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Abstract In this paper, the influence of the ground track coverage on the quality of a

monthly gravity field solution is investigated for the scenario of a high-low satellite-to-

satellite tracking mission. Data from the CHAllenging Minisatellite Payload (CHAMP) mis-

sion collected in the period April 2002 to February 2004 has been used to recover the gravity

field to degree and order 70 on a monthly basis. The quality is primarily restricted by the

accuracy of the instruments. Besides,CHAMP passed through a31/2 repeat mode three times
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2

during the period of interest resulting in an insufficient spatial sampling and a degraded so-

lution. Contrary to the rule of thumb byColombo(1984), see alsoWagner et al.(2006), we

found that the monthly solutions themselves could be recovered to about degree 30, not 15.

In order to improve the monthly gravity solutions, two strategies have been developed: the

restriction to a low degree, and the densification of the sampling by the introduction of addi-

tional sensitive measurements from contemporaneous satellite missions. The latter method

is tested by combining theCHAMP measurements with data form the Gravity Recovery And

Climate Experiment (GRACE). Note that the twoGRACE satellites are considered indepen-

dent here, i.e. no use is made of the K-band ranging data. Thisway, we are able to almost

entirely remove the influence of the ground track leaving theaccuracy of the instruments as

the primary restriction on the quality of a monthly solution. These findings are especially

interesting for the upcomingSWARM-mission since it will consist of a similar configuration

as the combinedCHAMP andGRACE missions.

Keywords CHAMP · aliasing · orthogonality· energy balance approach· variance

component estimation

1 Introduction

It is currently accepted that the derivation of time-variable gravity field information from

CHAMP-only solutions is not successful.Reigber et al.(2005) concluded that monthly grav-

ity solutions solely fromCHAMP observations reveal an unrealistic large scattering.Sneeuw

et al. (2005) tried the recovery using the energy balance approachand kinematic orbits but

concluded that the error level of the monthlyCHAMP solutions inhibits the revealing of

timely variations. Besides the instrument accuracies in general, one of the reasons for the

failure to derive time variable gravity is the lack of a consistent set of monthly solutions.
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3

Between months, the spatial data distribution changes due to the slowly decaying orbit.

Colombo(1984) gave a rule of thumb stating that a spherical harmonicsolution of maxi-

mum degreeL must have at leastβ > 2L revolutions in the time period of interest. Note that

it is implicity assumed that theβ ground tracks are equally distributed in the spatial domain.

A violation of this rule yields a degradation of the solution.

The influence of the ground track on the quality of the gravityfield solution attracted

first attention for the low-low satellite-to-satellite tracking missionGRACE. It has been in-

vestigated byYamamoto et al.(2005) using simulated data and byWagner et al.(2006) using

publishedGRACE solutions. The latter compared the severe loss of accuracy of monthly so-

lutions to degree and order 120 during the61/4-resonance orbit in September 2004 to theoret-

ical error estimates from linear perturbation theory, and concluded that the ideal resolution

should be only 30x30 confirming Colombo’s rule of thumb. Bothconcluded that the degree

RMS degrades by approximately one order of magnitude due to an insufficient sampling.

Klokočńık et al. (2008) extended the investigations ofWagner et al.(2006) to the cases of

CHAMP andGOCEand predicted future periods of degraded performance ofGRACE.

By means ofCHAMP, this paper throws additional light on the influence of the ground

track on monthly solutions in high-low satellite-to-satellite tracking missions. During the pe-

riod of interest from April 2002 to February 2004,CHAMP experienced a31/2 repeat mode

three times resulting in degraded monthly gravity solutions due to a sparse ground track

coverage. Presuming a loss of orthogonality in the Legendrepolynomials and/or the sine

and cosine functions as the primary reason, it is shown by comparison to months with good

ground track coverage that the loss of orthogonality is similar for both and thus not responsi-

ble for the degradation. Furthermore, a discrepancy to the rule of thumb ofColombo(1984)

is recognized. According to this, the solution should only be valid to degree and order 15,

but a recovery to degree and order 30 is possible. Since the problem is inherent the primary
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4

countermeasure is a change of the orbit configuration (Klokočńık et al., 2008). We present

two alternative ways of improving the monthly solutions. The first approach is the general

restriction to a low degree solution whereas aliasing of high degree signal has to be reduced

by usinga priori gravity field information. The second and more promising approach is the

combination with other single satellite missions. Here, the data of the twoGRACE satel-

lites are added to theCHAMP data (Weigelt, 2007). Note that no use is made of the K-band

range-rate measurements and the satellites are consideredindependent.

