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1 Informations générales
Titulaires : Norbert Poncin et Mourad Ammar

Contact : Toute question relative au cours peut être adressée par email à norbert.poncin@uni.
lu ou à mourad.ammar@uni.lu

Leçons par semestre : 90

Crédits ECTS : 7 en filière ‘mathématiques’, 6 en filière ‘physique’

Langue d’enseignement : Français

Type d’enseignement : Cours magistral et travaux dirigés

Évaluation : Examen écrit (examen oral, si le nombre d’étudiants en permet l’organisation
pratique)

Niveau : Semestre 1

Compétences et contenu :

Le cours de Mécanique est aussi bien un cours de Mathématiques appliquées qu’un cours
de Physique théorique. Outre l’assimilation de cette formation de base à la Physique, les
objectifs à atteindre sont les suivants. Apprendre à maîtriser les compléments aux autres
cours de Mathématiques, enseignés à partir d’un point de vue intuitif et imagé. Se familiariser
avec l’utilisation pratique de l’outillage mathématique abstrait. S’initier à la modélisation
mathématique. Intérioriser des concepts mathématiques généraux construits graduellement à
partir de situations concrètes. Participer activement à un enseignement notamment grâce aux
applications proposées.

Partie 1

1. Introduction mathématique à la Mécanique

2. Cinématique du point

3. Dynamique du point (référentiels inertiaux et non-inertiaux)

4. Intégrales premières, diagramme du potentiel, plan de phase

5. Problèmes classiques tels que particules chargées dans un champ électromagnétique,
mouvements planétaires, marées, satellites, pendule de Foucault, ...
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Partie 2

1. Cinématique et Statique du solide

2. Dynamique des systèmes de points et des solides, tenseur d’inertie, ellipsoïde d’inertie

3. Problèmes classiques tels que problème de Lagrange-Poisson, mouvements de la Terre,
boule de billard, ...

Support : Notes de cours

Préparation des cours : Il est recommandé aux étudiants de préparer les thèmes de chaque
séance avant le cours y relatif, en lisant attentivement la partie correspondante des notes de
cours.





Chapitre 1

Introduction mathématique à la Mécanique

Sauf mention explicite du contraire, nous nous placerons dans l’espace vectoriel réel
tridimensionnel E des vecteurs de l’espace ambiant (dans lequel une unité de longueur a
été choisie).

1 Algèbre vectorielle

1.1 Produit scalaire
Définition 1. On appelle norme ||~u || ou module u d’un vecteur~u ∈ E, la longueur de ce
vecteur.

Les propriétés d’une norme sont bien connues et ne seront pas rappelées.

Définition 2. Soient ~u,~v ∈ E. Si ces vecteurs sont tous les deux non nuls, leur produit
scalaire~u.~v est défini par

~u.~v = uvcosθ ∈ R,

où θ désigne l’angle formé par les deux vecteurs. Si l’un au moins des vecteurs est nul,
leur produit scalaire est nul.

Notons qu’ici θ peut être n’importe lequel des deux angles (ou même des quatre, si
l’on tient compte des signes) definis par~u et~v.

On sait que ce produit scalaire est une forme bilinéaire symétrique définie positive:

Proposition 1. Soient~u,~v,~ui,~vi ∈ E et ci ∈ R. Le produit scalaire est

• à valeurs réelles
~u.~v ∈ R,

5
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• bilinéaire (
∑

i
ci~ui

)
.~v = ∑

i
ci (~ui.~v)

et

~u.

(
∑

i
ci~vi

)
= ∑

i
ci (~u.~vi) ,

• symétrique
~v.~u =~u.~v

• et défini positif
(~u)2 :=~u.~u = uu = u2 > 0,∀~u 6=~0.

Il est clair que
~u.~v = 0⇐⇒~u⊥~v (1)

et que
u = 1⇐⇒ (~u)2 = 1.

Ainsi, le triplet de vecteurs (~e1,~e2,~e3) est une base othonormée (BON) si et seulement si
~ei.~e j = 0,∀i 6= j et~ei.~e j = 1,∀i = j. Le symbole de Kronecker δi j défini par

δi j =

{
0, si i 6= j

1, si i = j
,

rend les calculs plus élégants et les écritures plus compactes. Ainsi, (~e1,~e2,~e3) est une
BON si et seulement si

~ei.~e j = δi j,∀i, j.

On obtient alors facilement l’expression du produit scalaire et de la norme dans une
BON. Nous désignerons les composantes d’un vecteur ~u dans une base donnée systéma-
tiquement par (u1,u2,u3)

∈ R3. Si la base est (~e1,~e2,~e3), ceci signifie que

~u = ∑
i

ui~ei.

Donc
~u.~v = (∑i ui~ei) .

(
∑ j v j~e j

)
= ∑i j uiv j

(
~ei.~e j

)
= ∑i j uiv jδi j
= ∑i uivi,

où nous avons utilisé la bilinéarité du produit scalaire et le caractère orthonormé de la
base. Comme la norme s’exprime moyennant le produit scalaire, u2 = (~u)2, on en déduit
de suite l’expression de la norme dans une BON.



Cinématique du point; np2008 7

Proposition 2. Dans toute BON,
~u.~v = ∑

i
uivi (2)

et
u =

√
∑

i
(ui)2. (3)

Remarque 1. Sauf mention explicite du contraire, toutes les bases considérées dans la
suite seront des BON.

1.2 Produit vectoriel
Les notions de base directe (droite, positive) et de base indirecte (gauche, negative)

sont supposées connues.

Définition 3. Soient ~u,~v ∈ E. Si ces vecteurs ne sont pas colinéaires, le produit vectoriel
~u∧~v de~u par~v a la direction orthogonale au "plan" défini par~u et~v, est de module

||~u∧~v ||=||~u || ||~v || | sinθ |> 0

(θ : angle formé par~u et~v) et son sens est tel que le trièdre (~u,~v,~u∧~v) soit direct. Si~u et
~v sont colinéaires, leur produit vectoriel est nul.

On remarquera que

•
~u∧~v =~0⇐⇒~u et~v sont colinéaires, (4)

résultat qu’on comparera à (1),

• le produit vectoriel~u∧~v est orthogonal à chacun des deux facteurs~u et~v,

• dans la définition du module ||~u∧~v || on peut supprimer la valeur absolue, si l’on
convient de choisir θ ∈]0,π[,

• le module ||~u∧~v || coïncide avec l’aire du parallélogramme construit sur~u et~v,

• le sens de~u∧~v peut être déterminé à l’aide de la règle du tire-bouchon,

• si l’on change l’orientation de l’espace, i.e. si l’on appelle directes (respective-
ment indirectes) les précédentes bases indirectes (respectivement directes), le pro-
duit vectoriel change de signe.
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Le produit vectoriel changeant de signe, si l’orientation de l’espace change, il ne s’agit
que d’un pseudo-vecteur ou vecteur axial. Par opposition, un vecteur ordinaire est parfois
appelé vecteur polaire.

Rappelons que le produit vectoriel est une multiplication bilinéaire et antisymétrique:

Proposition 3. Soient~u,~v,~ui,~vi ∈ E et ci ∈ R. Le produit vectoriel est

• à valeurs "vectorielles"
~u∧~v ∈ "E",

• bilinéaire (
∑

i
ci~ui

)
∧~v = ∑

i
ci (~ui∧~v)

et

~u∧

(
∑

i
ci~vi

)
= ∑

i
ci (~u∧~vi)

• et antisymétrique
~v∧~u =−~u∧~v.

Soit à présent une base orthonormée directe (BOND) (~e1,~e2,~e3). On vérifie aisément
que

~e1∧~e1 =~0 ~e1∧~e2 =~e3 ~e1∧~e3 =−~e2

~e2∧~e1 =−~e3 ~e2∧~e2 =~0 ~e2∧~e3 =~e1

~e3∧~e1 =~e2 ~e3∧~e2 =−~e1 ~e3∧~e3 =~0.

On notera que dans les résultats ~e1∧~e2 =~e3,~e2∧~e3 =~e1,~e3∧~e1 =~e2 les indices appa-
raissent dans l’ordre naturel. Les neuf relations ci-dessus peuvent être condensées en une
seule, grâce au symbole de Levi-Civita εi jk (i, j,k variant comme toujours dans {1,2,3})
défini par

εi jk =


0, si deux au moins des indices i, j,k sont égaux,

1, si les indices i, j,k apparaissent dans l’ordre naturel,

−1, sinon.

On vérifie que les neuf égalités se résument alors par

~ei∧~e j = ∑
k

εi jk~ek,∀i, j. (5)
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Ceci étant, l’expression du produit vectoriel dans une BOND s’obtient comme suit,
les notations étant les notations habituelles.

~u∧~v = ∑i j uiv j
(
~ei∧~e j

)
= ∑i jk εi jkuiv j~ek
= ∑k

(
∑i j εi jkuiv j

)
~ek

= (u2v3−u3v2)~e1 +(u3v1−u1v3)~e2 +(u1v2−u2v1)~e3.

Les trois composantes dans une BOND du produit vectoriel s’obtiennent donc à partir des
composantes des deux facteurs (

u1 u2 u3
v1 v2 v3

)
,

en biffant dans ce tableau successivement les trois colonnes et en prenant les déterminants
restants précédés des signes +,−,+ respectivement.

Proposition 4. Dans toute BOND,

~u∧~v = ∑
i jk

εi jkuiv j~ek. (6)

Remarque 2. Sauf mention explicite du contraire, toutes les bases considérées dans la
suite seront des BOND.

1.3 Produit mixte
Définition 4. On appelle produit mixte des vecteurs~u,~v,~w, le pseudo-scalaire (~u∧~v).~w .

Les propriétés du produit mixte découlent de son expression dans une BOND. Comme

(~u∧~v).~w = (u2v3−u3v2)w1 +(u3v1−u1v3)w2 +(u1v2−u2v1)w3,

on a la

Proposition 5. Dans toute BOND,

(~u∧~v).~w =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ . (7)

Vu les propriétés des déterminants, on en déduit la

Proposition 6. Pour tous vecteurs~u,~v et ~w,
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•
(~u∧~v).~w = 0⇐⇒~u,~v et ~w sont coplanaires. (8)

• Un produit mixte est invariant par permutation circulaire (paire),

(~u∧~v).~w = (~v∧~w).~u = (~w∧~u).~v

et
(~v∧~u).~w = (~u∧~w).~v = (~w∧~v).~u,

mais deux produits quelconques de la première et seconde lignes respectivement,
sont opposés.

On comparera (8) aux résultats (1) et (4).
Le produit mixte admet une intéressante interprétation géométrique:

• La valeur absolue du produit mixte (~u∧~v).~w est égale au volume du parallélépipède
construit sur les vecteurs~u,~v et ~w.

• Le produit mixte (~u∧~v).~w est strictement positif (respectivement strictement né-
gatif) si et seulement si le triplet (~u,~v,~w) est une base directe (respectivement indi-
recte).

Le produit mixte permet d’obtenir des relations utiles entre les symboles de Levi-
Civita et de Kronecker. Considérons une base (orthonormée directe) (~e1,~e2,~e3) et notons
que~ei se décompose sous la forme~ei = ∑ j δi j~e j. D’un côté, l’équation (6) donne

(~ei∧~e j).~ek = εi jk.

De l’autre,

(~ei∧~e j).~ek =

∣∣∣∣∣∣
δi1 δi2 δi3
δ j1 δ j2 δ j3
δk1 δk2 δk3

∣∣∣∣∣∣ .
Etant donné qu’un déterminant est invariant par transposition et que δi1δr1 + δi2δr2 +

δi2δr3 =~ei.~er = δir, on obtient

εi jkεrst =

∣∣∣∣∣∣
δir δis δit
δ jr δ js δ jt
δkr δks δkt

∣∣∣∣∣∣ .
Ceci étant, on vérifie sans peine les trois relations suivantes:

Proposition 7. On a
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•
∑
k

εi jkεrsk = δirδ js−δisδ jr, (9)

•
∑
jk

εi jkεr jk = 2δir,

•
∑
i jk

εi jkεi jk = 6.

1.4 Double produit vectoriel
Définition 5. On appelle doubles produits vectoriels, les vecteurs (polaires) (~u∧~v)∧~w
et~u∧ (~v∧~w),~u,~v,~w ∈ E.

En appliquant deux fois de suite (6), puis (9) et (2), on trouve la

Proposition 8. On a

•
(~u∧~v)∧~w = (~u.~w)~v− (~v.~w)~u,

•
~u∧ (~v∧~w) = (~u.~w)~v− (~u.~v)~w.

Ces relations simplifient les doubles produits vectoriels. La seconde se déduit de la
première. Elles montrent que le double produit vectoriel n’est pas associatif ! On peut les
mémoriser comme suit: Le double produit vectoriel est égal au vecteur du milieu multiplié
par le produit scalaire des deux autres vecteurs, moins l’autre vecteur de la parenthèse
multiplié par le produit scalaire des deux autres.

2 Dérivation et différentiation

2.1 Fonctions scalaires et vectorielles
Une fonction scalaire (respectivement vectorielle) de variables scalaires x,y, . . . ∈ R

est un scalaire s(x,y, . . .) (respectivement un vecteur~v(x,y, . . .)) univoquement défini pour
tout uplet (x,y, . . .) dans un certain domaine.

Afin de simplifier l’exposé, nous nous limitons d’abord aux fonctions d’une seule vari-
able scalaire, notée t et pouvant être interprétée comme étant le temps. Soient une fonction
vectorielle ~v(t) et une base (~e1,~e2,~e3) indépendante de t. La dérivée d

dt~v ou simplement
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dt~v ou—si t est effectivement le temps—même ~̇v, étant définie comme d’habitude, on
constate facilement que si~v(t) = ∑i vi(t)~ei, alors

dt~v = ∑
i
(dtvi)~ei.

2.2 Théorèmes de dérivation
Dans ce cours de Mécanique, toutes les fonctions sont systématiquement supposées

indéfiniment continûment dérivables (ou du moins suffisamment dérivables pour garantir
le sens des expressions écrites).

Les règles de dérivation usuelles se généralisent des fonctions scalaires aux fonctions
vectorielles. Ainsi, tous les produits de vecteurs et le produit s(t)~v(t) d’un scalaire et d’un
vecteur se dérivent conformément à la règle de Leibniz. Pour le produit mixte de trois
fonctions~u(t),~v(t) et ~w(t) par exemple, on a

dt ((~u∧~v).~w) = ((dt~u)∧~v).~w+(~u∧ (dt~v)).~w+(~u∧~v).(dt~w).

Rappelons la version mathématique du théorème de dérivation d’une fonction com-
posée,

(g◦ f )′ = (g′ ◦ f ) f ′, (10)

où "prime" désigne l’opération de dérivation. Considérons à présent trois grandeurs t,r,v,
telles que r = r(t) et v = v(r) et dérivons la fonction composée v = v(r(t)). Il découle de
(10) que

dtv = dt(v(r(t))) = drv dtr. (11)

En vue de généraliser cette version physique du théorème de dérivation des fonctions
composées, imaginons des grandeurs t,r,s,~v, telles que r = r(t), s = s(t) et~v =~v(r,s). La
dérivée de la composée~v =~v(r(t),s(t)) est alors donnée par

dt~v = dt (~v(r(t),s(t))) = ∂r~v dtr+∂s~v dts, (12)

où la différence entre une dérivée totale et une dérivée partielle est supposée connue. Les
résultats (11) et (12) expriment que les fonctions composées se dérivent à l’aide de la
règle en chaîne.

La forme mathématique du théorème de dérivation des bijections inverses se lit(
f−1)′ = 1

f ′ ◦ f−1 . (13)

Si r et s sont des grandeurs telles que r = r(s) et si cette relation s’inverse en s = s(r), on
obtient immédiatement l’écriture

drs =
1

dsr
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de (13) utilisée en Physique. Elle exprime que la dérivée de l’inverse est l’inverse de la
dérivée.

Remarquons pour terminer que la dérivée d’un vecteur de norme constante est or-
thogonale à ce vecteur. De fait, si~v(t) est de norme ||~v(t) || constante, on a 0 = dt(~v.~v) =
2~v.(dt~v). D’où la thèse.

2.3 Différentielle
Considérons une fonction s = s(t), notons t la valeur initiale de la variable t (double

emploi!) et désignons par ∆t un accroissement infinitésimal (non nul) de la variable à
partir de cette valeur initiale. La différence

s(t +∆t)− s(t)
∆t

− s′(t) =:
∆s
∆t
− s′(t) =: ε(∆t)

tend évidemment vers 0 avec l’accroissement ∆t. On en déduit que

∆s = s′(t) ∆t +∆t ε(∆t). (14)

Posons ds := s′(t) ∆t. L’application de cette définition à la fonction s = s(t) = t donne
dt = ∆t, si bien que la précédente définition prend sa forme finale:

Définition 6. Soient une fonction s = s(t), une valeur initiale t de sa variable et un ac-
croissement ∆t de cette variable. On appelle alors différentielle de s et on note ds le
produit

ds = s′(t)dt

de la dérivée de s évaluée en la valeur initiale de la variable par de la différentielle
dt = ∆t de la variable, donnée par l’accroissement de la variable.

Ainsi, l’équation (14) s’écrit

∆s = ds+∆t ε(∆t).

En négligeant l’infiniment petit ∆t ε(∆t) d’ordre supérieur à 1 en ∆t par rapport à l’infini-
ment petit ds = s′(t) ∆t du premier ordre, on obtient

∆s' ds. (15)

En d’autres termes, la différentielle ds de s est l’accroissement ∆s = s(t +∆t)− s(t) de
s (résultant d’un accroissement infinitésimal ∆t de t), calculé au premier ordre en ∆t. De
manière plus courte: la différentielle est un petit accroissement calculé au premier ordre.
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Voilà l’aspect essentiel de la différentielle en Mécanique.

La définition de la différentielle et sa principale propriété (15) se généralisent sans
problème. Ainsi, pour une fonction s = s(x1, . . . ,xn) par exemple, on pose

ds := ∑
i

∂xis dxi,

où les dérivées partielles sont évaluées sur les valeurs initiales des variables et où les
différentielles des variables représentent les petits accroissements de ces variables.

3 Gradient, divergence, rotationnel
On sait qu’un champ de vecteurs est un vecteur ~v =~v(P) qui est fonction du point

P de l’espace (ou d’une région de l’espace) où on le considère. De même un champ de
scalaires ou champ scalaire est un scalaire s = s(P) qui dépend point où on l’évalue. Si
l’on fixe un repère (orthonormé) (RON) (O,~e1,~e2,~e3), ces champs peuvent être considérés
comme des fonctions des coordonnées x = (x1,x2,x3) de P: ~v =~v(x) =~v(x1,x2,x3) et
s = s(x) = s(x1,x2,x3). Les définitions du gradient, de la divergence et du rotationnel sont
particulièrement agréables, si l’on utilise l’opérateur de dérivation

−→
∇ = ∑

i
∂xi ~ei. (16)

On remarquera que
−→
∇ n’est pas à vrai dire un vecteur, mais un vecteur-opérateur, double

nature qui est parfois responsable d’erreurs.

3.1 Gradient
Définition 7. Le gradient (

−→
∇ s)(P) d’un champ scalaire s en un point P est défini par

(
−→
∇ s)(P) = ∑

i
(∂xis)(xP)~ei, (17)

où xP désigne le triplet des coordonnées de P.

On peut vérifier que cette définition est indépendante du RON considéré. Le gradient
est donc un opérateur différentiel qui transforme un champ de scalaires s(P) en un champ
de vecteurs (

−→
∇ s)(P). Comme il est du premier ordre, il est naturel qu’on ait la

Proposition 9. Si r et s désignent deux champs scalaires,
−→
∇ (r+ s) =

−→
∇ r+

−→
∇ s

−→
∇ (rs) = (

−→
∇ r)s+ r(

−→
∇ s).
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En vue de découvrir l’interprétation physique du gradient, nous commençons par ex-
primer la différentielle et la dérivée directionnelle d’un champ s en fonction de son gradi-
ent.

Proposition 10. Soient un champ scalaire s, une valeur initiale P de sa variable et un
accroissement

−→
dP de cette variable. La différentielle ds de s est alors donnée par

ds = (
−→
∇ s)(P).

−→
dP.

De fait, si l’on se donne un RON et si xP et (dx1,dx2,dx3) sont le triplet des coordon-
nées de P et les composantes de

−→
dP respectivement, on a

ds = ∑
i
(∂xis)(xP)dxi = (

−→
∇ s)(P).

−→
dP.

Proposition 11. La dérivée (d~νs)(P) d’un champ scalaire s dans la direction d’un vecteur
unitaire~ν en un point P est donnée par

(d~νs)(P) = (
−→
∇ s)(P).~ν . (18)

On notera que dans un système d’axes cartésien (RON) ce résultat se lit

d~νs = ∑
i

νi∂xis,

où nous avons supprimé le point P.
Rappelons d’abord que la dérivée de s au point P dans la direction de ~ν , définie

évidemment par

(d~νs)(P) = lim
h→0

s(P+h~ν)− s(P)
h

(à condition que cette limite existe et soit finie), mesure au point P l’importance de la
variation de s dans la direction de~ν . Comme

s(P+h~ν)− s(P) = ds+hε(h)

= (
−→
∇ s)(P).h~ν +hε(h)

(h' 0), le résultat est immédiat.
Relions à présent tous les points P où le champ s = s(P) a une même valeur. Nous

obtenons alors généralement des surfaces appelées surfaces de niveau de s (voir figure 1
de l’annexe).

Considérons d’abord l’accroissement s(P+
−→
dP)− s(P) de s résultant d’un accroisse-

ment infinitésimal
−→
dP tangent en P à la surface de niveau passant par P. Au premier ordre,

cet accroissement de s est nul et égal à ds. Donc,

0 = ds = (
−→
∇ s)(P).

−→
dP. (19)
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Prenons maintenant un accroissement infinitésimal
−→
dP′ normal en P à la surface de niveau

et dirigé dans le sens des s croissants. Alors

0 < ds = (
−→
∇ s)(P).

−→
dP′. (20)

In découle des équations (19) et (20) que l’on a la

Proposition 12. Le gradient (
−→
∇ s)(P) est normal en P à la surface de niveau de s passant

par P et pointe dans le sens des s croissants.

Le vecteur~ν étant unitaire, l’équation (18) implique que

| (d~νs)(P) |=
∥∥∥(−→∇ s)(P)

∥∥∥ | cosθ |,

θ ∈ [0,π] étant l’angle formé par (
−→
∇ s)(P) et ~ν . Par conséquent, en P la variation de s

dans la direction de~ν est maximale, si~ν est colinéaire à (
−→
∇ s)(P):

Proposition 13. La direction du gradient (
−→
∇ s)(P) est en P la direction du plus grand

changement de s.

3.2 Divergence, formule de Gauss-Ostrogradski

Définition 8. La divergence (
−→
∇ .~v)(P) d’un champ de vecteurs~v en un point P est donnée

par
(
−→
∇ .~v)(P) = ∑

i
(∂xivi)(xP), (21)

où xP représente les composantes de P.

Nous admettons que le second membre de (21) dépend uniquement de~v et de P et non
du RON considéré. La divergence est un opérateur différentiel du premier ordre qui trans-
forme un champ de vecteurs ~v(P) en un champ de scalaires (

−→
∇ .~v)(P). La proposition

suivante est facile à vérifier.

Proposition 14. Si s est un champ scalaire et~v,~w sont des champs vectoriels, on a

−→
∇ .(~v+~w) =

−→
∇ .~v+

−→
∇ .~w

et −→
∇ .(s~v) = (

−→
∇ s).~v+ s(

−→
∇ .~v) .
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Insistons sur le fait que les notions suivantes ne sont développées qu’avec la rigueur
qui est de mise dans un cours élémentaire de Mécanique.

