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Abstract

Isogeometric analysis (IGA) represents a recently developed téoology in computational mechanics that o ers the
possibility of integrating methods for analysis and Computer Aided Design (CAD) into a single, uni ed process. The
implications to practical engineering design scenarios are profoundsince the time taken from design to analysis is
greatly reduced, leading to dramatic gains in e ciency. The tight coupling of CAD and analysis within IGA requires
knowledge from both elds and it is one of the goals of the present pper to outline much of the commonly used
notation. In this manuscript, through a clear and simple Matlab ® implementation, we present an introduction to IGA
applied to the Finite Element (FE) method and related computer implementation aspects. Furthermore, implemen-
tation of the extended IGA which incorporates enrichment functions through the partition of unity method (PUM) is
also presented, where several examples for both two-dimensidnand three-dimensional fracture are illustrated. The
open source Matlal® code which accompanies the present paper can be applied to one,dvand three-dimensional
problems for linear elasticity, linear elastic fracture mechanics, stuctural mechanics (beams/plates/shells including
large displacements and rotations) and Poisson problems with or witbut enrichment. The Bezier extraction concept
that allows FE analysis to be performed e ciently on T-spline geometries is also incorporated. The article includes a

summary of recent trends and developments within the eld of IGA.
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1. Introduction

1.1. Underlying concepts of isogeometric analysis

The predominant technology that is used by CAD to represent compex geometries is the Non-Uniform Rational
B-spline (NURBS). This allows certain geometries to be representeéxactly that are only approximated by polynomial
functions, including conic and circular sections. There is a vast arrg of literature focused on NURBS (e.g. l[1], [[2])
and as a result of several decades of research, many e cient cqmter algorithms exist for their fast evaluation and
re nement. The key concept outlined by Hughes et al. [3] was to emjoy NURBS not only as a geometry discretisation
technology, but also as a discretisation tool for analysis, attribuing such methods to the eld of “Isogeometric Analysis'
(IGA). Since this seminal paper, a monograph dedicated entirely tolGA has been published |[[4] and applications can
now be found in several elds including structural mechanics, solid nechanics, uid mechanics and contact mechanics.
We give in this section an overview of some of these recent developmte while outlining the bene ts and present
shortcomings of IGA. It should be emphasized that the idea of usingCAD technologies in nite elements dates back
at least to [5, 6] where B-splines were used as shape functions in FEMn addition, similar methods which adopt
subdivision surfaces have been used to model shells [7]. We also revisome of the recent attempts at simplifying the

CAD-FEA integration by separating boundary and domain discretisations.

1.2. Applications

In contact formulations using conventional geometry discretisatons, the presence of faceted surfaces can lead to
jumps and oscillations in traction responses unless very ne mesheare used. The benets of using NURBS over
such an approach are evident, since smooth contact surface aobtained, leading to more physically accurate contact
stresses. Recent work in this area includes|[8] 9, 10,/11,/12].

IGA has also shown advantages over traditional approaches in theontext of optimisation problems [13,/14, 15| 16]
where the tight coupling with CAD models o ers an extremely attract ive approach for industrial applications. Another
attractive class of methods include those that require only a boundry discretisation, creating a truly direct coupling
with CAD. Isogeometric boundary element methods for elastostait analysis were presented in_[17, 18], demonstrating
that mesh generation can be completely circumvented by using CAD ibcretisations for analysis.

Shell and plate problems are another eld where IGA has demonstreed compelling bene ts over conventional

approaches|[19| 20, 21, 22, 23, 24,|25]. The smoothness of the RBS basis functions allows for a straightforward



construction of plate/shell elements. Particularly for thin shells, rotation-free formulations can be easily constructed
[20,26]. Note that for multi-patch NURBS surfaces, rotation-free IGA elements require special treatment at patch
boundaries where the basis functions are found to b€° continuous. Furthermore, isogeometric plate/shell elements
exhibit much less pronounced shear-locking compared to standar&E plate/shell elements. Elements with smooth
boundaries such as circular and cylindrical elements were succesly constructed using the IGA concept [27,128].

The smoothness of NURBS basis functions is attractive for analysi®f uids [29, 30, [31] and for uid-structure
interaction problems [32,[33]. In addition, due to the ease of consticting high order continuous basis functions, IGA
has been used with great success in solving PDEs that incorporatedrth order (or higher) derivatives of the eld
variable such as the Hill-Cahnard equation([34], explicit gradient damag models|[35] and gradient elasticity|[36]. The
high order NURBS basis has also found potential applications in the Kbdn-Sham equation for electronic structure
modeling of semiconducting materials|[37].

NURBS provide advantageous properties for structural vibration problems [38,139, 40/ 41] wheré&-re nement
(unique to IGA) has been shown to provide more robust and accurte frequency spectra than typical higher-order FE
p-methods. Particularly, the optical branches of frequency spetra, which have been identi ed as contributors to Gibbs
phenomena in wave propagation problems (and the cause of rapid deadation of higher modes in the p-version of
FEM), are eliminated. However when lumped mass matrices were usethe accuracy is limited to second order for any
basis order. High order isogeometric lumped mass matrices are noeyavailable. The mathematical properties of IGA
were studied in detail by Evans et al.[42].

The isogeometric concept has also spread to the eld of meshfree ethods such as|[43, 44] in which spline-based
meshfree methods were presented. Industrial applications of I& have been presented in [45, 18] along with applications
in experimental mechanics|[46] where NURBS-based DIC (Digital Imge Correlation) was shown to outperform standard

FE DIC.

1.3. Shortcomings of NURBS and alternative geometry disctésations

NURBS are ubiquitous in CAD but are known to exhibit major shortcomings from a computational geometry
standpoint. Perhaps the greatest di culty encountered is the inability of NURBS to produce watertight geometries,
often complicating mesh generation. From an analysis perspectivahe tensor product structure of NURBS proves to

be ine cient, caused by the global nature of re nement operations. In turn, this leads to ine cient error estimation



and adaptivity algorithms. One solution which has gathered momentun from both the computational geometry and
analysis communities is the use of T-splines [47] which overcome the linaitions of NURBS while retaining the familiar
structure of NURBS algorithms. T-splines correct the de cienciesof NURBS by creating a single patch, watertight
geometry which can be locally re ned and coarsened. Bu a et al. [[48hote that linear independence of the T-spline
basis functions is not guaranteed on generic T-meshes leading to ¢hde nition of analysis-suitable T-splines [49], a
mildly restricted subset of T-splines which meet the demands of bothdesign and analysis. Utilisation of T-splines in
an IGA framework has been illustrated in [50, 51], and by adopting a Ezier extraction process, Scott et al.[52] showed
that T-splines can be incorporated e ciently into existing FE codes.

Alternatives to T-splines include polycube splines|[53], PHT-splines [S4hnd LR-splines [55]. PHT-splines (poly-
nomial spline over hierarchical T-meshes) have been extended tational splines and applied in [56, 57] to problems
in elasticity for continua and thin structures. Adaptive re nement with PHT-splines is particularly simple. Although
T-splines allow for local adaptive re nement, the complexity of knot insertion under adaptive re nement is complex,
particularly in 3D. However, we note that research is currently beirg pursued on hierarchical T-spline re nement
algorithms that address this issue.

Another direction of IGA research includes hierarchical B-splines|[§,!59,/60] and unstructured Powell-Sabin splines
[61]. The hierarchical B-splines nite cell method [59] furnishes a sealess CAD-FEA integration for very complex
geometries. We refer also tol [62] for IGA combined with nite elementbased local re nement capabilities. Di erent
subdivision surface techniques (Catmull-Clark, Loop) have also beaeutilized for solid and shell modeling [63/ 64].

In computer aided geometric design, patching multiple NURBS parameerizations to form complex topologies is
far from trivial if certain continuity requirements are to be maintain ed. Trimming techniques provide a promising
alternative for representing complex NURBS domains. Inl[65], a trimmed surface based analysis framework has been
proposed where NURBS-enhanced FEM_[66, 67] was applied to de ne suitable integration domain within parameter

space. In arecent contribution [68], the authors presented an ad#trnative method to handle trimmed NURBS geometries.

1.4. Discontinuities and fracture

IGA has been applied to cohesive fracturel[69], outlining a frameworkfor modeling debonding along material
interfaces using NURBS and propagating cohesive cracks using Tpbnes. The method relies upon the ability to specify

the continuity of NURBS and T-splines through a process known as kot insertion. As a variation of the eXtended Finite



Element Method (XFEM) [70Q], IGA was applied to Linear Elastic Fractu re Mechanics (LEFM) using the partition of
unity method (PUM) to capture two dimensional strong discontinuit ies and crack tip singularities e ciently [71] 72].
The method is usually referred to as XIGA (eXtended IGA). In [73] an explicit isogeometric enrichment technique
was proposed for modeling material interfaces and cracks exactlyNote that this method is contrary to PUM-based
enrichment methods which de ne cracks implicitly.

A phase eld model for dynamic fracture was presented inl[74] usingadaptive T-spline re nement to provide an
e ective method for simulating fracture in three dimensions. In [75] high order B-splines were adopted to e ciently
model delamination of composite specimens and in_[76], an isogeometrimmework for two and three dimensional
delamination analysis of composite laminates was presented whereehauthors showed that using IGA can signi cantly
reduce the usually time consuming pre-processing step in generatinFE meshes (solid elements and cohesive interface
elements) for delamination computations. A continuum description d fracture using explicit gradient damage models

was also studied using NURBS/[35].

1.5. Alternatives to IGA

Other techniques which integrate CAD and analysis include the use ofubdivision surfaces to model shells [7],
NURBS-enhanced nite elements [66] 67] and NURBS for BEM shape timisation [77]. Immersed boundary methods
[78] (and references therein), the nite cell method|[58, 79] andhe structured XFEM [80| 81] are yet other alternatives
which aim to combine analysis and design technologies. In general, it i®find that for CAD and analysis technologies to
work seamlessly together, the underlying discretisation must eithebe directly compatibile or easily converted between
the two.

IGA has o ered signi cant advances towards the goal of a uni ed design and analysis framework, but much research
is still needed before this goal is realised. There are several indidahs of the future promise of IGA for industrial

design but ultimately, the litmus test of success for IGA will be whether the approach is widely adopted by industry.

1.6. Computational aspects

Some major computational aspects of IGA which have been studiedo far include (i) locking issues, (ii) sensitivity
to mesh distortion, (iii) impact of high continuity of NURBS on direct so Ivers, (iv) collocation methods, (v) compet-
ing demands of analysis and computational geometry discretisatiogy (vi) construction of trivariate solids from given

bivariate surface representations and (vii) optimal quadrature rules.



(i) Although the smoothness of NURBS basis functions reduces to@me extent the locking phenomena for constrained
problems such as incompressible media, thin-walled structures, NUBS-based FEs are not locking free [82, 83,
84,185,/ 86]. Existing locking removal techniques in standard FEMs we successfully adapted to IGA such as the

Discrete Strain Gap method [84], the F/B-bar method [83,185], the emanced assumed strain method_ [86] and

mixed formulations [87].

(i) The e ect of mesh distortion on the performance of IGA for solid mechanics was discussed in [B88] in which it was

found that higher-order NURBS functions are able to somewhat allgiate the impact of the distortions.

(iif) The high order continuity o ered by NURBS has a negative impact o n the performance of direct solvers as pointed
out in [B9]. The authors found that for a xed number of unknowns and basis degree, a higher degree of continuity

drastically increases the CPU time and RAM needed to solve the proble when using a direct solver.

(iv) In an attempt to compete with low order FEs with one-point quad rature that are extensively used in industrial

applications, isogeometric collocation methods were developed [901].

(v) Due to the fact that meshes in an isogeometric framework are d ned by the parametrisation of the object of
interest, the quality of the geometry parametrisation plays an impartant role in ensuring mesh quality. This issue

has, however, been addressed by only a few researchers [92, 198, (95,/96]. In particular, in [94], the authors

proposed the concept of \analysis-aware geometry modeling".

(vi) In CAD, solids are de ned as boundary surfaces in which the intaior is not explicitly modeled. In FEA, a solid
representation is necessary and therefore, the transition fron€AD solids to FEA solids demands a step in which
the CAD representations are converted to solid FEA representaibns. Initial developments have been reported in
[97,198,199, 100, 101, 102]. Note that in this regard, the isogeomét boundary element method (IGABEM) can

be considered a truly isogeometric method [17, 18, 103, 104] sinB&EM analysis requires only the de nition of a

boundary discretisation, completely de ned by CAD.

(vii) Gaussian quadrature is not optimal for IGA. Research is currently focussed on optimal integration techniques

such as that in [105, 106] in which (nearly) optimal quadrature ruleshave been presented.



1.7. Available implementations

Some implementation aspects of IGA were reported in [4] and moreacently, an open source IGA Matlab® code was
described in [10/7] with a restriction to 2D scalar PDEs. An excellent @en source IGA code written in Matlab® is given
in [108]. Incorporating IGA within an object-oriented C++ FE code wa s discussed in[[109]. Implementation details
for enriched formulations within an IGA framework are reported in [110] using commercial FE software. An IGA BEM
code written in Matlab ® was presented inl[104]. Isogeometric analysis was also incorporatédo FEAP [L11) 87]. A
high performance IGA code was given in [112] which is based on PETSthe Portable, Extensible Toolkit for Scienti ¢

Computation. The Python programming language has also been addpd to implement IGA e.g., [113,114].

