et finalement, nous
regarderons le centre du Soleil comme fixe par rapport aux axes de Copernic (en toute rigueur,
on devrait étudier le mouvement de la planete et celui du Soleil, voir probleme des deux
corps; la précédente hypothese est cependant raisonnable, vu la masse énorme du Soleil,
qui contient plus de 99 % de la masse totale du systeme solaire). Compte tenu des trois
hypotheses qui viennent d’€tre faites, la planete peut étre considérée comme un point matériel
étudié par rapport a un référentiel inertial et soumis a 1’action d’une force centrale, attractive
et de module inversement proportionnel au carré de la distance. Les résultats de la section
précédente sont ainsi valables. Rappelons les conclusions principales, connues sous le nom
de lois de J. Kepler (J. Kepler a déduit ces lois des observations astronomiques de Tycho
Brahé, alors qu’ici elles découlent de la loi de Newton) :

Premiere loi de Kepler — loi des ellipses (1609) :

Les orbites des planétes sont des ellipses (presque circulaires) admettant le Soleil comme
foyer (et contenues dans des plans différents, mais tous approximativement orthogonaux a
I’axe de rotation du Soleil. De plus, toutes les ellipses sont décrites dans le méme sens, a
savoir dans le sens de rotation du Soleil et de la Terre).

Deuxieme loi de Kepler — loi des aires (1609) :

L’aire balayée par le vecteur position (reliant le centre du Soleil au centre de la planete)
au cours d’un intervalle de temps donné, est proportionnelle a cet intervalle de temps.

Troisieme loi de Kepler — loi harmonique (1619) :

Le rapport du carré de la période de révolution et du cube du demi-grand axe de I’orbite
est une constante indépendante de la planéte étudiée.



Chapitre 6

Eléments de Cinématique du Solide

1 Vecteur rotation

Soit un solide &% en mouvement par rapport a un référentiel %y. Considérons un ROND
(01,€1,€2,83) 1ié a Z) et un ROND (0, €,,¢,,€;) attaché a %.

Remarquons d’abord que la variation temporelle d;.oii d’un vecteur i déterminée par un
observateur dans %y différe en général de celle dy. i mesurée par I’“observateur #;”. En
effet, dy.o€;, i € {1,2,3}, par exemple, est d’ordinaire non nul, tandis que d;.;¢; = 0. Notons
que I’annulation des dérivées temporelles dans % des vecteurs ¢; implique que le solide %
est animé par rapport a %y d’un mouvement de translation, et rappelons qu’un solide est
animé d’un mouvement de translation, s’il se déplace en restant parallele a lui-méme.

La rotation du solide & par rapport au référentiel % est donc encodée dans les vecteurs

d[;()a' = ZQijgj-
J

Les ¢; formant une BOND, il est clair que leurs variations temporelles ne sont pas indépen-
dantes. Et en effet, la dérivation par rapport au temps de I’identité ¢; - €; = §;;, traduisant le
caractere orthonormé de cette base, fournit le résultat

dt;ogi-gj+gi-d,;ogj =0, Iie. Qij-l—jS =0.

Cette €galité signifie que la matrice des €;; est antisymétrique et contient donc seulement
trois composantes effectives, par exemple

0 = Qo3, 0y := Q31 et 3 1= Q). (D)

55
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Finalement, la rotation de %) par rapport a % est complétement encryptée dans le “vecteur
rotation”

o0 = ijéj.
J

Insistons sur le fait que 1’observateur % associe ainsi a chaque BOND ¢; attachée a % un
triplet de réels (@, @,, ®3), mais que deux triplets relatifs a deux bases différentes (€1, ¢5,¢€3)
et (¢1/,é,,23") ne définissent pas nécessairement le méme “vecteur” @. Or, un vecteur étant
un objet indépendant du concept de base, uniquement un “vecteur” indépendant de la base
éventuellement utilisée pour le définir est un (vrai) vecteur. Nous prouverons ci-dessous que
@ est bien un vecteur.

Notons a présent que les relations (1), qui définissent les composantes du “vecteur rota-
tion” @ dans la base considérée, peuvent étre résumées en une seule,

1
0= Y & Qi (2)
jk
qui s’inverse en
Qij = Zsijka)k. (3)
k

Il s’ensuit que
di0€; = Zeijka)ké’j = ngéjwk&'égj =0 NE;.
Jjk klj
Cette régle de dérivation remarquablement simple s’étend a tout vecteur #; lié au solide Z.
De fait, un tel vecteur se décompose dans la base des ¢;, également attachée a %, sous la
forme i1 =Y, u;.1€;, avec des composantes u;.; constantes au cours du temps. Par conséquent,

dt;()l_il = Zui;ld;;()zi = Zui;] 67)/\5,' = (?)/\ﬁ]. 4)
i i

C’est la formule de Poisson. Elle stipule que la dérivée temporelle dans %, d’un vecteur lié
a ) s obtient par multiplication vectorielle (a gauche) du vecteur a dériver par le “vecteur
rotation” de % par rapport a Z. Cette regle de Poisson admet une généralisation supplé-
mentaire que nous donnerons ci-dessous.

L’indépendance de @ de la base des ¢; peut étre établie comme suit. Si @' désigne le
“vecteur” semblablement construit a partir d’une autre base &;’, on a, pour tout vecteur i; lié
A, ®Niy = dpotiy = @ Nidy. 11 S’ensuit que @ — @' est colinéaire a tout vecteur attaché a
1, sibien que @' = @. Le vecteur rotation @ de % par rapport a % est parfois noté ay;,
si I’on désire insister sur le solide et le référentiel considérés.
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Exemples.

e Dans le cas d’'un mouvement de translation, notre intuition suggere que le vecteur ro-
tation est nul—conclusion corroborée par la précédente définition de @.

e Considérons a présent un solide Z| en rotation par rapport a un axe fixe A que nous
pouvons sans restriction supposer vertical. Désignons de nouveau par (O, €,,¢,,€;) et
(01,€1,é,,¢3) des ROND attachés a % et %) respectivement. Nous choisissons Oy =
O sur A et é; = €3 porté par A. La position de % par rapport a % est compleétement
décrite par I’angle 6 formé par les vecteurs horizontaux ¢€; et €;. Intuitivement, il est
clair que, lorsque le solide tourne autour de A dans le sens défini par €3, son vecteur
rotation est donné par

o = 6¢;. )
En vue de vérifier ce résultat a partir de la définition de @ et donc la validité de cette
définition, observons d’abord qu’il découle de la formule de Poisson que

— 1 — -
W= Eg’ei Nds0€;.

La décomposition des vecteurs ¢€; dans la base barrée en fonction de 6 permet alors de
prouver que @ est bien donné par 6¢5.

2 Formule générale de S.-D. Poisson

Soient un vecteur arbitraire # et deux solides %, et %#; munis de ROND attachés
(00,€,,€,,¢3) et (01,€1,€,,€3) respectivement. Posons i = Y ,;u;é;. Dans %, le vecteur
i, ses composantes u; et les vecteurs de base €; sont en général tous des fonctions du temps z.
Il en est de méme dans %, sauf que les €; y sont constants. Par conséquent,

dy-oli = Zb'tia' + Zu,‘dt;()a' =dp i+ 0N
i i

Theoreme 1. Considérons deux solides % et X\ et un vecteur i arbitraires. Les dérivées
temporelles de i dans Xy et %) sont liées par la formule générale de Poisson,

d.otl = dy1ii + @o1 N id, (6)
ou @y dénote le vecteur rotation de %, par rapport a XK.
Remarques.

o Si i est attaché a #, la formule de Poisson généralisée (6) se réduit bien a la formule
de Poisson (4).
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e Pour ii = @y, la formule généralisée fournit d,.0@y; = d;.] D1, de sorte que dans la suite
nous ne préciserons plus le référentiel, Zy ou Z#;, dans lequel la dérivée temporelle du
vecteur rotation @y; est déterminée, et noterons simplement @y .

La formule de Poisson généralisée permet d’établir la suivante loi de composition des
vecteurs rotation et ses conséquences, qui, remarquons-le, sont en excellent accord avec
I’intuition.

Proposition 1. Considérons trois solides %o, %\ et %> et désignons par @, le vecteur
rotation de Xy, par rapport a %Z,. La loi de composition des vecteurs rotation s’écrit alors

Bpp = Bp; + D12 (7

En outre,
Boo=0 et @jp=—0o. (8)

Preuve. La formule de Poisson généralisée, écrite successivement pour les solides % et #,
puis pour les solides Z; et %>, donne, pour tout vecteur i,

dpoli = dpqli + Qo) NiE = dppli + O3 N+ @y A= dypii + (Bpy + Dpo) A

La comparaison avec le résultat fourni par la formule généralisée appliquée aux solides %
et %,, conduit alors a I’Equation (7). En prenant dans cette équation Zy = Z| = %>, puis
Ko = J>, on obtient les deux équations (8). m

3 Tenseurs

La Section 1 fournit I’occasion d’introduire la notion de “tenseur” qui généralise le
concept de scalaire et de vecteur. Les tenseurs sont fondamentaux en Mathématiques, en
Physique, ainsi que dans les Sciences de 1’'Ingénieur. Ils sont notamment indispensables en
Mécanique des Milieux Continus, en Relativité, en Géométrie, ... et reapparaitront dans le
cadre de ce cours en Mécanique des Solides.

Notons d’abord que le passage d’une BON (é},¢>,¢3) a une BON (¢é,,é,,¢3') est car-
actérisé par les composantes des “nouveaux” vecteurs de base &;’ dans I’““ancienne” base &;.
Il s’avere pratique de former la matrice de ces composantes, la matrice de passage, dont
les colonnes successives contiennent les composantes des vecteurs successifs de la nouvelle
base. Si A désigne cette matrice de passage, on a donc

Ej, = ZA,']'EZ'. (9)
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De méme,
éj=Y Ajél, (10)
i

ou A’ est la matrice de passage “inverse”, i.e. celle permettant de passer de la base “primée”
a la base “non primée”. 1l semble donc naturel que A’ soit la matrice inverse de A. Cette idée
est facile a vérifier. Etant donné que

=/ — / =/ / =/

ej = ZA,'jei = ZZAkiAijek = Z(A A)kjek y

i ko k
on a bien (A’A)yj = & et
A/ :A—l
Remarquons aussi que le caractere orthonormé des bases impliquées a un impact sur la

nature de la matrice de passage. De fait,

Sjv=2/"8' =Y AijAwe & =) AijAr b =) AjiAy = (AA) 0,
ik ik i
i.e. la matrice de passage d’une BON a une BON est orthogonale. Finalement,

A=A"T=A

Cherchons a présent la loi de transformation des composantes d’un vecteur # lors d’un
changement de BON. Comme

= /—»./_ . /—).
i Y = LY Apue
J rJ

on obtient la relation
ui:ZA,-ju'j, (11)
J

appelée loi de transformation vectorielle ou simplement loi vectorielle. On observera que la
loi vectorielle fournit les anciennes composantes en fonction des nouvelles et qu’elle admet
la forme matricielle

U=AU', (12)

ol U dénote la colonne des composantes u; du vecteur # dans I’““ancienne” base et U’ celle
des composantes «; du vecteur i dans la “nouvelle” base.

