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Preface

The present volume of “Travaux Mathématiques" collects some of the contri-
butions to the international conference “Harmonic Analysis - Luxembourg/Metz"
which was jointly organized by the Séminaire de mathématique du Centre Uni-
versitaire de Luxembourg and the Laboratoire de Mathématiques de I’Université
de Metz, 9-12 September 2002.

This was the first workshop of this kind. Others are certainly to follow in the
future, as such a meeting represents an excellent opportunity to establish links
between the mathematical communities in Luxembourg and Metz.

The conference met a large resonance: 63 participants coming from
12 countries attended the conference and 25 talks were given (see the programme
on the next pages and the abstracts at the end of the volume). The themes
treated during the workshop covered most of the spectrum of the so-called non-
commutative harmonic analysis, that is, analysis on non-abelian groups and group-
like structures: analysis on symmetric spaces, representation theory and harmonic
analysis on specific locally compact groups (amenable groups, compact groups,
nilpotent Lie groups, discrete groups, Kazhdan’s groups, p-adic groups ...), infi-
nite dimensional Lie groups, von Neumann algebras, hypergroups...

The contributions submitted to this volume are the following. They all have
been individually refereed.

e V. Heiermann: Spectral decomposition on a p-adic group

e K.-H. Neeb: Root graded Lie groups

D. Poguntke: Synthesis properties of orbits of compact groups

J.-F. Quint: Property (T) and exponential growth of discrete subgroups

¢ G. Robertson : Singular masas of von Neumann algebras : examples from
the geometry of spaces of nonpositive curvature
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PROGRAMME

Monday, September 9 in Luxembourg
9h00-9h45 Welcome of the participants
9h45-10h00 Opening session

10h00-10h50 D. Miiller (University of Kiel, Germany)
Bochner-Riesz means on the Heisenberg group and fractional integration on the
dual

11h10-12h00 H. Fujiwara (Kinki University, Japan)
Inducing and restricting unitary representations of nilpotent Lie groups

Kokoskokokok

14h00-14h50 C. Anantharaman-Delaroche (University of Orléans, France)
On spectral characterizations of amenability

15h10-16h00 V. Nekrashevysh (University of Kiev, Ukraine)
Hilbert bimodules associated to self-similar group actions

16h30-17h20 G. Robertson (University of Newcastle, Australia)
Singular masas of von Neumann algebras : examples from the geometry of spaces
of nonpositive curvature

Parallel sessions

17h40-18h10

N. Prudhon (University Louis Pasteur, Strasbourg, France)
Théorie des représentations et K -théorie

and

F. J. Gonzalez (University of Lausanne, Switzerland)
Fourier inversion on rank one compact symmetric spaces

Tuesday, September 10 in Luxembourg

9h00-9h50 A. Lubotzky (University of Jerusalem, Israel)
Ramanujan complezes



10h20-11h10 A. Valette (University of Neuchétel, Switzerland)
Property (T') and harmonic maps

11h30-12h00 G. Litvinov (International Sophus Lie Center, Moscow,
Russia)
Integral Geometry and hypergroups

14h00-14h50 J.-P. Anker (University of Orléans, France)
The heat kernel on symmetric spaces, fifteen years later

15h10-16h00 P. Torasso (University of Poitiers, France)
The Plancherel formula for almost algebraic groups

16h30-17h20 E. Damek (University of Wroclaw, Poland)
Asymptotic behavior of the Poisson kernel on NA groups

Parallel sessions

17h40-18h10

H. Biller (University of Darmstadt, Germany)
Harish-Chandra decomposition of Banach-Lie groups

and

V. Heiermann (Humbold University, Berlin, Germany)
Spectral decomposition and discrete series on a p-adic group

Wednesday, September 11 in Metz

Bus tranfer from Luxembourg to Metz

Kokoskokokk

14h00-14h50 J.-Y. Benoist (ENS Paris, France)
Divisible convex sets and prehomogeneous vector spaces

15h10-16h00 Y. Shalom (University of Jerusalem, Israel)
Harmonic analysis and the geometry of amenable groups

16h30-17h20 T. Steger (University of Sassari, Italy)
Free group representations and their realizations on the boundary



Parallel sessions

17h40-18h10 J.-F. Quint (ENS Paris, France)

Property (T') and exponential growth of discrete subgroups

and

J. Galindo (University Jaume I de Castellon, Spain)

Unitary duality, weak topologies and thin sets in locally compact groups

Thursday, September 12 in Metz

9h00-9h50 A.M. Vershik (University of St. Petersbourg, Russia)
Harmonic analysis on the groups which are similar to infinite dimensional groups

10h20-11h10 K.-H. Neeb (University of Darmstadt, Germany)
Root graded Lie groups

11h30-12h20 Y. Neretin (University of Moscow)
Closures of quasitnvariant actions of infinite-dimensional groups, polymorphisms,
and Poisson configurations

kokkokokok

14h30-15h20 E. Kaniuth (University of Paderborn, Germany)
Extending positive definite functions from subgroups of locally compact groups

15h40-16h30 D. Poguntke (University of Bielefeld, Germany)
Synthesis properties of orbits of compact groups
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Spectral decomposition and discrete series representations
on a p-adic group

by Volker Heiermann

Abstract
Let G be a p-adic group. After a short survey on the representation
theory of G, I outline my proof of a conjecture of A. Silberger on the in-
finitesimal character of discrete series representations of G. The conjecture
says the following: a cuspidal representation 7 of a Levi subgroup L of G
corresponds to the infinitesimal character of a discrete series representation
of G, if and only if 7 is a pole of Harish-Chandra’s p-function of order equal
to the parabolic rank of L. The proof uses a spectral decomposition based on
a Fourier inversion formula analog to the Plancherel formula. To illustrate
the method, the case of the unramified principal series of a semi-simple split

group of type B, is worked out at the end.

1. Notations: Let F' be a non-Archimedean local field. This is a topological
field equipped with a discrete valuation |.|p. It will be supposed to be normalized
such that the Haar measure on F satisfies the transformation formula dp(zy) =
|y|rdrx. The topology of F'is then defined by the ultrametric distance dp(z,y) :=
|r — y|r and F' is complete with respect to this metric. There exists a unique
generator of the image of |.|p which is > 1. It will be denoted by g.

Let G be a connected reductive group defined over F' and G the group of its
F-rational points. So G is a locally compact and totally disconnected group.

The set of equivalence classes of irreducible representations of G will be denoted
&(G). As usual, a representation will often be identified with its equivalence
class. The subset of classes of square-integrable representations (i.e. whose matrix
coefficients are square integrable functions on G modulo its center) will be denoted
&(G). To any representation 7 in &(G) one can associate the formal degree
deg(7), which is defined up to the choice of a Haar measure on G. Sometimes it
is necessary to consider the bigger set 21(G) of equivalence classes of admissible
representations of G, which contains the above. (These are no more irreducible but
the space of vectors invariant by an open compact subgroup is finite dimensional.)

A subgroup P of GG will be called a parabolic subgroup, if it is the group
of F-rational points of a parabolic subgroup P of G defined over F. T will fix
a maximal split torus in G and let T" be the group of its F-rational points. A
parabolic subgroup of G will be called semi-standard, if it contains T". There is
then a unique Levi factor L of P which is defined over F' and such that the group

13



14 Volker Heiermann

L of its F-rational points contains 7". The expression "P = LU is a semi-standard
parabolic subgroup of G" will then mean that P is a semi-standard parabolic sub-
group, U its unipotent radical and L the group of F-rational points of its unique
Levi factor which contains 7. The functor i% of parabolic induction sends 2(L)
to A(G) and will be supposed to be normalized such that it takes unitary repre-
sentations to unitary representations. (So a representation parabolically induced
from an irreducible representation is admissible.)

Let Rat(G) be the group of rational characters of G defined over F and G! the
intersection of the kernels of the characters of G of the form |x|r, x € Rat(G).
An unramified character of G is a homomorphism from the group quotient G /G*
to C*. The group formed by these characters will be designed by 2™ (G) and the
subgroup formed by the unitary characters by 2§"(G). The group 2™(G) is an
algebraic tori isomorphic to (C*)? with d equal to the rank of G, X{"(G) being
isomorphic to (S')?. The first group acts on the set £(G) and the second group
on the subset &(G). An orbit with respect to this action will be denoted by O
in the first and Oy in the second case. So O is an algebraic variety. The space
O (resp. O9) is, through the choice of a Haar measure on X" (), equipped with
a unique measure, such that the action of 2™(G) on O (resp. of X{'(G) on O)
preserves locally the measures.

2. Plancherel formula: The Plancherel formula for p-adic groups (due to
Harish-Chandra (cf. [21])) expresses a smooth, compactly supported and complex
valued function f on G by its Fourier transforms. More precisely, for f in C2°(G)
and 7 € &(G) one defines an endomorphism 7(f) of the representation space V;
of m by

w(f) = [ H)m(o)dg.

Let ©2(G) be the set of pairs (P = LU, 0s) with P = LU a semi-standard Levi
subgroup of G and O, an orbit in &(L). Two paires are called equivalent ~, if
they are conjugated by an element of G.

Let p be the action of G on C2°(G) by right translations. Harish-Chandra
defined for every pair (P = LU, 03) € ©5(G) a constant 7(G/L) and a function p
on Oq, which extends to a rational function on the 2™ (G)-orbit © which contains
O,. He showed that for f in C2°(G) one has (with a suitable normalization of the
measures)

flg) = > G/L) [W(L,0)] " /O tr((i57)(p(9) f)) deg(m)p(m)dr.
(P=LU,02)€02/~ 2

(Here W (L, ©03) denotes a subset of the Weyl group of G relative to T" formed by
elements which stabilize Oy and L.)
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3. Representation theory of G: (cf. [4]) The functor % admits a left
adjoint functor r§ which is called the Jacquet functor. A representation 7 € &(G)
is then called cuspidal, when r§m = 0 for all proper parabolic subgroups P of G.
The subset of cuspidal representations will be denoted £.(G). Note that to any
cuspidal representation 7 a formal degree deg(7) can be attached.

The classification of cuspidal representations is a deep arithmetical prob-
lem which is entirely solved only for GLy (including SLy) and the multiplica-
tive group of a central division algebra over F' respectively by C. Bushnell and
P. Kutzko (|2] and subsequent work treating SLy) and E.-W. Zink [22]. A conjec-
tural parametrization of this set by /N-dimensional irreducible representations of
the Weil group of F' (which is some distinguished subgroup of the absolut Galois
group of F) is the aim of the local Langlands conjectures. For GLy, they have
been proved recently by M. Harris and R. Taylor [5] and, by a more elementary
approach, by G. Henniart [9].

Given 7 € &(G) there exist a semi-standard parabolic subgroup P = LU and
a cuspidal representation o € &.(L) such that 7 is a subquotient of i%o. The G-
conjugation class of L and o is uniquely determined by 7. It is called the cuspidal
support of .

Remark that any unitary cuspidal representation is square integrable and that
any orbit O of a cuspidal representation is formed by cuspidal representations and
contains a cuspidal representation that is unitary. On the other hand there exist
square integrable representations which are not cuspidal. These are called special
representations.

Ezample: Identify y = |.|r with a character of the diagonal subgroup L of SLy
by the embedding = +— (x,z7!). Let B be the Borel subgroup formed by upper
triangular matrices. Then the induced representation iy is of length 2 and has a
unique subrepresentation which is called the Steinberg representation. It is square
integrable, but not cuspidal. (Remark that the other subquotient of i%y is the
unit representation of G.)

Classification scheme: The Langlands classification (cf. [17]) gives a descrip-
tion of the set £(G) up to the knowledge of the tempered representations of its Levi
subgroups. Tempered representations can be constructed by parabolic induction
from square integrable representations. For GLy a representation parabolically
induced from a square integrable representation is irreducible, but for other groups
this may fail and it is not known yet how to describe the different components.
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The next step below is to construct all square integrable representations from the
cuspidal ones. This is known for GLy by the work of Bernstein and Zelevinsky
[22], for unramified principal series representations by Kazhdan and Lusztig [10]
and for split classical groups (under some assumption on the reducibility points)
by the results of C. Moeglin and Moeglin-Tadic ([12] and [13]|). There are also
several results of A. Silberger in [18] and [19].

4. A conjecture of Silberger: A. Silberger conjectured also the following
result:

Theorem: (cf. [8] corollaire 8.7) Let P = LU be a parabolic subgroup of G
and T an irreducible cuspidal representation of L. Then i%T has a subquotient in
E(G) precisely when the following two conditions hold:

i) the restriction of T to the center of G is a unitary representation;

it) T is a pole of u of order rkss(G) — rkss(L). (Here u denotes Harish-
Chandra’s p-function as defined in 2. ).

Let us make the second condition more precise. For this, I will first explain the
notion of an affine rootal hyperplane. Fix a maximal split torus 77, in the center of
L and let 3(P) be the set of roots of 77, in Lie(U). Define a;, = Hom(Rat(L), R)
and let aj be the dual space. It contains 3 (P). There is a natural map Hy, : L —
arz. One defines a surjection from the complexified vector space aj . to 2" (L), by
sending A to the character x) with xx(1) := ¢~ 7N (recall that ¢ is the unique
generator > 1 of the image of |.|r). The restriction of this map to aj is injective
and so %(x») := N(A) is well defined. An affine rootal hyperplane in aj ¢ is then
by definition an affine hyperplane defined by a coroot a¥, a € ¥(P).

Let O be the orbit of 7. An affine rootal hyperplane in O is then by definition
the image of an affine rootal hyperplane in aj » by the composed map aj o —
x"(L) — 0, the second arrow being given by the action of ™ (L) on 0.

It is known since Harish-Chandra that the poles and zeroes of u lie on finitely
many affine rootal hyperplanes in 0. Let Sy be the set of affine zero hyperplanes
of 1 and S; the set of affine polar hyperplanes. The affine zero hyperplanes are
of order 2 and the polar ones are of order 1. So the order of the pole of y in 7 is
{S esi|meSH—-2{SeS|reS}.
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Remark: By a conjecture of Langlands [11|, which has been proved by
F. Shahidi [16] in the case of G quasi-split and 7 generic, the function p on O
can be expressed as product and quotient of L-functions attached to 7.

5. Strategy of proof: Let O be the orbit of 7 in &.(L). All its elements
can be realized as representations in a same vector space which will be denoted
E. For o in an open set of © and P’ = LU’ a second parabolic subgroup with
Levi factor L, one has an operator Jpjp/(o) : i% E — i$E which intertwines the
representations i%,7 and i%7. In an open cone of O it is defined by the converging

integral
(Urer(@)0)g) = [ o(ug)du,
Unu\U

where v is considered as an element of the space i% E equipped with the representa-
tion ig,0. It is a rational function in ¢ and the composed operator Jpp(0)J5p()
is scalar and equals the inverse of the p-function. For w in the Weyl group W of
G with respect to T' one defines an operator A(w) which induces an isomorphism
between the representations i%o and i%,wo.

The following lemma was crucial for the proof of a matrix Paley-Wiener the-

orem in [7]:

Lemma: (cf. [7] 0.2) Let f be in C2(G). Identify (i%o)(f) to an element of
iGE ®iGEY. There exists a polynomial map &; : O — i%E ® iSEY with image in
a finite dimensional space such that

(o) ()= > (Tpp(@)Aw) ® Jpwp(0)\(w))é(w™ o).

weW (L,0)

as rational funtions in o. (Here W (L, O) has the same meaning than in 2..)

Remark that the poles of J p[p are on the affine rootal hyperplanes in Sy and
that the poles of puJpp are on the affine rootal hyperplanes in S;.

Let C°(G)o be the subspace of C2°(G) formed by the functions f such that
(i%0")(f) =0 for all o’ € O with (P',0') « (P,0).

Proposition: Let f be in C2°(G)o. Identify £¢(o) with an element in Hom(z’%E,
i%E). For g € G one has

") flg) = /éR )ron0 Y(G/L)deg(o) tr((i50) (97" I pip(0)€5(0)) u(0)dS (o).

(The symbol [p(,)—,s o means that one fixes r in ay, such that (r,a") > 0 for all
a € X(P) and that one integrates on the compact set x, Oy. Here O, is the subset
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formed by the unitary representations in O and the integral is taken with respect
to the fixed measure on 0,.)

The strategy of proof of the theorem in 4. is then to compare the expression
(*) in the above proposition with the one given by the Plancherel formula in 2..
This is done after a contour shift to the unitary axis.

Ezample: Suppose G semi-simple and L maximal. Then 2™ (L) ~ C* and the
theory of complex functions in one variable applies: the integral (*) is a sum of
residues and an integral over the unitary orbit Oy. The residues correspond by
the remark after the above lemma to the poles of p.

In the Plancherel formula for f € C°(G)p, there appear only terms corre-
sponding to the equivalence class of pairs (P' = L'U’, Os) with either P = P
or with P’ = G and O, equal to the set formed by a single square integrable
representation of G. The cuspidal support of this representations is necessarily
contained in the G-orbit of 0. The first term is an integral over O, and the other
terms are discrete.

It is then rather easy to show that the two integrals and the discrete terms in
both formulas correspond to each other, proving the theorem in this simple case.
(Remark that the theorem 4. was already known in this case.)

Unfortunately, in the case of a Levi subgroup with corank bigger than one,
poles of the intertwining operators do appear and it is not evident at all, that and
how they cancel. The proof of the theorem 4. follows then the following steps:

i) Formulation of a convenient multi-dimensional residue theorem: this is
achieved by a generalization of the residue theory for root systems due to E.
P. van den Ban and H. Schlichtkrull [3] to our situation (see also the paper [6] of
G. Heckman and E. Opdam). Let S be the union of the sets Sy and S;. Define
A(S) as the set of affine subspaces of © which are connected components of finite
intersections of elements in S. The subset of spaces in A(S), where p can have a
non trivial residue will be denoted A4,(S). I also fix a set [A(S)] of representatives
of conjugation classes in A(S). To an affine hyperplane A in A(S) one attaches a
semi-standard Levi subgroup L, of G. The origine of A will be denoted r(A) and
€4 will be an element in some positive Weyl chamber of a7 .

With Ay some set of positive roots associated to ©, Wa,, W4(L,0) and
W (L,0) some sets of Weyl group elements and Ps(L.4) some set of generalized
parabolic subgroups with Levi component L4, the residue formula applied to the
integral (*) gives then
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Waou, |7 IPs(La) "G/ L deg(c)| Stab(4)|~!
Qg@AE[A(S)E];LALQ| AO’LA| IPS(Lal™(C/L) /?R(U)—T(A)-i-sA eg(o)| Stab(4)|
2 Y. Resya(tr((iBo) (9_1)J§‘1]3(ww’a)§f(ww’g)))dAg(g)'

weWEA(L,O) weW;A (L,0)

Here Resﬁ is an operator from the space of rational functions on O, which are
regular outside the hyperplanes in S, to some space of rational functions on A. It
turns out to be uniquely determined by r and P. It is a sum of composed residue
operators relative to affine hyperplanes in S containing A.

ii) Identification of the continuous part: This is done with help of an induction
hypothesis. One sees then that one can replace €4 by zero in the above formula.

iii) Elimination of the undesirable poles with help of test functions. These
already appeared in [7] at a crucial step, although they played a different role
there.

With this one gets the following result:

The induced representation iGT has a subquotient in &(G) if and only if the
restriction of T to the center of G is unitary, A € A,(S), La =G, and

(**) > (Resyap)(wo) # 0.

weW (L,0)

But a theorem of E. Opdam (cf. [15] theorem 3.29) shows, that the condition (**)
is always satisfied, finishing the proof of the theorem in 4.. Remark that Opdam
proved in [15] a spectral decomposition for affine Hecke algebras, which applies in
particular to Iwahori-Hecke algebras and through it for example to the unramified
principal series of a p-adic group.

The identities with the terms in the Plancherel formula contain also informa-
tions on the formal degree and on the position of the discrete series representations
in the induced representation. Opdam was for example able to deduce from his
identities some invariance properties of the formal degree on L-packets of discrete
series representations in his context.

The method employed here may be considered as a local analog of the spectral
decomposition and the theory of the residual spectrum due to Langlands [11] in
the field of automorphic forms.
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Appendix: The case of B,

Let now G be a semi-simple split group of type B, defined over F'. Fix a
minimal semi-standard parabolic subgroup P = TU of G. Then @}, := a} ~ R%
The set 3(P) of roots of T in Lie(U) can be written in the form {«, 8, a+203, a+3},
where 3 is the short root. Let XV(P) be the set of roots dual to the roots in X(P).
One has XY(P) = {a", Y, a" + 3Y,2a" + Y}, The set {a", 3"} is a base of ag
and the dual bases of afj will be denoted {w,,wg}. Observe that (", ) = —1
and (6Y,a) = —2.

Let 7 be the trivial representation of 7. The orbit © of 7 with respect to
x™(T) is isomorphic to (C*)?. Define 7 := 7 ® x». The p-function on O is given
by

1=¢")1=q¢g")1-¢")(1—-q¢ )1 =q¢"")(1—-q ")
(1 =g (L =g =) (L = ¢"*) (L = ¢' ) (1 = ¢+t (1 — ¢! 7v)
(1—g*t)(1—q2Y)
(1 _ q1+2m+y)(1 _ q1—2m—y)’

N(waa-kng) =C

where C' is a constant > 0.

The affine hyperplanes of © which are polar for u are the images of the affine
hyperplanes in af of the form (yY,\) = ¢ with c = —1 or ¢ = 1, v € ¥(P). The
zero affine hyperplanes are the images of the affine hyperplanes (y¥, \) = 0 in ag,
v € 3(P). So they correspond to the lines generated respectively by the vectors

— — — —
Owq, Owg, Oa and 04.

Fix r = rowq + 1gws € af with 7, > 0 and rg > 0. To calculate for f €
C*(G)e the integral

(#) Loy, ()0 T(0)Es (@) () (o),

one first moves r to 0 following the circuit below. Each intersection of this circuit
with a polar hyperplane H gives a residue, which is a rational function in ¢ with
R(c) € H. For each intersection point 7y, one has to move 7y on H near to the
origine r(H) of this affine hyperplane (which is the point with minimal distance to
the origine of afj). Each intersection point with an affine polar or zero hyperplane
H' # H of this segment on H can give rise to another non trivial residue. It
turns out that there is only one case where a zero affine hyperplane gives a non
trivial residue: this happens for the intersection of the polar affine hyperplane
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(Y, ) = 1 with the zero affine hyperplane («¥, \) = 0. The intersection point is

QJ5.

Remark that the point 5 can be moved to the origine of the hyperplan H, if

the origine is a regular point. (One verifies that only the affine polar hyperplane

(o’

+ Y, A\) = 1 has an origine, which is not regular.)

(¥ + 8%, Ny =1

%
(20¥ + 6, N\) =1

To simplify the notations let ¢ = 1. (For g # 1 one gets the analog result.)

Then one sees that (#) is with € > 0 equal to

(1)
(2)
(3)

+ tr(Jplﬁ(Tng(l{»%)wa )ff(7_§+(1+%)wa)) Resmzlﬁ-% Resyzl (/’L(TzwaJ,»yg ))
logq [Tesq
+ 27T R tr(‘]P|ﬁ(T%+ixwa)ff(Tngixwa)) Resy:1 (M(mea+y§>)dx

logq [Twsq

tr(JP|F<T%+iyw5 )Ef (T%Jring )) Res;—1 (M(Tx%Jriyw@ ))dy

2T y=0
logq (s
(6)e + o Joo tr(JP|F<T(iz+e)%+wg)€f(T(iz—l—e)%-HUg)) Res:r=1(N(T(iz+6)%+$%))dz
logq [mea
+ o Jico tl“(Jp@(TitﬁJr“Ta)ff(Tiw#Ta))ReSy:l(M(Ty%@Htﬁ))dt
+ [ (o) (0)ulo)do:

R(o)=0
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One observes that

(6>6 - (6)—6 = ReSZio(tr<JP\ﬁ(Tz%+wg)gf(TZ%-‘rwﬂ))) Res$:1(ﬂ(72%+ww5))|z:0

and verfies that
1
0= (3) + 5 Resz:@(tr(‘]P\ﬁ(Tz%-‘rw@>§f(7—z%+w5))) Reswzl(u(Tz%+zw,@))|z:0~

So (3) cancels after replacing (6). by (6')c = 3((6)c + (6)_c). According to our
general results (cf. step ii) in 5.), one verifies directly that the integrant in ((6). +
(6)_c) is a regular function for € = 0, i.e. (6'). = (6")g =: (6').

With this one sees easily, that (8) corresponds to the term in the Plancherel
formula coming from the unitary orbit of the unit representation of L = T, that
(6") + (5) corresponds to the term coming from the orbit of the Steinberg rep-
resentation of the Levi subgroup L, and that (4) + (7) corresponds to the term
coming from the Steinberg representation of the Levi subgroup Lg. The term
(1) corresponds to the one in the Plancherel formula coming from the square-
integrable representation of G which is the unique subrepresentation of iIGDTwaWﬁ.
The term (2) comes from the unique square-integrable representation of GG, which
is a subrepresentation of iIGDTwﬁ (d 4w

Remark that these results on the discrete series of G of type By were already
known to P. Sally and M. Tadic [20] (see also [1] for a complete Plancherel formula
in this setting). However, in general it is much more difficult to find explicitly
the subquotients of an induced representation which are square-integrable (see for
example the case of a group of type G5 studied in the appendix A. to [8] which
is the local analog to the case studied in the appendix III to [14]).

The material of this article together with all the proofs will appear in the Journal de I'Institut de Mathématiques de Jussieu.
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Locally convex root graded Lie algebras

Karl-Hermann Neeb

Abstract

In the present paper we start to build a bridge from the algebraic theory
of root graded Lie algebras to the global Lie theory of infinite-dimensional
Lie groups by showing how root graded Lie algebras can be defined and
analyzed in the context of locally convex Lie algebras. Our main results
concern the description of locally convex root graded Lie algebras in terms of
a locally convex coordinate algebra and its universal covering algebra, which
has to be defined appropriately in the topological context. Although the
structure of the isogeny classes is much more complicated in the topological
context, we give an explicit description of the universal covering Lie algebra
which implies in particular that in most cases (called regular) it depends
only on the root system and the coordinate algebra. Not every root graded
locally convex Lie algebra is integrable in the sense that it is the Lie algebra
of a Lie group. In a forthcoming paper we will discuss criteria for the
integrability of root graded Lie algebras.

Introduction

Let K be a field of characteristic zero and A a finite reduced irreducible root
system. We write ga for the corresponding finite-dimensional split simple K-Lie
algebra and fix a splitting Cartan subalgebra b of ga. In the algebraic context, a
Lie algebra g is said to be A-graded if it contains ga and g decomposes as follows
as a direct sum of simultaneous ad h-eigenspaces

=002 P ga, and go= D [, 0-al-

a€A aEA

It is easy to see that the latter requirement is equivalent to g being generated by
the root spaces g, a € A, and that it implies in particular that g = [g, ¢], i.e.,
that g is a perfect Lie algebra. Recall that two perfect Lie algebras g, and g are
called (centrally) isogenous if g1/3(81) = g2/3(g2). A perfect Lie algebra g has a
unique universal central extension g, called its universal covering algebra (|[We95,
Th. 7.9.2]). Two isogenous perfect Lie algebras have isomorphic universal central
extensions, so that the isogeny class of g consists of all quotients of g by central
subspaces.

The systematic study of root graded Lie algebras was initiated by S. Berman
and R. Moody in [BM92|, where they studied Lie algebras graded by simply laced
root systems, i.e., types A, D and E. The classification of A-graded Lie algebras
proceeds in two steps. First one considers isogeny classes of A-graded Lie algebras
and then describes the elements of a fixed isogeny class as quotients of the corres-
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ponding universal covering Lie algebra. Berman and Moody show that for a
fixed simply laced root system of type A the isogeny classes are in one-to-one
correspondence with certain classes of unital coordinate algebras which are

(1) commutative associate algebras for types D,, r > 4, Eg, E7 and FEg,

(2) associative algebras for type A,, r > 3, and

(3) alternative algebras for type As.

The corresponding result for type A; is that the coordinate algebra is a Jordan
algebra, which goes back to results of J. Tits (|Ti62]).

Corresponding results for non-simply laced root systems have been obtained
by G. Benkart and E. Zelmanov in [BZ96|, where they also deal with the A;-
case. In these cases the isogeny classes are determined by a class of coordinate
algebras, which mostly is endowed with an involution, where the decomposition of
the algebra into eigenspaces of the involution corresponds to the division of roots
into short and long ones. Based on the observation that all root systems except
Es, Fy, and G; are 3-graded, E. Neher obtains in [Neh96] a uniform description
of the coordinate algebras of 3-graded Lie algebras by Jordan theoretic methods.
Neher’s approach is based on the observation that if A is 3-graded, then each
A-graded Lie algebra can also be considered as an A;-graded Lie algebra, which
leads to a unital Jordan algebra as coordinate algebra. Then one has to identify
the types of Jordan algebras corresponding to the different root systems.

The classification of root graded Lie algebras was completed by B. Allison,
G. Benkart and Y. Gao in [ABGO00]. They give a uniform description of the
isogeny classes as quotients of a unique Lie algebra g(A,.A), depending only on
the root system A and the coordinate algebra A, by central subspaces. Their
construction implies in particular the existence of a functor A — g(A, A) from
the category of coordinate algebras associated to A to centrally closed A-graded
Lie algebras.

Apart from split simple Lie algebras, there are two prominent classes of root
graded Lie algebras, which have been studied in the literature from a different
point of view. The first class are the affine Kac-Moody algebras which can be
described as root graded Lie algebras (|[Ka90, Ch. 6] and Examples 1.4 and 1.11
below). The other large class are the isotropic finite-dimensional simple Lie al-
gebras g over fields of characteristic zero. These Lie algebras have a restricted
root decomposition with respect to a maximal toral subalgebra h'. The corre-
sponding root system A is irreducible, but it may also be non-reduced, i.e., of
type BC, (|Se76]). If it is reduced, then g is A-graded in the sense defined above.
In the general case, one needs the notion of BC,-graded Lie algebras which has
been developed by B. Allison, G. Benkart and Y. Gao in [ABG02]. Since three
different root lengths occur in BC,., we call the shortest ones the short roots, the
longest ones the extra-long roots, and the other roots long. The main difference to

We call a subalgebra t of a Lie algebra g toral if adt C der(g) consists of diagonalizable
endomorphisms.
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the reduced case is that there cannot be any grading subalgebra of type BC,., so
that one has to distinguish between different types, where the grading subalgebra
is either of type B, (the short and the long roots), type C, (the long and the
extra-long roots), or of type D, (the long roots).

The theory of root graded Lie algebras has a very geometric flavor because
the coordinatization theorems for the different types of root systems are very
similar to certain coordinatization results in synthetic geometry. That the Lie
algebra g under consideration is simple implies that the coordinate algebra is
simple, too. In geometric contexts, in addition, the coordinate algebras are mostly
division algebras or forms of division algebras. For a nice account on the geometry
of groups corresponding to the root systems Ay, By = (5 and G5 we refer to
the memoir [Fa77| of J. R. Faulkner. Here type Ay corresponds to generalized
triangles, type By to generalized quadrangles and G5 to generalized hexagons.

An important motivation for the algebraic theory of root graded Lie algebras
was to find a class of Lie algebras containing affine Kac-Moody algebras (|[Ka90]),
isotropic finite-dimensional simple Lie algebras ([Se76|), certain ones of Slodowy’s
intersection matrix algebras (|SI86]), and extended affine Lie algebras (EALAs)
(JAABGP97]), which can roughly be considered as those root graded Lie algebras
with a root decomposition. Since a general structure theory of infinite-dimensional
Lie algebras does not exist, it is important to single out large classes with a
uniform structure theory. The class of root graded Lie algebras satisfies all these
requirements in a very natural fashion. It is the main point of the present paper
to show that root graded Lie algebras can also be dealt with in a natural fashion
in a topological context, where it covers many important classes of Lie algebras,
arising in such diverse contexts as mathematical physics, operator theory and
geometry.

With the present paper we start a project which connects the rich theory of
root graded Lie algebras, which has been developed so far on a purely algebraic
level, to the theory of infinite-dimensional Lie groups. A Lie group G is a manifold
modeled on a locally convex space g which carries a group structure for which
the multiplication and the inversion map are smooth ([Mi83], [Gl01a], [Ne02b]).
Identifying elements of the tangent space g := T1(G) of G in the identity 1 with
left invariant vector fields, we obtain on g the structure of a locally convexr Lie
algebra, i.e., a Lie algebra which is a locally convex space and whose Lie bracket
is continuous. Therefore the category of locally convex Lie algebras is the natural
setup for the “infinitesimal part” of infinite-dimensional Lie theory. In addition, it
is an important structural feature of locally convex spaces that they have natural
tensor products.