1.8. Contributions and outline

In this paper, we present in detail an isogeometric (Bubnov-)Galekin nite element method applied to two- and
three-dimensional elasto-static solid/structural mechanics prdolems and traction-free crack problems. The discussion
is con ned to NURBS for the sake of simplicity. Although no new fundamental ndings are presented the contribution

of the paper are

an overview of IGA, applications and recent developments are presnted;

implementation details for 1D/2D/3D solid mechanics and rotation-fr ee plate elements are provided;
implementation for 2D and 3D XIGA for traction-free cracks;

visualization techniques for (X)IGA are discussed;

techniques to impose Dirichlet boundary conditions including the pen#ty method, the Lagrange multipliers

method, the least square projection method are implemented;

di erent techniques to model discontinuities in the context of IGA are discussed;

where some implementations are not available in the literature.
The paper is structured as follows: Sectioi R outlines B-spline and NBEBS technology used to construct curves,
surfaces and solids; the use of NURBS for discretisation within a nie element framework is treated in Sectior13;

implementation of an isogeometric nite element method for two-dimensional elasticity is described in Sectioi4 and an



extended isogeometric formulation based on the concept of the PM is the subject of Section®. A detailed description
of our IGA Matlab code is given in Section[® and Application of IGA to structural mechanics problems is presented in
Section[d. Numerical examples including 2D/3D fracture mechanics iad large deformation shell problems are given in

Section[8.

1.9. Notation
We use lowercase indices to indicate a local index and uppercase indicéo indicate a global index. We denote
d, and ds as the number of parametric directions and spatial directions respctively. Boldfont is used to indicate

matrices and vectors where the number of components is implied.

2. A brief introduction to B-splines/INURBS

As a precursor to Sectiori 8, an understanding of the discretisatio technology which underpins IGA is essential, since
the bene cial properties which are found through analysis emanag directly from the underlying CAD basis functions.
We give a brief outline of parametric functions, then state the terminology and basis function de nitions which allow
curves, surfaces and solids to be represented by B-splines and RBS. The algorithms which de ne B-splines and
NURBS in the present Matlab® code are based on those given inl[1] in which explicit implementations argiven for

all algorithms.

2.1. Parametric representation of geometry

What is fundamental to all the discretisation technology used in thepresent paper (and the majority of technology
in the CAGD community), is the representation of geometry through parametric functions. These de ne a mapping
from a given parameter to the desired geometry. We can imagine thiaas we move through the parameter domain, the
parametric function “sweeps' out the desired shape. For examplgf we consider the case of a circle of radius 1, the
implicit form of this equation is given by

x2+y?=1 (1)

or alternatively, if we de ne a mapping f :[0;2 ]! R?, the parametric form of the same circle is given by

f (t) = (cos t; sint) : (2)



This is found to be much more conducive for graphical implementation To see this, consider the task of plotting
the circle through both Eq. (@) and Eqg. (2). In the case of the latter, by simply determining t at a discrete set of
points in the interval [0;2 ], the desired result is obtained. In addition, many algorithms which paform geometrical
transformations become much simpler when parametric functions @ used. Both B-splines and NURBS are based on

parametric functions.

2.2. B-splines

The demands of Computer Aided Geometrical Design place certain uirements on the types of discretisation that
can be used to represent geometrical objects where, for exatep in the case of car design, surfaces @? continuityH
are required to avoid unnatural re ections. Additional requirements include local control of geometrical features, the
ability to apply re nement algorithms and numerical stability of high or der curves. It is found that representations
of objects using Bezier curves or Lagrange polynomials do not meéemany of these requirements and alternatives are
sought. The CAGD community have settled on the use of B-spline-baed technology since it is found to provide many
of the desired properties for interactive geometrical design, rdesed through the properties of the underlying B-spline
basis functions.

B-splines can be considered as a mapping froparametric space”™ R% to physical space R H In this sense,
a B-spline can be considered to "sweep' out a curve, surface or vahe as we move through the range of parameter
values. In the present work we de ne coordinates in parameter sace as =( ; ; )=( % 2; ®) and coordinates in
physical space ax = (x;y;z) = ( x*;x?;x3). These are simpli ed accordingly in the case of one- and two-dimerienal
problems. What remains is to determine the particular form of the magpping x : " !

To construct a B-spline, a knot vector must be speci ed and is de ned as an ordered set of increasing panaeter
values = f 15 27100 nepsr O i i+1 where ; is the ith knot, n is the number of basis functions andp is the
polynomial order. The knot vector divides the parametric space inb intervals usually referred to asknot spanswith
the number of coincident knots for a particular knot value referred to as a knot with a certain multiplicity k. That is,
a knot has a multiplicity k if it is repeated k times in the knot vector. Most commonly, open knot vectors are used

where the rst and last knots have a multiplicity k = p+ 1. Appendix Aloutlines alternative knot vector notations

4Appendix B putlines the di erences between CK and Gk continuity
SFurther discussion of these spaces in given in Section 8I]



which remove redundant information, but it can be assumed that the above knot vector notation is used throughout
the present work.

An important property of B-splines formed from open knot vectors is that they are interpolatory at their start
and end points, greatly facilitating the imposition of boundary conditions for analysis. In geometrical terms, this
corresponds to a B-spline that coincides with its start and end contol points. A uniform knot vector is associated to
evenly distributed knots. Otherwise it is classi ed as anon-uniform knot vector.

Knot vectors are not commonly used by CAD designers, and in most @D software the ability to modify knot
vectors is not provided. It is much more common to tailor the geomety through modi cation of the polynomial order,

control points and weightings.

2.2.1. B-spline basis functions

Given a knot vector , the associated set of B-spline basis functiors f N, g'.; are de ned recursively by the

Cox-de-Boor formula, starting with the zeroth order basis function (p = 0)

8
E1 if < et

Nio( )= 3 3)

0 otherwise

and for a polynomial orderp 1

Nip () = _—iiNup )+ le;p () 4)

i+p i+p+l i+

in which fractions of the form 0=0 are de ned as zero.

Some salient properties of B-spline basis functions include: (1) thegonstitute a partition of unity, (2) each basis
function is non-negative over the entire parametric domain, (3) they are linearly independent, (4) the support of a
B-spline basis function Nj;, is given by p+ 1 knot spans denoted by [i; i+p+1], (5) they exhibit CP ™i continuity
across knot ; where m; is the multiplicity of knot ; and (6) B-spline basis functions in general are not interpolatory,
equivalent to saying that the Kronecker-delta property is not guaranteed at control points. This last point requires
careful treatment when imposing non-homogeneous Dirichlet boudary conditions, and is discussed later in Sectiof 4]2.

To demonstrate the e ect of alternative knot vectors, Fig. []illustrates a set of quadratic p = 2) B-spline basis

10



functions for a uniform knot vector. Fig. Rlillustrates a correspording set of basis functions for an open, non-uniform
knot vector. Of particular note is the interpolatory nature of the basis function at each end of the interval created
through an open knot vector, and the reduced continuity at = 4 due to the presence of the location of a repeated
knot where C° continuity is attained. Elsewhere, the functions are C! continuous (CP 1). The ability to control

continuity by means of knot insertion is particularly useful for modeling discontinuities such as cracks or material

interfaces [69, 78].

0 1 2 3 4 5 6
Figure 1: Quadratic B-spline basis functions de ned for the uniform knot vector = fO0;1;2; 3;4;5; 6g.
During implementation, the derivatives of B-splines are required in bah CAD and analysis to compute quantities

such as tangent and normal vectors and eld variable derivatives. The rst derivative of a B-spline basis function is

computed recursively from lower order basis functions as

d p

d—Ni:p( )= E—

-Nip 1() d :
i+p i

i+ p+l i+

- Nis1p 2( ) (5)
Derivatives of higher order can be found inl[1].

2.3. Re nement algorithms

A feature which is essential for both computational geometry andanalysis is the ability to successively re ne

discretisations to allow intricate geometries to be modelled or to capire rapid variations in the eld solution. A
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Figure 2: Quadratic B-spline basis functions dened for the open, mn-uniform knot vector =
f0;0;0;1;2;3;4; 4;5;5;59. Note the exibility in the construction of basis functions with varyin g degrees of regularity.

signi cant advantage of adopting B-spline-based functions as a disretisation tool is the ability to apply a variety of
re nement algorithms in a simple manner. We restrict ourselves to a lief discussion of the available algorithms, with
a more detailed treatment given in [4].

B-spline re nement algorithms in the context of isogeometric analyss can be assigned to one of three types:

1. Knot insertion is the process whereby additional knots are inserted into the knotvectors thereby creating
additional knot intervals or elements, in the context of analysis. This is directly analogous to h-re nement seen

in the conventional FEM.

2. Degree elevation is the process of raising the order of the underlying basis, directly malogous to p-re nement

in the conventional FEM.

3. k-re nement is unique to IGA and consists of a combined process of degree eleiat and knot insertion. These
processes are not commutative and therefore the order in whichhiese re nements are applied will change the
nal basis. k-re nement rst applies degree elevation proceededby knot insertion, o ering a reduction in degrees

of freedom over its counterpart [3].

12



2.4. B-spline curves

Given a set of B-spline basis functions N, gi-; and a set of control points fPAgh., whereP, 2 R%, we can

construct a piecewise-polynomial B-spline curve as

xo
C()= F)ANA;p( ): (6)
A=1

An example quadratic B-spline curve is shown in Fig. 3 constructed fom a uniform open knot vector. Its associated
control polygon, constructed by piecewise linear interpolation of the control poins is also shown. A B-spline curve
inherits all of the continuity properties of its underlying basis and, as mentioned previously, the use of open knots
ensures that the rst and last points are interpolatory. Note that the tangent to the curve at the rst control point is
de ned by the rst two control points. This property is exploited in rotation-free element formulations for thin-walled

structures (section 7).

0 015 1 115 2 2.5 3 315 4 415 5
Figure 3: A quadratic (p = 2) B-spline curve with a uniform open knot vector = f£0;0;0;1;2;3;4;5;5;5g. Control
points are denoted by lled circles and the control polygon is denoté by the red line. Note that the curve is at least

C! continuous everywhere except at the extremities where, due tohe presence of repeated knotsC * continuity is
obtained.
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2.5. B-spline surfaces and volumes

Given two knot vectors for each parametric direction = f 1; ;005 nepergand 2=1f 1; 2,011 meqa g, and
a control net P; 2 RY%, a tensor-product B-spline surface is de ned as
X
S(; )= Nip ( )Mjq ( )Pij @)
i=1 j=1

where Nj;, () and Mjq () are the univariate B-spline basis functions of orderp and g corresponding to knot vectors

Land 2, respectively. De ning a global index as

A=n(j 1+i (8)

Eq. (7) can be rewritten in a more compact form as

X m )
S()= PaNRY(); )
A=1
in which N{9 is a bivariate B-spline basis function de ned asNR( ) = Nip ( )Mjq ( ). Figs. 4 illustrates an example
bicubic B-spline basis function.

The extension to B-spline volumes is straightforward, where a trivaiate basis is formed through a tensor product

of B-spline basis functions as

X X
V(i )= Nip ( Mg ( Lwr ( )Pk (10)
i=1 j=1 k=1
or, by de ning a global index A through
A=(n m)k 1)+n( 1+ (11)

14
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Figure 4: A bivariate cubic B-spline basis function for knot vectors ' = 2= f0;0;0;0;0:25;0:5;0:75;1; 1; 1; 1g.
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a simpli ed form of Eq. (10) can be written as

nym |
V()= PANRY(): (12)
A=1

To compute derivatives of B-spline surfaces and volumes, the chairule is applied to (5) with a detailed treatment

of this topic provided in [1].

2.6. NURBS

B-splines are convenient for free-form modelling, but they lack theability to exactly represent some simple shapes
such as circles and ellipsoids. This is why today, thede facto standard technology in CAD is a generalisation of
B-splines referred to as NURBS (Non-Uniform Rational B-Splines). NURBS are formed through rational functions
of B-splines, forming a superset of B-splines. They inherit all the faourable properties of B-splines and are favoured
over their counterpart due to their ability to form exact representations of conic sections such as spheres, ellipsoids,

paraboloids and hyperboloids. In addition, there exist e cient algorithms for their evaluation and re nement.

2.6.1. NURBS basis functions

NURBS basis functions are de ned as

' _ Nip()wi _ 5 Nip()w
Rip ()= \;)V( T P?:l F;\l?;p( Y (13)

where fN;, gL, is the set of B-spline basis functions of orderp and fw;gl, ;w; > 0O is the set of NURBS weights.
Selecting appropriate weights permits the description of many di erent types of curves including polynomials and
circular arcs. For the special case in which all weights are equal, th&lURBS basis reduces to the B-spline basis.
NURBS weights for certain simple geometries are given in [1], but in gemal, weights are user-de ned through CAD
packages such as Rhino [115].

The rst derivative of a NURBS basis function R;, is computed using the quotient rule as

d Ni(;)p( JW()  Nip (W)

d—Ri;p( )= wi W( )2 :

(14)
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whereN$ () &Nip( ) and
X
wo )= NIA?p( YWy (15)
=1
2.6.2. NURBS curves, surfaces and volumes

In a similar fashion to B-spline curves, the NURBS curve associated ith a set of control points and weights

fPA;Wa0A-; and basis functionsf Rap ga-, is de ned as

X
C()=  PaRap(): (16)
A=1

NURBS surfaces are constructed from a linear combination of bivdate NURBS basis functions, control pointsP;; 2

RY% and weightsw;; > 0 as
XX _
S(; )= Py REYC ) 17)
i=1 j=1

where the bivariate NURBS basis functions are de ned as

PAdc- Y= p Bll( IM; ()w;; .
R () 1 o NeOMp()wpp (18)

Alternatively, using the mapping de ned by Eq. (8), Eq. (17) can be written more succinctly as

X m _
S()= PARRIY(): (19)
A=1

NURBS volumes are constructed from control pointsPj 2 RY% , weights Wijx > 0as

x X X .
V(i )= Pige Rl (5) 0

i=1 j=1 k=1

where the trivariate NURBS basis functions Rfy" are given by

- Ni(P)Mj( )P ( )Wi;j:k

n Tm [ : 1)
=1 f=1 0 k=r NeOMpO)PR()wag g
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Using the mapping given by Eq. (11), Eq. (20) can also be written as

nym |
V()= PARRY () (22)
A=1

Remark 2.1. As mentioned in Section 1.6, CAD representations are usually compesl of surface models or boundary-
representations. Trivariate discretisations de ned by (22) are mot normally explicitly given, and therefore some pre-
processing is required before domain based numerical methods $uas the FEM can be applied. Except for the case of
simple cases such as extruded-surface models and swept modelssttask is far from trivial. This is currently an open

research topic in IGA.