Dans la Section 1, nous avons associé a chaque BON (€},é,,¢3) (en fait a toute BOND
attachée a Z;, mais cette précision sans importance pour ’instant) un “3-uplet” de réels
(w1, @, @3). Alalumiere des précédentes explications, il est clair que tous ces triplets relatifs
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a toutes les BON définissent un seul et méme vecteur si et seulement si les triplets (@, @,, ®3)
et (o], 5, ;) correspondant a deux BON différentes vérifient la loi vectorielle

/
k

De méme nous avons obtenu dans chaque BON &; un 3-uplet de réels Q; j- Nous dirons
que tous ces uplets définissent un seul et méme tenseur si et seulement si les uplets Q;; et Q! j
relatifs 2 deux BON ¢; et &, vérifient la loi tensorielle

Qij = ZAikA Qs
il

qui est la généralisation naturelle de la loi vectorielle.

De maniere plus précise, la loi tensorielle ci-dessus est la loi tensorielle d’ordre 2, alors
que la loi vectorielle est encore appelée loi tensorielle d’ordre 1. Plus généralement, si une
grandeur mécanique, physique ou autre, est caractérisée dans chaque BON par un 3" -uplet de
réels T;, i, et si ces uplets satisfont a la loi tensorielle d’ordre n

Tiin =Y, AukAiks - Aikn Ttk (13)
ki..k

alors ces uplets sont les composantes dans les bases respectives d’un tenseur T d’ordre n et
la grandeur étudiée peut étre décrite par cet n-tenseur.

Exemples. On vérifiera que :

e le symbole de Kronecker §;; définit un 2-tenseur isotrope, i.e. un 2-tenseur ayant les
mémes composantes J; ; dans toute BON,

e le symbole de Levi-Civita g; j; définit un pseudo-tenseur isotrope d’ordre 3, en utilisant
I’égalité &;jx = (€; \€;) - €, valable a condition que la base des ¢; soit une BOND,

e les Q;; et les w;, voir Section 1, sont, dans la géométrie limitée aux BOND, les com-
posantes d’un 2-tenseur et d’un vecteur respectivement.

Le lecteur aura remarqué que le concept de tenseur a été introduit via des bases et com-
posantes, mais qu’aucune définition intrinseque ou modele des tenseurs n’a été donné. Nous
reviendrons a cette question en Mécanique des Solides. Signalons aussi que la limitation aux
BON, voire aux BOND, simplifie considérablement le calcul tensoriel. Une approche inclu-
ant tous les types de bases sera proposée dans les cours plus avancés.

Les principales opérations sur les tenseurs sont la multiplication par les scalaires, 1’addi-
tion, la multiplication tensorielle et la contraction.
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Pour des raisons de clarté, nous définirons ces opérations sur des exemples. Soit A un réel
et soient T;;, U;; et V;j; les composantes de trois tenseurs. Il est facile et instructif de prouver
que les

AT (resp. T;j+Uij, TijViam et ZTijijm) (14)

J

sont les composantes d’un 2-tenseur (resp. 2-tenseur, S-tenseur et 3-tenseur). Les opérations
ainsi définies sont celles mentionnées ci-dessus. On remarquera que les deux premieres mu-
nissent I’ensemble des 2-tenseurs (resp., plus généralement, I’ensemble des n-tenseurs) d’une
structure d’espace vectoriel réel de dimension 3% (resp. 3"). La (trés simple) multiplication
tensorielle d’un 2-tenseur et d’un 3-tenseur (resp., plus généralement, celle d’un n-tenseur et
d’un m-tenseur) fournit un 5-tenseur (resp. un (n+m)-tenseur). Ensemble avec la multiplica-
tion par les scalaires et 1’addition, cette multiplication tensorielle confere a la somme directe
des espaces de tenseurs de tous les ordres n, une structure d’algebre associative. Enfin, dans
I’exemple considéré de produit contracté, la contraction se fait sur le second indice (du pre-
mier tenseur) et sur le premier indice (du deuxieme tenseur). D’autres choix sont évidemment
possibles. On peut aussi itérer la contraction et s’intéresser par exemple au tenseur };; 7V jx;
On observera que p contractions du produit d’un n-tenseur et d’un m-tenseur conduisent a un
(n+m—2p)-tenseur. La définition (2) et I’équation (3) fournissent des exemples de produits
tensoriels contractés. Sil’on sait que les &; j; et les €2;; définissent des tenseurs, il est des lors
évident que les @; sont les composantes d’un vecteur.

4 Champs des vitesses et des accélérations d’un solide

Rappelons qu'un champ de vecteurs est un vecteur fonction du point en lequel on le
“mesure”. Un tel champ # = ii(P) est appelé torseur s’il existe un vecteur V tel que pour tous
les points P et Q de la région de I’espace ou le champ # est défini, on ait,

i(0) = @(P) +V A PO. (15)

Un raisonnement désormais standard montre que le vecteur V, s’il existe, est unique. C’est le
vecteur du torseur. On notera que le torseur i est complétement déterminé par la donnée de
son vecteur et de sa valeur en un point P. Rappelons que le moment par rapport a un point P,
d’un vecteur F appliqué a un point R, est un torseur de vecteur F.

Considérons maintenant un solide % en mouvement par rapport a un référentiel % et
notons Vo (Py) la vitesse par rapport au référentiel % d’un point arbitraire P; 1ié au solide % .
Insistons sur le fait que ce vecteur vitesse par rapport a % varie bien—en général—d’ un
point de #; a I’autre, et constitue donc un champ de vecteurs et méme un torseur, car

. . — — 5o
Vo(Q1) —Vo(P1) = dr.000Q1 — dr0O0P1 = dr.oP1 Q1 = /\P1Q1,
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ou Og désigne 1’origine de % et ou nous avons utilisé la formule de Poisson. D’ou la

Proposition 2. Le champ des vitesses Vo = Vo(Py) des points d’un solide %) par rapport a
un systeme de référence % vérifie la tormule fondamentale de la Cinématique des Solides,

Fo(Q1) = o(P1) + @01 APLOS, (16)

ot Py et Q1 sont des points du solide %, et on @y, désigne le vecteur rotation de %, par
rapport a %y.

Le champ des vitesses par rapport a %y des points liés a % est donc un torseur de vecteur
(1, appelé torseur cinématique.

Il est a présent naturel de regarder si le champ 7 = 7 (P;) des accélérations par rapport a
Z des points de Z) est un torseur ou non. Comme

%(01) — Yo(Pr) = dro(Vo(Q1) — Vo( 1) dz0<(7101/\P1Q1)
—0)01/\P1Q1+0)01/\dz0—Q> o1 A Py 1+ /\(67)01/\P1Q1)

on a finalement la

Proposition 3. Le champ des accélérations Yy = Yo(P1) des points d’un solide % par rapport
a un systeme de référence Xy vérifie la relation

- . = _— o —
(01) = Y(P1)+ o1 APLQ1 + o1 A (o1 APLO1) (17)

et n’estpas un torseur.

5 Lois de composition des vitesses et des accélérations

Soient deux référentiels % d’origine Oy et #; d’origine O; et un point arbitraire P.
D’ordinaire ces solides et ce point bougent les uns par rapport aux autres. Nous nous pro-
posons de trouver la relation entre les vitesses

P)= dz;00‘0$ et Vi(P)= a’t;10‘1z
de P par rapport a % et Z; respectivement. Vu que OgP = 0y0] + O, P, on obtient

Vo(P) = d,00001+d,0ﬁ:\7 (01) +d,1(ﬁ+w01/\ﬁ_
V1(P) +Vp(0y) + @o1 A O P.

En comparant
50(01) + @01 A O P

a1’Equation (16), on constate que ces termes représentent la vitesse dans % du point lié 3 %,
qui coincide avec P a I'instant considéré. Cette vitesse porte le nom de vitesse d’entrainement
de P (par rapport & %) et elle est notée v, (P). Finalement, on obtient la
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Proposition 4. Si un point P est en mouvement par rapport a deux référentiels % et %1, ses
vitesses mesurées par des observateurs dans % et %\ sont liées par la loi de composition
des vitesses,

Vo(P) = Vi (P) +Ve(P), (18)

i.e. la vitesse “absolue” (vitesse dans %y considéré comme référentiel absolu) égale la
vitesse “relative” (vitesse dans %\ considéré comme référentiel relatif) augmentée de la
vitesse d’entrainement. La vitesse d’entrainement (par rapport a %) est donnée par

V,(P) = ¥(O1) + @1 A O1 P, (19)

out O désigne un point quelconque de %),.

Déterminons a présent le lien entre les accélérations

W(P) =dioVo(P) et % (P)=dy;V1(P)
de P mesurées par des observateurs dans %, et dans Z;. Etant donné que
T0(P) = 71(P) +7(P) = 71(P) +7(01) + Gor A O1P,
il vient
To(P) = dioP1 (P) + dig¥o(O1) + @01 A O1P+ @o1 AdrgO1 P
= dp191(P) + @1 AT (P) + diso¥o(O1) + o1 A O1P + o1 A (dtﬂo?ﬁ @o1 A OTfL’)

=% (P) +%(01) + @1 /\074— @p1 A (o /\07)+2(501 AV (P).
(20)
La comparaison de _
T0(01) + Gor A O1P + Gy A (Go1 A O1P)

a ’Equation (17) montre que ces termes représentent I’accélération par rapport 4 %, du point
lié a #, qui coincide avec P a I'instant considéré, i.e. 1’accélération d’entrainement ¥,(P)
de P (par rapport a Zy). Le terme 2 @y; A Vi (P) est appelé I’accélération complémentaire ou
I’accélération de Coriolis ¥,(P) de P. D’ou la

Proposition 5. Si un point P est en mouvement par rapport a deux référentiels % et %,
ses accélérations mesurées par des observateurs dans X%y et X%\ sont reliées par la loi de
composition des accélérations,

W(P) =% (P) +7(P) + Y%(P), 21

i.e. laccélération absolue est égale a l’accélération relative augmentée de ’accélération
d’entrainement et de ’accélération de Coriolis. L’accélération d’entrainement (par rapport
a %) est donnée par

7.(P) = (01 + @1 A O1P + @1 A (@1 AOLP), (22)
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ou Oy désigne un point quelconque de X%, et I’accélération de Coriolis est égale a

Ye(P) =2 o1 AVi(P). (23)

6 Exercices

1. Montrer qu’en général %,(P) # d;.oV.(P), mais que %,(P) = d;.oV.(P) — &1 AV (P).
Expliquer !

2. Un référentiel #; de ROND (O, ¢€|,¢;,¢3) est en rotation, par rapport a un référentiel
Xy de ROND (0, ¢é,,é,,€3), autour de I’axe commun (O,€3). Une particule P est
assujettie a se déplacer sur le demi-axe |0, € ). Décomposer V,(P),%.(P) et ¥:(P) dans
la base (€1,€5).