Section 2 starts with an overview of the gravity field recovery from CHAMP using the

energy balance approach. It is used to derive pseudo-potential observations along the orbit

followed by a brute-force spherical harmonic analysis on the sphere (sub-section 2.1). By

comparing the monthly solutions of the static gravity field to GGM02S (Tapley et al., 2005),

the results can be validated with an independent and more accurate gravity model (sub-

section 2.2). This enables the quantification of the influence of the ground track pattern on

the gravity solution (sub-section 3.1). Since the degradation of monthly solutions must be

reflected in the processing steps, special attention is paidto the loss of orthogonality of the

sinusoidal functions in sub-section 3.2. In section 4, the two approaches to counteract the

degradation are introduced.

2 Gravity field recovery from CHAMP

2.1 Data processing

The gravity field recovery is separated into three steps: orbit determination; energy bal-

ance approach; brute-force spherical harmonic analysis onthe sphere. The orbit is derived

kinematically, i.e. the positions are estimated in a purelygeometrical way. Two years of

CHAMP data for the period of April 2002 to February 2004 are provided by the Institute
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for Astronomical and Physical Geodesy (IAPG), Technical University Munich (̌Svehla and

Rothacher, 2004). The data is considered independent froma priori information since no

dynamical model is used in their calculation. As only positions are provided, velocities must

be derived by numerical differentiation.

The energy balance approach, also called the energy integral approach, is based on the

principle of energy conservation (Jacobi, 1836;O’Keefe, 1957;Gerlach et al., 2003;Visser

et al., 2003). The main advantages are its simplicity and the possibility of data processing on

desktop computers. The presented equations are given in theEarth-fixed frame. Equivalent

expressions for the inertial frame can be found inJekeli(1999). The disturbing potentialT

along the orbit is calculated by

T =
1
2

vTv−U −Z−

∫

(

f +∑
i

gi

)

dx+c. (1)

wherev is the velocity of the satellite. The normal potentialU and the centrifugal po-

tential Z can be derived from the position data using standard equations (Heiskanen and

Moritz, 1967). All known time-variable gravitational accelerations gi as well as the non-

gravitational accelerationsf are integrated along the orbitdx. The latter are measured using

the accelerometer onboardCHAMP. Calibration parameters like bias, drift and scale are de-

termined together with the integration constantc by comparison to potential values along

the orbit derived from EGM96 (Lemoine et al., 1998). Although, these parameters could

be estimated together with the spherical harmonic coefficients, this preprocessing step is

done in order to avoid satellite-specific parameters. Then,the data handling will be eas-

ier when combining data of different satellites (sub-section 4.2). All known time-variable

gravitational accelerations are derived from models whichare summarized in table 1.

[Table 1 about here.]
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The last three entries are included in accordance withHan (2004) in order to reduce possible

temporal aliasing.

Finally, the spherical harmonic analysis with its inherentdownward continuation is done

using a brute-force least-squares method on the sphere. No regularization is applied for any

of the presented results. Further details about the data processing can be found inWeigelt

(2007).

2.2 Monthly static solutions

Originally, CHAMP was supposed to provide measurements of the global long-wavelength

features of the static Earth gravity field and its temporal variations (Reigber et al., 2001). The

currently widely accepted procedure to investigate time-variability is based on the derivation

of monthly solutions and a long-term mean solution. Their difference is considered as the

monthly variation which ideally represents a time-variable gravity signal.

For the investigations here, no mean solution will be subtracted as we are not aiming at

the recovery of a time-variable signal. Instead, the staticsolutions are calculated for every

month from April 2002 to February 2004 using a spherical harmonic analysis to degree 70

according to the procedure outlined in sub-section 2.1. Since it is has been shown that no

time-variable gravity field can be derived and the measurements are of approximately equal

quality, one would expect similar accuracies for each month. In reality, this is not the case;

see alsoKlokočńık et al.(2008).

[Fig. 1 about here.]

Fig. 1 shows the span of the difference degreeRMS of the monthly solutions with respect to

GGM02S. The monthly solutions for June 2003 and January 2004 form the boundaries for
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the achieved accuracies in the time period of interest, i.e.June 2003 represents the worst and

January 2004 the best solution. The discrepancy is approximately one order of magnitude.

[Fig. 2 about here.]