3. NURBS as a basis for analysis: isogeometric nite element formulation

Our attention now focusses on the use of B-splines and NURBS as dsgretisation tool for analysis, outlining the
core concepts of isogeometric analysis. In this section the importd spaces and mappings are de ned, followed by the
isogeometric FEM formulation in which we use NURBS as a basis for anakis. The discussion is made more concrete

through a one-dimensional example.

3.1. Relevant spaces

Familiarity must be gained with the spaces that are commonplace in isogometric analysis and the relationships
that exist between each. Those that are considered presently inhie context of B-splines and NURBS include: index,

parameter, physical and parent space.

3.1.1. Index space

Index space is formed through the speci ed knot vectors by givingeach knot value a distinct coordinate, regardless
of whether the knot is repeated or not. As an example, consider a NRBS patch de ned through bivariate NURBS
basis functions with knot vectors ! = £0;0;0;1;2;3;3;3g, 2 = f0;0;1;1g in each of the parametric directions ;
respectively. This will form the index space as illustrated in Fig. 5 whee the presence of repeated knots leads to several

regions of zero parametric area. Index space is often used duririgiplementation®, discarding elements of non-zero

6T-splines being one notable example, with the local basis fu nction mesh directly analogous to index space
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non-zero parametric area

Figure 5: Creation of index space from knot vectors ' = £0;0;0;1;2;3;3;3g, 2= f0;0;1; 1gwith non-zero parametric
area highlighted.

parametric area, but in the present work we choose to only considethose elements that have a non-zero parametric

area, obviating the need for index space.

3.1.2. Parametric space

Parametric space (sometimes referred to as the “pre-image' of hNURBS mapping) is formed by considering
only the non-zero intervals between knot values. For the knot vetors considered previously, the parametric space
is illustrated in Fig. 6 which can subsequently be reduced to a unit squee through appropriate normalisation. All
parametric spaces can be reduced to a unit intervald, = 1), square (d, = 2) or cube (d, = 3) in this manner. We
de ne the parametric space as” R% with a associated set of parametric coordinates = ( ; ; )=( %; 2 32"
(dp = 3). If normalisation is performed, "=[0 ;1]%.

Fig. 6 also reveals that regions bounded by knot lines with non-zero grametric area lead to a natural de nition of

element domains. More formally, a setS  of unique knot values can be de ned as
S=fa1, 20 ;n0Q 6 jwaforl i ng 1 (23)

where ng is the number of unique knot values. This is generalised t& " which represents the unique knot values
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for each parametric directioni = 1;2;:::d,. Elements can now be de ned in the general multivariate case as

"=l ] s ga) [k kel 100 nlo1 (24)
1 j n2 1
1 k nd 1

28, 29 28

wherenl;n2 and n? represent the number unique knots in the , and parametric directions respectively. This leads

to a natural numbering scheme for elements over a patch as
e=k(nZ 1)(n! 1+j(n: +i (25)

Eq. (24) and (25) can be simplied accordingly ford, = 1;2.

3.1.3. Physical space

The B-spline and NURBS mappings of Egs. (9) and (17) transform cordinates in parameter space to physical space
RY% . For three-dimensional domains, we associate a coordinate systex = (x;y;z) = ( x*;x?;x3) for physical
space, which appropriate modi cations for one- and two-dimensioal problems. Fig. 7 illustrates a NURBS mapping
for the parametric space shown in Fig. 6 for an arbitrary set of cotrol points and weights. The control grid (which
de nes the connectivity between control points) is also shown. Tke non-interpolatory nature of control points in the

interior of the domain is evident, and represents a notable di eren@ over conventional Lagrangian meshes.

3.1.4. Parent space

The previous three spaces are inherent to B-splines and NURBS, buor analysis to be performed we require the
de nition of an additional space, commonly referred to as parent pace "=[ 1;1]%. This is required for the use of
numerical integration routines which are often de ned over the interval [ 1;1]. Parent space coordinates are denoted

as~=(7+7)=(" 2 ) with corresponding simpli cations for d, =1;2.
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Figure 6: Parametric space de ned by non-zero knot intervals. Allparametric spaces de ned for a B-spline or NURBS
patch can be normalised to a unit interval, unit square, unit cube in 1D, 2D, 3D respectively. Knot lines provide a

natural de nition of element boundaries.

~ 1 [ — L

Figure 7: A 2D NURBS surface de ned for knot vectors ' = f0;0;0;1;2;3;3;3g, 2= f0;0;1;1g. The control mesh
is shown in red with control points denoted by black circles. Knot linesshown in blue indicate element boundaries.
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3.2. Isogeometric formulation

Before outlining the details of isogeometric analysis in a FE context, itis instructive to consider the similarities and
di erences of IGA over conventional discretisation technology. lagrangian basis functions are most commonly used
to discretise both the geometry and unknown elds in anisoparametric fashion. In this way, exactly the same basis
functions are used for both. For the majority of cases, the geowtry is always approximated incurring a geometrical
error which may lead to erroneous results, particularly for highly oillatory problems. In addition, once a discretisation
is generated from a given CAD model, the geometry information thathas been lost can never be retrieved, forming a
one-way process from discretisation to analysis. This has seriougpercussions for e ciency, attenuated by the iterative
nature of design.

Isogeometric analysis also makes use of an isoparametric formulatip but a key di erence over its Lagrangian
counterpart is the use of basis functions generated by CAD to disetise both the geometry and unknown elds. Not
only is task of discretisation (meshing) greatly reduced or eliminatedentirely, but a direct link is made with CAD,
forming a bi-directional process. In addition, the use of CAD discréisations ensures that the exact geometry is used
at all stages of analysis, incurring no geometrical error. But the lkey compelling feature of IGA is the uni ed nature of
design and analysis.

We can summarise these points as:

Conventional nite element analysis . the basis which is chosen to approximate the unknown eld is also
used to approximate the known geometry. This most commonly taks the form of (low order) Lagrangian basis

functions. In most cases the geometry is only approximated. CAD ad analysis are disparate.

Isogeometric analysis : the basis is generated by CAD which captures the geometry exalst This basis is
also used to approximate the unknown eld. Re nement may be requred for the unknown elds, but the exact

geometry is maintained at all stages of analysis. CAD and analysis areombined to form a uni ed process.

3.3. Isogeometric discretisation

The B-spline and NURBS discretisations outlined in Section 2 are written in terms of parametric coordinates, but
to use such discretisations for analysis, we must provide a mappinghtit allows us to operate at the parent element

level. We will outline the appropriate mappings in Section 3.4, but for nav let us assume that B-spline and NURBS
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basis functions can be written in terms of parent coordinates. Thisallows us to state the isoparametric discretisation

used to approximate both the geometry and elds in IGA. For a given elemente, the geometry is expressed as

Ken
x*(7) = PaRa() (26)
a=1
where a is a local basis function index,ne, = (p+ 1) % is the number of non-zero basis functions over elemerg and
P¢,RS are the control point and NURBS basis function associated with inde a respectively. We employ the commonly
used notation of an element connectivity mapping [116] which trankates a local basis function index to a global index

through
A = IEN( a;e): (27)

Global and local control points are therefore related throughPa  Piencae) Pg with similar expressions forR3. A

eld u(x) which governs our relevant PDE can also be discretised in a similar mamer to (26) as

Ken
u®(m = dzRa() (28)
a=1
where d§ represents a control (nodal) variable. In contrast to conventinal discretisations, these coe cients are not

in general interpolatory at nodes. This is similar to the case of meshks methods built on non-interpolatory shape

functions such as the moving least squares (MLS) [117, 118, 119].

3.4. Mappings (change of variables)

The use of NURBS basis functions for discretisation introduces theeoncept of parametric space which is absent in
conventional FE implementations. The consequence of this additioal space is that an additional mapping must be
performed to operate in parent element coordinates. As shown in ig. 8, two mappings are considered for IGA with
NURBS: a mapping ©: ~! "eandS:”"! . The mapping x®:~! ©is given by the compositionS ~*.

Taking the cased, = ds = 2, an element de ned by “e =[] [i; ixa]is mapped from parent space to
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Figure 8: Diagrammatic interpretation of mappings from parent space through parametric space to physical space.
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with an associated Jacobian determinant given by
.1
Bd= 50k D0 ) (30)

Similarly, the mapping from parametric space to physical space is give by the NURBS expressions of Egs. (16),

(19) and (22). In the cased, = ds = 2, the Jacobian of transformation for this mapping is representel by the matrix

2 @x @x 3
J = @ e é (31)
@y @y
@ @
in which the components are calculated as
@ _* L. @R()
@ ., ° @
The associated Jacobian determinant is denoted byJ j.
The mapping x¢: ~! €, formed through the composition of the previous mappings, can bevritten as
!
X
x°(7) = PaRa ~°(7) (33)
A=1 | e
Ken ’
= PaRa(™(7)) (34)
a=1 e
Ken
= PaR:() (35)
a=1
(36)

where N is the number of global basis functions and ()je denotes that the expression () is restricted to elemente. The
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Jacobian determinant for this mapping is given by

195= 13§34 (37)
With this nal mapping and Jacobian determinant, it is possible to integ rate a functionf : ! R over the physical
domain as
z R Z
f(x)d = f(x)d (38)
e=1 ¢
Kel z A
= L fx()idjd (39)
e=1 _ °
Xel Z
= F(EN) 3 §idd~ (40)
e=1
Kel z
= f(7)djd~ (41)
e=1

with the nal integral in a suitable form for application of standard G auss-Legendre quadrature (hereafter named
Gaussian quadrature). As detailed in [116] for Lagrangian basis fuctions, a rule of (p+1) (g+1) Gaussian quadrature
can be applied for two-dimensional elements in whiclp and q denote the orders of the chosen basis functions in the
and direction. The same procedure is also used for NURBS basis functisnin the present work, although it should
be emphasised that Gaussian quadrature is not optimal for IGA. Reearch is currently focussed on optimal integration
techniques such as that in [105, 106] in which an optimal quadraturerule, known as the half-point rule, has been
applied.
Spatial derivatives of basis functions are also required for elemerdssembly algorithms, and are calculated as

2
er . @R §
& @

@ @°
x @y %Fg S (42)

y

Q@ ®
Q@ ®

X

with the derivatives @R=@ obtained through Eq. (14).
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3.5. One-dimensional IGA formulation

To illustrate the use of the isogeometric concept in a nite element caitext, a one-dimensional IGA formulation is
developed through an example. E orts are made to maintain the noation adopted in [116] and [4]. In the following,
we de ne the domain R with boundary @. The boundary is partiionedas = p[ N, N\ D =;
where p and p denote the Dirichlet and Neumann boundaries respectively with an oerline representing a closed

set. Robin boundary conditions are not considered in the present ark.

Leting =(0 ;1)and p = = f0;1gwith y = ;, we seek the solutionu: ! R such that
Fux) | py=0: x2 (43)
dX2 - ) 1

with the Dirichlet boundary conditions speci ed through g: p! Ras
9(0)=0; g(1)=0: (44)
Choosingh(x) = x, it can be shown that the exact solution to Eq. (43) subject to Eq. (44) is given by

1, 1
= — + =X
u(x) 6x 6x (45)

To construct the Galerkin formulation of the preceding problem, the in nite dimensional spacesU and V which
represent the usual trial and test spaces respectivelyare required. By multiplying Eq. (43) by a test function w 2 V

and applying integration by parts, the weak form of the problem reads: nd u 2 U, such that

z

dw du wbd  forall w2 V: (46)

dx dx
This is reduced to a nite-dimensional problem by creating nite-dime nsional subspacet) ™ U andV" V both

formed through a NURBS basis. Letting g" 2 U denote the nite-dimensional representation of g, the solution we

“Specically, U =fu:u2H() ;u=gon pg V=Ffw:w2H() ;w=00n pgwhere H1() represents a Sobolev space of order
1
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wish to seek can be written as

u" = v+ " (47)

which is valid for all v" 2 V", Expression (47) underpins a key concept of the Galerkin formuldbn in that the solution
u" and test (weighting) function w" are constructed from the same space of functions. We also seeaththe boundary
condition data is “built in' to the solution by the inclusion of the term g¢".
The approximation to our solution can be written in terms of NURBS basis functions as
Rea Koo
uh = ds Rg (X) + %8 R (X) (48)

B=1 B=nNeq+l
whereneq is the number of equations (number of unknowns) anchy, is the total number of nodal points (total degrees
of freedom) in the system.fdg ggegl represents the set of all unknown control variables and gg gg"ﬁ Neq +1 is the set of

known Dirichlet control variables. Likewise, the test function is discretised as

wh = caRa () (49)
A=1

Substitution of Egs. (48) and (49) into Eq. (46) and noting that th e values of the seff ca g are arbitrary, the discrete

form is now written as

| 0 1
Rea Req Z : Rea 4 Rea Koo ya
dRa dRs 4 ds = Rabd @ _dg;‘\ _ddRXB

dx dx
A=1 B=1 A=1 A=1 B=neg+l

d A gs (50)

or, by de ning the element sti ness matrix and element force vectar as

Y4
_ dRa dRg

e T ek G0

z A

dRa dRg
Fa= ———4d ;
A Rabd i dx d ; (52)
B=nNeq+1
(50) can expressed in matrix notation as

Kd = F (53)
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where

K =[Kas ] (54)
d=fdsg (55)
F=1Fag AB =1;2::ingq: (56)

Eqg. (53) is in a form amenable for computation.