En vue d’expliquer la signification physique de la divergence, considérons un élément
de surface dS et désignons par P un point de dS et par~n(P) un vecteur unitaire normal à dS
en P. Imaginons un fluide en régime permanent traversant dS à la vitesse~v(P). On appelle
flux du fluide à travers dS et on note dF le volume (éventuellement négatif) de fluide
traversant dS par unité de temps (voir figure 2 de l’annexe). Comme dF =~v(P).~n(P) dS,
le flux F du fluide à travers une surface finie S orientable et orientée (par le choix cohérent
en chaque point P d’un vecteur unitaire normal~n(P)) est donné par

F =
∫

S
~v(P).~n(P) dS.

D’où la définition suivante valable pour tout champ de vecteurs, vitesse de fluide ou non:

Définition 9. Soient un champ de vecteurs ~v et une surface orientée S placée dans ce
champ. On appelle flux de~v à travers S, l’intégrale∫

S
~v(P).~n(P) dS,

où~n(P) désigne le vecteur unitaire normal à S en P.

Evaluons le flux d’un champ~v(P) à travers la surface d’un parallélépipède infinitési-
mal orientée de manière que~n(P) soit en tout point dirigé vers l’extérieur (voir figure 3).
Le flux à travers la surface (PQRS) vaut

~v(x1,x2,x3).(−~e1) dx2dx3 =−v1(x1,x2,x3) dx2dx3

et celui à travers (P′Q′R′S′) est donné par

~v(x1 +dx1,x2,x3).~e1 dx2dx3 = (~v(x1,x2,x3)+(∂x1~v)(x1,x2,x3) dx1) .~e1 dx2dx3

= v1(x1,x2,x3) dx2dx3 +(∂x1v1)(x1,x2,x3) dx1dx2dx3.

Ainsi, si nous notons dV = dx1dx2dx3 le volume du parallélépipède, le flux à travers sa
surface est égal à

dF = (
−→
∇ .~v)(P) dV.

Soit maintenant un volume fini V limité par une surface fermée S orientée par la normale
extérieure. Décomposons V en une infinité de parallélépipèdes infinitésimaux. La somme
des flux élémentaires à travers tous ces parallélépipèdes est égale au flux à travers S,
car les flux à travers deux surfaces élémentaires adjacentes se compensent, les vecteurs
unitaires normaux étant opposés. Finalement, on a le
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Theorème 1. Si un volume V limité par une surface fermée S orientée par la normale
extérieure~n(P), est placé dans un champ de vecteurs~v(P), on a∫

V
(
−→
∇ .~v)(P) dV =

∮
S
~v(P).~n(P) dS. (22)

Ce résultat porte le nom de formule de Gauss-Ostrogradski. Elle permet de voir que

(
−→
∇ .~v)(P) = lim

V→0

∮
S~v(M).~n(M) dS

V
, (23)

où V désigne un volume contenant P et limité par la surface S. Si~v(P) représente encore
la vitesse d’écoulement d’un fluide, la divergence de ~v au point P est donc le volume
de fluide traversant par unité de temps et de volume une surface fermée infinitésimale
contenant le point P: la divergence (

−→
∇ .~v)(P) mesure l’intensité de source ou d’égout du

champ~v au point P.

3.3 Rotationnel, formule de Stokes

Définition 10. Le rotationnel (
−→
∇ ∧~v)(P) d’un champ de vecteurs ~v en un point P est le

pseudo-vecteur défini par

(
−→
∇ ∧~v)(P) = ∑

i jk
εi jk(∂xiv j)(xP)~ek,

avec les notations habituelles.

Le second membre de la précédente égalité dépend de ~v, de P et de l’orientation
choisie, mais est invariant lors d’un changement de RON au sein d’une même orientation.
En pratique, les composantes d’un rotationnel s’obtiennent évidemment comme celles
d’un (vrai) produit vectoriel. Le rotationnel est un opérateur différentiel du premier ordre
qui transforme un champ vectoriel en un champ pseudo-vectoriel. On vérifie facilement
les résultats suivants.

Proposition 15. Quels que soient les champs s,~v et ~w, on a

−→
∇ ∧ (~v+~w) =

−→
∇ ∧~v+

−→
∇ ∧~w,

−→
∇ ∧ (s~v) = (

−→
∇ s)∧~v+ s(

−→
∇ ∧~v).

Rappelons la notion de travail. Soit un point placé dans un champ de forces ~F . Si
le champ déplace le point de sa position P en P+ d~r (on pourra considérer~r comme le



Cinématique du point; np2008 19

vecteur position du point), il est logique de dire que le travail dW effectué par la force
dans ce déplacement est

dW = ~F(P).d~r.

Le travail du champ dans un déplacement du point d’une position P0 vers une position P1
le long d’une courbe C est donc donné par

W =
∫

P0C P1

~F(P).d~r,

où l’intégrale est celle de P0 à P1 le long de C . Dans le cas où C est une courbe fermée et
orientée, cette intégrale est appelée circulation de~v le long de C .

Définition 11. La circulation d’un champ de vecteurs~v le long d’un contour fermé orienté
C est l’intégrale ∮

C
~v(P).d~r .

Afin de calculer la circulation d’un champ de vecteurs ~v le long d’un contour rect-
angulaire infinitésimal orienté (PQRS), donnons-nous un ROND (O,~e1,~e2,~e3) tel que
(O,~e2,~e3) contienne le contour (PQRS) et tel que le sens de parcours défini par ~e1 coïn-
cide avec l’orientation choisie (voir figure 4). La circulation élémentaire dC cherchée
vaut alors

dC = ~v(x1,x2,x3).~e2 dx2 +~v(x1,x2 +dx2,x3).~e3 dx3

−~v(x1,x2,x3 +dx3).~e2 dx2−~v(x1,x2,x3).~e3 dx3

= ((∂x2v3)(xP)− (∂x3v2)(xP)) dx2dx3.

Si l’orientation de la surface élémentaire dS, limitée par le contour élémentaire (PQRS),
est choisie de façon cohérente avec celle du contour, la normale unitaire à dS est~n(P) =
~e1. Alors,

dC = (
−→
∇ ∧~v)(P).~n(P) dS.

Insistons sur le fait que ce résultat est exact, à condition que les orientations du contour
rectangulaire et de la surface qu’il délimite soient compatibles.

Prenons maintenant un contour fermé orienté fini C délimitant une surface S orientée
conformément à C . Décomposons S en une infinité de surfaces élémentaires (dont les
frontières sont des contours rectangulaires élémentaires orientés (convenablement)) (voir
figure 5). La somme des circulations de ~v le long de tous ces contours est égale à sa
circulation le long de C , car les contributions d’un côté commun de deux éléments de
surface se compensent, les sens de parcours étant différents. D’où, le
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Theorème 2. Si une surface orientée S limitée par un contour fermé C orienté de manière
cohérente, est placée dans un champ de vecteurs~v, on a∫

S
(
−→
∇ ∧~v)(P).~n(P) dS =

∮
C
~v(P).d~r.

Ce résultat est célèbre et connu sous le nom de formule de Stokes. Elle stipule donc
que le flux du rotationnel d’un champ de vecteurs à travers une surface orientée limitée
par un contour fermé orienté de façon cohérente, est égal à la circulation de ce champ le
long de ce contour. On en déduit que

(
−→
∇ ∧~v)(P).~n = lim

S→0

∮
C~v(M).d~r

S
,

où S désigne un disque centré en P limité par la circonférence C tous deux orientés par
la normale unitaire ~n, supposée invariable lors du passage à la limite. Il s’ensuit que
la composante suivant ~n du rotationnel au point P de ~v traduit au point P les propriétés
rotationnelles de~v dans la direction~n: le rotationnel est un vecteur-tourbillon.

3.4 Exercices
3.4.1 Opérateurs du second ordre

Déterminer les opérateurs suivants du second ordre dans un système d’axes cartésiens
(ROND).

• ~∇.(~∇s)

• ~∇∧ (~∇s)

• ~∇(~∇.~v)

• ~∇.(~∇∧~v)

• ~∇∧ (~∇∧~v)

On appelle Laplacien scalaire l’opérateur

∆s = ~∇.(~∇s).

Enfin
∆~v = ~∇(~∇.~v)−~∇∧ (~∇∧~v)

est le Laplacien vectoriel. Trouver l’expression de ces opérateurs dans un système d’axes
cartésiens.
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3.4.2 Champs centraux et champs à symétrie sphérique

Soit O un point fixe et P un point variable. On pose~r =
→

OP et r = OP. Calculer les
grandeurs suivantes en travaillant dans une BOND et en utilisant si possible les règles
de calcul relatives aux opérateurs gradient, divergence et rotationnel. Peut-on prévoir
certains résultats grâce aux interprétations connues du gradient, de la divergence et du
rotationnel.

• ~∇r, ~∇.~r, ~∇.(~rr ),
~∇∧~r

• ~∇( f (r)), ~∇.
(

f (r)
r ~r
)
, ~∇∧

(
f (r)

r ~r
)

• ∆( f (r)), ∆

(
f (r)

r ~r
)

Réponses :

• ~r
r , 3, 2

r , 0

• dr f ~∇r = dr f ~rr , dr f + 2
r f , 0

• d2
r f + 2

r dr f ,
(

d2
r f + 2

r dr f − 2
r2 f
)

~r
r

3.4.3 Equation de Laplace, fonctions harmoniques

L’équation
∆s = 0

est appelée équation de Laplace, ses solutions sont les fonctions harmoniques.

Prouver, en appliquant les résultats de la section précédente, que ∆
(1

r

)
= 0 et que

∆~r = 0.

3.4.4 Identités remarquables

Prouver les identités suivantes en vous basant sur les définitions du gradient, de la
divergence et du rotationnel et en appliquant si nécessaire la relation fondamentale

∑
k

εi jkεabk = δiaδ jb−δibδ ja.

• ~∇.(~v∧~w) = ~w.(~∇∧~v)−~v.(~∇∧~w)

• ~∇(~v.~w) =~v∧ (~∇∧~w)+~w∧ (~∇∧~v)+(~v.~∇)~w+(~w.~∇)~v
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• ~∇∧ (~v∧~w) =~v(~∇.~w)−~w(~∇.~v)− (~v.~∇)~w+(~w.~∇)~v

• (~v.~∇)~v = 1
2
~∇(v2)−~v∧ (~∇∧~v)

• Ci-dessous~c est un champ homogène, i.e. constant par rapport à P. Montrer que

~∇(~c.~r) =~c, ~∇.(~c∧~r) = 0, ~∇∧ (~c∧~r) = 2~c

Suggestion : Dans les exemples contenant des “doubles produits vectoriels”, commencer
par développer ces produits.



Chapitre 2

Cinématique du point

La cinématique (du point) est l’étude des mouvements (d’un point) indépendamment
des causes qui le provoquent.

1 Grandeurs cinématiques fondamentales
On appelle référentiel et on note R, le solide de référence, i.e. le solide par rap-

port auquel les mouvements considérés sont étudiés. On suppose que R est parsemé
d’horloges fixes, identiques et synchronisées, i.e. qui indiquent le même temps à tout
instant. On dit que R est muni d’un temps. En mécanique classique le temps peut être
considéré comme une notion absolue, i.e. indépendante du référentiel considéré. Pour
étudier un mouvement, on se donne généralement un ROND (O,~e1,~e2,~e3) attaché à R.

Soit à présent un point P en mouvement par rapport à R. On appelle grandeurs
cinématiques fondamentales, les trois vecteurs suivants :

• Le vecteur position de P par rapport à R (lié en O),

~r =
−→
OP = ∑

i
xi~ei,

où les xi sont les coordonnées de P dans le ROND considéré. La position P du point
P (double emploi) variant généralement au cours du temps t, on a P = P(t),~r =~r(t)
et xi = xi(t).

• Le vecteur vitesse de P par rapport à R,

~v = dt~r =
.
~r= ∑

i

.
xi~ei.

23
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Bien évidemment~v=~v(t) = lim∆t→0
~r(t+∆t)−~r(t)

∆t , si bien que~v(t), considéré comme
vecteur lié en P(t), est tangent à la trajectoire de P au point P(t) et est dirigé dans
le sens du mouvement.

• Le vecteur accélération de P par rapport à R,

~γ =
.
~v=

..
~r= ∑

i

..
xi~ei.

Nous obtiendrons plus tard des précisions relatives à direction et au sens de~γ =~γ(t).

2 Etude du mouvement en coordonnées polaires
Soit un point P animé d’un mouvement plane par rapport à un référentiel R. Notons

P le plan du mouvement et soit (O,~e1,~e2) un ROND de P . Nous supposons que la
trajectoire C de P ne passe pas par O. Alors que les coordonnées cartésiennes de P
dépendent du repère considéré, ses coordonnées polaires sont définies par rapport à un
axe appelé axe polaire et une orientation. L’origine de l’axe s’appelle le pôle. Ici nous
choisirons l’axe polaire (O,~e1) et l’orientation définie par (O,~e1,~e2). Les coordonnées
polaires de P sont alors son rayon polaire r = OP et son angle polaire θ qui est la mesure
dans [0,2π[ de l’angle orienté (~e1,

−→
OP) = (~e1,~r). On remarquera qu’il s’agit du module et

d’un argument du nombre complexe représenté par P. La relation entre les coordonnées
cartésiennes (x1,x2) et les coordonnées polaires (r,θ) de P est claire:

x1 = r cosθ , x2 = r sinθ . (1)

Tout comme l’utilisation des coordonnées cartésiennes implique des calculs dans le
ROND (O,~e1,~e2), celle des coordonnées polaires entraîne des calculs dans le ROND
mobile (P,~er,~eθ ) défini par

~er =
~r
r

et~eθ = dθ~er. (2)

Evidemment
~er =

x1~e1 + x2~e2

r
= cosθ~e1 + sinθ~e2

et
~eθ =−sinθ~e1 + cosθ~e2,

si bien que~er =~er(θ) et~eθ =~eθ (θ). Le caractère orthonormé de la base (~er,~eθ ) résulte
de la précédente décomposition de ces vecteurs dans la base (~e1,~e2). On remarquera
cependant aussi que ~er est unitaire par définition et que ~eθ lui est orthogonal en tant que
dérivée d’un vecteur de norme constante. L’observation

~eθ (θ) =−sinθ~e1 + cosθ~e2 = cos
(

θ +
π

2

)
~e1 + sin

(
θ +

π

2

)
~e2 =~er

(
θ +

π

2

)
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facilite la représentation du repère (P,~er,~eθ ) qui est donc bien un ROND mobile de P .
Comme~r,~v et~γ sont situés dans P , on peut les décomposer dans la base mobile (~er,~eθ ).
Comme r = r(t),θ = θ(t),~er =~er(θ(t)),~eθ =~eθ (θ(t)), on obtient :

~r = r~er, ~v =
.
r~er + r

.
θ~eθ , ~γ = (

..
r− r(

.
θ)2)~er +(r

..
θ +2

.
r
.
θ)~eθ . (3)

3 Etude du mouvement en coordonnées cylindriques
Soit un point P en mouvement par rapport à un référentiel R et soit (O,~e1,~e2,~e3)

un ROND attaché à R. Le point P est supposé bouger sans passer par l’axe (O,~e3). Les
coordonnées cylindriques de P sont alors les réels (ρ,θ ,z), où (ρ,θ) sont les coordonnées
polaires de la projection orthogonale P′ de P sur le plan (O,~e1,~e2) et où z n’est autre que
la troisième coordonnée cartésienne de P. On notera que le rayon polaire ρ de P′ est le
module du vecteur position ~ρ =

−−→
OP′ de P′, la notation r restant réservée au module du

vecteur position~r =
−→
OP de P. Les relations entre les coordonnées cartésiennes (x1,x2,x3)

et les coordonnées cylindriques (ρ,θ ,z) de P sont évidemment

x1 = ρ cosθ ,x2 = ρ sinθ ,x3 = z. (4)

Comme dans le cas des coordonnées polaires, l’utilisation des coordonnées cylin-
driques implique un travail dans une BOND mobile naturellement associée à ces coor-
données. Sa définition est

~eρ =
~ρ

ρ
,~eθ = dθ~eρ et~ez =~e3. (5)

Le repère (P,~eρ ,~eθ ,~ez) est visiblement un ROND variable. En vue de la décomposition
des vecteurs position, vitesse et accélération dans la nouvelle base, on notera que ρ =

ρ(t),θ = θ(t),z = z(t),~eρ =~eρ(θ(t)),~eθ =~eθ (θ(t)),~ez =~e3. Finalement on trouve que

~r = ρ~eρ +z~ez, ~v =
.
ρ~eρ +ρ

.
θ~eθ +

.
z~ez, ~γ = (

..
ρ−ρ(

.
θ)2)~eρ +(ρ

..
θ +2

.
ρ

.
θ)~eθ +

..
z~ez. (6)

4 Etude du mouvement en coordonnées sphériques
Considérons encore un point P en mouvement par rapport à un référentiel R, un

ROND (O,~e1,~e2,

~e3) (ou (Ox,Oy,Oz)) attaché à R et tel que la trajectoire de P ne coupe pas l’axe (O,~e3)

(respectivement Oz). Si P′ désigne de nouveau la projection orthogonale de P sur le plan
(Ox,Oy), les coordonnées sphériques de P sont les réels (r,θ ,φ), où r = OP ∈ ]0,+∞[, θ
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est la mesure dans ]0,π[ de l’angle {Oz,
−→
OP} et φ est la mesure dans [0,2π[ de l’angle ori-

enté (Ox,
−−→
OP′). Notons que r fournit la sphère de centre O qui passe par P, que θ donne le

parallèle sur lequel est situé P et que φ détermine le méridien contenant P. Les relations
entre les coordonnées cartésiennes (x1,x2,x3) et les coordonnées sphériques (r,θ ,φ) de P
sont

x1 = r sinθ cosφ , x2 = r sinθ sinφ , x3 = r cosθ . (7)

La BOND mobile ou base locale naturellement associée aux coordonnées sphériques est
définie par

~er =
~r
r
, ~eθ = ∂θ~er, ~eφ =

1
sinθ

∂φ~er. (8)

Il est facile de se convaincre de ce que~er =~er(θ ,φ),~eθ =~eθ (θ ,φ),~eφ =~eφ (φ) et de ce
que (P,~er,~eθ ,~eφ ) est bien un ROND mobile. On remarquera que la division par sinθ (> 0)
est nécessaire pour rendre ~eφ unitaire. Voici finalement la décomposition des vecteurs
cinématiques dans la base locale des coordonnées sphériques :

~r = r~er, ~v =
.
r~er + r

.
θ~eθ + r

.
φ sinθ~eφ ,

~γ = (
..
r− r

.
θ

2
− r sin2

θ
.
φ

2
)~er +(2

.
r
.
θ + r

..
θ − r sinθ cosθ

.
φ

2
)~eθ

+(2
.
r sinθ

.
φ +2r

.
θ cosθ

.
φ + r sinθ

..
φ)~eφ .

(9)

5 Etude intrinsèque du mouvement, formules de Frenet-
Serret

Soit, par rapport à un référentiel R d’origine O, un point P en mouvement sur sa tra-
jectoire C . Choisissons sur C , qui est en général une courbe gauche, une origine Ω et un
sens positif +. On appelle abscisse curviligne de P et on note s, la distance ΩP mesurée
le long de C et comptée positivement dans le sens positif et négativement dans le sens
négatif. Il est clair que s = s(t). Afin de simplifier, nous supposons que la vitesse ~v et
l’accélération~γ de P sont linéairement indépendantes à tout instant. Il découle notamment
de cette hypothèse qu’on a également t = t(s).

Nous définissons à présent quelques vecteurs utiles.
Comme t = t(s), le vecteur position~r de P peut être considéré comme fonction de s,

~r =~r(s). Il est facile de voir que le vecteur

~t := ds~r = lim
∆s→0

~r(s+∆s)−~r(s)
∆s

,

que nous considérons comme lié en P, est tangent à C en P, unitaire et dirigé dans le sens
+.
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Considérons, pour P′ ∈ C ,P′ ' P, le plan (P,~t(P),~t(P′)) et faisons tendre P′ vers P.
Le plan limite est appelé plan osculateur de C en P. Ce plan contient la courbe gauche
C "au mieux" au voisinage de P. Dans la cas d’une courbe plane, il s’agit du plan de
la courbe. La normale à C en P contenue dans le plan osculateur est appelée normale
principale de C au point P.

Il est clair que le vecteur

ds~t := lim
∆s→0

~t(s+∆s)−~t(s)
∆s

est contenu dans le plan osculateur et est normal à C en P. Il s’agit donc d’un vecteur
normal principal—visiblement dirigé vers la concavité—de C en P. Finalement,

~n :=
ds~t∥∥ds~t
∥∥ =

d2
s~r
‖d2

s~r‖
,

considéré encore comme lié au point P, est unitaire, normal principal et dirigé vers la
concavité de C en P.

Le quadruplet (P,~t,~n,~b), où~b =~t ∧~n, est un ROND mobile appelé trièdre de Frenet.

En vue de faire l’étude du mouvement dans le trièdre de Frenet, nous établirons les
formules de Frenet.

On entrevoit que
∥∥ds~t

∥∥ = ∥∥d2
s~r
∥∥ mesure la courbure de C en P. Il est donc naturel

d’appeler rayon de courbure de C en P, la grandeur

R =
1∥∥ds~t
∥∥ =

1
‖d2

s~r‖
.

D’où la première formule de Frenet :

ds~t =
1
R
~n. (10)

Interprétons ‖ds~b‖. Comme~b est de norme constante et que ds~b =~t ∧ds~n, la dérivée
ds~b est orthogonale à ~b et à ~t, donc colinéaire à ~n : ds~b = k~n, k ∈ R. Il est clair que
|k|= ‖ds~b‖mesure la vitesse de variation/rotation de~b et donc la torsion de C en P. Dans
le cas d’une courbe plane, la torsion (ou seconde courbure) est évidemment nulle. Par
analogie avec la courbure 1/R, on note k = 1/T la torsion. On trouve ainsi la deuxième
formule de Frenet :

ds~b =
1
T
~n. (11)

La dérivée de~n =~b∧~t est alors donnée par

ds~n =− 1
R
~t− 1

T
~b. (12)
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C’est la troisième formule de Frenet.
La formules de Frenet peuvent être résumées comme suit : ds~t

ds~b
ds~n

=

 0 0 1
R

0 0 1
T

− 1
R − 1

T 0

 ~t
~b
~n

 . (13)

Comme s = s(t), nous obtenons immédiatement les expressions des vecteurs ~v et ~γ
dans la BOND mobile (~t,~n,~b) de Frenet :

~v =
.
s~t et~γ =

..
s~t +

.
s2

R
~n, (14)

où nous avons utilisé la première formule de Frenet. La première de ces relations confirme
que~v est tangent à C en P et dirigé dans le sens du mouvement. La seconde montre que
~γ est situé dans le plan osculateur et est dirigé vers la concavité de C en P. Vu que

dt ‖~v‖2 = dt (~v.~v) = 2~v.~γ,

le mouvement est 
accéléré
uniforme
décéléré

 , si~v.~γ


>

=

<

0.

6 Exercices
1. Un point P se déplace sur un axe (O,~e), dans le sens de~e et tel que v = hx+b (x :

abscisse de P, v : vitesse de P, h ∈ R∗,b ∈ R). Trouver l’équation du mouvement,
x = x(t), sachant qu’à l’instant t = t0, P occupe la position x = x0.

2. Un point P se déplace dans un plan de manière que
.
x = ky et

.
y = kx (x,y : coor-

données de P, k ∈ R∗∗). Trouver les équations du mouvement, x = x(t) et y = y(t),
sachant qu’à l’instant t = 0, P passe par le point de coordonnées (c,0) (c ∈ R∗∗).
Donner l’équation cartésienne de la trajection.