Considering the area-weightedRMS of geoid height differences with respect to GGM02S

in the spatial domain, Fig. 2 shows the quality of each monthly solution. Most of them

are varying only slightly between 5cm and 15cm and a decreasing trend is visible from

the beginning to the end of the period which can be connected to the decaying orbit of

the satellite.CHAMP loses height from atmospheric drag but the quality of the gravity field

solution improves since the satellite is getting closer to the attracting masses. In the three

monthly solutions of May 2002, October 2002 and June 2003 however, theRMS-values

increase up to 65cm. The poorer performance cannot be explained by random errors but

suggests a systematic effect. Comparing to the orbit height, it is evident that the satellite

is at nearly the same height for the three occasions. In sub-section 3.1, we will be able to

connect these events to the31/2 repeat mode. Since the satellite orbit was raised two times,

it passed this mode three times during the period of interest. Note that the monthly solutions

have been developed to degree 70 but the calculation of the area-weightedRMS in Fig. 2 is

restricted to degreeL = 30 for an easy comparison with the results in section 4.

3 Aliasing due to the orbit configuration

According to the sampling theorem (Buttkus, 1991,§5.2), at least 2 samples are necessary

in order to correctly recover one specific frequency of a signal. The maximum resolvable

frequency is referred to asNyquist frequencyand should be understood as a theoretical

boundary. In reality, noise will contaminate the measurements and considerably more sam-

ples are necessary in order to recover a signal correctly. Ifthe sampling theorem is violated,
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frequencies which are higher than the Nyquist frequency areinterpreted as lower frequen-

cies and their energy is projected into the lower part of the spectrum. This effect is referred

to asaliasing and is often neither reversible nor preventable. It is important to understand

aliasing as the result of undersampling which can occur in the spatial sense, as well as in the

temporal sense.

In satellite applications, aliasing is mainly caused by:

- the orbit geometry,

- the mixed spectral mapping,

- interactions of the temporal signal and the sampling,

- the negligence of high-degree gravity field signal,

- insufficient background models, e.g. for tidal reductions, and

- incorrect modelling of instrument effects.

The latter three can be summarized as omission errors and arealways caused by a deficient

mathematical model. They predominantly affect the higher degree terms of a band-limited

recovery (Losch et al., 2002;Sneeuw, 2000,§6.3).

In sub-section 3.1, the influence of the orbit geometry, which comprises effects related

to the orbit height, the sampling density and data gaps within the area of interest, is in-

vestigated. The influence of the orbit height on the quality of a gravity solution is twofold.

According to Newton’s law the signal strength attenuates quadratically with the increasing

distance to the attracting body (Heiskanen and Moritz, 1967). Its effect has already been

observed in Fig. 2. On the other hand, it is also indirectly connected to the ground track

pattern and thus to the sampling density. Under the ideal assumption of a sufficiently long

time period, a static gravity field and a polar orbit, the Earth could be perfectly covered.

The aliasing problem would disappear. Having additionallya uniform data distribution, the
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estimation will be unbiased (Sans̀o, 1990). With the limitation to monthly periods and a

non-uniform data distribution, the coverage will be imperfect and the estimation biased.

If time-variable signals are present, the satellite sensesat the same location two differ-

ent signals at two different points in time. Whether this time-variable part can be recovered

will depend on the time resolution of the satellite mission.Considering monthly solutions

as in the case ofCHAMP andGRACE, the theoretically shortest resolvable frequency is two-

monthly. Any frequencies with shorter periods cannot be recovered, i.e. the temporal spectral

bandwidth is restricted to frequencies of two months or longer. Signal outside this spectral

bandwidth needs to be modelled and reduced in a preprocessing step in order to avoid alias-

ing (Han et al., 2003,§5). Typical examples are the corrections due to the half-daily tides or

the atmospheric and ocean dealiasing products (Flechtner, 2005).

Last but not least, a mixed spectral mapping occurs since thetwo-dimensional geopoten-

tial field is first mapped on a one-dimensional time series along the orbit and subsequently

subject to a spherical harmonic analysis, e.g. on a torus or on a sphere. The orthogonality

property of the Legendre and sine/cosine function ensures normally a proper decomposition

but demands continuous data. Since the measurements are discretized, the orthogonality of

the Legendre and sine/cosine function might be lost. In sub-section 3.2, it is investigated if

the changing sampling density, which causes the degradation of the gravity solutions in May

2002, October 2002 and June 2003, indeed can be linked to the loss of orthogonality.

3.1 Influence of the ground track

Aiming at the recovery of the gravity field on a monthly basis,the accuracy will be depen-

dent on the data distribution within the month, i.e. on the ground track coverage. Variations
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of the ground track coverage are caused by the change of the satellite’s mean motion as its

height changes.

[Fig. 3 about here.]

[Fig. 4 about here.]

Fig. 3 shows the ground tracks for June 2003 (a month with a sparse ground track cover-

age) and January 2004 (a month with a particularly good coverage). Comparison with Fig.