Pl I32 P3 P4
@ @ @ J

A quadratic B-spline curve with 4 control points

1

Ry R4
0.8 R, R

0.6
0.4

0.2

0
0 05 1

4 quadratic basis functions

©) @

Parametric space

Figure 9: One dimensional isogeometric analysis example: exact geeiry, quadratic basis functions and mesh in the
parametric space. IEN(:;,1)=[1 2 3] and IEN(;,2)=[2 3 4].
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3.5.1. Assembly of system of equations

The global sti ness matrix K and global force vectorF are assembled by looping over each element (non-zero knot
interval) and inserting the appropriate element entries into their relevant rows and columns in the global system of
equations. To allow integration over each element, a parent coordiate system is adopted making use of the mappings

and Jacobian matrices outlined in Section 3.4. For example, for a paitular element e with local basis function indices

a;b=1;2;:::;p+1, we can compute a local element sti ness matrixk$, using parent coordinates as
z
dR¢ dR§
e _ a bi1id~
= Jjd 57
ab _ dX dXJ ( )

where use has been made of expressions (42) and (37). This can ibneerted into the global sti ness matrix through
the element mapping given by Eq. (27).

To make this discussion more concrete, the element assembly prae for a simple quadratic 6 = 2) NURBS
discretisation with = f0;0;0; 0:5; 1; 1; 1g is outlined. We apply the discretisation to the problem de ned by Egs. (43)
and (44). Fig. 9 illustrates the relevant NURBS discretisation including control points, basis functions and element

p+1

de nitions. Note that there are p+ 1 non-zero basis functions over an elemene given by f R$g;Z; . We can therefore

summarise the element data for this discretisation as

element knot interval non-zero basis functions control variables control points
1 [3: 4] R1;R2;R3 di; dz;d3 P1;P2;P3 (58)
2 [ 4 s] R2;R3; Ry d2; d3;ds P2;P3iPy

The implementation required to compute the element sti ness matrix is shown in Box 1. The code follows the same
standard FEM routines presented in [120] where the notationjj jj is used to signify the L? norm?.

Fig. 10 illustrates the solution obtained for a NURBS discretisation fa both two and four elements. Convergence
to the exact solution is observed, verifying the present IGA implematation.

In order to assess how high order B-spline elements behave for gorlems with localized gradients, let us consider

8That is, for a vector x = (X1;X2;:::;Xn), liXjj = (x5 + x3+ 11+ x2)1=2
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Box 1 Element sti ness matrix evaluation for element e =1 i; i+1]

1. P = [Pl;Pg;Pg]

2. sctr =[IEN(1 ;e) IEN(2;e) IEN(3; e)]

3. Setk® =0

4. Loop over Gauss points (GPs)f 7;wjg j =1;2;:::;ngp
(a) Compute parametric coordinate = ~%(7) (see Eq. (29))
(b) Compute derivatives RS, (a=1;2;3) at point
(c) De ne vector R =[R} R5. RS ]
(d) Compute jJ j= jjR Pjj
(e) Compute jJ-j=0:5( j+1 i)
(f) Compute shape function derivativesR, = J RT
(9) k®=k®+ RxR}jJ jjIjw

5. End loop over GPs

6. Assemblek® into the global matrix as K (sctr; sctr) = K (sctr; sctr) + k€

w;, denotes a Gauss point weight anchg, is the total number of Gauss points.

—=—numerical solution
—exact solution

0.01f
0 01 02 03 04 05 06 0.7 08 09 1 0 01 02 03 04 05 06 0.7 08 09 1
X X
(a) Two element NURBS mesh (b) Four element NURBS mesh.

Figure 10: Quadratic NURBS solution for one-dimensional Poisson agption.
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the following problem [119]

Uxx (X)+ b(x) =0 x2[0;1]; u(©)=0; u(l)=1; (59)
with
8
2 22 4 2x O05P exp [ (x 052 x2[0:42 058]
b(x) = _ (60)
-0 otherwise

The exact solution of this problem is

ux)= x+exp [ (x 0O5)? x2][0;1] (61)

We use a value of 50 for and the exact solution exhibits a sharp peek at locationx = 0:5. We are going to solve this
problem using elements of order ranging from one (linear elements)t ve (quintic elements). To remove error in the
numerical integration of the body force term, Eq. (??), 10 GPs were used for each element. We use tlkere nement (to
be discussed in detail in Section 6.5) in building meshes of di erent basisrders. The initial mesh consists of one single
linear element with knot vector = f0;0;1;1g. The parametrization is thus linear and after performing k-re nement,
the parametrization is still linear. Therefore, a point with x = 0:3 corresponds to = 0:3 in the parameter space. The
Matlab le for this problem is igalDStrongGradient.m in the iga folder of our source code.

Figs. 11a,b shows the results obtained with meshes consisting of 1&ic 32 elements ofCP ! continuity where p
denotes the B-spline basis order. It is obvious that smooth basis isat suitable to problems with sharp gradients.
Linear elements which have aC° continuity at location x = 0:5 (precisely at every knots) give better results than high
order B-spline elements.

Knot insertion was made to insert the value Q5 p times to the initial knot vector so that the basis is C° continuous
at x = 0:5. For example forp = 2, a vector f0:5;0:5g was inserted to the knot vector. The results are given in Fig.
11c,d where the peak was captured better. Finally 842; 0:5;0:58 were added to the knotsp times so that the basis
are C° continuous at locations x = 0:42; 0:5; 0:58. The corresponding results are given in Fig. 12. With only 16 cubic

elements (25 CPs) the exact solution was well captured. This exarrp showed the exibility of B-splines/INURBS{high
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(c) 32 elements with C° continuity at x =0:5 (d) 32 elements with C© continuity at x = 0:5 (close up)

Figure 11: Comparison of the IGA result against the exact solution ér the one dimensional PDE given in Eq. (59).
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(a) 16 elements with CO continuity at x = 0:42; 0:5; 0:58 (b) 16 elements with CO continuity at x = 0:42; 0:5; 0:58 (close
up)

Figure 12: Comparison of the IGA result against the exact solution ér the one dimensional PDE given in Eq. (59).

order functions and any level of continuity can be easily achieved.

4. Elasticity: two-dimensional implementation

The application of the FEM to elasticity is common and represents a faniliar language to many researchers.
We therefore outline a two-dimensional implementation of IGA for linear elasticity, highlighting the di erences over

conventional discretisations.

4.1. Assembly process for two dimensional elastostatic ahgsis

Consider a domain , bounded by . The boundary is partitioned into t wo sets: , and ; with displacements
prescribed on  and tractions t prescribedon : = [ 4, ¢\ u = ;. The weak form of a linear elastostatics
problem is to nd u in the trial space °, such that for all test functions u in the test space'°,

y4 4 4
"(u):D:"(ud = t ud+ b ud ; (62)

t

9contains C° functions
10¢ontains CP functions vanishing on
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where the elasticity matrix is denoted by D and b refers to a body force. Using the Galerkin method where the same
shape functionsR,(7) are used for bothu and u, we can write
Xoe Xoe
u(x) = Ra(Dua; u(x)= Ra(7) Ua; (63)
A=1 A=1
whereua; ua denote the nodal displacement and its variations, respectively and,, is the total number of control
points. In 2D, each control point has two unknowns{the x and y displacements, hence one writesia = fUuxa ;Uya Q.
Proper modi cation can be made for 3D problems.
Substitution of these approximations into Eq. (62) and using the ambitrariness of the nodal variations gives the
standard discrete set of equationK u = f with
Z z Z
Kag = BADBgd ; fa= Ratd + Rabd ; A;B =1;2:::ngp: (64)

t
In two dimensions, the strain-displacement matrix B o is given by

2 3

RA;)( 0
Ba :g 0 RA;é; (65)

Ray Rax
where the shape function derivatives are computed according to & (42) and Rax ~ dRa=dx.

We now consider a concrete two dimensional problem shown in Fig. 13In this case, the knot vectors are ! =
[0;0;1;1] and 2 =][0;0;0;0:5; 1; 1; 1], respectively. The orders of the basis functions ar@ = 1 and q = 2. There two
control points (n = 2) along the direction and four control points (m = 4) along the direction that results in 8
control points (npp = N m = 8).

The domain and non-zero basis functions for Element 1 are given by

direction knot interval non zero basis
[ 2; 3] N1; N> (66)
[ 3 4] M1;M2; M3
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(a) Exact geometry (b) Mesh in physical space
B 23(6)

B 24(8)
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(c) Mesh in parametric space and basis functions
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_ 0 |6 .
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N1( )
N2( )
O 1

Figure 13: Two dimensional isogeometric analysis example: (a) exageometry, (b) mesh in physical space and (c)
mesh in the parametric space. The two rectangles are used to illusite the control points belonging to each element.
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Hence there are six non-zero basis functions on elemest= 1 which can be assembled into a vectolR as follows

R1=[N1M1;N2M1;N1M2;N2M2;NiM3; NoMs]: (67)

These six basis functions are associated with six global basis indices/gn by (in Matlab ® notation)

IEN(:;1) =[1;2;3;4;5; 6] (68)

Similarly, for element 2, the shape function vector is given by

R2 =[N1M2;N2M2;N1M3; NaM3; N1My4; NoMy]; (69)

with the associated global indices

IEN(:;2) =[3;4;5;6;7; 8] (70)

Control points are stored in a two dimensional matrix of dimensionsn,, 2. The connectivity data is stored in a two
dimensional matrix of dimensions p+1) (g+1) ng whereng denotes the number of elements. For the example

under consideration, these two matrices are given by

2 3T
T 21 2 345 Gé
controlPts = By; By Biz Bz Biz Bas Big By 3 IEN= 5 (71)
3 456 7 8
The knot intervals along the and directions are stored in the following matrices
2 3
0 05
elRangeU= o 1 ; eIRangeV=2 %; (72)
05 1

where the number of rows is equal to the number of elements in eadtirection (nl 1;n2 1 respectively).

With this vector of basis functions R, the control points associated to this element, we can compute ta derivatives
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of the basis functions. The derivatives of the basis functions with espect tox are stored in the following vector

R:><= Rl;x Rz;x R3;x R4;x R5;x RG;X ; (73)

Similarly, we haveR ., for the derivatives of the basis functions with respect toy. Having these basis function derivatives,

we are now ready to de ne theB matrix for any element e

2 3
Be = E 0 R[]y 0 RI[2y § ; (74)
R[1ly R[lx R[2ly R[2]
where the control point displacement vector is stored in the followiry order u = [Ux1; Uy1; Ux2; Uy2; 1155 Uxn 5 Uynp, 17
The element sti ness matrix is then given by
z
Ke= BIDBed &; (75)

which is then assembled to the global sti ness matrix using the elemenconnectivity matrix and the fact that a control
point | corresponds to positions 2 I 1 and 2 | in the global displacement vectoru.

For implementation convenience, Box 2 gives a procedure of an isogmetric analysis of 2D elasticity problems. Note
that this aims for a Matlab implementation and the whole elementary sti ness matrix is computed in one go. In order
to compute the external force vector, it is convenient to de ne aboundary mesh as shown in Fig. 14. The computation

R
of the external force vector RTtd then follows the one dimensional assembly procedure given in Seitn 3.5.

4.2. Boundary condition enforcement

Fig. 15 illustrates two kinds of Dirichlet boundary conditions: on edgeAD, ux = 0 and on edgeBC, uy = u. The
former is a homogeneous Dirichlet boundary condition (BC) while the ldter is referred to as uniform inhomogeneous
Dirichlet BCs. Homogeneous Dirichlet BCs can be enforced by settinghe corresponding control variables as zeros
(in this example, setting uy, =0;1 =2;4;6;8). For edgeBC, the inhomogeneous Dirichlet BCs can also be satis ed
by setting uy; = u;l = 1;3;57. This is due to the partition of unity property of the NURBS basis i.e., u?c =
M1( Juyr + Mo( Juyz+ M3( Juys + Ma( Juy7 = (M1( )+ M2( )+ M3( )+ M4( ))u = u. Note that a boundary of a
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Box 2 Procedure for isogeometric analysis of 2D elasticity problems.

(a) Determine NURBS coordinates [i; i+1] [ j; j+1] using elRangeU and elRangeV
(b) Get connectivity array, sctr = IEN(; ;€)
(c) Dene sctrB(1;1:2:2 nn)=2 sctr 1;sctrB(1;2:2:2 nn)=2 sctr for assembly
(d Ke=0
(e) Loop over Gauss points,f ~;wig j =1;2;:::;Nngp
i. Compute corresponding to~; (Eq. 29)
ii. Compute jJj (Eq. 30)
iii. Compute derivatives of shape functionsR. and R. at
iv. Compute J using controlPts(sctr; 1), R. and R. (Eq. 31)
v. Compute Jacobian inverselJ ! and determinant jJ j
vi. Compute derivatives of shape functionsR.x =[R. R. ]J ! (Eq. 42)
vii. Use R.x to build the strain-displacement matrix B (Eq. 74 )
viii. Compute K¢ = K¢+ w;jJ-jjJ jBTDB
(f) End loop over Gauss points
(g) AssembleK ¢: K (sctrB;sctrB ) = K (sctrB;sctrB ) + K

2. End loop over elements

nn denotes the number of control points per element i.e., nn=length(str).
w;, denotes a Gauss point weight anchg, is the total number of Gauss points.
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Figure 14: Boundary mesh for external force computation. A linea basis is used in the direction. Assume a traction
is applied on the edge containing nodes 4, 8 and 12. The boundary nteds composed of two linear isogeometric

elements[d and [2.