In Section I we explain how the concept of a root graded Lie algebra can be
adapted to the class of locally convex Lie algebras. The main difference to the
algebraic concept is that one replaces the condition that > ca[ga, 8—a] coincides
with go by the requirement that it is a dense subspace of go. This turns out
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to make the theory of locally convex root graded Lie algebras somewhat harder
than the algebraic theory, but it is natural, as a closer inspection of the topological
versions of the Lie algebras sl,,(A) for locally convex associative algebras A shows.
In Section I we also discuss some natural classes of “classical” locally convex root
graded Lie algebras such as symplectic and orthogonal Lie algebras and the Tits—
Kantor-Koecher-Lie algebras associated to Jordan algebras.

In Section II we undertake a detailed analysis of locally convex root graded
Lie algebras. Here the main point is that the action of the grading subalge-
bra ga on g is semisimple with at most three isotypical components, into which
g decomposes topologically. The corresponding simple modules are the trivial
module K € {R, C}, the adjoint module g and the simple module V; whose high-
est weight is the maximal short root with respect to a positive system AT C A.
In the algebraic context, the decomposition of g is a direct consequence of Weyl’s
Theorem, but here we need that the isotypical projections are continuous opera-
tors, a result which can be derived from the fact that they come from the center of
the enveloping algebra U(ga). The underlying algebraic arguments are provided
in Appendix A. If A, B, resp., D, are the multiplicity spaces with respect to ga,
Vs, resp., K, then g decomposes topologically as

g=(A®gr)®(BaV,) @D.

A central point in our structural analysis is that the direct sum A := A® B carries
a natural (not necessarily associative) unital locally convex algebra structure,
that D acts by derivations on 4, and that we have a continuous alternating map
0P A x A — D satisfying a certain cocycle condition. Here the type of the
root system A dictates certain identities for the multiplication on A, which leads
to the coordinatization results mentioned above (|[BM92], [BZ96] and [Neh96]).
The main new point here is that A inherits a natural locally convex structure,
that the multiplication is continuous and that all the related maps such as 7 are
continuous. We call the triple (A, D, dP) the coordinate structure of g.

In the algebraic context, the coordinate algebra A and the root system A clas-
sify the isogeny classes. The isogeny class of g contains a unique centrally closed
Lie algebra g and a unique center-free Lie algebra g/3(g). In the locally convex
context, the situation is more subtle because we have to work with generalized
central extensions instead of ordinary central extensions: a morphism ¢: g — g
of locally convex Lie algebras is called a generalized central extension if it has
dense range and there exists a continuous bilinear map b: g x g — g for which
bo (g X q) is the Lie bracket on g. This condition implies that ker ¢ is central, but
the requirement that ker ¢ is central would be too weak for most of our purposes.
The subtlety of generalized central extensions is that ¢ need not be surjective
and if it is surjective, it does not need to be a quotient map. Fortunately these
difficulties are compensated by the nice fact that each topologically perfect Lie
algebra g, meaning that the commutator algebra is dense, has a universal gener-
alized central extension ¢y: g — g, called the universal covering Lie algebra of g.
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We call two topologically perfect locally convex Lie algebras g; and gy (centrally)
isogenous if g1 = go. We thus obtain a locally convex version of isogeny classes
of locally convex Lie algebras. The basic results on generalized central extensions
are developed in Section III.

In Section IV we apply this concept to locally convex root graded Lie algebras
and give a description of the universal covering Lie algebras of root graded Lie
algebras. It turns out that in the locally convex context, this description is more
complicated than in the algebraic context (JABGO0]). Here a central point is
that for any generalized central extension ¢: g — g the Lie algebra g is A-graded
if and only if g is A-graded. An isogeny class contains a A-graded element if
and only if it consists entirely of A-graded Lie algebras. The universal covering
algebra g of a root graded Lie algebra g has a coordinate structure (A, D, 6P),
where gq | 5: D — D is a generalized central extension, but since D need not
be topologically perfect, the Lie algebra D cannot always be interpreted as the
universal covering algebra of D. Moreover, we construct for each root system
A and a corresponding coordinate algebra A a A-graded Lie algebra g(A, .A)
which is functorial in A, and which has the property that for each A-graded Lie
algebra g with coordinate algebra A we have a natural morphism ¢*: g(A, A) — g
with dense range and central kernel, but this map is not always a generalized
central extension. The universal covering Lie algebra ¢,: g — g also depends, in
addition, on the Lie algebra D, and we characterize those Lie algebras for which
g = g(A, A). They are called regular and many naturally occuring A-graded Lie
algebras have this property.

We also show that there are non-isomorphic center-free root graded Lie alge-
bras with the same universal covering and describe an example where g(A, A) is
not the universal covering Lie algebra of g (Example IV.24). All these problems
are due to the fact that the Lie algebras g with coordinate algebra A are obtained
from the centrally closed Lie algebra g(A,.A) by a morphism ¢*: g(A, A) — g
with dense range and central kernel. As ¢ is not necessarily a quotient map or a
generalized central extension, the topology on g is not determined by the topology
on A, resp., g(A, A) (Proposition III.19, Examples IV.23/24).

A Lie group G is said to be A-graded if its Lie algebra L(G) is A-graded. It is
a natural question which root graded locally convex Lie algebras g are integrable
in the sense that they are the Lie algebra of a Lie group G. Although this question
always has an affirmative answer if g is finite-dimensional, it turns out to be a dif-
ficult problem to decide integrability for infinite-dimensional Lie algebras. These
global questions will be pursued in another paper (|[Ne03b|, see also [Ne03a|). In
Section V we give an outline of the global side of the theory and explain how it
is related to K-theory and non-commutative geometry. One of the main points is
that, in view of the results of Section IV, it mainly boils down to showing that at
least one member g of an isogeny class is integrable and then analyze the situation
for its universal covering Lie algebra g.
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0.1 Preliminaries and notation

The theory of root graded Lie algebras is a subject with great aesthetic appeal
and rich connections to many other fields of mathematics. We therefore tried to
keep the exposition of the present paper as self-contained as possible to make it
accessible to readers from different mathematical subcultures. In particular we
include proofs for those results on the structure of the coordinate algebras which
can be obtained by short elementary arguments; for the more refined structure
theory related to the exceptional and the low rank algebras we refer to the lit-
erature. On the algebraic level we essentially build on the representation theory
of finite-dimensional semisimple split Lie algebras (cf. [Dix74| or [Hum?72|); the
required Jordan theoretic results are elementary and provided in Appendices B
and C. On the functional analytic level we do not need much more than some
elementary facts on locally convex spaces such as the existence of the projective
tensor product.

All locally convex spaces in this paper are vector spaces over K € {R,C}.
If X and Y are locally convex spaces, then we write Lin(X,Y’) for the space of
continuous linear maps X — Y.

A locally conver algebra A is a locally convex topological vector space together
with a continuous bilinear map A x A — A. In particular a locally convex Lie
algebra g is a Lie algebra which is a locally convex space for which the Lie bracket
is a continuous bilinear map g X g — g.

The assumption that the topological Lie algebras we consider are locally con-
vex spaces is motivated by the fact that such Lie algebras arise naturally as Lie
algebras of Lie groups and by the existence of tensor products, which will be used
in Section III to construct the universal covering Lie algebra. Tensor products of
locally convex spaces are defined as follows.

Let E and F' be locally convex spaces. On the tensor product E ® F' there
exists a natural locally convex topology, called the projective topology. 1t is defined
by the seminorms

(p ®q)(z) = inf {ip(yj)Q(zj): T = Zyj ® zj} ,

where p, resp., ¢ are continuous seminorms on E, resp., F' (cf. [Tr67, Prop. 43.4]).
We write E ®, F for the locally convex space obtained by endowing £ ® F' with



Locally convex root graded Lie algebras 31

the locally convex topology defined by this family of seminorms. It is called the
projective tensor product of E and F. It has the universal property that for a
locally convex space G the continuous bilinear maps £ x F' — G are in one-to-one
correspondence with the continuous linear maps F ®, F — G. We write E®,F
for the completion of the projective tensor product of £ and F. If E and F are
Fréchet spaces, their topology is defined by a countable family of seminorms, and
this property is inherited by E®,F. Hence this space is also Fréchet.

If £ and F are Fréchet spaces, then every element 6 of the completion E®,F
can be written as 6§ = >°°, \,z, @ vy, where A € (}(N,K) and lim,, .oz, =
lim, 0o ¥ = 0 (|Tr67, Th. 45.1]). If, in addition, F and F' are Banach spaces,
then the tensor product of the two norms is a norm defining the topology on £F® F
and E®,F also is a Banach space. For ||| < 1 we then obtain a representation

with ||[A|l1 < 1 and ||@,]|, [|y.|| <1 for all n € N ([Tr67, p.465]).

I Root graded Lie algebras

In this section we introduce locally convex root graded Lie algebras. In the alge-
braic setting it is natural to require that root graded Lie algebras are generated
by their root spaces, but in the topological context this condition would be un-
naturally strong. Therefore it is weakened to the requirement that the root spaces
generate the Lie algebra topologically. As we will see below, this weaker condition
causes several difficulties which are not present in the algebraic setting, but this
defect is compensated by the well behaved theory of generalized central extensions
(see Section IV).

1.1 Basic definitions

Definition I.1. Let A be a finite irreducible reduced root system and ga the
corresponding finite-dimensional complex simple Lie algebra.

A locally convex Lie algebra g is said to be A-graded if the following conditions
are satisfied:

(R1) g is a direct sum g = go ® Poca Ja-

~

(R2) There exist elements =, € g,, @ # 0, and a subspace hh C go with ga
b + ZaEA K.l’a.

(R3) For o € AU {0} we have g, = {z € g: (Vh € b) [h, 2] = a(h)x}, where we
identify A with a subset of h*.

<R4) ZaGA[gon g—a] is dense in do-

The subalgebra ga of g is called a grading subalgebra. We say that g is root
graded if g is A-graded for some A.
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A slight variation of the concept of a A-graded Lie algebra is obtained by
replacing (R2) by

(R2’) There exist a sub-root system Ay C A and elements x, € g,, @ € Ag, and
a subspace b C go with ga, = b+ > cn, Kzg.

A Lie algebra satisfying (R1), (R2’), (R3) and (R4) is called (A, Ag)-graded.m

Remark I.2. (a) Suppose that a locally convex Lie algebra g satisfies (R1)-(R3).

Then the subspace
> 8ot Y (80,80

a€A a€A

is invariant under each root space g, and also under g, hence an ideal. Therefore

its closure satisfies (R1)-(R4), hence is a A-graded Lie algebra.

(b) Sometimes one starts with the subalgebra h C g and the corresponding weight

space decomposition, so that we have (R1) and (R3). Let II be a basis of the root

system A C b* and &, a € A, the coroots. If there exist elements vy, € g4, for

« € I such that [x,,r_,] = &, then we consider the subalgebra ga C g generated

by {Z4q: a € II}. Then the weight decomposition of g with weight set A U {0}

easily implies that the generators x.,, o € II, satisfy the Serre relations, and

therefore that ga is a split simple Lie algebra with root system A satisfying (R2).
[ ]

Remark 1.3. (a) In the algebraic context one replaces (R4) by the requirement
that go = Y acalfas 8-a]. This is equivalent to g being generated by the spaces
o, @ € AL
(b) The concept of a A-graded Lie algebra can be defined over any field of charac-
teristic 0. Here it already occurs in the classification theory of simple Lie algebras
as follows. Let g be a simple Lie algebra which is isotropic in the sense that it
contains non-zero elements x for which ad x is diagonalizable. The latter condition
is equivalent to the existence of a subalgebra isomorphic to sly(K). Let h C g be
a maximal toral subalgebra h C g. Then g has an h-weight decomposition, and
the corresponding set of weights A C h* is a not necessarily reduced irreducible
root system (cf. [Se76, pp.10/11]). If this root system is reduced, then one can use
the method from Remark I1.2(b) to show that g is A-graded in the sense defined
above. For restricted root systems of type BC, this argument produces grading
subalgebras of type C,, hence (BC,, C,)-graded Lie algebras ([Se76]).
(¢) (R4) implies in particular that g is topologically perfect, i.e., that g’ := [g, g] =
g.
(d) Suppose that g is A-graded and

0 Cdera(g) :={D e der(g): (Vo€ A)D.g, C go}

is a Lie subalgebra with a locally convex structure for which the action 0 x g — g
is continuous. Then g x ? satisfies (R1)—(R3) with (g < 9)g = go ¥ . [
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I.2 Examples of root graded Lie algebras

Example 1.4. Let A be an irreducible reduced finite root system and ga be
the corresponding simple split K-Lie algebra. If A is a locally convex associative
commutative algebra with unit 1, then g := A ® ga is a locally convex A-graded
Lie algebra with respect to the bracket

l[a®x,d @] :=ad @ [z,2'].

The embedding ga < g is given by z — 1 ® . ]

Example 1.5. Now let A be an associative unital locally convex algebra. Then
the (n x n)-matrix algebra M, (A) = A® M, (K) also is a locally convex associative
algebra. We write gl,,(A) for this algebra, endowed with the commutator bracket
and

g := [gh,(4), ol (A)]
for the closure of the commutator algebra of gl,(A). We claim that this is an

A, _1-graded Lie algebra with grading subalgebra ga = 1®sl,(K). It is clear that
ga is a subalgebra of g. Let

b= {diag(xl,...,xn): wl,-..7xn€K7ij:0} C ga
J

denote the canonical Cartan subalgebra and define linear functionals €; on b by
gj(diag(zy, ..., x,)) = ;.

Then the weight space decomposition of g satisfies
Oeie; = AR Ey, i # 7,

where E;; is the matrix with one non-zero entry 1 in position (7, 7). From

[CLEZ‘ bEkl] = abdjkEil — baéliEkj

j»
we derive that
(B, bE;;] = abEys — baE;; € [a,8] ® Eig + A @ s, (K) = :L[a, b @1+ A sl (K).
In view of A ® s1,,(K) = [ga, g] C [g, g], it is now easy to see that
g0 = {diag(al,...,an): Zaj E[AA]} =(Aoh s (4 A4x1).
j

From the formulas above, we also see that (R4) is satisfied, so that g is an A,,_;-
graded locally convex Lie algebra.
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We have a natural non-commutative trace map

T gl (A) — A/TA A, z [Zw]

where [a] denotes the class of a € A in A/[A, A]. Then the discussion above
implies that

sl(A) =kerTr=g= (A®sl,(K)) & ([4, A ®1).

To prepare the discussion in Example [.9(b) and in Section II below, we describe
the Lie bracket in sl[,,(A) in terms of the above direct sum decomposition. First
we note that in gl (A) we have

aa’ +ad'a 1

la®@z,d @1 =ad @za' —dax 2’z = 5 @ [z, 2] + 5[@, d| @ (za’ + 2'z).

For z, 2’ € sl,,(K) we have

tr(za’)
n

1 € s1,(K),

rxx =xxr +2'r—2

so that for a,a’ € A and z, 2’ € s[,(K) we have

tr(za’)

n

/ / 1
L @ e+ sla, | @wea) + o, 0]

(1.1) [a®x,d @] = ( 1,
according to the direct sum decomposition sl,(A) = (A ® s1,,(K)) @ ([4, 4] ® 1),
and

d®1l,a®zx] =[d,al @z, a,de A xcsl,(K). [

Remark 1.6. A Lie algebra g can be root graded in several different ways. Let
s C g be a subalgebra with s = span{h, e, f} = sl5(K) and the relations

[h,e] =2¢, |h,f]=—-2f and e, f]=h.

If ady h is diagonalizable with Spec(adgh) = {2,0, —2}, then the eigenspaces of
adg h yield on g the structure of an A;-grading with ga := s. This shows in
particular that for any associative algebra A the Lie algebra sl,(A), n > 3, has
many different A;-gradings in addition to its natural A, _;-grading. ]

Example 1.7. Let A be a locally convex unital associative algebra with a con-
tinuous involution o: a — a?, i.e., ¢ is a continuous involutive linear antiauto-
morphism:

(ab)? =b%a® and (a”)’ =a, a,b€ A
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If 0 =id 4, then A is commutative. We write
AT :={a € A: a° = +a}

and observe that A = A7 & A°.

The involution ¢ extends in a natural way to an involution of the locally convex
algebra M, (A) of n x n-matrices with entries in A by (z;;)7 1= (2%). If 0 = id4,
then 7 = 2" is just the transposed matrix.

(a) Let 1 € M, (A) be the identity matrix and define

0 —1

Then J? = —1, and

5Py, (A, 0) = {z € gy, (A): Jo°J ' = —z}

is a closed Lie subalgebra of gl,,(A). Writing  as a (2 x 2)-matrix (i Z) €
M;y(M,,(A)), this means that

b

5Py, (A, 0) = { (Z —a") €gly,(A): b7 =b,c7 = c},

For A = K we have ¢ = id, and we obtain sp,, (K, idk) = sp,,(K). With the
identity element 1 € A we obtain an embedding K = K1 — A, and hence an
embedding

P2, (K) — spy, (A, 0).

Let
h = {diag(x1,...,Tn, —T1,...,—xy): T1,...,2, € K}

denote the canonical Cartan subalgebra of sp,,(K). Then the h-weights with
respect to the adjoint action of h on sp,, (A, o) coincide with the set

A:{:I:&tizl:gj:i,jzl,...,n}

of roots of sp,, (K), where ¢ (diag(zy, ..., 2n, —21,...,—2,)) =x;forj=1,... n.
Typical root spaces are
ei—e; — {aE;ij—a’Ejipnitn: a € A}, Oeite; — {aE; jin+a’Ejipn: a € A}, i # 7,

g

g2, = A'Ejj4n, and g = {diag(as,...,an, —af,...,—a}): a1,...,a, € A}.

As sp,, (A, 0) is a semisimple module of sp,, (K) (it is a submodule of gl,,(A) =
A ® gl,, (K)), the centralizer of the subalgebra sp,,, (K) is

35P2n(¢4,0) (5p2n (K)) - A—a]_,
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and therefore

5p2n("4a U) = [5p2n(K)75p2n(Aa U)] @ A_Ul'

From Example 1.5 we know that a necessary condition for an element al to be

contained in the closure of the commutator algebra of gl,,(A) is a € [A,A]. On
the other hand, the embedding

xT

5L, (A) > by, (A 0), @ (”3 . )

implies that the elements

(0 ) ecta

are contained in the closure sp,, (A, )" of the commutator algebra of sp,, (A, o).
This proves that

P2, (A, 0)" = [5p,,(K), 5p,, (A, 0)] © ([A, A]_U ®1).

Using Example 1.5 again, we now obtain (R4), and therefore that sp,, (A, o) is
a Cy,-graded Lie algebra with grading subalgebra sp,, (K). We refer to Example
I1.9 and Definitions II.7 and II.8 for a description of the bracket in sp,, (A, o) in
the spirit of (1.1) in Example L.5.

The preceding description of the commutator algebra shows that each element

a b ;.
x = (c _ag> € sp,, (A, o) satisfies

tr(z) = tr(a — a”) = tr(a) — tr(a)? € [A, Al.

That the latter condition is sufficient for z being contained in sp,, (A, o)’ follows
from

5p2n(~’47 U) = [5p2n(K)7 5p2n(~’47 U)] ) Aig ® 1.
The Lie algebra sp,,, (A, o) also has a natural 3-grading

5]32”(./4, 0) = 5p2n("47 U)+ D 5p2n<~’47 U)O D 5p2n("47 O-)*
with
sPau( A, 0)s = Herm, (A, o) i= {z € M,(A): 27 =2} and sp,, (A, o) = gl, (A),

obtained from the (2 x 2)-matrix structure.
(b) Now we consider the symmetric matrix

= (‘1’ é) € My, (A),
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which satisfies I? = 1. We define the associated closed Lie subalgebra of gl,,(.A)
by

on,n(Aa U) = {ZL‘ € g[Qn(A) ]I’U]_l = —1‘}
a b . .
- { (C _acr> € g[2n("4): b7 = —b,c” = —c}.

For A = K we have ¢ = id, and we obtain 0, ,(K, idx) = 0,,(K). With the
identity element 1 € A we obtain an embedding K = K1 — A, and hence an

embedding
0nn(K) — 0,,(A, o).

Again,
h = {diag(x1,...,Tn, —T1,...,—xy): 21,...,2, € K}

is the canonical Cartan subalgebra of o,,,(K). The h-weights with respect to the
adjoint action of h on 0,,(A, o) coincide with the set

A= {:t&fz‘ﬂ:&fji ’L,j = 1,...,n}.
Typical root spaces are

gei—ej = {CLEZ'j—CLUEj+n7i+nZ a € A}, gsi_i'_ej = {(IEZ‘J'_HL—CLGE]"Z'_HZI a < A}, 1 7& j,

o

goc;, = A 7B, and  go = {diag(ai,...,an,—af,...,—a}): a,...,a, € A}.

The root spaces gy., are non-zero if and only if A~ # {0}, which is equivalent to
g 7£ id A-
As in (a), we obtain

Jonn( ) (0nn(K) = A7 @1, 0np(A) = [04,0(K), 000 (A)] & (A7 @ 1),

and

0nn(A) = (00,0 (K), 0,0 (A)] © ([A, -’4]70 ®1).
If 04 = id4, then A is of type D,, the root system of o,,,(K), and 0, ,(A) =
0nn(A,idy) is a D,-graded Lie algebra. In this case A = A” is commutative, and

On,n(A) = A® Un,n(K)7

so that this case is also covered by Example 1.4.
If 04 # idy, then we obtain a (C,,, D, )-graded Lie algebra with grading sub-
algebra o, ,,(K) of type D,,. [
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Lemma I.8. Let K be a field with 2 € K*. For x,y,z € sly(K) we have the
relations

(1.2) xy + yx = tr(zy)1,
and
(1.3) [z, [y, z]] = 2tr(zy)z — 2tr(z2)y.

Proof. For z € sl5(K) let
p(t) =det(tl —x) =t —tro -t +detx =t* +detx

denote the characteristic polynomial of x. Then the Cayley—Hamilton Theorem
implies
0 =p(z) = 2% + (det z)1.

On the other hand —2detz = tra? follows by consideration of eigenvalues
+X of z in a quadratic extension of K. We therefore obtain 2% — tr(z?)1 =
2%+ 2(det )1 = 0. By polarization (taking derivatives in direction y), we obtain
from 22? = tr(x?)1 the relation 2zy +2yz = tr(zy+yz)1 = 2tr(zy)1, which leads
to

xy + yxr = tr(zy)1.

We further get

tr(zy)z —tr(zz)y = (vy+yzr)z —y(oz+ 22) = vyz — yzo = [z, y7]
1

= 5[% ly, 2] + (yz + 2y)]

= ;[q;, [y, z] + tr(yz)1] = ;[% [y, 2]].

Example 1.9. (a) Let J be a locally convex Jordan algebra with identity 1
(cf. Appendix B). We endow the space J ® J with the projective tensor product
topology and define

(J,Jy =(J® J)/I,

where I C J ® J is the closed subspace generated by the elements of the form
a ® a and
ab@c+bc®a+ca®b, a,bce ]

We write (a,b) for the image of a ® b in (J, J). Then

(a,b) = —(b,a) and {(ab,c) + (bc,a) + {ca,b) =0, a,b,c€ J.
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It follows in particular that (1,c) + 2(¢, 1) = 0, which implies (1,¢) = 0 for each
ceJ.
Let L(a)b := ab denote the left multiplication in .J. From the identity

[L(a), L(be)] + [L(b), L(ca)] + [L(c), L(ab)] = 0
(Proposition B.2(1)) and the continuity of the maps (a, b, z) — [L(a), L(b)].x we
derive that the map
dj: J®J —der(J), (a,b)— 2[L(a), L(D)]
(cf. Corollary B.3 for the fact that it maps into der(.J)) factors through a map
dy: (J,J) — der(J).
It therefore makes sense to define
(1.4) (a,b).x :=2[L(a), L(b)].x, a,b,x € J.
We now define a bilinear continuous bracket on
TKK(J) := (J @ s,(K)) & (J, J)
by
[a®@z,d @] = ad @[z,2']+ (a,d) tr(z2"), [{a,b),c®z]:={a,b).c®x
[{a,b), (c,d)] = {({a,b).c,d)+ {(c,{a,b).d).

The label TKK refers to Tits, Kantor and Koecher who studied the relation be-
tween Jordan algebras and Lie algebras from various viewpoints (see Appendices B

and C). It is clear from the definitions that if we endow TKK(.J) with the natural
locally convex topology turning it into a topological direct sum of J ® sly(K) and

(J,J), then ﬁ(f((J ) is a locally convex space with a continuous bracket. That the
bracket is alternating follows for the (.J, J)-term from the calculation in Example

I11.10(3) below. To see that ﬁf{(J) is a Lie algebra, it remains to verify the
Jacobi identity. The trilinear map

J(ev, 8,7) = [la, B, + [[8,7], o] + [y, 0, Bl =2 3 _[lev, B, 9]

cycl.

is alternating. Therefore we only have to show that it vanishes for entries in
J ®5ly(K) and (J, J). The essential case is where all elements are in J ® sl,(K).
In the last step of the following calculation we use Lemma 1.8:

[a®@z,b@yl,cz] = lab® [z,y] + tr(zy)(a,b),c® 2]
= (ab)e® [[x,y], 2] + tr([z, y]z){ab, c) + (a,b).c ® tr(xzy)z
= 2(ab)c® (tr(zy)x — tr(zx)y) + (a,b).c ® tr(zy)z
+ tr([z, y]z)(ab, c).
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Now the vanishing of J(a ® z,b ® y, ¢ ® z) follows from

> tr([z, ylz){ab, ¢) = tr([z,y]z) Y _(ab,c) =0

cycl. cycl.

and
({a,b).c — 2(bc)a + 2(ca)b) ® tr(zy)z = 0.

Note that this also explains the factor 2 in (1.4).

That the expression J(«, 3,7) vanishes if one entry is in (J, J) follows easily
from the fact that §,(a,b) = 2[L(a), L(b)] € der(J). The case where two entries
are in (J, J) corresponds to the relation

6(a,), (e, d)] = 8({a,b)-c, ) + b(c, {0, ).d)
in der(.J), which in turn follows from the fact that for any D € der(J) we have

[D,d(c,d)] = 2[D,[L(c), L(d)]] = 2[[D, L(c)], L(d)] + 2[L(c), [D, L(d)]]
= 9[L(D.c), L(d)] + 2[L(c), L(D.d)] = §(D.c,d) + §(c, D.d).

The case where all entries of J(«, 3, ) are in (.J, J) follows easily from the fact that
the representation of der(.JJ) on J® J factors through a Lie algebra representation
on (J,J) given by D.{(a,b) = (D.a,b) + (a, D.b). In this sense the latter three
cases are direct consequences of the derivation property of the d(a,b)’s.

This proves that the bracket defined above is a Lie bracket on 'ﬁa/((J ). The
assignment J — TKK(.J) is functorial. It is clear that each derivation of J induces
a natural derivation on TKK(J) and that each morphism of unital locally convex

Jordan algebras ¢: J; — Jo defines a morphism T/KI/{(Jl) — fﬁ}/{(JQ) of locally
convex Lie algebras.

It is interesting to observe that in general tensor products A®# of an algebra A
and a Lie algebra € carry only a natural Lie algebra structure if A is commutative
and associative (Example 1.4). For more general algebras one has to add an extra
space such as (J, J) for a Jordan algebra J and £ = sl5(K). The Jacobi identity
for 'ﬁ\(f{((] ) very much relies on the identity for triple brackets in sly(K) from
Lemma 1.8 and the definition of the action of (a,b) as 2[L(a), L(b)].

We have a natural embedding of sl,(K) into g = rITI\(T((J) as ga = 1 ®sl(K).
Let h,e, f € sl5(K) be a basis with

[h,e] =2e, [h,f]l=-2f and e, f] =h.

Then h = Kh is a Cartan subalgebra of sly(K), and the corresponding eigenspace
decomposition of g is given by

p=J®e go=J@f and g =Jhd(JJ).
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In view of [ga, g] = J ® sl3(K), the formula for the bracket implies that (J,J) C
[g, g], and hence that g is an A;-graded locally convex Lie algebra.

(b) If A is a locally convex unital associative algebra, then A also carries the
structure of a locally convex unital Jordan algebra A; with respect to the product

1
aob:= §(ab—i—ba)

(Lemma B.7). It is interesting to compare TI\{T((A s) with the locally convex Lie
algebra sly(A) discussed in Example 1.5, where we have seen that with respect to
the decomposition

sh(A) = (A@sh(K)) o ([4, A @ 1),
the Lie bracket is given by

ab + ba 1 tr(xy)

ez by =
In view of (1.2), we have x * y = 0, so that we obtain the simpler formula
1
0 @2,b® 3] = (00b) ® r,y] + 5[0, @ tr(ry)L

Let Lq(b) := ab and R,(b) := ba. Then the left multiplication in the Jordan
algebra is L(a) = (L, + R,), and therefore (a, b) acts on A, as

2AL(@) LB = §lLot RurLa+ B = (Lo La] + [Rer )
= ;( [a,b1—R[a,b})=;ad([a,b])'

From this it easily follows that
—~ 1
p: TKK(A)) = shk(A), a®zr—a®ux, (a,b)»—>§[a,b]®1

defines a morphism of locally convex Lie algebras.

From the discussion of the examples in Section IV below, we will see that this
homomorphism is in general neither injective nor surjective.
(c) From the continuity of the map

(J,J)x J—J,  ({(a,b),x) — d;(a,b).x = (a,b).x

it follows that kerd, is a closed subspace of (J,.J). Hence the space ider(J) :=
im(d,) = (J,J)/ ker(d;) carries a natural locally convex topology as the quotient
space (J, J)/ ker(dy).
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The closed subspace ker(d;) C (J,J) also is a closed ideal of T/ﬁ((J ). The
quotient Lie algebra

TKK(J) := TKK(J)/ ker(5;) = (J ® sly(K)) & ider(J)

is called the topological Tits—Kantor—Koecher—Lie algebra associated to the locally
convex unital Jordan algebra J. The bracket of this Lie algebra is given by

[a®z,d @2 = ad @ [x,2'] +2tr(z,2")[L(a), L(d")], [dc®c:=dc®x
d,d] = dd —dd

Mostly TKK(J) is written in a different form, as J x iste(J) x J, where
iste(J) = L(J) + ider(J) is the inner structure Lie algebra of J. The corre-
spondence between the two pictures is given by the map

O: TKK(J) — J xiste(J) x J, a®e+b@h+c® f+d— (a,2L(b) +d,c).
To understand the bracket in the product picture, we observe that
(L(a) + [L(b), L(c)]). 1 =a+b(cl) — c(bl) = a
implies
iste(J) = L(J) @ [L(J), L(J)] = J & [L(J), L(J)].
For each derivation d of J we have [d, L(a)] = L(d.a), which implies that
o(L(x) + [L(y), L(2)]) = —L(x) + [L(y), L(2)]

defines an involutive Lie algebra automorphism on iste(.JJ). Now the bracket on
J x iste(J) x J can be described as

[(a,d,c),(d,d, )] = (da —d.a,2L(ac’) + 2[L(a), L(¢)] — 2L(d'c)
—2[L(a"), L(c)] + [d,d'],o(d).c' — o(d').c).

From this formula it is clear that the map 7(a,d,c) := (¢,0(d),a) defines an
involutive automorphism of TKK(J).
(d) Let A be a commutative algebra and

Onn(A) = 0,,(4,id) 2 A® 0,,(K)
(Example 1.7(b)).
For the quadratic module (M, q,) := (A*", (g4 & —qa)™) with

qlay,...,a0,) =aj —a3+a3—aj+...+a3, | —as,
the n-fold direct sum of the hyperbolic A-plane, we consider the associated Jordan
algebra J(M,) (Lemma B.4). As M, = A ® K?" as quadratic modules, it is easy
to see that
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TKK(J(M,)) &2 A® TKK(J(K*)) 2 A® 0,,.,41(K),

which is a Lie algebra graded by the root system B,,.
If M is an orthogonal direct sum M = My & M,, we have an inclusion
TKK(J(M,)) — TKK(J(M)) which leads to an embedding

On,nJrl(K) — TKK(‘](M))a
and further to a B,-grading of TKK(J(M)). [

1.3 Twisted loop algebras

There are also so-called twisted versions of the Lie algebras A ® ga from Exam-
ple I.4. The construction is based on the following observation.