Réponses : V,(P) = r&,, 7.(P) = —r0%¢, +r0é,, ¥.(P) = 270&,. La vitesse V,(P)
(resp. I’accélération ¥, (P)) peut &tre calculée de deux (resp. trois) fagons différentes.

3. Un référentiel #| de ROND (0,€},é,,€3) tourne autour de I’axe (Og,€3) du ROND
(00,€,,€,, €3) attaché a un référentiel Zy. Le point O décrit une circonférence de
rayon constant a, a la vitesse angulaire constante §. Un point P décrit dans le plan
(01,€1,€) un cercle de centre Oy, a la vitesse angulaire constante 0 par rapport a Z.
On désigne par 7 (resp. 7) le vecteur position de P dans % (resp. dans #;). Calculer

Ve(P), ¥e(P) et %e(P).
Réponses : V,(P) = 0é; AT, 71,(P) = —QZZ, 7.(P) = —2067.



Chapitre 7

Dynamique du Point
dans un
Référentiel non inertial

Les Chapitres 3-5 sont consacrés aux mouvements d’une particule matérielle par rapport
a un observateur qui est lui-méme en mouvement de translation rectiligne et uniforme par
rapport a un référentiel inertial ou galiléen, par exemple par rapport aux axes de Copernic. Le
référentiel Terre—important dans les applications pratiques—n’est évidemment pas inertial.
L’objectif de ce chapitre est la Dynamique du Point par rapport a un systeme de référence
non galiléen.

1 Théoremes généraux du mouvement dans un référentiel
non inertial

Soit un point matériel (P,m) soumis a une résultante de forces F et observé a partir d’un
référentiel arbitraire %|. Le mouvement de cette particule par rapport a un quelconque ob-
servateur inertial %, s’obtenant a partir de I’Equation de Newton m} = F et les accéléra-
tions absolue 7 et relative 7; du point P vérifiant la loi de composition des accélérations
Yo = %1 + ¥e + 7., voir Chapitre 6, on a

my = F —m¥, — m¥e, (1)
ou ‘
%o = 7(P) = 7(O1) + Go1 A O1P + @oy A (@01 A O1P)
et

’)702’)70(P> :26)()1 /\\7|(P).

65
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11 s’agit évidemment de choisir—si possible—le référentiel inertial % et le point O de %
de maniere que 1’accélération (O;) de Oy par rapport a % et le vecteur rotation @y de %
par rapport 3 %, soient facilement calculables. Si F = F (t,71,71) est une fonction connue
du temps 7, de la position 7| et de la vitesse 7, de P par rapport a %;, I'Equation (1) est une
équation différentielle du second ordre Z(t,7, 71, ?"1) = 0, dont I'intégration fournit le mou-
vement 7| = 7 (¢) de la particule P par rapport a I’observateur %

Les suivants théorémes généraux du mouvement dans un référentiel non inertial %, sont
immédiats. Soulignons que nous avons systématiquement omis les indices 1 caractérisant les
objets relatifs a % .

Théoréme 1. Considérons une particule matérielle (P,m) en mouvement par rapport a un
référentiel arbitraire X\ et soumise a une résultante de forces F. Par rapport a X%y, les
variations temporelles de la quantité de mouvement p = mv, du moment cinétique G par
rapport a un point fixe O de %), et de I’énergie cinétique E. du point P, sont données par

dip = F — m¥, —m¥., 2)
di8p = OP \(F —m, —m7.), 3)
dE. = (F —my, —my,) V= (ﬁ —mY,) -V, 4)

ot les accélérations d’entrainement ¥, et de Coriolis ¥, de P sont calculées par rapport a un
référentiel inertial quelconque.

Les termes —mY, et —mY,, qui ont évidemment la dimension d’une force, ne sont bien
stir pas des forces réelles. 11 découle immédiatement de leur définition que ces forces ap-
parentes sont nulles si et seulement si le référentiel % est inertial, et ne se manifestent
donc que lorsque la particule (P,m) est observée a partir d’un point de vue en mouvement
accéléré ou en rotation. Ainsi, ces forces fictives sont d’origine purement cinématique et
ne sont nullement les conséquences d’interactions physiques. Le vecteur —m?, est la force
fictive d’entrainement et le vecteur —mY, la force fictive de Coriolis. Clairement, le terme
—m &y N (Boy A 0‘1?0) de la force d’entrainement n’est autre que la force centrifuge, et, visi-
blement, la force de Coriolis —2m @y A V; ne travaille pas, ce qui explique la simplification
de I’Equation (4). 1 est facile de vérifier par de courts calculs directs, voir “champ des ac-
célérations d’un solide”, que la force d’entrainement est évidemment indépendante du point
O considéré, et, voir “lois de composition des vecteurs rotation et des accélérations”, que les
forces d’entrainement et de Coriolis sont indépendantes du référentiel inertial utilisé. Finale-
ment, les théoremes généraux des mouvements par rapport a un référentiel non inertial sont
donc les mémes que dans un référentiel inertial, a condition d’ajouter les forces fictives aux
forces réelles agissant sur la particule.
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2 Référentiel géocentrique

Considérons le repere (7,€1,€;,€3) dont I’origine est le centre de masse 7 de la Terre ®
et dont les axes ont des directions fixes par rapport au référentiel de Copernic %. Ce repere
est ’ossature d’un référentiel %, appelé référentiel géocentrique et utilisé notamment dans
I’étude des satellites de la Terre. Comme % est animé par rapport a %, d’un mouvement de
translation presque circulaire et uniforme, le référentiel géocentrique n’est évidemment pas
inertial.

Néanmoins, 1’Equation de Newton (2) d’un point matériel (P,m) qui se meut “au voisi-
nage” de la surface de la Terre, prend, par rapport au référentiel géocentrique %, une forme
particulicrement simple, que nous nous proposons de déterminer.

Décomposons la résultante des forces réelles, s’exer¢ant sur la particule (P,m), en les
forces réelles d’origine terrestre, de résultante F’@, et les forces réelles non terrestres, i.e. les
forces d’attraction gravifique exercées sur (P,m) par les autres corps du systéme solaire. Le

module de ces forces étant donné par
GMm

PC?’
ot G =6,67.10""'m3 /kg s est la constante universelle gravitationnelle et ot M et C sont
respectivement la masse et le centre de masse du corps attirant, les forces gravifiques dues a
la Lune ¢ (PC¢ <) et au Soleil ©® (M, >>) sont en fait les seules a prendre en compte. Si
I’on note g¢ et g les champs de gravitation lunaire et solaire, ces forces valent mgq (P) et

mg (P) respectivement. D’oti I'Equation de Newton de (P,m) dans %,

—

my = Fg+mgq(P)+mge(P) —mY,

"o ImE Soll’) = me (5)
= Fg+mgq(P)+mgo(P)—mYo(T),

car le vecteur rotation de & par rapport a % est nul.
L’accélération %) (T) est obtenue a partir de 1’Equation de Newton écrite pour le point T
et par rapport au référentiel %,

maYo(T) = magq (T) +mage(T). (6)

La justification rigoureuse de cette équation est basée sur le fait que la Terre peut €tre consid-
érée comme une distribution de maticre a symétrie sphérique et sur le Théoréeme du Centre
de Masse—nous 1’établirons plus loin de maniere indépendante—qui stipule que le centre de
masse d’un systeme matériel se meut comme un point matériel ayant comme masse la masse
totale du systeme et soumis a la résultante de forces extérieures sollicitant le systeme.

La combinaison des équations (5) et (6) conduit enfin au résultat

my = Fo+m(g( (P) — 8¢ (T)) +m(3=(P) — g (T)). (7)
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Si I’on imagine les champs de forces (par unité de masse) g¢ (P) — 8¢ (T) et §o(P) —
go(T) aux points P de la surface terrestre, on entrevoit le principe des marées. Sous
I’influence de ces deux champs—de celui de la Lune surtout—Ies océans prennent la forme
d’un court cigare arrondi a ses deux bouts et, la période de révolution de la Lune autour de la
Terre étant égale a 24 h50 min, le niveau des mers oscille avec une période de 12h25 min.

Il est possible de comparer la force de marée lunaire m(gq (P) — g¢ (T')) et la force de
marée solaire s’exercant sur (P,m), a la force de gravitation terrestre mgq (P) subie par (P,m),
qui figure parmi les forces réelles terrestres F,. Comme

Im(E¢ (P) —§c (T) = 107" mga(P)|| et |m(3s(P)—go(T))|l = 5.107% | mgs (P)ll,

on peut évidemment négliger les deux derniers termes de I’Equation (7) et on obtient finale-
ment le

Théoreme 2. Dans le référentiel géocentrique, I’Equation de Newton d’un point matériel P
de masse m, se déplacant au voisinage de la surface de la Terre, s’écrit

my = Fg, 8)

ou F5 désigne la résultante des forces réelles terrestres s’exercant sur P.

3 Référentiel terrestre

Ci-dessous, nous étudierons la Terre considérée comme référentiel. Il va sans dire que
ce référentiel, notons-le encore %, revét une importance particuliere. Comme % est an-
imé, par rapport aux axes % de Copernic, d’un mouvement de révolution autour du Soleil
et d’un mouvement de rotation autour de I’axe des pdles (nous négligeons la précession des
équinoxes [mouvement giratoire de 1’axe des pdles qui décrit un cone, d’angle au sommet
égal 2 23°30/, en 26 000 ans], la nutation [petit mouvement oscillatoire de 1’axe des poles qui
se superpose a la précession et qui a une amplitude tres faible, égale a 18” d’arc, et une péri-
ode de 18 ans et 7 mois], les autres mouvements de la Terre, ainsi que les faibles irrégularités
de la vitesse de rotation de la Terre), il est clair que la Terre n’est pas un référentiel inertial.