2 reveals the connection of the ground track pattern to the quality of a monthlyCHAMP so-

lution. Fig. 4 shows the sampling at latitudes of 0◦ and 80◦ for a section of 25◦ around the

Greenwich meridian for the two months. It shows that in June 2003, the measurements at

the equator are clustered, while in January 2004, the data isspread homogeneously over the

equator, and thus higher frequency functions can be fitted. Note that, due to the convergence

of the orbit tracks, the sampling at the pole is rather constant, which is the motivation for

local calculations in high-latitude areas; seeGarcia (2002). Consequently, the distribution

of the equator crossings governs the maximum resolvable degree.

[Fig. 5 about here.]

Considering the error spectra in the top row of Fig. 5, it becomes obvious that the influence

of the ground track is severe. In January 2004, the spectrum is homogeneous whereas in June

2003 the spectrum seems mirrored around the order 31, i.e. signal of cosine coefficients is

mapped to sine coefficients and vice-versa. The difference spectra with respect to GGM02S

in the bottom row of Fig. 5 show the same pattern, which provesthat the effect is real and

not just an artifact of the numerical computations. Obviously, some type of aliasing occurs

yielding a degraded monthly gravity solution in June 2003.

The relation of the orbit height and the gravity field recovery can be understood if the

orbit perturbation spectrum is considered. SinceCHAMP is in a near-circular orbit, the sim-
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plified perturbation spectrum can be used (Sneeuw, 2000):

ψ̇mk = ku̇+mΛ̇ , with−L ≤ m,k≤ L , (2)

whereψ̇mk is the perturbation frequency,L the maximum degree andm the order of the

spherical harmonic representation.k is a wavenumber and represents the order in a rotated

frame. The drift in the argument of latitude ˙u is the sum of the perigee drifṫω and the

change in the mean anomalẏM. The drift in the longitude of the ascending nodeΛ̇ is the

sum of the nodal driftΩ̇ and the change in the Greenwich Apparent Sidereal TimeΘ̇ . For

more details and derivations of the simplified perturbationspectrum, the reader is referred

to Kaula (1966) orSneeuw(2000).

The satellite experiences resonances with the gravity fieldif the perturbation frequency

ψ̇mk becomes equal to zero. Consequently:

ku̇ = −mΛ̇ ⇒
k
m

=
−Λ̇
u̇

=
Tu

TΛ
=

α
β

, (3)

whereTu denotes the orbital revolution period,TΛ one nodal day,β the number of revolu-

tions andα the number of nodal days. Sincek andm are integers andkm an integer ratio,

the ratio β
α must also be an integer ratio, i.e. afterβ revolutions exactlyα nodal days have

passed. All the ratios need to be relative primes, i.e. they cannot have a common divisor.

Furthermore, the smaller the relatives primes are, the sparser will be the ground track. Geo-

metrically, the satellite is in a repeat orbit.

During the months May 2002, October 2002, and June 2003, the satellite is passing

through a satellite height of≈ 400km and is experiencing a31/2 repeat mode, cf. Fig. 6, i.e.

the satellite makes 31 revolutions in 2 nodal days.

[Fig. 6 about here.]
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CHAMP passed three times through this mode since it was lifted two times in between. Ac-

cording to the earlier mentioned rule of thumb ofColombo(1984), the maximum resolvable

degree should be 15, sinceβ = 31. Looking at Fig. 1, the difference degreeRMS curve of

June 2003 intersects the signal curve approximately at degree 30 which obviously contra-

dicts this rule. Currently, we cannot offer any explanationor solution to this. We can only

state that this discrepancy occurs repeatedly for all threetimes when the satellite passes the

31/2 mode and the gravity field can effectively be recovered up to degree and order 30.

Nevertheless, the satellite senses signal beyond this degree and aliasing occurs. It af-

fects the solution primarily in the order (m) direction of the spectrum, which, as equation

(2) implies, is the principal parameter for all the geopotential orbit frequencies yielding an

appearance that seems mirrored.Jekeli(1996) discusses this thoroughly for the case of grid-

ded simulated data and suggests the usage of spherical cap averages as a de-aliasing filter.

Here, the data is given along the orbit and interpolation is to be avoided. The development of

corresponding filters for irregular sampled data using, e.g. wavelets, is an interesting aspect

for future work.

3.2 Orthogonality

In the continuous case, the orthogonality properties of theLegendre and the sine/cosine

functions ensure the separation into spherical harmonic coefficients. Since the degradation

is visible in the error spectrum of June 2003, it must be reflected in the normal matrix

of the least-squares adjustment. It is important to note that we are only interested where

the difference between the two months occurs. Due to the non-uniformly distributed and

discretized data, a loss of orthogonality is inherent in both months.
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Comparing the number of data points per 1◦-latitude band in Figs. 7 and 8 on the left

panel, January 2004 and June 2003 show virtually no difference.