3. Un point P est animé d’un mouvement rectiligne sur un axe (O,~e). Ce mouvement
est tel que~γ =−k

.
x2
~e (x : abscisse de P, k ∈ R∗). Trouver l’équation du mouvement,

si en t = 0, x = 0 et
.
x = v0 (v0 ∈ R∗).

4. Un point P se meut sur la parabole d’équation y2 = 2px, de manière que l’hodographe
du mouvement par rapport à l’origine O (i.e. la trajectoire de l’extrémité de~v con-
sidéré comme vecteur lié en O) soit cette parabole elle-même. Déterminer les équa-
tions du mouvement et les coordonnées de~v et de~γ , sachant qu’en t = 0, l’ordonnée
de P est égale au paramètre de la parabole.
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5. Un point P parcourt la courbe d’équation polaire r = asinϕ (a ∈ R∗∗), de manière
que

.
ϕ = ω (w ∈ R). Calculer les composantes radiale et orthoradiale de ~v et de

~γ (i.e. leurs composantes dans la BOND variable (~e1, ~eϕ), puis les coordonnées
cartésiennes de~v et de~γ .

6. Soit la courbe d’équation polaire r cos2 ϕ

2 = a (a ∈ R∗∗). Prouver que cette courbe
est une parabole.

Rappel : L’équation polaire d’une conique de paramètre p > 0 et d’excentricité
e≥ 0 est

r =
P

1+ ecosϕ
, (15)

si le pôle occupe un foyer et si l’axe polaire est dirigé vers le sommet le plus proche.
De manière plus précise, si e = 0, (O < e < 1,e = 1,e > 1), (15) est l’équation d’un
cercle (d’une ellipse, d’une parabole, d’une branche d’hyperbole).

Un point P décrit sa parabole de façon que
.
s = kr (k ∈ R∗∗) (le sens positif est le sens

des ϕ croissants). Déterminer la loi du mouvement ϕ = ϕ(t), sachant que ϕ(0) = 0.

Réponses
1. x = hx0+b

h eh(t−t0)− b
h ·

2. x = cchkt, y = cshkt, x2

c2 − y2

c2 = 1·

3. x = 1
k sin |kv0t +1|.

4. x = P
2 e4t , y = Pe2t ,

.
x = . . . ,

.
y = . . . ,

..
x = . . . ,

..
y = . . .

5. awcosϕ = awcos(wt+ϕ0), awsinϕ = . . .; −2aw2 sinϕ, 2aw2 cosϕ; awcos2ϕ ,
awsin2ϕ; −2aw2 sin2ϕ, 2aw2 cos2ϕ .

6. r = 2a
1+cosϕ

, ϕ = π−4 arc tg e−
kt
2 .





Chapitre 3

Dynamique du Point

1 Eléments cinétiques d’un point matériel
Un point matériel est un objet idéal, un corpuscule ponctuel P pourvu d’une masse m.

On notera l’aspect contradictoire de cette définition. La masse est un scalaire positif, qui
est proportionnel à la quantité de matière contenue dans P. Cette quantité de matière peut
être appréciée expérimentalement de deux façons différentes, par la répugnance de P à toute
modification de son mouvement, i.e. par l’inertie de P et par le poids de P, i.e. par la force
gravifique exercée sur P par la Terre. On fera une distinction de principe entre la masse inerte
et la masse gravifique, quoique l’expérience montre que ces masses sont égales. La masse m
d’un point matériel P est évidemment indépendante du temps t et du référentiel considéré R.

Rappelons d’abord la notion de moment. Soit un vecteur lié (P,~F), donc un vecteur ~F
appliqué à un point P et soit un point arbitraire O. On appelle moment de (P,~F) par rapport
à O, le vecteur

~M (O) =
−→
OP∧~F . (1)

On réfléchira à l’information fournie par le sens et par le module OP .F .sinθ (notations
habituelles) du vecteur moment.

Soit à présent un point matériel (P,m) en mouvement par rapport à un référentiel R à la
vitesse~v. On appelle quantité de mouvement ou impulsion de P, le vecteur

~p = m~v. (2)

Si O est un point généralement supposé fixe dans R, on appelle moment cinétique de P par
rapport à O, le moment en O de la quantité de mouvement considérée comme vecteur lié à
P, donc le vecteur

~σ0 =
−→
OP∧~p . (3)

31
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Rappelons aussi que l’énergie cinétique de P est définie par

Ec =
1
2

mv2. (4)

Les grandeurs (2)-(4) sont bien connues et appelées les éléments cinétiques de P. Elles
dépendent du point P considéré, du référentiel R utilisé et du temps t. Le moment cinétique
(3) dépend en outre du point O par rapport auquel il est calculé (comme mentionné ce point
est généralement attaché à R, mais ceci n’est pas obligatoire).

2 Lois fondamentales de la Mécanique Classique
Ces lois ont été énoncées par I. Newton dans ses Philosophiae Naturalis Principia Math-

ematica (1687). Il s’agit de postulats, mais leur validité est vérifiée depuis longtemps par
l’accord de leurs conséquences avec l’expérience et l’observation.

2.1 Première loi (principe d’inertie)
Il existe des référentiels privilégiés dans lesquels le mouvement d’un point isolé est rec-

tiligne et uniforme. Ces référentiels sont appelés référentiels d’inertie ou galiléens.

On montre que le référentiel de Copernic, qui a pour origine le centre de masse du système
solaire et dont les axes sont définis par trois étoiles “fixes", est un référentiel inertial.

Soit R0 le référentiel de Copernic et R1 un autre référentiel animé par rapport à R0 d’un
mouvement de translation rectiligne et uniforme de vitesse (constante) ~V . Considérons un
point isolé arbitraire P. Son mouvement par rapport à R0 est rectiligne et uniforme, i.e.
~v0(P) est constant. Comme

~v0(P) = ~v1(P)+~V ,

où ~v1(P) désigne la vitesse de P par rapport à R1, la vitesse ~v1(P) est aussi constant, i.e.
P est également par rapport à R1 en mouvement rectiligne et uniforme. Ainsi R1 est à son
tour inertial. Finalement, tout référentiel, animé par rapport au référentiel de Copernic d’un
mouvement de translation rectiligne et uniforme, est lui-même inertial.

Signalons pour terminer que la Terre n’est évidemment pas un référentiel inertial, mais
qu’elle peut être assimilée à un tel référentiel dans la plupart des applications pratiques. Nous
reviendrons sur ce point dans le chapitre consacré à la Mécanique du Point dans un référentiel
non inertial.
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2.2 Deuxième loi (principe fondamental de la Dynamique du Point)
Si dans un référentiel inertial, un point matériel P n’est pas animé d’un mouvement rec-

tiligne et uniforme, i.e. si sa vitesse ~v ou encore son impulsion ~p varient, il n’est pas isolé,
i.e. il est en interaction avec le reste de l’Univers. L’action qu’il subit de la part du reste de
l’Univers peut être décrite par un vecteur, la force s’exerçant sur le point. En d’autres termes,
dans un référentiel galiléen, la variation de la quantité de mouvement ~p d’un point matériel
P implique l’existence d’une force ~F agissant sur P et provoquant ainsi cette variation. Le
principe fondamental consiste en l’identification de la variation de ~p et de la force ~F qui en
est la cause. De manière plus précise,

Dans un référentiel inertial,
dt~p = ~F (5)

i.e. la dérivée temporelle de la quantité de mouvement ~p d’un point matériel P est égale à la
résultante ~F de toutes les forces agissant sur P.

Il est clair que l’équation (5) s’écrit encore m~̈r = ~F . Dans les applications, la théorie
physique des forces donne ~F sous la forme ~F = ~F(t,~r,~̇r). L’équation (5),

m~̈r = ~F(t,~r,~̇r) (6)

est alors une équation différentielle vectorielle du second ordre, dont l’intégration fournit,
compte tenu des conditions initiales

~r(0) =~r0 et~v(0) =~v0,

la fonction inconnue~r =~r(t), i.e. le mouvement de P.
La relation fondamentale (6) sera appelée dans la suite l’équation de Newton ou la loi du

mouvement.

2.3 Troisième loi (principe de l’action et de la réaction)
Soient P1 et P2 deux points matériels en interaction. Le principe de l’action et de la

réaction stipule que les forces ~F12 exercée sur P1 par P2 et ~F21 exercée sur P2 par P1 sont
directement opposées, i.e. sont des vecteurs liés à P1 et P2 respectivement, opposés et portés
par la droite (P1P2). C’est la version forte de la troisième loi de Newton, admise en Mécanique
Classique.
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3 Théorèmes généraux du mouvement d’un point matériel
dans un référentiel inertial

3.1 Théorème de la quantité de mouvement
Le théorème de la quantité de mouvement (TQM) est tout simplement l’équation de New-

ton (EN), voir Équation (5) et Équation (6).

3.2 Théorème du moment cinétique
Soit O un point fixe du référentiel inertial R considéré. Les autres notations sont les

mêmes que ci-dessus. La résultante ~F des forces appliquées au point matériel P de masse m
est considérée comme vecteur lié en P. Partons de la relation

~σO =
−→
OP∧~p.

Comme O est fixe, nous obtenons par dérivation

dt~σO =~v∧m~v+
−→
OP∧dt~p =

−→
OP∧~F = ~M~F(O).

Donc, dans un référentiel inertial,

dt~σO = ~M~F(O) (7)

i.e. la dérivée temporelle du moment cinétique de P par rapport à un point fixe O du référen-
tiel est égale au moment en O de la résultante ~F des forces agissant sur P. C’est le théorème
du moment cinétique (TMC).

3.3 Théorème de l’énergie cinétique
En dérivant l’égalité

Ec =
1
2

mv2 =
1
2

m~v ·~v

et en remarquant que le produit scalaire ~F ·~v n’est autre chose que la puissance instantanée
P de ~F , on obtient le théorème de l’énergie cinétique (TEC) :

Dans un référentiel inertial,
dtEc = P (8)

i.e. la dérivée temporelle de l’énergie cinétique de P est égale à la puissance de la résultante
des forces s’exerçant sur P.
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Remarquons pour terminer qu’en Mécanique du Point les mouvements s’obtiennent
généralement à partir de l’EN (5)-(6), alors que le TMC et le TEC fournissent des intégrales
premières (IP). La notion d’IP est un concept fondamental en Physique et en Mathématiques.
Nous aurons l’occasion de l’étudier en détail dans la suite. En Mécanique du Solide par con-
tre, l’utilisation conjointe des extensions de (généralement) deux des théorèmes TQM, TMC
et TEC est nécessaire pour déterminer le mouvement du solide étudié.

4 Applications

4.1 Schéma de résolution
La résolution d’un problème de Dynamique exige une certaine flexibilité. Le schéma de

résolution ci-dessous n’est donc qu’un guide sommaire.

1. Déterminer le nombre de degrés de liberté du point matériel étudié, i.e. le nombre de
paramètres nécessaires pour décrire ses positions. Choisir un système d’axes “appro-
prié” et des paramètres ou coordonnées “adaptés” au problème considéré.

2. Faire l’inventaire des forces appliquées au point matériel (force gravifique, forces de
liaisons, forces spécifiques, forces fictives [seulement dans un référentiel non inertial,
voir plus loin]...).

3. Utiliser un des théorèmes généraux qui gouvernent le mouvement du point (souvent
l’EN). Exprimer toutes les grandeurs intervenant en fonction des paramètres. Projeter
(éventuellement) l’équation vectorielle utilisée sur les axes choisis de manière à la rem-
placer par trois équations scalaires (deux, dans le cas d’un problème plane) plus simples
à manipuler. Déterminer les paramètres (et donc le mouvement du point matériel) et
les autres inconnues éventuelles (forces de liaisons) en résolvant les équations différen-
tielles ainsi obtenues.

4.2 Exercices
(i) Une particule se déplace dans le champ de pesanteur, sur une circonférence verticale,

parfaitement lisse (pendule circulaire, pendule simple). Assimiler la Terre à un référen-
tiel inertial et déterminer de trois manières différentes l’équation du mouvement de
cette particule. Résoudre cette équation dans le cas des oscillations de faible ampli-
tude.

Réponse : `
..
θ +gsinθ = 0, ` : rayon de la circonférence; θ = θmax cos(ωt−ϕ), ω =√

g
`
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(ii) Une particule de masse m est projetée d’un point O dans un plan vertical. Sa vitesse
initiale ~v0 fait un angle α ∈ ]0, 1

2 [ avec l’horizontale. Négliger la résistance de l’air,
assimiler la Terre à un référentiel inertial et déterminer l’équation et la nature de la
trajectoire, la portée, l’altitude maximale atteinte et le temps de vol.

Réponse : y = x tg α− g
2v2

0 cos2 α
x2, parabole, v2

0
g sin2α,

v2
0

2g sin2α, 2v0 sinα

g

(iii) Même problème que (ii), mais tenir compte de la résistance de l’air. On suppose que
la résistance de l’air par unité de masse est proportionnelle à la vitesse, i.e. est donnée
par R = kgv (k ∈ R∗+) (il en résulte évidemment que la force de résistance s’exerçant
sur un point matériel de masse m, animé d’une vitesse~v, est ~R =−kmg~v). Trouver les
équations du mouvement.

Réponse : x = v0 cosα

kg (1− e−kgt), y = kv0 sinα +1
k2g (1− e−kgt)− 1

k t

(iv) Dans un milieu de résistance par unité de masse R = kgv2 (k ∈ R∗+), une particule de
masse m est projetée verticalement vers le haut, avec une vitesse initiale v0. Montrer
que la particule retombe au point de projection avec une énergie cinétique diminuée
dans le rapport 1

1+kv2
0
, i.e. que le rapport de l’énergie cinétique finale à l’énergie ciné-

tique initiale est égal à 1
1+kv2

0
.

(v) Rappelons qu’une particule chargée électriquement, de charge q, placée dans un champ
éléctromagnétique (~E(P, t),~B(P, t)) est soumise à la force de Lorentz

~F = q(~E +~v∧~B),

où ~v désigne la vitesse de la particule. Généralement, ces forces électromagnétiques
sont suffisamment grandes pour que la force de pesanteur éventuelle soit négligeable
vis à vis de ~F .

Considérons au voisinage de la surface terrestre, un champ purement magnétique (~E =

0), uniforme (~B est indépendant de P) et stationnaire (~B est indépendant de t). Une
particule chargée (P,m,q) placée dans ce champ, part d’un point O avec une vitesse
initiale~v0.

Répondre aux questions suivantes, en assimilant la Terre à un référentiel inertial et en
négligeant la pesanteur et la résistance du milieu.

1) Choisir un ROND approprié et déterminer les coordonnées (x,y,z) de P en fonc-
tion de t, des composantes de~v0 et de la fréquence de Larmor ω = qB

m .

2) Vérifier que les projections P1 et P2 de P sur le plan xOy et l’axe Oz respective-
ment, sont animées de mouvements uniformes. Il en résulte évidemment que P
est à son tour en mouvement uniforme.
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3) Déterminer la nature de la trajectoire de P. Traiter aussi les cas particuliers pou-
vant se présenter.

Réponse : ROND (O,~e1,~e2,~e3), tel que ~B = B~e3, ~v0 = v0,2~e2 + v0,3~e3, avec v0,2 ≥ 0;
x = v0,2

ω
(1− cosωt), y = v0,2

ω
sinωt, z = v0,3 t; v2

P1
= v2

0,2, v2
P2
= v2

0,3; (x− v0,2
ω
)2 + y2 =

v2
0,2

ω2 ; mouvement hélicoïdal; si v0,2 = 0, le mouvement est rectiligne; si v0,3 = 0, il est
circulaire; si v0,2 = v0,3 = 0, la particule est au repos

(vi) Soit un oscillateur harmonique, i.e. soit dans le champ de pesanteur, un point matériel
(P,m) se déplaçant sans frottement sur un axe horizontal fixe, sous l’action de la force
de rappel d’un ressort (une extrémité du ressort est attachée à l’axe, l’autre—mobile
par rapport à l’axe—est attachée au point matériel). Désignons par O le point de l’axe
coïncidant avec la particule P, lorsque le ressort est dans sa position naturelle, i.e. n’est
ni étiré, ni comprimé et notons~e un vecteur directeur unitaire de l’axe. Nous supposons
la force de rappel linéaire, c’est-à-dire de la forme ~F1 = −kx~e (k > 0: constant, x :
abscisse de P dans le repère (O,~e)).

(a) Déterminer x en fonction de t, de ω =
√

k
m et des deux constantes d’intégration

(on assimilera la Terre à un référentiel d’inertie et on négligera la résistance du
milieu). Montrer que la période des oscillations vaut T = 2π

ω
.

(b) Considérons l’oscillateur harmonique à l’état d’équilibre (information donnant les
conditions initiales). Appliquons une force constante ~F2 = m f~e ( f : constante)
pendant un temps égal au sixième de la période T = 2π

ω
, après quoi cette force

cesse d’agir pendant un sixième de période, puis la force est à nouveau appliquée.
Montrer que l’oscillateur reste alors immobile.

Réponse : x =C1 cosωt+C2 sinωt, T = 2π

ω
. Etudier le mouvement dans les intervalles

[0, 2π

6ω
], [ π

3ω
, 2π

3ω
] et [ 2π

3ω
,+∞[





Chapitre 4

Intégrales premières

1 Potentiels
Il résulte de la structure des équations de la Mécanique que les champs de forces ou,

plus généralement, les champs de vecteurs qui dérivent d’un potentiel, i.e. “s’écrivent sous
forme de dérivées d’un (ou même de plusieurs) autre(s) champ(s)”, occupent une position
privilégiée.

Définition 1. Un champ vectoriel ( resp. pseudo-vectoriel ) ~F dérive d’un potentiel scalaire
( resp. potentiel vectoriel ), s’il existe un champ scalaire φ (resp. un champ vectoriel ~A), tel
que

~F =−~∇φ (resp. ~F = ~∇∧~A).

Voici des conditions nécessaires et suffisantes pour qu’un champ de vecteurs (nous omet-
tons éventuellement le préfixe “pseudo”) dérive d’un potentiel.

Proposition 1. Un champ de vecteurs ~F dérive d’un potentiel scalaire si et seulement si ~F
est irrotationnel :

∃φ : ~F =−~∇φ ⇔ ~∇∧~F = 0,

et un champ de vecteurs ~F dérive d’un potentiel vectoriel si et seulement si ~F est indivergen-
tiel :

∃~A : ~F = ~∇∧~A⇔ ~∇ ·~F = 0,

Les implications directes sont des conséquences immédiates des définitions des opéra-
teurs “gradient”, “divergence” et “rotationnel”. Les réciproques sont moins évidentes et im-
posent des conditions topologiques—sur lesquelles nous n’insisterons pas—à la région de
l’espace où les champs sont définis. On notera que la première implication inverse est un
problème de primitivation dans R3. En Géométrie différentielle, la précédente proposition

39
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admet une importante généralisation dans le cadre des théories (co)homologiques.

Exemple. En Physique, un champ électromagnétique (~E,~B) = (~E(t,P),~B(t,P)) fournit un
exemple faisant intervenir les deux types de potentiel, scalaire et vectoriel. En effet, la Propo-
sition 1 montre qu’il découle des équations de Maxwell

~∇ ·~B = 0, ~∇∧~E =−∂t~B

(en fait, les équations de Maxwell forment un système de quatre équations qui décrivent les
relations entre le champ électrique, le champ magnétique, la charge et le courant électriques;
ici nous n’utilisons que deux de ces quatre équations), que

~B = ~∇∧~A et que ~E =−~∇φ −∂t~A,

où φ et ~A sont des potentiels appelés potentiels électromagnétiques.

Remarque. Signalons qu’il existe une condition nécessaire et suffisante, pour qu’un champ
de forces dérive d’un potentiel, basée sur la notion de travail. Considérons un point P en
mouvement, par rapport à un référentiel, dans un champ de forces ~F = ~F(P) et rappelons,
voir Chapitre 1, que le travail de ~F dans le déplacement de P le long de sa trajectoire C , entre
une position initiale P1 = P(t1) et une position finale P2 = P(t2), est donné par

W =
∫

P1C P2

~F(P) ·d~r =
∫ t2

t1

~F(~r(t)) ·dt~r dt =
∫ t2

t1
P(t)dt.

Si ~F dérive d’un potentiel, i.e. si ~F =−~∇φ , on obtient

W =−
∫ t2

t1
(~∇φ)(~r(t)) ·dt~r dt =−

∫ t2

t1
dt(φ(~r(t)))dt = φ(P1)−φ(P2) =−∆φ .

Ainsi, lorsqu’un champ de forces dérive d’un potentiel, son travail dans un déplacement ne
dépend que du point de départ P1 et du point d’arrivée P2, mais non du chemin suivi entre P1
et P2, et vice versa. Pour la réciproque, voir Théoreme de Stokes, Chapitre 1.

2 Exercices
1. Prouver que le champ de gravitation terrestre~g =~g(P) dérive d’un potentiel φ = φ(P).

De manière plus précise, démontrer que, dans une région suffisamment petite pour que
~g puisse être considéré comme constant, on a

φ = φ(P) = φ(x,y,z) = gz(+C),

où C désigne une constante arbitraire et où (x,y,z) sont les composantes de P dans un
RON dont le troisième axe est dirigé vers le Zénith. On remarquera que le potentiel,
comme toute “primitive”, est défini à une constante additive près.
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2. Soit ~F = ~F(P) un champ de forces central de centre (fixe) O. Si ~r =
−→
OP, on a ~F =

~F(~r) = f (~r)~rr , où f désigne le module F de ~F ou l’opposé de ce module. Évidemment,
on dira que ~F est à symétrie sphérique (autour de O), si

~F = ~F(~r) = f (r)
~r
r
,

i.e. si le module de ~F est constant sur toute sphère de centre O. Prouver qu’un tel
champ central à symétrie sphérique dérive d’un potentiel φ et que ce potentiel

φ = φ(r) =−
∫

f (r)dr

est lui-même à symétrie sphérique.

3 Intégrales premières

3.1 Définition, exemple
Soit un point matériel (P,m) en mouvement par rapport à un référentiel inertial dans un

champ de force central ~F de centre O (que nous choisissons comme origine). Il découle du
Théorème du moment cinétique, voir Chapitre 3, que dt~σO = ~M~F(O) = 0. En intégrant une
première fois cette équation différentielle du second ordre (relation du type R(t,~r,~̇r,~̈r) = 0),
on trouve que ~σO = m~r∧~̇r = ~C, ~C constant. En d’autres termes, le moment cinétique par
rapport à O est constant au cours de tout mouvement~r =~r(t). L’identité ~σO = ~C (relation
du type S(t,~r,~̇r) =C), obtenue après une première intégration, est appelée une intégrale pre-
mière.

Ainsi, une intégrale première (IP) d’une équation différentielle R(t,~r,~̇r,~̈r) = 0 est une re-
lation S(t,~r,~̇r) qui est constante sur toute solution~r =~r(t) de cette équation différentielle. Si
l’équation différentielle est une équation gouvernant le mouvement d’un point matériel, l’IP
S(t,~r,~̇r) représente une grandeur physique conservée au cours de tout mouvement du point
considéré.

Le concept d’intégrale première, fondamental aussi bien en Physique qu’en Mathéma-
tiques, est à l’origine de nombreux développements récents en Physique mathématique et
théorique. Son lien avec la notion de symétrie sera mis en lumière surtout dans les cours plus
avancés. Dans le cadre de cet enseignement introductif, l’importance des IP tient au fait que
l’intégration complète des équations du mouvement est généralement difficile, alors qu’une
première intégration est souvent relativement aisée. La connaissance d’une ou plusieurs IP
conduit à une meilleure compréhension du problème, fournit d’intéressantes informations
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relatives aux mouvements, et simplifie parfois considérablement le calcul de la solution.

Dans le cas ci-dessus de la force centrale de centre O, l’IP~r∧~̇r =~h,~h constant, implique
que le mouvement de la particule (P,m) est nécessairement plane.