Déterminons 2 présent la forme que prend I’Equation de Newton (2) dans le référentiel
terrestre, si elle est appliquée a un point (P,m) qui ne s’éloigne pas trop de la surface de la
Terre. Les approximations précédentes impliquant que @ est constant, I’'Equation de Newton
s’écrit

my = Fy +mgg (P)+mgo(P) —m((T) + A (BATP)) —2md AT, )
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les notations étant les mémes qu’en (5), et en reprenant 1’argumentation de la Section 2, on
trouve
my=Fe—m@N(OANTP) —2md AV, (10)

La décomposition de la résultante F“@ des forces réelles terrestres agissant sur la particule
(P,m), en la force de gravitation mgq (P) exercée par la Terre et la résultante F des forces
réelles terrestres non gravifiques, conduit a

my=m(3o(P)— A (BATP)) + F —2m@ AT,

Comparons les intensités de la force gravitationnelle g4 (P) et de la force centrifuge —@ A
(® A TP) par unité de masse. Si A désigne la latitude de la position de P, on a

I 2)?
|® A (a)/\ﬁ)H = 0°Rgcos A < 0°Rg ~ 8(617;)42 6370.10° ~ 0.034 < 9.81 ~ || gx(P)|,

la période de rotation sidérale de la Terre valant 86164 s et le rayon terrestre Rs pouvant étre
pris égal a 6370km. La direction du champ de gravitation efficace

3(P) = 3=(P)— DA (DATP) (11)

de la Terre—celle donnée en P par un fil a plomb—ne s’écarte donc que de tres peu de la
direction de g¢(P). D’ou le

Théoreme 3. Dans le référentiel terrestre, I’Equation de Newton d’un point matériel (P,m),
se déplacant au voisinage de la surface de la Terre, s’écrit

my=mg(P)+F —2m® AV, (12)

ot g(P) est le champ de gravitation efficace de la Terre, ot F désigne la résultante des forces
réelles terrestres non gravifiques et oit @ est le vecteur rotation de la Terre.

Notons que si 0 désigne 1’angle entre le vecteur rotation @ et le vecteur vitesse v, le
module de la force de Coriolis par unité de masse est donné par

| —2@ AV| =2wvsin6.

Cette intensité étant, pour une vitesse v = 100ms~! et un sinus sin @ = 1, approximativement
égale 2 0,0146ms 2, la force de Coriolis est généralement négligeable. On doit en tenir
compte lorsque v est tres grand et lorsque 1’expérience dure longtemps. Si on peut négliger la
force de Coriolis, I’Equation de Newton (12) coincide avec celle qu’on obtient en assimilant
la Terre a un référentiel inertial. Ceci justifie a posteriori cette facon de procéder.
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4 Pendule de J. B. L. Foucault

Dans cette section, nous calculons la trajectoire du pendule de Foucault par rapport a la
Terre et expliquons que son mouvement prouve la rotation de la Terre autour de I’axe des
poles et la présence de la force de Coriolis dans un référentiel non inertial.

Considérons donc un tel pendule, i.e. un corps—nous I’assimilerons a un point matériel
(P,m)—suspendu, par I’intermédiaire d’un fil de masse négligeable et de longueur ¢, a un
point fixe S, en un lieu de latitude A.

Soit O la position de P a I’équilibre et soient (€],é>,€3) les vecteurs unitaires liés a O et
dirigés vers I’Est, le Nord et le Zénith respectivement. L’équation du mouvement de P par
rapport au référentiel terrestre s’écrit, voir Théoreme 3,

my=mg+T —2md AV, (13)

ot 7 est la tension du fil. Outre les composantes (x,y,z) du vecteur position ¥ = 07 dans
la BOND (¢),¢5,€3), le module T de la force de liaison T est inconnu. En exprimant, en
vue de projeter I’Equation (13) sur les axes, les composantes (7, Ty, T;) de T en fonction des
parametres du probleme, on trouve
T T T
Li=—7% hLi=—7» e L=
comme on le voit en utilisant les regles bien connues valables dans des triangles semblables.
Les composantes de @ dans la BOND considérée étant (0, wcosA,@sinA), la projection de
I’équation du mouvement donne

(@—Z)7

T
¥ = ——x—2(zcosA —ysind), (14)
ml
§ = —Ly 2misink, (15)
ml
T
7 = —g+—(—z)+2wxcosA. (16)

ml

Vu I’objectif poursuivi, nous pouvons limiter notre étude a des oscillations assez petites
pour que le mouvement puisse étre considéré comme plan. Alors z=0,z=0et 7 =0, de
sorte que le nombre d’inconnues se réduit au nombre d’équations. Comme ® = 27/86164,
le terme 2 wxcos A est négligeable, I’Equation (16) donne T = mg et les équations (14) et
(15) deviennent
=B
l
V+2wisinA + %y = 0,

X —2wysinA + = 0,
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ou, sous forme vectorielle,
F4+2Q8; AT+ oF =0, (17)

a condition de poser Q = wsinA et a)(% =g/l L’Equation (17) est 1’équation harmonique
tordue par le terme 2 @sin A&3 A7 dii 4 1a rotation @ de la Terre et visiblement responsable de
la rotation du plan d’oscillation du pendule de Foucault.

Vu la complexité de cette équation de mouvement, nous considérons le référentiel
%, défini par son systeéme d’axes attaché (O,€;,&,¢3) tournant, par rapport aux axes
(0,8,€,,€3) du référentiel Terre #1, a la vitesse angulaire Q dans le sens défini par —€3. En
effet, comme ce nouveau référentiel suit en fait le plan d’oscillation du pendule de Foucault
dans son mouvement de rotation, nous pouvons augurer que 1’équation de mouvement du
pendule par rapport a %5 est une simple équation harmomque facﬂe a intégrer. Afin de cor-
roborer cette intuition, exprimons les dérivées temporelles 7 et 7 calculées par ’observateur
%, en fonction de celles d,7 et d, 7 dans %,. Le vecteur rotation de %, par rapport a %
étant donné par @, = —Q&3, la formule de Poisson s’écrit if = d,ii — Q3 A ii, quel que soit
le vecteur i, et ses applications successives a 7 et 4 ¥ donnent

F=dif— Q& NTF
et
F=d’F—2Q8; Nd,7 — Q°F.

Les termes en Q2 = ®?sin® A pouvant étre négligés, I'Equation (17) prend bien la forme
d*7+ w7 = 0. (18)

En vue de déterminer les constantes d’intégration dans la solution générale 7 = C} cos mt +
C,sin ayt de (18), précisons qu’a I'instant ¢ = 0, en lequel (O, €;,&,) et (0,€},é>) sont sup-
posés coincider, P occupe la position 7 = a€;, a > 0, et que sa vitesse initiale par rapport a
X est V.o = 0. Il découle de la loi de composition des vitesses que la vitesse initiale de
P par rapport a %, est alors égale a V.0 = aQ&,. Compte tenu de ces conditions initiales,
1’Equation (18) implique que les coordonnées (x’,y’) de P dans (O, #,&,) sont données par

/

X = acoswyt, (19)
, al) .
= ——sinapt. (20)
Y o
L’élimination de ¢ entre (19) et (20) conduisant a 1I’équation
2 2
at (L)
@o

la trajectoire de P dans le référentiel tournant %, est une ellipse centrée en O et de demi-axes
aet % Comme Q < @y, cette ellipse est tres aplatie.
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I1 est désormais facile de décrire la trajectoire de P par rapport au référentiel terrestre % .
Le point P part en a€; et arrive en —a€; a I’instant = - Or, durant ce temps, I’axe (0,%)
a tourné de —Q% = —wsinl%. Cette rotation se fait donc dans le sens des aiguilles d’une
montre dans I’hémisphere Nord et dans le sens inverse dans I’hémisphere Sud. Finalement,
dans I’hémisphere Nord, la trajectoire du pendule de Foucault par rapport a la Terre est bien
une oscillation a laquelle se superpose une rotation du plan d’oscillation dans le sens des
aiguilles d’une montre. La période de rotation 7" du plan d’oscillation est donnée par

T 2 2 J

T Q  wsinA  sinA’

ou J est la durée de la rotation de la Terre et vaut J = 86164 s. Cette valeur de T est en accord
avec celle mesurée expérimentalement. Pour A = 49°, elle est égale a T =31 h43 min.

Mentionnons explicitement qu’il résulte de I’Equation (17) que si la Terre ne tournait pas
autour de I’axe des poles, le mouvement du pendule de Foucault par rapport a la Terre serait
une simple oscillation. Ainsi, I’observation de la rotation du plan d’oscillation du pendule de
Foucault prouve bien la rotation de la Terre.

5 Exercices

1. Un corps assimilable a un point matériel est 1aché sans vitesse initiale en un point O a
la hauteur % au-dessus de la surface terrestre en un lieu de latitude A > 0. Déterminer
le point de chute, en tenant compte au premier ordre de la rotation de la Terre ® et en
supposant g uniforme dans la région du mouvement.

Réponse : Suite a la rotation de la Terre le corps en chute libre est dévié vers I’Est, la

valeur de la déviation étant d = % whcosA ,/ %h (pour A = 45° et h = 100 m, on trouve
d ~1,5cm).

2. Untube T de faible section est en rotation autour d’un axe vertical Oz, avec une vitesse
angulaire . L’angle d’inclinaison o du tube par rapport a I’axe Oz est constant.

(a) Montrer que la position d’équilibre (par rapport au tube) d’une particule M de
masse m, mobile sans frottement a 1’intérieur de 7', est
_gcosa
0= w2sinla
(b) La vitesse angulaire est brusquement réduite a la valeur constante §. Montrer que
la loi du mouvement de la particule M (par rapport a T') est

0]
r=ro(4—3coshQr), avec Q:Esin(x
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et calculer le temps que M met pour atteindre le point O.

gfw

~

3. Un disque de rayon R tourne autour de son axe vertical Oz, a la vitesse angulaire con-
stante . Une particule P de masse m astreinte a se mouvoir sans frottement sur un
rayon du disque, est abandonnée sans vitesse initiale par rapport au disque, a la dis-
tance § du centre.

(a) Trouver la loi du mouvement r = r(¢) du point P par rapport au disque.

(b) Déterminer la durée au bout de laquelle P atteint le bord du disque.

a

X
4. Soitun ROND (0, ¢,é,,¢3) dont1’origine O est un lieu de latitude A dans I’hémisphere
Nord de la surface terrestre, et dont les axes sont dirigés vers I’Est, le Nord et le Zénith
respectivement. Une particule (P,m) est lancée, a partir de O et avec une vitesse initiale
Vo, suivant la direction €| sur un plan horizontal parfaitement lisse. Trouver la trajec-
toire de P par rapport a la Terre, en tenant compte de la rotation @ de cette dernicre et

en considérant le champ de pesanteur et la latitude comme constants.