Let & be a split simple K-Lie algebra, hy C £ a splitting Cartan subalgebra,
and ' a group of automorphisms of ¢ fixing a regular element of € in h. Typical
groups of this type arise from the outer automorphisms of £, which can be realised
by automorphisms of £ preserving the root decomposition and a positive system of
roots (see Example 1.10 below). Let €' denote the subalgebra of all elements of €
fixed by I'. Then €' contains a regular element z, of b, and therefore I' preserves
3e(xo) = be. It follows in particular that I" permutes the he-root spaces of ¢.

As b = by N €T = bl contains a regular element of &, it also is a splitting
Cartan subalgebra of €. If A is the root system of £ and A, the root system of
', then clearly Ay C A, v, but it may happen that the latter set still is a root
system.

Example 1.10. Let I" be a finite group of automorphisms of £ preserving the
Cartan subalgebra by and such that the action on the dual space preserves a
positive system Af of roots. By averaging over the orbit of an element z € by
on which all positive roots are positive, we then obtain an element fixed by I" on
which all positive roots are positive, so that this element is regular in €.

Typical examples for this situation come from cyclic groups of diagram au-
tomorphisms which are discussed below. A diagram automorphism is an auto-
morphism ¢ of ga for which there exists a set of simple roots Il = {ay,..., .},
elements Tiq, € ga +a, With [T4,,2_4,] = &;, and a map ¢: IT — II such that

P(Tta;) = Tip(on)-
(a) For type As._1 we have
Ay ={£(e; —¢j)ri>je{l,...,2r}}
on by = K?". The non-trivial diagram automorphism o is an involution satisfying

O'(Zl’l, R 7$27«) = (—IQT, “e oy —$1) and 0'(2’:‘@') = —E2r41—i-
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We identify
ht = {(z1,..., 2, —Tp,...,—11): 7; € K}

with K" by forgetting the last r entries. If R: by — (h')* is the restriction map,
then
;= R(gj—€j+1), jzl,...,’l",

is a basis for the root system
R(Ay) ={£e;te;,+2e;: 1 <j<i<r,1<j<r}

of type Ci.
(b) For type D,1, r > 4, we have

Agz{i<€li€])27éj € {1,,T+1}}
on hy = K™ A non-trivial diagram automorphism o is the involution

o(x1, .o Trg1) = (T1y .oy Tpy —Tpg1).

We identify bt = {(z1,...,z,,0} with K" by forgetting the last entry. Then

R(Ay) ={£(e;tej)ii#je{l,...;r}}U{e:j=1,....r}

is a root system of type B,.
(c) For the triality automorphism of D, of order 3, we obtain a root system Ag of
type Ga.
(d) For the diagram involution of Eg we obtain a root system A, of type F}.

It is not hard to verify that for all cases (a)—(d) above R(Ay) is the root system
of €. ]

Now let € and T’ be such that R(A) is the root system of €' and assume,
in addition, that £ is simple with root system A. We write ga = €',  := p
and assume that A coincides with R(A¢), which is the case for all cyclic groups
of diagram automorphisms of type (a)—-(d) above. Note that this excludes in
particular the diagram automorphism of Ay, for which R(A) is not reduced.

Further let A be a locally convex commutative unital associative algebra on
which I' acts by continuous automorphisms. Then I' also acts on the Lie algebra
A®tviay.(a®z):=7v.a®vy.x. We consider the Lie subalgebra

gi=(AH"

of I'-fixed points in A ® €. We clearly have g O A" ® ga D 1 ® ga. Moreover, the
action of h = hi on A ® & commutes with the action of I, and our assumption
implies that the h-weights of h on A ® £ coincide with the root system A. This
implies that g satisfies (R1)—(R3) with respect to the subalgebra ga, and therefore
that the closure of the subalgebra generated by the root spaces is A-graded.
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Example I.11. This construction covers in particular all twisted loop algebras.
In this case A = C>(T,C), T={2€ C: |z| =1}, and if I' = (o) is generated by
a diagram automorphism o of order m, then we define the action of I' on A by
o(f)(z) = f(2C), where ( is a primitive m-th root of unity.

For Ay, of type As,._1, D,y1, Eg and Dy, we thus obtain the twisted loop algebras
of type Ag?,l, D,(i)l, EéQ) and Df’), and the corresponding root systems A are of
type B,,C,, Fy and G, (|[Ka90]). n

I.4 (A, Ag)-graded Lie algebras

Let A be a reduced irreducible root system and A; C A be the subset of long
roots. Suppose that o, 3 € A; with v :=a+ € A. Then v € A,;. Since o and
[ generate a subsystem of A whose rank is at most two, this can be verified by
direct inspection of the cases A, By = Cy and G,. Alternatively, we can observe
that if (-,-) denote the euclidean scalar product on spany A C h*, then

(,8) _,  (a.f)
(@a)  J(@,a),/(8.5)

equals 2-cos d, where ¢ is the angle between o and 4. On the other hand (&) € Z,
so that the only possible values are {0, 41, £2}, where £2 only arises for § = +«
which is excluded if o + 8 € A. Therefore

() = (7,7) = (a, @) + (8, 8) + 2(, B) = 2(av, @) + 2(ev, B) = 2(, @) & (v, )

implies (a, a) = (,7), hence that 7 is long.
We conclude that A; satisfies

Bla) =2

(A +A)NACA,
and hence that we have an inclusion
ga;, = 9A-

It follows in particular that each A-graded Lie algebra g can also be viewed as
a (A, A))-graded Lie algebra and that each A-graded Lie algebra contains the
Aj-graded Lie algebra

g+ D fa

a€el,

The following table describes the systems A; for the non-simply laced root
systems.

A B, C, Fy Go
AV D, (Ay)" D, Ay
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In many cases the subalgebra ga, of ga also has a description as the fixed
point algebra of an automorphism + fixing h pointwise. Such an automorphism is
given by a morphism

X: Z]A] — K~

of abelian groups via
VLo = X(Oé)l’a, To € (gA)a-

For
A=B, ={%(e;xej):i#je{l,....r}}U{e:j=1,...,r}
we define
X:ZA) = Z, Y nigg— Y n,.
Then

XNH0)= A, A,=x'2Z+1) and A=Y 1(22).

Therefore x := (—1)X yields an involution Yy of ga whose fixed point set is the
subalgebra ga,.
We likewise obtain for A = Gy a homomorphism y: Z[A] — Z with

A =X"1(37Z).

If 1 # ¢ € K* satisfies (> = 1, we then obtain via y := Qi an automorphism =, of
order 3 whose fixed point set is ga, = sl3(K).

Problem I. Determine a systematic theory of (A, Ag)-graded Lie algebras for
suitable classes of pairs (A, A). [

II The coordinate algebra of a root graded Lie al-
gebra

After having seen various examples of root graded locally convex Lie algebras in
Section I, we now take a more systematic look at the structure of root graded
Lie algebras. The main point of the present section is to associate to a A-graded
Lie algebra g a locally convex algebra A, its coordinate algebra, together with
a locally convex Lie algebra D (the centralizer of ga in g), acting continuously
by derivations on A, and a continuous bilinear map 6”: A x A — D. The
triple (A, D, 6”) is called the coordinate structure of g. The bracket of g is
completely determined by the coordinate structure and the root system A. The
type of the coordinate algebra A (associative, alternative, Jordan etc.) and the
map d4: A x A — der(A) determined by 67, is determined by the type of the
root system A. These results will be refined in Section IV, where we discuss
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isogeny classes of locally convex root graded Lie algebras and describe the universal
covering Lie algebra of g in terms of the coordinate structure (A, D, 67).

The algebraic results of this section are known; new is only that they still
remain true in the context of locally convex Lie algebras, which requires additional
arguments in several places and a more coordinate free approach, because in the
topological context we can never argue with bases of vector spaces. We also tried
to put an emphasis on those arguments which can be given for general root graded
Lie algebras without any case by case analysis, as f.i. in Theorem II.13. We do
not go into the details of the exceptional and the low-dimensional cases. For the
arguments leading to the coordinate algebra, we essentially follow the expositions
in [ABGO0]|, [BZ96] (see also [Se76] which already contains many of the key ideas
and arguments).

Let g be a locally convex root graded Lie algebra over K € {R,C} and ga a
grading subalgebra. We consider the adjoint representation of ga on g. From (R3)
we immediately derive that g is a ga-weight module in the sense that the action
of b is diagonalized by the A-grading. Moreover, the set of weights is AU{0} and
therefore finite, so that Proposition A.2 leads to:

Theorem II.1. The Lie algebra g is a semisimple ga-weight module with
respect to . All simple submodules are finite-dimensional highest weight modules.
There are only finitely many isotypic components g1, . .., @n, and for each isotypic
component the projection p;: g — @; can be realized by an element of the center of
U(ga). In particular, each p; is continuous. [ ]

Now we take a closer look at the isotypic components of the Lie algebra g. Let
A; C A denote the subset of long roots and A; C A the subset of short roots,
where we put 4; := A if all roots have the same length. Then the Weyl group W of
A acts transitively on the sets of short and long roots, so that it has at most three
orbits in A U {0}. Hence only three types of simple ga-modules may contribute
to g. First we have the adjoint module ga, and each root vector in g, for a long
root « generates a highest weight module isomorphic to ga. Therefore the weight
set of each other type of non-trivial simple ga-module occurring in g must be
smaller than A U {0}, which already implies that it coincides with AgU{0}. The
corresponding simple ga-module is the small adjoint module Vi = L(As, ga), i.€.,
the simple module whose highest weight is the highest short root A\ with respect
to a positive system AT. In view of Theorem II.1, we therefore have a ga-module
decomposition

(2.1) g~ (A®ga)® (B®V,) @ D,
where

A :=Homyg, (ga,g), B:=Homy, (Vi,g), and D :=3,(ga) = Hom,, (K, g)
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are multiplicity spaces. We have

~Y

{A for a € A,
Ja =

A® B forae A,

Our next goal is to construct an algebra structure on the topological direct sum
A = A& B. This coordinate algebra will turn out to be an important structural
feature of g.

For each finite-dimensional simple ga-module A the space Homg, (M, g) is a
closed subspace of Hom (M, g) & M*®g = g4™M hence inherits a natural locally
convex topology from the one on g, and the evaluation map

Homg, (M,g) @ M — g, ¢ ®@m— ¢(m)

is an embedding of locally convex spaces onto the M-isotypic component of g.
In this sense we think of A ® ga and B ® V as topological subspaces of g. We
conclude that the addition map

(A®ga) x (BOV,) XD —g, (a@z,b@yd—a@r+bQy+d

is a continuous bijection of locally convex spaces. That its inverse is also con-
tinuous follows from Theorem II.1 which ensures that the isotypic projections of
g are continuous linear maps. Therefore the decomposition (2.1) is a direct sum
decomposition of locally convex spaces. If g is a Fréchet space, we do not have to
use Theorem II.1 because we can argue with the Open Mapping Theorem.

It is clear that the subspace D = 34(ga) is a closed Lie subalgebra. To obtain
an algebra structure on A @ B. The following lemma is crucial for our analysis.

Lemma II.2. Let M;, j = 1,2,3, be finite-dimensional simple ga-modules and
Vi, 73 =1,2,3, locally convex spaces considered as trivial ga-modules. We consider
the locally convex spaces V; @ M; as ga-modules. Let Bi,...,0; be a basis of
HOIIlgA(Ml & MQ, Mg) and

a: (Vi@ M) x (Vo ® M) — Vs @ M
a continuous invariant bilinear map. Then there exist continuous bilinear maps
Viyeoos Vet Vi X Vo — V3
with
k
a(v1 @ my, vy @ my) = Z%‘(Ul, V) ® Bi(my, ma).
i=1

Proof. Fix v; € Vi and vy € V5. Then the map

Qg - (mh m2) = O‘(“l @ my, vy ® m2)
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is an invariant bilinear map M; x My — V3 ® Ms. As the image of «,, ,, is

finite-dimensional, there exist wq, ..., w,, € V3 such that
m k kK m
avl,m:z wj®ﬁlzzzwj®ﬂz

j=1li=1 i=1j=1

This shows that there are bilinear maps v1,...,v: Vi x Vo — V3 with a = Ele
v; @ ;. For each i there exists an element a; := >, mf ® mg € M; ® M, with
Bi(a;) # 0 and B;(a;) = 0 for i # j. Then
> a(v @ mi, v, ® mb) = v;(v1,v2) ® Bi(a;)
¢

shows that each map ~; is continuous. ]

Remark II.3. If M; := ga, M, :=V;, M3 = K and V; := Homy, (M;, g), then
the Lie bracket on g induces a family of ga-equivariant continuous bilinear maps

Vi M; x V; @ M; — My ®@ V.

To apply Lemma II1.2, we therefore have to analyze the spaces Homg, (M; ® M;,

The case 3 € {7, 7} is trivial because D = 34(ga) commutes with the action of
ga, so that the bracket map induces continuous bilinear maps

DxA— A, (da)—da and DxB—B, (db)—db
with
dia®@z]=da®z and [d,bRyl=db®y.

Interpreting A as the space Homg, (ga, g), the action of D on this space corre-

sponds to
d.p:= (add) o ¢,
and likewise for B = Hom,, (V;, g).
We may therefore assume that i, j € {1,2}. For k = 3, i.e., M} = K, the space
HOHIBA(MZ‘ X Mj, K) = HOIIIBA(MZ‘, M]*)

is trivial for i # j because M; and M, have different dimensions. For M; = ga
we have

HOIIlgA(gA ® gn, K) = KK,
where k is the Cartan-Killing form. As V; and V} have the same weight set
A, = —A,, they are isomorphic, and [Bou90, Ch. VIII, §7, no. 5, Prop. 12]
implies that, for ¢« = j = 2,

Homy, (Vs ® Vi, K) = Ky,

for a non-zero invariant symmetric bilinear form sy, on V;. The symmetry of the
form follows from the fact that the highest weight A\, of V; is an integral linear
combination of the base roots of A. [ ]
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The complete information on the relevant Hom-spaces is given in Theorem I1.6
below. We have to prepare the statement of this theorem with the discussion of
some special cases.

Definition I1.4.  (a) On the space M, (K) of n x n-matrices the matrix product
is equivariant with respect to the adjoint action of the Lie algebra g, (K). Hence
the product (z,y) — xy + yx does also have this property, and therefore the map

2t
oL (K) x s, (K) — sl,(K), (2,y) 2y = 2y + yo — 224
n
is equivariant with respect to the adjoint action of sl,,(K). In the following z * y
will always denote this product.
(b) Let Q be the non-degenerate alternating form on K? given by Q(z,y) =

(z,y)J(z,y)", where J = <(1) _01> (cf. Example 1.7). For X* := JXTJ71 we
then have

sp,, (K) 2 {X € gl,,(K): X* = —X} and V, = {X € g, (K): X* = X, tr X = 0}.

This follows easily by decomposing gl,,.(K) into weight spaces with respect to
a Cartan subalgebra of sp,,(K). Here we use (XY)* = Y¥X* to see that Vj is
invariant under brackets with sp,,.(K) and satisfies [V, V5] C sp,, (K). Moreover,
the s-product restricts to sp,, (K)-equivariant symmetric bilinear maps

By 59y, (K) X 8py,(K) =V, and Sy : Vo x Vi, — V. ]

Remark II.5. For A = A,, r > 2, the product % is an equivariant symmetric
product on ga = sl..1(K). Of course, the same formula also yields for r = 1 a
symmetric product, but in this case we have z x y = 0 (Lemma 1.8). |

Theorem I1.6.  For the Hom-spaces of the different kinds of Lie algebras we
have:

(1) For A not of type A, r > 2, the space Homg, (ga®ga, ga) is one-dimensional
and generated by the Lie bracket. For A of type A,., v > 2, this space
18 two-dimensional and a second generator is the symmetric product x on

ga = 5[r+1(K)-

(2) If A is not of type C,, r > 2, then Homg, (ga ® ga,Vs) = Homg, (ga
® Vs,ga) = {0}. For A of type C., r > 2, and ga = sp,,.(K) the space
Homy, (ga @ ga, Vs) is generated by the -product.

(3) Homg, (V;®V;, ga) = Homg, (ga ®V;, V;) is one-dimensional and generated
by the module structure on V. For A of type C,., a basis of the first space
is given by the bracket map on gl,, (K), restricted to V.
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(4) Hom,, (Vs @ Vi, Vy) is one-dimensional for C,, n > 3, Fy and Gy, and
vanishes for B,, n > 2. For A of type C.,, a basis of this space is given by
the x-product.

Proof.  All these statements follow from Definition I1.4 and the explicit decom-
position of the tensor products, which are worked out in detail in [Se76, §A.2] (see
also the Appendix of [BZ96| for a list of the decompositions). [

Before we turn to a more explicit description of the Lie bracket on g, we have
to fix a notation for the basis elements of the Hom-spaces mentioned above.

Definition I1.7.  First we recall the symmetric invariant bilinear form sy, on
V, from Remark I1.3. Let ﬁg/ be a basis element of Homg, (ga ® ga, V;) if this
space is non-zero, and ﬁggy the corresponding basis element of Homg, (ga ® Vs, ga)
which is related to ﬂg/ by the relation

HVs(ﬁX(x’y)7v) = H(ﬁg,v(m7v)7y>a T,y €9a,0 € ‘/;
Let 3} : Vi ® Vi — ga be the equivariant map defined by
ky, (z0,0") = k(6) (v,0'),x), v,0" €V, x € ga.

Then
Ky, (z.0,0") = —ky, (v, 2.0") = —ky, (2.0, V)

(cf. Remark I1.3 for the symmetry of sy, ) implies that 37, is skew-symmetric . We
further write 8y for a basis element of Homg, (Vs ® V4, V5).
For A of type C,., r > 2, we take

Ky, (v, w) = 0 tr(vw),

where the factor § = 2(r 4+ 1) is determined by x(x,y) = tr(zy) ([Bou9o,
Ch. VIII]). We further put

6;/(x,y) =T xy, 5§’V(x,v) =xzxv, [(v,w)=[v,w], ﬂg(v,w) =v*w,

and observe that from the embedding sp,, (K) < sly,.(K) we get for v € Vj:

kv, (By (.9),0) = Otr((wxy) v) =0tr((zy +ya) - v)
0 tr((ve +xv) - y) = 0tr((x *v) - y) = k(B3 v (,v),y).

This calculation implies that our special definitions for type C, are compatible
with the general requirements on the relation between 6;/ and ﬁ;v. [
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In view of Lemma II.2 and Theorem II.6, there exist continuous bilinear maps
v o AxA— A A5 AxA— B, 7’Af"B:A><B—>A, 7E’B:A><B—>B,
fyg‘ . BxB—A ~5:BxB—B, 6Y:AxA—D, 65:BxDB—D,
such that the Lie bracket on

g=(A®ga)® (B V,)® D
satisfies
(Bl) [a®z,d @2]=7%(a,d)® [z,2/] + 7 (a,d') @z 2" +~5(a,d) ® ﬁX(:L‘,x’)
+r(z, 2" )68 (a,a’), fora,d € A xz,2" € ga,

(B2) l[a®x,b®v| = fyﬁvB(a, b) ® ﬁggyv(az, v) + 'yff’B(a, b) ® x.v,
fora € A,b € B,x € ga,v € Vi, and for b’ € B and v, v’ € Vi:
(B3) [b@v,b'®v] = v5(b,0) @67 (v, ') +75 (b,0) @ By (v,0) +rv, (v, 0) 35 (b, ).

From the skew-symmetry of the Lie bracket and the symmetry of *, it follows
that %‘é is symmetric and v* is alternating. Further the symmetry of x and xy,
implies that 0§ and §5 are alternating. The skew-symmetry of 3{, implies that v4
is symmetric and likewise the symmetry of ﬁgf entails that ~% is skew-symmetric.

If A is not of type A,,r > 2, then we put v = 0. In all cases where the 3-map
vanishes, we define the corresponding y-map to be zero.

Definition I1.8.  (The coordinate algebra A of g) (a) On A we define an algebra
structure by
ab := 7{(a,b) + v2(a,b),

and observe that
b—1>
and  y(a,b) = ¢ ‘.

’Yf<a7 b) = 2

We define a (not necessarily associative) algebra structure on A4 := A @& B by
defining the product on A x A by v +~4 + 7%, on A x B by ’yﬁ,B + ’yiB, on
B x B by v5 +v5, and on B x A by

ab + ba

ba := %143,3(@7 b) — Vﬁ,B(av b) = ab — 2723(&’ b).
Then

1 1 1
’}/2’3((1, b) = i[aa b] = g(ab - bCL) and V,IAB,B(C% b) = i(ab + ba’)

(b) The space D = 34(ga) is a Lie subalgebra of g which acts by derivations on
A preserving both subspaces A and B. This easily follows from the fact that the
actions of D and ga on g commute.

We combine the two maps §% and 65 to an alternating bilinear map

P AxA—D, (a+bd+V)—d(a,ad)+65(0b,1)

vanishing on A x B. [ ]
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Example I1.9. Below we briefly explain how the relations (B1)—(B3) simplify
for the two classes of Lie algebras that we obtain if we distinguish Lie algebras of
type A, or C, and all others. In some sense the information is more explicit for
A, and C,. We first discuss the other cases.

(a) For A not of type A,, r > 2, we have 4 = 0, and for A not of type C,, r > 2,
we have v§ = 74 5 = 0 (Theorem I1.6.(2)). If these two conditions are satisfied,
then the product on A is given by

(CL, b) ) (a/’ b/) = (Vf(a) a’,) + Vé(ba b/)v ’YAB,B(av b/) + WE,B(CL: b) + '75(67 b,))
= (ad’ +3(b,b),ab’ + ba' + 75 (b, V).
In this case the Lie bracket in g can be written as
a®z,d @2 =ad @ [r,2] + k(z,2))65 (a,a'), a,d € A, x,2" € ga,
[a@z,b@v]|=ab@zv, a€Abec B,z € ga,vel,
and
b@ vt @] =75(b,0) @ (0, 0') + 75 (5,0) ® By (v,0') + kv, (v,0)d5 (b, ).

(b) If A'is of type A,, r > 1, then B = {0} and A = A.
For A of type C,, r > 2, we have (Y (v,v') = v * v/, which is symmetric.
Therefore 5 is skew-symmetric. In view of

b = ~va(b,b) + B (b,¥),
this implies
b + b'b bb — b

For r = 2 we have 3, = 0 and therefore v5 = 0 (Theorem I1.6(4)). In this case
Cy = B, implies that V; can be viewed as the representation of s035(K) on K®.

In contrast to the formulas under (a), we have for A of type A, and C, the
unifying formulas

1
and ’}/g(ba bl) = §[b> b/] =

!/ !/
la®@z,d @] = aa—gaa ® [x,2] + v*(a,d) @z * 2’
———
=o for c,
+ 95 (a,d") @z x 2’ + K(x,2")65 (a, d'),
—_——
=0 for 4,
/ /
1
— aa—|—2aa ® [z, 2] + i[a, d| @z 2 + k(x,2')65 (a,a)

for a,a’ € A, z,x" € ga, where we use that

[a,d] = ad' —d'a =2(v* +75)(a,d), a,d € A.
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We further have for C,:
a®@z,b®v] = ;[a,b] ®$*v+;(ab+ba)® [z,v], a€ Abe B,z €ga,velV,
and
bt V)= ;(bb’ + Vb)) @ [v, 0] + ;[b, V®@v*v + ky, (v,0)05(b,). =
Remark I1.10. (Involution on A) On the space A = A @ B we have a natural
continuous involution o(a,b) := (a, —b) with
A=A ={acA:a°=a} and B=A7:={acA:a’ =—a}.

The map o is an algebra involution, i.e., o(z2’) = o(a’)o(x) for z, 2’ € A, if and
only if

(11) o(aa’) = d'a for a,a’ € A, ie., v* =0,

(I2) o(ab) = —ba for a € A, b € B, which is always the case because [a, b] € A,
and

(I3) o(bb') = b'b for b,b' € B, which means that v4 is symmetric and 75 is
skew-symmetric.

Condition (I1) is satisfied for any A not of type A,, r > 2. For condition (I3),
we recall that 73 is symmetric because (Y, is skew-symmetric (Definition I1.7).
That ~5 is skew-symmetric means that 3}, is symmetric, which is the case for A
of type C,,, where 3 (v,v") = v * . It is also the case for A of type Fj, but not
for type Go, where it is the Malcev product on the pure octonions (cf. [ABG00,
p.521]). n

Remark IT1.11. (a) (The identity in .A) The inclusion ga < g is an element of
Homg, (ga,9) = A C A which we call 1. It satisfies

l®zr,a®y=z(a®y)=a®[r,y], and [1®z,bRv]=>0Rx.v.
This means that
la=al=a and 6°(1,a)=0 forall acA.

In particular, 1 is an identity element in A.

(b) The subspace A is a subalgebra of A if and only if ¥¥ = 0. If this map is
non-zero, then 3} # 0 and A is of type C,., r > 2 (Theorem IL.6(2)). In all other
cases A is a subalgebra of A, and this subalgebra is commutative if and only if
~4 vanishes, which in turn is the case if A is not of type A, or C,,r > 2. ]
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Remark II1.12. (a) Axiom (R4) for a locally convex root graded Lie algebra
is equivalent to the condition that the D-parts of the brackets [g., g o] span a
dense subspace of D. First we observe that only brackets of the type (B1) and
(B3) have a non-zero D-part. Using the coordinate structure (B1)-(B3) of g, we
can therefore translate (R4) into the fact that im(6%) +im(65) = im(6”) spans a
dense subspace of D.

(b) Recall from Remark II.5 that for each root o we have z, * z_, = 0, and
therefore, for all a,a’ € A, the simplification

[0 ® 20,0 @ 1_0] =72 (a,d) @ [Ta, T—a] + K(Ta, T_0)0% (a,d’).
Hence
[0 ® To,d @1_4) — [0/ @ 10,0 @ 1_4] = 26(T0, v_0)0% (a,d). [

Theorem I1.13.  The alternating map 6”: A x A — D satisfies the cocycle
condition

(2.2) §P(ad’,a") + 6P (d'a",a) + 6P (d"a,d') =0, a,d,d" € A,
and
(2.3) §P(d.a,a") + 6" (a,d.a’) = [d,0"(a,a')] d € D,a,d € A.

Proof. The plan of the proof is as follows. We will use the fact that (B1)—(B3)
satisfy the Jacobi identity to obtain four relations for 42, which then will lead to
the required cocycle condition for 6, where 0, 1,2, 3 elements among a, a’, a” are
contained in A, and the others in B.
Step 1: For a,a’,a” € A and x,2',2” € ga, we use (Bl) to see that the
D-component of
[[a ®Z‘,CL, ® x’],a" ®ZE”]

is
(2.4) k([x, 2], 2")08 (v a,d'), d") + k(x x 2, 2")0% (v2(a, d’), a").
From the invariance and the symmetry of k, we derive

K([I, ml]a x//) = K,(LL", [:U/, x//]) = "i([ajlv :U”]v 33),

i.e., the cyclic invariance of k([z,2'],2"). If A is not of type A,, r > 2, then
x* 2’ =0, and the second summand in (2.4) vanishes. But for A of type A, we
have k(z,2") = 2(r + 1) tr(zz’) and therefore

k(a2 x")
2tr(za’)

= 2(r+1)tr((xx’+x’x— i)

1) : x”) =2(r + 1)(tr(xx’x”) + tr(a:’mc”)).
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Hence we get in all cases the cyclic invariance of k(x*xx’, 2”). Therefore the Jacobi
identity in g, applied to the D-components of the form (2.4), leads to

0 = 3 (s(z,2),2")68 (vi(a, '), a") + k(z * 2, 208 (v (a, d'), a"))

cycl.

= r(lz,2),2") Y 05 (v (a,a),d") + k(z x o', 2") Y 65 (v (a,d),a").

cycl. cycl.
For z € g, and 2’ € g_, with [z,2'] = & we have z x 2/ = 0 (Remark I1.5), and

we thus obtain
Z 55(74‘}(@, a'),a") = 0.

cycl.

Choosing z, 2/, 2" such that x(z+z’,2”) # 0, we also obtain Y oyq. 65 (v (a, d’), a") =
0. Adding these two identities leads to

Z 6% (ad',d") =

cycl.

Step 2: For a,d’ € A, b € B, and z,2' € ga, v € V,, we get for the D-
component of

O=[a®@z,d@2],0@v]+[[d @2, b@v],a@z]+[[bRv,a®z],d @]
the relation
0 = rv(By (z,2'),0)05(v4(a,d),b) + w(Bgy (2, v), 2)8% (v4 p(d, 1), @)
—k(Bay (x,v),2")0% (v4 p(a,b), )

= KBy (x,0),2) (05 (V5 (a, ), b) + 05 (74 p(d,b), @) — 65 (¥4 p(a,b), )
= w(Bgy(z,v), x’)(é(aa’, b) + 6(a'b,a) + §(ba, a’))

because 6” vanishes on Ax B, the A-component 4 (a, b) of ab is skew-symmetric
in a and b, and

K( 3,V(x7v)75€1) = KVS(@/(SU’“?/)’U)

is symmetric in « and 2’ (Definition I1.7). We conclude that
6P (ad’,b) + 6 (a'b, a) + 67 (ba,a’) = 0.

Step 3: For a € A, b,/ € B, and x € ga, v,v" € V,, we get from the
D-components of

0=[pRv,b@v]),a@z]+ [V @v,a@z],b@v]+[[a@x,b@v],t @]
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the relation

0 = R(BY(v,v"),2)08 (V5 (b, ), a) — kv, (20", 0)05 (v p(a, 1), b)
+hv, (2.0,0)05 (74 p(a, ), V)
= kv, (2.0,0) (65 (Y30, 1), 0) + 05 (V5 p(a, 1), ) + 5 (v5 (a,),1))
= kv, (2.0,0) (670, a) + P (Va, b) + 67 (ab, 1))

because §” vanishes on A x B and the B-component 7% p(a, ) of ab is symmetric
in @ and b. We conclude that

0 =d62(bb,a) + 6°(ba,b) + 67 (ab, V).
Step 4: For b, V',V € A and v,v',v" € Vi, the D-component of [[b ® v,
b/ ® /U/:I7 b// ® U”] IS
kv, (By (0,0'),0")35 (75 (b, 0'),0").

We claim that F(v,v',v") = kv, (8) (v,0"),0") satisfies
F(v, o' ") = F@' 0" v) for v 0" €V,
Fix v',v"” € V,. Then the map
Vi =K, vk (By(0,0),0") = Fv,0',0")

can be written as
Vi =K, vk (TW,0"),0)

for a unique element 7'(v',v") € V. From the ga-equivariance properties and the
uniqueness, we derive that T: Vi x V, — Vj is ga-equivariant, hence of the form
M\GY for some A € K (Theorem I1.6). As F is symmetric or skew-symmetric in the
first two arguments, F' is an eigenvector for the action of S3 on Lin(V @V @V, K).
Then F' is fixed by the commutator subgroup of S3, hence fixed under cyclic
rotations, and this implies A = 1.

Therefore the Jacobi identity in g, applied to the D-components above, leads

0=">" 60y (b, b),b0") = > 67 (b0, b").

cycl. cycl.

to

Combining all four cases, we see that §” satisfies the cocycle identity (2.2)
because the function

G: A* — D, (a,b,c)w 0" (ab,c) + 5" (bc,a) + 67 (ca, b)

is cyclically invariant and trilinear, so that it suffices to verify it in the four cases
we dealt with above.
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To verify the relation (2.3), we first use (B1) and (B3) to see that a comparison
of the D-components of the brackets

dja®z,d @2 =da®@z,d @2+ [a®@x,dd @2, a,d €A x a2 €ga
and
d,[b@v, 0 @] =[dbR v,V V]| +[b@v,db @], bb € B,vv eV,
leads to (2.3). u
Definition I1.14. Let g be a A-graded Lie algebra. From the isotypic decom-

position of g with respect to ga, we then obtain three items which, in view of
(B1)—(B3), completely encode the structure of g:

(1) the coordinate algebra A = A @ B,

(2) the Lie algebra D and its representation by derivations on A preserving the
subspaces A and B, and

(3) the cocycle §”: A x A — D (Theorem 11.13).