[Fig. 7 about here.]

[Fig. 8 about here.]

Consequently, the loss of orthogonality of the Legendre polynomials remains unchanged

despite the different data distribution. On the other hand,there is a strong modulation of

the number of data points per 1◦ band in the longitudinal direction in June 2003, cf. Fig.

8, bottom panel. Sine and cosine only retain their orthogonality if the data sampling is on

an equidistant grid. Since the data sampling in the longitudinal direction depends on the

latitude due to the orbit convergence, the orthogonality should be investigated in different

latitude bands. Reviewing Fig. 4, the biggest difference isexpected where the data density

is sparsest, i.e. in the equator area. Note that there is no dependency on the degree since the

longitudinal direction is evaluated using cosmλ and sinmλ .

The orthogonality properties of the sine and cosine functions have to be evaluated for

different cases:

1
2

(1+δm,0)δmk =
1

2π

∫ 2π

0
cos(mλ )cos(kλ )dλ (4a)

⇒
1
2

(1+δm,0) I ≈
1

2π

N

∑
i=0

cos(mλi)cos(kλi)∆λi

= CT WC,

1
2

(1−δm,0)δmk =
1

2π

∫ 2π

0
sin(mλ )sin(kλ )dλ (4b)

⇒
1
2

(1−δm,0) I ≈
1

2π

N

∑
i=0

sin(mλi)sin(kλi)∆λi

= ST WS,
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0 =
1

2π

∫ 2π

0
cos(mλ )sin(kλ )dλ (4c)

⇒ 0≈
1

2π

N

∑
i=0

cos(mλi)sin(kλi)∆λi

= CT WS

whereI and0 are the unit and the zero matrix, respectively.C andS contain the cosine and

sine functions for all orders of interest. For the calculations, all measurements within a 1◦-

band around the equator have been collected and sorted in ascending order. The differences

between neighboring samples form the∆λi and are placed on the main diagonal ofW.

[Fig. 9 about here.]

Fig. 9 shows the orthogonality matrices for January 2004 on the left panel, for June 2003

on the middle panel and their difference on the right panel. The matrices contain in the up-

per left corner the combination of two cosines, in the upper right and lower left corner a

cosine-sine pair, and in the lower right corner the combination of two sine functions. The

diagonal elements have been removed according to equations(4a)–(4c) in order to reveal the

off-diagonal pattern which is a measure of the loss of orthogonality. Obviously, the data dis-

tribution affects both months on different diagonals but the magnitude does not exceed 5%.

There is also no specific pattern visible which would enable aconnection to the pattern in

Fig. 5. Instead, a similar orthogonality is retained in June2003 and January 2004. Thus, the

loss of orthogonality can be excluded as the cause of the degradation of monthly solutions

during repeat modes.

4 Improvement strategies

So far, it has been shown that the ground track pattern (and the corresponding orbit config-

uration) is one of the main culprits of a degenerated global (monthly) gravity field solution.
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Since the problem is mostly inherent, it is difficult to overcome.Klokočńık et al. (2008)

mentioned as the primary measure the avoidance of the repeatmodes by proper orbit ma-

neuvers. Considering the advanced state of theCHAMP mission, other strategies have to be

found in order to improve the monthly solutions.

4.1 Utilization of a priori information

The first possibility is the simple acceptance of the restricted spatial resolution. According

to the rule of thumb byColombo(1984), the maximum resolvable degree would be 15 but as

mentioned earlier the solution is valid up to degree and order 30, cf. Fig. 1. In the following,

the spherical harmonic analysis is done to this degree for all months. Since the satellite is

still sensitive to high-degree signal, omitting it would cause aliasing effects for all months

as discussed before and thus it needs to be removed beforehand. Since it is assumed that no

time-variable signal is present, any recent gravity field model based onCHAMP or GRACE

data should yield a reasonable approximation of the high-degree signal. Generally, there is

the possibility of low-pass filtering but the conversion of aspectral filter with a passband to

degree and order 30 into an along-track filter is not trivial (Raizner, 2008).

The high frequency part of the gravity signal is then removedaccording to

TL≤30 ≈ T −Tapriori
L>30 . (5)

For the calculations here, a long-term mean solution comprising all theCHAMP data from

April 2002 to February 2004 has been used.

[Fig. 10 about here.]