Réponse: Si Q =2msinA, la trajectoire est une circonférence de centre (0, —vy/Q) et
de rayon vy /Q.
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5. Un point matériel (P,m) peut se déplacer sur une circonférence horizontale infiniment
lisse de centre C et de rayon c, qui est, par rapport au laboratoire considéré comme iner-
tial, en rotation a une vitesse angulaire constante @ autour d’un axe vertical situé a une
distance d de C. Déterminer 1’équation du mouvement de P par rapport au référentiel
défini par le ROND (O, ¢€},¢é;,€3), ou O désigne le point d’intersection de 1’axe avec
le plan de la circonférence, ou €; est dirigé de O vers C et ou €3 est vertical ascen-
dant. Projeter cette équation sur les axes et trouver la période des petites oscillations
au voisinage de la position d’équilibre.



Chapitre 8

Dynamique des Systemes de Points

Nous étendons ci-dessous les théoremes généraux du mouvement d’un point matériel au
cas des systemes formés par un nombre fini de points matériels. Ces extensions permettront
d’aborder I’étude des solides et des fluides qui peuvent étre considérés comme composés par
une infinité de particules infiniment petites.

1 Eléments cinétiques d’un systéme de points matériels

Définition 1. Soir un systéeme de points matériels (P;,m;), i € {1,...,n}, étudié par rapport
a un référentiel %, et soit un point O (généralement supposé) fixe dans Z. On définit la
quantité de mouvement p (resp. le moment cinétique Go par rapport au point O, I’énergie
cinétique E.) du systéeme par rapport a %, comme somme des éléments cinétiques correspon-
dants p; (resp. Go, E. ;) des points P; formant le systéme, i.e.

. . . 1
p=Y pi=) mv, 00220071'225?3;’/\19;', Ec=Y E.i=2Y m;,
i i i i i

p 2
ou Vi désigne la vitesse par rapport a % de P,.

Le centre de masse, centre d’inertie, centre de gravité ou barycentre d’un systeme matériel
joue un role privilégié en Mécanique des Systemes et des Solides. Par exemple, le mouvement
le plus général d’un solide peut étre décomposé en le mouvement de son centre de masse et
en son mouvement autour du centre de masse. Le centre de masse d’un systeéme de points
matériels (P;,m;) est un point géométrique G dont la position est la moyenne pondérée des
positions des P;.

Définition 2. Le centre de masse d’un systéme matériel (P,,m;) est le point G défini par

Zm,‘G?i =0

75
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ou, de maniere équivalente, par ?
0 = LR
Yim;

ou O est un point arbitraire.

Théoreme 1. La quantité de mouvement p d’un systeme matériel est égale a la quantité de
mouvement qu’aurait son centre de masse G si ¢’était un point matériel affecté de la masse
totale m du systeme :

p=mv(G). (D)

Preuve. Ce théoreme est une conséquence immédiate des équations ci-dessus. m

2 Théoremes généraux du mouvement d’un systéme maté-
riel dans un référentiel inertial

Considérons encore un systeme de points matériels (P, m;), i € {1,...,n}. Les forces
appliquées a une particule P; peuvent étre dues aux autres particules Pj, j # i, du systeme
ou bien a des éléments extérieurs au systeme. Les premieres sont appelées forces internes,
les secondes forces externes. Nous notons F“l (resp. F“, ints Eext) la résultante de toutes les
forces (resp. des forces internes, des forces externes) agissant sur P;. Par conséquent, F; =
F},int +ﬁi7ext et . .

Fiint = ZFi js
J#i
o F; j désigne la force exercé€e sur la particule P, par la particule P;. Finalement, nous
désignons par F (resp. F"im, ﬁext) la résultante de toutes les forces (resp. des forces in-
ternes, des forces externes) sollicitant le systeme, si bien que F= Z,-F} = ):iﬁivim +Z,~ﬁi7ext =

= -

Fint + Fext-

Les propositions suivantes montrent que les complexes forces internes disparaissent des
équations de la Dynamique.

Proposition 1. La résultante Fiy des forces internes agissant sur un systéeme matériel et le
moment résultant M (O) des forces internes par rapport a un point quelconque O sont nuls,
ie.

-

Fii=0 et Min(0)=0.

Preuve. En vertu du principe de I’action et de la réaction, on a

ﬁint = Zﬁi,int - ZZEJ = Z (F}j—’_ﬁji) =0.
i

i A i<j
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De plus,
'/Zint(o) = ZZO?[/\F}J' = Z (ﬁ)i/\ﬁ}j—l—ﬁj/\ﬁji) = Zfﬁ/\ﬁ,j =0.m
i j#i i<j i<j
La puissance des forces internes—qui intervient dans le Théoréme de I’Energie cinétique—
est nulle si le systeme considéré est un solide.

Proposition 2. Dans un solide, la puissance Piy des forces internes est nulle.

Preuve. Comme
Pu=Y Y Fj-V(P) =Y (Fj-V(P)+Fji-¥(Py) = Y Fj- (¥(P) — V(P;))
i j#i i<j i<j
et que dans le cas d’un solide
W(P) = V(Py) + & A PP,

ol @ désigne le vecteur rotation du solide par rapport a 1’observateur, la puissance des forces
internes d’un solide est égale a

Pint:ZEj‘ <(7)/\ﬁ) =0.m

i<j

Dans le cas des systemes de particules les théoremes gouvernant les mouvements—Iles
théoremes de la quantité de mouvement (TQM) ou du centre de masse (TCM), du moment
cinétique (TMC) et de I’énergie cinétique (TEC)—prennent la forme suivante.

Théoreéme 2. Dans tout référentiel inertial, la dérivée temporelle de la quantité de mouve-
ment p d’un systeme matériel est égale a la résultante Fey; des forces externes appliquées au
systeme, i.e.

dip = Fext. 2)

Preuve. Il suffit d’appliquer la Définition 1, 1'Equation de Newton de la Mécanique du Point
et la Proposition 1. m

Théoreéme 3. Dans tout référentiel inertial, le centre de masse G d’un systéme matériel se
meut comme si c’était un point matériel affecté de la masse totale m du systeme et soumis a
la résultante Fey des forces externes appliquées au systeme, i.e.

=

mY(G) = Fext. 3)

Preuve. 11 suffit d’appliquer les équations (1) et (2). m
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Théoreme 4. Dans tout référentiel inertial, la dérivée temporelle du mouvement cinétique
Go d’un systeme matériel est égale au moment Mex(O) des forces externes appliquées au
systeme, i.e.

—

dt60 = «//ext<0)a (4)

ou O est un point fixe ou le centre de masse du systéeme.

Preuve. Dans le cas ou O est un point fixe, il suffit d’appliquer la Définition 1, le Théoréeme
du Moment cinétique de la Mécanique du Point et la Proposition 1. Si O est le centre de
masse G du systetme, on applique le fait que le moment cinétique (resp. moment des forces
externes) est un torseur de vecteur j (resp. Fey). En effet, si O désigne a présent un point
fixe, il s’ensuit que

dtaG — dt&O +d[ (ﬁ/\ 0%) - %ex[(O) +ﬁext /\ (ﬁ - z%_)ext(G),

ot nous avons utilisé 1'Equation (1).

Théoreéme 5. Dans tout référentiel inertial, la dérivée temporelle de |’énergie cinétique E,
d’un systeme matériel est égale a la puissance P = P+ P ext de toutes les forces, internes
et externes, appliquées au systeme, i.e.

thc =7 = @int‘F f-@ext- (5)

Si le systeme est un solide, la variation temporelle de |’énergie cinétique coincide avec la
puissance des seules forces externes, i.e.

thc = <@ext- (6)

Preuve. Il suffit d’appliquer la Définition 1, le Théoréme de I’Energie cinétique de la Dy-
namique du Point, ainsi que la Proposition 2. =



Chapitre 9

Dynamique des Solides

Les théoremes qui régissent les mouvements des systeémes de particules par rapport aux
référentiels inertiaux, voir Chapitre 8, sont applicables aux solides considérés comme des
distributions de masses infinitésimales. Deux difficultés s’opposent a I'utilisation de ces
théoremes du mouvement : le calcul du moment cinétique d’un solide et celui de son énergie
cinétique. Avant d’aborder ces problemes, nous donnons quelques informations préliminaires
relatives au concept de moment d’inertie.

1 Moment d’inertie

Tout comme la masse inerte m mesure la résistance d’un corps a une accélération, le
moment d’inertie J quantifie la résistance qu’oppose un corps a une accélération angulaire.
Si nous mettons un point matériel immobile P de masse m en mouvement (resp. mouvement
de rotation autour d’un axe A) avec la vitesse v (resp. vitesse angulaire ), I’énergie cinétique
a fournir au point est donnée par

1

1
E.= Emv2 (resp. E(mdz)a)2> )

ou d désigne la distance de P a A. D’ou la

Définition 1. On appelle moment d’inertie d’un systeme matériel (P;,m;), i € {1,...,n}, par
rapport a un axe A, le scalaire positif

Ja =Y mid?, (1)
i

ou d; désigne la distance de P; a A.

79
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Dans le cas d’un solide—considéré comme répartition continue de matiere—le solide—
de volume V—est mentalement subdivisé en une infinité de volumes infinitésimaux dV > P
de masse d m et son moment d’inertie par rapport a un axe A est donné par

Js= [ dP)dm, @)

ou d(P) est la distance de P a A. On définit de maniére analogue le moment d’inertie Jo (resp.
Jz) par rapport a un point O (resp. un plan ), étant entendu que les distances a considérer
sont alors celles a O (resp. 7).

2 Exercices

1. Prouver que le moment d’inertie par rapport a un axe est égal a la somme des moments
d’inertie par rapport a deux plans orthogonaux passant par cet axe.

2. Prouver que le moment d’inertie par rapport a un point est égal a la somme des moments
d’inertie par rapport a trois plans deux a deux orthogonaux passant par ce point, ou
encore, a la somme des moments d’inertie par rapport a un axe et un plan orthogonaux
passant par ce point.

3. Soient (x1,x2,x3) (resp. (p,0,z), (r,0,¢)) des coordonnées cartésiennes (resp. cylin-
driques, sphériques) d’un point P. Expliquer graphiquement pourquoi

/f(P)dV = ///f(xl,xz,X3)dx1dx2dx3

_ ///f(p,@,z)pdpdedz

_ ///f(r,e,¢)r2sinedrd9d¢.

4. Montrer que le moment d’inertie d’une tige homogene de masse m et de longueur /,
par rapport a un axe A orthogonal a la tige et passant par son centre, est donné par

1 2
Ja= g5 mt 3)

5. Montrer que le moment d’inertie d’un disque homogene de masse m et de rayon R, par
rapport a un axe A orthogonal au disque et passant par son centre, est donné par

1
=5 mR? (4)
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6. Reprendre le probleme n° 5 et montrer que le moment d’inertie, par rapport a un axe A
contenu dans le plan du disque et passant par le centre du disque, est donné par

1
Jp= 1 mR? (5)

Suggestion : Soit 7 (resp. D) un plan (resp. 1’axe) orthogonal au disque et contenant A
(resp. et passant par son centre). Montrer que Jy = Jr et que Jp = 2J;.