All other data that enters the description of the bracket in g only depends on
the Lie algebra ga and the module V (Theorem I1.6). We therefore call the triple
(A, D, 6P) the coordinate structure of the A-graded Lie algebra g. [

Theorem 11.15.  Let g be a root graded Lie algebra with coordinate structure
(A, D,6P). Further let D be a locally convex Lie algebra acting by derivations
preserving A and B on A, and

613 “AxA—D
a continuous alternating bilinear map such that
(1) 6P(ad’,a") + 6P (d'a",a) + 6P (a"a,a’) = 0 for a,a’,d" € A,
(2) the map DxA— A, (d,a) — d.a is continuous,

~

(3) [d, 6P (a,ad")] = 6B(d.a,a’) + 55((1, d.a') fora,a € A, d e D, and

(4) 6P (a,d").a" = 6P (a,d").a” for a,d’,a" € A, and

(5) 60(A x B) = {0}.
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Then we obtain on

§=AQgr)®(BV,)®D
a Lie bracket by

dia@r+buv+d]=da®@xr+dbv+[dd],

and
a®@z,d @] = yl(a,d)®[z,2]+72(a,d) @z *a' + 75 (a,d) @ By (x,2)
+m(m,x’)6ﬁ(a,a’),
[a®z,bRv] = abgba ® By y (2, v) + ab—;—ba ® x.0,
bov,b @v] = YADBY) @ B0, 0) +7B0,1) @ BY (0,0) + kv, (v, 0)5P (B, V).

If im(éDl is dense in D\, then g is a A-graded Lie algebra with coordinate structure
(A, D,sP).
Proof. From the definition and condition (3) it directly follows that the oper-
ators add, d € 5, are derivations for the bracket. Therefore it remains to verify
the Jacobi identity for triples of elements in A ® ga or B ® V. In view of (4)
and the fact that the Jacobi identity is satisfied in g, it suffices to consider the
5—components of triple brackets. Reading the proof of Theorem II.13 backwards,
it is easy to see that (1) and (4), applied to the four cases corresponding to how
many among the a,ad’, a” are contained in A, resp., B, lead to the Jacobi identity
for triple brackets of elements in A ® ga, resp., B ® V.

For this argument one has to observe that in the case a,a’,a” € A the relation
(1) for all a,d’,a” also implies

6P (vt a,a),a") + 6P (v, a"), 0) + 0P (v (e, a), @)
1 ~ ~ ~ ~
= 3 (5D(aa’, a") + 6P (d'a",a) + 6P (d"a,d") + 6 (d'a,a”)
—|—5ﬁ(aa", a) + 5B(a"a’, a)> =0
and

P (vA(a, ), a") + 6P (vA(d', a"), a) + 6P (vA(a”, a), d)
1 ~ ~ ~ ~
= 3 <§D(aa’, d") + 6P (d'a",a) + 6P (d"a,a’) — 67 (d'a,a”)

—6ﬁ(aa”, a) — 5B(a"a', a)> = 0.
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Examples I1.16. We now take a second look at the examples in Section I.

(a) For the algebras of the type g = A ® ga (Example 1.4), it is clear that A = A
is the corresponding coordinate algebra, and B = D = {0}.

(b) For g = sl,,(A) (Example 1.5), formula (1.1) for the bracket shows that A = A

is the coordinate algebra of g, D = [A, A] ® 1 = [A, A], and

1
6D(a7 b) = w[aa b]
because k(x,y) = 2ntr(zy) for z,y € sl,(K).
(c) For g = sp,, (A, o)’ (Example 1.7), which is of type C,,, we see with the formula
in Example I1.9(b) that A = A°, B= A", D =[A A "®12[A A ’, and
that A is the coordinate algebra.
From k(x,y) = 0tr(zy), kv, (z,y) = 0tr(zy) (0 =2(n+ 1)),

k(,2')04 (a,d) = [a, a’]@tr(f) 1, and  ky,(v,0)05(b,0) = b, b’]®tr(2f/> 1,
we get
11 1
5P(0,0) = gyl = s ) @1 = g (o 4 o, 7] @11
because

[a+b,d +b]=][a,d]+ [b,V]+][a,b]+[bd], ac A7 be A°.
c€A—7 cA°

(d) For g = TKK(J) for a Jordan algebra J (Example 1.9), we also see directly

from the definition that J is the coordinate algebra of g and D = (J, J). We have
k(x,y) = 4tr(zy) for z,y € sly(K), and therefore
1

§P(a,b) = 6;(a,b) = 1<a, b). n

The following proposition deals with the special case where B is trivial and the

root system is not of type A,. In this case it contains complete information on the

possibilities of the coordinate algebra. For the root systems A of type D,, r > 4,

and E,, it provides a full description of all A-graded Lie algebras (cf. [BM92] for

the algebraic version of this result).

Proposition I1.17.  (a) If B = {0} and A is not of type A, r > 1, then the
bracket of g is of the form

a®r,d @2] =ab [r,2] + k(z,2")0" (a,d),

where A is a commutative associative unital algebra and D is central in g, i.e., D
acts trivially on A.
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(b) If, conversely, Disa locally convex space, A a locally convex unital commuta-
tive associative algebra and the continuous alternating bilinear map P Ax A—
D satisfies

~ ~

6P (ad',a") + 613(@’@", a) +6°(a"a,d) =0, a,d,d" €A,

then -
g:=(A®gr)® D

15 a Lie algebra with respect to the bracket

~

[a®@z+dd @2 +d]=ad @ [z,2] + k(z,2)0" (a,d).

Proof. (a) Our assumption that A is not of type A; means that dimbp > 2,
so that there exist roots o and g with § # +a. Moreover, the exclusion of A,,
r > 2, implies ¥4 = 0, so that by consideration of the A ® ga-component of the
cyclic sum Y. [[a ® z,a’ ® 2'],a” ® 2”], the Jacobi identity in g implies

(2.6) > (ad)a" @ [[x, 2], 2"] + 67 (a,d).a" @ k(x,2")2" =0
cycl.
for a,a’,a” € A and z,2', 2" € ga.
Let © € ga, @' € g3, and 2” € h. Then k(z,2’) = k(2',2") = k(2",2) = 0, and
therefore

(ad")a" @ [[z,2'],2"] + (d'a")a @ [[2/, "], 2] + (a"a)d’ @ [[z”, z], 2]
= —(a+8)(2")(ad)ad" @ [z, 2] — B(z")(d'a")a @ [2/, 2] + a(2")(a"a)d & [z, 2]
= (= (a+B) ") (ad)a" + B")(d'a")a + a(z")(a"a)a’) ® [z, 2],

For (") = 0 and «a(z”) = 1, we now get

(aa")a" = (d'a")a = a(d'a").
Therefore the commutative algebra A is associative.
It remains to see that D is central. We consider the identity (2.6) with x € g,,
' € g_q and 2” = &. Then k(z,2') # 0 = k(x,2”) = k(2/,2"). Further

> (ad)ad" @ [[z,2],2"] = (ad')a" @ Y [[z,2],2"] =0

cycl. cycl.

follows from the fact that A is commutative and associative, and the Jacobi iden-
tity in ga. Hence (2.6) leads to 6”(a,a’).a” = 0. This means that §”(A, A) is
central in g, and since this set spans a dense subspace of D (Remark I1.12(a)),
the subalgebra D of g is central.
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(b) For the converse, we first observe that the map

~

wi (A8 ga) X (A ga) = D, wa®z,d @) — k(z, ) (a,d)
is a Lie algebra cocycle because

Y w(le®z,d®@a],d" ®a")
cycl.

= > K[z, x/},x'/)(@(aa/, a") = k([z, 2], 2") > (55(aa’, a") = 0.

cycl. cycl.

From this the Jacobi identity of g follows easily, and the map g — A ® ga with
kernel D defines a central extension of the Lie algebra A ® ga by D (cf. Exam-
ple 1.4). [ ]

Definition I1.18.  (The Weyl group of g) To the simple split Lie algebra ga
we associate the subgroup Ga C Aut(ga) generated by the automorphisms €24,
T € gaa, @ € A, which are defined because the operators ad x are nilpotent and
the characteristic of K is zero. Since the set of h-weights of Vg is contained in the
set of roots of ga, it follows from the theory of reductive algebraic groups that
G a also has a representation on Vg, compatible with the representation py, of the
Lie algebra ga in the sense that ¢®® x € ga o, acts by e’v(®) This implies that
G also acts in a natural way on the root graded Lie algebra g, and that it is
isomorphic to the subgroup of Aut(g) generated by the automorphisms e*d® of g.
From now on we identify G with the corresponding subgroup of Aut(g).

Let @« € A and fix z1, € g4, such that [z,,z_,] = & We consider the
automorphism

O 1= MTeemddT-acadte ¢ G\ C Aut(g).

If h € kera C b, then h commutes with x4, so that o,.h = h. We claim that
Op.Ct = —Qv.
In SLy(K) we have

g (1 Y[ oy(L1y_[0 1
“\0 1)\-1 1/\0 1) \-1 0/°
As 04|, corresponds to conjugation with S in sly(K), we obtain
000 = —Q, 04Ty =—T_o and 0,4.T_o(= —Tq.

We conclude that o, |y coincides with the reflection in the hyperplane &:

oa(h) =h—a(h)a for h €h
(cf. [MP95, Props. 4.1.3, 6.1.8|). The corresponding reflection on h* is given by
ra: bt =" B3 -p(0)a
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This leads to

We call
W= (ro: a € A) C GL(h)

the Weyl group of g.
From the preceding calculation we obtain in particular that

0o € Ng,(h) :={p € Ga: p(h) = b},

This group contains the subgroup

Zan(b) = {p € Ga: @y = idy},

and each automorphism ¢ in this group is given by a group homomorphism
x € Hom(Z[A], K*) = (K*)"

in the sense that ¢(z) = x(«a)z for all &« € A and x € g,. We therefore have a
group extension

F<—>VAV—»W,

where W C Ng, (b) is the inverse image of W under the restriction homomorphism

to h and I' C (K*)" is a subgroup. This extension does not split for A(A) € 27Z
because in this case there exists a root a with 1 € A(c), which implies that o, is
of order 4, as we see from the even-dimensional simple modules of SLy(K). ]

Example I1.19. (cf. [Ti62]) We take a closer look at the case A = A; = {+a}.
We write

gn = Span{d7$a7x—oz}
with
To € 0oy Toa €0 a O=[Ta,T 4]

Then formula (B1) for the product on A leads to
[0 R To, [LRT o, bR@x,]] =[a® x4y, —bRd] =ab® [&, 2] = 2ab R x4,
and hence to
1 1
ab® x, = i[a ® To, [1 R T_0,b @ z,]] = i[a ® T, [T, b @ x4]]-

Identifying A via the map a — a ® x, with g,, the product on A is given by

1
ab := i[a, [z_q, b]].
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We recall from Definition II.18 the automorphism o, of g. From the ga-module
decomposition of g it follows directly that o2 = id, because the restriction of o,
to ga is an involution. Moreover, o,(z,) = —2_,. To see that the product on g,
defines a Jordan algebra structure on A, we first observe that Theorem C.3 (a)
implies that

2,92} = 37,00, 2

defines a Jordan triple structure on g,, and hence that ab = {a, —z,, b} defines a
Jordan algebra structure by Theorem C.4(b).
The quadratic operators of the Jordan triple structure are given by

1
P(z)y ={x,y,x} = —i(ad 7)? 0 04.y.

We claim that ]
P(—xz,) = —§(ad:r;a)2 00, = —idg, .

Since the action of adz, and o, is given by the ga-module structure of g =
(A®ga) @ D, the claim follows from

1 1 1
—i(adxa)2 00Ty = §(adxa)2.x_a = E[Imd] = —I,.

We now conclude from Theorem C.4(b) that the Jordan triple structure associated
to the Jordan algebra structure is given by —{-,-,-}.
This permits us to determine d4. First we recall that

[a® To,d @1_4] =ad @&+ 0 (a,d ) k(Ta, 2_o) = ad’ @ & + 46" (a,d’),
which leads to

2(ad)d" @ o + 464(a,d).a" @ To
— [[a R T, a ® x—aL a’ ® xa}
- “a ® Za, Ua(a/ ® $0‘)]7 a” ® xa} = _2{a, CI,/, a//} X Tq
— 2((ad)a” + ald'a") - a'(ad")) © .

From that we immediately get
1
dala,a’) = E[L(“ L] m

The following theorem contains some refined information on the type of the
coordinate algebras. We define

5A(a/>ﬁ)'7 = 5D(aa6)'77 047577 e A

Theorem I1.20.  (Coordinatization Theorem) The coordinate algebra A of a
A-graded Lie algebra g is:
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(1) a Jordan algebra for A of type Aq, and
1
oala, B) = §[La, Lg].
(2) an alternative algebra for A of type As, and
1
dale; B) = 5(Liap — Biayg) = 3lLa, Rg]).
(3) an associative algebra for A of type A,, r > 3, and

5.4(0'/7 ﬁ) =

] ada, (].

(4) an associative commutative algebra for A of type D,., r > 4, and Eg, F7 and
Es, and § (e, 3) = 0.

(5) an associative algebra (A, o) with involution for A of type C,., r > 4, and

Saler, 5) = 5-(adla, 7] + ad(o, 7).

(6) a Jordan algebra associated to a symmetric bilinear form 3: Bx B — A for
A Of type Br; r >3, and 5.,4(0575) = _[LOHLB]'

Proof. (1) follows from the discussion in Example I1.19 (see also [Ti62] and
[BZ96]).

(2)-(4) [BM92]; see also Appendix B for some information on alternative algebras
and Proposition I1.17 for a proof of (4).

(5), (6) [BZ96] (cf. Lemma B.7 for Jordan algebras associated to symmetric bilin-
ear forms and the discussion in Example 1.9(d)). [

The scalar factors in the formulas for d 4 are due to the normalization of the
invariant bilinear forms « and Ky,.

For the details on the coordinate algebras for A of type C3 (an alternative
algebra with involution containing A in the associative center (the nucleus), i.e.,
left, resp., right multiplications with elements of A commute with all other right,
resp., left multiplications), Cs (a Peirce half space of a unital Jordan algebra
containing a triangle), Fy (an alternative algebra over A with normalized trace
mapping satisfying the Cayley—Hamilton identity chy) and Gy (a Jordan algebra
over A with a normalized trace mapping satisfying the Cayley-Hamilton identity
chs), we refer to [ABGO0|, |[BZ96] and [Neh96|. For all these types of coordinate
algebras one has natural derivations 0 4(«, 3) given by explicit formulas.
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IIT Universal covering Lie algebras and isogeny
classes

In this section we discuss the concept of a generalized central extension of a locally
convex Lie algebra. It generalizes central extensions g — g, i.e., quotient maps
with central kernel. Its main advantage is that it permits us to construct for a
topologically perfect locally convex Lie algebra g a universal generalized central
extension ¢4: g — g. This is remarkable because universal central extensions do
not always exist, not even for topologically perfect Banach—Lie algebras.

IT1.1 Generalized central extensions

Definition II1I.1. Let g and g be locally convex Lie algebras. A continuous Lie
algebra homomorphism ¢: g — g with dense range is called a generalized central
extension if there exists a continuous bilinear map b: g x g — g with

(3.1) b(q(x),q(y)) = [z,y] for =zyegq.
We observe that, since ¢ has dense range, the map b is uniquely determined by
(3.1) and that (3.1) implies that ker ¢ is central in g. [

Remark IIL.2. If ¢: g — g is a quotient homomorphism of locally convex Lie
algebras with central kernel, i.e., a central extension, then ¢ x q: gxg — gx g also
is a quotient map. Therefore the Lie bracket of g factors through a continuous
bilinear map b: g x g — g with b(q(x),q(y)) = [z, y] for z,y € g, showing that ¢
is a generalized central extension of g. ]

Definition ITI.3.  (a) Let 3 be a locally convex space and g a locally convex
Lie algebra. A continuous 3-valued Lie algebra 2-cocycle is a continuous skew-
symmetric bilinear function w: g x g — 3 satisfying

w([z,y],2) + w(ly, 2], ) + w([z,2],y) =0, =z,9,2 €g.

It is called a coboundary if there exists a continuous linear map « € Lin(g, 3) with
w(z,y) = af[r,y]) for all z,y € g. We write Z?(g,3) for the space of continuous
3-valued 2-cocycles and B?(g,3) for the subspace of coboundaries. We define the
second continuous Lie algebra cohomology space as

H?*(g,3) == Z%(9,3)/B*(9,3)-

(b) If w is a continuous 3-valued 2-cocycle on g, then we write g @, 3 for the
locally convex Lie algebra whose underlying locally convex space is the topological
product g x 3, and whose bracket is defined by

(2, 2), (@', )] = ([, 2], w(z,2")).

Then q: g®,3 — @, (z,2) — x is a central extension and o: g — gD, 3,z — (z,0)
is a continuous linear section of ¢. [
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Lemma II1.4. For a generalized central extension q: g — g with the correspond-
g map b the following assertions hold:

(1
(2
(
(

) [, y] = q(b(z,y)) for all 7,y € g.
)

3) be Z%(g,9), i.e., b([x,y],2) + b(ly, 2], z) + b([z, 2], y) = 0 for x,y,z € g.
)

[g,9] C im(q) and ker g C 3(g).

4) For x € g we define

ad(z): §— 8, v~ b(z,q(y)).

Then ad defines a continuous representation of g on g by derivations for
which q is equivariant with respect to the adjoint representation of g on g.

o~

(5) If g is topologically perfect, then ¢ '(3(g)) = 3(g).
Proof. (1) If x = ¢(a) and y = ¢(b) holds for a,b € g, then

[z, 9] = [q(a), q(b)] = q([a,b]) = q(b(x,y)).

Therefore the Lie bracket on g coincides on the dense subset im(g) x im(q) of
g X g with the continuous map ¢ o b, so that (1) follows from the continuity of
both maps.

(2) follows from (1).

(3) In view of (3.1), the Jacobi identity in g leads to

0 = [[z,y],2] + [y, 2], 2] + [[2, 7], 9]
= blq([x,y]),q(2)) + b(q([y, 2]), q(x)) + b(q([z, ]), q(y))
= b(lg(),q()],q(2)) + b([a(v), q(2)], a(z)) + b([a(2), a(z)], a(y))

Therefore the restriction of b to im(q) is a Lie algebra cocycle, and since im(q) is
dense and b is continuous, it is a Lie algebra cocycle on g.

(4) First we observe that the bilinear map g x g — g, (z,y) — b(x,q(y)) is
continuous. Moreover, (1) implies

g(ad(z).y) = q(b(z,q(y))) = [z, q(y)],

ie., qo aAd(a:) =adzogq.
From the cocycle identity

b([z,y], 2) +b([y, 2], z) + b([z,2],y) =0, =,y,2z € g,
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we derive in particular for z € g and y,2 € g:

0 = b([z,q()],q(2)) + b([q(y), q(= )],x)+b([Qf),x],Q(y))
= b(g(ad(z)y), q(2)) + bla([y, ). z) — blg(ad(x).2), a(y))
= [ad(2)y, 2] — ad(z)[y, 2] — [ad(z)z, y).

Therefore each a/,a(a:) is a derivation of g. On the other hand, the cocycle identity
for b leads for z,y € g and z € g to

0 = bl ula2) + by, a2 )+ b(a). 7))
ad(fe, )z + blg(ad(y)2). ) — bla(ad(2)2). )
= ad([z,y])z — ad(z)ad(y)z + ad(y)ad(x)z,

so that ad: g — der(g) is a representation of g by derivations of g, and the map
q is equivariant with respect to the adjoint representation of g on g.
(5) Let 3(g) := ¢ *(3(g)). We first observe that [3(g), g] is contained in ker ¢ C 3(g)

because
q([3(9),8]) < [3(9), 8] = {0}
This leads to
3(9).[9,9]]  [9,[3(9). 8] C [g, kergq] = {0}

If g is topologically perfect, we obtain 3(g) C 3(g). The other inclusion follows
from the density of the image of q. [ ]

The following proposition shows that generalized central extensions can be
characterized as certain closed subalgebras of central extensions defined by cocy-
cles.

Proposition III.5. (a) If ¢: § — g is a generalized central extension and
b: g X g — @ the corresponding cocycle, then the map

Vv:g—g®rg, z+— (qx), )

is a topological embedding of g onto a closed ideal of g @y, g containing the com-
mutator algebra.
If |g| denotes the space g considered as an abelian Lie algebra, then the map

9@ g —lgl, (z,y) =z —qy)

is a quotient morphism of Lie algebras whose kernel is im(y) = @.

(b) If w € Z%(g,3) is a continuous 2-cocycle, p: g B, 3 — @ the projection onto g
of the corresponding central extension, and g C g @, 3 is a closed subalgebra for
which p(g) is dense in g, then q := pl5: @ — @ is a generalized central extension

with b(z,y) = ([z,y], w(z,y)) for z,y € g.
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Proof. (a) We recall from Definition I11.3 that the bracket in g @, g is given by

Now

[(x), ()] = [(q(x),2), (q(x), 2")] = ([q¢(2), q(z)], b(a(x), ¢(")))
= (Q([‘r?‘rl])’ [*Ia :L‘/D = ¢([$a xl])

implies that the continuous linear map v is a morphism of Lie algebras. As the
graph of the continuous linear map ¢, the image of v is a closed subspace of g, g,
and the projection onto the second factor is a continuous linear map. Therefore
1 is a topological embedding onto a closed subalgebra.

Moreover, the formula for the bracket, together with ¢(b(x, z’)) = [z, '] shows
that im(¢)) contains all brackets, hence is an ideal. Therefore the map n: g&®, g —
|g| whose kernel is im(¢) is a morphism of Lie algebras. That it is a quotient
map follows from the fact that its restriction to the subspace g is a topological
isomorphism.

(b) The range of ¢ is dense by the assumption that p(g) is dense in g. It is also
clear that bo (p x p) is the bracket on g&,, 3, but it remains to show that im(b) C g.

For z = ¢(2"),y = q(y') in im(q) = p(g) we have
b(z,y) = bla(2"), q(y")) = [,y = ([x,y],w(z,y)) € 8.

Now the continuity of b, the density of im(gq) in g, and the closedness of g imply
that im(b) C g. [

IT1.2 Full cyclic homology of locally convex algebras

In this subsection we define cyclic 1-cocycles for locally convex algebras A which
are not necessarily associative. This includes in particular Lie algebras, where
cyclic 1-cocycles are Lie algebra 2-cocycles. It also covers the more general co-
ordinate algebras of root graded locally convex Lie algebras (see Section IV). In
particular, we associate to A a locally convex space (A,.A) in such a way that
continuous cyclic 1-cocycles are in one-to-one correspondence to linear maps on
(A, A). Moreover, we will discuss a method to obtain Lie algebra structures on
(A, A), which will be crucial in Section IV for the construction of the universal
covering algebra of a root graded Lie algebra.

Definition IT1.6. (a) Let A be a locally convex algebra (not necessarily asso-
ciative or with unit). We endow the tensor product A ® A with the projective
tensor product topology and denote this space by A ®, A. Let

I :=span{a®@a,ab@c+bc®@a+ca®b:a,bce A} C AR, A.
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We define

(AA) = (AR, A)/I,
endowed with the quotient topology, which turns it into a locally convex space.
We write (a,b) for the image of a ® b in the quotient space (A, A).
(b) Our definition of (A, A) in (a) is the one corresponding to the category of
locally convex spaces, resp., algebras. In the category of complete locally convex
spaces we write (A, A) for the completion of the quotient space (A ®, .A)/I, and
in the category of sequentially complete spaces for the smallest sequentially closed
subspace of the completion, i.e., its sequential completion.

In the category of Fréchet spaces, the completed version of (A,.A) can be
obtained more directly by first replacing A ®, A by its completion A®,A. If
I denotes the closure of I in the completion A®,.A, then the quotient space
A®,A/I is automatically complete, hence a Fréchet space.

(c) For a locally convex space 3 the continuous linear maps (A, A) — 3 correspond
to those alternating continuous bilinear maps w: A x A — 3 satisfying

w(ab, c) +w(bc,a) + w(be,a) =0, a,b,ce A.

These maps are called cyclic 1-cocycles. We write Z1(A, 3) for the space of con-
tinuous cyclic 1-cocycles A x A — 3 and note that

Z1(A,3) = Lin((A4, A),3).
The identity id4 4y corresponds to the universal cocycle
wy: Ax A— (A A), (a,b) — (a,b). n

Remark III.7. Lie algebra 2-cocycles w: g x g — 3 (Definition III.3) are the
same as cyclic 1-cocycles of the algebra g.
In particular we have

Z*(g,3) = Lin((g, 9),3)

for any locally convex space 3. [ ]

Remark III.8. Let A be a locally convex associative algebra, A; the corre-
sponding Lie algebra with the commutator bracket [a,b] = ab — ba, and A; the
corresponding Jordan algebra with the product a o b := %(ab +ba). In A® A we
have the relations

[a,b]@c+[b,c]®@a+[c,a] @b =ab@c+bcRa+ca®@b— (ba@c+cbR@a+ac®Db)
and

2(ao0b®c+boc®a+coa®b) =abRc+bcR®a+ca®@b+ba®c+chb®@a+ac®b.
Therefore we have natural continuous linear maps

(Ap, Ar) — (A A), (a,b) — (a,b) and (A;, A;) — (A A), (a,b) — (a,b).
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A remarkable point of the following proposition is that it applies without any
assumption on the algebra A, such as associativity etc.

Proposition II1.9.  Let A be a locally convex algebra and
5: (A, A) — der(A), (a,b) — (a,b)

be a cyclic 1-cocycle for which the map A x Ax A — A, (a,b,c) — 6(a,b).c is
continuous. As der(A) acts naturally on (A, A) by

d.{a,b) = (d.a,b) + (a,d.b), d € der(A),a,be A,
we obtain a well-defined continuous bilinear map

['7 ] <A’ -’4> X <A’ -A> - <-A> A>> [(a,b>, <C’ d>] = (S(G,b '<C> d>

Suppose that
(1) 0(0(a,b).{c,d)) = [0(a,b),d(c,d)], and
(2) 0(a,b).{c,d) = —=6(c,d).{a,b) fora,b,c,de A.

Then [-,-] defines on (A, A) the structure of a locally convex Lie algebra and § is
a homomorphism of Lie algebras.

Proof. According to our continuity assumption on ¢, the quadrilinear map
Ax AXAx A= (A A),  (a,b,c,d) - (a,b).{e, d) = (3(a, b).c,d)+ (e, d(a, b).d)

is continuous. That 0 is a cyclic cocycle implies that it factors through a contin-
uous bilinear map

] (A A) x (A, A) — (A A),  ((a,b), (c,d)) — d(a,b).(c,d).

Condition (2) means that the bracket on (A4, .A) is alternating. In view of (1), the
Jacobi identity follows from

[{a;b), (¢, d)], (u,v)] = 6(0(a,b)-(c,d)).{u, v) = [0(a, ), d(c, d)].(u,v)
= [(a,b), [{¢, d), (u, v)]] = [(¢,d), [(a, D), (u, v)]].

Finally, we observe that (1) means that § is a homomorphism of Lie algebras. m
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Example II1.10. Typical examples where Proposition II1.9 applies are

(1) Lie algebras: If g is a locally convex Lie algebra and d(x,y) = ad[x,y], then
the Jacobi identity implies that ¢ is a cocycle. That ¢ is equivariant with respect
to the action of der(g) follows for d € der(g) and z,y € g from

d(d.x,y)+0(x,d.y) = ad([d.x, y|+[z,d.y]) = ad(d.[z,y]) = [d, ad[z,y]] = [d,d(x,y)].

We also have in (g, g) the relation:

0z, y)( ) = (=)« y) + (& e, 9], v/])
= — (@] [yl = (W [, 9l] ) + (@ ([, 9], y])
= ([z,y) [, y]),

which implies 0(z,y).(x',y') = —0(2,y/).(x,y). Moreover, the bracket map

bE: <gag> - g? <l’,y> = [ZL’,y]

is a homomorphism of Lie algebras because

by([{z, ), (=", 1)) = [l ], [, 1] = [be({z, ), by ({2, )]

(2) Associative algebras: If A is an associative algebra, then the commutator
bracket
AxA— A, (a,b)— [a,b] =ab—ba

is a cyclic cocycle because
[ab, ¢] + [be, a] + [ca, b] = abc — cab + bea — abe + cab — bea = 0.

Therefore §(z,y) = ad[z,y] defines a cocycle A x A — der(.A). That § is equiv-
ariant with respect to the action of der(.4) follows with the same calculations as
in (1) above. Alternatively, we can observe that if A, denotes the Lie algebra
A with the commutator bracket, then (A, A) is a quotient of (A, A;) (Remark
I1L.8).

(3) If A is a Jordan algebra and d.4(a,b) = [L(a), L(b)], then we have

5A<d'<&> b>) = [da 5./4(@7 b)]

for all derivations d € der(.A), hence (1) in Proposition II11.9. To verify (2), we
calculate
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a,a’).b’)

Sala, @) (b,b) = (Ga(a,a).b,b) + (b,
')+ (b,a

= (a(a'b) —d'(ab),b a't’) —ad'(ab))

= (a(a'd),b') — (a'(ab), V) + (b, a(a’V')) — (b, a’(al’))

= —((a'b)t,a) — (V'a,ad'd) + ((ab)b',ad") + (V'd, ab)
—{a, (a'V)by — (a'V,;ba) + (d’, (ab")b) + (al, ba’)

= —(V'(ba),a) — (V'a,a'’b) + (V'(ba),a’) + (V'd', ab)
—(a,b(t'a’)) — (V'd, ab) + (d', b(V'a)) + (V'a, a'b)

= —(V/(bd'),a) + (V (ba ca'y — {a,b(t'a")) + (d’,b(Va))

)
= (04, b).a,d") + (a, 04V, b).a")
= —04(b,b).(a,d).

II1.3 The universal covering of a locally convex Lie algebra

We call a generalized central extension gg: g — g of a locally convex Lie algebra
g universal if for any generalized central extension ¢: g — g there exists a unique
morphism of locally convex Lie algebras a: g — g with g o o = g.

Theorem III.11. A locally convex Lie algebra g has a universal generalized
central extension if and only if it is topologically perfect. If this is the case, then the
universal generalized central extension is given by the natural Lie algebra structure

on g :=(g,8) satisfying
(3.2) (2, 2"), (. )] = [z, 2L, [y.y)  for x,2'y.9 €9,

and the natural homomorphism

G 8—9, (z,y)— [z,

15 given by the Lie bracket on g.

Proof. Suppose first that ¢;: g — g is a universal generalized central extension.
We consider the trivial central extension g := g x K with ¢(z,t) = x. According
to the universal property, there exists a unique morphism of locally convex Lie
algebras a: g — g x K with g o @ = ¢g4. For each Lie algebra homomorphism
G:g — Kthe sum a+ §: g — g x K also is a homomorphism of Lie algebras
with g o (o« + 8) = ¢4. Hence the uniqueness implies that 3 = 0. That all
morphisms g — K are trivial means that g is topologically perfect, and therefore
g is topologically perfect.
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Conversely, we assume that g is topologically perfect and construct a universal
generalized central extension. Using Proposition I11.9 and Example I11.10(1), we
see that (g, g) carries a locally convex Lie algebra structure with

[<Iay>7<z7u>] = ([m,y],[z,u]}, r,Y,z,u€g.

Next we observe that im(g,) is dense because [g, g| is dense in g. The corre-
sponding bracket map on g is given by the universal cocycle

we:gxg—g, (z,y)—(z,y).

In fact, for z,2',y,y’ € g we have

wa(gg({z,2")), 45y, ¥))) = wullz, 2], [y, ¥']) = ([, 2], [y, ¥/']) = [{z,2), {y,9)]-

Since the elements of the form (x,2’) span a dense subspace of g, equation (3.1)
holds for ¢ = g,.

Now let ¢: g — g be another generalized central extension with the corre-
sponding map b: g x g — g. Then Lemma II1.4(3) and Remark II1.7 imply the
existence of a unique continuous linear map «: g = (g, g) — g with

b(z,y) = a((z,y)), z,y€g.

For x = q(a), ' = q(d’), y = q(b) and y = ¢q(V') we then have

a(l(z, ), (y.y")) = o[z 2], [y, y]) = b([z, 2], [y, y']) = bla(la, a]), q([b, ']))
= [la,a’], [b,]] = [b(z, 2), b(y, y/)] = [e({z, 2)), a((y, ¥)]-

Now the fact that im(q) is dense in g implies that « is a homomorphism of Lie
algebras. Further,

g(a((z,))) = q(b(z,y)) = [z, Y] = 4({x,v)),

again with the density of im(g) in g, leads to g o av = g.