NURBS surface is a NURBS curve due to the use of open knots. Infmogeneous Dirichlet BCs applied on corner control
points (black points in Fig. 15) are enforced by simply setting the coner control variables equal to the prescribed

values since the NURBS shape functions at these points satisfy thi€ronecker delta property (assuming the use of open

knot vectors). This is called direct imposition of Dirichlet BCs.

: - MD C7
s 3
= 6
[32]
E 5
- 3 E
= 4 3
=

o ) 2 1

s ¢ & 8 ° A B

Figure 15: Imposing Dirichlet BCs: black points denote corner contol points where the NURBS basis satis es the
Kronecker delta property.

For cases other than the ones previously discussed such as a prelBed displacement imposed at interior control
point 3 or a non-uniform Dirichlet BC{Dirichlet BCs that vary from poin t to point applied on edge BC, special

treatment of Dirichlet BCs have to be employed as is the case for médess methods. Techniques available include
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the Lagrange multiplier method, the penalty method, the augmental Lagrangian method and we refer to [119] for
an overview of these techniques in the context of meshless methedIn [121] a transformation method was proposed
to impose inhomogeneous Dirichlet BCs in IGAFEM. However this methal requires modi cations to the stiness
matrix which breaks the usual structure of a FE code. The authos in [71] presented a weak enforcement of general
inhomogeneous Dirichlet BCs using a least squares minimization and thanplementation is described in what follows.
The same procedure was used in imposing BCs in meshless methods whmupling a uid to a solid domain through a
master-slave concept [122]. Imposing Dirichlet boundary conditionswvith Nitsche's method was presented in [123] for
spline-based nite elements.

The basic idea of the least squares method is to nd the parametersf the boundary control points that minimize

the following quantity

1X )
J=5  ju(xe) u(xe)ji®
C
IX X 2; (76)
= > Ra(xc)aa u(xc)
C A

where xc denotes a set of collocation points distributed on the essential bandary , ga are the parameters of the
control points de ning , u(x) represents the prescribed displacements anBa represents the NURBS basis functions
that are non-zero at xc which are univariate NURBS functions Ra( ) for the boundary of a NURBS surface is a
NURBS curve. For the sake of clarity, let us consider the case wherthere is only one collocation point and a quadratic

basis (thus there are 3 non-zerdRp at xc). So, we have

1. -
J = SiiRu(Xc)as + Ra(xc)dz2 + Ra(xc)qs  u(xc)ji”: (77)
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The partial derivatives of J with respect to q; are given by

%:[Rl(xc)ql+ R2(Xc)gz2 + Ra(xc)ds  u(xc)IRi(xc)
% =[Ri(xc)as + Ra(xc)dz + Ra(xc)as  u(xc)IRa(xc) (78)
%:[Rl(xc)ql'f' R2(Xc)dz + Ra(Xc)ds  u(xc)IRa(xc):

The condition % = 0 thus gives the following linear system
2 3 2 3 2 3
RiR1 RzR1 R3Ri G o Ux(Xc)Ri(Xc) Uy(xc)Ra(xc)
gRle R2R2 RSRZ% % Oéé = EUX(XC)RZ(XC) Uy(Xc)Rz(Xcé :
RiRs R2R3 R3R3 &% & Ux(Xc)Ra(Xc) Uy(Xc)Rs(xc)

Xc

(79)

By collecting all the NURBS basis at point x¢ in a column vector N (xc), the control points displacements in the x

and y directions in gy and gy, respectively, Eq. (79) can be written in a compact form as

[N (XC)NT(XC)]qX

[N (xc)N T (xc)lay

Ux (Xc)N (xc) (80)

Uy (Xc)N (Xc):

Repeating the same analysis for other collocation pointxc on the Dirichlet boundary, one obtains the linear system
Aq = b with two dierent b (one for the x component and the other for they component). The dimension ofA
isnp np wherenp denotes the number of control points de ning the Dirichlet boundary. Having these boundary
control point displacements, the enforcement of Dirichlet BCs (wken solvingKu = f) are then treated as in standard
FEM.

We note that this procedure involves only control points that de n e the essential boundary. This is in sharp contrast
to meshless shape functions such as the MLS used in the Element er&alerkin method [124] where the displacements
at a point on the essential boundary depend not only on the nodesrothat boundary but also the neighbouring interior

nodes. It is said that NURBS therefore satisfy the so-called weak Konecker delta property as local Maxent interpolants
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approximations [125].
Listing 1 gives the Matlab® implementation of the least-squares method. Note that in our implenentation, the
collocation points are uniformly distributed in the parameter space. We refer to [71] for a discussion on the in uence

of the collocation points on the accuracy. We refer to Fig. 16 for anllustration of this method.
7
0

y I

X
o control points 5 e
PY collocation points Xc @
1 2 3 4 I
O O
—e o—+—e *—|

@ @

Figure 16: lllustration of the implementation of the least squares mé¢hod: a quadratic NURBS surface with knot
vectors ! = f0;0;0;0:5;1;1;1gand 2 = f0;0;0;0:5;1;1; 1g. Essential BCs are imposed on the bottom and right
edges. A one dimensional mesh for this boundary is created. The owol points de ning the essential boundary are
numbered from one to the total number of boundary control poirts (seven in this example). Note that this numbering
is required only for assembling the matrixA .

Listing 1: Matlab ® implementation of the least-squares method

A = zeros (noDispNodes, noDispNodes);

bx = zeros (noDispNodes,1);

by = zeros (noDispNodes ,1);

noxC = 4; % number of collocation pts/element
% loop over bottom edge

for ie=1:noElemsU

sctr = bottomEdgeMeshlGA(ie ,:); % standard connectivity array (global numbering)
pts = controlPts (sctr ,:); % control pts of element ie

sctrA = bndElement(ie ,:); % connectivity array for A matrix

xiE = elRangeU(ie ,:); % parametric coords of ie

xiArr = linspace (xiE(1),xiE(2),noxC); % collocation pts x _C
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for ic=1:noxC

Xi = xiArr(ic);

[N dNdxi] = NURBS1DBasisDers (xi ,p,uKnot, weights);
A(sctrA ,sctrA) = A(sctrA ,sctrA) + N' N;

X =N pts;

% exact displacements
[ux,uy] = exact _Griffith(x,EOQ0,nu0, sigmato ,xTip,seg, cracklength);
bx(sctrA) = bx(sctrA) + ux N';
by(sctrA) = by(sctrA) + uy N';
end

end

% loop over other edges if neccessary

% solve the system Aq_x=bx and Aq -y=by

[LL UU] = lu (A);

gxTemp = LL nbx;

qyTemp = LL nby;

gx = UU ngxTemp; qy = UU ngyTemp;

% later , before solving Ku=f, gx and qy will be used to enforce BCs as in conventional FEM.

In our Matlab ® code implementation are provided for the penalty method, the Lagange multiplier method and
the least squares method. The implementation of the two former mthods are considered standard and the reader is

referred to [119] for details.

5. Extended isogeometric nite element method

There are basically two ways in which discontinuities can be modeled in th context of IGA: PUM based enrichment
and knot insertion. For the former, there are works of [110, 71, Z, 73]. For the latter, we refer to [69, 76]. PUM
based methods are general for they can be applied to any kinds ofstontinuity such as weak and strong discontinuities
whereas knot insertion used to produce theC ! continuity is only suitable for cracks. Knot insertion found great
applications for delamination analyses [76] where the crack path is kown a priori. Note that in [69], knot insertion
was used in combination with T-splines to model cracks of which trajetory is not known in advance. However the

implementation is tedious.
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In the category of PUM based IGA methods which are sometimes caltk XIGA (eXtended IGA), the method in
[73] is di erent from existing XIGA formulations [110, 71, 72] in a way that discontinuities (holes/inclusions/cracks)
are exactly isogeometrically represented by NURBS. Note that in met of XIGA techniques, discontinuities are de ned
implicitly using level set method. This section brie y presents the XIGA formulation of [71, 72] and implementation
aspects are deferred to Section 6.7.

The extended nite element method (XFEM) (see e.g., [70], [126] for arecent review and open XFEM library
[127]) is a local PUM enrichment method in which internal boundaries seh as holes, inclusions, cracks are modeled
independently of the FE discretisation which allows for crack growthmodeling without remeshing. Two dimensional
extended isogeometric nite element formulation (XIGA) was presented in [71, 72] in which the displacement eld is
enriched for traction-free crack modelling using the following appraimation

u(x) = X Ry (X)u; + X Ry (X)H (x)a; + X Rk (x) X B by ; (81)

12S J2S¢ K 2 st =1

where R|.;x are the NURBS basis functions. In addition to the standard degree of freedom (dofs)u,, additional
dofsa; and b, are introduced. The setS’ includes the control points/nodes whose support is cut by the crak and
the set S are control points whose support contains the crack tipxsp , see Fig. 17. Note that we use a topological
tip enrichment and in the literature another tip enrichment scheme called geometrical enrichment with a xed area (to
ensure that the role of enrichment in the approximation space doesot vanish as the mesh is re ned) is present see
e.g., [128]. The Heaviside functiorH is given by

8

2 41 if(x x)n O
HX) = ; (82)
: 1 otherwise

where x is the projection of point x on the crack and n denotes the outward normal vector to the crack. And the

branch functions, which span the crack tip displacement eld, are dgven by

p

[B1;B2;B3;B4l(r; )= Fsinz;p

C o P P
rcosz, rsmzcos, rcoszcos ; (83)

wherer and are polar coordinates in the local crack front coordinate systemgee e.g., [70] for details). It is noted
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that B is discontinuous along the crack face.
0

" vertices of physical mesh

. \ control points

A B Q M s crack tip enriched nodes

Heaviside enriched node

Figure 17: lllustration of enriched node setsS' and S° for a quadratic NURBS mesh. The thick red line denotes the
crack.

Using the standard Galerkin procedure as outlined in Section 4.1 the idcrete system of equationsKku = f are

formed by an enlargedB matrix given by

B = gsd | genr ; (84)

where BsY s the standard strain-displacement matrix B (cf. Eq. (65)) and B®™ is the enriched B matrix of which
components are given by

2 3

(R)x 1+ Ri( 1)x 0
Bf" = g 0 (Ri)y 1+ Ri( 1)y %; (85)

(Ri)y 1+ RiC 1)y (R)x 1 +Ri( 1)x
| may represent either the Heaviside functionH or the branch functions B depending whether control point | is
Heaviside or near tip enriched. The unknown vectoru contains both displacements and enriched dofs. This extended
IGAFEM can be implemented within an available IGAFEM code with little mod i cation following the ideas given in
the meshless review and computer implementation aspects paper [3]L Some implementation aspects will be given in
Section 6.7. In our code enrichment for holes and material interfags are also given. They are, however, not covered

here because the implementation follows the ideas given here.
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6. MIGFEM- A Matlab IGA (X)FEM code

In this section we describe shortly the open source IGA Matlab (X)FEM program which can be downloaded from
https://sourceforge.net/projects/cmcodes/ . The code supports one, two and three dimensional linear elasticity
problems. Extended IGA for crack and material interface modellingis also implemented. Geometrically nonlinear solid

and structural mechanics models are available. The features of # code include:

Global h,p and k-re nement is provided for one, two and three dimensional meshes
Extended IGA for 2D/3D stationary traction-free cracks and material interfaces.
Visualization of displacements and stresses in Paraview.

Inhomogeneous Dirichlet boundary conditions are treated with the penalty method, the Lagrange multiplier

method and the least squares method.

Compatible multi-patch isogeometric formulation for two dimensional problems.
Support for T-splines via the Bezier extraction operators.

Structural elements including beams, plates and thin shells.

Implicit Newmark scheme and explicit central di erence scheme for tme discretisation.
Python scripts to extract Rhino3d NURBS surfaces to be used folGA.

6.1. Data structure

MIGFEM follows the Matlab FEM code described in [120]. The main data gructures include (1) element (store the
element connectivity), (2) controlPts (store control point coordinates), (3) weights (store the weights) (4) K (sti ness
matrix) and (5) f (external force vector). Contrary to FEM in which the element connectivity and nodal coordinates
are inputs which have been created by a meshing program, in IGA, th input consists of CAD data including knots,
control points, order of basis functions. Therefore, one has ta@onstruct the element matrix based on the knots and

the basis orders.
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Construction of the element matrix is illustrated by a 2D example shown in Fig. 18. Given the knot vedors uKnot
and vKnot together with the orders of the basisp and g, one can compute the number of control points along the and
directions, denoted byn and m. Then we de ne a two dimensional matrix of dimensionm n called node_pattern

given by for the illustrated example shown in Fig. 18 which has 4 contrbpoints along and 4 control points along

directions
Node pattern
13 14 15 16
— —
O @) 4 —
>
= 3
— 9 10 11 12 3 @
i e) e) @ connV
= 2
m @ | @ 2
— o
g 1 |
5 6 J 8 @
< @ © 1 2 3
> ©)
— o © < N @ O
o e} o o 2 3 4
1 2 3 4 |
L connU
o \N10)  N2()  N3()  Na())
Basis functions 0.6} 1=10;0;0;0:5;1;1; 1g
—_—

2=10;0;0;0:5;1;1;1g

0.5 1

Figure 18: Two dimensional isogeometric analysis: mesh generationrfa bi-quadratic NURBS surface (2 2 elements).
The circles denote the control points.
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2 3

1 2 3 4
5 6 7 8

node pattern = ; (86)
9 10 11 1

13 14 15 16

which is simply an application of Eq. (8) for de ning global indexes.

