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Résumé : Les objectifs de ce papier sont une présentation élémentaire de la quantification par déformation et
I’exposé de la preuve selon Neroslavsky et Vlassov de I’existence de star-produits sur les variétés symplectiques.
Leur méthode — bien que basée sur I’hypothése considérable de la nullité du troisiéme espace de la cohomologie de
de Rham - est représentative des difficultés rencontrées et des techniques utilisées dans le travail de De Wilde relatif
aux déformations de I’algébre des fonctions d’une variété symplectique (voir [3]). Le présent article contient
essentiellement le texte d’une conférence faite en 1999 au Centre Universitaire de Luxembourg devant un public non
spécialisé.

Abstract: The objective of this paper is to provide an elementary introduction to deformation quantization and to
explain the proof of existence of star-products on symplectic manifolds given by Neroslavsky and Vlassov. Their
approach — based on the considerable assumption that the third de Rham cohomology space vanishes — is
nevertheless characteristic of the impediments encountered and the techniques applied in the work of De Wilde
concerning deformations of the algebra of functions of a symplectic manifold (see [3]). The present article basically
includes the text of a talk given in 1999 at the Centre Universitaire de Luxembourg to a non-expert audience.

Introduction

La quantification par déformation a été inaugurée vers 1975 par F. Bayen, M. Flato, C. Fronsdal,
A. Lichnerowicz et D. Sternheimer dans un article fondateur paru aux « Annals of Physics »
(voir [1]). Selon Flato la physique progresse pas a pas : lorsqu’elle rencontre un paradoxe, elle
passe d’un niveau au suivant grace a une déformation appropriée. Ainsi, la quantification par
déformation n’est au début autre chose qu’un procédé de passage de la mécanique classique a la
mécanique quantique. De nos jours, il s’agit d’un outil de travail nouveau et performant trouvant
un nombre croissant d’applications dans beaucoup de domaines des mathématiques et de la
physique. Ses succes récents permettent d’augurer qu’elle dévoilera bon nombre de liens étroits
entre des sujets apparemment divergents des mathématiques et de la physique theorique.

1 Déformations

La théorie des déformations est issue du probléeme de la classification des structures complexes
non isomorphes sur une variété différentielle réelle.

Nous ne parlerons ici que de déformations d’algébres et méme de déformations formelles
d’algébres associatives ou de Lie.
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En gros, une déformation d’une algébre associative A=(E,m) — ou E est un espace vectoriel
réel ou complexe de dimension quelcongue et m un produit associatif sur E — est une famille
d’algebres associatives A, =(E,,m,) dépendant d’un paramétre v et dont I’élément v =0 est
A=(E,m).

De maniere plus précise, désignons par E, I’espace E[[v]] des series de puissances formelles

X, = > VX, (1.1)
k=0

en v a coefficients x, dans E. L’égalité (1.1) n’est autre chose qu’une notation suggestive pour
la suite (X,),.y d’élements de E. Toute série formelle en v a coefficients dans E, s’identifie a
un elément de E , toute application multilineaire S:Ex...xE — E s’étend en une application
multilinéaire S: E x..xE, — E, et toute serie formelle

S, = i VvES,
k=0

a coefficients multilinéaires de Ex..xE dans E peut étre considérée comme application
multilinéaire de E, x...xE, dans E, .

Ceci étant, il est naturel d’appeler déformation formelle de I’algebre associative A=(E,m), la
famille d’algébres associatives A =(E,,m ), ou E, =E[[v]] etou

m, = > v'm, (1.2)
k=0

est une série a coefficients bilinéaires de ExE dans E, qui est associative dans E, et dont le
coefficient m, est égal a m.

Deux déformations formelles A =(E,,m ) et A’ =(E,,m') de A=(E,m) (on parle encore de

deux déformations formelles m, et m ' de m) dont les éléments correspondants sont isomorphes,
sont dites equivalentes. De facon plus détaillée, elles sont équivalentes, s’il existe une série

T, = ivak
k=0

a coefficients linéaires de E dans E dont le coefficient T, est I’identité de E (une telle série est
toujours un automorphisme de E ) et qui vérifie

T 'm =T, [m(T,.T,.]=m,.



Si m, est une déformation de m, il en est de méme de T, 'm . En particulier, T, 'm est une

déformation de m, dite triviale, car équivalente a m. Une algebre associative sans déformation
formelle non-triviale est dite formellement rigide.

On peut définir de maniére analogue la notion de déformation formelle d’une algébre de Lie.