Fig. 10 shows the results of the approach in terms of the spatial RMS of the monthly so-

lutions. Comparing it with Fig. 2, the situation clearly improved for the three months May
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2002, October 2002 and June 2003. TheRMS reduced from 42.0cm, 51.0cm and 62.6cm,

respectively, to 31.0cm, 33.1cm and 27.3cm, but in comparison to the other months a small

degradation remains. On the other hand, the situation for the unaffected months worsened

surprisingly and theRMS doubled approximately. One possible explanation for this behavior

is that the influence of a changed parameter space of the coefficients is visible. Furthermore,

the a priori field is an approximation of the signal and might cause systematic effects. At

the same time, it might be explainable by a reduced ability tohandle correlated noise as

high-frequency base functions are able to absorb part of this type of noise (Ditmar and van

Eck van der Sluijs, 2004). In the reduction step, only the deterministic gravity signal has

been removed. The noise remains unchanged but has now to be modelled by only 312 = 961

coefficients instead of the former 712 = 5041. Consequently, the lower degree harmonics

are more contaminated by noise than before. Possibly, frequency dependent data weighting

might be able to improve the solutions, as well (Ditmar et al., 2007).

Although the situation improved for the months with the31/2 repeat ground track, it was

at the cost of a reduced accuracy in the other months. Anotherpossibility is to improve the

sampling by adding information from terrestrial measurements or, more importantly, other

satellite missions.

4.2 Combination withGRACE

Ideally, the added measurements should be taken globally inthe same period and with simi-

lar accuracy as theCHAMP data. TheGRACE mission enables exactly this. Note that for this

study the K-band measurements arenot used. Instead, each of the twoGRACE satellites is

considered as a single satellite mission of theCHAMP-type.
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Before looking at the combination, the quality of the monthly static solutions derived

from the twoGRACE satellites is analyzed. The position data is again providedby the In-

stitute for Astronomical and Physical Geodesy (IAPG), TU Munich, starting from August

2002 with the exception of December 2002 and January 2003. Asa consequence, the sit-

uation for May 2002 cannot be improved due to data unavailability. The data is processed

according to the same procedure outlined in sub-section 2.1.

[Fig. 11 about here.]

Fig. 11 shows, in comparison toCHAMP, the span of the monthly solutions derived from

GRACE A and GRACE B in a difference degree-RMS plot with respect to GGM02S. The

lower limit is again defined by the minimum difference and theupper limit by the maximum

difference. Compared toCHAMP, the solutions of the twoGRACE satellites are of similar

quality for the very low degrees but show an increasing degradation with increasing de-

gree. The latter can be explained by the downward continuation. Assuming a similar noise

level of the instruments onboard theCHAMP and the twoGRACE satellites at their corre-

sponding satellite height, the noise is stronger amplified in the case ofGRACE due to the

downward continuation since the orbital height of the twoGRACE satellites was approxi-

mately 60−80km higher. At the same time, the solutions ofGRACE are more consistent

since the satellites do not pass a repeat mode during the period of interest.

Clearly, the question of an optimal combination of the data arises. The simplest approach

is to combine the data with equal weights, but it implicitly assumes a similar accuracy of

all the measurements. Considering that the exact relative accuracy between the measure-

ments of the three satellites is unknown, an equal weightingcannot be assumed optimal.

Instead, the weights must be considered unknown and need to be estimated (iteratively) in

the adjustment. Variance component estimation offers thispossibility.
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4.2.1 Variance component estimation

Data in gravity field recovery can be combined on three different levels: observations; nor-

mal equations; spherical harmonic coefficients. Variance component estimation (VCE) can

handle all three cases. Here, it is used to combine the different data types on the level of

normal equations using relative weights between the variance factorsσ 2
i of the data subsets

i. Each normal equation/vector of one satellite forms one subset.

The variance factors are unknown random variables since therelative weighting of dif-

ferent data sets is normally unknown. In theVCE, they are derived iteratively in a best in-

variant quadratic unbiased estimation (BIQUE). The applied methodology follows closely

the one outlined inKoch and Kusche(2002) except that regularization is not included here

and a stochastic trace estimation is not necessary. In each iteration step, the following four

steps are done:

1. The unknown parametersx̂ are estimated from a weighted summation of the subsets:

(

∑
i

ωi AT
i Pi A i

)

x̂ = ∑
i

ωi AT
i Pi l i , (6)

whereA is the Jacobian andP the weighting matrix of a subseti. A relative weighting

with respect to the variance of the first subsetσ 2
1 using the ratioωi = σ 2

1/σ 2
i has been

introduced. The initial values forσ 2
i are derived from the monthly static solutions.