Cette IP encode cependant encore d’autres informations sur les mouvements. De fait, si
on passe, dans le plan du mouvement, en coordonnées polaires en choisissant O comme pôle,
l’IP s’écrit r~er∧ (ṙ~er + rθ̇~eθ ) = h~ez, i.e.

r2
θ̇ = h, (1)

où la constante d’intégration h est évidemment déterminée par les conditions initiales du
mouvement. L’identité (1) est l’intégrale première des aires.

Afin de comprendre sa signification, nous déterminons l’aire A balayée par le vecteur
position~r(t) de la particule (P,m) entre une position initiale~r(t1) et une position finale~r(t2).
Notons d’abord qu’entre deux positions infiniment voisines ~r(t) et ~r(t + dt), cette aire dA
est donnée par la moitié de l’aire du parallélogramme construit sur les vecteurs~r(t) et d~r =
~r(t +dt)−~r(t):

dA =
1
2
‖~r∧d~r‖ .

Donc, si on prend dt > 0,

dA
dt

=
1
2

∥∥∥∥~r∧ d~r
dt

∥∥∥∥= 1
2

r2|θ̇ |= 1
2
|h| .

Il en résulte que

A =
∫

dA =
∫ t2

t1
dtA dt =

1
2
|h|(t2− t1) .

Ainsi, l’aire balayée par le vecteur position au cours d’un intervalle de temps donné, est
proportionnelle à cet intervalle de temps, la constante de proportionnalité étant 1

2 |h|. Cette
conséquence quasi-immédiate de l’IP de aires s’applique notamment aux planètes en mou-
vement dans le champ de gravitation (central) du Soleil. Cette loi de proportionnalité est
connue sous le nom de loi des aires (J. Kepler, 1609). Les planètes décrivant des trajectoires
elliptiques dont le Soleil occupe un foyer, il s’ensuit que la vitesse des planètes est maximale
au périhélie (point de l’ellipse le plus proche du Soleil) et est minimale à l’aphélie (point le
plus éloigné).

Le précédent exemple permet d’apprécier la valeur des IP et motive leur étude systéma-
tique dans la section suivante.
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3.2 Lois de conservation
Theorème 1. Soit une particule (P,m) en mouvement par rapport à un référentiel inertial R
et soumise à une résultante de forces ~F.

1. Si ~F = 0, l’impulsion ~p de P par rapport à R est conservée au cours des mouvements
de P.

2. Si ~M~F(O)= 0, i.e. si ~F est un champ de forces central de centre O, le moment cinétique
~σO de P par rapport à O et R est conservé au cours des mouvements.

3. Si ~F est constamment orthogonal à un axe fixe ∆, la composante de l’impulsion ~p
suivant ∆, i.e. la projection de ~p sur ∆, est conservée au cours des mouvements.

4. Si ~F s’appuie constamment sur un axe fixe ∆, la composante du moment cinétique ~σO
(par rapport à un point fixe O de ∆) suivant ∆ est conservée.

5. Si ~F ne travaille pas, i.e. si la puissance P(~F) = ~F ·~v (où ~v désigne la vitesse de P
par rapport à R) est nulle, l’énergie cinétique de P par rapport à R est conservée.

6. Si ~F = ~F1 + ~F2, où ~F1 ne travaille pas (P(~F1) = 0) et où ~F2 dérive d’un potentiel φ

(~F2 =−~∇φ), l’énergie totale Ec +φ de P par rapport à R est conservée.

Preuve. Les points 1, 2 et 5 sont des conséquences immédiates des Théorèmes de Newton,
du moment cinétique et de l’énergie cinétique respectivement. Pour 3, remarquons que si ~e
désigne un vecteur unitaire directeur de ∆, il résulte de l’Équation de Newton que (dt~p) ·~e =
~F ·~e = 0. Ainsi, l’axe ∆ étant fixe et son vecteur directeur~e de ce fait constant par rapport au
temps, on a dt(~p ·~e) = (dt~p) ·~e = 0, si bien que la composante p∆ = ~p ·~e de ~p suivant ∆ est
constante. Dans le cas 4, on a

dt(σO,∆) = dt(~σO ·~e) = (dt~σO) ·~e = ~M~F(O) ·~e = (
−→
OP∧~F) ·~e = 0.

Pour 6 finalement, il suffit de noter que

dtEc = P = P(~F1)+P(~F2) = ~F2 ·~v =−~∇φ ·~̇r =−dtφ ,

de sorte que dt(Ec +φ) = 0.

Exemple. Le pendule simple, voir Chapitre 3, est sollicité par la force de pesanteur et par la
réaction normale de la circonférence. Le poids dérivant d’un potentiel, voir ci-dessus, et la
réaction normale ne travaillant pas, l’intégrale première de l’énergie Ec +φ = E, E constant,
est valable. Si on choisit le ROND (O,~e1,~e2), où O est le centre de la circonférence et ~e1 est
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dirigé vers le bas, si θ désigne l’angle polaire de la particule, m sa masse et ` le rayon de la
circonférence, l’IP de l’énergie s’écrit :

1
2

m`2
.
θ

2
−mg`cosθ = E.

Par dérivation (intégrale première !), on retrouve l’équation du mouvement θ̈ +(g/`)sinθ =

0.
Imaginons maintenant que le pendule est animé d’un mouvement oscillatoire périodique.

Au cours du mouvement, il y a en permanence conversion d’énergie cinétique en énergie
potentielle (passages de θ = 0 à θ = θmax et de θ = 0 à θ =−θmax) ou vice versa (passages
de θ = θmax à θ = 0 et de θ =−θmax à θ = 0), mais de telle sorte que la somme Ec +φ des
deux types d’énergie reste constante.

L’étude des mouvements de la Terre constitue un bel exemple d’application des intégrales
premières. Nous renvoyons le lecteur intéressé au problème de Lagrange-Poisson traité en
Mécanique du Solide.

4 Exercices
1. Une bille métallique de masse m, assimilée à un point matériel, est astreinte à se mou-

voir à l’intérieur d’un bol hémisphérique parfaitement lisse, placé dans un champ de
pesanteur où la résistance du milieu est négligeable. Supposer que la bille ait été lâchée
au bord du bol sans vitesse initiale et déterminer la réaction R du bol (à un instant quel-
conque), ainsi que la valeur maximale Rmax de cette réaction.

Réponses : R = 3mgsinθ , Rmax = 3mg

2. Une particule P de masse m se déplace dans le champ de pesanteur terrestre sur un
anneau vertical C de faible section, parfaitement lisse, de centre O et de rayon r.
Désignons par A, B et D les points de C de coordonnées cartésiennes respectives
(r,0),(0,−r) et (0,r) dans un repère orthonormé direct (O,~e1,~e2), ~e1 étant horizon-
tal et dirigé vers la droite. La particule est soumise de la part du point B à une force
d’attraction ~f dirigée vers B et de module f = k PB, k constant, proportionnel à la
distance qui sépare cette particule P du point B.

• Déterminer la vitesse vA(P) de la particule P au point A, nécessaire pour que P
atteigne D avec une vitesse nulle.

• Déterminer la réaction R exercée par l’anneau sur la particule lorsque celle-ci
passe par B, sachant que la vitesse en A est celle calculée à la question précédente.
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Réponses : vA(P) = 2r
m (mg+ kr), R = 5mg+4kr

3. Une particule P de masse unitaire est soumise de la part d’un point fixe O à une at-
traction dirigée vers O et de module égal à µ

r5 , où µ est une constante strictement
positive et où r dénote la distance OP. On projette P d’un point A à la distance d de
O perpendiculairement à OA avec la vitesse d−2(1

2 µ)1/2. Montrer que l’orbite de P
est une ciconférence ayant OA pour diamètre et que le temps pour passer de A à O est
d3π(8µ)−1/2.

5 Diagramme du potentiel
Au Chapitre 3, les mouvements d’un point matériel par rapport à un référentiel inertial

ont été déterminés grâce à la résolution de l’Équation de Newton. L’intégration complète
de cette équation différentielle du second ordre étant souvent compliquée, nous avons étudié
les mouvements ci-dessus moyennant des intégrales premières, qui encodent d’importantes
informations. Nous présentons à présent brièvement un autre outil élémentaire permettant
d’obtenir des renseignements sur les mouvements de la particule considérée: le diagramme
du potentiel.

L’IP de l’énergie est particulièrement utile lorsque le point matériel étudié ne possède
qu’un seul degré de liberté. Prenons par exemple une particule (P,m) en mouvement par rap-
port à un référentiel inertial et astreinte à se mouvoir sur une courbe fixe, parfaitement lisse,
placée dans un champ de forces dérivant d’un potentiel φ . Choisissons comme paramètre une
abscisse curviligne s de P. Alors φ = φ(s) et l’IP de l’énergie s’écrit

1
2

mṡ2 +φ(s) = E, i.e. ṡ2 =
2
m

[E−φ(s)]. (2)

En dérivant cette identité par rapport au temps, on retrouve l’Équation de Newton :

s̈ =− 1
m

dsφ . (3)

Portons à présent le potentiel φ en ordonnée et le paramètre s en abscisse et représentons
la courbe du potentiel C : φ = φ(s). Traçons également la droite d’énergie totale ∆ : φ = E. Il
découle de l’Équation (2) que “la particule ne peut occuper de position en laquelle la courbe
du potentiel C est située au-dessus de la droite d’énergie totale ∆”. Les parties correspon-
dantes de C sont appelées des barrières de potentiel. Les parties de C situées en-dessous de
∆ sont des puits de potentiel.

Les points d’intersection de la courbe du potentiel et de la droite d’énergie totale, i.e. les
racines de l’équation φ(s) = E, revêtent une importance particulière.
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Rappelons d’abord la définition

Un réel x0 est une racine de multiplicité n, (n ∈ N∗), de l’équation f (x) = 0, si

f (x0) = (dx f )(x0) = . . .= (dn−1
x f )(x0) = 0,mais (dn

x f )(x0) 6= 0

et les résultats d’analyse

Si n ∈
{
{2,4,6 . . .}
{3,5,7 . . .}

}
, si
{

(dx f )(x0) = . . .= (dn−1
x f )(x0) = 0

(d2
x f )(x0) = . . .= (dn−1

x f )(x0) = 0

}
et si

{
(dn

x f )(x0) 6= 0 (resp. < 0,> 0)
(dn

x f )(x0) 6= 0

}
,

f admet en x0 un
{

extrémum (resp. maximum, minimum) relatif
point d’inflexion

(4)

qui sont des conséquences immédiates de la formule de Taylor.
Nous sommes à présent capables de fournir une “classification mécanique” des racines de

l’équation φ(s) = E.

1) Si a est une racine simple (i.e. de multiplicité 1) de l’équation φ(s)=E (i.e. si φ(a)=E
et (dsφ)(a) 6= 0, ou encore si la courbe du potentiel et la droite d’énergie totale se
coupent en a et la tangente à la courbe du potentiel au point a n’est pas horizontale),
alors a est un point de réflexion.

En effet, si l’abscisse curviligne s de P prend en t = t0 la valeur s(t0) = a, il résulte de
l’Identité (2) écrite à l’instant t = t0 que ṡ(t0) = 0 et de l’Identité (3) écrite au même
instant que s̈(t0) 6= 0. Le Théorème 4 permet alors d’affirmer que s admet en t0 un
maximum ou un minimum relatif, ce qui justifie la dénomination “point de réflexion".

2) Si a est une racine multiple (i.e. de multiplicité supérieure à 1) de l’équation φ(s) = E
(i.e. si φ(a) = E et (dsφ)(a) = 0, ou encore si la courbe du potentiel et la droite
d’énergie se coupent en a et la tangente au point a à la courbe est horizontale), alors a
est un point d’équilibre.

En effet, si s(t0) = a, il découle des Identités (2) et (3) que ṡ(t0) = s̈(t0) = 0.

2a) Si a est une racine de multiplicité n > 1 de l’équation φ(s) = E (i.e. si φ(a) =
E,(dsφ)(a) = . . . = (dn−1

s φ)(a) = 0, (dn
s φ)(a) 6= 0), avec n paire et (dn

s φ)(a) > 0,
alors a est un point d’équilibre stable.

En effet, φ admet alors en a un minimum relatif (on imaginera la courbe C : φ = φ(s)
du potentiel et la droite ∆ : φ = E d’énergie totale au voisinage de a) et un léger apport
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d’énergie cinétique (impulsion communiquée à la particule) fait passer l’énergie totale
de E à une valeur supérieure E ′, de sorte que P ne peut s’écarter que de très peu de sa
position d’équilibre (barrières de potentiel).

2b) Si a est une racine de multiplicité n > 1, avec n paire et (dn
s φ)(a) < 0, ou avec n

impaire, alors a est un point d’équilibre instable.

En effet, à ce moment, φ admet en a un maximum relatif ou un point d’inflexion à
tangente horizontale et si une légère perturbation transforme l’énergie totale en E ′, P
peut s’écarter beaucoup de sa position d’équilibre.

Considérons pour terminer deux puits de potentiel entre deux abscisses curvilignes a et
b, l’un limité par deux points de réflexion, l’autre par un point de réflexion en a et un point
d’équilibre instable en b (imaginer les figures correspondantes en veillant à la différence en
b). Soit c une abscisse curviligne entre a et b, supposons la particule P de masse m “lancée
de c vers b” et proposons-nous de déterminer la durée D du déplacement cb. Vu l’Équation
(2),

ds =

√
2
m
(E−φ(s))dt

et

D =

√
m
2

∫ b

c

1√
E−φ(s)

ds .

On entrevoit que dans les deux cas la fonction 1/(
√

E−φ(s)) tend, lorsque s tend vers b,
vers +∞, mais beaucoup moins rapidement dans le premier cas que dans le second. Ainsi,
on comprend que la durée D (l’aire sous la courbe entre c et b) est finie pour le puits limité
à droite par un point de réflexion et infinie pour celui limité par un point d’équilibre instable
(qui n’est donc théoriquement jamais atteint).

6 Exercice
Étudier le diagramme du potentiel du pendule simple.





Chapitre 5

Application : Les mouvements planétaires

1 Formules de J.P.M. Binet
En guise d’application des techniques acquises dans les précédents chapitres, nous

étudierons ici les mouvements dans des champs de forces centraux, en particulier les mouve-
ments planétaires. Deux courts préliminaires relatifs aux coniques et aux formules de Binet
sont indispensables.

En Géométrie, on prouve dans les cours de base que les différents types de coniques pos-
sèdent une équation cartésienne (relation caractéristique entre les coordonnées cartésiennes
(x1,x2) des points de la conique) spécifique pour un choix approprié du repère cartésien. Un
résultat similaire existe en coordonnées polaires. L’équation polaire d’une conique (relation
caractéristique entre les coordonnées polaires (r,θ) des points de la conique) de paramètre p
et d’excentricité e s’écrit

r =
p

1+ ecosθ
, (1)

à condition que le pôle soit situé en un foyer de la conique et que l’axe polaire soit dirigé
vers le sommet le plus proche de la conique. Inversement, une équation de la forme (1), avec
p > 0 et e≥ 0, est l’équation polaire d’une conique. Si e = 0 (resp. 0 < e < 1,e = 1,e > 1),
cette conique est un cercle (resp. une ellipse, une parabole, une branche d’hyperbole). Ainsi,
l’excentricité e mesure le défaut de circularité de la conique, alors que le paramètre p est la
distance, mesurée perpendiculairement à l’axe principal, d’un foyer de la conique à la conique
elle-même.

Nous établissons à présent les formules de Binet, qui donnent, pour une particule dans un
champ de forces central étudiée en coordonnées polaires (r,θ), la vitesse ~v et l’accélération
~γ en fonction de u := 1/r et des dérivées de u par rapport à θ . En effet, si l’on se propose

49
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de prouver que les planètes suivent bien des trajectoires elliptiques autour du Soleil, donc
que l’équation polaire de ces trajectoires est de la forme (1), on remarque d’abord que cette
équation (1) suggère d’étudier u = 1/r plutôt que r lui-même. Ensuite, afin de trouver, à
partir de l’Équation de Newton R(~r,~̇r,~̈r) = 0, non pas le mouvement, i.e. ~r en fonction de
t, mais l’équation de la trajectoire, i.e. u = 1/r en fonction de θ , il s’impose de calculer~r,
~̇r, ~̈r, dans la base naturelle ~er,~eθ associée aux coordonnées polaires, en fonction de u et des
dérivées dθ u, d2

θ
u de u par rapport à θ , de manière à obtenir une équation différentielle du

type S (u,dθ u,d2
θ

u) = 0.

Proposition 1. Soit un point matériel en mouvement par rapport à un référentiel inertial
dans un champ de forces central. Si (r,θ) désignent des coordonnées polaires dans le plan du
mouvement définies à partir d’un pôle choisi au centre de force, la vitesse~v et l’accélération
~γ de cette particule sont données par les deux formules de Binet

~v =−h(dθ u~er−u~eθ ) , v2 = h2
[
(dθ u)2 +u2

]
,

~γ =−h2u2 [d2
θ

u+u
]
~er,

où (~er,~eθ ) est la base naturelle associée aux coordonnées polaires considérées, où h est la
constante des aires, et où u = 1

r .

Preuve. Il suffit de dériver l’identité~r = r~er =
1
u~er deux fois de suite par rapport au temps

et d’utiliser l’intégrale première des aires sous la forme θ̇ = hu2 pour exprimer les résultats
en fonction de u et de ses dérivées par rapport à θ exclusivement.

2 Mouvements dans un champ central en 1
r2

Considérons un point matériel (P,m) étudié par rapport à un référentiel inertial et soumis
à l’action d’une force centrale ~F de centre O. Les variables (r,θ) utilisées ci-dessous sont
évidemment encore des coordonnées polaires dans le plan du mouvement. Clairement, aussi
bien le pôle que l’origine du référentiel sont à choisir au centre de force O. Nous supposons
de plus que la force ~F est attractive et de module proportionnel à 1

r2 . En d’autres termes,
~F = ~F(~r) est un champ de forces du type

~F =− k
r2

~r
r
=− k

r3 ~r, (2)

où k est une constante strictement positive. Le champ ~F étant ainsi un champ de forces central
à symétrie sphérique, ce champ, voir Chapitre 4, dérive d’un potentiel

~F =−~∇φ , φ =−k
r
,
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où nous avons choisi la constante d’intégration de manière que le potentiel soit nul à l’infini.
On notera que la force d’attraction gravifique exercée par un “point” matériel (O,m) (p.ex. le
Soleil) sur le “point” matériel (P,m) (p.ex. une planète) est bien sûr un cas particulier d’une
force attractive en 1

r2 .

La résultante des forces ~F sollicitant la particule (P,m) étant centrale et dérivant d’un
potentiel, les IP des aires (IPA) et de l’énergie (IPE) sont simultanément applicables :

r2
θ̇ = h et

1
2

m(ṙ2 + r2
θ̇

2)− k
r
= E.

On sait que dans le cas d’un problème à un seul degré de liberté, l’IPE conduit au diagramme
du potentiel, voir Chapitre 4. Or, en éliminant θ̇ dans l’IPE ci-dessus grâce à l’IPA, on écrit
cette IPE sous la forme

ṙ2 =
2
m

(E−Φ(r)), où Φ(r) =
1
2

m
h2

r2 −
k
r
. (3)

Comme Φ(r)→ +∞ (resp. Φ(r)→ 0−), lorsque r → 0+ (resp. r → +∞), on obtient, si
l’on porte Φ en ordonnée et r en abscisse et trace le diagramme du potentiel Φ = Φ(r), une
courbe admettant une asymptote verticale en 0 et une asymptote horizontale en +∞. En outre,
on vérifie que cette courbe est décroissante jusqu’en r = mh2

k , où sa valeur est minimale et
égale à −1

2
k2

mh2 , et qu’ensuite elle est croissante. La suivante classification des trajectoires
découle du précédent diagramme :

(j) Si E ≥ 0,r→+∞, si t→±∞ : la trajectoire est ouverte.

(jj) Si −1
2

k2

mh2 < E < 0, r appartient en permanence à un intervalle [rmin,rmax] : la trajec-
toire est fermée.

(jjj) Si E =−1
2

k2

mh2 , r vaut constamment mh2

k : la trajectoire est circulaire.

Déterminons à présent la nature précise des trajectoires possibles. Pour cela, combinons—
comme annoncé ci-dessus—l’Équation de Newton

m~̈r = ~F =− k
r2

~r
r
=−ku2~er

et la seconde formule de Binet. On trouve alors

d2
θ u+u =

k
mh2 ,

i.e. une équation harmonique à second membre constant. Sa solution générale s’écrit

u =C cos(θ −ϕ)+
k

mh2 ,
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où C ≥ 0 et ϕ sont les constantes d’intégration. C’est l’équation attendue d’une conique. En
effet, si l’on choisit la demi-droite d’angle polaire ϕ comme nouvel axe polaire, θ se substitue
à θ −ϕ , et si on revient alors à la variable r = 1

u , on obtient

r =

mh2

k

1+
Cmh2

k
cosθ

. (4)

Finalement, la trajectoire est donc bien une conique, de paramètre p = mh2

k et d’excentricité
e = Cmh2

k , un de ses foyers est situé au pôle, i.e. au centre de force, et l’axe polaire est dirigé
vers son sommet le plus proche. Afin de comparer ce résultat aux informations déduites
ci-dessus du diagramme du potentiel, il s’impose d’exprimer l’excentricité e, non plus en
fonction de la constante d’intégration C, mais en fonction de la constante d’intégration E, i.e
de l’énergie totale de la particule. Pour cela, nous écrivons l’Équation (3) et l’Équation (4) à
“l’instant θ = 0". De fait, étant donné qu’à cet instant ṙ = 0, la première identité fournit une
relation entre r et E, et la seconde une relation entre r et e. Si l’on élimine r et résoud par
rapport à e, il vient

e =

√
1+

2Emh2

k2 · (5)

D’où une classification améliorée des trajectoires :

(i) Si e = 0, i.e. E =−1
2

k2

mh2 , la trajectoire est une circonférence de rayon mh2

k .

(ii) Si 0 < e < 1, i.e. −1
2

k2

mh2 < E < 0, la trajectoire est une ellipse.

(iii) Si e = 1, i.e. E = 0, la trajectoire est une parabole.

(iv) Si e > 1, i.e. E > 0, la trajectoire est une branche d’hyperbole.

En vue de l’étude des mouvements planétaires, nous investigons brièvement le mouve-
ment elliptique.

Déterminons d’abord le demi-grand et le demi-petit axes de l’ellipse. Si P1 (resp. P2)
désigne le périhélie (resp. l’aphélie) de la trajectoire, les Équations (4) et (5) donnent

r(P1) =
p

1+ e
et r(P2) =

p
1− e

,

où p = mh2/k et e =
√

1+ 2Emh2

k2 . Donc,

a =
1
2
(r(P1)+ r(P2)) =

p
1− e2



Mouvements planétaires; np2008 53

et
c := a− r(P1) =

pe
1− e2 .

Comme a2 = b2 + c2, il vient

b =
√

a2− c2 =
p√

1− e2
·

Appliquons maintenant la loi des aires, voir Chapitre 4, au mouvement elliptique. Étant
donné que l’aire délimitée par une ellipse de demi-grand axe a et de demi-petit axe b est égale
à πab (pour a = b on retrouve évidemment l’aire délimitée par un cercle), on obtient

πab =
1
2
|h|T,

où T est la période du mouvement. Il s’ensuit que

T 2

a3 =
4π2m

k
, (6)

si on utilise les valeurs ci-dessus de a, b et p. Cette égalité est connue sous le nom de loi
harmonique (J. Kepler, 1619). Afin d’apprécier ce résultat à sa juste valeur, il importe de
l’appliquer au cas particulier des mouvements planétaires. En effet, la loi newtonienne de
la gravitation entraîne que la constante de proportionnalité k, voir Équation (2), vaut à ce
moment k = GM�m, où G désigne la constante gravitationnelle, M� la masse du Soleil �, et
m la masse de la planète étudiée. La loi harmonique (6) prend alors la forme

T 2

a3 =
4π2

GM�
(7)

et stipule que le rapport du carré de la période et du cube du demi-grand axe est une constante
indépendante de la planète considérée.