To see that « is unique, we first observe that g is topologically perfect because
g is topologically perfect. If 3: g — g is another homomorphism with ¢ o 8 = ¢,
then v := 3 — « is a continuous linear map g — kerq C 3(g). Moreover, for

T,y €(g,9) =9,
Y(z,y]) = B(z,y]) —a(z B(z), By)] — la(x), ay)]

Y]
[B(z) — alz), B(y)] + [a(z), By)] — [a(z), a(y)]
[v(), B(y)] + [a(z),v(y)] =0

because the values of v are central. Now ~ = 0 follows from the topological
perfectness of g. [ ]

—

)
|+
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Definition III.12. For a topologically perfect locally convex Lie algebra g the
Lie algebra g = (g, g) is called the universal generalized central extension of g or
the (topological) universal covering Lie algebra of g.

We call two topologically perfect Lie algebras g, and go centrally isogenous if
g1 = go.

In the category of sequentially complete, resp., complete locally convex Lie
algebras we define g as (g, g) in the sense of Definition III.6(b). Then the same
arguments as in the proof of Theorem II1.11 show that g is a universal generalized
central extension in the corresponding category. [

We call a central extension ¢: g — g of a locally convex Lie algebra g universal
if for any central extension ¢': g’ — g there exists a unique morphism of locally
convex Lie algebras a: g — g with ¢’ o a = ¢. The following corollary clarifies
the relation between universal central extensions and universal generalized cen-
tral extensions. In particular it implies that the existence of a universal central
extension is a quite rare phenomenon.

Corollary III.13. A locally convexr Lie algebra g has a universal central ex-
tension if and only if it is topologically perfect and the universal covering map
qg: 9 — 9 15 a quotient map. Then qq is a universal central extension.

Proof.  Suppose first that ¢: g — g is a universal central extension. Then the
same argument as in the proof of Theorem III.11 implies that g is topologically
perfect, which implies that g is topologically perfect. Therefore the universal
generalized central extension gy: g — g exists by Theorem III.11. Its universal
property implies the existence of a unique morphism ¢: g — g with go g = ¢4. If
b: g X g — g is the unique continuous bilinear map for which bo (g X q) is the
bracket on g, the construction in the proof of Theorem III.11 implies that

Ejowu:b\

for the universal cocycle w,(x,y) = (x,y).

Now let q,: g @, § — g be the central extension of g by g, considered as an
abelian Lie algebra, defined by the universal cocycle. Then the universal property
of g implies the existence of a unique morphism

with ¢, 0 ¢ = ¢. This means that ¥(x) = (¢(x),a(z)), where a: g — g is a
continuous linear map. That 1) is a Lie algebra homomorphism means that

(q([z,y]), a([z,y]) = ¥([z,y]) = W(2), ¥ (y)] = ([a(z), a(y)], (a(z), a(y))),

which implies that

a(bla(x). a(y)) = allz,9]) = {a(2),a(y), 2,y €8,
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and hence
aob=uw,.

For the continuous linear maps g — g corresponding to these cocycles, we obtain
aoq= idfg.

We also have R R
Goaob=gow, =b,

and since im(b) spans a dense subspace of the topologically perfect Lie algebra g,
it follows that
goa=id;.

Therefore ¢ is an isomorphism of locally convex spaces, hence an isomorphism of
locally convex Lie algebras, and this implies that g4 is a central extension.

If, conversely, g is topologically perfect and ¢4 is a central extension, its uni-
versal property as a generalized central extension implies that it is a universal
central extension. ]

Comparing the construction above with the universal central extensions in-
vestigated in [Ne02c|, it appears that generalized central extensions are more
natural in the topological context because one does not have to struggle with
the problem that closed subspaces of locally convex spaces do not always have
closed complements, which causes many problems if one works only with central
extensions defined by cocycles (cf. Definition I11.3). Moreover, universal gener-
alized central extensions do always exist for topologically perfect locally convex
algebras, whereas there are Banach—Lie algebras which do not admit a universal
central extension ([NeO1, Ex. I1.18, II1.9] and Proposition II1.19 below, combined
with Corollary I11.13). The typical example is the Lie algebra of Hilbert—Schmidt
operators on an infinite-dimensional Hilbert space discussed in some detail below.

We now address the question for which Lie algebra the universal covering
morphism ¢z: g — g is an isomorphism. At the end of this section we will in

particular describe examples, where ¢;: g — g is not an isomorphism.

Proposition II1.14.  For a topologically perfect locally convex Lie algebra g the
following are equivalent:

(1) q4: g — g is an isomorphism of Lie algebras.
(2) H?(g,3) = {0} for each locally convex space 3.

If, in addition, g is a topologically perfect Banach—Lie algebra, then (1) and
(2) are equivalent to

(3) H*(g,K) = {0}.
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Proof. (1) = (2): Let w € Z*(g,3) be a continuous Lie algebra cocycle g x g —
3. According to Remark II1.7, there exists a continuous linear map «: g — 3 with

w(z,y) = a((z,y)) = aoq; ' ([z,y])

for x,y € g, and this means that w is a coboundary.
(2) = (1): The triviality of H?(g, g) implies that there exists a continuous linear
map «: g — g with

(3.3) (z,y) = a([r,y]), z,y€g

Then
(g5 0 @)([7,9]) = qo({z,9)) = [7,y],

so that the density of [g,g] in g leads to ¢; 0 @ = idg. On the other hand, (3.3)
can also be read as a o gy = id;. Therefore g4 is an isomorphism of locally convex
spaces, hence of locally convex Lie algebras.

Now we assume that g is a topologically perfect Banach—Lie algebra. It is clear
that (2) implies (3).
(3) = (1): (cf. [NeO2c, Prop. 3.5]) Let ¢4: g — g be the universal covering map.
The condition H?(g,K) = {0} means that each 2-cocycle is a coboundary, i.e.,
that the adjoint map

q;: Lin(g,K) — Lin(g, K) = Z%(g,K)

is surjective. Since g is topologically perfect, it is also injective, hence bijective.
The surjectivity of g; implies in particular that gy is injective. Further the Closed
Range Theorem ([Ru73, Th. 4.14]) implies that the image of ¢4 is closed, and
hence that g, is bijective. Finally the Open Mapping Theorem implies that ¢ is
an isomorphism. [

A topologically perfect locally convex Lie algebra satisfying the two equivalent
conditions of Proposition I11.14 is called centrally closed. This means that g is its
own universal covering algebra, or, equivalently, that the Lie bracket g x g — g is
a universal Lie algebra cocycle.

Remark III.15. (a) Let gi,g2 and g3 be topologically perfect locally convex
Lie algebras and ¢;: g1 — @2, ¢2: g2 — @3 generalized central extensions. Then
q = @20q;: g1 — @3 is a morphism of locally convex Lie algebras with dense
range. Moreover, Lemma II1.4(5) implies that

kerg = ¢; ' (ker g2) C ¢; ' (3(g2)) = 3(g1)-

Unfortunately, we cannot conclude in general that ¢ is a generalized central ex-
tension. The bilinear map by: go X go — g1 for which b; o (¢1 X ¢1) is the Lie
bracket of gy is a Lie algebra cocycle, which implies that

bi(ker g2, g2) C b1(3(g2), [82, 92]) = {0}.
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Therefore by factors through a bilinear map

b: im(ga) X im(g2) — g1, (2(2), ¢2(y)) = bi(2,y)
with

b(q(r),q(y)) = bi(@(z), a1 (y)) = [v,9], 2.y € gu.
If b is continuous, it extends to a continuous bilinear map g3 x g3 — g; with the
required properties, and ¢ is a generalized central extension, but unfortunately,
there is no reason for this to be the case.
(b) If g2 is a quotient map, i.e., a central extension, then b is continuous. This
shows that in the context of topologically perfect locally convex Lie algebras a
generalized central extension of a central extension is a generalized central exten-
sion. This means in particular that if the universal covering map ¢;: g — g is a
quotient map, then g is centrally closed. [

Proposition I11.16.  Let G: g — g be a generalized central extension, 3 C 3(g)
a closed subspace and p,: g — g/ the quotient map. Then the composition map
¢ :=Dp;0G: g — @8/3 s a generalized central extension. If q is universal, then g,
18 universal, too.
Proof.  From Remark III.15(b) we derive in particular that g, is a generalized
central extension.

Now we assume that ¢: g — g is universal. So let ¢: § — g/3 be a generalized
central extension and consider the pullback Lie algebra

b:={(z,y) eg@g: q(z) = p;(y)},
on which we have two coordinate projections ps: h — g and p;: h — g. We
claim that p, is a generalized central extension. Its range is the inverse image
p;l(im q) Cg. If U C g is an open subset intersecting p;l(im q) trivially, then the
open subset p,(U) C g/3 intersects im(q) trivially, and therefore U = (). Hence
im(py) is dense in g. Let b;: g/3 x g/3 — @ denote a continuous bilinear map for
which b, o (¢ x g) is the Lie bracket on g. Then the map

brgxg—b, (v.y)— (b;(w), ;%)) [y, y])

satisfies

b(pg(w, ), pe(2',y)) = by, y") = (b;(p;(v), 03 (¥)), W, ¥'])
= (b(q(x),q(2), [y, ¥]) = ([2, 2], [y, ¥']) = [(z, 9), (@, ¥)].

Hence py is a generalized central extension, and the universal property of ¢ implies
the existence of a unique Lie algebra morphism a: g — § with py o a = g. This
means that

a(z) = (B(z), q(x))
for some Lie algebra morphism 3: g — g satisfying ¢, = p, o ¢ = ¢ o 3. This
argument shows that ¢;: g — g/3 is a universal generalized central extension of
/3 ]
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II1.4 Schatten classes as interesting examples

Lemma II1.17. Let H be a Hilbert space and sly(H) the Lie algebra of all
continuous finite rank operators of zero trace on H. For each derivation

A:sly(H) — sly(H)

there exists a continous operator D € B(H) with A(x) = [D,x] for each x €
slo(H). The operator D is unique up to an element in K1.

Proof.  (|dIH72|) Step 1: For each finite subset F' of sly(H) there exists a
finite-dimensional subspace ¥ C H such that

F Csl(E) = {p € sly(H): ¢(E) C E.o(E*) = {0}}.

The Lie algebra sl(E) = slg(K) is simple and the restriction Ag of A to sl(E)
is a linear map sl(E) — sly(H) satisfying

Ap([z,y]) = [Ap(), y] + [z, Ap(y)].

This means that Ap € Z'(sl(E), sly(H)), where sl(E) acts on sly(H) by the ad-
joint action. Since this action turns sly(H) into a locally finite module, Lemma A.3
implies that the cocycle A is trivial, i.e., there exists an element Dy € sly(H)
with Ag(x) = [Dpg,z] for all z € sl(E). Suppose that D), is another element in
slo(H) with this property. Then we write

o0 (1)

as a block matrix according to the decomposition H = E @ E+. As Dy — D),
commutes with s[(E), it preserves the subspaces sl(E).H = F and E+ = {r €
H:sl(E).x = {0}}. Therefore b = ¢ = 0, and a € Kidg. This proves that
Dg |g — Dy |g € Kidg. If we require, in addition, Dg.vLlv for some non-zero
vector v € E, then the restriction of Dg to F is uniquely determined.

Step 2: We may assume that dim H > 2, otherwise the assertion is trivial.
Fix 0 # v € H. As in Step 1, we find for each finite-dimensional subspace £ C H
an operator Dg as above with Dg.v_Lv. For E C E’ the operator Dg also satisfies
DE/.UJ_U and AE(JI) = {DE/,J?] for x € 5[(E) - 5[<El> Therefore DE/ |E‘ = DE, SO
that we obtain a well-defined operator

D:H—H Dw:=Dgw for weeE.
This operator satisfies

A(x) =[D,z] forall =z €sly(H).
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Step 3: D is continuous: For x,y € H we consider the rank-one-operator
P,,v = (v,y)x. Then tr P,, = (z,y) vanishes if xly. Then P, , € sly(H), and

(D, P, ,|(v) = Ppay.v— (D, y)x.

As for each y € H there exists an element x orthogonal to y, it follows that all
functionals
v (Dw,y)

are continuous, i.e., that the adjoint operator D* of the unbounded operator D is
everywhere defined, and therefore that D has a closed graph ([Ne99, Th. A.IL§]).
Now the Closed Graph Theorem implies that D is continuous.

Step 4: Uniqueness: We have to show that if an operator D on H commutes
with sly(H), then it is a multiple of the identity. The condition [D, P,,| = 0 for
xly implies that

(v,y)D.x = (D.w,y)x, v € H.

It follows in particular that each x € H is an eigenvector, and hence that D € K1.
[ ]

Definition III.18. Let H be an infinite-dimensional Hilbert space. For each
p € [1,00] we write B,(H) for the corresponding Schatten ideal in B(H ), where
B (H) denotes the space of compact operators (cf. [dIH72|, [GGK00]). Each
operator A € B,(H) is compact, and if we write the non-zero eigenvalues of the
positive operator v/ A*A (counted with multiplicity) in a sequence (A, )nen (which
might also contain zeros), the norm on B,(H) is given by

1
4l = (X )"
neN

According to [GGKO00, Th. IV.11.2], we then have the estimate

1 1 1
S<
p

AB|, < ||Al|, || Bllp, for
4Bl < Al 1B, ——

It follows in particular that each B,(H) is a Banach algebra. We also have
IABC| < [AllIBII,[ICll, B € By(H),A,C € B(H).
For1<p§ooand%+§:1vvehave
B,(H)" = By(H),

where the pairing is induced by the trace (x,y) = tr(xy). Here we use that

B,(H)B,(H) C By(H), and that the trace extends to a continuous linear func-

tional tr: By(H) — K (cf. [dIH72, p.113]). We have
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Byi(H) € By(H) € By(H) € Bxo(H)

for p < p'.

For p = 1 the elements of By (H) are the trace class operators and for p = 2 the
elements of By(H) are the Hilbert-Schmidt operators. As the trace is a continuous
linear functional on B (H) vanishing on all commutators, the subspace

sl(H) :={x € By(H): tre =0}

is a Lie algebra hyperplane ideal. ]

Proposition III.19.  For 1 < p < oo let gl,(H) be the Banach-Lie algebra
obtained from B,(H) with the commutator bracket. Then gl,(H) is topologically
perfect if and only if p > 1. The universal covering map is given by the inclusion
maps

sl(H) < gl,(H) forl<p<2, and glp(H) <= gl(H) for2<p=ooc.

The Lie algebra sl(H) is topologically perfect and centrally closed.

Proof. That gl,(H) is not topologically perfect follows from the fact that the
trace vanishes on all brackets. Assume that p > 1. Then an elementary argument
with diagonal matrices implies that sly(H) is dense in B,(H) with respect to || - ||,
Since sly(H) is a perfect Lie algebra, gl,(H) is topologically perfect.

Let w: gl,(H) x gl,(H) — K be a continuous Lie algebra cocycle. Then there
exists a unique continuous linear map

A gl (H) = gl (H) = gl,(H), 4o =1,
with tr(A(z)y) = w(z,y) for all z,y € gl,(H), and the cocycle identity for w
implies that A is a derivation, i.e.,

Allz,y]) = [A(), ¥l + [z, A)], =y € ol,(H).

The Lie algebra sly(H) is a perfect ideal in gl(H) and hence in each gl,(H).
Therefore it is invariant under A, and Lemma III.17 implies the existence of a
continuous operator D € B(H) with A(z) = [D,z] for all z € sly(H). As both
sides describe continuous linear maps gl,(H) — gl(H) which coincide on the dense
subspace sly(H), we have A = ad D on gl,(H).

For 1 < p < 2 we have ¢ > 2 > p, so that each bounded operator D € B(H)
satisfies ad D(gl,(H)) € gl,(H) C gl,(H). For p > 2 the dual space gl (H) is a
proper subspace of gl,(H), and it is shown in [dIH72, p.141] that

{D € gl(H): D, al,(H)] € ol,(H)} =gl (H) for — =~ =1-
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The cocycle associated to an operator D is given by
w(z,y) = te([D,2ly) = tr(Dlz,y]), =,y < gl,(H).
That the trace on the right hand side makes sense follows from B,(H)B,(H) C

Bi(H) for p <2 and B,(H)B,(H) C Be(H) and D € Bz (H)' for p > 2.
For p < 2 we have

o1, (H), 61, (H)] C [gl,(H), gl,(H)] € [slo(H), slo(H)] = slo(H) = sl(H),

where the closure refers to the trace norm ||-||;. An operator D € gl(H) = gl (H)'
represents the cocycle 0 if and only if it is orthogonal to the hyperplane sl(H),
which means that D € K1. For p > 2 an operator D € gl,(H) is never a multiple
of 1, so that we obtain

(3,4) ZQ(g[p(H>, K) = { E[gg[((z))/; i[[le[[}{Kl iglli ; iig i

Now let ¢({x,y)) = [z, y] denote the bracket map

q: al,(H) = (gl,(H), gl,(H)) — { Z[[(Iar) g ; fﬁ.g :

Then ¢ is a continuous morphism of Banach—Lie algebras. Further
Z*(g1,(H), K) = Lin(gl,(H), K),

and (3.4) imply that the adjoint map ¢* is bijective. That ¢* is injective implies
that ¢ has dense range and the surjectivity of ¢* implies in particular that ¢ is
injective. Further the Closed Range Theorem ([Ru73, Th. 4.14]) implies that the
image of ¢ is closed, and hence that ¢ is bijective. Finally the Open Mapping
Theorem implies that ¢ is an isomorphism.

It remains to show that s[(H) is centrally closed. That it is topologically
perfect follows immediately from the density of the perfect ideal sly(H). Since
the dual space of gly(H) can be identified with the full operator algebra gl(H)
via the trace pairing, and the annihilator of the closed hyperplane sl(H) is the
center K1 C gl(H), the dual space sl(H)" can be identified in a natural way
with the quotient pgl(H) = gl(H)/K1. Let w € Z*(sl(H),K) be a continuous
cocycle. As above, there exists a continuous derivation A: sl(H) — sl(H)" with
tr(A(x)y) = w(z,y) for x,y € sl(H), where we use that tr(ab) := tr(a’d) is well
defined for a = a’+K1 € pgl(H) and b € sl(H). From the invariance of the perfect
ideal slp(H) under A, we obtain with Lemma III.17 the existence of D € gl(H)
with A(z) = [D,z] for all x € sly(H), and the density of sly(H) implies that
A = ad D. Therefore

w(z,y) = tr([D, z]y) = tr(Dx, y])

is a coboundary, which leads to H?(sl(H),K) = {0}, and thus s[(H) is centrally
closed by Proposition III.14. ]
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Remark II1.20. From the preceding proposition, we obtain in particular exam-
ples of Lie algebras where the universal covering algebra is not centrally closed.
For example each gl,(H) with p > 2 has this property. For p < 2 < 4 we have

oL, (H) = gly(H) and  gl,(H) = si(H),

but for 2¥ < p < 28! we need to pass k + 1-times to the universal covering Lie
algebra until we reach s[(H) which is centrally closed. [

In Section IV below we shall see many other concrete examples of universal
central extensions, when we discuss root graded locally convex Lie algebras.

IV Universal coverings of locally convex root graded
Lie algebras

In this section we describe the universal covering Lie algebra g of a locally convex
root graded Lie algebra g. In particular, we shall see that it can be constructed
directly from its coordinate structure (A, D,d”). For the class of the so called
regular root graded Lie algebras, the universal covering algebra does not depend on
D, hence has a particularly nice structure. Since not every root graded Lie algebra
g is regular, the description of g is more involved than in the algebraic context
(JABGOO]). A key point is that the concept of a generalized central extension
provides the natural framework to translate the algebraic structure of the universal
covering algebra into the locally convex context.

IV.1 Generalized central extensions of root graded Lie alge-
bras

Proposition IV.1.  Let q: g — g be a generalized central extension for which
g is topologically perfect. If g is A-graded, then g is A-graded and vice versa.

Proof. (a) First we assume that g is A-graded. On g we consider the ga-
module structure given by ad (Lemma II1.4). Then the corestriction § — im(q)
is an extension of the locally finite ga-module im(q) by the trivial module ker g,
hence a trivial extension (Proposition A.4). It follows in particular that g is an
h-weight module. The weights occurring in this module are identical with those
occurring in im(q) 2 [g,9] (Lemma I11.4(1)). This implies that we have an b-
weight decomposition
ﬁ = ﬁO D @ ﬁa
aEA

with ¢(g§s) = go for a # 0. As the central Lie algebra extension ¢~ '(ga) —
— ga is trivial, its commutator algebra ga is a subalgebra which is mapped by
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q isomorphically onto ga. Therefore (R1)—(R3) are satisfied for ga as a grading
subalgebra in g.

As the bracket in g is given by [z, y] = b(¢(x), ¢(y)), the topological perfectness
of g implies that the image of b spans a dense subspace of g. Therefore

b(go; 80) + D b(gas 8—a) = b(go, 90) + D [Bas 5]
0#a 0#a

is dense in go. For 24, € g1, and 245 € gip we further have

b([q(7a), a(z-0)], [q(25), a(x-5)]) = [[Ta, 0], [¥5, T—p]] € [80, [85,8-5]] C (85, 8-5]-

Hence
b([gm 9—0]7 [gﬁv g—ﬁ]) - [ﬁ@ ﬁ—ﬂ]ﬂ

so that (R4) holds for g, and the relation ¢(g,) = g for o # 0 imply that b(go, go)
is contained in the closure of the sum of the spaces [ga, 8], @ # 0. This implies
(R4) for g.
(b) Now we assume that g is A-graded with grading subalgebra ga. Then ker q C
3(9), so that ga := q(ga) = ga. Clearly g carries a natural ga-module structure.

From [g,g] C im(q) (Lemma II1.4(2)) we derive that g/im(q) is a trivial ga-
module. Moreover, im(q) = g/ ker(q) is a locally finite ga-module. Therefore
Proposition A.4 implies that g is a locally finite ga-module which is a direct sum
of ¢q(g) and a trivial module Z. This immediately leads to a weight decomposition
of g with weight system A, and it is obvious that (R1)—(R3) are satisfied.

As b acts on g by continuous operators, the projection g — gy along the sum
of the other root spaces is continuous, so that the density of the image of ¢ in g
implies that ¢(go) is dense in go. We further have

80 8-a) = q(0(8a, 8-a)) = q(0(q(8a), 1(8-a))) = 4([8a; 8-a));

so that (R4) for g implies (R4) for g. [

Corollary IV.2. If g is A-graded with grading subalgebra ga, then 3(g) C
35(8a) € 34(h) = g0, and g/3(g) = adg is a A-graded Lie algebra. The quotient
map ad: g — g/3(g) is a morphism of A-graded Lie algebras. [

Lemma IV.3. Let g1 and gs be locally convex A-graded Lie algebras with coor-
dinate structures (A; = A; ® B;, D;,67%), and n;: ga — g the corresponding em-
beddings that we use to identify ga with a subalgebra of g1 and go. If p: g1 — go
1s a morphism of locally convexr Lie algebra with ¢ o ny = 1y, then there exist
continuous linear maps

oa: Ay — Az, pp: Bi — By and @p: Dy — Dy
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such that
(4.1) plaRr+b@v+d) =pala) ® x4+ pp(b) @ v+ op(d)
fora e Ay,b€ By,d € Dy,x € ga and v € Vi, and

oA =pa@pp: Al — Ay

1 a continuous algebra homomorphism with
(4.2) 372 0 (pa X pa) = pp o 7.

Proof. The condition ¢ on; = 1 means that ¢ is equivariant with respect to
the representations of ga on g; and go. Identifying A; with Homg, (ga, g1), the
equivariance of ¢ with respect to ga permits us to define p4(a) := p oa. We
likewise define ¢ and ¢p. Then (4.1) is satisfied. Now (4.2) and that ¢ 4 defines
an algebra homomorphism follow directly from (B1)-(B3), because the algebra
structure on Ay, resp., A, is completely determined by the Lie bracket. ]

Remark IV.4. The preceding lemma applies in particular to generalized central
extensions ¢: g — ¢. In this case the proof of Proposition IV.1 implies that ¢4 is
a topological isomorphism, hence an isomorphism of locally convex algebras. We
therefore may assume that g and g have the same coordinate algebra A. In this
sense we write

g=(A®g)@[BV,)®D and §=(Adgr)®(BRV.) @D,

and ¢p: D — Disa map with dense range, gqp o 6” = 6, and since ¢ is a
generalized central extension, restricting the ga-equivariant corresponding map
b:gxg—gtoD x D leads to a continuous bilinear map bp: D x D — D with
bo(qp(d), qp(d)) = [d,d] for d,d’ € D. We conclude that ¢p: D — D also is a
generalized central extension.

This applies in particular to the universal covering algebra, which we write as

§=(A®ga) @ (BaV,) ®D.

In the following subsection we will see how D can be described directly in terms
of the coordinate algebra A and 0 4. [ ]

IV.2 The universal covering of a A-graded locally convex Lie
algebra

To describe the universal covering Lie algebra g of a locally convex root graded Lie
algebra g, we first consider its coordinate structure (A = A® B, D, 67) (Definition
I1.14). We consider the locally convex space

(A, A)7 = (A, A) /(A B)
and write the image of (a,a’) € (A, A) in (A, A)? also as (a,d’).
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Theorem IV.5.  For each root system A, a corresponding coordinate algebra
A, and the natural map d4: A x A — der(A), the derivations 6 4(a,b) preserve
the subspace (A, B) of (A, A), and we obtain on (A, A)? the structure of a locally
conver Lie algebra by

[{a,a’), (b,b)] :==da(a,a’).(b,b).

The map 04 factors through a Lie algebra homomorphism (A, A)? — der(A).
Proof. Since the map A% — A, (a,b,c) — §°(a, b).c is continuous, and 6 is a
cyclic 1-cocycle vanishing on A x B (Theorem I1.13), it defines a continuous linear
map

(A, A — D, {a,b) — 6°(a,b).

Now define
Sa: (A LAY — der(A), da(a,b).c:=d"(a,b).c

and observe that the bilinear map
(A, A x A— A, ((a,b),c) — d4(a,b).c

is continuous.
From (2.3) in Theorem II.13 we further derive that

(4.3) 3.4(84(a,b).{c,d)) = 6.4(5.a(a,b).c,d)+a(c,da(a,b).d) = [6.4(a,b),d(c, d)]

for a,b,c,d € A.

As the operators d(a,b) € der(A) all preserve the subspaces A and B of A,
the subspace (A, B) C (A, A) is invariant under all these operators with respect
to the natural action of der(.A) on (A, A), and we therefore obtain a well-defined
bracket on (A, .A)? with

[{a,a’), (b,0)] :== d4(a,a’).(b,b).

As in Proposition II1.9, the Jacobi identity for this bracket is a direct conse-
quence of (4.3). That the bracket is alternating is equivalent to the relation

(4.4) dala,a’).(b,b"y = —d4(b,V).(a,a)

for a,a’,b,b' € A. This relation can be verified case by case for the coordinate
algebras associated to the different types of root systems (see [ABG00, p.521]; cf.
also Theorem II.20 and the subsequent comments). Formula (4.3) immediately
shows that 4 is a morphism of Lie algebras.

For the case where A is an associative or a Jordan algebra, (4.4) can be ob-
tained as in Example II1.10(2), (3). In this case we already have on (A, A) a
natural Lie algebra structure, and since (A, B) is invariant under the operators
da(a,b), it is a Lie algebra ideal, so that (A, .4)7 simply is the quotient Lie alge-
bra. ]
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Definition IV.6.  Let D be a locally convex Lie algebra and D x A — A a
continuous action by derivations on A which preserves the subspaces A and B of
A. Since the map

DxAxA— (A A), (da,b)w— d(ab) = (da,b)+ (a,d.Db)
is trilinear and continuous, it induces a continuous bilinear map
D x (A A) — (A, A).

Therefore the semidirect product (A, A)? x D carries a natural structure of a
locally convex Lie algebra.

Using Example I11.10(1) and Proposition I11.9, we obtain a locally convex Lie
algebra structure on (D, D) with

[<d7 d/>v <67 €,>] = <[d7 d/]v [67 6/]>

such that the bracket map bp: (D, D) — D,(d,d") — [d,d] is a morphism of
locally convex Lie algebras.

Combining this with the semidirect product construction from above, we ob-
tain a semidirect product Dy := (A, A)? x (D, D). In this Lie algebra the closed
subspace I generated by the elements of the form

(d{a,d"), —(d,6"(a,d"))), a,d € A, de D

is an ideal because I commutes with the ideal (A, .A4)?, and D acts in a natural
way by derivations on D; preserving /. Since im(J6”) spans a dense subspace of
D, the ideal I is also generated by the elements of the form

([{a,d'y, (b,b)], —(6P(a,d’), 67 (b,V))), a,d', bV € A.

We define .
D := ((A, A)7 x (D, D))/I.

This is a locally convex Lie algebra that will be needed in the description of the
universal covering algebra gy: g — g of a root graded Lie algebra g with coordinate
structure (A, D,67). We write [(z,y)] for the image of the pair (z,y) € D; in the
quotient Lie algebra D. ]

Lemma IV.7. The map
go0: D— D, [((a,d),(d,d))] — 6"(a,d') +[d,d]

15 a well-defined generalized central extension.
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Proof.  First we observe that 64 : (A, A)° — D is a morphism of Lie algebras
because

04 ([(a,b), (e, d)]) = 63(d.a(a,b).(c,d)) = [03((a, b)), 83 ({c, d))]
(Theorem I1.13). Therefore

52(“@7 a,>’ <b’ b/>]) = [5D<a7 CL/), 5D(ba b,)]a

which implies that g p is well-defined. The equivariance of ¢4 p with respect to the
action of D by derivations on (A, A)? and (D, D) implies that ¢y p is a morphism
of Lie algebras.

Its range contains the image of 67, hence is dense in D. Moreover, the con-
tinuous bilinear map

b: Dx D —D, (d,d) [(0,(dd))]
satisfies
b((d, d], e, €']) = (0, ([d, @, [e, ]))] = [[(0, (d, d))], [(0, (e, )],
b(6" (a,a’), 67 (b,4)) = [(0, (6" (a, '), 8" (b,0)))] = [([{a, d'), (b, )], 0)],

and

o((d,d.6"(a,d)) = [(0,~(8"(a,a), [d, d]))] = [([d. d.(a,a'), 0)
— (100, (d. )], [({a, @), 0)]].

This implies that bo (ggp X gg.p) is the Lie bracket on 5, and hence that ¢y p is
a generalized central extension. ]

Note that, in general, D is not the universal covering Lie algebra because D
might be abelian, so that it has no universal covering algebra.

The following theorem is the locally convex version of the description of the
universal covering Lie algebra (cf. [ABGO00]| for the algebraic case).

Theorem IV.8.  Let g be a A-graded locally convex Lie algebra with coordinate
structure (A, D,dP). Then the Lie algebra D acts continuously by derivations on
A via

((a,b), (d,d)).c := 6" (a,b).c + [d,d].c,

and we have a continuous bilinear map
5P Ax A— D, (a,b)— [({a,b),0)].

The Lie algebra -
=(Agr)®(BRV,)® D
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with the Lie bracket given by
dia@z+b@uv+d]=da®@z+dbov+[dd],

and
a@w,d @2 = yla,d) @]+, d) @z x 2’ + 75 (a,d') © B (2,2")
+m(x,x’)55(a,a'),
b+b b—b
[a®z,b@v] = a 5 a®5§,v(x,v)+a a®x.v,,
bevbt V] = YAb.K) 5 (0,0) + 15 0,0) @ B (0,0) + v, (v,0)87 (b, )

is the universal covering Lie algebra of g with respect to the map
Ga@r+b@v+d) =a®x+b® v+ qyp(d),

where N

qp: D — D, [(a,d),(dd))]— §P(a,d") + [d,d].
Proof. In view of the comments in Definition IV.6, the Lie algebra D together
with the map 0°: D — der(.A) satisfy all assumptions of Theorem I1.15, and we

obtain on N
g=(A®ga)®(BeV,)® D

a Lie bracket as described above for which g is a A-graded Lie algebra with
coordinate structure (A, D,d5), and gg: § — ¢ is a morphism of Lie algebras.
Since the range of g, p contains the image of 7, the range of ¢, is dense.