The number of elements along the two directionsn! 1;n2 1 are noElemsU = length(unique(uKnot)) 1
and noElemsV = length(unique(uKnot)) 1 (in the Matlab language). The connectivity matrix for the  direction,
denoted by connU which is anoElemsU (p+ 1) matrix and the connectivity matrix for the direction, denoted by

connV which is anoElemsV  (q+ 1) matrix are given by

2 3 2 3
connU = 21 2 3% ;connV = 21 2 3% ; (87)
2 3 4 2 3 4

for the example under consideration. Matrix connU stores the indices of the non-zero basis functions at each knot ap
for the direction. Having this information and the global indexes of the NURBS basis given in Eq. (86), we are able
to de ne the connectivity matrix for the whole mesh, called element which is anoElemsU noElemsV (p+1)(qg+1)

matrix. For the example being considered, this matrix reads

2 3
123 5 6 7 9 10 1
2 34 6 7 8 10 11 1
element = : (88)
5 6 7 9 10 11 13 14
6 7 8 10 11 12 14 15 16

Note that the matrix element is the transpose of the IEN matrix. We decided to useelement instead of IEN to be
compatible with the FEM code [120] on which MIGEM is built.

Finally in order to compute the mapping from the parent domain ~to the parametric space, we de ne the knot
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intervals in two directions as

2 3 2 3

0 05 0 05
rangeU = 2 g ; rangeV = 2 g :
05 1 05 1

(89)

In order to retrieve the parametric coordinates of a speci c elemat, the matrix index, that is a noElemsU

noElemsV 2 matrix, is used. For a given element, its parametric coordinates are determined byrangeU(index(e,1),:);

rangeV(index(e,2),:).

The above discussion, together with the illustration given in Fig. 18 is inplemented in Matlab in the le gener-

atelGA2DMesh.m , located in folder meshing , and shown in Listing 2. In that folder, one can nd similar M les

for generating 1D and 3D meshes.

Listing 2: Mesh generation for two dimensional problems. Input areuKnot, vKnot, and p; g

unigueUKnots = unique (uKnot); uniqueVKnots = unique (vKno t);
noElemsU = length (uniqueUKnots) 1;%fof elements xi dir.

noElemsV = length (uniqueVKnots) 1;%tof elements eta dir.

noPtsX = length (uKnot) p 1; noPtsY = length (vKnot) q 1;
nodePattern = zeros (noPtsY ,noPtsX);

count = 1,

for i=1:noPtsY
for j=1:noPtsX
nodePattern(i,j) = count; count = count + 1;
end

end

% determine our element ranges and the corresponding knot in dices along each direction
[elRangeU ,elConnU] = buildConnectivity (p, uKnot, noElem sU);
[elRangeV ,elConnV] = buildConnectivity (q,vKnot, noElem sV);
noElems = noElemsU noElemsV;
element = zeros (noElems,(p+1) (q+1));
e = 1;
for v=1:noElemsV
vConn = elConnV (v,:);

for u=1:noElemsU
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¢ = 1; uConn = elConnU(u,:);
for i=1:length (vConn)
for j=1: length (uConn)
element(e,c) = nodePattern(vConn(i),uConn(j)); ¢ =c¢ + 1;

end

end
end
index = zeros (noElems,2);
count = 1;
for j=1: size (elRangeV ,1)
for i=1: size (elRangeU ,1)
index(count,1) = i; index(count,2) = j; count = count + 1;
end

end

6.2. Shape function routines

The shape function routines (evaluate NURBS basis functions and erivatives with respect to parametric coordi-
nates) are implemented using MEX les to improve the performance. They are located in folder C_les . Listing 3
gives some commonly used shape function routines to compute theWRBS basis function and their rst derivatives in

1D, 2D and 3D at a given point. In the last line, second derivatives arealso computed.

Listing 3: Shape function routines: ukKnot,vKnot,wKnot store *; 2; 3,

% R, dRdxi: row vectors i.e. dRdxi dimension is (1,3) for p=2

[R dRdxi] = NURBS1DBasisDers (Xi,p,uKnot, weights);
[R dRdxi dRdeta] = NURBS2DBasisDers ([ Xi; Eta],p,q,uKnot, vKnot, weights ');
[R dRdxi dRdeta dRdzeta] = NURBS3DBasisDers ([ Xi; Eta; Zeta ]1,p,q,r,uKnot,vKnot,wKnot, weights ");

[R dRdxi dRdeta dR2dxi dR2det dR2dxe] = NURBS2DBasis2ndDer s([Xi; Eta],p,q,uKnot,vKnot,weights ');

Listing 4: Matlab code for 2D spatial derivatives of shape functions

1 % input: element e and parameter coordinates of a Gauss point Xi and Eta
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sctr = element(e,:); % element scatter vector

pts = controlPts (sctr ,:); % of dimension nn x 2 where nn: number of nodes
% derivate of R=ENxi Neta w.r.t xi and eta

[dRdxi dRdeta] = NURBS2Dders ([ Xi; Eta],p,q,uKnot,vKnot, weights ');

% Jacobian matrix

jacob = pts' [dRdxi' dRdeta'];

invJacob = inv (jacob);

% nn x 2 matrix: first column derivatives wrt X

dRdx = [dRdxi' dRdeta"'] invJacob ;

6.3. Assembly process

The assembly of an IGA-FEM code is given in Listing 5 where it can be seethat the procedure is almost identical

to that used in the conventional FEM. The minor di erences lie in (1) t he need of the elements in the parameter space

(lines 4 to 7) and (2) the second map (from the parent domain to theparametric domain) in the numerical integration

of the sti ness matrix (line 35).

1

2

3

4

10

12

13

14

15

16

Listing 5: Matlab code for IGA (2D elasticity problems).

[W,Q]=quadrature (4, 'GAUSS', 2); % 4x4 point quadrature

for e=1:noElems % Loop over elements (knot spans)

idu = index(e,1);

idv = index(e,2);

xiE = elRangeU(idu,:); % [xi_i,xi_i+1]

etaE = elRangeV(idv ,:); % [eta_j,eta_j+1]

sctr = element(e,:); % element scatter vector
nn = length (sctr); nn2 = 2 nn;

sctrB(1,1:2:2 nn) = 2 sctr 1;
sctrB(1,2:2:2 nn) = 2 sctr ;

B = zeros (3,2 nn);

pts = controlPts (sctr ,:);

for gp=1: size (W,1) % loop over Gauss points
pt =Q(gp.1);
wt =W(gp);

% compute coords in parameter space
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17 Xi = parent2ParametricSpace (xiE,pt(1));

18 Eta = parent2ParametricSpace(etakE,pt(2));

19 J2 = jacobianPaPaMapping (xiE , etakE);

20 % derivate of RENxi Neta w.r.t xi and eta

21 [dRdxi dRdeta] = NURBS2Dders ([ Xi; Eta],p,q,uKnot,vKnot, weights ');
22 % Jacobian matrix

23 jacob = pts' [dRdxi' dRdeta'];

24 Ji = det (jacob); invJacob = inv (jacob);

25 dRdx = [dRdxi' dRdeta'] invJacob ;

26 % B matrix

27 B(1,1:2:nn2) = dRdx(1,:); B(2,2:2:nn2) = dRdx(2,:);

28 B(3,1:2:nn2) = dRdx(2,:); B(3,2:2:nn2) = dRdx(1,:);

29 % compute elementary stiffness matrix and assemble it to the global matrix
30 K(sctrB ,sctrB) = K(sctrB, sctrB) + B' C B J1 J2 wt;

a1 end

32 end

6.4. Post-processing

We present here a simple technique to visualize the IGA results that euse available visualization techniques for
nite elements. To simplify the expose, only 2D cases are considem here. In the rst step, a mesh consisting of
four-noded quadrilateral (Q4) elements is generated, see Fig. 19We call this mesh the visualization mesh (whose
connectivity matrix is stored in elementV and nodal coordinates are stored innode) whose nodes are images of the
knots i; ; in the physical space. In the second step, quantities of interest.g., stresses are computed at the nodes
of the Q4 mesh. This mesh together with the nodal values can then é& exported to a visualization program such as
Paraview, see [129], for visualization. It should be emphasized thatuk to the high order continuity of the NURBS
basis, there is no need to perform nodal averaging as required inatdard C° nite element analysis to obtain smooth
elds. Listing 6 gives the Matlab code (we have removed some code @uto the similarity with the assembly code)
for building the Q4 visualization mesh, computing the stresses at thenodes of this mesh and exporting the result to
Paraview. The source code can be found in the leplotStressl.m located in folder post-processing . The results

can be then visualized directly in Matlab or exported to Paraview, seel.isting 7.
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e} O

(@) NURBS mesh (b) approximate Q4 mesh

(c) stress visualization on a re ned mesh

Figure 19: Exact NURBS mesh (top left) and approximate Q4 mesh (bp right) for visualization purpose. The nodes
in the Q4 mesh are the intersections of the and knot lines. The bottom gure shows a contour plot of a stress eld
in Paraview. It should be emphasized that the mesh in (b) does not povide a su ciently smooth contour plot for it
to be directly usable. The result given in (c) was obtained with a re ned NURBS mesh (hence a re ned Q4 mesh).
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Listing 6: Matlab code for computing stresses and displacements atodes of the visualization mesh.

buildVisualizationMesh; % build visualization Q4 mesh
stress = zeros (noElems, 4 ,3);
disp = zeros (noElems , 4 ,2);

for e=1:noElems

idu = index(e,1); idv = index(e,2);

XiE = elRangeU(idu,:); etaE = elRangeV(idv ,:);

sctr = element(e,:); % element scatter vector
sctrB = [sctr sctr+noCtrPts]; %vector scatters B matrix

uspan = FindSpan(noPtsX 1,p,xiE(1),uKnot);
vspan = FindSpan(noPtsY 1,q,etaE(1),vKnot);
% loop over 4 nodes (instead of loop over GPs)
gp = 1;
for iv=1:2
% Q4 elements, the nodes are numbered counter clockwise
if (iv==2) xiE = sort (xiE, 'descend’ ); end
for iu=1:2
Xi = xiE(iu); Eta = etaE(iv);
[N dRdxi dRdeta]= NURBS2DBasisDersSpecial ([ Xi;Eta],p,q ,uKnot, vKnot, weights ' ,[uspan;vspan]);

% B matrix as usual

strain =B U(sctrB);
stress(e,gp,:) = C strain;
gp = gp +1;
end
end
end

Listing 7: Matlab code for post-processing.

% plot sigma_xx contour directly in Matlab

figure

plot _field (node ,elementV, 'Q4' ,stress (:,:,1));

% export to VIK format to plot in Mayavi or Paraview
sigmaXX = zeros (size (node,1),1);

sigmaYY = zeros (size (node,1),1);
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sigmaXY = zeros (size (node,1),1);
dispX = zeros (size (node,1),1);
dispY = zeros (size (node,1),1);
for e=1:size (elementV, k1)
connect = elementV(e,:);
for in=1:4
nid = connect(in);
sigmaXX(nid) = stress(e,in,1);
sigmaYY(nid) = stress(e,in,2);
sigmaXY (nid) = stress(e,in,3);
end
end
VTKPostProcess (node , elementV,2, 'Quad4’' ,'result.vtu’

[sigmaXX sigmaYY sigmaXY] ,[dispX dispY]);

For three-dimensional problems, the same procedure is used whea mesh of tri-linear brick elements is created and
the values of interest are computed at the nodes of this mesh (sele plotStress3d.m ). The results are then exported

to Paraview under a structured grid format (*.vts les), see the le mshToVTK.m ).

6.5. h;p; k-re nement

For the re nement of NURBS, we reuse the NURBS Toolbox describd in [108]. We construct a NURBS surface as
shown in Fig.20a. The corresponding Matlab code is given in Listing 8. Usg a uniform h-re nement (Listing 9) that
divides a knot span into two, we obtain the mesh given in Fig.20b. If oneneeds to usek re nement (p re nement
followed by h re nement), then the code in Listing 10 can be used (see Fig.20c). iRally, Fig.20d gives the mesh which
is obtained by the process in whichh re nement is employed rst and then p re nement is performed (see Listing
11). After using the NURBS toolbox, the NURBS object is then conwerted to MIGFEM data structures using the

function convert2DNurbs located in folder nurbs-util

Listing 8: Construct a NURBS surface using the NURBS toolbox.

a=20.3; b=0.5; % inner/outer radius
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(c) After k-re nement (d) After hp-re nement

Figure 20: lllustration of the utilization of the NURBS toolbox in building NURBS object (a). From the initial mesh,
di erent meshes can be obtained using eitheh re nement, p re nement or combination thereof. As can be seen from
(c) and (d), k re nement (c) is more e cient than hp re nement (d). The function plotMesh.m in folder meshing
is used to plot NURBS mesh and control polygon.
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%% knots, control points

uKnot = [0 0 0 1 1 1]; %quadratic basis
vKnot = [0 0 1 1]; %linear basis

% homogeneous coords (X w,y w,z w,w)

% 3 pts in u dir, 2 pts in v dir

controlPts = zeros (4,3,2);

controlPts (1:2,1,1) = [a;0];
controlPts (1:2,2,1) = [a;a;];
controlPts (1:2,3,1) = [0;a];

controlPts (1:2,1,2) = [b;0];
controlPts (1:2,2,2) = [b;b];

controlPts (1:2,3,2) = [0;b];

controlPts (4 ,:,:)

i1k

controlPts (4,2,1) = 1/ sqrt (2);

controlPts (4,2,2) = 1/ sqrt (2);

% homogenous coordinates (x w,y w,z w)
controlPts (1:2,2,1) = controlPts (1:2,2,1) fac;
controlPts (1:2,2,2) = controlPts (1:2,2,2) fac;
%% build NURBS object

solid = nrbmak(controlPts, fuKnot vKnot g);

Listing 9: h-re nement using the NURBS toolbox.

refineLevel = 2;
for i=1l:refineLevel
uKnotVectorU = unique (uKnot);
uKnotVectorV = unique (vKnot);
% new knots along two directions
newKnotsX =uKnotVectorU (1: end 1)+0.5 diff (uKnotVectorU);
newKnotsY =uKnotVectorV (1: end 1)+0.5 diff (uKnotVectorV);

newKnots = fnewKnotsX newKnotsY g;
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solid = nrbkntins (solid ,newKnots);

uKnot = cell2mat(solid.knots (1));
vKnot = cell2mat(solid . knots (2));
end

convert2DNurbs % convert to the MIGFEM format

plotMesh (controlPts , weights ,uKnot,vKnot,p,q, res, r-'  'try.eps'  );

Listing 10: k-re nement using the NURBS toolbox.