2 Quantification

Le passage d'un modeéle hamiltonien de mécanique classique a un modele de mécanique
quantique change compléetement la nature des observables. Fonctions de I'espace des phases, elles
sont transformees en des opérateurs sur un espace de Hilbert. Au crochet de Poisson {.,.} des
fonctions se substitue le commutateur [.,.] des opérateurs. Les équations décrivant I'évolution du
systeme mécanique et des observables sont remplacées par I'équation de Schrodinger resp.
I'équation de Heisenberg.

L'opération inverse de la quantification, la limite semi-classique, consiste (en gros) a faire tendre
la constante de Planck h vers 0 dans les formules de mécanique quantique, de maniére a
récupérer leur interprétation classique. La mécanique classique apparait alors comme limite de la
mécanique quantique lorsque h tend vers 0, tout comme elle apparait comme limite de la
mécanique relativiste lorsque la célérité ¢ de la lumiere tend vers oo.

Un exemple bien connu de quantification est celui donné par les régles de Heisenberg :

N :=C*(R?) = £ (L*(R"))

p, = b, =—-ih——
q(Z Hq\a :qaid (2'1)
1-1=id,

ol R" est I’espace de configuration de coordonnées (q,,...,q,) et R*" I’espace des phases de
coordonnées (p,,..., P, - d,) - Ces régles impliquent le principe d'incertitude et la relation de
Dirac

A

[f.g1=ih{f.q}". (22)

Cependant, la tentative d'extension de la quantification & toutes les fonctions de R*" ou au moins
a tous les polynémes, échoue. Le théoreme de Van Hove (1952) stipule en effet qu'il n'existe pas

d'application A: f € Pol(R?") — f e £ (L2(R")) vérifiant (2.1) et (2.2).

Désirant conserver les régles de Heisenberg, on ne peut affaiblir que la relation de Dirac et exiger
que

A

[f.g]1=ih{f,g}" +hs(h), (2.3)



ou ¢(h) tend vers 0 avec h. La quantification de Weyl satisfait a cette double exigence. Partant
de la régle de Heisenberg, elle quantifie tout mondme par le produit symétrisé des opérateurs p,
et g, correspondants. En outre, on peut voir que cette quantification — on la notera désormais W
— n'est pas un homomorphisme des observables classiques vers les observables quantiques i.e.
qu'en général W(f.g) #W(f)oW(g). De maniere plus précise, on montre que W (f)-W(g)
=W (f*g), ou f =g désigne le produit de Moyal-Vey de f et de g. Il suffit ici de rappeler la
structure de ce produit :

fxg="f.g+v{f,g}+> vie(f,9),

k>2

ou v=ih/2 et ou les c, sont des operateurs bidifférentiels sur N, nuls sur les constantes et
vérifiant ¢ (g, f) = (-1)“c, (f,g). On voit facilement que

W(f).W(g)]=W(f*g—-g=* f)=th({f,g})—%W(CS(f,9))+%W(Cs(f,g))—-..,

de sorte que (2.3) est bien satisfait. De plus, le produit * de Moyal est une déformation formelle
de l'algebre associative (N,.) (ou . désigne le produit ordinaire des fonctions) et fournit par anti-
symeétrisation une déformation formelle [.,.] de I'algebre de Lie (N,{.,.}).

3 Quantification par deformation

Vers 1975, F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz et D. Sternheimer (voir [1]) lancent
I'idée d’abandonner la représentation des observables classiques par des operateurs et de
construire un modele de la mécanique quantique en déformant la structure algébrique de I’espace
N de ces observables. Essentiellement, il s’agit de construire sur toute variété symplectique ou de
Poisson un * - produit analogue a celui de Moyal. Ceci permet de munir I’espace N, des séries

formelles en v a coefficients dans les fonctions, d’une structure *, d'algébre associative (non
commutative) et d’une structure [.,.], dalgébre de Lie. Ces algébres sont des déformations

formelles de (N,.) et de (N,{.,.}) respectivement. C'est la quantification par déformation : la
mécanique quantique apparait comme une déformation de la mécanique classique, liée a la prise
en compte du nouveau parameétre v ; il s'agit d'une déformation du commutatif vers le non-
commultatif, la trace de la non-commutativité au niveau classique étant le crochet de Poisson.

Les résultats obtenus a I'aide du nouveau formalisme sont physiquement significatifs. La théorie
des déformations s'est développée dans un milieu relativement spécialisé d'abord, puis a conquis
I'intérét d'un grand nombre de mathématiciens et physiciens.