3 Mouvements planétaires, lois de J. Kepler
En vue d’étudier le mouvement d’une planète autour du Soleil par rapport aux axes de

Copernic, nous assimilerons le Soleil et la planète à des points matériels (on peut penser que
cette façon de procéder est justifiée par le fait que les diamètres de ces corps sont petits par
rapport à la distance qui les sépare; en réalité la pertinence de cette hypothèse découle du
Théorème du Centre de Masse, voir plus loin, de la Théorie newtonienne de la Gravitation,
de la possibilité de considérer le Soleil et la planète comme des distributions de matière à
symétrie sphérique, . . . ), nous supposerons que la planète est soumise uniquement à la force
d’attraction du Soleil, i.e. que les forces gravifiques que les autres corps du système solaire
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exercent sur la planète considérée peuvent être négligées (ceci est licite, la masse du Soleil
étant beaucoup plus grande que celle des planètes et de leurs satellites) et finalement, nous
regarderons le centre du Soleil comme fixe par rapport aux axes de Copernic (en toute rigueur,
on devrait étudier le mouvement de la planète et celui du Soleil, voir problème des deux
corps; la précédente hypothèse est cependant raisonnable, vu la masse énorme du Soleil,
qui contient plus de 99% de la masse totale du système solaire). Compte tenu des trois
hypothèses qui viennent d’être faites, la planète peut être considérée comme un point matériel
étudié par rapport à un référentiel inertial et soumis à l’action d’une force centrale, attractive
et de module inversement proportionnel au carré de la distance. Les résultats de la section
précédente sont ainsi valables. Rappelons les conclusions principales, connues sous le nom
de lois de J. Kepler (J. Kepler a déduit ces lois des observations astronomiques de Tycho
Brahé, alors qu’ici elles découlent de la loi de Newton) :

Première loi de Kepler – loi des ellipses (1609) :

Les orbites des planètes sont des ellipses (presque circulaires) admettant le Soleil comme
foyer (et contenues dans des plans différents, mais tous approximativement orthogonaux à
l’axe de rotation du Soleil. De plus, toutes les ellipses sont décrites dans le même sens, à
savoir dans le sens de rotation du Soleil et de la Terre).

Deuxième loi de Kepler – loi des aires (1609) :

L’aire balayée par le vecteur position (reliant le centre du Soleil au centre de la planète)
au cours d’un intervalle de temps donné, est proportionnelle à cet intervalle de temps.

Troisième loi de Kepler – loi harmonique (1619) :

Le rapport du carré de la période de révolution et du cube du demi-grand axe de l’orbite
est une constante indépendante de la planète étudiée.



Chapitre 6

Éléments de Cinématique du Solide

1 Vecteur rotation
Soit un solide R1 en mouvement par rapport à un référentiel R0. Considérons un ROND

(O1,~e1,~e2,~e3) lié à R1 et un ROND (O0,~e1,~e2,~e3) attaché à R0.

Remarquons d’abord que la variation temporelle dt;0~u d’un vecteur ~u déterminée par un
observateur dans R0 diffère en général de celle dt;1~u mesurée par l’“observateur R1”. En
effet, dt;0~ei, i ∈ {1,2,3}, par exemple, est d’ordinaire non nul, tandis que dt;1~ei = 0. Notons
que l’annulation des dérivées temporelles dans R0 des vecteurs~ei implique que le solide R1
est animé par rapport à R0 d’un mouvement de translation, et rappelons qu’un solide est
animé d’un mouvement de translation, s’il se déplace en restant parallèle à lui-même.

La rotation du solide R1 par rapport au référentiel R0 est donc encodée dans les vecteurs

dt;0~ei =: ∑
j

Ωi j~e j.

Les ~ei formant une BOND, il est clair que leurs variations temporelles ne sont pas indépen-
dantes. Et en effet, la dérivation par rapport au temps de l’identité ~ei ·~e j = δi j, traduisant le
caractère orthonormé de cette base, fournit le résultat

dt;0~ei ·~e j +~ei ·dt;0~e j = 0, i.e. Ωi j +Ω ji = 0.

Cette égalité signifie que la matrice des Ωi j est antisymétrique et contient donc seulement
trois composantes effectives, par exemple

ω1 := Ω23, ω2 := Ω31 et ω3 := Ω12. (1)

55
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Finalement, la rotation de R1 par rapport à R0 est complètement encryptée dans le “vecteur
rotation”

~ω = ∑
j

ω j~e j.

Insistons sur le fait que l’observateur R0 associe ainsi à chaque BOND ~ei attachée à R1 un
triplet de réels (ω1,ω2,ω3), mais que deux triplets relatifs à deux bases différentes (~e1,~e2,~e3)

et (~e1
′,~e2

′,~e3
′) ne définissent pas nécessairement le même “vecteur” ~ω . Or, un vecteur étant

un objet indépendant du concept de base, uniquement un “vecteur” indépendant de la base
éventuellement utilisée pour le définir est un (vrai) vecteur. Nous prouverons ci-dessous que
~ω est bien un vecteur.

Notons à présent que les relations (1), qui définissent les composantes du “vecteur rota-
tion” ~ω dans la base considérée, peuvent être résumées en une seule,

ωi =
1
2 ∑

jk
εi jkΩ jk, (2)

qui s’inverse en
Ωi j = ∑

k
εi jkωk. (3)

Il s’ensuit que
dt;0~ei = ∑

jk
εi jkωk~e j = ∑

k` j
εk` jωkδi ~̀e j = ~ω ∧~ei.

Cette règle de dérivation remarquablement simple s’étend à tout vecteur ~u1 lié au solide R1.
De fait, un tel vecteur se décompose dans la base des ~ei, également attachée à R1, sous la
forme~u1 =∑i ui;1~ei, avec des composantes ui;1 constantes au cours du temps. Par conséquent,

dt;0~u1 = ∑
i

ui;1dt;0~ei = ∑
i

ui;1 ~ω ∧~ei = ~ω ∧~u1. (4)

C’est la formule de Poisson. Elle stipule que la dérivée temporelle dans R0 d’un vecteur lié
à R1 s’obtient par multiplication vectorielle (à gauche) du vecteur à dériver par le “vecteur
rotation” de R1 par rapport à R0. Cette règle de Poisson admet une généralisation supplé-
mentaire que nous donnerons ci-dessous.

L’indépendance de ~ω de la base des ~ei peut être établie comme suit. Si ~ω ′ désigne le
“vecteur” semblablement construit à partir d’une autre base~ei

′, on a, pour tout vecteur ~u1 lié
à R1, ~ω ∧~u1 = dt;0~u1 = ~ω ′∧~u1. Il s’ensuit que ~ω−~ω ′ est colinéaire à tout vecteur attaché à
R1, si bien que ~ω ′ = ~ω . Le vecteur rotation ~ω de R1 par rapport à R0 est parfois noté ω01,
si l’on désire insister sur le solide et le référentiel considérés.
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Exemples.

• Dans le cas d’un mouvement de translation, notre intuition suggère que le vecteur ro-
tation est nul—conclusion corroborée par la précédente définition de ~ω .

• Considérons à présent un solide R1 en rotation par rapport à un axe fixe ∆ que nous
pouvons sans restriction supposer vertical. Désignons de nouveau par (O0,~e1,~e2,~e3) et
(O1,~e1,~e2,~e3) des ROND attachés à R0 et R1 respectivement. Nous choisissons O0 =

O1 sur ∆ et~e3 =~e3 porté par ∆. La position de R1 par rapport à R0 est complètement
décrite par l’angle θ formé par les vecteurs horizontaux ~e1 et ~e1. Intuitivement, il est
clair que, lorsque le solide tourne autour de ∆ dans le sens défini par ~e3, son vecteur
rotation est donné par

~ω = θ̇~e3. (5)

En vue de vérifier ce résultat à partir de la définition de ~ω et donc la validité de cette
définition, observons d’abord qu’il découle de la formule de Poisson que

~ω =
1
2 ∑

i
~ei∧dt;0~ei.

La décomposition des vecteurs~ei dans la base barrée en fonction de θ permet alors de
prouver que ~ω est bien donné par θ̇~e3.

2 Formule générale de S.-D. Poisson
Soient un vecteur arbitraire ~u et deux solides R0 et R1 munis de ROND attachés

(O0,~e1,~e2,~e3) et (O1,~e1,~e2,~e3) respectivement. Posons ~u = ∑i ui~ei. Dans R0, le vecteur
~u, ses composantes ui et les vecteurs de base~ei sont en général tous des fonctions du temps t.
Il en est de même dans R1, sauf que les~ei y sont constants. Par conséquent,

dt;0~u = ∑
i

u̇i~ei +∑
i

ui dt;0~ei = dt;1~u+~ω ∧~u.

Theorème 1. Considérons deux solides R0 et R1 et un vecteur ~u arbitraires. Les dérivées
temporelles de~u dans R0 et R1 sont liées par la formule générale de Poisson,

dt;0~u = dt;1~u+~ω01∧~u, (6)

où ~ω01 dénote le vecteur rotation de R1 par rapport à R0.

Remarques.

• Si ~u est attaché à R1, la formule de Poisson généralisée (6) se réduit bien à la formule
de Poisson (4).
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• Pour~u= ~ω01, la formule généralisée fournit dt;0~ω01 = dt;1~ω01, de sorte que dans la suite
nous ne préciserons plus le référentiel, R0 ou R1, dans lequel la dérivée temporelle du
vecteur rotation ~ω01 est déterminée, et noterons simplement ~̇ω01.

La formule de Poisson généralisée permet d’établir la suivante loi de composition des
vecteurs rotation et ses conséquences, qui, remarquons-le, sont en excellent accord avec
l’intuition.

Proposition 1. Considérons trois solides R0, R1 et R2 et désignons par ~ωab le vecteur
rotation de Rb par rapport à Ra. La loi de composition des vecteurs rotation s’écrit alors

~ω02 = ~ω01 +~ω12. (7)

En outre,
~ω00 = 0 et ~ω10 =−~ω01. (8)

Preuve. La formule de Poisson généralisée, écrite successivement pour les solides R0 et R1,
puis pour les solides R1 et R2, donne, pour tout vecteur~u,

dt;0~u = dt;1~u+~ω01∧~u = dt;2~u+~ω12∧~u+~ω01∧~u = dt;2~u+(~ω01 +~ω12)∧~u.

La comparaison avec le résultat fourni par la formule généralisée appliquée aux solides R0
et R2, conduit alors à l’Équation (7). En prenant dans cette équation R0 = R1 = R2, puis
R0 = R2, on obtient les deux équations (8).

3 Tenseurs
La Section 1 fournit l’occasion d’introduire la notion de “tenseur” qui généralise le

concept de scalaire et de vecteur. Les tenseurs sont fondamentaux en Mathématiques, en
Physique, ainsi que dans les Sciences de l’Ingénieur. Ils sont notamment indispensables en
Mécanique des Milieux Continus, en Relativité, en Géométrie, . . . et reapparaîtront dans le
cadre de ce cours en Mécanique des Solides.

Notons d’abord que le passage d’une BON (~e1,~e2,~e3) à une BON (~e1
′,~e2

′,~e3
′) est car-

actérisé par les composantes des “nouveaux” vecteurs de base ~ei
′ dans l’“ancienne” base ~ei.

Il s’avère pratique de former la matrice de ces composantes, la matrice de passage, dont
les colonnes successives contiennent les composantes des vecteurs successifs de la nouvelle
base. Si A désigne cette matrice de passage, on a donc

~e j
′ = ∑

i
Ai j~ei. (9)
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De même,
~e j = ∑

i
A′i j~ei

′, (10)

où A′ est la matrice de passage “inverse”, i.e. celle permettant de passer de la base “primée”
à la base “non primée”. Il semble donc naturel que A′ soit la matrice inverse de A. Cette idée
est facile à vérifier. Étant donné que

~e j
′ = ∑

i
Ai j~ei = ∑

k
∑

i
A′kiAi j~ek

′ = ∑
k
(A′A)k j~ek

′,

on a bien (A′A)k j = δk j et
A′ = A−1.

Remarquons aussi que le caractère orthonormé des bases impliquées a un impact sur la
nature de la matrice de passage. De fait,

δ j` =~e j
′ ·~e` ′ = ∑

ik
Ai jAk`~ei ·~ek = ∑

ik
Ai jAk` δik = ∑

i
Ã jiAi` = (ÃA) j`,

i.e. la matrice de passage d’une BON à une BON est orthogonale. Finalement,

A′ = A−1 = Ã.

Cherchons à présent la loi de transformation des composantes d’un vecteur ~u lors d’un
changement de BON. Comme

~u = ∑
j

u′j~e j
′ = ∑

i
∑

j
Ai ju′j~ei,

on obtient la relation
ui = ∑

j
Ai ju′j, (11)

appelée loi de transformation vectorielle ou simplement loi vectorielle. On observera que la
loi vectorielle fournit les anciennes composantes en fonction des nouvelles et qu’elle admet
la forme matricielle

U = AU ′, (12)

où U dénote la colonne des composantes ui du vecteur ~u dans l’“ancienne” base et U ′ celle
des composantes u′i du vecteur~u dans la “nouvelle” base.

Dans la Section 1, nous avons associé à chaque BON (~e1,~e2,~e3) (en fait à toute BOND
attachée à R1, mais cette précision sans importance pour l’instant) un “3-uplet” de réels
(ω1,ω2,ω3). À la lumière des précédentes explications, il est clair que tous ces triplets relatifs
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à toutes les BON définissent un seul et même vecteur si et seulement si les triplets (ω1,ω2,ω3)

et (ω ′1,ω
′
2,ω

′
3) correspondant à deux BON différentes vérifient la loi vectorielle

ωi = ∑
k

Aikω
′
k.

De même nous avons obtenu dans chaque BON~ei un 32-uplet de réels Ωi j. Nous dirons
que tous ces uplets définissent un seul et même tenseur si et seulement si les uplets Ωi j et Ω′i j
relatifs à deux BON~ei et~ei

′, vérifient la loi tensorielle

Ωi j = ∑
k`

AikA j`Ω
′
k`,

qui est la généralisation naturelle de la loi vectorielle.
De manière plus précise, la loi tensorielle ci-dessus est la loi tensorielle d’ordre 2, alors

que la loi vectorielle est encore appelée loi tensorielle d’ordre 1. Plus généralement, si une
grandeur mécanique, physique ou autre, est caractérisée dans chaque BON par un 3n-uplet de
réels Ti1...in et si ces uplets satisfont à la loi tensorielle d’ordre n

Ti1...in = ∑
k1...kn

Ai1k1Ai2k2 . . .AinknT ′k1...kn
, (13)

alors ces uplets sont les composantes dans les bases respectives d’un tenseur T d’ordre n et
la grandeur étudiée peut être décrite par cet n-tenseur.

Exemples. On vérifiera que :

• le symbole de Kronecker δi j définit un 2-tenseur isotrope, i.e. un 2-tenseur ayant les
mêmes composantes δi j dans toute BON,

• le symbole de Levi-Civita εi jk définit un pseudo-tenseur isotrope d’ordre 3, en utilisant
l’égalité εi jk = (~ei∧~e j) ·~ek, valable à condition que la base des~ei soit une BOND,

• les Ωi j et les ωi, voir Section 1, sont, dans la géométrie limitée aux BOND, les com-
posantes d’un 2-tenseur et d’un vecteur respectivement.

Le lecteur aura remarqué que le concept de tenseur a été introduit via des bases et com-
posantes, mais qu’aucune définition intrinsèque ou modèle des tenseurs n’a été donné. Nous
reviendrons à cette question en Mécanique des Solides. Signalons aussi que la limitation aux
BON, voire aux BOND, simplifie considérablement le calcul tensoriel. Une approche inclu-
ant tous les types de bases sera proposée dans les cours plus avancés.

Les principales opérations sur les tenseurs sont la multiplication par les scalaires, l’addi-
tion, la multiplication tensorielle et la contraction.
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Pour des raisons de clarté, nous définirons ces opérations sur des exemples. Soit λ un réel
et soient Ti j, Ui j et Vi jk les composantes de trois tenseurs. Il est facile et instructif de prouver
que les

λTi j (resp. Ti j +Ui j, Ti jVklm et ∑
j

Ti jVjkm) (14)

sont les composantes d’un 2-tenseur (resp. 2-tenseur, 5-tenseur et 3-tenseur). Les opérations
ainsi définies sont celles mentionnées ci-dessus. On remarquera que les deux premières mu-
nissent l’ensemble des 2-tenseurs (resp., plus généralement, l’ensemble des n-tenseurs) d’une
structure d’espace vectoriel réel de dimension 32 (resp. 3n). La (très simple) multiplication
tensorielle d’un 2-tenseur et d’un 3-tenseur (resp., plus généralement, celle d’un n-tenseur et
d’un m-tenseur) fournit un 5-tenseur (resp. un (n+m)-tenseur). Ensemble avec la multiplica-
tion par les scalaires et l’addition, cette multiplication tensorielle confère à la somme directe
des espaces de tenseurs de tous les ordres n, une structure d’algèbre associative. Enfin, dans
l’exemple considéré de produit contracté, la contraction se fait sur le second indice (du pre-
mier tenseur) et sur le premier indice (du deuxième tenseur). D’autres choix sont évidemment
possibles. On peut aussi itérer la contraction et s’intéresser par exemple au tenseur ∑i j Ti jVjki.
On observera que p contractions du produit d’un n-tenseur et d’un m-tenseur conduisent à un
(n+m−2p)-tenseur. La définition (2) et l’équation (3) fournissent des exemples de produits
tensoriels contractés. Si l’on sait que les εi jk et les Ωi j définissent des tenseurs, il est dès lors
évident que les ωi sont les composantes d’un vecteur.

4 Champs des vitesses et des accélérations d’un solide
Rappelons qu’un champ de vecteurs est un vecteur fonction du point en lequel on le

“mesure”. Un tel champ~u =~u(P) est appelé torseur s’il existe un vecteur ~V tel que pour tous
les points P et Q de la région de l’espace où le champ~u est défini, on ait,

~u(Q) =~u(P)+~V ∧−→PQ. (15)

Un raisonnement désormais standard montre que le vecteur~V , s’il existe, est unique. C’est le
vecteur du torseur. On notera que le torseur ~u est complètement déterminé par la donnée de
son vecteur et de sa valeur en un point P. Rappelons que le moment par rapport à un point P,
d’un vecteur ~F appliqué à un point R, est un torseur de vecteur ~F .

Considérons maintenant un solide R1 en mouvement par rapport à un référentiel R0 et
notons~v0(P1) la vitesse par rapport au référentiel R0 d’un point arbitraire P1 lié au solide R1.
Insistons sur le fait que ce vecteur vitesse par rapport à R0 varie bien—en général—d’un
point de R1 à l’autre, et constitue donc un champ de vecteurs et même un torseur, car

~v0(Q1)−~v0(P1) = dt;0
−−−→
O0Q1−dt;0

−−→
O0P1 = dt;0

−−→
P1Q1 = ~ω01∧

−−→
P1Q1,
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où O0 désigne l’origine de R0 et où nous avons utilisé la formule de Poisson. D’où la

Proposition 2. Le champ des vitesses ~v0 =~v0(P1) des points d’un solide R1 par rapport à
un système de référence R0 vérifie la formule fondamentale de la Cinématique des Solides,

~v0(Q1) =~v0(P1)+~ω01∧
−−→
P1Q1, (16)

où P1 et Q1 sont des points du solide R1 et où ~ω01 désigne le vecteur rotation de R1 par
rapport à R0.

Le champ des vitesses par rapport à R0 des points liés à R1 est donc un torseur de vecteur
~ω01, appelé torseur cinématique.

Il est à présent naturel de regarder si le champ~γ0 =~γ0(P1) des accélérations par rapport à
R0 des points de R1 est un torseur ou non. Comme

~γ0(Q1)−~γ0(P1) = dt;0(~v0(Q1)−~v0(P1)) = dt;0

(
~ω01∧

−−→
P1Q1

)
= ~̇ω01∧

−−→
P1Q1 +~ω01∧dt;0

−−→
P1Q1 = ~̇ω01∧

−−→
P1Q1 +~ω01∧ (~ω01∧

−−→
P1Q1),

on a finalement la

Proposition 3. Le champ des accélérations~γ0 =~γ0(P1) des points d’un solide R1 par rapport
à un système de référence R0 vérifie la relation

~γ0(Q1) =~γ0(P1)+ ~̇ω01∧
−−→
P1Q1 +~ω01∧ (~ω01∧

−−→
P1Q1) (17)

et n’est pas un torseur.

5 Lois de composition des vitesses et des accélérations
Soient deux référentiels R0 d’origine O0 et R1 d’origine O1 et un point arbitraire P.

D’ordinaire ces solides et ce point bougent les uns par rapport aux autres. Nous nous pro-
posons de trouver la relation entre les vitesses

~v0(P) = dt;0
−−→
O0P et ~v1(P) = dt;1

−−→
O1P

de P par rapport à R0 et R1 respectivement. Vu que
−−→
O0P =

−−−→
O0O1 +

−−→
O1P, on obtient

~v0(P) = dt;0
−−−→
O0O1 +dt;0

−−→
O1P =~v0(O1)+dt;1

−−→
O1P+~ω01∧

−−→
O1P =

~v1(P)+~v0(O1)+~ω01∧
−−→
O1P.

En comparant
~v0(O1)+~ω01∧

−−→
O1P

à l’Équation (16), on constate que ces termes représentent la vitesse dans R0 du point lié à R1
qui coïncide avec P à l’instant considéré. Cette vitesse porte le nom de vitesse d’entraînement
de P (par rapport à R0) et elle est notée~ve(P). Finalement, on obtient la
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Proposition 4. Si un point P est en mouvement par rapport à deux référentiels R0 et R1, ses
vitesses mesurées par des observateurs dans R0 et R1 sont liées par la loi de composition
des vitesses,

~v0(P) =~v1(P)+~ve(P), (18)

i.e. la vitesse “absolue” (vitesse dans R0 considéré comme référentiel absolu) égale la
vitesse “relative” (vitesse dans R1 considéré comme référentiel relatif) augmentée de la
vitesse d’entraînement. La vitesse d’entraînement (par rapport à R0) est donnée par

~ve(P) =~v0(O1)+~ω01∧
−−→
O1P, (19)

où O1 désigne un point quelconque de R1.

Déterminons à présent le lien entre les accélérations

~γ0(P) = dt;0~v0(P) et ~γ1(P) = dt;1~v1(P)

de P mesurées par des observateurs dans R0 et dans R1. Étant donné que

~v0(P) =~v1(P)+~ve(P) =~v1(P)+~v0(O1)+~ω01∧
−−→
O1P,

il vient

~γ0(P) = dt;0~v1(P)+dt;0~v0(O1)+ ~̇ω01∧
−−→
O1P+~ω01∧dt;0

−−→
O1P

= dt;1~v1(P)+~ω01∧~v1(P)+dt;0~v0(O1)+ ~̇ω01∧
−−→
O1P+~ω01∧

(
dt;1
−−→
O1P+~ω01∧

−−→
O1P

)
= ~γ1(P)+~γ0(O1)+ ~̇ω01∧

−−→
O1P+~ω01∧ (~ω01∧

−−→
O1P)+2~ω01∧~v1(P).