% code from Listing 5

% order elevation, p=p+2, g=g+1

solid = nrbdegelev (solid ,[2 1]);

% then, knot insertion using the code from Listing 6

convert2DNurbs % convert to the MIGFEM format

Listing 11: h-re nement followed by p-re nement using the NURBS t oolbox.

% code from Listing 5

% then, knot insertion using the code from Listing 6
% order elevation, p=p+2, g=g+1

solid = nrbdegelev (solid ,[2 1]);

convert2DNurbs % convert to the MIGFEM format

Listing 12: A typical input le for MIGFEM.

% code from Listing 5
% code from Listing 6 (if only h refinement)
convert2DNurbs %convert to the MIGFEM format (if not done yet)

generatelGA2DMesh % build the mesh (element connectivity)

6.6. Input le for MIGFEM

A typical input le is given in Listing 12. This le replaces the standard F E mesh le. Note that, for backward

compatibility with older versions of the MIGFEM code, some input les d o not use the NURBS toolbox to create the

NURBS object. For those input les, it is however impossible to perfam order elevation and hencek re nement. ltis,
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therefore, recommended to create the NURBS objects using thdURBS toolbox [108] which, besides the aforementioned
re nement functionalities, also supports many useful operationssuch as extrusion, rotation etc.

Incorporating NURBS into an existing FE code cannot be considereda trivial task due to the presence of various
spaces (index, parameter) that are not present in conventionaFE codes, Bezier extraction [130, 52] provides a FE
data structure that allows for a straightforward implementation o f NURBS/T-splines into any FE codes. Appendix D

brie y presents this concept and its implementation in MIGFEM.

6.7. XFEM implementation

There are certainly di erent ways to implement XIGA. We present a way that reuse most of the tools present in an
existing XFEM code. We use the approximate Q4 mesh used for visual@ion as discussed in Section 6.4 for selection
of enriched control points. The level set values de ning the crackat the vertices of this mesh are then computed.
Based on these level sets, elements cut by the crack and elemermtsntaining the crack tip can be determined [131]. For
example, element ABCD in Fig. 17 is cut by the crack. In a FEM context, its four nodes are then enriched using the
Heaviside function. In an isogeometric framework, however, the antrol points associated to this element are enriched.
Listing 13 details the Matlab ® implementation of this process. Note that this listing is taken directly from our XFEM
code [119] with only one small modi cation and thus the proposed tehnique is considered simpler than that adopted

in [72]. We emphasize that the crack geometry is de ned in the physichspace to keep the usual XFEM notation.

Listing 13: Selection of enriched control points/nodes.

enrich_node = zeros (noCtrPts,1);

countl = 0;
count2 = 0;
for iel =1 : numelem
sctr = elementV (iel ,:);

sctriIGA = element(iel ,:);
phi = Is(sctr,1); % normal level set
psi = lIs(sctr,2); % tangent level set
if ( max (phi) min (phi) < 0 )
if mx (psi) < 0
countl = countl + 1 ; % one split element

split _.elem (countl) = iel;
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enrich_node (sctriGA) = 1;

elseif max (psi) min (psi) < 0

count2 = count2 + 1 ; % one tip element
tip _.elem(count2) = iel;
enrich_node (sctriGA) = 2;

end
end

end

split _nodes find (enrich _node = 1);

tip _nodes = find (enrich _node = 2);

Remark 6.1. Note that for simple geometries as those tackled in this paper, the se of level sets is certainly not
necessary. More generally, describing open surfaces (cracksjthvlevel sets requires two level sets functions that, for
crack growth simulations, must be reinitialised for stability (this decreases accuracy) and reorthogonalised every few
time steps. This is particularly cumbersome and probably explains alog with the di culties in dealing intersecting
and branching cracks the recent trend of research e orts in thearea of phase eld models of fracture, see e.g., [132, 74],

and the thick level set method [133].

Crack visualization We haveH (x*) H(x )=2and By(x*) Bi(x )=2 P r, therefore the displacement jump

at a point x on the crack face is given by

X p_ X
[ul(x) =2 Ry(x)ag +2' r Rk (X)bg : (90)
J2se K 2sf
Note that the other branch functions B , = 2:3;4 are continuous functions and thus do not contribute to the

displacement jump.

Fig. 21 illustrates the idea for crack visualization with the script post-processing/crackedMeshNURBS.m
providing implementation details. The contour plots of the displacemett and stress eld of a mode | cracked sample
are given in Fig. 22. Note that the stresses at points on the crack g simply set to zero (traction-free cracks) and the

stresses of the new nodes of the tip element are interpolated froitine values of the four nodes of this Q4 element.

Remark 6.2. As is the case for XFEM, integration over elements cut by the crack usually requires subdivision of

the elements into integration subcells. We refer to [134] for a rec# discussion on this issue. In addition to this
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Figure 21: Crack visualization in XIGA: (a) build a mesh that is compatib le to the crack by introducing double nodes
along the crack (square nodes) and (b) assign the displacementijops to these new nodes. Note that the square nodes
in the tip element are used only for compatibility purposes. Exact moce | displacements are imposed on the bottom,
right and top edge using the Lagrange multiplier method while NeumannBCs from the exact stress eld are enforced
on the left edge. We refer to [119] for a detailed description of thistandard problem.

Figure 22: Contour plots on a cracked mesh: (a) vertical displacermnt and (b) normal stress in the vertical direction.
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popular technique, a simple integration rule is also provided{elementsrossed by the crack and tip-enriched elements
are numerically integrated using a regular Gauss-Legendre quadtare with a large number of Gauss points as done in

[135].

7. Structural mechanics

Thanks to the high order continuity provided by NURBS/T-splines, t he implementation of rotation-free thin beam/-
plate/shell elements becomes direct and simple. In this section, wera going to present the implementation of a rotation-
free IGA Kirchho plate formulation (rotation free shell elements ¢ an be found in folder structural-mechanics ). The
plate geometry and the de ection are both approximated by NURBS. At control points there is only one unknown-the
de ection or transverse displacement. For simplicity only isotropic dastic plates are considered. We refer to [136] for
a treatment of plate theories.

The element sti ness matrix is de ned as

Z
Ke= BIDBd ; (91)
where the constitutive matrix D reads
2 3
1 0
Eh3
° = 1 2)§ 0 % (92)

0 0 051 )

where E; are the Young's modulus and Poisson's ratio, respectivelyh denotes the plate thickness and the element

displacement-curvature matrix B¢ that contains the second derivatives of the shape functions is giveby

2 3
Rl;xx R2;xx Rn;xx
Be = g Riyy  Rayy Ry % ; (93)
2R1;xy ZRZ;XY 2Rn;xy

where n denotes the number of basis functions of elemerg and Ra.xx d?Ra =dx?.
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7.1. Boundary conditions
For clamped BCs one needs to x the rotations. The nodal unknowrs are, however, only the transverse displacements
w. To x the rotation of a boundary, we simple x two row of control p oints at the boundary [20] because these control

points de ne the tangent of the surface at the boundary (cf. Fig. 3), see Fig. 23.

Figure 23: Enforcing BCs for a fully clamped plate: simply xing the de ections of two rows of control points around
the clamped boundary. Note that the set of CPs next to the boundary CPs are not arti cially added to impose the
rotations. They are simply the CPs de ning the geometry of the plate.

7.2. Symmetry boundary conditions

Fig. 24 illustrates the use of symmetry boundary conditions when oty 1/4 of the plate is modelled. Along the
symmetry lines, the rotation should be zero which can be enforcedybconstraining the de ection (w) of two rows of
control points along these lines together. These contraints can & implemented using a simple penalty technique as

shown in Listing 14.

Listing 14: Enforcing symmetry BCs.

w = le7;
penaltyStiffness =w [1 1; 1 1];
for i=1:length (topNodes)
sctr = [topNodes(i) nextToTopNodes(i)];
K(sctr ,sctr) = K(sctr,sctr) + penaltyStiffness;
end

% the same for the left two rows
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Figure 24: A fully clamped square plate: 1/4 model is analyzied using apropriate symmetry BCs. Along the symmetry
lines, the rotation is xed which can be achieved by enforcing the deection of two rows of control points that de ne
the tangent of the plate to have the same value.

For completeness, we give the implementation of the rotation free kchho plate elements in Listing 15. Note that

we have skipped codes that are common with IGA code for 2D contina.

Listing 15: Computation of sti ness matrix for the rotation free Kir chho plate.

1 for gp=1:size W, 1)

2 pt =Q(gp.:); wt =W(gp);

3 % shape functions, first and second derivatives w.r.t natur al coords
4 [R dRdxi dRdeta dR2dxi dR2det dR2dxe]=NURBS2DBasis2ndDer s([Xi; Eta],p,q,uKnot,vKnot,weights ');
5 jacob = [dRdxi; dRdeta] pts; % 2x2 matrix

6 jacob2 = [dR2dxi; dR2det; dR2dxe] pts; % 3x2 matrix

7 Ji = det (jacob);

8 dxdxi = jacob (1,1); dydxi = jacob (1,2);

9 dxdet = jacob(2,1); dydet = jacob(2,2);

10 j33 = [dxdxi”2 dydxin2 2 dxdxi dydxi;

11 dxdet”2 dydet”2 2 dxdet dydet;

12 dxdxi dxdet dydxi dydet dxdxi dydet+dxdet dydxi];

13 % Jacobian inverse and spatial 1st and 2nd derivatives

14 invJacob = inv (jacob);

15 dRdx = invJacob [dRdxi;dRdeta];

16 dR2dx = inv (j33) ([dR2dxi; dR2det; dR2dxe] jacob2 dRdx);

17 % B matrix
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18 B = dR2dx;

19 B(3,:) =B(3,:) 2;

20 % compute elementary stiffness matrix, sctr=element(e,:)
21 K(sctr ,sctr) = K(sctr,sctr) + B’ C B Ji J2 wt;
2 end

8. Veri cation examples

In this section, numerical examples in linear elasticity and linear elasticfracture mechanics in 2D and 3D are
presented with the purpose to serve as a set of veri cation examps for MIGFEM. They include an in nite plate
with a circular hole under constant in-plane tension, the pinched cylirder, an edge cracked plate in tension, a three-
dimensional mode | fracture problem and a large deformation thin skll problem. Unless otherwise stated, standard

direct imposition of Dirichlet BCs is used. Units are standard International System (SI) units.

8.1. Two and three dimensional solid mechanics

8.1.1. In nite plate with a circular hole
The problem considered is that of an in nite plate with a circular hole in t he centre under constant in-plane tension
at in nity as shown in Fig. 25 where, due to symmetry, only a quarter of the plate is modeled. The plate dimension

is taken to beL L and the circular hole has a radiusR. The exact stress eld in the plate is given by

R? 3 3R*

w( )=1 e 50032 +cos4 + 574 cos4 (94a)
RZ 1 3R*

ywi(n )= '’ EcosZ cos4 577 cos4 (94b)
RZ 1 . . 3R*

xw(h )= Tz z5|n2 +sind + §r_45m4; (94c)

wherer; are the usual polar coordinates centered at the center of the He.

66



Exact traction 4y
A A
E D
= P
< | E = 1000 =
E < = 03 g
g | R =1 @
S < = 4 .
<] [
A i B X
" >
Symmetry

Figure 25: In nite plate with a circular hole under constant in-plane t ension: quarter model. Boundary conditions
include: uy =0 (AB), Ux =0 (CD), T' =( w: ) (AE), T' =( »: y) (ED).

The material properties are specied asE = 103, Poisson's ratio = 0:3 and the geometry is such thatL = 4,
R = 1. A plane stress condition is assumed. The problem is solved with qudratic NURBS meshes such as those shown
in Fig. 26. The control points and weights for the coarsest mesh aabe found in [3] or le plateHoleCkData.m
Fig. 27, generated in Paraview, illustrates the contour plot of numeical . Note that the stress concentration at

point (R; 3 =2) is well captured and a smooth stress eld is obtained throughout

Remark 8.1. Using the visualization technique described in Section 6.4 for this prolem, a note should be made on the
evaluation of the stress eld at the top left corner where there ae two coincident control points. This causes a singular

Jacobian matrix. Therefore at this corner, the stresses at a poinslightly shifted from the original position are used.