L'étude des déformations et plus particuliérement des *-produits est d'abord celle de leur
existence et de leur classification. Le cas des variétés symplectiques a été entierement résolu par
M. De Wilde et P.B.A. Lecomte en 1983 (voir [2]). En 1991, H. Omori, Y. Maeda et A.
Yoshioka traitent les variétés de Weyl (voir [10]), alors qu'en 1994, B. Fedosov présente une
construction explicite d'un =-produit (voir [5]). Le cas des variétés de Poisson gquelconques n'a



pu étre réglé qu'en 1997 par M. Kontsevich (voir [6]), succes honoré par une médaille Fields, la
plus haute décoration en mathématiques.

La preuve de Kontsevich et ses papiers ultérieurs ne constituent que le début d’une grande
variété de développements. La quantification par déformation est un nouvel et puissant outil qui
permettra de réaliser des progres significatifs dans de nombreuses questions ouvertes en
mathématiques et en physique théorique. Les développements récents en quantification par
déformation, en particulier la théorie des formalités et le passage de la géométrie différentielle a
la géometrie algébrique, doivent avoir une signification tres profonde, qu’il s’agit de comprendre
et d’exploiter.

4 Existence de star-produits sur les variétés symplectiques selon Neroslavsky-
Vlassov

4.1 Définitions et outils

En vue d’exposer la preuve de I’existence de star-produits sur les variétés symplectiques due a
Neroslavsky et Vlassov, nous rappelons quelques faits indispensables.

4.1.1 Eléments de géométrie symplectique

Un espace vectoriel symplectique de dimension m est un espace vectoriel E sur un corps
commutatif, disons R ou C, muni d’une forme bilinéaire antisymétrique non dégénérée
o € A°E *. Le caractére non dégénéré de » implique que I’application b (bémol)

b:XxeE—>-lweE™*,

ou i, représente le produit intérieur de @ par x, est un isomorphisme entre E et E* d’inverse

noté évidemment # (diese). La matrice de @ dans une base de E étant ainsi une matrice mxm
antisymétrique et non singuliere, m est nécessairement pair : m=2n.

On appelle variété symplectique toute variété M (de classe C”, de dimension m, séparéee, a base
dénombrable et connexe) munie d’une 2-forme différentielle fermée F € Q*(M) ~kerd, telle
que F, soit non dégenére quel que soit xe M. Il s’ensuit que I’on a encore m=2n. La
condition dF =0 permet d’écrire F localement sous la forme canonique

F=> dp“adg”,

ou (p',..,p".q%....,q") sont des coordonnées locales de M (théoréme de Darboux). Les

applications bémol et diese admettent des extensions canoniques aux fibrés tensoriels. Par
exemple,

b: X eVect(M) - —i, F e Q'(M).

Le fibré cotangent muni de la différentielle de la 1-forme de Liouville est un exemple simple de
variéte symplectique. On définit alors le hamiltonien H, d’une fonction u € N par



H, = (du)”.

Pour M =R?", on retrouve I’expression classique.
Une variété de Poisson est une variété dont I’espace des fonctions est muni d’un crochet de Lie P
qui soit une dérivation :
P(u,vw) = P(u,v)w+ VvP(u,w),
quelles que soient les fonctions u,v et w. Si (M, F) est une variété symplectique, nous posons
P(uv)=L,v,
le second membre étant la dérivée de Lie de v par rapport au champ H,. Ainsi,

P(U,V) = L, v = (@v)(H,) = (i, F)(H,) = F(H, H,)

Cette multiplication munit M d’une structure de Poisson. En effet, I’identité de Jacobi découle
immédiatement de (dF)(H,,H,,H,)=0. Toute variété symplectique est donc une variété de

Poisson. La réciproque n’est pas valable. Soit M une variété symplectique de forme symplectique
F et de structure de Poisson P. On vérifie sans probléme que

H:ueN — H, eVect(M)

est un homomorphisme d’algebres de Lie. En outre, on associe a toute application multilinéaire
c de Vect(M)x...xVect(M) dans N, une application multilinéaire z*c de Nx..x N dans N,

en posant
(/U*C)(up"'!up) = C(Huli"" Hup) )

Si c est antisymétrique, il en est bien sir de méme de w*c. En particulier, si @ est une p-forme
différentielle de M, u*w est une application p-linéaire antisymétrique de N x..x N dans N.

Notons que
U*F=P.