7. Montrer que le moment d’inertie d’un cylindre circulaire, droit, plein et homogene, de
masse m, de rayon R et de hauteur A, par rapport a son axe A, est donné par

1
JA = E mR2 (6)

8. Montrer que le moment d’inertie d’une sphere homogene, de masse m et de rayon R,
par rapport a un axe A passant par son centre, est donné par

2
A= S mR> (7)

3 Modele des tenseurs

Rappelons que dans le cadre de ce cours nous nous limitons a 1’espace vectoriel E des
vecteurs de I’espace ambiant et aux BON ¢;, i € {1,2,3}. Une forme bilinéaire, i.e. une
application b : E X E — R qui est linéaire en chaque argument—de sorte qu’en particulier

b(ﬁ, V) = Zuivjb(a,éj) e R,
ij
quels que soient i = Y, u;é;,V =Y ;v;é; € E—est évidemment completement définie par la

matrice
b,‘j = b(Ei,Ej) eR

de ses valeurs sur les vecteurs de base. La matrice représentative b/ = b(é,é ;) € R de b dans
=/ _ — = ] =/ _ =/ 2 N . _ - =
une autre BON €] = A€y, ou encore é; = A €} = A€}, est liée a la matrice b;; = b(¢;,€;) €

R représentative de b dans la BON ¢;, par la relation
bij = b(Ai€},Aje€)) = A jibyy, (8)

ol les symboles de sommation sont systématiquement sous-entendus.
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Observons qu’ainsi les formes bilinéaires sont comme les 2-tenseurs, voir Chapitre 6, des
objets caractérisé€s dans chaque BON par une matrice 7;; de 32 composantes, les matrices rel-
atives a deux bases différentes, reliées par la matrice de passage A, vérifiant la loi tensorielle
d’ordre 2,

/
Tij = AikAjéTkg- )

On entrevoit donc que les formes bilinéaires constituent un modele des 2-tenseurs. De
maniere plus générale, on prouve sans difficulté que

Théoréme 1. Les espaces ®,E et £,(E*",R) des n-tenseurs de E et des formes n-linéaires
de E respectivement, sont des espaces vectoriels réels de dimension 3% qui sont canonique-
ment isomorphes :

QuE ~ L (E*" R). (10)

Par exemple, le produit scalaire usuel # -V € R de 1’espace euclidien E est une forme
bilinéaire, donc un tenseur d’ordre 2.

4 Tenseur d’inertie

Nous avons signalé précédemment, que les calculs du moment cinétique G et de 1’énergie
cinétique E, d’un solide constituent un défi particulier—que nous sommes a présent préparés
a relever.

Rappelons que le mouvement général d’un solide est composé du mouvement de son
centre de masse G—encodé dans le TCM

m?(G) - ﬁexb

avec des notations désormais évidentes—et de son mouvement autour de son centre de
masse—encrypté dans le TMC
dtGG - %ext(G)-

Si le solide étudié posseéde un point fixe O, i.e. n’est animé que d’'un mouvement de rota-
tion autour de ce point O du solide qui est (également) fixe dans le référentiel de 1’ observateur,
ses mouvements peuvent étre extraits du TMC en O,

diGo = Mexi(O).

Dans les deux cas, notre intérét porte sur le moment cinétique du solide par rapport a un
point O lié au solide. Considérons donc un solide #; (ou .¥’) en mouvement par rapport a
un référentiel inertial Z (ou Z) et soit O; (ou O) un point attaché au solide. Comme

60:20?i/\mi\7,-=/0?/\\7(P)dm (1)

i
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et que la formule fondamentale de la cinématique du solide stipule que le champ des vitesses
d’un solide est un torseur dont le vecteur est le vecteur rotation @ de .% par rapport a %, i.e.
que pour tout point P lié au solide, on a

¥(P) = #(0) + & A OP,
il vient
Go = /ﬁdm/\ﬁ(o) +/(7/\ ((Y)/\a’?) dm = mOG AV(0) +/(7/\ ((?)/\(7%) dm,
(12)
ou nous avons utilisé la définition du centre de masse G du solide, voir Chapitre 8, et ol m
désigne la masse totale du solide. Remarquons que si O est le centre de masse G ou un point
fixe du solide, le premier terme du dernier membre de I’Equation (12) s’annule.

Notons que le calcul de I’intégrale au dernier membre de cette équation ne fournit pas
seulement le moment cinétique, mais aussi 1’énergie cinétique du solide. En effet,

2E, = Zm,-v%:/#(P)dm
. ]V(P)-(ﬁ(0)+6)AOT>D>dm
— m#(G)-T(0)+ / W(P)- (&1 0P)dm
— m¥(G)-¥(0)+&- / OB AT(P)dm,

ou nous avons appliqué 1’égalité de 1I’'impulsion du solide a I'impulsion de son centre de
masse affecté de la masse totale du solide, voir Chapitre 8, ainsi que 1’invariance du produit
mixte par permutation circulaire. D’oll, compte tenu de 1’Equation (11), la relation

2E, = m¥(G) - 7(0) + & Bo. (13)

Si O est le centre de masse (resp. un point fixe), le premier terme du second membre
de I’Equation (13) représente le double de 1’énergie cinétique du centre de masse (resp.
s’annule).

Le moment cinétique Gy et I’énergie cinétique E,. du solide sont donc déterminés dés que

I’intégrale
30:/073/\(6)/\53)41;%:/01326)—(ﬁ-@)ﬁdm (14)

est calculée.
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4.1 Systeme arbitraire d’axes orthonormés

Dans un systéme arbitraire d’axes orthonormés (Q, €}, ¢;,¢3), on obtient

50_‘1':/0P2wi—(ZOPj(Dj)OPidm:Z(/OPZ(SI'J'—OP,'Odem) wj7:ZIO,ijwj7 (15)
J J

ol §;; est le symbole de Kronecker, ou OP; désigne la k-ieme composante du vecteur ﬁ et
ol nous avons posé

IO,ij:/0P25ij—0PiOdem. (16)

Etant donné que les &;; (resp. les OFy) sont les composantes d’un 2-tenseur (isotrope) (resp.
d’un vecteur), il est clair que les Ip;; sont les composantes dans la BON considérée d’un
2-tenseur. Alternativement, si la matrice Ip ;; représente un 2-tenseur ou une forme bilin€aire
Ip,on a

IO(Zi,Ej) :IOJ‘J' = /OP26,~j - 0P,~0dem = /OPZ(E,--ZJ-) — <0?a> <0?Zj> dm
si bien que la forme bilinéaire est donnée par

o, 7) = /OP2 %) 53 )(ﬁ-v)dm. a17)

Inversement, ’application I, définie par I’'Equation (17) est bien une forme bilinéaire, i.e. un
2-tenseur, ayant pour composantes dans la BON ¢; les Iy ;; donnés par l’Equation (16). Il est
clair que Ip(V, i) = Ip(i,V), i.e. que Ip est un 2-tenseur symétrique. Signalons encore que
1’Equation (15) prend finalement la forme

So=1p- @, (18)
ou “-” désigne le produit tensoriel contracté, voir Chapitre 6.

La signification physique du tenseur /o est facile a comprendre. En effet, soit A un axe
arbitraire passant par O et soit € un vecteur directeur unitaire de A. Alors,

—»7—‘ /0p2 0? ) dm:/dz(P)dmZJA. (19)

Comme /o fournit ainsi le moment d’inertie du solide par rapport a tout axe passant par O, il
porte le nom de tenseur d’inertie du solide au point O.
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4.2 Systeme d’axes orthonormés d’origine O

Dans un RON (O, ¢€1,¢é,,¢3) d’origine O, les composantes du tenseur d’inertie en O sont
données par
loii =1o(éi,é;) = Jii = /Zx%dm,
J#i
ou J;; est le moment d’inertie du solide par rapport a I’axe Ox; et ou (x,x,x3) sont les
coordonnées de la variable d’intégration P, voir Equation (19). De plus, pour i # j,

IO,ij :Io(gi,gj) = —/X,'dem = J,‘j,

ou les J;; sont appelés produits d’inertie du solide par rapport aux axes Ox; et Ox;.

4.3 Systeme d’axes orthonormés lié au solide

1l découle immédiatement de I’Equation (16) que les composantes du tenseur d’inertie en
O sont constantes dans tout systeme d’axes orthonormés li€ au solide.

4.4 Systeme d’axes orthonormés principaux

Un systeme d’axes principaux est un systeéme dont les vecteurs sont des vecteurs princi-
paux ou encore des vecteurs propres du tenseur d’inertie.

Les concepts de vecteurs propres et valeurs propres sont étudiés au cours d’Algebre
linéaire. Rappelons ici brievement les définitions, ainsi qu’un résultat de diagonalisation
nécessaire au calcul de I’Intégrale (14) qui fournit le moment cinétique et I’énergie cinétique
d’un solide.

Notons d’abord que le déterminant detT d’un 2-tenseur ou d’une forme bilinéaire 7" est
par définition le déterminant det(7;;) de la matrice des composantes 7;; de 7 dans une BON
arbitraire. De fait, on vérifie tout de suite que ce déterminant est indépendant de la BON
considérée. Ceci étant, les valeurs propres d’un 2-tenseur 7' sont les racines A de 1’équation

det(T — Aid) =0, (20)

ot id est le 2-tenseur isotrope de composantes 0;;. Les vecteurs propres de T de valeur propre
A sont les vecteurs non nuls # vérifiant I’équation

T i = Ai. 21)

On observera que tout multiple non nul ki, k # 0, d’un vecteur propre i de T de valeur propre
A est encore un vecteur propre de valeur propre A. Il s’ensuit qu’uniquement la direction d’un
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vecteur propre importe : la direction d’un vecteur propre de T est appelée direction propre
de T. Comme indiqué préalablement, les adjectifs “propre” et “principal” sont synonymes et
donc échangeables.

Comme un 2-tenseur est représenté dans toute BON par une matrice de composantes, il
est naturel de chercher une BON dans laquelle cette matrice représentative est aussi simple
que possible, i.e. est diagonale. En Algebre, on prouve la

Proposition 1. Pour tout 2-tenseur symétrique, il existe une BON dans laquelle la matrice de
ses composantes est diagonale ou, de maniere équivalente, pour tout 2-tenseur symétrique, il
existe une BON formée par des vecteurs principaux de ce tenseur.

Remarquons que ce résultat admet une version matricielle: Toute matrice symétrique est
diagonalisable par une matrice orthogonale.