2. The contribution of one subseti to the combined solution is denoted as the partial re-

dundancyr i and calculated as:

r i = ni − tr

(

1

σ 2
i

AT
i Pi A i N−1

)

, (7)

whereni is the number of observation in the subset, “tr” the trace operator andN the

normal matrix of the combined solution.
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3. A new variance factor is calculated for each subset:

σ̂ 2
i =

v̂T
i Pi v̂i

r i
, (8)

wherev̂i are the residuals.

4. Setσ 2
i = σ̂ 2

i and go to 1.

The procedure is repeated until a stopping criterion is fulfilled. For the calculations here,

the relative weighting factorsωi between two steps are considered. If the difference of all

elements is smaller than 10−3, the procedure is stopped, which normally takes no more than

three to four iterations.

Since subsets can either be formed from the same data source or from different types of

data, variance component estimation provides the platformfor the combination with terres-

trial, airborne, shipborne and altimetry data in the future. Further applications of variance

component estimation can be found inFotopoulos(2005) orvan Loon(2008) for the appli-

cation to large systems.

4.2.2 Combined monthly static solutions

Since a spherical harmonic analysis has already been performed for each satellite and each

month in order to assess the quality of the monthly static fields, the corresponding normal

equations can be easily combined. Looking at the range spanned by the best and the worst

difference degreeRMS with respect to GGM02S of the resulting combined monthly solu-

tions in Fig. 12, it is seen that the combination gives the best of both worlds.

[Fig. 12 about here.]

That is, theGRACE data reduces the span of theCHAMP-only solutions by half an or-

der of magnitude yielding a more consistent set of solutions, and at the same time the
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stronger degradation due to the downward continuation in the GRACE-solutions is improved

by CHAMP.

[Fig. 13 about here.]

The improved performance is also visible in the spatial differenceRMS between the com-

bined solutions and GGM02S in Fig. 13. The months with poor ground track coverage

are vastly improved. In October 2002 and June 2003, theRMS dropped from 51.0cm and

62.6cm, respectively, to 10.4cm for both months, which is an improvement by a factor of

5 to 6. TheRMS of all other months improved only slightly by approximately1cm com-

pared to theCHAMP-only solution. The limiting factor is obviously not the spatial sampling

anymore but the overall sensitivity of the instruments.

[Fig. 14 about here.]

For completeness, the relative weights of theGRACE subsets with respect toCHAMP are

shown in Fig. 14. Since the measurements of all three satellites are expected to have a

similar noise level, a relative weight of 1 is expected. Fig.14 shows a deviation of ONLY up

to 4%. In the beginning the weights of the twoGRACEsatellites are very similar and indicate

a downweighting but in the end of the period, the relative weights ofGRACE A andGRACE

B start to deviate. A changing noise level for eachGPSreceiver of the twoGRACE satellites

is a possible explanation.

5 Conclusions

It has been shown that a sparse ground track coverage has a severe influence on the quality of

a gravity field solution. The degradation is visible in the error spectrum as well as in the dif-

ference spectrum to independent gravity field models, whichsuggest that the effect must be
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reflected in the normal matrix. Since the latter depends solely on the location of the measure-

ment, its variation can be connected to the geometry of the orbit. However, the insufficient

spatial sampling does not cause a loss of orthogonality but results in spatial aliasing since

high degree signal is sensed by the satellite which cannot beseparated from low degree sig-

nal, anymore. The aliasing problem is inherent as long as theorbit remains unchanged. Two

possible workarounds are the restriction to a low degree solution or the combination with

other data sources. Of the two, the latter outperforms the former and results in an improved

performance for months with and without sparse ground trackcoverage. The combination

approach also confirms that spatial aliasing is the cause of the degradation. By adding suf-

ficient additional measurements, the spatial sampling is improved and aliasing is reduced

yielding a homogeneous set of monthly gravity solutions.

At the same time, a discrepancy between the rule of thumb byColombo(1984) and the

actual recoverable maximum degree has been recognized but cannot be explained currently.

According to this rule, the maximum resolvable degree should be 15 during the31/2 repeat

mode but the solutions are in reality valid to degree and order 30. We currently do not believe

that this rule is wrong but it might need refinement for special cases.

Another important outcome of this research is the direct applicability of the combination

procedure to the upcomingSWARM mission. The setup of the low flyingCHAMP satellite and

the two higherGRACE satellites is comparable to this mission.

One possible weakness of our procedure is the energy balanceapproach itself. It is

predominantly an along-track integration of the satellite’s velocity, and thus the cross-track

and radial information of the gravity field is lost. Other approaches like e.g. the short-arc

method (Mayer-G̈urr et al., 2005) or the acceleration approach (Reubelt et al., 2003) should

outperform the energy integral as they make use of all three components although the latter
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approach demands an additional differentiation step. SeeDitmar and van Eck van der Sluijs

(2004) for more details.