4.1.2 Algeébre de Lie graduée de Nijenhuis-Richardson

Voici deux exemples d’algebres de Lie graduees particulierement importants pour I’étude des
algébres associatives et de Lie et pour celle de leurs déformations.

Soit E un espace vectoriel réel ou complexe de dimension arbitraire.

On désigne par MP(E) (peZ) I'espace des applications (p+1)- linéaires de Ex...xE dans E
(si p=-1, cet espace est conventionnellement pris égal & E etsi p<-—1, c’est 0) et on pose

M(E)=®_ _ MP(E).

peZ



Si AeM?(E) et BeM"(E), on définit la « composée » j,Ae M*®(E) (ce qui justifie le
changement de graduation),

Q) sia<-1oub<-1,par0,
(i) sia>-letb>-1,par

(a+b+1)! Za:(—l)ib A(Xyy oo B(Xi sy Xiip )y eoes Xaip )

(jBA)(XO""’ X“b) :m i=0

quels que soient X,,..,X,,, €E. Un calcul direct montre que la multiplication
A:M(E)> - M (E) définie par
AAB = j,A—(-1)*j,B, VAe M*(E),VB e M"(E),

munit M (E) d’une structure d’algébre de Lie graduée.

Désignons par « I’opérateur d’antisymétrisation. Posons A°(E)=a(MP(E)) (peZ) (A°(E)
est alors I’espace des applications (p+1)-linéaires antisymétriques de Ex..xE dans E, si
p>0, ’espace E,si p=-1et0,si p<-1)et

AE)=®__, AP(E).

pe
Si Ae A*(E) etB e A°(E), on définit le « produit intérieur » i, A par
igA=a(jA) e A°(E).
Un simple calcul montre encore que la multiplication [.,.]: A(E)* — A(E) définie par
[A B]=isA—(-1)%i,B = a(AAB), VAe A*(E),VB e A°(E),

munit A(E) d’une structure d’algebre de Lie graduée. C’est I’algébre de Nijenhuis-Richardson
de E.

Les résultats suivants sont évidents et souvent utiles :

(i) [AX]=i A= A(X,-...), VAe A*(E), Yxe A*(E) =E,
(i)  [A B]=AAB, YAe A°(E), VB e A°(E).

Voici finalement une propriété surprenante des précédentes multiplications. Si (E,m) est une
algebre [resp. si (E,P) est une algébre antisymétrique], la multiplication m est associative [resp.
la multiplication P est un crochet de Lie] si et seulement si

mAm =0 [resp. [P,P]=0]. 4.1



La preuve est élémentaire. Par exemple,
(mAm)(x, y, z) = 2(j,m)(X, ¥, Z) =3(m(m(x, y), z) -m(x,m(y, 2))) ,
pour tous les x,y,ze E.

4.1.3 Cohomologies de de Rham, de Hochschild et de Chevalley-Eilenberg

Rappelons qu’un complexe ou espace différentiel est un couple (E,0), ou E est un espace

vectoriel et 0 un opérateur sur E de carré nul, appelé différentielle ou opérateur de cobord. Les
éléments de E sont les cochaines, ceux de kerd les cocycles et ceux de imo les cobords. Vu

I'hypothése 6* =0, ona imd c ker . L'espace quotient
H(E,2) =ker2/imd

est I'espace de cohomologie du complexe (E,0). Si E=@® E, est un espace gradué et si 0 est
de poids 1, la restriction 0, de 0 a E, est une application linéaire de E, dans E , verifiant
0,0,,=0.0n peut ainsi definir le p-ieme espace de cohomologie

H"(E,0) =kero,/imo .
L’espace H(E,0) est alors la somme directe des espaces H"(E,0).

L'exemple le plus simple est donné par le complexe de de Rham (Q(M),d) d'une variété
différentielle M, ou Q(M) désigne I'espace des formes différentielles de M et ou d est la
différentielle extérieure. On note H,(M) I'espace de cohomologie de ce complexe. Il s'agit
d'un espace gradué Hy, (M) =@ HfS (M) dont tous les termes de degré p>1 sont nuls, si M
est contractile : ceci signifie évidemment que toute p-forme fermée de M est exacte.

Soient une algébre de Lie graduée (E,0) et un élément ~ de E' tel que 7oz =0. Il résulte
immediatement de I’identité de Jacobi graduée que I’opérateur

0, AcE—>-AoreE (4.2)
est de carré nul : (E,0,) est un espace différentiel.

