Time variability from high-low SST - filling the gap between GRACE and GFO

Matthias Weigelt

Adrian Jäggi, Lars Prange

nni. In

Qiang Chen, Wolfgang Keller,

S Nico Sneeuw

presented by Tilo Reubelt

RUES RESEARCE

SEARCH UNIT ENGINEERING CIENCES

GRACE und GRACE Follow-On (GFO)

Low-low

GRACE und GRACE Follow-On (GFO)

Other gravity field missions

Previous CHAMP studies

CHAMP REPROCESSING

Data reprocessing

GPS positions:

- 10 s sampling
- empirical absolute antenna phase center model
- ...

Approach:

- acceleration approach
- no accelerometer data used
- no regularization and no a priori model / information

Background models:

- JPL ephemeris DE405
- Solid Earth tides & solid Earth pole tides (IERS conventions)
- Ocean tides (FES 2004)
- Ocean pole tides (IERS conventions, Desai 2002)
- Atmospheric tides (N1-model, Biancale and Bode 2006)
- Relativistic corrections (IERS conventions)
- AOD1B-product (Flechtner 2008)

CHAMP monthly gravity field solutions

Band-pass filtering approach

- Pro:
 - variation of frequencies possible (within passband)
 - applicable to all degrees and orders
 - filter design
- Con:
 - filter design
 - warmup
 - sophisticated outlier detection necessary
 - neglecting correlations between coefficients

Filtered monthly gravity field solutions

Filtering based on MSSA

- Pro:
 - variation of frequencies between coefficients possible
 - considering correlations between coefficients
- Con:
 - filter design
 - prone to systematic noise with cyclic behavior
 - sophisticated outlier detection necessary

Filtered monthly gravity field solutions

Kalman filtering

Filtered monthly gravity field solution

SOME VALIDATION

Time series

Time series:

Summary

- Time variable gravity field from high-low SST
- Filtering (Kalman with best performance)
- Further improvements possible (e.g. considering correlations between coefficients)
- Expectations for SWARM:
 - better GPS receiver
 - three satellites

CHAMP monthly gravity field solutions