(20)
La comparaison de

~γ0(O1)+ ~̇ω01∧
−−→
O1P+~ω01∧ (~ω01∧

−−→
O1P)

à l’Équation (17) montre que ces termes représentent l’accélération par rapport à R0 du point
lié à R1 qui coïncide avec P à l’instant considéré, i.e. l’accélération d’entraînement ~γe(P)
de P (par rapport à R0). Le terme 2~ω01∧~v1(P) est appelé l’accélération complémentaire ou
l’accélération de Coriolis~γc(P) de P. D’où la

Proposition 5. Si un point P est en mouvement par rapport à deux référentiels R0 et R1,
ses accélérations mesurées par des observateurs dans R0 et R1 sont reliées par la loi de
composition des accélérations,

~γ0(P) =~γ1(P)+~γe(P)+~γc(P), (21)

i.e. l’accélération absolue est égale à l’accélération relative augmentée de l’accélération
d’entraînement et de l’accélération de Coriolis. L’accélération d’entraînement (par rapport
à R0) est donnée par

~γe(P) =~γ0(O1)+ ~̇ω01∧
−−→
O1P+~ω01∧ (~ω01∧

−−→
O1P), (22)
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où O1 désigne un point quelconque de R1 et l’accélération de Coriolis est égale à

~γc(P) = 2~ω01∧~v1(P). (23)

6 Exercices
1. Montrer qu’en général ~γe(P) 6= dt;0~ve(P), mais que ~γe(P) = dt;0~ve(P)− ~ω01 ∧~v1(P).

Expliquer !

2. Un référentiel R1 de ROND (O,~e1,~e2,~e3) est en rotation, par rapport à un référentiel
R0 de ROND (O,~e1,~e2,~e3), autour de l’axe commun (O,~e3). Une particule P est
assujettie à se déplacer sur le demi-axe ]O,~e1). Décomposer~ve(P),~γe(P) et~γc(P) dans
la base (~e1,~e2).

Réponses : ~ve(P) = rθ̇~e2, ~γe(P) = −rθ̇ 2~e1 + rθ̈~e2, ~γc(P) = 2ṙθ̇~e2. La vitesse ~ve(P)
(resp. l’accélération~γe(P)) peut être calculée de deux (resp. trois) façons différentes.

3. Un référentiel R1 de ROND (O1,~e1,~e2,~e3) tourne autour de l’axe (O0,~e3) du ROND
(O0,~e1,~e2, ~e3) attaché à un référentiel R0. Le point O1 décrit une circonférence de
rayon constant a, à la vitesse angulaire constante θ̇ . Un point P décrit dans le plan
(O1,~e1,~e2) un cercle de centre O1, à la vitesse angulaire constante θ̇ par rapport à R1.
On désigne par~r (resp. ~r) le vecteur position de P dans R0 (resp. dans R1). Calculer
~ve(P), ~γe(P) et~γc(P).

Réponses : ~ve(P) = θ̇~e3∧~r, ~γe(P) =−θ̇
2
~r, ~γc(P) =−2θ̇ θ̇~r.



Chapitre 7

Dynamique du Point
dans un

Référentiel non inertial

Les Chapitres 3-5 sont consacrés aux mouvements d’une particule matérielle par rapport
à un observateur qui est lui-même en mouvement de translation rectiligne et uniforme par
rapport à un référentiel inertial ou galiléen, par exemple par rapport aux axes de Copernic. Le
référentiel Terre—important dans les applications pratiques—n’est évidemment pas inertial.
L’objectif de ce chapitre est la Dynamique du Point par rapport à un système de référence
non galiléen.

1 Théorèmes généraux du mouvement dans un référentiel
non inertial

Soit un point matériel (P,m) soumis à une résultante de forces F⃗ et observé à partir d’un
référentiel arbitraire R1. Le mouvement de cette particule par rapport à un quelconque ob-
servateur inertial R0 s’obtenant à partir de l’Équation de Newton mγ⃗0 = F⃗ et les accéléra-
tions absolue γ⃗0 et relative γ⃗1 du point P vérifiant la loi de composition des accélérations
γ⃗0 = γ⃗1 + γ⃗e + γ⃗c, voir Chapitre 6, on a

mγ⃗1 = F⃗ −mγ⃗e −mγ⃗c, (1)

où
γ⃗e = γ⃗e(P) = γ⃗0(O1)+ ˙⃗ω01 ∧

−−→
O1P+ ω⃗01 ∧ (ω⃗01 ∧

−−→
O1P)

et
γ⃗c = γ⃗c(P) = 2 ω⃗01 ∧ v⃗1(P).

65
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Il s’agit évidemment de choisir—si possible—le référentiel inertial R0 et le point O1 de R1
de manière que l’accélération γ⃗0(O1) de O1 par rapport à R0 et le vecteur rotation ω⃗01 de R1
par rapport à R0 soient facilement calculables. Si F⃗ = F⃗(t ,⃗r1, ˙⃗r1) est une fonction connue
du temps t, de la position r⃗1 et de la vitesse ˙⃗r1 de P par rapport à R1, l’Équation (1) est une
équation différentielle du second ordre R(t ,⃗r1, ˙⃗r1, ¨⃗r1) = 0, dont l’intégration fournit le mou-
vement r⃗1 = r⃗1(t) de la particule P par rapport à l’observateur R1.

Les suivants théorèmes généraux du mouvement dans un référentiel non inertial R1 sont
immédiats. Soulignons que nous avons systématiquement omis les indices 1 caractérisant les
objets relatifs à R1.

Théorème 1. Considérons une particule matérielle (P,m) en mouvement par rapport à un
référentiel arbitraire R1 et soumise à une résultante de forces F⃗. Par rapport à R1, les
variations temporelles de la quantité de mouvement p⃗ = m⃗v, du moment cinétique σ⃗O par
rapport à un point fixe O de R1, et de l’énergie cinétique Ec du point P, sont données par

dt p⃗ = F⃗ −mγ⃗e −mγ⃗c, (2)

dt σ⃗O =
−→
OP∧ (F⃗ −mγ⃗e −mγ⃗c), (3)

dtEc = (F⃗ −mγ⃗e −mγ⃗c) · v⃗ = (F⃗ −mγ⃗e) · v⃗, (4)

où les accélérations d’entraînement γ⃗e et de Coriolis γ⃗c de P sont calculées par rapport à un
référentiel inertial quelconque.

Les termes −mγ⃗e et −mγ⃗c, qui ont évidemment la dimension d’une force, ne sont bien
sûr pas des forces réelles. Il découle immédiatement de leur définition que ces forces ap-
parentes sont nulles si et seulement si le référentiel R1 est inertial, et ne se manifestent
donc que lorsque la particule (P,m) est observée à partir d’un point de vue en mouvement
accéléré ou en rotation. Ainsi, ces forces fictives sont d’origine purement cinématique et
ne sont nullement les conséquences d’interactions physiques. Le vecteur −mγ⃗e est la force
fictive d’entraînement et le vecteur −mγ⃗c la force fictive de Coriolis. Clairement, le terme
−m ω⃗01 ∧ (ω⃗01 ∧

−−→
O1P) de la force d’entraînement n’est autre que la force centrifuge, et, visi-

blement, la force de Coriolis −2m ω⃗01 ∧ v⃗1 ne travaille pas, ce qui explique la simplification
de l’Équation (4). Il est facile de vérifier par de courts calculs directs, voir “champ des ac-
célérations d’un solide”, que la force d’entraînement est évidemment indépendante du point
O1 considéré, et, voir “lois de composition des vecteurs rotation et des accélérations”, que les
forces d’entraînement et de Coriolis sont indépendantes du référentiel inertial utilisé. Finale-
ment, les théorèmes généraux des mouvements par rapport à un référentiel non inertial sont
donc les mêmes que dans un référentiel inertial, à condition d’ajouter les forces fictives aux
forces réelles agissant sur la particule.
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2 Référentiel géocentrique
Considérons le repère (T, e⃗1, e⃗2, e⃗3) dont l’origine est le centre de masse T de la Terre ⊕

et dont les axes ont des directions fixes par rapport au référentiel de Copernic R0. Ce repère
est l’ossature d’un référentiel R1, appelé référentiel géocentrique et utilisé notamment dans
l’étude des satellites de la Terre. Comme R1 est animé par rapport à R0 d’un mouvement de
translation presque circulaire et uniforme, le référentiel géocentrique n’est évidemment pas
inertial.

Néanmoins, l’Équation de Newton (2) d’un point matériel (P,m) qui se meut “au voisi-
nage” de la surface de la Terre, prend, par rapport au référentiel géocentrique R1, une forme
particulièrement simple, que nous nous proposons de déterminer.

Décomposons la résultante des forces réelles, s’exerçant sur la particule (P,m), en les
forces réelles d’origine terrestre, de résultante F⃗⊕, et les forces réelles non terrestres, i.e. les
forces d’attraction gravifique exercées sur (P,m) par les autres corps du système solaire. Le
module de ces forces étant donné par

GMm
PC2 ,

où G = 6,67.10−11 m3/kg s2 est la constante universelle gravitationnelle et où M et C sont
respectivement la masse et le centre de masse du corps attirant, les forces gravifiques dues à
la Lune $ (PC$ ≪) et au Soleil ⊙ (M⊙ ≫) sont en fait les seules à prendre en compte. Si
l’on note g⃗$ et g⃗⊙ les champs de gravitation lunaire et solaire, ces forces valent mg⃗$(P) et
mg⃗⊙(P) respectivement. D’où l’Équation de Newton de (P,m) dans R1,

mγ⃗ = F⃗⊕+mg⃗$(P)+mg⃗⊙(P)−mγ⃗e −mγ⃗c

= F⃗⊕+mg⃗$(P)+mg⃗⊙(P)−mγ⃗0(T ),
(5)

car le vecteur rotation de R1 par rapport à R0 est nul.
L’accélération γ⃗0(T ) est obtenue à partir de l’Équation de Newton écrite pour le point T

et par rapport au référentiel R0,

m⊕γ⃗0(T ) = m⊕g⃗$(T )+m⊕g⃗⊙(T ). (6)

La justification rigoureuse de cette équation est basée sur le fait que la Terre peut être consid-
érée comme une distribution de matière à symétrie sphérique et sur le Théorème du Centre
de Masse—nous l’établirons plus loin de manière indépendante—qui stipule que le centre de
masse d’un système matériel se meut comme un point matériel ayant comme masse la masse
totale du système et soumis à la résultante de forces extérieures sollicitant le système.

La combinaison des équations (5) et (6) conduit enfin au résultat

mγ⃗ = F⃗⊕+m(⃗g$(P)− g⃗$(T ))+m(⃗g⊙(P)− g⃗⊙(T )). (7)
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Si l’on imagine les champs de forces (par unité de masse) g⃗$(P)− g⃗$(T ) et g⃗⊙(P)−
g⃗⊙(T ) aux points P de la surface terrestre, on entrevoit le principe des marées. Sous
l’influence de ces deux champs—de celui de la Lune surtout—les océans prennent la forme
d’un court cigare arrondi à ses deux bouts et, la période de révolution de la Lune autour de la
Terre étant égale à 24 h50 min, le niveau des mers oscille avec une période de 12 h25 min.

Il est possible de comparer la force de marée lunaire m(⃗g$(P)− g⃗$(T )) et la force de
marée solaire s’exerçant sur (P,m), à la force de gravitation terrestre mg⃗⊕(P) subie par (P,m),
qui figure parmi les forces réelles terrestres F⃗⊕. Comme

∥m(⃗g$(P)− g⃗$(T ))∥ ≃ 10−7∥mg⃗⊕(P)∥ et ∥m(⃗g⊙(P)− g⃗⊙(T ))∥ ≃ 5.10−8∥mg⃗⊕(P)∥,

on peut évidemment négliger les deux derniers termes de l’Équation (7) et on obtient finale-
ment le

Théorème 2. Dans le référentiel géocentrique, l’Équation de Newton d’un point matériel P
de masse m, se déplaçant au voisinage de la surface de la Terre, s’écrit

mγ⃗ = F⃗⊕, (8)

où F⃗⊕ désigne la résultante des forces réelles terrestres s’exerçant sur P.

3 Référentiel terrestre
Ci-dessous, nous étudierons la Terre considérée comme référentiel. Il va sans dire que

ce référentiel, notons-le encore R1, revêt une importance particulière. Comme R1 est an-
imé, par rapport aux axes R0 de Copernic, d’un mouvement de révolution autour du Soleil
et d’un mouvement de rotation autour de l’axe des pôles (nous négligeons la précession des
équinoxes [mouvement giratoire de l’axe des pôles qui décrit un cône, d’angle au sommet
égal à 23◦30′, en 26 000 ans], la nutation [petit mouvement oscillatoire de l’axe des pôles qui
se superpose à la précession et qui a une amplitude très faible, égale à 18′′ d’arc, et une péri-
ode de 18 ans et 7 mois], les autres mouvements de la Terre, ainsi que les faibles irrégularités
de la vitesse de rotation de la Terre), il est clair que la Terre n’est pas un référentiel inertial.

Déterminons à présent la forme que prend l’Équation de Newton (2) dans le référentiel
terrestre, si elle est appliquée à un point (P,m) qui ne s’éloigne pas trop de la surface de la
Terre. Les approximations précédentes impliquant que ω⃗ est constant, l’Équation de Newton
s’écrit

mγ⃗ = F⃗⊕+mg⃗$(P)+mg⃗⊙(P)−m(⃗γ0(T )+ ω⃗ ∧ (ω⃗ ∧−→
T P))−2m ω⃗ ∧ v⃗, (9)
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les notations étant les mêmes qu’en (5), et en reprenant l’argumentation de la Section 2, on
trouve

mγ⃗ = F⃗⊕−m ω⃗ ∧ (ω⃗ ∧−→
T P)−2m ω⃗ ∧ v⃗. (10)

La décomposition de la résultante F⃗⊕ des forces réelles terrestres agissant sur la particule
(P,m), en la force de gravitation mg⃗⊕(P) exercée par la Terre et la résultante F⃗ des forces
réelles terrestres non gravifiques, conduit à

mγ⃗ = m(⃗g⊕(P)− ω⃗ ∧ (ω⃗ ∧−→
T P))+ F⃗ −2m ω⃗ ∧ v⃗.

Comparons les intensités de la force gravitationnelle g⃗⊕(P) et de la force centrifuge −ω⃗ ∧
(ω⃗ ∧−→

T P) par unité de masse. Si λ désigne la latitude de la position de P, on a

∥ ω⃗ ∧ (ω⃗ ∧−→
T P)∥= ω2R⊕ cosλ ≤ ω2R⊕ ≃ (2π)2

861642 6370.103 ≃ 0.034 ≪ 9.81 ≃ ∥ g⃗⊕(P)∥,

la période de rotation sidérale de la Terre valant 86164 s et le rayon terrestre R⊕ pouvant être
pris égal à 6370 km. La direction du champ de gravitation efficace

g⃗(P) = g⃗⊕(P)− ω⃗ ∧ (ω⃗ ∧−→
T P) (11)

de la Terre—celle donnée en P par un fil à plomb—ne s’écarte donc que de très peu de la
direction de g⃗⊕(P). D’où le

Théorème 3. Dans le référentiel terrestre, l’Équation de Newton d’un point matériel (P,m),
se déplaçant au voisinage de la surface de la Terre, s’écrit

mγ⃗ = mg⃗(P)+ F⃗ −2m ω⃗ ∧ v⃗, (12)

où g⃗(P) est le champ de gravitation efficace de la Terre, où F⃗ désigne la résultante des forces
réelles terrestres non gravifiques et où ω⃗ est le vecteur rotation de la Terre.

Notons que si θ désigne l’angle entre le vecteur rotation ω⃗ et le vecteur vitesse v⃗, le
module de la force de Coriolis par unité de masse est donné par

∥−2 ω⃗ ∧ v⃗∥= 2ωvsinθ .

Cette intensité étant, pour une vitesse v = 100 ms−1 et un sinus sinθ = 1, approximativement
égale à 0,0146 ms−2, la force de Coriolis est généralement négligeable. On doit en tenir
compte lorsque v est très grand et lorsque l’expérience dure longtemps. Si on peut négliger la
force de Coriolis, l’Équation de Newton (12) coïncide avec celle qu’on obtient en assimilant
la Terre à un référentiel inertial. Ceci justifie a posteriori cette façon de procéder.
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4 Pendule de J. B. L. Foucault
Dans cette section, nous calculons la trajectoire du pendule de Foucault par rapport à la

Terre et expliquons que son mouvement prouve la rotation de la Terre autour de l’axe des
pôles et la présence de la force de Coriolis dans un référentiel non inertial.

Considérons donc un tel pendule, i.e. un corps—nous l’assimilerons à un point matériel
(P,m)—suspendu, par l’intermédiaire d’un fil de masse négligeable et de longueur ℓ, à un
point fixe S, en un lieu de latitude λ .

Soit O la position de P à l’équilibre et soient (⃗e1, e⃗2, e⃗3) les vecteurs unitaires liés à O et
dirigés vers l’Est, le Nord et le Zénith respectivement. L’équation du mouvement de P par
rapport au référentiel terrestre s’écrit, voir Théorème 3,

mγ⃗ = mg⃗+ T⃗ −2m ω⃗ ∧ v⃗, (13)

où T⃗ est la tension du fil. Outre les composantes (x,y,z) du vecteur position r⃗ =
−→
OP dans

la BOND (⃗e1, e⃗2, e⃗3), le module T de la force de liaison T⃗ est inconnu. En exprimant, en
vue de projeter l’Equation (13) sur les axes, les composantes (Tx,Ty,Tz) de T⃗ en fonction des
paramètres du problème, on trouve

Tx =−T
ℓ

x, Ty =−T
ℓ

y, et Tz =
T
ℓ
(ℓ− z),

comme on le voit en utilisant les règles bien connues valables dans des triangles semblables.
Les composantes de ω⃗ dans la BOND considérée étant (0,ω cosλ ,ω sinλ ), la projection de
l’équation du mouvement donne

ẍ = − T
mℓ

x−2ω(żcosλ − ẏsinλ ), (14)

ÿ = − T
mℓ

y−2ω ẋsinλ , (15)

z̈ = −g+
T
mℓ

(ℓ− z)+2ω ẋcosλ . (16)

Vu l’objectif poursuivi, nous pouvons limiter notre étude à des oscillations assez petites
pour que le mouvement puisse être considéré comme plan. Alors z = 0, ż = 0 et z̈ = 0, de
sorte que le nombre d’inconnues se réduit au nombre d’équations. Comme ω = 2π/86164,
le terme 2ω ẋcosλ est négligeable, l’Équation (16) donne T = mg et les équations (14) et
(15) deviennent

ẍ−2ω ẏsinλ +
g
ℓ

x = 0,

ÿ+2ω ẋsinλ +
g
ℓ

y = 0,
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ou, sous forme vectorielle,
¨⃗r+2Ω⃗e3 ∧ ˙⃗r+ω2

0 r⃗ = 0, (17)

à condition de poser Ω = ω sinλ et ω2
0 = g/ℓ. L’Équation (17) est l’équation harmonique

tordue par le terme 2ω sinλ e⃗3∧ ˙⃗r dû à la rotation ω de la Terre et visiblement responsable de
la rotation du plan d’oscillation du pendule de Foucault.

Vu la complexité de cette équation de mouvement, nous considérons le référentiel
R2 défini par son système d’axes attaché (O,⃗ε1,⃗ε2, e⃗3) tournant, par rapport aux axes
(O, e⃗1, e⃗2, e⃗3) du référentiel Terre R1, à la vitesse angulaire Ω dans le sens défini par −⃗e3. En
effet, comme ce nouveau référentiel suit en fait le plan d’oscillation du pendule de Foucault
dans son mouvement de rotation, nous pouvons augurer que l’équation de mouvement du
pendule par rapport à R2 est une simple équation harmonique, facile à intégrer. Afin de cor-
roborer cette intuition, exprimons les dérivées temporelles ˙⃗r et ¨⃗r calculées par l’observateur
R1 en fonction de celles dt⃗r et d2

t r⃗ dans R2. Le vecteur rotation de R2 par rapport à R1
étant donné par ω⃗12 = −Ω⃗e3, la formule de Poisson s’écrit ˙⃗u = dt u⃗− Ω⃗e3 ∧ u⃗, quel que soit
le vecteur u⃗, et ses applications successives à r⃗ et à ˙⃗r donnent

˙⃗r = dt⃗r− Ω⃗e3 ∧ r⃗

et
¨⃗r = d2

t r⃗−2Ω⃗e3 ∧dt⃗r−Ω2⃗r.

Les termes en Ω2 = ω2 sin2 λ pouvant être négligés, l’Équation (17) prend bien la forme

d2
t r⃗+ω2

0 r⃗ = 0. (18)

En vue de déterminer les constantes d’intégration dans la solution générale r⃗ = C⃗1 cosω0t +
C⃗2 sinω0t de (18), précisons qu’à l’instant t = 0, en lequel (O,⃗ε1,⃗ε2) et (O, e⃗1, e⃗2) sont sup-
posés coïncider, P occupe la position r⃗ = a⃗ε1, a > 0, et que sa vitesse initiale par rapport à
R1 est v⃗1;0 = 0. Il découle de la loi de composition des vitesses que la vitesse initiale de
P par rapport à R2 est alors égale à v⃗2;0 = aΩ⃗ε2. Compte tenu de ces conditions initiales,
l’Équation (18) implique que les coordonnées (x′,y′) de P dans (O,⃗ε1,⃗ε2) sont données par

x′ = acosω0t, (19)

y′ =
aΩ
ω0

sinω0t. (20)

L’élimination de t entre (19) et (20) conduisant à l’équation

x′2

a2 +
y′2

(aΩ
ω0
)2

= 1,

la trajectoire de P dans le référentiel tournant R2 est une ellipse centrée en O et de demi-axes
a et aΩ

ω0
. Comme Ω ≪ ω0, cette ellipse est très aplatie.
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Il est désormais facile de décrire la trajectoire de P par rapport au référentiel terrestre R1.
Le point P part en a⃗ε1 et arrive en −a⃗ε1 à l’instant t = π

ω0
. Or, durant ce temps, l’axe (O,⃗ε1)

a tourné de −Ω π
ω0

=−ω sinλ π
ω0

. Cette rotation se fait donc dans le sens des aiguilles d’une
montre dans l’hémisphère Nord et dans le sens inverse dans l’hémisphère Sud. Finalement,
dans l’hémisphère Nord, la trajectoire du pendule de Foucault par rapport à la Terre est bien
une oscillation à laquelle se superpose une rotation du plan d’oscillation dans le sens des
aiguilles d’une montre. La période de rotation T du plan d’oscillation est donnée par

T =
2π
Ω

=
2π

ω sinλ
=

J
sinλ

,

où J est la durée de la rotation de la Terre et vaut J = 86164 s. Cette valeur de T est en accord
avec celle mesurée expérimentalement. Pour λ = 49◦, elle est égale à T = 31 h43 min .

Mentionnons explicitement qu’il résulte de l’Équation (17) que si la Terre ne tournait pas
autour de l’axe des pôles, le mouvement du pendule de Foucault par rapport à la Terre serait
une simple oscillation. Ainsi, l’observation de la rotation du plan d’oscillation du pendule de
Foucault prouve bien la rotation de la Terre.

5 Exercices
1. Un corps assimilable à un point matériel est lâché sans vitesse initiale en un point O à

la hauteur h au-dessus de la surface terrestre en un lieu de latitude λ > 0. Déterminer
le point de chute, en tenant compte au premier ordre de la rotation de la Terre ω et en
supposant g⃗ uniforme dans la région du mouvement.

Réponse : Suite à la rotation de la Terre le corps en chute libre est dévié vers l’Est, la

valeur de la déviation étant d = 2
3 ωhcosλ

√
2h
g (pour λ = 45◦ et h = 100 m, on trouve

d ≃ 1,5 cm).

2. Un tube T de faible section est en rotation autour d’un axe vertical Oz, avec une vitesse
angulaire ω . L’angle d’inclinaison α du tube par rapport à l’axe Oz est constant.