A toute algebre associative (E,m) et tout E-bimodule V (i.e. tout homomorphisme et tout anti-
homomorphisme compatibles de E dans les endomorphismes d’un espace vectoriel V), on
associe le complexe dont I’espace des cochaines est I’espace L(E,V) des applications

multilinéaires de E x...x E dans V et dont I’opérateur de cobord & est défini pour Ae £ *(E,V)
(p<0) par0etpour Ac LP(E,V) (p=0) par



(OA)(Xg s oo X ) = Xg A(X ey X )+§(—1)”1A(x0,...,m(xi,xm),...,x )+ (D) Ay X)X

avec des notations évidentes. La cohomologie de ce complexe est la conomologie de Hochschild
H(E,V) associée a I’algebre associative E et au E-bimodule V. Lorsque le bimodule est

I’algebre elle-méme, le complexe de Hochschild est du type (4.2). De fait, (M (E),A) est une
algébre de Lie graduée et me M*(E) vérifie mAm =0 (voir (4.1)). On constate facilement que
I’espace differentiel (M (E),0,,) est le complexe de Hochschild de E et — de fagon plus précise —
que

P A=—AAm=a%28A.

m

De maniére analogue, on associe a toute algebre de Lie (E,P) et toute représentation p de E
sur un espace vectoriel V (i.e. tout homomorphisme p de E dans les endomorphismes de V), le
complexe dont I’espace des cochaines est I’espace A(E,V) des applications multilinéaires
antisymétriques de Ex...xE dans V et dont la différentielle est définie pour Ae AP(E,V)
(p<0) par0etpour Ae AP(E,V) (p=0) par

A A

(8,A) Xy, X)) = Zp:(—l)i POOVAXg ey X))+ D (1) AP (X, X, ), Xg oo ooy X, ),

i<j

ou k signifie que x, est omis. Cet espace différentiel est le complexe de Chevalley-Eilenberg de
I’algébre de Lie E associé a la representation (V, ) ; nous notons encore H(E,V) sa
cohomologie. Le complexe de Chevalley est du type (4.2), si la représentation est la
représentation adjointe (E,ad). En effet, si (A(E),[.,.]) est I’algebre de Lie graduée de
Nijenhuis-Richardson de E, P € A'(E) et [P,P]=0 (voir (4.1)). Il est aisé de se convaincre que
le complexe (A(E),0,) est exactement le complexe adjoint de Chevalley de E.

Soient M une variété différentielle, m le produit ordinaire et (N, m) I’algébre associative des

fonctions de M. Il est peu utile de déterminer la cohomologie de Hochschild de N, sans imposer
des restrictions raisonnables aux cochaines. Du point de vue de la géométrie différentielle, il est
en fait naturel de se limiter aux cochaines locales. Le cobord de Hochschild stabilisant le sous-
espace M (N),,. des cochaines locales, il apparait un sous-complexe dont la cohomologie est la

cohomologie de Hochschild locale des fonctions de M.

Supposons a présent la variété M symplectique de forme F et de crochet de Poisson P. On
montre que les cocycles de Hochschild sont exactement les A€ M(N),,. de la forme

A=pu*A+BAm (1 eQ(M),BeM(N),.).

En particulier, A est bord si et seulement si sa partie antisymétrique est nulle. En outre, les
opérateurs de cobord de Chevalley et de de Rham sont liés par la relation



10

—{u*A,P]=p*d2a,

quelle que soit la forme différentielle 4. C’est évident, vu les rappels ; il suffit d’ailleurs de
penser aux définitions des cobords considérés. Finalement, le produit x* AAP et sa partie

antisymétrique [u* A, P] different par un bord de Hochschild. Il suffit évidemment de prouver
que u* AAP est un cocycle de Hochschild. Or, si A4 est de degré p, I’identité de Jacobi graduée
donne

(=1 (u* AAP)AM + (=1)P(PAM)Ap* A — (MAu™* A)AP =0,
de sorte que u* AAP est bien cocycle, car P = u*F et u* A le sont.

4.2 Preuve élementaire de I’existence de star-produits sur les variétés symplectiques

Soit une variété différentielle M separée, a base dénombrable et connexe. Nous la supposons
symplectique (de forme symplectique F et de crochet de Poisson P) et de troisieme espace de
cohomologie de de Rham nul.

Nous démontrerons I’existence sur M d’un produit analogue au produit * de Moyal sur R*" i.e.
d’un produit associatif, série formelle

en v a coefficients ¢, e M*(N),,, telsque ¢, =m et ¢, = P.