Further, the question of an optimal combination is not sufficiently solved. Variance com-

ponent estimation is just one possible combination approach. In fact, it uses the residuals of

the reconstructed signal from the combined model with respect to the measurements. This

primarily gives insight into the internal fit of the solution. All comparisons in the spatial

and spectral domain, on the other hand, are done with external data, which suggests that

the method can be improved by introducing external information. Additionally, only one

scalar weighting factor is determined for each subset. The influence of the ground track, on

the other hand, is not equal for all coefficients. A degree- and/or order-dependent weighting

scheme would be more desirable. Similarly, a frequency dependent data weighting might be

an alternative.

In the high-low satellite-to-satellite tracking scenariodiscussed here, only the static

component of the gravity field has been recovered from a time-variable geometry resulting

at times in a degraded performance. Obviously, the situation becomes even more compli-

cated for low-lowSSTdata fromGRACE as one tries to recover a time-variable gravity field

from a time-variable geometry. For a deeper insight, the reader is referred toWagner et al.

(2006) andKlokočńık et al.(2008).
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Sansò, F., On the aliasing problem in the spherical harmonic analysis,J. Geod., 64, 313 – 330, 1990.

Sneeuw, N., Global spherical harmonic analysis by least squares and numerical quadrature methods in his-

torical perspective,Geophysical Journal International, 118, 707 – 716, 1994.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

25

Sneeuw, N., A semi-analytical approach to gravity field analysis from satellite observations,Reihe C 527,

DGK, 2000.
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Fig. 1 Span of the difference degree RMS of the monthly staticCHAMP solutions with respect to GGM02S.
The solution of June 2003 forms the upper boundary representing the worst solution and the one of January
2004 the lower boundary representing the best solution.
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Fig. 2 RMS of the difference betweenCHAMP monthly solutions and GGM02S in terms of geoid height. In
the background and connected to the right y-axis, the orbit height and its daily variation is shown.
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Fig. 3 Ground track coverage over North-America: January 2004 (left) and June 2003 (right)
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Fig. 4 Sampling (black triangles) of the disturbing potential (solid grey line) for a 25◦ degree section around
the Greenwich meridian: left column for January 2004 and right column for June 2003; top row for a high-
latitude parallel (φ = 80◦), bottom row for the equator (φ = 0◦)
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Fig. 5 Error and difference spectra for January 2004 in the left column and for June 2003 in the right column:
The top row shows the standard deviations, the bottom row thedifference spectra with respect to GGM02S.
All figures are on a logarithmic scale.
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Fig. 6 Repeat modes of the CHAMP satellite
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Fig. 7 Ground track and number of points per 1◦-band: January 2004
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Fig. 8 Ground track and number of points per 1◦-band: June 2003
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Fig. 9 Sine/cosine orthogonality matrices for an 1◦-equatorial band: January 2004 (left panel), June 2003
(middle panel) and their difference on a logarithmic scale (right panel)
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Fig. 10 RMS of the difference between the restricted monthly solutionsand GGM02S in terms of geoid
height. In the background and connected to the right y-axis,the orbit height and its daily variation is shown.
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Fig. 11 Span of the difference degree RMS with respect to GGM02S of the monthly static solutions for
GRACE (dark gray) andCHAMP (light gray): the worst monthly solution of each data set forms the upper
boundary and the best solution the lower boundary.
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Fig. 12 Span of the difference degree RMS with respect to GGM02S of the monthly static solutions for
GRACE (dark gray),CHAMP (light gray) and the combined solution (black): dashed lines indicate the lower
boundaries of theCHAMP-only (lower dashed line) and theGRACEsolutions (upper dashed line).
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Fig. 13 RMS of the difference between the combinedCHAMP/GRACE monthly solutions and GGM02S in
terms of geoid height. In the background and connected to theright y-axis, the orbit height ofCHAMP and its
daily variation is shown.
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Fig. 14 Relative weights of theGRACE measurements with respect to theCHAMP measurements for each
month obtained by theVCE procedure
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40 TABLES

Table 1 Models utilized for the correction of time-variable effects

source model

astronomic tide point masses for Sun and Moon
coordinates from DE405

solid Earth tide IERS Conventions 2003,§6.1
solid Earth pole tide IERS Conventions 2003,§6.2
ocean tide FES2004
ocean pole tide IERS Conventions 2003,§6.3
atmosphere and ocean AOD1B by GFZ Potsdam
relativistic corrections IERS Conventions 2003,§10.2