To see that g is a generalized central extension, we observe that the formulas
for the bracket in Theorem II.15 show how to define a continuous bilinear map
by: g x g — g for which bo (g X g4) is the bracket of g (cf. Lemma IV.7). We only

have to replace §” by §” and define by on D x g by
byld,a@r+b@v+d):=da®r+dbev+[(0,(dd))]

The main point in the complicated construction of the Lie algebra D was the need
for the bilinear map b; on D x D. This proves that g, is a generalized central
extension.
To prove the universality of gg, let ¢: g — g be a generalized central extension,
where we write g as -
§=(A®gr)®(BV,)® D

and recall that ¢p: D — D also is a generalized central extension, so that there
exists a continuous bilinear map bp: D x D — D such that bp o (¢p X gp) is the

~

Lie bracket on D (Remark IV.4). Then the corresponding map 6% : (A, A)* — D
is a continuous homomorphism of Lie algebras because

~

S2([{a, b), (e, d)]) = 62(3(a,b).(c, d)) = [62(a,b), 68 (¢, d)]
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(Theorem 11.13). This s homomorphism is equivariant with respect to the action
of D on (A, A)? and D, where the action of D on D is is given by factorization of
the adjoint representation of D to an action of D on D (Lemma I11.4). Further
bp induces a continuous Lie algebra homomorphism

bp: (D,D) — D
(Lemma II1.4.3) because for d,d’, e, e’ € D we have

[bo((d, d')),bp((e,€'))] = bplap(bo((d.d"))),qp(bp({e, €'))))
= bp(([d,d],[e, €'])) = bp([{d, '), (e, €)]).

Combining bp with 6}2 , we get a continuous Lie algebra morphism
(A, A)" % (D,D) - D, ((a,a),(d,d)) — 6”(a,a’) +bp(d,d),
and this morphism maps
[{a, a’), (b,0)] = (6°(a, a’), 67 (b, 1))

to

62 (a, '), 62 (b,)] = bp(6”(a, a’), 5P (b, 1)) = 0
because ¢p o 60 = §P. Hence it factors through a morphism
to0: D= D, [((a,d),{d,d))] = 6%(a,a') + bp(d. &)
We now obtain a continuous linear map
G:8—08 a®r+b®v+d—a®r+b®v+qyp(d),

and (B1)-(B3) together with the relation ¢p o §0 = 5P ((4.2) in Lemma IV.3)
imply that this map is a continuous morphism of Lie algebras satisfying gogy = ¢.
This proves that ¢;: g — g is a universal covering Lie algebra of g. ]

Definition IV.9. We call a A-graded Lie algebra g with coordinate structure
(A, D, 6P) regular if the natural map

65 (A, A — D, (a,b) — §"(a,b)

is a generalized central extension, i.e., there exists a continuous bilinear map

bp: D x D — (A, A) such that bp o (65 x §7) is the bracket on (A, A)°. [
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Examples IV.10. We continue the discussion from Examples I1.16 by showing
that all Lie algebras discussed there are regular.
(a) For the algebras of the type g = A ® ga we have D = {0}, so that they are
regular.
(b) For g = sl,,(A) we have A= A, D = [A, A], and

1

D —_
) (a, b) = 2—n2[a, b]

The corresponding Lie bracket on (A, A) is given by

1

[<CL, b>= <CL/, b/>] = 5D(a7 b)'<a/7 b/> = ﬁ(([[m b]v a/]v b/> + <a7 [[CL, b]v b/]>)
1

= 7([&, b]? [a/’ b/]>'

2n?
Therefore the bilinear map
b: D x D — (A A), (a,b)— 2n*{a,b)

satisfies
1 1
D D
b((s (a’ b)? 0 (a/’ bl)) = @b([av b]’ [ala b/]) = an’v b]v [a,7 bl]> = [<CL, b>v <CL/, b,>]7
which implies that 65: (A, A) — D is a generalized central extension, and there-
fore sl,,(A) is regular.
(c) For g = sp,,, (A, o) we have with the notation from Example 11.16
D=TA A" and 6°(a,b) = pn([a,b] + [a®, %))

for some p,, € K. The corresponding Lie bracket on (A, A)? is given by

[{a,0), (a",0)] = "(a,0).(a", V) = pn([a,b] = [a,0]7, ', }])

Y A )

Therefore the bilinear map
1
b: Dx D — (A A), (a,b)+— 2—<a, b)

satisfies
b(6”(a,0),67(d',0)) = pab(la,b] —[a,b]7, [a’, ] — [d', 1]")

= %qa, b] — [CL, b]‘77 [CLI, b/] . [CL/, b/]g> _ [<a7 b>7 <a/’ b/>]’

which implies that 67: (A, A)° — D is a generalized central extension, so that
5Py, (A) is regular.

(d) For g = TKK(J) for a Jordan algebra J we have D = (J,J) = (A, A)°, so
that 6” = id implies that g is regular. n

The following lemma provides a handy criterion for regularity.
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Lemma IV.11. The A-graded Lie algebra g with coordinate structure (A, D, 6)
1s reqular if and only if the natural map

0B (A, A — D, {a,b) — [({a,b),0)]

18 an isomorphism.
Proof. According to Lemma IV.7, the map ¢y p: D — Dis a generalized

central extension. If 62 % is an isomorphism, the composed map 6% : (A, A)7 —
also is a generalized central extension.

If, conversely, g is regular, i.e., §% is a generalized central extension, and
bp: D x D — (A, A)? a continuous bilinear map for which bp o (67 x 6%) is the
bracket on (A, .A)?, then we define

o: D= (AA)7, [({a,d),{d,d)]— (a,d) +bp(d,d).
That this map is well-defined follows from

[(a,'), (b.1)] = bp (6 (a, ), 6”(5,1))
= [(a,a), (b,)] = bp(6”({a, a')), 87 ((b,1))) = 0

for a,a’,b, b’ € A. Moreover, ¢ is a morphism of Lie algebras:

{a,a’y +bp(d,d), (b,V) + bp(e, )]

= [a,d), (b,0)] + [d,d].(b,b) — [e,€] {a,a’) + [bp(d, d), bp(e, )]
[(a,d’), <b b'>1 +1d, d].(0,) — [e, €] {a, ') + bp([(d, '), (e, ¢)])

= o([[(a,d), (d,d))], [((b,V), (e.€))]]).

We have ¢ o 5:41? = id (4 4y and

(05 0 ) (I({a, '), {d, d))]) = [({a, ) + bp(d, ), 0)].
For d = 6P (a,b) and d' = §P(a’, V') we have
bo(d,d') = bp(6”(a,b), 6”(a', ) = bp(8° ((a, b)), 87 ((a’,))) = [(a, b), (d, '),

which, as an element of D, equals (6 (a,b),6°(a/,V')) = (d,d’). Since the image
of 6P spans a dense subspace of D, it follows that

[({d, d),0)] = [(0, bp(d, d))]

for all d,d’ € D, and hence that 5? o = idg. Therefore (5:? is an isomorphism of
locally convex Lie algebras whose inverse is . [ ]
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Remark IV.12. (a) The preceding lemma shows that if g is regular, then its
universal covering Lie algebra is given by

§=g(AA) = (AQga) B (BOVS) @ (A A)°
with the Lie bracket given by
dia@r+bRuv+d]=da®@zr+dbov+[dd],

and
a@z,d @3] = ya,d)® [2,2]+72(a,d) @z x2’ + 75 (a,d) ® B (z,2)
+r(x, 2" )o4(a,d’),
a®z,b®v] = ab—zkba ® By (x,v) + ab;ba ® z.v,
bt @] = 5(b,6) 6 (0,0) + 75 (b,0) @ By (v,0) + ki, (v, 0')04(b, V)
with

Ga®r+bv+d) =a®r+bev+d4(d),

where 65 ((a, b)) = 6" (a,b) for a,b € A.
(b) If g is not regular, then we can still consider the Lie algebra

gF = (A®ga)® (BRV,) @ (A A)°

with the coordinate structure (A, (A, A)7, 647 where Saaye(a,b) = (a,b),
and (A, A)? acts on A via §4 (Theorem II.15). Then the map

¢igf—g a@r+b@utd—a®r+bev+65(d)

is a morphism of locally convex Lie algebras with dense range. The subspace
ker ¢* = ker 6% C (A, A)? acts trivially on A, hence on A ® ga and B ® V;, and
therefore on g*. This means that ker ¢* is central. If g is not regular, then ¢f is
not a generalized central extension.

Nevertheless, ¢* has the following universal property: If ¢: g — g is a general-
ized central extension with

i=(A®gr)®BeV,)®D

(cf. Remark IV.4), then qp: D — D also is a generalized central extension. As in
the proof of Theorem IV.8, we see that the corresponding map 05 : (A4, A)” — D
is a continuous homomorphism of Lie algebras and that we obtain a continuous
morphism of Lie algebras

with ¢ o ¢ = ¢*. As kergq is central, the uniqueness of ¢ follows from the fact
that all Lie algebra homomorphisms g* — kerq C 3(g) are trivial because g* is
topologically perfect. [
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Corollary IV.13.  If g is a reqular A-graded locally convex Lie algebra, then its
universal covering Lie algebra g only depends on the pair (A, 0.4), which in turn is
completely determined by the coordinate algebra A and the type of A. If we write
9(A, A) forg, then the assignment

A—g(A A
defines a functor from the category of locally convex algebras determined by the
root system A to the category of locally convex Lie algebras. ]

Corollary IV.14.  Each Lie algebra g(A, A) is centrally closed and in particular
reqular.

Proof.  For the Lie algebra g := g(A, A) we have D = (A, A)°, so that
6% = idp, which trivially is a generalized central extension. Therefore the ex-
plicit description of g in Theorem IV.8 implies that g is its own universal covering
Lie algebra because the universal covering Lie algebra has the same coordinate
algebra A. [ ]

We shall see in Example IV.24 below that there are examples of root graded
Lie algebras for which g is not centrally closed.

Remark IV.15. Let g = (A®ga)®(B®V,)® D be aroot graded locally convex
Banach-Lie algebra. Let D, := im(é6”) C der(A) (the p stands for “projective”),
where the closure is to be taken with respect to the norm topology on der(A) C
B(A). Then Theorem II.15 applies to the natural corestriction §77: A x A — D,
and we obtain a root graded Lie algebra

Pg(AA) = (A®ga)® (BRV,) @ D,

with the coordinate structure (A, D, §77). It is clear from the construction that
the center of the Lie algebra pg(A,.A) is trivial because D, acts faithfully on A.
Moreover, the adjoint representation ad: g — der(g) factors through a continuous
linear map

g — pg(A, A) — der(g),

and it is easy to see that

pg(A, A) = ad(g)

because the natural action of ga on ad(g) directly leads to the structure of a
A-graded Lie algebra on ad(g) with coordinate structure (A, D,, §77).

This implies that for a Banach-Lie algebra g, the Lie algebra ad(g) only de-
pends on A and A, which justifies the notation pg(A, A), the projective Lie algebra
associated to A and A.

The Lie algebra g is now caught in a diagram of the form

§(A, A) g Lpg(A, A)

with morphisms with dense range and central kernel which need not be generalized
central extensions. ]
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IV.3 Lie algebra cocycles on root graded Lie algebras

Proposition IV.16.  Fuvery continuous Lie algebra cocycle on a root graded Lie
algebra g is equivalent to a ga-invariant one.

Proof. As a module of ga, the Lie algebra g decomposes topologically as
g=(A®ga)®(BoV;)® D,
and therefore
IRIZ (gAaRIAN) R(ARA) D (gaR V) @ (AR B) + -+

is the decomposition of g ® g as a ga-module, where A, B and D are considered
as trivial modules. We conclude that for each trivial locally convex ga-module 3
we have

Lin(g ® g,3) = (ga ® ga)" @ Lin(A® A,3) ® (ga ® Vo))" ® Lin(A® B,3) + - - -

Since ga and V; are finite-dimensional, Lin(g ® g, 3) is a locally finite ga-module,
hence semisimple. This property is in particular inherited by the submodule
Z%*(g,3) C Lin(g ® g, 3) of continuous Lie algebra cocycles. Hence the decomposi-
tion into trivial and effective part yields

Z%(9,3) = Z%(9,3)" @ ga-Z%(9.3)-

For the representation p of g on the space C?(g,3) of continuous Lie algebra 2-
cochains we have the Cartan formula

p(r) =iyod+doi,, x€g,

which implies that on 2-cocycles we have p(r).w = d(i,.w) and hence g.Z%(g,3) C
B?(g,3). We conclude that each element of H?(g,3) has a ga-invariant represen-
tative. -

Proposition 1V.17. If g is a reqular A-graded Lie algebra, then the ga-
invariant Lie algebra cocycles w € Z*(g,3)% are in one-to-one correspondence
with the elements of the space Lin({A, A)?.3), where we obtain from w € Z*(g,3)%
= Lin(g, 3)% a function wa on (A, A)? by restricting to the subspace (A, A)? of
g.

The cocycle w is a coboundary if and only if wa can be written as o 65 for
an « € Lin(D, 3), so that

H?(g,3) = Lin({A, A)",3)/ Lin(D, 3) 0 63.
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Proof. If ¢;: g = (g,9) — g is the universal covering Lie algebra, then we
have for each locally convex space 3 a natural isomorphism Z%(g,3) = Lin(g,3)
(Remark II1.7). As ¢q is equivariant with respect to the action of ga, this leads to

Z*(g,3)™ = Lin(g, 3)*
for the invariant Lie algebra cocycles. On the other hand
g=(A®ga) ®(BaV,) ® (A A)°

implies that Lin(g,3)% = Lin((A4,.4)7,3).

If @ € Lin(D,3), then we extend « to a continuous linear map ay: g — 3
by zero on the subspaces A ® ga and B ® V;. Then da(z,y) = o[y, z]) is a
ga-invariant cocycle on g, and the corresponding function (da); on g = (g, g)
satisfies (da); = —a o by which implies that

(da)a = —aobgliams = —aody.

If, conversely, w = da is a ga-invariant coboundary, then the same argument as
in the proof of Proposition IV.16 implies that we may choose « as a ga-invariant
function on g, which means that o vanishes on A® ga and B ® Vj, hence is of the
form discussed above. We conclude that

Lin(D,3) o 6% C Lin((A4,4)%,3)

corresponds to the ga-invariant coboundaries. This completes the proof. ]

The preceding proposition describes the cohomology of g with values in a
trivial module 3 in terms of the coordinate algebra. For the topological homology
space we get

Hy(g) := ker qg & ker 6% C (A, A)?,
which describes Hy(g) completely in terms of the coordinate algebra and D.

Definition IV.18. Motivated by the corresponding concept for associative
algebras with involution (Appendix D), we define the full skew dihedral homology
of A, resp., the pair (A,d4) as

HF(A) :=kerdy C (A, A)7. [

Proposition IV.19.  If g is a reqular A-graded locally convex Lie algebra, then
the centerfree Lie algebra g/3(g) is also A-graded with the same coordinate algebra
and the same universal covering algebra, and

Hy(g/3(9)) = HF(A).

Proof. The first two assertions follow from Corollary IV.2, Proposition 1V.17
and Proposition III.16.
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With respect to the ga-isotypical decomposition of g, we have
3(g)={de D: Va€ A d.a=0},
which implies that

H(g/3(9)) = ker qg50) = a5 ' (3(8)) = 3(8) = ker 6.4 = HF(A). u

Example IV.20. (a) Let A be an associative algebra with involution o, A :=
A%, B := A7 and consider the modified bracket map defined by

ba(zay) = [xay] - [x>y]g = [flj,y] - [ya,ma] = [l',y] + [$U>ya]'
Then b, defines a continuous linear map (A, A)° — A7, and
HDj(A,0) :=kerb, C (A, A)°

is called the first skew-dihedral homology space of (A,o) (see Appendix D for
more information on skew-dihedral homology). The corresponding full dihedral
homology space is

HF(A) =0, (Z(A)) = {z € (A, A)7: ad(b,(x)) = 0}.
(b) If A = A is an associative algebra, B = {0}, and d4(a, b) = ad([a, b]), then
(A, A) = (A A)

with the Lie algebra structure

[<a> b)? <C> d>] = <[av b]’ [67 d])

defined in Example II1.10(2). If ba: (A4, A) — A, (a,b) — [a,b] is the commutator
bracket, then
HC,(A) :=kerby

is the first cyclic homology of A, and in this case the full skew-dihedral homology
space is the full cyclic homology space:

HF(A) =b,'(Z(A)) 2 HC,(A),

where Z(A) is the center of A.
By corestriction of the bracket map by, we obtain a generalized central exten-
sion of locally convex Lie algebras

HC1(A) — (A A) — [A) A].
We also have a generalized central extension of locally convex Lie algebras

HF(A) = (A, A) — [A, A]/(Z(A) N[A A]).
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(c) If A is commutative and associative, then by = 0, so that
HF(A) = HCy(A) = (A, A).

A more direct description of this space can be given as follows. Let M be a lo-
cally convex A-module in the sense that the module structure A x M — M is
continuous. A derivation D: A — M is a continuous linear map with D(ab) =
a.D(b)+0b.D(a) for a,b € A. One can show that for each locally convex commuta-
tive associative algebra there exists a universal differential module Q*(A), which
is endowed with a derivation d: A — Q!(A) which has the universal property that
for each derivation D: A — M there exists a continuous linear module homomor-
phism ¢: QY(A) — M with pod = D (cf. [Ma02]). We consider the quotient
space Q'(A)/dA endowed with the locally convex quotient topology. Then we
have a natural isomorphism

(A, A) — QY(A)/dA, {(a,b) — [a - db). n

Example IV.21. (a) Let n > 4. If g = sl,(A) for a locally convex unital
associative algebra, then Examples IV.10 and the preceding considerations imply
that

(4.5) Ho(sl,(A)) 2 HCL(A)  and  Ha(psl, (A)) = HF(A),

where

psl,(A) := sl (A)/3(s1,(A)) = sl (A)/(Z(A) N [A, A)).

If n = 3, then g is Aj-graded, and we have to consider A as an alternative
algebra. Since A is associative, the left and right multiplications L, and R, on A
commute, so that

L[a,b] - R[a,b] — 3[La, Rb] = ad[a, b].

This implies that (A, A) carries the same Lie algebra structure, regardless of
whether we consider it as an associative or an alternative algebra. We conclude
that (4.5) remains true for n = 3.

For n = 2 the coordinate algebra of sly(A) is the Jordan algebra A = A; with
the product a o b = 2t Let L,(z) = az and R,(z) = za denote the left and
right multiplications in the associative algebra A, and L/(z) = (L, + R,) the
left multiplication in the corresponding Jordan algebra. Then

84,(a,b) = 4[L) L]} = [Ly+ R, Ly + Ry) = [La, L] + [Ra, Ry)
= L[a,b] — R[%b} = ad[a, b].

For g = sly(A) we also have D = [A, A] and

1
§£J(a,b) = §[a, b]
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(Example I1.16(b)). We therefore obtain
Hy(sly(A)) = kerdy — and  Ha(psl,(A)) = HF(Ay).

In the algebraic context, the preceding results have been obtained for n = 2
by Gao (|Gao93]), and for n > 3 by Kassel and Loday (|KL82]).
(b) For g = sp,,,(A, o) (Example 1.7, Example I1.16(c)) the coordinate algebra is
an associative algebra A with involution. For

pspo, (A, o) 1= sy, (A, 0)/3(spa, (A, 7)),

we therefore obtain

H2(p5p2n(A7 U)) = HF(A)
and Hs(sp,,,(A, o)) is isomorphic to the kernel of the map

(A, A = TA A, (a,b) — [a,b] + [a7,b7].

(c) If J is a Jordan algebra, then it follows from the construction in Example
[.9 and our explicit description of the centrally closed A-graded Lie algebras in

this section that T/I\(T((J ) is centrally closed, hence the notation. In the sense of
Corollary IV.13, we could also write TKK(J) = g(Az, J). [

Example IV.22. In general it is not always easy to determine the space HC1(A)
for a concrete commutative locally convex algebra. The following cases are of
particular interest for applications:

(1) QY(A) = {0} for any commutative C*-algebra A (Johnson, 1972; see [BDT73,
Prop. VI.14]).

(2) If M is a connected finite-dimensional smooth manifold and A = C*(M, K)
for K € {R,C}, then A is a Fréchet algebra (a Fréchet space with continuous
algebra multiplication). If Q'(M,K) is the space of smooth K-valued 1-forms on
M, then the differential

d: O°(M,K) — Q'(M,K), f+df
has the universal property, and therefore
QA ="M, K) and HC(A) = QY (M,K)/dC™(M,K)

([Ma02]).

A similar result holds for the locally convex algebra A = C'°(M, K) of smooth
functions with compact support, endowed with the locally convex direct limit
topology with respect to the Fréchet spaces C%° (M, K) of all those functions whose
support is contained in a fixed compact subset K C M. In this case we have
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QA =2Q(M,K) and HC\(A) = QY (M,K)/dCF(M,K)

([Ma02], [Ne02d]).

(3) If M is a complex manifold, then the algebra A := O(M) of C-valued
holomorphic functions is a Fréchet algebra with respect to the topology of uniform
convergence on compact subsets of M. Assume that M can be realized as an open
submanifold of a closed submanifold of some C", i.e., as an open subset of a Stein
manifold. Let Q4 (M) be the space of holomorphic 1-forms on M. Then it is
shown in [NWO03| that the differential

d: O(M) — Qu(M), f v+ df
has the universal property, and therefore
QA =2 QH(M) and HCL(A) = QH(M)/dO(M). ]

Example IV.23. We construct two root graded Lie algebras g; and g, which
are isogenous, non-isomorphic, but have trivial center.

Let A be a locally convex associative unital algebra with A = [A, A] ® K1 and
Z(A) = K1. Then the center of

slh(A) 2 Asl,(K)a[4,4]®1

is trivial.

For the associative Banach algebra By(H) of Hilbert-Schmidt operators on
an infinite-dimensional Hilbert space H we consider the associated unital Banach
algebra A := By(H) + K1. Then

(A, A) = (B:(H), B2(H))

follows from (A, 1) = {0}. If gl,(H) := By(H)[, is the Lie algebra obtained from
By(H) via the commutator bracket, then we have seen in Proposition II1.19 that
al,(H) = (gly(H), gly(H)) = sl(H), and the universal Lie algebra cocycle is the
commutator bracket

wu: 8ly(H) x gly(H) — sl(H).

On the other hand the discussion in Example II1.10(2) shows that the space
(B2(H), Bo(H)) obtained from the associative algebra structure is a quotient of
(gly(H),gly(H)). As the bracket map qgi,m): (9lo(H), glo(H)) — gly(H) is injec-
tive, (By(H), By(H)) must be the quotient by the trivial subspace, and therefore
the bracket map

(Ba(H), Bo(H)) — sl(H), (a,b) — [a,b]

is an isomorphism of Banach spaces.
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Let n > 3. Then the natural morphism
sl (A) =2 (A®sl,(K)) @ (A, A) — sl,(A)

is injective, and hence sl,,(A) has trivial center. As the map sl(H) — By(H) is not
surjective, the two A,,_;-graded Lie algebras sl,,(A) and sl,(A) both have trivial
center but are not isomorphic. ]

Example IV.24. We describe examples of non-regular locally convex root graded
Lie algebras. As in the preceding example, we consider the associative algebra
A = A := K1 + By(H), where H is a K-Hilbert space. Then for each p > 1
the Lie algebra D := gl,(H) of operators of Schatten class p acts continuously
by derivations on A via d.a := [d,a] (Definition III1.18). Moreover, the bracket
defines a continuous bilinear map

P Ax A— D, (a,b)— [a,b]

Applying Theorem II.15 to the A,_;-graded Lie algebra sl,(A) for n > 3, we
obtain an A, _i-graded Lie algebra

g=(A®sl,(K) & D
with the coordinate structure (A, D, 7).

We have seen in Example IV.22 that (A, A) = s[(H), where the bracket map
corresponds to the natural inclusion sl(H) < By(H) < A. Further Proposition
I11.19 shows that the universal covering Lie algebra (D, D) of D is sl(H) for
1 <p<2and glg(H) for p > 2. This determines the Lie algebra (A, A) x (D, D).
The ideal I is generated by the elements of the form

(dA{a,d"), —(d,0"(a,d))) = ([d,[a,d]], —[d, [a,d])), a,a’ € A,de D.
As the subset [D,sl(H)] is dense in s[(H), it follows that
I={(z,—x): x €sl(H)},
which implies that

D= (D,D)
is the universal covering algebra of D.
Now Theorem IV.8 implies that the universal covering algebra g has the coor-

dinate structure (A4, D, 55). For p > 2 the map
52 (A, 4) = si(H) — D

is an inclusion with dense range, but not a generalized central extension, because
there exists no continuous projection g[% (H) — sl(H). Hence g is not regular for
p > 2. Furthermore, g is a Lie algebra of the same type as g, so that we can iterate
the preceding arguments to determine g. Now Proposition II1.19 shows that g is
not centrally closed for 2 < p < oo. For p = oo we have D = (D, D) = D, so
that g is centrally closed. For p = 1 we obtain the Lie algebra g(A,_1, A) which
is centrally closed by Corollary 1V.14. ]
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V Perspectives: Root graded Lie groups

In this section we briefly discuss some aspects of the global Lie theory of root
graded Lie algebras, namely root graded Lie groups.

An infinite-dimensional Lie group G is a manifold modeled on a locally convex
space g which carries a group structure for which the multiplication and the
inversion map are smooth ([Mi83], [Gl01a], [Ne02b]). The space of left invariant
vector fields on G is closed under the Lie bracket of vector fields, hence inherits
a Lie algebra structure. Identifying elements of the tangent space g := T1(G) of
G in the identity 1 with left invariant vector fields, we obtain on g the structure
of a locally convex Lie algebra L(G). That the so obtained Lie bracket on g is
continuous follows most easily from the observation that if we consider the group
multiplication in local coordinates, where the identity element 1 € G corresponds
to 0 € g, then the first two terms of its Taylor expansion are given by

rxy=x+y+blz,y)+ -,

where the quadratic term b: g X g — g is bilinear with

[Qi,y] = b(il?,y) - b(y,ﬁ?)

We call a locally convex Lie algebra g integrable if there exists a Lie group G
with L(G) = g. A Lie group G is said to be A-graded if its Lie algebra L(G) is
A-graded. The question when a root graded Lie algebra g is integrable can be
quite difficult.

According to Lie’s Third Theorem, every finite-dimensional Lie algebra is in-
tegrable, but this is no longer true for infinite-dimensional locally convex Lie
algebras. If g is a Banach—Lie algebra, then the Lie algebra g/3(g) always is inte-
grable. Let PG(g) denote a corresponding connected Lie group. Then there is a
natural homomorphism of abelian groups, called the period homomorphism

per,: mo(PG(g)) — 3(9),

and g is integrable if and only if the image of per, is discrete. For general locally
convex Lie algebras the situation is more complicated, but if ¢: g — g = L(G) is
a central extension with a sequentially complete locally convex space 3 as kernel
and a continuous linear section, then there is a period homomorphism

per: m(G) — 3,

and the existence of a Lie group G with L(@) = g depends on the discreteness
of the image of per (|[Ne02a], [Ne03a|). For finite-dimensional groups these ob-
structions are vacuous because 7, (G) always vanishes by a theorem of E. Cartan

([Mim95, Th. 3.7]).
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For the class of root graded Banach—Lie algebras the situation can be described
very well by period maps. In this case the Lie algebra g is integrable if and only
if the image of per, is discrete. As the universal covering g of g also is a universal
covering of g/3(g) = g/3(g) (Remark II1.15), we obtain a similar criterion for the
integrability of g via a period map

perg: m2(PG(g)) — 3(g) = HF'(A),

where A is the coordinate algebra of g and HF(A) is its full skew-dihedral ho-
mology. If g; is a quotient of g by a central subspace and g is integrable, then g;
is integrable if and only if the period map

perg, : m2(PG(g)) — 3(g1)

obtained by composing per; with the natural map 3(g) — 3(g1) has discrete image.

For general locally convex root graded Lie algebras which are not Banach-
Lie algebras the situation is less clear, but there are many important classes of
locally convex root graded Lie algebras, to which many results from the Banach
context can be extended, namely the Lie algebras related to matrix algebras over
continuous inverse algebras. A unital continuous inverse algebra (CIA) is a unital
locally convex algebra A for which the unit group A* is open and the inversion
is a continuous map A* — A,a +— a!. Typical associated root graded Lie
algebras are the A, _j-graded Lie algebra sl,(A), and for a commutative CIA the
Lie algebras of the type g = A ® ga (cf. [GI01b]). Further examples are the Lie
algebras sp,, (A, o) and o, ,(A, o) discussed in Section I. For Jordan algebras the
situation is more complicated, but in this context there also is a natural concept
of a continuous inverse Jordan algebra, which is studied in [BNO03], and can be
applied to show that certain related Lie algebras are integrable.

Both classes lead to interesting questions in non-commutative geometry be-
cause for a sequentially complete CIA the discreteness of the image of the period
map for sl,(A) follows from the discreteness of the image of a natural homomor-
phism

P K3(A) — HC,(A) = Hy(sl,(A)),

where K3(A) := lim 75(GL,(A)) is the third topological K-group of the algebra
A. If, in addition, A is complex, Bott periodicity implies that

K3(A) = Ky(A) = lim mo(GL,(A)),
and the latter group is much better accessible. In particular, we get a period map
Pl K\ (A) — HC.(A).

One can show that this homomorphism is uniquely determined as a natural trans-
formation between the functors K; and HCY, which permits us to evaluate it for
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many concrete CIAs (|[Ne03a]). If P, has discrete image, then sl,(A) is integrable,
but the converse is not clear and might even be false. Nevertheless, one can con-
struct certain Fréchet CIAs which are quantum tori of dimension three, for which
the Lie algebra sl,(A) is not integrable. For the details of these constructions we
refer to [Ne03al.

There is also a purely algebraic approach to groups corresponding to root
graded Lie algebras. Here we associate to a root graded Lie algebra g the corre-

sponding projective group

PG™8(g) := (e™9: o € A) C Aut(g).
As each derivation adz, © € g,, of g is nilpotent, the operator ¢*? is a well-
defined automorphism of g (cf. [Ti66], [Ze94]). The group PG¥8(g) can easily
seen to be perfect, so that it has a universal covering group (a universal central
extension) (N}alg(g). Let PG(g) be a Lie group with Lie algebra g/3(g). There are
many interesting problems associated with these groups:

(1) Describe @alg(g) by generators and relations.
(2) Show that PG(g) is a topologically perfect group. When is it perfect?

(3) Suppose that G(g) is a Lie group with Lie algebra g. Describe the kernel of
the universal covering G(g) — PG(g) in terms of the coordinate algebra.

(4) Ts there a homomorphism PG™%(g) — PG(g)?

(5) Is there a homomorphism éalg(g) — G(g)?

It is an interesting project to clarify the precise relation between the Lie the-
oretic (analytic) approach to root graded groups and the algebraic one.

Appendix A. Some generalities on representations

In this section we collect some material on finite-dimensional representations of
reductive Lie algebras, which is used in Sections II and III of this paper. All
results in this appendix are valid over any field K of characteristic zero.

Let v be a finite-dimensional split reductive Lie algebra over the field K of
characteristic zero and h C v a splitting Cartan subalgebra. We fix a positive
system A™ of roots of v with respect to h and write L()) for the simple t-module
of highest weight A € h* with respect to AT. We write Z := Z(U(t)) for the center
of the enveloping algebra U(t) of . Recall that for each highest weight module
V' we have End,(V) = K1 because the highest weight space is one-dimensional
and cyclic. Therefore Z acts by scalar multiples of the identity on L(\), and
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we obtain for each A an algebra homomorphism y,: Z — K, the corresponding
central character.

The following theorem permits us to see immediately that certain modules are
locally finite. We call an v-module an h-weight module if it is the direct sum of the
common h-eigenspaces. An h-weight module V' of a split reductive Lie algebra ¢
is called integrable if for each z, € t, the operator ad z,, is locally nilpotent.

Theorem A.1.  For an h-weight module V' of the finite-dimensional split re-
ductive Lie algebra v with splitting Cartan subalgebra &y the following assertions

hold:

(1) If V is integrable, then V is locally finite and semisimple.
(2) Ifsupp(V) :={a € bh*: V, #{0}} is finite, then V is integrable.