Il n’est pas difficile de se persuader de I’équivalence de ces énoncés. Par exemple, soit
une BON (fiy, tip, ti3) formée par des vecteurs principaux [i; de valeurs principales A; d’un 2-
tenseur symétrique T. Alors, T - [; = A; i, i € {1,2,3}, si bien que, dans les axes principaux
(t1,Ha, 13), on obtient

Tab6ib = 7(«,'61'5,,Vi,a, i.e. Tai = /l,-6,-a,Vi,a, ie.

A0 0
T)=| 0 A% o0 |. (22)
0 0 A3

Inversement, si dans un systéme d’axes orthonormés (€},€,,€3), les composantes Ty, i fixé
dans {1,2,3}, d’un 2-tenseur symétrique 7 sont “diagonales”, i.e. du type

Tai:€5ia7 EGR,CZE {17273}a (23)

I’axe de vecteur directeur ¢; est principal. En effet, il suffit de prouver que €; est un vecteur
principal de 7, i.e. qu’il existe A tel que 7 - é; = A¢;, ou encore, dans la BON (€},é,,¢3), tel
que

Tabéib = lSia,VcL 1.e. T, = l&a,Va.

Il est clair que A = ¢ convient, ce qui établit le résultat.

4.5 Systeme d’axes orthogonaux principaux en O

Revenons a présent au tenseur d’inertie /p du solide .% par rapport a un point O attaché a
. Notons d’abord qu’il découle des équations (16), (20) et (21) que les vecteurs principaux
de Ip sont également liés au solide .7
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Théoreme 2. Soient un solide . et un point O lié a .. Dans un systéme d’axes orthonor-
maux principaux d’origine O, la matrice des composantes du tenseur d’inertie lp de . est
diagonale et ses éléments diagonaux sont les moments d’inertie constants J;; de . par rap-
port aux axes principaux.

Preuve. Le théoreme est une conséquence immédiate de la remarque qui le précede et des
résultats des sous-sections 4.2, 4.3 et4.4. n

Le calcul de Ip dans un systeme d’axes orthonormaux principaux en O est donc partic-
ulierement simple. Si I’existence d’une BON de vecteurs principaux de Iy est assurée par la
Proposition 1, sa détermination pratique reste a étudier. La proposition suivante explique que
les axes principaux en O sont souvent obtenus grace a des arguments de symétrie.

Proposition 2. Tout axe issu de O, qui est un axe de symétrie géométrique et matérielle, est un
axe principal en O. De méme, toute droite, normale en O a un plan de symétrie géométrique
et matérielle passant par O, est un axe principal en O.

Preuve. Nous donnons la démonstration de la premiere affirmation, celle de la deuxieme
est analogue. Considérons un solide . et un point O de .. Supposons que . admette
un axe de symétrie géométrique et matérielle A passant par O et choisissons un systeme
d’axes orthonormés (O, ¢),€,,¢3) d’origine O et de vecteur €| porté par A. Alors, Ipo =
Jo1 = — [xpx1dm. Vu la symétrie géométrique et matérielle, cette intégrale est une somme
de termes du type xox;dm+ (—x2)x;dm = 0. On voit de méme que Ip3; = 0, si bien que
10,01 = J11014,Va € {1,2,3}. 1l résulte alors de la seconde partie de I’explication suivant la
Proposition 1, voir Equation (23), que & et I’axe de symétrie A sont principaux en O. =

4.6 Moment et énergie cinétiques d’un solide

Théoreme 3. Soit un solide . en mouvement par rapport a un référentiel % et soit O un
point de . fixe dans Z ou le centre de masse de .. Le moment cinétique Gy de . en O et
I’énergie cinétique E. de . par rapport a % sont donnés par

Go = Y_Jifl; (24)
et |
_ 2
E.= (E.(G)+) > ;J,,wi (25)

respectivement. Dans ces équations, les [i; forment un systéme d’axes orthonormés princi-
paux en O, les ; sont les composantes dans ces axes du vecteur rotation @ de . par rapport
au référentiel X, et les J;; désignent les moments d’inertie constants du solide par rapport
aux axes principaux. Dans l’expression de [’énergie cinétique, le terme entre parenthéses
n’est a considérer que si O est le centre de masse du solide.
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Preuve. Quelle que soit la définition de O—point du solide qui est fixe dans % ou centre de
masse du solide—Ile point O est lié au solide, si bien que les résultats de la section précédente
sont valables. Les Equations (12), (14) et (18), ainsi que le Théoréme 2 impliquent alors que
Go =30 =1lp - ® = ¥, J;iwifi;. Quant i 1’énergie cinétique, il découle de 1'Equation (13) et
du résultat précédent relatif au moment cinétique que 2E¢c = (mvz(G)+) Y. J,-ia)iz, oumestla
masse totale du solide. m

S Dynamique des solides

Nous savons, voir Chapitre 8, que les mouvements d’un solide par rapport a un référentiel
inertial # peuvent étre extraits des théorémes généraux valables pour les systémes matériels,
i.e., avec des notations désormais bien connues, des équations

m?(G) = ﬁexta dta-O - %ext(O)y thc - <@exty

avec la particularité que le second membre du TEC se réduit dans le cas des solides a la seule
puissance des forces externes. Rappelons que le TMC n’est valable qu’a condition que O soit
un point fixe dans Z ou le centre de masse du systeme matériel ou solide étudié. Lorsque
O est le centre de masse ou un point du solide qui est fixe dans %, le moment et 1’énergie
cinétiques peuvent tre obtenus a partir du Théoréeme 3.

Si le solide .# possede un point fixe O, i.e. s’il existe un point O de .% qui est fixe dans
Z, 1l est naturel d’essayer d’étudier le mouvement de rotation de . autour de ce point fixe a
partir du TMC en O.

Si.# n’apas de point fixe, son mouvement le plus général se décompose en le mouvement
de son centre de masse G (3 degrés de liberté), encodé dans le TCM, et en son mouvement
autour du centre de masse, encrypté dans le TMC en G (3 degrés de liberté). En Mécanique du
Solide (au maximum 6 degrés de liberté), la détermination des mouvements requiert donc en
général deux équations vectorielles, alors qu’en Mécanique du Point (au maximum 3 degrés
de liberté), une équation vectorielle suffit.

Si les forces dérivent d’un potentiel, le TEC fournit I'IPE, qui est exploitable 1’énergie
cinétique pouvant étre calculée grace au Théoreme 3.

Evidemment, les équations vectorielles sont généralement encore projetées sur les axes.
Dans le cas du TMC, le calcul du moment cinétique implique déja un systeéme d’axes, et plus
précisément d’axes principaux, de sorte qu’il semble naturel de projeter sur ces axes. Nous
effectuons ci-dessous cette projection une fois pour toute dans le cas général, ce qui conduit
aux équations d’Euler.

Proposition 3. Considérons un solide observé a partir d’un référentiel inertial. Si O désigne
le centre de masse ou un point fixe de ce solide, la projection du Théoreme du Moment ciné-
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tique en O, sur des axes orthogonaux directs qui sont principaux en O, donne les Equations

d’Euler,
Judy — (Jn—J3)nws = Mex1(0)
I — (J33—=J11) 0301 = Mexi2(0)
J33@3— (Ji1 —Jn)0i = Mexi3(0),

avec des notations évidentes.

Preuve. Compte tenu du Théoréeme 3, on a

diGo =Y Jidi(@ifii) = Y Ju( @it + wid; ;).
- -

1

(26)

Les axes principaux [i; étant attachés a ., voir ci-dessus, la formule de Poisson permet

d’écrire
diGo = Y Ju(@fli+ o N[

1
= Y Julilli+ Y Ji®; Y €ape 0aiplic
i i

abc
c

ia

6 Exercices

= Z(Jccd)c_zeiacjiiwima) ﬁc- n

1. Une échelle (i.e. une tige de masse m et de longueur /) est appuyée contre un mur.
L’angle entre I’échelle et le mur est noté 6. Les conditions initiales sont 6 ~ 0 et
6 = 0. L’échelle glisse ensuite sans frottement (le sol et le mur sont supposés infiniment
lisses). Prouver que la position 6 en laquelle I’échelle perd le contact avec le mur est

donnée par O = Arccos %

2. On considere deux spheres homogenes Sy et S; de masse m et de rayon r. La seconde
est en équilibre au sommet S de la premiere, qui est fixe par rapport a la Terre, supposée
inertiale. On déplace S tres légerement de sa position d’équilibre et on 1’abandonne

sans vitesse initiale. D’abord S roule sur Sy, puis se met a glisser.

Si O désigne le centre de Sy, I le point de contact entre Sy et S; et ¢ 1’angle (OS,0I),
calculer la valeur ¢ de ¢ ou le glissement commence, i.e. montrer que @ est caractérisé

par
17fcos@ —2singp = 10f,

ou f est le coefficient de frottement. Traiter ce probleme

(1) en utilisant le TCM et le TMC,
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(i1) en utilisant le TCM et I'IPE.

On rappelle que le glissement commence lorsque le frottement 7" et la réaction normale
N sont liés par T = fN.

3. Une sphere homogene de masse m et de rayon r roule sans glisser sur la surface in-
térieure rugueuse d’un cylindre creux, fixe, d’axe horizontal et de rayon R. A I’instant
initial, la sphere occupe sa position d’équilibre et la vitesse w de son centre de masse
est horizontale et orthogonale a I’axe du cylindre. Montrer que la valeur minimale de
w, pour laquelle la sphere dépasse la position la plus élevée sans perdre le contact avec
le cylindre, est caractérisée par



Chapitre 10

Probleme de Lagrange-Poisson
Systemes intégrables

1 Mouvements d’une toupie symétrique dans le champ de
pesanteur

Ce chapitre sera essentiellement consacré au probleme de Lagrange-Poisson, i.e. a1’ étude
des mouvements par rapport au laboratoire %, considéré comme inertial, d’une toupie %
de masse m et de centre de masse G, possédant un axe de symétrie géométrique et matérielle
et reposant sur sa pointe O supposée fixe par rapport a Z. Ce probleme classique est étroite-
ment lié aux mouvements de la Terre dans 1’espace, fournit un exemple de systeme intégrable
— un theme de recherche actuel en Géométrie symplectique —, ...

La toupie considérée est donc animée d’un mouvement a point fixe et possede trois degrés
de liberté. Les parametres appropriés a la description univoque de ses positions sont les trois
angles d’Euler que I’on définit comme suit.

Considérons un ROND (0, ¢€,,¢€,,¢€;) attaché a %, et dont le vecteur €5 est vertical ascen-
dant, et un ROND (0, ¢1,¢5,¢3) 1ié a # et dont le vecteur €3 est directement colinéaire au
vecteur (ﬁ, si bien que OG = de3, d = OG. Nous supposons que & se meut par rapport
a %y de maniere que les vecteurs €; et €3 sont en permanence non-colinéaires, de sorte que
les plans (0,¢€,,¢é,) et (O,€],¢é;) se coupent constamment suivant une droite dite ligne des
noeuds. Notons # le vecteur unitaire de la ligne des noeuds pour lequel (€5, €3, i) est direct.
Cela étant, désignons par @, 0 et y les trois angles d’Euler

91
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¢ = £(€,,ui), compté algébriquement autour de (O, ¢5),
0 := £(¢&5,¢3), compté algébriquement autour de (O, i),

v = 4A(u,é)), compté algébriquement autour de (O, ¢3),

appelés logiquement angle de précession, angle de nutation et angle de rotation propre ou de
spin.