8.1.2. Pinched cylinder
In order to demonstrate the performance of the 3D IGA implementtion, we consider the pinched cylinder problem
as shown in Fig. 28. Note that we discretize the shell with solid NURBS kements. Due to symmetry, only 1/8 of

the model is analyzed. A tri-quadratic NURBS mesh p = q= r = 2) was used for the computation. Details can be
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Plate with a hole: coarse mesh of 2 bi-quadratic elementdgft) and re ned mesh (right).

Figure 26

xx Obtained with a 32 16 quadratic mesh having 4488 dofs.

Plate with a hole: distribution of numerical

Figure 27
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found in the le igaPinchedCylinder.m . Fig. 29 shows the mesh and the contour plot of the displacement inhe
point load direction. Post-processing is done in Paraview and we refeo Section 6.4 for details. We recognise that the
problem under consideration is a shell like structure that would be meoe accurately modelled using appropriate shell

elements, but the example is merely intended to illustrate the ability ofthe method to analyse 3D geometries.

Figure 28: Pinched cylinder. Problem description and data [137].

Figure 29: Pinched cylinder: (a) mesh of one octant of the cylinder ad (b) contour plot of the displacement in the
direction of the point load.

8.2. Two and three dimensional fracture mechanics
8.2.1. Edge cracked plate in tension

A plate of dimensionb 2h is loaded by a tensile stress = 1:0 along the top edge and bottom edge as shown in

Fig. 30. In the computation, the displacement along they-axis is xed at the bottom edge and the bottom left corner
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is xed in both x and y directions. The material parameters areE = 10% and = 0:3. A plane strain condition is

assumed. The reference mode | stress intensity factor (SIF) fahis problem is given in [138] and is calculated as

i=F 2 Pg (95)

where a is the crack length, b is the plate width, and F(a=h is an empirical function. For a=b  0:6, function F is

given by

a a a? a s a 4
F b =1:12 0:23 b +10:55 b 2172 b +30:39 5 (96)

In the present implementation, this problem is solved using both XFEM and an extended isogeometric formulation.

The SIF is computed using an interaction integral. We refer to [70] fo details.

A I

Figure 30: Edge cracked plate in tension: geometry and loading.

We rst verify the implementation of the XIGA code by comparing the XIGA result with the XFEM result for the
case ofa=0:45,b=1 and h = 1. The XFEM and XIGA meshes are given in Fig. 31. Both meshes havahe same
uniform distribution of nodes/control points. For the XFEM mesh, bilinear Q4 elements are used. For the XIGA mesh,
cubic (p = g = 3) B-spline basis functions are adopted. Fig. 32 shows the contauplots of the vertical displacement
obtained with XFEM and XIGA.

We now consider the computation of the mode | SIF for a crack of legth a = 0:3. The reference SIF for this
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Figure 31: Edge cracked plate: XFEM and XIGA meshes. Both have lhe same number of displacement dofs of 1296.
The thick line denotes the crack. Square nodes denote tip enrichedodes whereas star nodes represent Heaviside
enriched nodes.

(a) XFEM (b) XIGA

Figure 32: Edge cracked plate:uy contour plots on deformed con guration (enlargement factor of 30 used).
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problem is K [¢" = 1:6118. Both a linear and a cubic B-spline basis are used for three di ent meshes. The results are
given in Table 1. It should be emphasized that in the computation of the interaction integral, we use bilinear Lagrange
shape functions i.e., shape functions of Q4 elements to compute ttaerivatives of the weight function. This guarantees
that the weight function takes a value of unity on an open set contaning the crack tip and vanishes on an outer contour

as shown in Fig. 33. B-splines functions are not interpolatory and tkerefore cannot be used to approximate the weight

functions.

Figure 33: Distribution of weight function used in the computation of the interaction integral. Four-noded quadrilateral
elements with bilinear Lagrange shape functions are used to interdate the weight function.

mesh disp. dofs K| (linear) Error (%) K (cubic) Error (%)
9 18 324 1.4997 6.96 1.5560 3.46
18 36 1296 1.5823 1.83 1.6150 0.20
36 72 5184 1.5968 0.93 1.6117 0.01

Table 1: Edge cracked plate: SIFs results. The reference SIF i [®f = 1:6118. Note that linear NURBS are equivalent
to the conventional bilinear nite elements.
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8.2.2. Three-dimensional mode | fracture problem

This example aims to show the capability of MIGFEM for solving three-dimensional (3D) fracture problems. For

3D cracks, the polar coordinates in the branch functions given in Eq (83) are de ned in terms of the level sets as [139]

r:p'(;; 2+ (5 )% = atan H : (97)
where the level set eld =( '; ) is interpolated as
X
(5 )= Ri(;: ) u: (98)

We refer to [139] for details concerning the derivatives of the braoh functions with respect to the parametric coordinates
(5 )

The mode | 3D fracture problem we are solving is given in Fig. 34. The eact displacement eld is given by

Ux(r; )= 24%:—)&'3?0055 2 2 co§§

2 E
uy(r; )=0 (99)
- 2+ )Kip .
u(r; )= A(QZT = Tsing 2 2 cosz2 :
whereK | = P “a is the stress intensity factor, is Poisson's ratio andE is Young's modulus. In our example,a = 100
mm; E =107 N/mm?, =0:3, =104 N=mm?2. On the bottom, right and top surfaces, essential BCs taken fron Eq.

(99) are imposed using the penalty method. A penalty parameter oflel0 was used. We note that this problem can
be more e ectively solved with two-dimensional elements. This examfg however aims at presenting how 3D extended
IGA can be implemented. Furthermore, it also illustrates how Dirichlet BCs are enforced on surfaces rather than the
usual case of line boundaries. To this end, a two-dimensional NURB#esh for a given surface is generated from the
set of control points that de ne this surface (see the le surfaceMesh.m ).

The problem is rst solved using a linear B-spline basis. A mesh of 9 9 1 elements is used. The mesh, enriched

nodes and comparison of the numerical deformed con guration aginst the exact pro le are given in Fig. 35. Next, a
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Figure 34: Three-dimensional mode | fracture problem: in nite plate with a center planar crack. The plate thickness
is 2, the crack length is 5 and the crack width is 2. The crack is locatedn the mid-plane of the plate.

mesh of 7 7 2 elements is used where, in the through-thickness direction, therare two linear elements ¢ = 1) and
for the two other directions, a quadratic basis = r = 2) is used. The result is given in Fig. 36 and we note a good
gualitative agreement between Figs. 35 and 36. We did not perform &IF computation for this problem as 3D SIF

computation is not yet implemented at present.

8.3. Structural mechanics

We consider the pull out of an open-ended cylindrical shell, see Fig. 73 as one of the most common benchmarks
for geometrically nonlinear thin shell problems [140, 141]. Due to symrmtry only 1/8 of the model is studied. The
1/8 model can be exactly described using one single quadratic-lineakURBS surface as shown in Fig.38. Re ned
meshes are then obtained from this initial mesh by using theék-re nement. The analysis was performed using a mesh of
8 8 bi-quartic NURBS elements (144 control points). The enforcemat of symmetry BCs is achieved by constraining
two row of control points as shown in the same gure. These conshints{the so-called multipoint linear homogeneous
constraints are handled using the master-slave method [142] fohe penalty method as described in Section 7.2 could
endanger the convergence of the Newton-Raphson solver. Notkat for this particular nonlinear problem, of which the
M le is igaGNLFreeEndCylinderShell.m , the analysis was performed with a C++ implementation [143].

We adopt the Kirchho -Love thin shell model, see e.g., [144, 141] fodetails that involves only displacement dofs.
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Figure 35: Three-dimensional mode | fracture problem: mesh of lin@r B-spline elements and enriched control points

(left); numerical deformed con guration (magni cation factor o f 40) superimposed on the exact deformed con guration

(right).
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Figure 36: Three-dimensional mode | fracture problem: mesh of cadratic B-spline elements and enriched control points
(left); numerical deformed con guration (magni cation factor o f 40) superimposed on the exact deformed con guration

(right).
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The maximum applied load G:25P. is applied in 80 equal increments and for each increment the full Nevein-Raphson
method is used to solve for the displacements. Fig. 39 shows the a@efmed con guration of the shell and in Fig.40 the

load versus thez-displacement at point A is plotted together with the result reported in [140].

Figure 37: The open-end cylindrical shell subjected to radial pullingforces: problem setup [140].
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Figure 38: Open ended cylindrical shell: 1/8 of the model with one bi-gadratic NURBS surface. The control points
and weights are given in le freeEndsGNLCylinderShellData.m . For symmetry edges, in order to satisfy the
symmetry condition i.e., zero rotation, we constraint two rows of catrol points in the sense that the displacements of
the control points right next to the control points locating on the symmetry edges (1, 1) matchesu, .
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Figure 39: The open-ended cylindrical shell subjected to radial plling forces: deformed shape without scaling.
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Figure 40: The open-ended cylindrical shell subjected to radial plling forces: load-displacement responses.

9. Conclusion

We presented a Matlab® implementation for one, two and three-dimensional isogeometric rite element analysis for
solid and structural mechanics. This paper is addressed to studes or researchers who wish to learn the concepts of IGA
in a clear and concise manner and is especially suited to those with solid eshanics applications in mind. NURBS are
used throughout, where the underlying construction of the basidunctions is detailed along with associated re nement

algorithms essential for numerical analysis. Dierences with convational FE implementations are made clear with
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the use of Matlab® source code to illustrate isogeometric FE concepts explicitly. In addion, the implementation of
an isogeometric XFEM formulation for both two-dimensional and three-dimensional problems is described allowing
for simple linear elastic fracture analysis to be performed directly fom CAD data. The benets of isogeometric
analysis are made evident. Although not presented, the code sumpts multi-patch analysis in which compatibility
between connecting patches is not required [145, 146]. Geometricaonlinearities for solid elements under the Total
Lagrange framework are provided as well. In addition, PUM enrichmet for holes and inclusions is provided along
with implementation of the least squares method for imposing esserdl boundary conditions. Mass matrices are
implemented for almost every elements and popular time integration shemes such as Newmark and central di erence
explicit are available so that transient analysis on CAD objects can beperformed. The code is available for download
from https://sourceforge.net/projects/cmcodes/ for Linux and Mac OS machines. A Windows version can be
found at http://www.softpedia.com/get/Science-CAD/igafem.sht ml.

The preliminary concepts and implementation details of isogeometric aalysis have been described, but many
challenges remain in the eld. These include the creation of suitable viume discretisations from given CAD boundary

representations, e cient integration schemes and suitable errorestimators.
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Appendix A. Knot vector conventions

The de nition of an open knot vector as = f 1; 2;:::; n+p+1 g Where the rst and last knot values are repeated
p+1 times is sometimes simpli ed to remove redundant information. It is found that if a knot vector is open, the rst
and last knot values play no role in the de nition of the curve and can be removed entirely. Knot vectors are then
denedas = f 1; 2;:::; n+p 10 Where the rst and last knot vectors are repeatedp times. This notation is used
frequently through the CAGD community.

Furthermore, B-spline algorithms can be written entirely in terms of knot interval vectors [147], de ned as

= f 15 255 n+p 20 where i =il (A.1)

using the previous simpli ed knot vector notation. T-splines are based entirely on knot interval vector notation.

Appendix B. CKk and Gk continuity

Two types of continuity are commonplace in the CAGD community, referred to asC and G continuity. From a
numerical analysis perspectiveC continuity refers to the traditional de nition of continuity in which, given a parametric

function f : R! R? which de nes a 2D curve through a parametert, the parameterisation is said to beC* continuous

contain no discontinuities with t single-valued throughout its domain. Letting df=dt represent the “speed' of the curve,
C? continuity implies that the tangent vector is equal in magnitude and direction while also assumingC® continuity.
C? continuity assumes bothC? and C* continuity and requires that the “acceleration’ of the curve is equin magnitude
and direction.

G continuity (sometimes referred to as “visual' continuity) is indepencent of the parametert. For a curve to be G°
continuous at a point it must contain no discontinuities, but the parameter value may have multiple values. ForG*
continuity, the tangent of the curve must be equal in its direction, but its magnitude may dier. And G? continuity
implies that the direction of acceleration is continuous, but its magnitude may di er.

If desired, aG* curve can be madeCk-continuous through an appropriate reparameterisation'.
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Appendix C. Homogenous and non-homogenous coordinates

It is found that if rational basis functions are used, then it is often more appropriate to work in terms of homogeneous
coordinates, since they can be applied straightforwardly to non-ational basis function algorithms. For example, in the
case of NURBS, the use of homogenous coordinates allows B-splinigarithms to be used directly.

Given a physical coordinateP o = (Xa; Ya; za) With weighting wa , the corresponding four-dimensional homogeneous

coordinate P is written as

Pa = (XAWaA;YAWA; ZAWA ;WA ) (C.1)

= (XA} YA Za;Wa): (C.2)

To convert back to non-homogenous coordinates, it is a simple cas#f dividing *a ; ¥a ; 22 through by wp .

Appendix D. Rezier extraction

Bezier extraction [130, 52] provides a tool to facilitate the incorporation of NURBS and even T-splines in to any
FE codes. The idea is based on the fact that any B-splines basis carebwritten as a linear combination of Bernstein

polynomials. Written for element e, the shape functions read

Ne()=C®B() (D.1)

where C¢ denotes the elemental Bezier extraction operator andB are the Bernstein polynomials which are de ned
on the parent element ~ Index space, knot vectors are all embedded in the Bezier extrators which are computed in
a pre-processing step. Therefore, existing FE solvers can use RBS/T-splines straightforwardly. We refer to folder
bezier-extraction  for examples.
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