Proof. (1) Let V' be an integrable t-module and A := {ay,...,a,}. Then

t=hBr,, ®... D1,

so that the Poincaré-Birkhoff-Witt Theorem implies
Ur) = U(H)U(va,) - Ulra,,)-

Since V' is integrable, it is by definition a locally finite module for each of the
one-dimensional Lie algebras t,, € A. Hence for each vector v € V we see
inductively that the space

Ul(ta,) - Ulta,,)v

is finite-dimensional for j = m,m — 1,...,1, and finally that U(t).v is finite-
dimensional. Therefore V' is a locally finite t-module.

Let FF C V be a finite-dimensional submodule. Since F' is a weight module, it
is a direct sum of the common eigenspaces for 3(t) C b, which are v-submodules.
According to Weyl’s Theorem, these common eigenspaces are semisimple modules
of the semisimple Lie algebra v’ := [t, t], hence also of v = v/ 4 3(t). Therefore F' is
a sum of simple submodules, and the same conclusion holds for the locally finite
module V. As a sum of simple submodules, the module V' is semisimple (|La93,
XVII, §2|).

(2) If supp(V) is finite, then z,.Vz C Vi, for § € supp(V) and o € A imply that
the root vectors x, act as locally nilpotent operators on V. [

The preceding theorem is a special case of a much deeper theorem on Kac—
Moody algebras. According to the Kac—Peterson Theorem, each integrable module
in category O is semisimple (|[MP95, Th. 6.5.1]). This implies in particular that
integrable modules of finite-dimensional split reductive Lie algebras are semisim-
ple.
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Proposition A.2. Let V' be an bh-weight module of v for which supp(V) is
finite. Then the following assertions hold:

(1) V is a semisimple t-module with finitely many isotypic components Vi, ..., V.

(2) The simple submodules of V' are finite-dimensional highest weight modules

LN, - L.

(3) For each j € {1,...,n} there exists a central element z; in U(ga) with
X (%) = 0. In particular, z; acts on'V as the projection onto the isotypic
component V.

Proof. (1), (2) First Theorem A.1l implies that V' is semisimple. Moreover,
each simple submodule is a finite-dimensional weight module, hence isomorphic
to some L(A). As supp(V) is finite, there are only finitely many possibilities for
the highest weights .
(3) According to Harish-Chandra’s Theorem ([Dix74, Prop. 7.4.7]), for A\, u € h*
we have
NA=Xu & ptpeW.(A+p),

where W is the Weyl group of (v,h) and p = 1> ca+ . If L(X) and L(u) are
finite-dimensional, then A and p are dominant integral. Therefore A+ p and pu—+ p
are dominant, so that p+p € W.(A+p) implies A = p. Hence two non-isomorphic
finite-dimensional highest weight modules L(\) and L(u) have different central
characters.

This proves that the central characters x,,,..., Xy, corresponding to the iso-
typic components of V' are pairwise different. As the kernel of a character is a
hyperplane ideal, this means that for ¢ # j we have

ker x», + ker x», = Z.
Now the Chinese Remainder Theorem (|La93, Th. I1.2.1]) implies that the map

X:Z—= K"z (o (2), - x00(2))

is surjective. Finally (3) follows with z; := x7(e;), where ey, ..., e, € K" are the
standard basis vectors. ]

For the following lemma, we recall the definition of Lie algebra cohomology
from [We95].

Lemma A.3. Ifs is a finite-dimensional semisimple Lie algebra and V' a locally
finite s-module, then

HP(s,V)={0} for p=1,2.
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Proof. As V is a direct sum of finite-dimensional modules V;, j € J, the
relations

CP(s, V)= EPCP(s,V;) easily lead to  HP(s,V) = H"(s,V)),
jeJ jed
so that the assertion follows from the Whitehead Lemmas (|[We95, Cor. 7.8.10/12]),
saying that HP(s,V;) vanishes for each j and p =1, 2. [

Proposition A.4.  Let s be a semisimple finite-dimensional Lie algebra s.

(1) Each extension Z — M—25M of a locally finite s-module M by a trivial
module Z s trivial.

2) Fach extension M — M-z of a trivial s-module Z by a locally finite s-
module M 1is trivial.

Proof. (1)If M is locally finite, then Weyl’s Theorem implies that it is semisim-
ple, and therefore that the extension of M by Z splits. Hence it suffices to show
that M is locally finite. Let v € M. We have to show that v generates a finite-
dimensional submodule. Since the s-submodule of M generated by ¢(v) is finite-
dimensional, we may replace M by this module and hence assume that M is
finite-dimensional. Now

Ext(M, Z) = H' (s, Hom(M, Z))
([We95, Ex. 7.4.5]), and Hom(M, Z) = M* ® Z is a locally finite module, so that
H(s, Hom(M, Z)) {0}

(Lemma A.3). Therefore the module extension splits, and in particular M is
locally finite.

(2) First we show that M is locally finite. Let v € M. To see that v generates
a finite-dimensional submodule, we may assume that Z is one-dimensional. Then
Hom(Z, M) = M is a locally finite s-module, and the same argument as in (1)
above implies that the extension M — Z is trivial. In particular, we conclude
that M is locally finite.

Returning to the general situation, we obtain from Weyl’s Theorem that the
locally finite module M is semisimple, hence in particular that M = g. M & M?.
As Z is trivial, we have g.M C M, so that each subspace of M?® complementing
M N M® yields a module complement to M. ]

Appendix B. Jordan algebras and alternative alge-
bras

In this appendix we collect some elementary results on Jordan algebras.
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Jordan algebras

Definition B.1. A finite dimensional vector space J over a field K is said to
be a Jordan algebra if it is endowed with a bilinear map J x J — J, (x,y) — xy
satisfying:

(JA1) xy = yz.

(Ja2) z(2%y) = 2%(vy), where 2% := zz. ]

In this section J denotes a Jordan algebra and (a,b) — L(a)b := ab = ba the
multiplication of J. Then (JA2) means that

[L(a),L(a*)] =0 forall acJ

Proposition B.2.  For a Jordan algebra J over a field K with {2,3} C K* the
following assertions hold for x,y,z € J.

(1) [L(x), L(y2)] + [L(y), L(z2)] + [L(2), L(zy)] = 0.

() L(x(yz) —y(xz)) = [[L(x), L(y)], L(2)].

Proof. Passing to the first derivative of (JA2) with respect to  in the direction
of z leads to

2(2?y) + 2x((x2)y) = 2(xz)(xy) + 2% (2y)

for z,y,z € J. Passing again to the derivative with respect to z in the direction
of u leads to

2((wu)y) + u((@2)y) + 2((uz)y) = (uz)(ey) + (22)(uy) + (2u) (z9)
for w,z,y, > € J. This means that
(L(2), L{zw)] + [L(u), L(z2)] + [L(z), L(uz)] = 0,
or, by interpreting each term as a function of u,
L{wy)L(2) + L(z0)L(y) + L(yz)L(z) = L(z)L(y)L{z) + L((z2)y) + L{x)L(y)L(2).
Note that the expression
L{ay)L(z) + L(z2)L(y) + L(y=)L(z)

is invariant under any permutation of z,y, 2. By exchanging z and y and sub-
tracting, we therefore obtain

[L(z), L)), L(2)] = L((zy)x) = L((z2)y) = L(2(y2) — y(xz)).
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Corollary B.3.
[L(J), L(J)] Cder(J) :={D € End(J): (Vz,y € J)D.(zy) = (D.x)y + z(D.y)}.

Proof.  This means that for z,y € J the operator D := [L(x), L(y)] is a
derivation of J, which in turn means that

[D,L(z)] = L(D.z), z¢€J.

This is a reformulation of Proposition B.2(2). [

Jordan algebras associated to bilinear forms

Lemma B.4. Let A be a commutative associative algebra, B an A-module and
B: Bx B — A a symmetric bilinear form which is invariant in the sense that

af(b, b)) = B(ab,b') = B(b,ab’), a€ Abb € B.
Then A := A® B is a Jordan algebra with respect to
(a,0)(a’, V') := (aad" + B(b,b'),al’ + a'b).
Proof. First we note that
L(a,0)(d',b") = (ad',ab’) and  L(0,b)(a’, V') = (5(b,b),a’d).

The set L(A,0) C End(.A) is commutative because A is a commutative algebra.
Further

L(0,b)L(a,0)(a’, V') = (B(b,ab’), aa’b) = L(a,0)L(0,b)(da’, )

implies that L(A,0) commutes with L(0, B), so that L(A,0) is central in the
subspace L(A) of End(A).

It is clear that A is commutative. To see that it is a Jordan algebra, we have
to verify that each L(a,b) commutes with

L((a,b)?) = L(a® + B(b, b), 2ab).

As L(A,0) is central in L(A), it suffices to show that L(0,b) commutes with
L(0, ab), which follows from

L(0,0)L(0,ab)(x,y) = L(0,b)(B(ab,y),xab) = (B(b, xab), B(ab,y)b)
= (6(33()7 (lb),ﬁ(b, y)a’b) L( @ )( (ba y),l‘b)
= L(0,ab)L(0,b)(z,y).
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Alternative algebras

Lemma B.5. Let A be a (non-associative) algebra. For a,b,c € A we define the
associator

(a,b,c) :== (ab)c — a(be).
Then the associator is an alternating function if and only if for a,b € A we have
(B.1) a’b = a(ab) and ab® = (ab)b.
Proof. First we assume that the associator is alternating. Then
a’b — a(ab) = (a,a,b) =0 and ab® — (ab)b = —(a,b,b) = 0.
Suppose, conversely, that (B.1) is satisfied. The derivative of the function
fo(a) := a*c — a(ac)
in the direction of b is given by
df.(a)(b) = (ab+ ba)c — b(ac) — a(be),

which leads to the identity

(a,b,c) = (ab)c — a(bc) = b(ac) — (ba)c = —(b, a, c).
We likewise obtain from a(c?) = (ac)c the identity

(a,b,c) = (ab)c — a(bc) = a(chb) — (ac)b = —(a, ¢, b).
As the group Sj is generated by the transpositions (12) and (23), the associator
is an alternating function. ]

We call an algebra A alternative if the conditions from Lemma B.5 are satisfied.
For L,(b) := ab =: Ry(a) this means that
L?=L, and Rp=R;.

Theorem B.6. (Artin) An algebra is alternative if every subalgebra generated
by two elements is associative.

Proof. Inview of (B.1), the algebra A is alternative if any pair (a, b) of elements
generates an associative subalgebra. For the converse we refer to [Sch66, Th. 3.1|.m

Lemma B.7. FEach alternative algebra is a Jordan algebra with respect to aob :=
+(ab + ba).
Proof. Let L/(b) :=aob, L,(b) = ab and R,(b) := ba. Since A is alternative,
we have

0= (a,b,a) = (ab)a — a(ba)
which means that [L,, R,] = 0. Therefore the associative subalgebra of End(A)

generated by L, and R, is commutative. Since L/ = %(La + R,) commutes with

Ll =4(Le + Re) = §(L2 + R2),

(A, o) is a Jordan algebra. [
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Appendix C. Jordan triple systems

The natural bridge between Lie algebras and Jordan algebras is formed by Jordan
triple systems. In this appendix we briefly recall how this bridge works. We are
using this correspondence in particular in Section III to see that for each A;-graded
Lie algebra the coordinate algebra is a Jordan algebra.

Definition C.1. (a) A finite dimensional vector space V over a field K is

said to be a Jordan triple system (JTS) if it is endowed with a trilinear map

{}: VxV xV —V satistying:

(JT1) {JJ, Y Z} = {Za Y ZC}

J12) {a,b,{z,y,2}} = {{a,b,z},y, 2z} — {x,{b,a,y}, 2} + {z,y,{a,b, 2}} for all
a,b,r,y,zeV.

For z,y € V we define the operator 0y by (z0y).z := {x,y, z} and put P(z)(y) :=

{z,y,z}. Then (JT2) is equivalent to

(JT2) [alb, 200y) = ((a0b).z) Oy — 20( (b0a).y).

It follows in particular that the subspace VOV C Endg (V) spanned by the ele-
ments z[y is a Lie algebra. This Lie algebra is denoted istt(V') and called the
inner structure algebra of V.

If 2 € K%, then (JT1) implies that the trilinear map {-,-,-} can be recon-
structed from the quadratic maps P(x) via polarization of P(x).y = {x,y,z}, i.e.,
by taking derivatives w.r.t. x in the direction of z. Therefore the Jordan triple
structure is completely determined by the maps P(x), z € V. [ ]

Lemma C.2. [f3 € K* and (V,{-,-,-}) is a Jordan triple system, then the
following formulas hold for x,y,z € V:

() Plx){y =, 2} = {P(x).y,z, v} = {z,y, P(x).2}.
() P(x)(yUzr) = («Dy) P(z).

®) [P(z)P(y),z0y] = 0.

Proof. (1) From the Jordan triple identity

x0yA{a,b, c} = {z0y.a,b,c} — {a,yOzx.b,c} + {a, b, z0y.c}
we derive

{z,y,{a, 2,23} = {{zy2h 22 — A2 {y,x, 2}, 2} +{x, 2, {z,y, 2}}
= 2{z,y, 2}, 2,2} — {z, {y, 2,2}, 2}
= 2{ux,y,{z,z,2}} — 2{z,{y,x, 2}, 2} + 2{{x, 2, 2}, y, x}
—{z.{y, 2, 2}, z}
= Mz, y,{z,z,2}} — 3{x,{y,z, 2}, z}.
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This implies
3{1‘, y7 {'CC’ Z) ‘/'E}} - 3{1.7 {y’ :L‘7 Z}? x})
so that 3 € K* leads to

{z,y,{z,z,2}} = {z,{y,z, 2}, 2}

This proves that the first and third term are equal. The equality of the first and
the second term now follows from (JT1).

(2) follows directly from (1).

(3) is an immediate consequence of (2). [

Theorem C.3. (a) If g = g1 ® go ® g_1 s a 3-graded Lie algebra with an
involutive automorphism T satisfying 7(g;) = g—; for j = 0,%1, then V := gy is
a Jordan triple system with respect to {x,y, z} := [[Jc, 7.9, z}.

(b) If, conversely, V' is a Jordan triple system for which there ezists an involution
o on iste(V) with o(addb) = —b0a for a,b € V, then g :=V xiste(V) x V is a
Lie algebra with respect to the bracket

[(a,x,d),(d,2',d")] = (v.d' — 2'.a,a0d — d'0d + [x,2],0(x).d — o(2).d)

and 7(a, b, c) := (¢,o(b),a) is an involutive automorphism of g.

Proof.  (a) Since g is graded, we have [g;,81] = {0}, and this implies that
ladz,ady] = 0 for x,y € g1, hence (JT1). To verify (JT2), we first observe that
aldb = ad[a, 7.b]. We have

[a,7.0),e,7.d]] = [[la,7.b],c],7.d] + [, [[a, 7.b], 7.d]]
= |lla,78],d,md] + |e,7[[ra,0],d]]
= |lla, 7], d, 7d| = [e,7.[[b,7.a], d]].
Therefore (JT2) follows from
[ab,c0d] = ad [[a, 7.b], [c, 7.d]| = ad [[[a, 78], ¢], 7.d| — ad [¢, 7.[[b, 7], d]]
= (aOb).cOd — cO(b0a).d.

(b) One observes directly that 7 is an involution preserving the bracket. It is clear
that the bracket is skew symmetric, so that

I(x,y,2) = [[,9), 2] + [y 2], 2] + [[z,2), 9]

is an alternating trilinear function on g. We have to show that J vanishes.
Let g1 :=V x {(0,0)}, go = {0} x iste(V) x {0}, and g_; := {(0,0)} x V. It
is easy to check that J(z,y,z) = 0 if all entries are contained either in gy + g1
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orin go + g—1. We identify z € V with (z,0,0) and write Z = (0,0, z) for the
corresponding element of g_;. Then we may assume that the first entry is x € g,
and the second one is y € g_;. For z € V = g; we then obtain

J(l’,g, Z) = [[ga Z],l’} + “(II,@],Z} = (x[]y)z - (ZDy)I = {l’,y, Z} - {Z,y,l’} =0.

If z € g1, the assertion follows from 7.J(x,7,2) = J(7.z, 7.9, 7.2) = 0. Finally,
let z € go. We may assume that z = alJb. Then (JT2) implies that [z, 2z0y] =
[z, )0y + 200 (2).y. This leads to

J@,§,2) = |[§:2)a] + [[z2,9] + [[z.9], ]
= —llo(2)y)s 2] + [z.2, 9] + [20y, 2]
= z0(0(2).y) + (z.2)dy — [z,20y] = 0.

We conclude this section with the connection between Jordan algebras and
Jordan triple systems.

Theorem C.4.  Suppose that 2,3 € K*.
(a) If J is a Jordan algebra, then J is a Jordan triple system with respect to

(C1) Ax,y,2} = (vy)z +2(yz) —y(zz), e, 20y= L(zy) + [L(x), L(y)],

where we write L(x)y := zy for the left multiplications in J.
(b) If V is a JTS and a € V, then

vy = {z,a,y}

defines on V' the structure of a Jordan algebra. The Jordan triple structure deter-
mined by the Jordan product -, is given by

{z,y,2}a = {x,{a,y,a},z} = {x, P(a).y, z}.

It coincides with the original one if P(a) = 1.
(c) Let J be a Jordan algebra which we endow with the Jordan triple structure
from (a). If e € J is an identity element, then x -,y = xy reconstructs the Jordan
algebra structure from the Jordan triple structure.
Proof. (a) From (JA1) it immediately follows that (C.1) satisfies (JT1). The
proof of (JT2) requires Lemma B.2.

In view of Corollary B.3, D := [L(z), L(y)] is a derivation of J, so that

DAa,b,c} ={D.a,b,c} +{a, D.b,c} +{a,b, D.c}.

Therefore (C.1) shows that to prove (JT2), it suffices to show that for each x € J
we have

L(z).{a,b,c} = {L(x).a,b,c} —{a, L(x).b,c} + {a,b, L(x).c},
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ie.,

L(z).(adb) = (xa)0b — a(xb) + (aJb) L(x),

which in turn means that

L(z)L(ab) + L(x)[L(a), L(b)] = L((za)b) + [L(za), L(b)] = L(a(bx))
—[L(a), L(xb)] + L(ab) L(x) + [L(a), L(b)] L(x),

[L(x), L(ab)[+[L(a), L(xb)]+[L(b), L(ax)] = [[L(a), L(b)], L(z)]+L((xa)b)—L(a(bx)).

This identity follows from Lemma B.2, because both sides of this equation vanish
separately.

(b) Put zy := z -, y, so that L(z) = z0a. The identity (JA1) follows directly
from (JT1). To verify (JA2), we observe that

L(Q?Q).y = {{l‘, a, x},a, y} = {y7a> {xch?x}}
= {{y,a,x},a,x}—{x, {a,y,a},x}+{x,a, {y,a,x}}
= 2(z0a)®y — P(x)P(a).y.

Therefore Lemma C.2(3) implies
[L(z?), L(z)] = [2(x0a)* — P(z)P(a),20a] = [x0a, P(x)P(a)] = 0.

The quadratic operator P*(x) associated to the Jordan triple structure defined
by -, in the sense of (a) is given by

P*(z) = 2L(x)* — L(z?) = 2(20a)* - (2(x0a)? — P(x)P(a)) = P(x)P(a).
Therefore the Jordan triple structure associated to -, is given by {z,y,z}, =

{z,P(a).y, z}.
(c) is trivial. [

Example C.5. (Jordan triple systems associated to a quadratic form) Let A
be a commutative algebra with 2 € A* and M an A-module. A quadratic form
q: M — A is a map for which the map

MxM— A (z,y)— qz,y) = ;(q(a: +y) —q(x) —q(y))

is A-bilinear. Note that ¢(z,z) = ¢(z).
In the following we assume that 2 € A*. We claim that

{7y, 2} = —q(z,y)z — q(z,y)x + q(z, 2)y



Locally convex root graded Lie algebras 115

defines on M the structure of an A-Jordan triple system. In fact, in Lemma
B.4 we have seen that J(M) := A @ M is a Jordan algebra with respect to the
multiplication

(a,m)(a’,m") = (ad’ — q(m,m’),am’ + a'm).

For the corresponding Jordan triple structure we have

{m,m',m"} = (mOm").m” = (mm")m" + m(m'm") — m/(mm")

_ _q(m’ m/>m// B q(m/’m//)m + q(m’ m//)m/’
so that, with respect to the Jordan triple structure defined above, M is a sub-
Jordan triple system of the Jordan algebra J(M).

Note that the operators x[y satisfy
q((z0y).m,m") = q(—q(z,y)m — q(m,y)x + q(x,m)y, m’)
= —q(z,y)q(m,m") — q(m,y)q(z,m’) + q(xz, m)q(y,m")
= q(m,—q(z,y)m' — q(z,m")y + q(y, m")z) = q(m, (yOx).m").

This implies that the operators x[Jy belong to the conformal linear Lie algebra of
the quadratic module (M, q):

{X € Ends(M): (3N € A)g(X.m,m') + q(m, X.m') = A\g(m, m’)}.
We can also view J(M) as an A-module, and consider the quadratic form
defined by the bilinear form
q((a,m), (', m")) = ad’ = g(m,m’) = pa((a,m)(da’, m")),
where pa: J(M) — A is the projection onto the A-component. Then ¢ is an
A-invariant symmetric bilinear form because the Jordan multiplication on J(M)

is A-bilinear and commutative. This process can be continued inductively and
leads to a sequence of quadratic modules

(M,Q), (A@M7QA@_Q)7 (A2€BM7QA@_(]A@(]>,
(A% qa® —qu) ® (ADM,qa® —q) ...,

where we write ga(a) = a® for a € A. This means that two steps of this process
produce a direct factor which is a hyperbolic A-plane (A% ga & —qa).

For m € M, considered as a Jordan triple system, the operator P(m) is given
by
P<m>x = {m7 z, m} = _Q(mv x)m_Q(mv x)m+Q(m> m)x = Q(m7 m)$—2q(m, x)m
If g(m,m) € A*, then
q(m, x)
q(m,m)
is the orthogonal reflection in the A-submodule m* of M, which implies that
P(m) is invertible. [

g(m,m)*P(m).x =z — 2 m
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Appendix D. Skew dihedral homology

In this section we briefly recall the definition of skew dihedral homology of associa-
tive algebras, which is the background for the definition of the full skew-dihedral
homology spaces defined in Section IV.

Definition D.1.  Let A be a unital associative algebra and C,(A) := A®"+D
the (n 4 1)-fold tensor product of A with itself. We define a boundary operator

by: Cp(A) — C,_1(A) for neN
and by: Cy(A) — {0} by
bp(apg ® ... ® ay)

n—1

= Y (-Diapy®a ® - ® it @ @ ay + (1) a0 @ a1 @ -+ @ a,_1.
=0

Then b,,b, 1 = 0 for each n € Ny, and the corresponding homology spaces H H,(.A)
are called the Hochschild homology of A. ]

Of particular interest for Lie algebras is the first Hochschild homology group
HH,(A). The map b;: C1(A) = A® A — Cy(A) = Ais given by
hi(z ®y) = zy —yz = [z,y],
so that Z;(A) = kerb C ('(A) is the kernel of the bracket map. The space B;(A)
of boundaries is spanned by elements of the type
h(rRyRz)=2yR®z—rQYz+ 22 QY.
Note in particular that by(r ® 1 ® 1) =2z ® 1, so that A® 1 C By(A).

Definition D.2.  Let (A, o) be an associative algebra with involution o: A —
A,a — a?. Then we obtain a natural action of the dihedral group D,,; on the
space Cp,(A) as follows. We present D, 1 as the group generated by x,, and y,
subject to the relations

-1

n+1
Ty n o

=y2=1 and vyr.y,' =2
and define the action of x, and y, on C,(A) by
To(ag® ... ®ay) = (—1)"a, ®ag® ... a1

and

(a0 ® ... @ay) =—(—1)"2 a®a’®a’_,...®aaj.
These operators are compatible with the boundary operators in the sense that
the operators b, induce on the spaces C’ (A) of coinvariants for the D, -action
boundary operators
b Cr(A) = Gy (A).
The corresponding homology is called the skew-dihedral homology HD! (A, o) of
the algebra with involution (A, o) (cf. [Lo98, 10.5.4; Th. 5.2.8|). n
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In the present paper we only need the space HD](A, o). We observe that
r1.(ag®ar1) = —a1 ®ag and  yi.(ap ® a1) = ag ® af.
Writing the image of ap ® a; in C7(.A) as (a,b), this means that
(ag,ar) = —(ay,a0) = (ag,af), ag,a; € A.
It follows in particular that (A7, A7) = {0}, and further that
Cr(A) 2 A*(A%) & A (A7),
Moreover,

b5({ao, a1, az))

= (apay, az) — (ag, a1as) + (asag, a1) = {(apas, az) + (a1as, ap) + (asap, a1),

and these elements span the space Bj(A) C C7(A) of skew-dihedral 1-boundaries.
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Spectral synthesis for orbits of compact groups

in the dual of certain generalized £'-algebras

Detlev Poguntke

Abstract

Our objects of study are generalized £!-algebras L£}(K,Q), where K
is a closed normal subgroup of the compact group L, and @ is a commu-
tative Banach algebra whose Gelfand space is a transitive L—space. The
main result tells that L-orbits in the dual of £}(K, Q) are sets of synthe-
sis, i.e., there is a unique closed two-sided ideal in £'(K, Q) whose hull
coincides with a given L—orbit. Also the empty set is a set of synthesis,
which means that each proper closed two—sided ideal is contained in the
kernel of an irreducible involutive representation. To this end, L-fixed pro-
jections in L£'(K,Q) are constructed. Such projections are also useful in
other circumstances.

Introduction

The notion of sets of synthesis (or Wiener sets) is best known in the case of
LY(G), G a locally compact abelian group. In this case the (Gelfand) structure
space L'(G)" of the commutative Banach algebra £!(G) can be identified with the
Pontryagin dual G*. With each closed ideal Z in £!(G), one can associate a closed
subset of G, namely the hull A(Z) := {x € G" | kerzi(¢y x D Z}. A closed subset
A of G" is called a set of synthesis if there is only one closed ideal Z in £!(G) with
h(Z) = A. In this case T is necessarily equal to the kernel k(A) := (N, 4 kerzi ) x
of A. For some results on sets of synthesis in the case of abelian groups compare
[13, 14].

Usually, the kernel is defined in the equivalent way: k(A) = {f € £LY(G) | f =
0 on A}. We have chosen the above formulation, because then all the introduced
notions generalize immediately to arbitrary Banach algebras, as soon as one agrees
on the structure space to be considered. In the present article we study algebras
of the following type:

Let K be as closed normal subgroup of a compact group L, and let ) be a
symmetric semi-simple involutive commutative Banach algebra. Symmetry means
in the commutative case that w(¢*) = w(q) for all ¢ € @ and all w in the Gelfand
space Q" i.e., for all multiplicative linear functionals w : Q — C. Suppose that
L acts strongly continuously (from the right) on @) with the usual properties:

121
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Ag+7)" ="+ (ar)" = 4", (") = (d")", "™ = ()™
I¢°ll = |lqll, and L > ¢ — ¢* € @ is continuous. Then L acts on Q", ({w)(q) =
w(q%), and we suppose that this action is transitive. These assumptions are re-
tained throughout the article.
Now one can form our object of study, the generalized L£'-algebra £L!(K,Q),
compare [7], multiplication and involution being given by

(Frg)@) = [ flab)”gv )b
fl@) = sty
forae K, f,g € LYK,Q). L(K,Q) carries a natural L-action,
[a) = f(Lat™)

satisfying the usual properties (as written above for the pair (L, Q)).

As structure space of L1( K, Q) we take the collection Priv, £}(K, Q) of kernels
of all irreducible involutive representations of £!(K, Q) in Hilbert spaces equipped
with the Jacobson topology. This space carries a natural L—-action. Our main goal
is to show that L—orbits are sets of synthesis. En passant, we also prove that the
empty set is a set of synthesis (sometimes called Wiener property, see [8, 10]), i.e.,
each proper closed ideal in £'(K, Q) is contained in the kernel of an involutive
irreducible representation, that there exist operators of finite rank in the image of
irreducible representations, and that Priv,£!(K, Q) coincides with Priv £}( K, Q),
the collection of primitive ideals in £1(K, Q).

The proofs are more or less exercises in representation theory of compact
groups, based on the existence of the Haar measure, particularly on the following
easy, but useful lemma, whose proof is omitted.

Lemma 0.1. Let + : E — F be a bounded linear dense injection of Banach
spaces. Suppose that a compact group G acts continuously on E and F by linear
isometries, and that v intertwines the action. If either all G—isotypical components
i E orin F are finite—dimensional then v induces an isomorphism of each of the
components and, as a consequence, an isomorphism from the collection E©) of
G finite vectors onto F\@). Moreover, E(©) resp. F'©) is dense in E resp. F.

1 The C*—hull and the irreducible involutive rep-
resentations of L'(K, Q)

Let us fix a base point w € @". Then Q" can be identified with the space L/L,
of cosets, where, of course, L, denotes the stabilizer of w; for x € L we denote
by [z] = x L, the corresponding coset. The Gelfand transform can be identified
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with an injective map G : Q — C(L/L,); it is L—equivariant if ¢ € L acts on
¢ € C(L/L,) via ¢*([z]) = ¢([fz]). The map G induces an injective morphism of
involutive Banach algebras.

(1.1) LNK,Q) — LYK,C(L/L,)).

Each involutive representation 7 of £!(K, Q) is given by a covariance pair (7', "),
7’ being a continuous unitary representation of K, 7" an involutive representation

of Q:
(12 w(£)€ = [ (@) (f(a))éda

for f € LK, Q).

As 7" extends to a representation of C(L/L,), so does m, i.e., the C*~hull
of LYK, Q) is the C*~transformation algebra C*(K,C(L/L,). We obtain three
dense continuous inclusions

(1.3) LYK, Q) — LMK,C(L/L,)) — C*(K,C(L/Ly))
i
C(K x L/L,)

where C(K x L/L,) is equipped with the uniform norm. The compact group
G := L x (K x K) with multiplication law

(1.4) (0, k1, ko) (t, a1, a0) = (Ct,t Ryt ag, [~ kot ay)
acts on all these four spaces, on L}(K, Q) via

gfl
(15) U(ﬁ,kl,k2>f: <€k1*f*€k2—1) R
where

(1.6) (ex* f)(a) = f(kta), (f xex)(a) = flak "k for a,k € K, f € LYK, Q),
on LYK,C(L/L,)) via

(1.7) (0(C, by, ko)) (a, [2]) = @ (ki 0 alky, [y 0 ]

for ¢ € LY(K,C(L/L,)), a € K, [x] € L/L,,.

The action on C(K x L/L,) is obtained by restriction, the action on C*(K,
C(L/L,)) by functoriality, but it is not explicitly needed. By its very construction
all three inclusions are G—-invariant.

Sometimes the isomorphic copy G’ = (K x K) x L of G is also useful, where
the multiplication is given by (ki, ks, £)(a1,as,t) = (kilal™ kol axl™ (). Via
the canonical isomorphism

(18) 0: G, — G,é(l{il, k27€) = <€7 g_lk'lg, g_lkég)
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one obtains representations ¢’ of G’ in the above four spaces, for instance
(1.9) o' (ky, ko, O)pla, [2]) = o (€ 'k akal, [0 5 a))

for p € C(K x L/Ly).

If we restrict ¢’ to the subgroup H' := K x L = (K x {e}) x L < G’ we
just get the left regular representation of H' in C(H'/L, = K x L/L,), whose
H'—isotypical components are finite-dimensional. We conclude that the isotypical
components of o in C(K x L/L,) are finite-dimensional as well. The Lemma in
the introduction tells us:

Proposition 1.10. All the G—isotypical components in the four spaces LK, Q),
LYK,C(L/L,), C(K x L/L,), C*(K,C(L/L,) are finite-dimensional. In fact,
they coincide as well as the collections of G—finite vectors, which are dense in the
respective spaces.

For later use we define here the group H := L x K = L x (K x {e}) < &
which is isomorphic to H' via

(1.11) v H — H, y(k,0) = 07k L).

The group L acts on involutive representations 7 of L'(K,Q) (or of C*(K,
C(L/L,)) via

(1.12) (m)(f) = n(f) =m(a(O)(f)).