Le Chapitre 9 enseigne que dans le cas étudié les mouvements sont encodés dans le TMC
en O et plus particulierement dans les équations d’Euler.

11 s’agit donc de décomposer le moment en O des forces externes mg + R sollicitant la
toupie, R désigne la réaction au pivot O, et le vecteur rotation @ de la toupie % par rapport
au référentiel %, dans des axes orthogonaux principaux en O. Vu la symétrie de la toupie, il
est clair que les axes (0, ¢}, €,,€3) sont principaux en O. Comme

M oxi(0) = OG Nmg = mgd &; N3,

nous exprimons d’abord €5 dans la base des €;. Vu que é; = cos 0¢€3 +sin 6é3 A i et que

i =cosye| —sinye,, (1)
il vient
é; = sin 0 (sin yé| + cos yé, ) + cos &3 (2)
et
Mext(0) = mgd sin 0 (cos yé| —sin yeé,). 3)

Quant au vecteur rotation, celui @ = @y, de %, par rapport 2 %, se décompose, vu les
parametres utilisés, naturellement en la somme des vecteurs rotation @y = ¢é; du référentiel
PR, défini par (0, i, V,&;), V := €3 A\il, par rapport & %, @h3 = Oii du référentiel %5 donné
par (O, i, w,é3), w := &3 A ll, par rapport & %, et @31 = e de %) par rapport a Z3:
@ = @y = Gpz + B3 + D31 = P25 + Oii + /3. 4)
Compte tenu des équations (1) et (2), on obtient finalement la décomposition
@ = (¢sin@siny + O cosy)e) + (¢sin@cos y — Osiny)er + (pcosO + ey (5)
du vecteur rotation @ de la toupie #; par rapport au laboratoire %, dans la base des vecteurs
principaux é;.
Finalement, les équations d’Euler s’écrivent
Jnd — (Ji1 —Jz3)mw; = mgdsin6cosy, (6)
J11(Dz—(]33—]11)(1)3(x)1 = —mgdsin@sinl//, (7)
J33003 0, (8)
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ol Joo = Ji1, vu la symétrie de la toupie, et ol les @; sont les composantes de @ dans la base
principale des ¢€;, voir Equation (5). Les équations d’Euler (6)-(8) forment un systeme de 3
équations différentielles du deuxieme ordre en ¢, 0 et y. Elles permettent en principe de
déterminer ¢ = ¢(),0 = 0(¢) et y = y(t), i.e. de trouver les mouvements de la toupie.

L’Equation (8) est particuliérement simple et signifie que la composante @3 du vecteur
rotation est conservée au cours du mouvement :

03 = QcosO+ Wy =a, aconstant. )

Cette IP est due, voir Equation (8), a la symétrie de la toupie et 4 I’orthogonalité a 3 du
moment . ex(O) = mgd é; N\ éz. Or, le moment .#x(O) est également perpendiculaire au
vecteur fixe €5, si bien que

0233'//2@&(0) 253'dt50:dt@3‘60)7 (10)

de sorte que la composante
&-Go=2-) Jiw,
i
de Gp suivant €, est aussi une IP. En utilisant les équations (2) et (5), on trouve I’expression
de cette IP en fonction des parametres :

§3~60:J11(psin29—|—J33acose:b, b constant. (1)

Un systeme de trois IP indépendantes (pour I’instant on en a deux), donc un systeme de 3
équations différentielles du premier ordre en les parametres ¢, 0 et y, serait évidemment
plus simple a étudier que les trois équations d’Euler (6), (7) et (8), qui sont d’ordre 2. En
gros, un systeme dynamique qui admet un nombre d’intégrales premieres indépendantes égal
a son nombre de degrés de liberté, y compris I'IPE, est appelé un systeme intégrable. Les
systemes intégrables seront discutés plus en détail dans les cours avancés. Dans le cas de la
toupie, 'IPE E. 4V = ¢, c constant, est évidemment valable, la résultante des forces externes
étant composée d’une force mg qui dérive d’un potentiel V = mgd cos 6 et d’une force R dont
la puissance & = R -¥(0) est nulle (ce qui fournit la troisiéme IP). Si I’on exprime 1’ énergie
cinétique E, = %Zi J,-,~col-2 en fonction de @, 0 et ¥ moyennant I’Equation (5), 'IPE devient

1 ) 1
5111((P281n29+92)+§J33a2+mgdcose:c. (12)
Le deuxieme terme du premier membre étant lui aussi constant, I'IPE s’écrit encore

1 .
EJH((pZ sin29+92)+mgdcose =FE, E constant. (13)
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Le déchiffrage de I’information encryptée dans le systeme d’IP (9), (11) et (13) fournira
les différents types de mouvements possibles de la toupie selon les conditions initiales con-
sidérées. Notons d’abord que 1’angle 0, non dérivé par rapport au temps, intervient dans ces
IP uniquement sous la forme cos @ ou sin>6 = 1 —cos? 0 : posons i := cos 6. L’équation
(11) devient alors

. b—Jzapu
= (14)
-
Cela étant, les IP (13) et (9) prennent la forme
. 2 . 1 (b—J33au)2
0>=—(E—-V, Vetr = mgd - 15
J11< eff); OU Vegr = mg B35 (-2 (15)
et b J
. —J33apl
=a— ———F>5< 16
v In(l—u) (16)

respectivement. Dans (15), nous avons introduit le potentiel efficace Vg, afin d’écrire I'IPE
sous la forme nécessaire a 1’étude des mouvements via le diagramme du potentiel. Pour b #
+J33 a, nous supposons dans la suite que cette condition est satisfaite, la courbe représentative
du potentiel efficace V¢ est entre ses deux asymptotes verticales d’équations 6 =0 et 0 = 7,
d’abord décroissante, puis croissante.

(1) Si E = Veff min, OU Ver. min désigne la valeur minimale du potentiel, 6 ne peut prendre
qu’une seule valeur et est donc constant au cours du mouvement. Il résulte alors de
(16) et (14) que ¢ et y sont également constants : le mouvement est sans mutation et
la précession et le spin sont uniformes.

(i1) Supposons maintenant que E > Vefr min €t notons 0y et 6, les abscisses des deux points
de réflexion. Le mouvement de mutation est alors une oscillation entre les valeurs 0; et
6. Quant au mouvement complet, il s’avérera qu’il dépend de la position de b/(J33a)
— nous supposons a # 0 — par rapport a ’intervalle [cos 8;,cos 6, ].

Avant de passer a I’explication de cette affirmation, deux observations sont nécessaires

o L’égalité b/(J33a) = cos 0, est impossible. En effet, on vérifie facilement que
dans ce cas on aurait V/;(6,) = —mgd sin6, < 0, ce qui est absurde vu Iallure
de la courbe du potentiel.

e La fonction b —J3zau = b —Jzza cos 0 est strictement croissante ou strictement
décroissante dans |0, [, selon que a > 0 ou a < 0.

Passons a I’étude du mouvement complet, voir ci-dessus.
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(1

2)

3)

b/(J3za) & [cos 6,,cos O]

Sib/(J33a) < cosH, et a > 0 par exemple, on a b — J33acos 6, < 0. Donc, vu son sens
de variation, la fonction b — J33a . = b —J33a cos 0 est < 0 pour tout 6 € [0, 60,], i.e.
¢ < 0, en vertu de l’Equation (14). Dans les autres cas, on trouve de la méme facon,
soit ¢ < 0, soit ¢ > 0. Ainsi, le sommet S de la toupie décrit, sur la sphere de centre O
et de rayon OS, une trajectoire de type “sinusoidal”.

b/(J33a) € |cos 0,c0s O

Si a > 0 par exemple, on trouve que b —J3za cos 0; < 0 < b —J33a cos 6,, de sorte que
la fonction strictement croissante b — J33a cos 6 s’annule et change de signe en un seul
point By €]0;, 6;[. Vu (14), il en est de méme de ¢. Ainsi, ¢ décroit si 6 €]6;, 6| et
croit si 6 €]6y, 6>[. La trajectoire de S est donc du type “¢¢...".

b/(.]33 a) = COS 91

Ici, ¢ >0, VO # 0; ou ¢ <0, VO # 6. De plus, p =0 en 6 = 6;. Il s’ensuit que
¢ admet a ’instant 6 = 6; un point d’inflexion a tangente horizontale. Ainsi S a une
trajectoire du type “uu...”.

2 Exercices

1.

Considérons une toupie dont les vitesses angulaires de précession ¢ et de nutation 0
sont négligeables par rapport a la vitesse angulaire de spin . C’est 1I’hypothése du
spin dominant, souvent satisfaite en pratique. A ce moment, on a I’approximation
gyroscopique
O =y et Gp=)Y Jiwé =J33yés.
1

= é3 Aii. Pour cela,
,€3), en remarquant

Projeter le TMC en O sur les axes du repere %»(0, i, V,€;), ol
décomposer les vecteurs .#Zex(0), Gp et d;Gp dans la base (i,
notamment que le vecteur V étant constant dans %>, on a

div = @ ANV = ¢péz AV = —@li.
Réponse : La projection sur les axes donne J33y¢sin @ = mgdsin0, ysin0 = Cy, et
W cos 0 = (C,, ou Cy et C, sont des constantes. Ainsi, Y/, 0 et
_ mgd
Iny
sont constants et le mouvement de I’axe de la toupie est une précession pure et uni-

forme autour de (O, €5), dont le sens est le méme que celui du spin (qui est également
uniforme).
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2. Reprendre le probleme ci-dessus de la toupie sous I’hypothese du spin dominant, mais
projeter le TMC en O sur les axes du repére intermédiaire #3(0,u,w,é3), avec w =
é3Nid.

Réponse : J33y@sin O = mgdsin 0,0 = 0,y = 0, mémes conclusions.

3 Renonciation

Ce cours est basé essentiellement sur [Sim88] et, dans une moindre mesure, sur [DN96] et
[BFR85]. Des encyclopédies en ligne, comme Wikipedia, ont été utilisées. Les exercices sont
extraits de sources différentes. La construction du cours s’étant étendue sur une période assez
longue et antérieure a celle de la rédaction des présentes notes, des sources peuvent avoir été
oubliées. Dans ce cas I’auteur aimerait s’excuser et serait content d’ajouter les références
manquantes.
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