(a) Montrer que la position d’équilibre (par rapport au tube) d’une particule M de
masse m, mobile sans frottement à l’intérieur de T , est

r0 =
gcosα

ω2 sin2 α
(b) La vitesse angulaire est brusquement réduite à la valeur constante ω

2 . Montrer que
la loi du mouvement de la particule M (par rapport à T ) est

r = r0(4−3coshΩt), avec Ω =
ω
2

sinα
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et calculer le temps que M met pour atteindre le point O.

-

6

-
6

�

x

z

O

ω

•M

e⃗1

e⃗3

e⃗2

T

α

⊗

3. Un disque de rayon R tourne autour de son axe vertical Oz, à la vitesse angulaire con-
stante ω . Une particule P de masse m astreinte à se mouvoir sans frottement sur un
rayon du disque, est abandonnée sans vitesse initiale par rapport au disque, à la dis-
tance R

2 du centre.

(a) Trouver la loi du mouvement r = r(t) du point P par rapport au disque.

(b) Déterminer la durée au bout de laquelle P atteint le bord du disque.

	

-

6

-
6

	
y

z

x

O e⃗2
e⃗3

e⃗1
• P

ω

α = cst

4. Soit un ROND (O, e⃗1, e⃗2, e⃗3) dont l’origine O est un lieu de latitude λ dans l’hémisphère
Nord de la surface terrestre, et dont les axes sont dirigés vers l’Est, le Nord et le Zénith
respectivement. Une particule (P,m) est lancée, à partir de O et avec une vitesse initiale
v0, suivant la direction e⃗1 sur un plan horizontal parfaitement lisse. Trouver la trajec-
toire de P par rapport à la Terre, en tenant compte de la rotation ω de cette dernière et
en considérant le champ de pesanteur et la latitude comme constants.

Réponse: Si Ω = 2ω sinλ , la trajectoire est une circonférence de centre (0,−v0/Ω) et
de rayon v0/Ω.
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5. Un point matériel (P,m) peut se déplacer sur une circonférence horizontale infiniment
lisse de centre C et de rayon c, qui est, par rapport au laboratoire considéré comme iner-
tial, en rotation à une vitesse angulaire constante ω autour d’un axe vertical situé à une
distance d de C. Déterminer l’équation du mouvement de P par rapport au référentiel
défini par le ROND (O, e⃗1, e⃗2, e⃗3), où O désigne le point d’intersection de l’axe avec
le plan de la circonférence, où e⃗1 est dirigé de O vers C et où e⃗3 est vertical ascen-
dant. Projeter cette équation sur les axes et trouver la période des petites oscillations
au voisinage de la position d’équilibre.



Chapitre 8

Dynamique des Systèmes de Points

Nous étendons ci-dessous les théorèmes généraux du mouvement d’un point matériel au
cas des systèmes formés par un nombre fini de points matériels. Ces extensions permettront
d’aborder l’étude des solides et des fluides qui peuvent être considérés comme composés par
une infinité de particules infiniment petites.

1 Éléments cinétiques d’un système de points matériels
Définition 1. Soit un système de points matériels (Pi,mi), i ∈ {1, . . . ,n}, étudié par rapport
à un référentiel R, et soit un point O (généralement supposé) fixe dans R. On définit la
quantité de mouvement ~p (resp. le moment cinétique ~σO par rapport au point O, l’énergie
cinétique Ec) du système par rapport à R, comme somme des éléments cinétiques correspon-
dants ~pi (resp. ~σO,i, Ec,i) des points Pi formant le système, i.e.

~p = ∑
i
~pi = ∑

i
mi~vi, ~σO = ∑

i
~σO,i = ∑

i

−→
OPi∧~pi, Ec = ∑

i
Ec,i =

1
2 ∑

i
mi v2

i ,

où~vi désigne la vitesse par rapport à R de Pi.

Le centre de masse, centre d’inertie, centre de gravité ou barycentre d’un système matériel
joue un rôle privilégié en Mécanique des Systèmes et des Solides. Par exemple, le mouvement
le plus général d’un solide peut être décomposé en le mouvement de son centre de masse et
en son mouvement autour du centre de masse. Le centre de masse d’un système de points
matériels (Pi,mi) est un point géométrique G dont la position est la moyenne pondérée des
positions des Pi.

Définition 2. Le centre de masse d’un système matériel (Pi,mi) est le point G défini par

∑
i

mi
−→
GPi = 0

75
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ou, de manière équivalente, par
−→
OG =

∑i mi
−→
OPi

∑i mi
,

où O est un point arbitraire.

Théorème 1. La quantité de mouvement ~p d’un système matériel est égale à la quantité de
mouvement qu’aurait son centre de masse G si c’était un point matériel affecté de la masse
totale m du système :

~p = m~v(G). (1)

Preuve. Ce théorème est une conséquence immédiate des équations ci-dessus.

2 Théorèmes généraux du mouvement d’un système maté-
riel dans un référentiel inertial

Considérons encore un système de points matériels (Pi,mi), i ∈ {1, . . . ,n}. Les forces
appliquées à une particule Pi peuvent être dues aux autres particules Pj, j 6= i, du système
ou bien à des éléments extérieurs au système. Les premières sont appelées forces internes,
les secondes forces externes. Nous notons ~Fi (resp. ~Fi, int, ~Fi,ext) la résultante de toutes les
forces (resp. des forces internes, des forces externes) agissant sur Pi. Par conséquent, ~Fi =
~Fi, int +~Fi,ext et

~Fi, int = ∑
j 6=i

~Fi j,

où ~Fi j désigne la force exercée sur la particule Pi par la particule Pj. Finalement, nous
désignons par ~F (resp. ~Fint, ~Fext) la résultante de toutes les forces (resp. des forces in-
ternes, des forces externes) sollicitant le système, si bien que ~F = ∑i~Fi = ∑i~Fi, int+∑i~Fi,ext =
~Fint +~Fext.

Les propositions suivantes montrent que les complexes forces internes disparaissent des
équations de la Dynamique.

Proposition 1. La résultante ~Fint des forces internes agissant sur un système matériel et le
moment résultant ~M int(O) des forces internes par rapport à un point quelconque O sont nuls,
i.e.

~Fint = 0 et ~M int(O) = 0.

Preuve. En vertu du principe de l’action et de la réaction, on a

~Fint = ∑
i

~Fi, int = ∑
i

∑
j 6=i

~Fi j = ∑
i< j

(
~Fi j +~Fji

)
= 0.
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De plus,

~M int(O) = ∑
i

∑
j 6=i

−→
OPi∧~Fi j = ∑

i< j

(−→
OPi∧~Fi j +

−→
OP j∧~Fji

)
= ∑

i< j

−−→
PjPi∧~Fi j = 0.

La puissance des forces internes—qui intervient dans le Théorème de l’Énergie cinétique—
est nulle si le système considéré est un solide.

Proposition 2. Dans un solide, la puissance Pint des forces internes est nulle.

Preuve. Comme

Pint = ∑
i

∑
j 6=i

~Fi j ·~v(Pi) = ∑
i< j

(~Fi j ·~v(Pi)+~Fji ·~v(Pj)) = ∑
i< j

~Fi j · (~v(Pi)−~v(Pj))

et que dans le cas d’un solide

~v(Pi) =~v(Pj)+~ω ∧−−→PjPi,

où ~ω désigne le vecteur rotation du solide par rapport à l’observateur, la puissance des forces
internes d’un solide est égale à

Pint = ∑
i< j

~Fi j ·
(
~ω ∧−−→PjPi

)
= 0.

Dans le cas des systèmes de particules les théorèmes gouvernant les mouvements—les
théorèmes de la quantité de mouvement (TQM) ou du centre de masse (TCM), du moment
cinétique (TMC) et de l’énergie cinétique (TEC)—prennent la forme suivante.

Théorème 2. Dans tout référentiel inertial, la dérivée temporelle de la quantité de mouve-
ment ~p d’un système matériel est égale à la résultante ~Fext des forces externes appliquées au
système, i.e.

dt~p = ~Fext. (2)

Preuve. Il suffit d’appliquer la Définition 1, l’Équation de Newton de la Mécanique du Point
et la Proposition 1.

Théorème 3. Dans tout référentiel inertial, le centre de masse G d’un système matériel se
meut comme si c’était un point matériel affecté de la masse totale m du système et soumis à
la résultante ~Fext des forces externes appliquées au système, i.e.

m~γ(G) = ~Fext. (3)

Preuve. Il suffit d’appliquer les équations (1) et (2).
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Théorème 4. Dans tout référentiel inertial, la dérivée temporelle du mouvement cinétique
~σO d’un système matériel est égale au moment ~Mext(O) des forces externes appliquées au
système, i.e.

dt~σO = ~Mext(O), (4)

où O est un point fixe ou le centre de masse du système.

Preuve. Dans le cas où O est un point fixe, il suffit d’appliquer la Définition 1, le Théorème
du Moment cinétique de la Mécanique du Point et la Proposition 1. Si O est le centre de
masse G du système, on applique le fait que le moment cinétique (resp. moment des forces
externes) est un torseur de vecteur ~p (resp. ~Fext). En effet, si O désigne à présent un point
fixe, il s’ensuit que

dt~σG = dt~σO +dt

(
~p∧−→OG

)
= ~Mext(O)+~Fext∧

−→
OG = ~Mext(G),

où nous avons utilisé l’Équation (1).

Théorème 5. Dans tout référentiel inertial, la dérivée temporelle de l’énergie cinétique Ec
d’un système matériel est égale à la puissance P =P int+Pext de toutes les forces, internes
et externes, appliquées au système, i.e.

dtEc = P = P int +Pext. (5)

Si le système est un solide, la variation temporelle de l’énergie cinétique coïncide avec la
puissance des seules forces externes, i.e.

dtEc = Pext. (6)

Preuve. Il suffit d’appliquer la Définition 1, le Théorème de l’Énergie cinétique de la Dy-
namique du Point, ainsi que la Proposition 2.



Chapitre 9

Dynamique des Solides

Les théorèmes qui régissent les mouvements des systèmes de particules par rapport aux
référentiels inertiaux, voir Chapitre 8, sont applicables aux solides considérés comme des
distributions de masses infinitésimales. Deux difficultés s’opposent à l’utilisation de ces
théorèmes du mouvement : le calcul du moment cinétique d’un solide et celui de son énergie
cinétique. Avant d’aborder ces problèmes, nous donnons quelques informations préliminaires
relatives au concept de moment d’inertie.

1 Moment d’inertie
Tout comme la masse inerte m mesure la résistance d’un corps à une accélération, le

moment d’inertie J quantifie la résistance qu’oppose un corps à une accélération angulaire.
Si nous mettons un point matériel immobile P de masse m en mouvement (resp. mouvement
de rotation autour d’un axe ∆) avec la vitesse v (resp. vitesse angulaire ω), l’énergie cinétique
à fournir au point est donnée par

Ec =
1
2

mv2
(

resp.
1
2
(md2)ω2

)
,

où d désigne la distance de P à ∆. D’où la

Définition 1. On appelle moment d’inertie d’un système matériel (Pi,mi), i ∈ {1, . . . ,n}, par
rapport à un axe ∆, le scalaire positif

J∆ = ∑
i

mid2
i , (1)

où di désigne la distance de Pi à ∆.

79
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Dans le cas d’un solide—considéré comme répartition continue de matière—le solide—
de volume V —est mentalement subdivisé en une infinité de volumes infinitésimaux dV 3 P
de masse d m et son moment d’inertie par rapport à un axe ∆ est donné par

J∆ =
∫

V
d2(P)d m, (2)

où d(P) est la distance de P à ∆. On définit de manière analogue le moment d’inertie JO (resp.
Jπ ) par rapport à un point O (resp. un plan π), étant entendu que les distances à considérer
sont alors celles à O (resp. π).

2 Exercices
1. Prouver que le moment d’inertie par rapport à un axe est égal à la somme des moments

d’inertie par rapport à deux plans orthogonaux passant par cet axe.

2. Prouver que le moment d’inertie par rapport à un point est égal à la somme des moments
d’inertie par rapport à trois plans deux à deux orthogonaux passant par ce point, ou
encore, à la somme des moments d’inertie par rapport à un axe et un plan orthogonaux
passant par ce point.

3. Soient (x1,x2,x3) (resp. (ρ,θ ,z), (r,θ ,φ)) des coordonnées cartésiennes (resp. cylin-
driques, sphériques) d’un point P. Expliquer graphiquement pourquoi∫

f (P)dV =
∫ ∫ ∫

f (x1,x2,x3)dx1dx2dx3

=
∫ ∫ ∫

f (ρ,θ ,z)ρ dρ dθ dz

=
∫ ∫ ∫

f (r,θ ,φ)r2sinθ dr dθ dφ .

4. Montrer que le moment d’inertie d’une tige homogène de masse m et de longueur `,
par rapport à un axe ∆ orthogonal à la tige et passant par son centre, est donné par

J∆ =
1

12
m`2 (3)

5. Montrer que le moment d’inertie d’un disque homogène de masse m et de rayon R, par
rapport à un axe ∆ orthogonal au disque et passant par son centre, est donné par

J∆ =
1
2

mR2 (4)
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6. Reprendre le problème n◦ 5 et montrer que le moment d’inertie, par rapport à un axe ∆

contenu dans le plan du disque et passant par le centre du disque, est donné par

J∆ =
1
4

mR2 (5)

Suggestion : Soit π (resp. D) un plan (resp. l’axe) orthogonal au disque et contenant ∆

(resp. et passant par son centre). Montrer que J∆ = Jπ et que JD = 2Jπ .

7. Montrer que le moment d’inertie d’un cylindre circulaire, droit, plein et homogène, de
masse m, de rayon R et de hauteur h, par rapport à son axe ∆, est donné par

J∆ =
1
2

mR2 (6)

8. Montrer que le moment d’inertie d’une sphère homogène, de masse m et de rayon R,
par rapport à un axe ∆ passant par son centre, est donné par

J∆ =
2
5

mR2 (7)

3 Modèle des tenseurs
Rappelons que dans le cadre de ce cours nous nous limitons à l’espace vectoriel E des

vecteurs de l’espace ambiant et aux BON ~ei, i ∈ {1,2,3}. Une forme bilinéaire, i.e. une
application b : E×E→ R qui est linéaire en chaque argument—de sorte qu’en particulier

b(~u,~v) = ∑
i j

uiv jb(~ei,~e j) ∈ R,

quels que soient ~u = ∑i ui~ei,~v = ∑ j v j~e j ∈ E—est évidemment complètement définie par la
matrice

bi j := b(~ei,~e j) ∈ R

de ses valeurs sur les vecteurs de base. La matrice représentative b′i j = b(~e ′i,~e
′
j)∈R de b dans

une autre BON~e ′i = Aki~ek, ou encore~ei = A′ki~e
′
k = Aik~e ′k, est liée à la matrice bi j = b(~ei,~e j) ∈

R représentative de b dans la BON~ei, par la relation

bi j = b(Aik~e ′k,A j ~̀e ′`) = AikA j`b′k`, (8)

où les symboles de sommation sont systématiquement sous-entendus.
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Observons qu’ainsi les formes bilinéaires sont comme les 2-tenseurs, voir Chapitre 6, des
objets caractérisés dans chaque BON par une matrice Ti j de 32 composantes, les matrices rel-
atives à deux bases différentes, reliées par la matrice de passage A, vérifiant la loi tensorielle
d’ordre 2,

Ti j = AikA j`T ′k`. (9)

On entrevoit donc que les formes bilinéaires constituent un modèle des 2-tenseurs. De
manière plus générale, on prouve sans difficulté que

Théorème 1. Les espaces ⊗nE et Ln(E×n,R) des n-tenseurs de E et des formes n-linéaires
de E respectivement, sont des espaces vectoriels réels de dimension 32 qui sont canonique-
ment isomorphes :

⊗nE 'Ln(E×n,R). (10)

Par exemple, le produit scalaire usuel ~u ·~v ∈ R de l’espace euclidien E est une forme
bilinéaire, donc un tenseur d’ordre 2.

4 Tenseur d’inertie
Nous avons signalé précédemment, que les calculs du moment cinétique~σO et de l’énergie

cinétique Ec d’un solide constituent un défi particulier—que nous sommes à présent préparés
à relever.

Rappelons que le mouvement général d’un solide est composé du mouvement de son
centre de masse G—encodé dans le TCM

m~γ(G) = ~Fext,

avec des notations désormais évidentes—et de son mouvement autour de son centre de
masse—encrypté dans le TMC

dt~σG = ~Mext(G).

Si le solide étudié possède un point fixe O, i.e. n’est animé que d’un mouvement de rota-
tion autour de ce point O du solide qui est (également) fixe dans le référentiel de l’observateur,
ses mouvements peuvent être extraits du TMC en O,

dt~σO = ~Mext(O).

Dans les deux cas, notre intérêt porte sur le moment cinétique du solide par rapport à un
point O1 lié au solide. Considérons donc un solide R1 (ou S ) en mouvement par rapport à
un référentiel inertial R0 (ou R) et soit O1 (ou O) un point attaché au solide. Comme

~σO = ∑
i

−→
OPi∧mi~vi =

∫ −→
OP∧~v(P)d m (11)
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et que la formule fondamentale de la cinématique du solide stipule que le champ des vitesses
d’un solide est un torseur dont le vecteur est le vecteur rotation ω de S par rapport à R, i.e.
que pour tout point P lié au solide, on a

~v(P) =~v(O)+~ω ∧−→OP,

il vient

~σO =
∫ −→

OPd m∧~v(O)+
∫ −→

OP∧
(
~ω ∧−→OP

)
d m = m

−→
OG∧~v(O)+

∫ −→
OP∧

(
~ω ∧−→OP

)
d m,

(12)
où nous avons utilisé la définition du centre de masse G du solide, voir Chapitre 8, et où m
désigne la masse totale du solide. Remarquons que si O est le centre de masse G ou un point
fixe du solide, le premier terme du dernier membre de l’Équation (12) s’annule.

Notons que le calcul de l’intégrale au dernier membre de cette équation ne fournit pas
seulement le moment cinétique, mais aussi l’énergie cinétique du solide. En effet,

2Ec = ∑
i

miv2
i =

∫
~v2(P)d m

=
∫
~v(P) ·

(
~v(O)+~ω ∧−→OP

)
d m

= m~v(G) ·~v(O)+
∫
~v(P) ·

(
~ω ∧−→OP

)
d m

= m~v(G) ·~v(O)+~ω ·
∫ −→

OP∧~v(P)d m,

où nous avons appliqué l’égalité de l’impulsion du solide à l’impulsion de son centre de
masse affecté de la masse totale du solide, voir Chapitre 8, ainsi que l’invariance du produit
mixte par permutation circulaire. D’où, compte tenu de l’Équation (11), la relation

2Ec = m~v(G) ·~v(O)+~ω ·~σO. (13)

Si O est le centre de masse (resp. un point fixe), le premier terme du second membre
de l’Équation (13) représente le double de l’énergie cinétique du centre de masse (resp.
s’annule).

Le moment cinétique ~σO et l’énergie cinétique Ec du solide sont donc déterminés dès que
l’intégrale

~sO =
∫ −→

OP∧
(
~ω ∧−→OP

)
d m =

∫
OP2~ω−

(−→
OP ·~ω

)−→
OPd m (14)

est calculée.
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4.1 Système arbitraire d’axes orthonormés
Dans un système arbitraire d’axes orthonormés (Ω,~e1,~e2,~e3), on obtient

sO,i =
∫

OP2
ωi−(∑

j
OPj ω j)OPi d m =∑

j
(
∫

OP2
δi j−OPi OPj d m)ω j,=∑

j
IO,i j ω j, (15)

où δi j est le symbole de Kronecker, où OPk désigne la k-ième composante du vecteur
−→
OP et

où nous avons posé

IO,i j =
∫

OP2
δi j−OPi OPj d m. (16)

Étant donné que les δi j (resp. les OPk) sont les composantes d’un 2-tenseur (isotrope) (resp.
d’un vecteur), il est clair que les IO,i j sont les composantes dans la BON considérée d’un
2-tenseur. Alternativement, si la matrice IO,i j représente un 2-tenseur ou une forme bilinéaire
IO, on a

IO(~ei,~e j) = IO,i j =
∫

OP2
δi j−OPi OPj d m =

∫
OP2(~ei ·~e j)−

(−→
OP ·~ei

)(−→
OP ·~e j

)
d m,

si bien que la forme bilinéaire est donnée par

IO(~u,~v) =
∫

OP2(~u ·~v)−
(−→

OP ·~u
)(−→

OP ·~v
)

d m. (17)

Inversement, l’application IO définie par l’Équation (17) est bien une forme bilinéaire, i.e. un
2-tenseur, ayant pour composantes dans la BON~ei les IO,i j donnés par l’Équation (16). Il est
clair que IO(~v,~u) = IO(~u,~v), i.e. que IO est un 2-tenseur symétrique. Signalons encore que
l’Équation (15) prend finalement la forme

~sO = IO ·~ω, (18)

où “·” désigne le produit tensoriel contracté, voir Chapitre 6.

La signification physique du tenseur IO est facile à comprendre. En effet, soit ∆ un axe
arbitraire passant par O et soit~e un vecteur directeur unitaire de ∆. Alors,

IO(~e,~e) =
∫

OP2−
(−→

OP ·~e
)2

d m =
∫

d2(P)d m = J∆. (19)

Comme IO fournit ainsi le moment d’inertie du solide par rapport à tout axe passant par O, il
porte le nom de tenseur d’inertie du solide au point O.
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4.2 Système d’axes orthonormés d’origine O
Dans un RON (O,~e1,~e2,~e3) d’origine O, les composantes du tenseur d’inertie en O sont

données par

IO,ii = IO(~ei,~ei) = Jii =
∫

∑
j 6=i

x2
j d m,

où Jii est le moment d’inertie du solide par rapport à l’axe Oxi et où (x1,x2,x3) sont les
coordonnées de la variable d’intégration P, voir Équation (19). De plus, pour i 6= j,

IO,i j = IO(~ei,~e j) =−
∫

xix j d m =: Ji j,

où les Ji j sont appelés produits d’inertie du solide par rapport aux axes Oxi et Ox j.

4.3 Système d’axes orthonormés lié au solide
Il découle immédiatement de l’Équation (16) que les composantes du tenseur d’inertie en

O sont constantes dans tout système d’axes orthonormés lié au solide.

4.4 Système d’axes orthonormés principaux
Un système d’axes principaux est un système dont les vecteurs sont des vecteurs princi-

paux ou encore des vecteurs propres du tenseur d’inertie.

Les concepts de vecteurs propres et valeurs propres sont étudiés au cours d’Algèbre
linéaire. Rappelons ici brièvement les définitions, ainsi qu’un résultat de diagonalisation
nécessaire au calcul de l’Intégrale (14) qui fournit le moment cinétique et l’énergie cinétique
d’un solide.

Notons d’abord que le déterminant detT d’un 2-tenseur ou d’une forme bilinéaire T est
par définition le déterminant det(Ti j) de la matrice des composantes Ti j de T dans une BON
arbitraire. De fait, on vérifie tout de suite que ce déterminant est indépendant de la BON
considérée. Ceci étant, les valeurs propres d’un 2-tenseur T sont les racines λ de l’équation

det(T −λ id) = 0, (20)

où id est le 2-tenseur isotrope de composantes δi j. Les vecteurs propres de T de valeur propre
λ sont les vecteurs non nuls~u vérifiant l’équation

T ·~u = λ~u. (21)

On observera que tout multiple non nul k~u, k 6= 0, d’un vecteur propre~u de T de valeur propre
λ est encore un vecteur propre de valeur propre λ . Il s’ensuit qu’uniquement la direction d’un
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vecteur propre importe : la direction d’un vecteur propre de T est appelée direction propre
de T . Comme indiqué préalablement, les adjectifs “propre” et “principal” sont synonymes et
donc échangeables.