La construction se fera de proche en proche. Signalons d’abord qu’un polynéme
r
M) = Z:vkck
k=0
sera dit associatif a I’ordre r si et seulement si

JJ:M{AMJ:iivk*mckAcm:zw > cAc,

k=0 m=0 i k+m=i
0<k,m<r

a ses coefficients
3= > cAc,

k+m=i
0<k,m<r

nuls jusqu’a I’ordre r i.e. pour i =0,...,r. On se propose de prouver que si I’on dispose d’un
produit M a coefficients dans M*(N),,, avec ¢, =m et ¢, = P qui est associatif a I’ordre r, il
existe des coefficients A,B e M*(N),,. tels que

M =M! +v A+v™B
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soit associatif a I’ordre r +1.
Cette récurrence commence en r =1, car M’ =m+vP est bien associatif a I’ordre 1 :
Jo=mAm=0 et J; =2PAm=2u*FAm=0.
Il convient cependant de noter que la récurrence fournit alors A et B tels
M2 =m+v(P+A)+v’B
est associatif a I’ordre 2 et qu’il importe donc de vérifier que cet A est nul.
Passons a la preuve de la récurrence. Les coefficients A et B sont & chercher de maniére que
J*t=0
pour i =0,..,r+1.Sii<r,ona J™ =J"=0.Sii=r etsii=r+1, on obtient

37 = 37 £ 2AAM = 2AAM
et
JI’+1 — JI‘

r+1 r+1

+ 2AAP +2BAm. 4.3)

On remarquera que pour r =1 le second membre de (4.3) contient le terme supplémentaire
AAA. Il s’agit donc de trouver A et B annulant (4.3), A 1-cocycle de Hochschild. L’identité

(MJAM)AM =0
contient des informations utiles. En déterminant les coefficients de v"** et v"*2, on trouve

r
‘J r+l

"AP+J!

r+l r+2

Am =0 resp. J Am=0, (4.4)

les J; étant nuls jusqu’a I’ordre r. Comme le coefficient J/,, est ainsi un 2-cocycle de
Hochschild, il s’écrit

N, =u*2+TAm (1eQ*(M),T e M*(N),.)
et la condition (4.3) prend la forme

U*A+2AAP + (T +2B)Am=0. (4.5)

Vu la relation susmentionnée entre les bords de Chevalley et de de Rham, I’antisymétrisation de
la seconde égalité (4.4) fournit

[@d!  P]=[u*1,P]=-u*di=0,

r+1?
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si bien que A est une 3-forme fermée. Compte tenu de I’hypothése fondamentale HZ, (M) =0,
elleestexacte: A=dw (o< Q?*(M)). Finalement,

u*A=p*do=-{u*w,Pl=-u*wAP +UAM (U e M*(N),.)
et la condition (4.5) prend sa forme définitive
(—u*w+2A)AP + (T +U +2B)Am =0. (4.6)

Si I’on pose

L SRVE

A:%,u*a)e M*(N), et B=-

la cochaine A est bien cocycle et (4.6) est satisfait. Dans le cas r =1 enfin, il s’agit de vérifier
que A =0 (et de prendre en considération le terme supplémentaire dans (4.3)). Or,

al; =a(PAP)=[P,P]=0
et (4.5) devient
2AAP + (T +2B)Am+ AAA=0.

Il suffit alors de prendre

A=0 et Bz—l.
2

4.3 Remarque

Plusieurs techniques permettent d’établir I’existence de déformations de I’algebre des fonctions
des varietés symplectiques. La méthode de De Wilde (voir [3]) s’inspire aussi bien de la preuve
élémentaire de Neroslavsky et Vlassov (voir [8]) que de la premiere preuve générale de De
Wilde et Lecomte (voir [2]). L’approche de Neroslavsky-VIassov met en lumiéere notamment le
role-clef joué par les cohomologies de de Rham, de Hochschild et de Chevalley. Mais d’autres
cohomologies apparaissent : ainsi, la cohomologie adjointe de I’algebre de Lie graduée de
Nijenhuis-Richardson de I’espace des fonctions de la variété, revét une importance considérable
(voir [2]). En outre, le resultat de Kontsevich (voir [6]), selon lequel I'algébre N des fonctions
des variétés de Poisson est toujours deformable, suggere fortement I'existence, dans cette
cohomologie graduée, de classes canoniques «universelles» liées aux déformations de N et a leur
classification. Ceci justifie les calculs cohomologiques que nous avons développés dans [11] -
[16].
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