Comme un 2-tenseur est représenté dans toute BON par une matrice de composantes, il
est naturel de chercher une BON dans laquelle cette matrice représentative est aussi simple
que possible, i.e. est diagonale. En Algèbre, on prouve la

Proposition 1. Pour tout 2-tenseur symétrique, il existe une BON dans laquelle la matrice de
ses composantes est diagonale ou, de manière équivalente, pour tout 2-tenseur symétrique, il
existe une BON formée par des vecteurs principaux de ce tenseur.

Remarquons que ce résultat admet une version matricielle: Toute matrice symétrique est
diagonalisable par une matrice orthogonale.

Il n’est pas difficile de se persuader de l’équivalence de ces énoncés. Par exemple, soit
une BON (~µ1,~µ2,~µ3) formée par des vecteurs principaux ~µi de valeurs principales λi d’un 2-
tenseur symétrique T . Alors, T ·~µi = λi~µi, i ∈ {1,2,3}, si bien que, dans les axes principaux
(~µ1,~µ2,~µ3), on obtient

Tabδib = λiδia,∀i,a, i.e. Tai = λiδia,∀i,a, i.e.

(Ti j) =

 λ1 0 0
0 λ2 0
0 0 λ3

 . (22)

Inversement, si dans un système d’axes orthonormés (~e1,~e2,~e3), les composantes T∗i, i fixé
dans {1,2,3}, d’un 2-tenseur symétrique T sont “diagonales”, i.e. du type

Tai = `δia, ` ∈ R, a ∈ {1,2,3}, (23)

l’axe de vecteur directeur ~ei est principal. En effet, il suffit de prouver que ~ei est un vecteur
principal de T , i.e. qu’il existe λ tel que T ·~ei = λ~ei, ou encore, dans la BON (~e1,~e2,~e3), tel
que

Tabδib = λδia,∀a, i.e. Tai = λδia,∀a.

Il est clair que λ = ` convient, ce qui établit le résultat.

4.5 Système d’axes orthogonaux principaux en O
Revenons à présent au tenseur d’inertie IO du solide S par rapport à un point O attaché à

S . Notons d’abord qu’il découle des équations (16), (20) et (21) que les vecteurs principaux
de IO sont également liés au solide S .
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Théorème 2. Soient un solide S et un point O lié à S . Dans un système d’axes orthonor-
maux principaux d’origine O, la matrice des composantes du tenseur d’inertie IO de S est
diagonale et ses éléments diagonaux sont les moments d’inertie constants Jii de S par rap-
port aux axes principaux.

Preuve. Le théorème est une conséquence immédiate de la remarque qui le précède et des
résultats des sous-sections 4.2, 4.3 et 4.4.

Le calcul de IO dans un système d’axes orthonormaux principaux en O est donc partic-
ulièrement simple. Si l’existence d’une BON de vecteurs principaux de IO est assurée par la
Proposition 1, sa détermination pratique reste à étudier. La proposition suivante explique que
les axes principaux en O sont souvent obtenus grâce à des arguments de symétrie.

Proposition 2. Tout axe issu de O, qui est un axe de symétrie géométrique et matérielle, est un
axe principal en O. De même, toute droite, normale en O à un plan de symétrie géométrique
et matérielle passant par O, est un axe principal en O.

Preuve. Nous donnons la démonstration de la première affirmation, celle de la deuxième
est analogue. Considérons un solide S et un point O de S . Supposons que S admette
un axe de symétrie géométrique et matérielle ∆ passant par O et choisissons un système
d’axes orthonormés (O,~e1,~e2,~e3) d’origine O et de vecteur ~e1 porté par ∆. Alors, IO,21 =

J21 = −
∫

x2x1d m. Vu la symétrie géométrique et matérielle, cette intégrale est une somme
de termes du type x2x1d m+(−x2)x1d m = 0. On voit de même que IO,31 = 0, si bien que
IO,a1 = J11δ1a,∀a ∈ {1,2,3}. Il résulte alors de la seconde partie de l’explication suivant la
Proposition 1, voir Équation (23), que~e1 et l’axe de symétrie ∆ sont principaux en O.

4.6 Moment et énergie cinétiques d’un solide
Théorème 3. Soit un solide S en mouvement par rapport à un référentiel R et soit O un
point de S fixe dans R ou le centre de masse de S . Le moment cinétique ~σO de S en O et
l’énergie cinétique Ec de S par rapport à R sont donnés par

~σO = ∑
i

Jiiωi~µi (24)

et
Ec = (Ec(G)+)

1
2 ∑

i
Jiiω

2
i (25)

respectivement. Dans ces équations, les ~µi forment un système d’axes orthonormés princi-
paux en O, les ωi sont les composantes dans ces axes du vecteur rotation ~ω de S par rapport
au référentiel R, et les Jii désignent les moments d’inertie constants du solide par rapport
aux axes principaux. Dans l’expression de l’énergie cinétique, le terme entre parenthèses
n’est à considérer que si O est le centre de masse du solide.
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Preuve. Quelle que soit la définition de O—point du solide qui est fixe dans R ou centre de
masse du solide—le point O est lié au solide, si bien que les résultats de la section précédente
sont valables. Les Équations (12), (14) et (18), ainsi que le Théorème 2 impliquent alors que
~σO =~sO = IO · ~ω = ∑i Jiiωi~µi. Quant à l’énergie cinétique, il découle de l’Équation (13) et
du résultat précédent relatif au moment cinétique que 2EC =

(
mv2(G)+

)
∑i Jiiω

2
i , où m est la

masse totale du solide.

5 Dynamique des solides
Nous savons, voir Chapitre 8, que les mouvements d’un solide par rapport à un référentiel

inertial R peuvent être extraits des théorèmes généraux valables pour les systèmes matériels,
i.e., avec des notations désormais bien connues, des équations

m~γ(G) = ~Fext, dt~σO = ~Mext(O), dtEc = Pext,

avec la particularité que le second membre du TEC se réduit dans le cas des solides à la seule
puissance des forces externes. Rappelons que le TMC n’est valable qu’à condition que O soit
un point fixe dans R ou le centre de masse du système matériel ou solide étudié. Lorsque
O est le centre de masse ou un point du solide qui est fixe dans R, le moment et l’énergie
cinétiques peuvent être obtenus à partir du Théorème 3.

Si le solide S possède un point fixe O, i.e. s’il existe un point O de S qui est fixe dans
R, il est naturel d’essayer d’étudier le mouvement de rotation de S autour de ce point fixe à
partir du TMC en O.

Si S n’a pas de point fixe, son mouvement le plus général se décompose en le mouvement
de son centre de masse G (3 degrés de liberté), encodé dans le TCM, et en son mouvement
autour du centre de masse, encrypté dans le TMC en G (3 degrés de liberté). En Mécanique du
Solide (au maximum 6 degrés de liberté), la détermination des mouvements requiert donc en
général deux équations vectorielles, alors qu’en Mécanique du Point (au maximum 3 degrés
de liberté), une équation vectorielle suffit.

Si les forces dérivent d’un potentiel, le TEC fournit l’IPE, qui est exploitable l’énergie
cinétique pouvant être calculée grâce au Théorème 3.

Évidemment, les équations vectorielles sont généralement encore projetées sur les axes.
Dans le cas du TMC, le calcul du moment cinétique implique déjà un système d’axes, et plus
précisément d’axes principaux, de sorte qu’il semble naturel de projeter sur ces axes. Nous
effectuons ci-dessous cette projection une fois pour toute dans le cas général, ce qui conduit
aux équations d’Euler.

Proposition 3. Considérons un solide observé à partir d’un référentiel inertial. Si O désigne
le centre de masse ou un point fixe de ce solide, la projection du Théorème du Moment ciné-
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tique en O, sur des axes orthogonaux directs qui sont principaux en O, donne les Équations
d’Euler,

J11ω̇1− (J22− J33)ω2ω3 = Mext,1(O)

J22ω̇2− (J33− J11)ω3ω1 = Mext,2(O)

J33ω̇3− (J11− J22)ω1ω2 = Mext,3(O),

(26)

avec des notations évidentes.

Preuve. Compte tenu du Théorème 3, on a

dt~σO = ∑
i

Jiidt(ωi~µi) = ∑
i

Jii(ω̇i~µi +ωidt~µi).

Les axes principaux ~µi étant attachés à S , voir ci-dessus, la formule de Poisson permet
d’écrire

dt~σO = ∑
i

Jii(ω̇i~µi +ωi~ω ∧~µi)

= ∑
i

Jiiω̇i~µi +∑
i

Jiiωi ∑
abc

εabcωaδib~µc

= ∑
c

(
Jccω̇c−∑

ia
εiacJiiωiωa

)
~µc .

6 Exercices
1. Une échelle (i.e. une tige de masse m et de longueur `) est appuyée contre un mur.

L’angle entre l’échelle et le mur est noté θ . Les conditions initiales sont θ ' 0 et
θ̇ = 0. L’échelle glisse ensuite sans frottement (le sol et le mur sont supposés infiniment
lisses). Prouver que la position θ en laquelle l’échelle perd le contact avec le mur est
donnée par θ = Arccos 2

3 .

2. On considère deux sphères homogènes S0 et S1 de masse m et de rayon r. La seconde
est en équilibre au sommet S de la première, qui est fixe par rapport à la Terre, supposée
inertiale. On déplace S1 très légèrement de sa position d’équilibre et on l’abandonne
sans vitesse initiale. D’abord S1 roule sur S0, puis se met à glisser.

Si O désigne le centre de S0, I le point de contact entre S0 et S1 et φ l’angle (OS,OI),
calculer la valeur ϕ de φ où le glissement commence, i.e. montrer que ϕ est caractérisé
par

17 f cosϕ−2sinϕ = 10 f ,

où f est le coefficient de frottement. Traiter ce problème

(i) en utilisant le TCM et le TMC,
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(ii) en utilisant le TCM et l’IPE.

On rappelle que le glissement commence lorsque le frottement T et la réaction normale
N sont liés par T = f N.

3. Une sphère homogène de masse m et de rayon r roule sans glisser sur la surface in-
térieure rugueuse d’un cylindre creux, fixe, d’axe horizontal et de rayon R. A l’instant
initial, la sphère occupe sa position d’équilibre et la vitesse ~w de son centre de masse
est horizontale et orthogonale à l’axe du cylindre. Montrer que la valeur minimale de
w, pour laquelle la sphère dépasse la position la plus élevée sans perdre le contact avec
le cylindre, est caractérisée par

w2 ≥ 27
7

g(R− r).



Chapitre 10

Problème de Lagrange-Poisson
Systèmes intégrables

1 Mouvements d’une toupie symétrique dans le champ de
pesanteur

Ce chapitre sera essentiellement consacré au problème de Lagrange-Poisson, i.e. à l’étude
des mouvements par rapport au laboratoire R0, considéré comme inertial, d’une toupie R1
de masse m et de centre de masse G, possédant un axe de symétrie géométrique et matérielle
et reposant sur sa pointe O supposée fixe par rapport à R0. Ce problème classique est étroite-
ment lié aux mouvements de la Terre dans l’espace, fournit un exemple de système intégrable
– un thème de recherche actuel en Géométrie symplectique –, ...

La toupie considérée est donc animée d’un mouvement à point fixe et possède trois degrés
de liberté. Les paramètres appropriés à la description univoque de ses positions sont les trois
angles d’Euler que l’on définit comme suit.

Considérons un ROND (O,~e1,~e2,~e3) attaché à R0 et dont le vecteur~e3 est vertical ascen-
dant, et un ROND (O,~e1,~e2,~e3) lié à R1 et dont le vecteur ~e3 est directement colinéaire au
vecteur

−→
OG, si bien que

−→
OG = d~e3, d = OG. Nous supposons que R1 se meut par rapport

à R0 de manière que les vecteurs ~e3 et ~e3 sont en permanence non-colinéaires, de sorte que
les plans (O,~e1,~e2) et (O,~e1,~e2) se coupent constamment suivant une droite dite ligne des
noeuds. Notons ~u le vecteur unitaire de la ligne des noeuds pour lequel (~e3,~e3,~u) est direct.
Cela étant, désignons par ϕ , θ et ψ les trois angles d’Euler

91
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ϕ := ](~e1,~u), compté algébriquement autour de (O,~e3),

θ := ](~e3,~e3), compté algébriquement autour de (O,~u),

ψ := ](~u,~e1), compté algébriquement autour de (O,~e3),

appelés logiquement angle de précession, angle de nutation et angle de rotation propre ou de
spin.

Le Chapitre 9 enseigne que dans le cas étudié les mouvements sont encodés dans le TMC
en O et plus particulièrement dans les équations d’Euler.

Il s’agit donc de décomposer le moment en O des forces externes m~g+~R sollicitant la
toupie, ~R désigne la réaction au pivot O, et le vecteur rotation ~ω de la toupie R1 par rapport
au référentiel R0, dans des axes orthogonaux principaux en O. Vu la symétrie de la toupie, il
est clair que les axes (O,~e1,~e2,~e3) sont principaux en O. Comme

~Mext(O) =
−→
OG∧m~g = mgd~e3∧~e3,

nous exprimons d’abord~e3 dans la base des~ei. Vu que~e3 = cosθ~e3 + sinθ~e3∧~u et que

~u = cosψ~e1− sinψ~e2, (1)

il vient
~e3 = sinθ (sinψ~e1 + cosψ~e2)+ cosθ~e3 (2)

et
~Mext(O) = mgd sinθ (cosψ~e1− sinψ~e2) . (3)

Quant au vecteur rotation, celui ~ω = ~ω01 de R1 par rapport à R0, se décompose, vu les
paramètres utilisés, naturellement en la somme des vecteurs rotation ~ω02 = ϕ̇~e3 du référentiel
R2 défini par (O,~u,~v,~e3), ~v :=~e3 ∧~u, par rapport à R0, ~ω23 = θ̇~u du référentiel R3 donné
par (O,~u,~w,~e3), ~w :=~e3∧~u, par rapport à R2, et ~ω31 = ψ̇~e3 de R1 par rapport à R3:

~ω = ~ω01 = ~ω02 +~ω23 +~ω31 = ϕ̇~e3 + θ̇~u+ ψ̇~e3. (4)

Compte tenu des équations (1) et (2), on obtient finalement la décomposition

~ω = (ϕ̇ sinθ sinψ + θ̇ cosψ)~e1 +(ϕ̇ sinθ cosψ− θ̇ sinψ)~e2 +(ϕ̇ cosθ + ψ̇)~e3 (5)

du vecteur rotation ~ω de la toupie R1 par rapport au laboratoire R0, dans la base des vecteurs
principaux~ei.

Finalement, les équations d’Euler s’écrivent

J11ω̇1− (J11− J33)ω2ω3 = mgd sinθ cosψ, (6)

J11ω̇2− (J33− J11)ω3ω1 = −mgd sinθ sinψ, (7)

J33ω̇3 = 0, (8)
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où J22 = J11, vu la symétrie de la toupie, et où les ωi sont les composantes de ~ω dans la base
principale des ~ei, voir Équation (5). Les équations d’Euler (6)-(8) forment un système de 3
équations différentielles du deuxième ordre en ϕ,θ et ψ . Elles permettent en principe de
déterminer ϕ = ϕ(t),θ = θ(t) et ψ = ψ(t), i.e. de trouver les mouvements de la toupie.

L’Équation (8) est particulièrement simple et signifie que la composante ω3 du vecteur
rotation est conservée au cours du mouvement :

ω3 = ϕ̇ cosθ + ψ̇ = a, a constant. (9)

Cette IP est due, voir Équation (8), à la symétrie de la toupie et à l’orthogonalité à ~e3 du
moment ~Mext(O) = mgd ~e3∧~e3. Or, le moment ~Mext(O) est également perpendiculaire au
vecteur fixe~e3, si bien que

0 =~e3 · ~Mext(O) =~e3 ·dt~σO = dt(~e3 ·~σO), (10)

de sorte que la composante
~e3 ·~σO =~e3 ·∑

i
Jiiωi~ei

de ~σO suivant~e3 est aussi une IP. En utilisant les équations (2) et (5), on trouve l’expression
de cette IP en fonction des paramètres :

~e3 ·~σO = J11ϕ̇ sin2
θ + J33 acosθ = b, b constant. (11)

Un système de trois IP indépendantes (pour l’instant on en a deux), donc un système de 3
équations différentielles du premier ordre en les paramètres ϕ, θ et ψ , serait évidemment
plus simple à étudier que les trois équations d’Euler (6), (7) et (8), qui sont d’ordre 2. En
gros, un système dynamique qui admet un nombre d’intégrales premières indépendantes égal
à son nombre de degrés de liberté, y compris l’IPE, est appelé un système intégrable. Les
systèmes intégrables seront discutés plus en détail dans les cours avancés. Dans le cas de la
toupie, l’IPE Ec+V = c, c constant, est évidemment valable, la résultante des forces externes
étant composée d’une force m~g qui dérive d’un potentiel V =mgd cosθ et d’une force ~R dont
la puissance P = ~R ·~v(O) est nulle (ce qui fournit la troisième IP). Si l’on exprime l’énergie
cinétique Ec =

1
2 ∑i Jiiω

2
i en fonction de ϕ , θ et ψ moyennant l’Équation (5), l’IPE devient

1
2

J11(ϕ̇
2 sin2

θ + θ̇
2)+

1
2

J33 a2 +mgd cosθ = c. (12)

Le deuxième terme du premier membre étant lui aussi constant, l’IPE s’écrit encore

1
2

J11(ϕ̇
2 sin2

θ + θ̇
2)+mgd cosθ = E, E constant. (13)
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Le déchiffrage de l’information encryptée dans le système d’IP (9), (11) et (13) fournira
les différents types de mouvements possibles de la toupie selon les conditions initiales con-
sidérées. Notons d’abord que l’angle θ , non dérivé par rapport au temps, intervient dans ces
IP uniquement sous la forme cosθ ou sin2

θ = 1− cos2 θ : posons µ := cosθ . L’équation
(11) devient alors

ϕ̇ =
b− J33 a µ

J11(1−µ2)
. (14)

Cela étant, les IP (13) et (9) prennent la forme

θ̇
2 =

2
J11

(E−Veff), où Veff = mgdµ +
1
2
(b− J33 a µ)2

J11(1−µ2)
, (15)

et
ψ̇ = a− b− J33 a µ

J11(1−µ2)
µ (16)

respectivement. Dans (15), nous avons introduit le potentiel efficace Veff, afin d’écrire l’IPE
sous la forme nécessaire à l’étude des mouvements via le diagramme du potentiel. Pour b 6=
±J33 a, nous supposons dans la suite que cette condition est satisfaite, la courbe représentative
du potentiel efficace Veff est entre ses deux asymptotes verticales d’équations θ = 0 et θ = π ,
d’abord décroissante, puis croissante.

(i) Si E = Veff,min, où Veff,min désigne la valeur minimale du potentiel, θ ne peut prendre
qu’une seule valeur et est donc constant au cours du mouvement. Il résulte alors de
(16) et (14) que ϕ̇ et ψ̇ sont également constants : le mouvement est sans mutation et
la précession et le spin sont uniformes.

(ii) Supposons maintenant que E ≥Veff,min et notons θ1 et θ2 les abscisses des deux points
de réflexion. Le mouvement de mutation est alors une oscillation entre les valeurs θ1 et
θ2. Quant au mouvement complet, il s’avèrera qu’il dépend de la position de b/(J33 a)
– nous supposons a 6= 0 – par rapport à l’intervalle [cosθ2,cosθ1].

Avant de passer à l’explication de cette affirmation, deux observations sont nécessaires
:

• L’égalité b/(J33 a) = cosθ2 est impossible. En effet, on vérifie facilement que
dans ce cas on aurait V ′eff(θ2) = −mgd sinθ2 < 0, ce qui est absurde vu l’allure
de la courbe du potentiel.

• La fonction b− J33 a µ = b− J33 a cosθ est strictement croissante ou strictement
décroissante dans ]0,π[ , selon que a > 0 ou a < 0.

Passons à l’étude du mouvement complet, voir ci-dessus.
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(1) b/(J33 a) 6∈ [cosθ2,cosθ1]

Si b/(J33 a)< cosθ2 et a > 0 par exemple, on a b− J33 acosθ2 < 0. Donc, vu son sens
de variation, la fonction b− J33 a µ = b− J33 a cosθ est < 0 pour tout θ ∈ [θ1,θ2], i.e.
ϕ̇ < 0, en vertu de l’Équation (14). Dans les autres cas, on trouve de la même façon,
soit ϕ̇ < 0, soit ϕ̇ > 0. Ainsi, le sommet S de la toupie décrit, sur la sphère de centre O
et de rayon OS, une trajectoire de type “sinusoïdal”.

(2) b/(J33 a) ∈ ]cosθ2,cosθ1[

Si a > 0 par exemple, on trouve que b−J33 a cosθ1 < 0 < b−J33 a cosθ2, de sorte que
la fonction strictement croissante b−J33 a cosθ s’annule et change de signe en un seul
point θ0 ∈]θ1,θ2[. Vu (14), il en est de même de ϕ̇ . Ainsi, ϕ décroît si θ ∈]θ1,θ0[ et
croît si θ ∈]θ0,θ2[. La trajectoire de S est donc du type “``` . . .”.

(3) b/(J33 a) = cosθ1

Ici, ϕ̇ > 0, ∀θ 6= θ1 ou ϕ̇ < 0, ∀θ 6= θ1. De plus, ϕ̇ = 0 en θ = θ1. Il s’ensuit que
ϕ admet à l’instant θ = θ1 un point d’inflexion à tangente horizontale. Ainsi S a une
trajectoire du type “uu . . .”.

2 Exercices
1. Considérons une toupie dont les vitesses angulaires de précession ϕ̇ et de nutation θ̇

sont négligeables par rapport à la vitesse angulaire de spin ψ̇ . C’est l’hypothèse du
spin dominant, souvent satisfaite en pratique. A ce moment, on a l’approximation
gyroscopique

~ω = ψ̇~e3 et ~σO = ∑
i

Jiiωi~ei = J33ψ̇~e3.

Projeter le TMC en O sur les axes du repère R2(O,~u,~v,~e3), où ~v =~e3∧~u. Pour cela,
décomposer les vecteurs ~Mext(O), ~σO et dt~σO dans la base (~u,~v,~e3), en remarquant
notamment que le vecteur~v étant constant dans R2, on a

dt~v = ~ω02∧~v = ϕ̇~e3∧~v =−ϕ̇~u.

Réponse : La projection sur les axes donne J33ψ̇ϕ̇ sinθ = mgd sinθ , ψ̇ sinθ = C1, et
ψ̇ cosθ =C2, où C1 et C2 sont des constantes. Ainsi, ψ̇ , θ et

ϕ̇ =
mgd
J33ψ̇

sont constants et le mouvement de l’axe de la toupie est une précession pure et uni-
forme autour de (O,~e3), dont le sens est le même que celui du spin (qui est également
uniforme).
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2. Reprendre le problème ci-dessus de la toupie sous l’hypothèse du spin dominant, mais
projeter le TMC en O sur les axes du repère intermédiaire R3(O,~u,~w,~e3), avec ~w =

~e3∧~u.

Réponse : J33ψ̇ϕ̇ sinθ = mgd sinθ , ψ̇θ̇ = 0, ψ̈ = 0, mêmes conclusions.

3 Renonciation
Ce cours est basé essentiellement sur [Sim88] et, dans une moindre mesure, sur [DN96] et

[BFR85]. Des encyclopédies en ligne, comme Wikipedia, ont été utilisées. Les exercices sont
extraits de sources différentes. La construction du cours s’étant étendue sur une période assez
longue et antérieure à celle de la rédaction des présentes notes, des sources peuvent avoir été
oubliées. Dans ce cas l’auteur aimerait s’excuser et serait content d’ajouter les références
manquantes.
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