For a continuous irreducible unitary representation o of K, = L,NK in V, we
define an irreducible involutive representation m, of C*(K,C(L/L,,) in the Hilbert
space

(1.13) $a =Ly (K, Vo) :={¢: K — V, | £ is measurable,
_ —1 2
¢(ka) = a(a)'€(k) for a € Ko, k € K, and /K/Kw € (R)|[2dk < oo}

by the covariance pair (7, 7”)

) o

(ma(k)§)(a) = &(k~'a)
(ra(¥)§)(a) = 2([a])é(a).

In particular, for ¢ € C(K x L/L,) and & € 9, the vector m,(p)¢ is given by
(1.14) (ra(@)E)®) = [ oy, [y WDE D)dy.

If 7 is any irreducible representation of C*(K,C(L/L,) given by the covariance
pair (7', 7”) then 7" is supported by a K—orbit in L/L, as K\L/L, is Hausdorff.
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For a suitable ¢ € L, (¢7)” is supported by the K—orbit through the origin, i.e.,
¢m may be considered as a representation of C*(K,C(K/K,)). Such algebras,
actually in much higher generality, were studied in [5]. In particular, we know
that C*(K,C(K/K,)) is liminal, and that ¢ is equivalent to one of the above 7.
Therefore, we have

1.15. Each irreducible involutive representation of C*(K,C(L/L,)) is equivalent
to one of the collection {m,, 0 € Lya € K/;. Moreover, ({my)(C*(K,C(L/Ly)) is
equal to algebra KC($,) of compact operators on $),,.

Next, we investigate, which of those representations are equivalent. If ¢y, ~
lomg then 7z ~ €3 0 m,. If follows that their restrictions to C(L/L,) (i.e., their
second components considered as covariance pairs) must be carried by the same
K-orbit which means (50, € L,K. Write 3¢, = ok with k € K and ¢, € L,,.
As kmy ~ T4 because kmo(f) = 7o (fF) = maler—1 x fxex) = 7l (k7w (f)m (k),

«
compare (1.6), we find that fym, ~ mg. Further, it is easy so see:

1.16. For {y € L, one has lymy ~ g if and only if locv ~ B (as representations
of K,,, (loa)(b) = a(lybly) for b e K,,).

Also for later use we write down an intertwining operator explicitly. If U :
V., — Vj is a unitary operator with Ua(fy'bly) = B(b)U for all b € K, then
define U : $H, — Hp by

(1.17) U'E) (k) = UG ) | € K.
These arguments work also the other way around, and we conclude:

1.18. ¢y, ~ lymg means that 62_161 can be written in the form Ez_lﬁl = lok with
k€ K and ¢y € L, satisfying loaw ~ [3.

In view of this observation we choose an indexed set of representatives of the
L,-orbits in K/}, i.e., we take a collection «;, j € J, of concrete continuous
irreducible unitary representations of K, in V; with the following properties.

1.19. Each continuous irreducible unitary representation of K, is equivalent to
lo for some j € J, L € L,,. If laj ~ Uy, for 0" € L, and j,j" € J then j = j'.

With those representations o; we construct as above the representations m; :=

Ta, of C*(K,C(L/L,)) or of LYK, Q) in §; := $Hq,. Our discussion shows:

Proposition 1.20. Each of the irreducible involutive representations of L'(K, Q)
is equivalent to one of the form {m;, ¢ € L, 5 € J. For {1,lo € L andi,j € J the
condition l1; ~ lam; is equivalent to i = j and l;'0, € LK, where L7 denotes
the stabilizer of aj in L. (L’ is of finite index in L,.) In other words, the set
LYK, Q)" of equivalence classes is a disjoint union of the L-orbits Lw;, j € J,
and the L-stabilizer of m; is /K.
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Remark 1.21. This description can be used to write down all the members of
Priv, LYK, Q), however, it is not clear at present that inequivalent representations
yield different kernels. But they do as we shall see later.

Remark 1.22. The description of L'(K,Q)" given in (1.20) is the one we are
going to use in the sequel. A little more canonical is the following one, also
suggested by the above discussion. The group U, := L, K acts from the left on
K[: For lyk, by € Ly, k € K and o € K[} the element o/ = ok - v € K[} is given
by o/ (v) = a(ly'vly). And Y, acts also from the left on L by right translations:
w-z=xu"' forx €L, uel, Thus, h, acts on L x K\. By (1.15), there is a
surjection L x K, — LY (K, Q)", and by (1.16) the fibers of this map are exactly
the i, —orbits. Moreover, the L—action on LY(K,Q)" corresponds to translation
on L x K/ in the first variable. Clearly, the space of ,—orbits in L x K/, can be
identified with the disjoint union U;c, L/L’K in an obvious manner, respecting
the L—action.

2 The kernel operators for the representations /7,
a surjectivity theorem

Many questions in harmonic analysis depend on an appropriate description of the
image of the Fourier transform; this principle applies also to non—commutative
situations. We shall write down the kernel functions which give the operators
(¢m;)(¢p) of the previous section, and shall prove a surjectivity theorem describing
the image ({7;)(¢), £ € L, ¢ € C(K x L/L,). Using G-equivariance we shall
obtain a result for C(K x L/L,)¢) = LY(K,Q)®.

Given 7, {, ¢ as above, we recall, (1.7), (1.14), that (¢m;)(¢) in B($;) is given
by

[(6m;) ()€l (b) = [Wj(@eza(ﬁ_l)w)ﬁ](b):/Kso(ﬁyﬁ_l,[ﬂy_lb])é(y_lb)dy

= Joetere N (e = [ (Bp)(E.b e(c)de,

where R;p: L x K x K — B(V;) is defined by

(2.1) (Bip)(b,0) = [ o(ths™e e [0c])ay(s) ds.

Clearly, the functions R;p are continuous, but they share also three covariance
properties, which are most easily expressed by viewing R as a function on
G = L x (K x K). To this end, we choose intertwining operators between (a;
and a;, { € L7:

2.2. Let X;(0), ¢ € L7, be a unitary operator on V; satisfying o;(¢~'r ) =
X;(0) o (r)X;(0) for all T € K,,.
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For later use we remark:

2.3. For each ly € L7 there ewists a function ¢ defined in a neighborhood of £y in
L7 with values in T such that ¢(ly) =1 and £ — c¢(£)X;(€) is continuous on this
neighborhood.

To see (2.3) define F(¢), ¢ € L7, by F({) = [ a;(x)X;(lo)(Loy)(x) tda €
B(V;). Clearly, F is continuous, and F'({y) = X;({y). For ¢ sufficiently close
to fy the operator F(¢) is invertible (or, equivalently, different from 0 as it is
an intertwining operator). Then F'(¢) = ||F(¢)||"'*F({) is unitary, F’ is still
continuous, and F'(¢) = ¢(¢)X;({) for suitable numbers ¢(¢) € T.

O

2.4. The B(V;)-valued function R;jp on G satisfies: (R;p)(tk,b,c) = (R;jo)(t, kb, kc)
for all (t,b,c) € G, all k € K or, equivalently,

(1) (Rip)(g7) = Rjp(g)

forallge G, allz € A :={(k 'k, k) | k € K}. Observe that A is a subgroup of
G.

(i) (Rj)(g(€,1,1)) = X;(0)" Rjeo(g) X;(£)
forallge G, L e L.
(ii) (Rj)(g(1,u,v)) = a;(u) " (Rj)(g)a(v)

forall g € G and u,v € K,.

Denote the space of all continuous B(V;)-valued functions on G satisfying (i),
(ii), (iii) by Ca,1.xc.. 10, (G5 B(Vj)).

All these properties are easy to check as well as

2.5. For all z,9 € G one has R;(c(g9)¢)(x) = (1;(9)R;jp)(z), where T;(g) on
Ca.ni k. 1, (G, B(V;)) is just left translation, i.e., (7;(9)®)(z) = ®(g ).

Property (i) of (2.4) implies that the members ® of Ca 1 i, k., (G, B(V;)) are
completely determined by their restrictions p(®) to H = Lx K = Lx (K x{1}) <
G, in other words,

2.6. p is an isomorphism from Ca 1; k., k., (G, B(V;)) onto the space Cr; x,(H, B(V}))
of all continuous functions A : H — B(V;) satisfying

(a) A(h(€,1)) = X;(€)"*A(h)X;(¢) for allh € H, L € LY.
(b) A(h(1,u)) = a;(u)"*A(h) for allh € H, u € K,,.
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To transform this space into a space of functions on H' = K x L along the
canonical isomorphism 7 : H' — H, see (1.11), we first note:

2.7. The subgroup M’ := K, x L’ of H' has a canonical continuous (irreducible)
representation (3; in the space B(V;) given by

By, L)~ (A) = X;(bo) o () T AX; (by)
for A e B(Vj).

2.8. v induces an isomorphism 7,5 (A)(k, ) = A(l, 071k 0), from Cri i, (H, B(V}))
onto the space Cpri(H', B(V;)) of all continuous functions ¥ : H' — B(V;) satis-
fying

U (h(z, o)) = Bj(x, Lo) T (R)

for allh € H', (x,4y) € M.

These easy, but a little confusing changes of viewpoints simplify the proof of
the following surjectivity theorem. In fact, they are not absolutely necessary, but
they shed some light on the structure of the elements in Ca 1i i, k., (G, B(V})).

Theorem 2.9. Given j € J and ® € Ca ik, x,(G,B(V;)) there exists ¢ €
C(K x L/L,) satisfying Rjo = ® and Ryp =0 for alli € J, i # j.

Proof. By what we have seen above, it is enough to find ¢ with (3o p)(®
p)(Rjp) and (Yop)(R;p) = 0fori € J, i # j. For short we put U = (Jop)
choose an orthonormal basis vy, . .., v, of V;, and identify, for fixed h = (k,
the operator ¥(h) with an n x n-matrix,

) = (
(®). W
0) e H’

for 1 <t <n. B
In terms of this basis we construct explicitly a function ¢ on K, such that
Tk, ¥(u)aj(uw)du = ¥(h), namely

(2.10) Y(h;u) ==n zn: (o (u) vg, v, )W (h)s, for u € K,.
s,r=1

The orthogonality relations, see e.g. [4, p. 278|, readily imply

(2.11) W(h) = / D (h; w)ey (uw)du.

w

Indeed, as (c;(u)"'vs, v,) is the entry in the matrix corresponding to a;(u)™!

at position r, s, the sum Y7 (a;(u) s, v,) ¥(h)s, is nothing but the entry in the
matrix corresponding to «;(u) "W (k) at position r, r.
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But «;(u)"*W(h) = ¥(h(u, 1)), hence

(2.12) Y(h;u) = nTr¥(h(u,1)).

In particular, the function K, 3 u r—>~@Z(h(u’1, 1);u) is constant for all h € H'.
From (2.8) and (2.12) it follows that ¥(h(1,£);1) = (h;1) for all h € H', all
¢ € L7. Therefore,

(2.13) ok, [t) = Y Ok, tl;1)

LeL,, /LI

is a function on K x L/L,, and we claim that this ¢ has the desired properties.
At a point (b,t) € H' = K x L one finds for an i € J:

(7o p)(Rip)] (b,1) = / p(btst™, [t])ou(s)ds

w

- ¥ /Kwdszz((b,t)(s,ﬁ);1)ozi(s)ds.

LeLy, /LI

We introduce artificially another integration

G050 1) = [ dusp((b, 1) (5, O(u",1); ).
As (5,0)(u™1) = (s Cu~'71 0), with the new integration variable s’ = s fu='(~! €
K, one gets

[(Fop)(Rip)](b,1) = > /w ds |, du (b, )(s, 0); w)as(s)ai (Cul ™).

LeL,, /L

If i # j, then the representation ¢~'a;, ¢ € L, is not equivalent to «;, hence
by the construction of ¢, (2.10), and the orthogonality relations the integral
Jx, du Y(h;u) (€ o) (u) vanishes for all h € H'. Therefore, (5 o p)(Ryp) is equal
to zero.

If + = 5, for the same reason the above integral over u vanishes if ¢ is outside
L’. Thus, we obtain

(Y 0 p)(R;©)] (b, 1) :/ ds |~ dud((0,1)(s, 1); u)ay(s)a(w).

Ko Ko

The integration over u can be carried out using (2.11),
o p(RiDI(b:1) = [ dsay(s)W((b,1)(s, 1),

But the integrand is constant, hence [(FYop)(R;9)](b,t) = W(b,t) = [(Fop)(P)](b, 1)
as desired. O
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Corollary 2.14. Given j € J, for each G-finite kernel function ® € Ca 1 k. k.
(G, B(V})) there exists a G—finite function f € LYK, Q) such that the operator
() (f) = m;(fY) is given by the kernel ®(¢, —,—), and that ({m;)(f) = 0 for all
tel,ielJ, i#].

Proof. First of all, by (2.9) there exists an ¢ € C(K x L/L,), considered as a
subspace of L'(K,C(L/L,)), with the corresponding properties as stated in the
Corollary. As the map Il;c;R; : C(K x L/L,) — Ic;Ca ik, x,(G,B(V;)) is
injective (“uniqueness of the Fourier transform”) and G—equivariant, the function
¢ has necessarily to be G-finite, whence it is “contained” in L£'(K,Q)@, see

(1.10). 0

Corollary 2.15. Ifi,j € J and l1,{5 € L have the property that {17; is not equiv-
alent to lym; then there exists a (G—finite) f € LYK, Q) such that (¢1m;)(f) =0,
but (Cemj)(f) # 0. In view of (1.20), see also (1.21), this means that the canon-
ical map from the set of equivalence classes of irreducible involutive represen-
tions of LY(K, Q) onto Priv,LY(K,Q) is a bijection. Thus, a parametrization of
Priv. L (K, Q) is obtained.

Proof. 1fi # j, then, in view of Corollary 0.1, one only has to note the evident fact
that there is a G-finite vector ® € Ca 1i i, k., (G, B(V})) with ®(ls, —, —) # 0.
Ifi = j, then (;'¢; & LK by (1.20). Choose ® € Ca 1 x, k., (G, B(V;))(@ such
that ®(fy, —, —) # 0. Next choose a representative function p in R(G /LI K x (K x
K)), i.e., a G-finite function which is constant on L’ K x (K x K )—cosets, such that
w(ly,1,,1) = 1, but u(fy,1,1) = 0. This can be done because ({1,1,1)(L'K x
(K x K)) # (s, ,1)(IZK x (K x K)). Then u® € Carix.,x.,(G,BV;) &
satisfies (u®)(le, —, —) # 0, but (u®)(¢,—,—) = 0. By (2.14) there exists f €
L'(K, Q) such that the operator (¢7;)(f) is represented by the kernel function
(N(I))(€>_a_)' u

Corollary 2.16. The L-orbits in Priv, L' (K, Q) are open and closed with respect
to the Jacobson topology.

Proof. Any L-orbit is of the form Q; := {ker {7, | ¢ € L} for a certain j € J. To
show that €2; is open, take the kernel of Q) := {ker{m; |i € J, i # j', £ € L}, i.e.,
T ={f e LNK,Q) | (tm)(f) =0 forall L€ L,icJ, i#j}

Then, by definition, the hull of 7} is closed, and h(Z}) contains ;. On the
other hand, for any ¢ € L, by (2.14) there exists f € 77 such that ({7;)(f) # 0,
which implies that h(Z}) = €}, whence €2; is open.

To show that €2, is closed, take the kernel of Q;, i.e., Z; := {f € L}(K,Q) |
(¢m;)(f) = 0 for all £ € L}. Clearly, the closed set h(Z;) contains €2;. On the
other hand, if ¢ € L, i € J, i # j, then by (2.14) there exists f € L}(K, Q) such
that (¢m;)(f) # 0, but ({'m;)(f) = 0 for all ¢ € L. This means that f € Z;, and
ker {m; & h(Z;), whence Q; = h(Z;) is closed. O
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Remark 2.17. We did not claim anything on the internal (Jacobson) topology
of the various L-orbits in Priv,LY(K,Q). Presumably, if one assumes that Q
1s reqular, i.e., the Gelfand topology coincides with the Jacobson topology on the
structure space Q, then those orbits carry their natural topology, which would im-
ply that Priv, LY (K, Q) is homeomorphic to Priv,C*(K,C(L/L,)), i.e., LYK, Q)
is x—reqular in the sense of [1], where originally this class of groups/algebras was
denoted by [¥]. But I must admit that I did not study this circle of questions seri-
ously. Certainly G—finite functions are too algebraic in nature in order to separate
arbitrary closed sets in Priv.C*(K,C(L/L,)) from points.

The consideration in this section can also be used to “compute” the C*—hull
of L}(K,Q), which is the same as the C*~hull of £'(K,C(L/L,)). Given j € J
and chosen intertwining operators X;(¢), ¢ € L7, as in (2.2), we define unitary
operators Y;(¢) on §;, compare (1.17), by

(2.18) (Y;(0€) (k) = X;(0)&(¢ ke)
for te L, k € K, £ € §; satisfying

(em;)(f) = m;(f°) = Y;(0)"m; (f)Y;(0)
for f € LY(K,Q) or in C*(K,C(L/Ly,)).

Using these operators we define a space of continuous functions from L into
the algebra IC($);) of compact operators on $); as follows.

2.19. Crix (L, K($;)) consists of all continuous functions T : L — K($);) satisfy-
mg
Te) =
T(k) =

(Y T)Y;() for ¢ € L7, and
(k) T(0)m(k) for k € K.

L

Observe that each Y;(¢') normalizes 7}(K). Each ® € Ca 1k, x, (G, B(V}))
yields an element Tg € Crix (L, K(9;)) via

(2:20) (T3(0)8) (@) = [ @(C.0,D)E0)D

forae K, &€ =L3% (K,V;).
As a matter of fact, if ® = R;p, ¢ € C(K x L/L,,), one has

(2.21) Tryp(£) = (£m;) ().
There is an action v; of the group G = L x (K x K) on Cprix (L, K($;)) given by

(2.22) (i (L ke, ko) T) () = (¢ )T () (kg 070
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for (¢,k1, k) € G, ' € L.
The map ® — Ty of (2.20) is G-equivariant, i.e.,
(223) T.,-,(g)cp = I/j(g)Tq;..

J

Furthermore, it is a matter of routine to check that this map is in fact dense
(and injective) if both spaces are equipped with the uniform norm.
By means of (2.9) we conclude that the map

(2.24) C(K x L/L,) 3> ¢+ Tr,p € Cri (L, K(%;))

has a dense image. Moreover, this map is multiplicative, if the multiplication
in Crix (L,K($;)) is defined pointwise, and if C(K x L/L,) is considered as a
subalgebra of the crossed product £'(K,C(L/L)).

Finally, we define the space (C*—algebra) D consisting of all functions
on J x L such that the value ¢(j, /) is contained in K($),), in fact ¢(j,—) €
Crix(L,K($;)), and that ¢ vanishes at infinity, i.e., for all ¢ > 0 there exists a
finite subset J. C J such that

(2.25) 100, Ollices,) <eforall e L,jeJ\ Je.

On D, a norm is defined by

[Pl = s 10 Ollies,)-

J)eT x

The operations on D are defined pointwise, in particular the multiplication.
The previous discussion and (2.9) imply:

Proposition 2.26. The map C(K x L/L,) 3 ¢ —— ¢ € D,9(j,£) = Tr (),
extends to an isomorphism from C*(K,C(L/L,)) onto D. O

Using once more the Lemma of the introduction, resp. its consequence (1.10)
we obtain:

Corollary 2.27. The map LY(K,Q) 2 f — ¢ € D, ¢¥(j,0) = ({m;)(f), yields an
isomorphism from L'(K, Q)% onto DY), where the action of G on the various
pieces Crix (L, KC($);)) of D is given in (2.22). O

3 Invariant projectors of finite rank, applications
to the ideal theory in £L(K, Q)

The first purpose of this section is to show that each (¢7;)(L(K,Q)) contains
projectors of finite rank, in fact realized by L-invariant functions. Further, we
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show that Priv,L'(K, Q) = PrivL! (K, Q), that L'(K, Q) has the Wiener property,
and that L—orbits are sets of synthesis.

A basic ingredient of the proofs is the fact that a certain subgroup of the
unitary group 4();), j € J, is actually compact.

It is easy to check that for any j € J the subset

(3.1) W =A{tY;(O)mi(k) | teT (e L ke K}

of the unitary group $($);) is a subgroup, in fact, the Y;(¢) normalize 7}(K), as
we observed earlier.

Lemma 3.2. 4; is compact w.r.t. the strong operator topology.

Proof. Let a sequence (or net) t,Y;(¢,)m;(k,) be given. W.l.o.g. we may assume
that (¢,) converges to ¢y, and that (k,) converges to ky. Choosing, as in (2.3),
a function ¢ on a neighborhood of ¢,, with values in T, one can arrange that
0 — c()Y;(¢) is (locally) continuous w.r.t. the strong operator topology.

As t,Y;(0,)mi(kn) = (c(bn) ') e(€,)Y;(n);(ky), passing once more to a sub-
net we can get that (c(¢,)~'t,) converges in T to ty. But then the subnet converges
to toY;(lo)m;j (ko). O

As a further application of (2.14) (and of the previous lemma which shows
that §); decomposes into an orthogonal sum of finite-dimensional il;~invariant
subspaces) we obtain the following theorem.

Theorem 3.3. Given j € J for each U;—invariant finite-dimensional subspace
5 of 9, there exists an L-fized G—finite vector p = p;5 in LYK, Q) such that
(¢mj)(p) = ;(p) is the orthogonal projection on §, and ({m;)(p) =0 for all € € L,
i€ J, i 7. Moreover, p* =p and pxp = p.

Proof. Denote by p : $; — $; the orthogonal projection onto §. From the ;-
invariance of § it follows that the constant map L 5 ¢ —— p € K(9;) is contained
in Crix(L,K(9;)). Hence the function v, on J x L given by

(3.4) Up(i,€) = dijp

is contained in the C*-algebra D. Actually, 9, is a G-finite vector. The details
of the proof of this statement are left to the reader. We just remark the following
crucial fact. Define a representation of K in § by restricting 7, i.e.,

(3.5) 7j(k) = m;(k)

ke K.
5

Then there is a subgroup Lz of L of finite index such that ¢7; is unitarily equiv-
alent to 7; for all £ € L.

Corollary (2.27) delivers a (unique) element p in £'(K, Q) with (¢7;)(p) =
Pp(i,0) forall i € J, ¢ € L. ]
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Retaining the previous notations, we consider the corner 1, D, in D, which
clearly can be identified with

(3.6) CLix(L,K($;)) NC(L,B(§)) =: Crix (L, B(J)),

i.e., with the space of all continuous functions L — B(F) satisfying the transfor-
mation properties w.r.t. LYK analogous to (2.19); of course, 7T;» has to be replaced
by 77']‘ .

All the irreducible representations of Cr;x (L, B(F)) are given by evaluation at
points ¢ € L, in particular, they live in §, and Cprix (L, B(F))" can be identified
with L/LIK.

The map

(37)  p* LUK Q)xp > fr— ((+— ((m;)(f)) € Crix(L, B(§)) = v, Dty

yields a dense embedding of p* L'(K, Q) *p into the C*~algebra ¢)pD1),. Further,
this map is L-equivariant if we let L act on Cprix (L, B(F)) by left translations. In
particular, the L—finite vectors in the two spaces coincide. We are going to show
that the map of (3.7) is actually the C*—completion of p* L}(K, Q) *p. The proof
of this rests on the fact that

(3.8) LYK,Q) is symmetric

as a “compact extension” of the symmetric algebra @ by |9, Theorem 1|. Here
a few words on symmetric Banach algebras are in order, for more information
see [2, 11, 14]. (There are also more recent contributions, for instance by Pték,
but we do not need these results.) In [11] such algebras are called completely
symmetric, in [2] hermitean. An involutive Banach algebra A is called symmetric
if for all @ € A the spectrum of a*a is contained in [0,00). By the theorem
of Shirali-Ford, see |2, p. 226], this is equivalent to the fact that all hermitean
elements, i.e., a* = a, have a real spectrum. The latter property is evidently
conserved by adding a unit to the algebra. This observation is here important
because we wish to use some results of [11], which were there only formulated for
algebras with unit. Also we note that closed involutive subalgebras of symmetric
algebras are symmetric (the spectra of hermitean elements in the subalgebra can
be “computed” by means of |2, Prop. 14, p. 25|. In particular, the subalgebra
px LYK, Q) *p of LYK, Q) is symmetric.

Proposition 3.9. The C*~hull of p * LK, Q) xp is ¥, D, = Crig (L, B(F)).

Proof. We have to show that each irreducible involutive representation 6 of p
LYK,Q) * p in some Hilbert space & can be lifted along the map of (3.7). By
the symmetry of £'(K, Q) the representation 6 can be extended to an irreducible
involutive representation p of £L'(K, Q) in some Hilbert space $ D &, compare [11,
Thm. 1, p. 311, Ch. V, §23|, i.e., restricting u to px L (K, Q) *p and £ yields the
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original 6. By (1.20) there exist ¢ € J and ¢ € L such that $ = §; and p = ;.
Since (¢m;)(p * LYK, Q) *p) = 0 for i # j, we have to have i = j. Moreover, &
is contained in § = ({7;)(p). As (¢r;)(LN(K,Q)) is dense in K($;), we conclude
that (¢m;)(p x LYK, Q) * p) = p(r;) (LYK, Q))p, which may be considered as a
subspace of B(F), has in fact to coincide with B(F). It follows that & = §, and
0 = Eﬂ-j|p*£1(K,Q)*p,& which clearly implies what we had to show. O

The construction of the element p can be made more explicit in terms of kernel
functions. Actually, the following considerations will be a little more general giving
the kernel functions for all elements in Cprir (L, B(§)) (still j and § are fixed).

For k € K define B(k) : § — V; by B(k)§ = &(k). This map is well-
defined as § consists of continuous functions, because § is finite—dimensional and
invariant under 7’(K’). The latter invariance and the transformation property of
the members of 9, = L3 (K, V) yield

(3.10) B(ku) = a;(u) ' B(k), B(ak) = B(k)7j(a)™"

forall a,k € K, u € K.
In particular, the operator B(k) depends continuously on k € K.
Moreover, the invariance of § under Y;(¢),¢ € L7, leads to

(3.11) B(7'k0) = X, () B(k)Y;(0), ¢ € L.

For the definition of Y;(¢) see (2.18).
With the family B(k) of operators we also have their adjoints B(k)* : V; — §,
and it is easy to check that the projection p : $; — § may be written as

(3.12) pE= [ BOEW)dE

This means that p is given by the kernel function

(3.13) F(a,b) = B(a)B(b)*,a,b € K.

The above transformation laws for B imply

(3.14) F(ka,kb) = F(a,b), F({" al,07'b0) = X;()*F(a,b)X;(¢)

for a,bk € K, { € L/,

From (3.14) it follows that the function ® : G — B(V}) defined by ®(¢, a,b) =
F(a,b) is contained in Cn 1 i, k., (G, B(V})), see (2.4). Thus, the function ® yields
Y, € Crik(L, B(F)), which is nothing but the constant function with value Idg,
and we are looking for ¢ € C(K x L/L,) with R;jp = ®. More generally, we take
any A € Crix(L,B(F)), and form @4 : G — B(V;),

(3.15) O4(¢,a,b) = B(a)A(0)B(b)".
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The operator given by this kernel, i.e., & — (a — [k, ®(¢,a,b)§(b)dD) is
just A(¢). By a straightforward computation it follows from (3.10), (3.11) and
the definition of Crix (L, B(V})), see (3.6), that ®4 € Ca ik, k. (G, B(V})). Of
course, in general ®4 is not a G—finite vector; it is if the left L—translates of A
are sitting in a finite—dimensional subspace, as it happens for instance in the case
A = Idg, which corresponds to the projector t,. To find a p4 € C(K x L/L,)
with Rjp4 = ®4 we use the recipe of (2.10) — (2.13). Again, for short we define
U : H — B(V;) by

U= (F0p)(®),V(k,l) =Dl kt,1) = BU kO A)B(1)",

and get
(3.16) walk,[t]) = Z nTrW(k,tl)
teL, /LI
= Y. aTr(BU ' ktO)A(XL)B(1)"),
€L, /LI

where n = dim V.

In particular, if p’ € £L'(K,C(L/L,)) denotes the element corresponding to
p € L1(K,Q), then p’ is a continuous function on K x L/L, given by p'(k, [t]) =
e, ri ' Tr(B(0"'t7kt£)B(1)*). Our previous discussion yields the following
result.

Proposition 3.17. The subalgebra p' « LY(K,C(L/L,)) *p" is equal to p' x C(K x
L/L,)*p" and isomorphic to the C*—algebra Cr;x (L, B(F)). O

Next, we are going to show that Priv, L'(K,Q) = Priv LK, Q), where
Priv £1(K, Q) denotes the collection of primitive ideals in £!(K, Q). Recall that
for any (complex) algebra A a primitive ideal is, by definition, the annihilator of
a simple left A-module E. Simple means that A¢ = E for all non—zero € F;
for a little more information on this notion see for instance the first pages of [12].

It is a general fact for symmetric Banach algebras A that Priv A is contained
in Priv, A, because each simple module E can be “unitarized”, see [11, Cor. 1,
p. 307], i.e., there exists an irreducible involutive representation 7 in some Hilbert
space and a non—zero A-intertwining operator F — ), necessarily with dense
image, which implies that the annihilator of E is equal to ker 7.

On the other hand, if 7 is an irreducible involutive representation of an in-
volutive Banach algebra A in $ such that m(.4) contains at least one non—zero
operator of finite rank, then one may form the two-sided ideal Z, := {a € A |
7(a) is of finite rank }; and, according to the arguments of [3, Théoréme 2|, the
(dense) subspace ' :=Z,$ of 9 is a simple A-module, whose annihilator equals
ker 7.

Since the above assumptions are met by L£!(K,Q) we obtain the following
proposition. For this, it is not necessary to use the above constructed L—-invariant
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projections, because in fact all G—finite vectors in £'(K, Q) yield finite rank op-
erators when represented irreducibly.

Proposition 3.18. Priv (K, Q) = Priv, L(K, Q). O

3.19. For each i € J we choose and fix a U;—invariant, for the definition of Ll;
see (3.2), finite—dimensional subspace §; of $;, to which we find p; € LYK, Q)
according to (3.3).

Next, we prove the Wiener property of £!(K, Q); for more information on this
notion see [8, 10].

Theorem 3.20. If T is a proper closed two-sided ideal in L'(K,Q) then there
exist { € L and j € J such that T is contained in ker 1k g) ;.

Proof. For short, put A := L(K, Q). Suppose to the contrary that for any ¢, j the
image (¢r;)(Z) is non-zero. Then the closure of (¢7;)(Z) in K($;) is a non-trivial
ideal, hence equal to ().

For any i € J, fixed for the moment, consider the (closed) ideal p; x Z *x p;, =
INp;x Axp;in A; :=p; x Axp;. For any ¢ € L the image ({m;)(p; * Z = p;) is
dense in B(g§;), hence equal to B(F;). In particular, there exists g, € p; * Z * p;
with (¢m;)(ge) = Id3,;fe :== g * go has the same properties.

By continuity there exists a neighborhood W of ¢ such that ((¢'m;)(fe)€,&) >
% < & &> forall € €3, ¢ € W, Using the compactness of L we find a finite
cover (W, )i<u<m of L and positive elements f, in p; * T *p; with ((¢m;)(f.)€, &) >
% <&, &> forall § €Fi, £ €W, Theelement f:=37", f, € p;*xZL xp; has the
property that

(3.21) ((tm)(f)E, &) > ; <& &> forallle L€ €.

We claim that f is invertible in the algebra A; with unit p,. Suppose to the
contrary that 0 is in the spectrum of f. Then 0 is in the left and in the right
spectrum of f as (A;f)* = f*A; = fA;, f being hermitean. By [11, Ch. V|,
§23, p. 311, V] there exist an irreducible involutive representation 6 of A; in
some Hilbert space &, and a non—zero n € K with 6(f)n = 0. Observe that
A; is symmetric as a closed involutive subalgebra of A. Above, (3.7) and (3.9),
we computed the irreducible representations of A;. Hence, we may suppose that
R =5 and 0 ={m, ; for some ¢ € L. The equation 0(f)n = 0 contradicts
(3.21).

Since f € p;*Z*p; is invertible in A; it follows that p; € Z (for all i € J), hence
P ={>ics A*p;x A}~ CZ. The image of the two—sided ideal P in the C*~hull
C*(A) = C*(K,C(L/L,)) is dense, because there are no (irreducible) involutive
representations annihilating P (all C*—algebras have the Wiener property). Again,
by (1.10) and the Lemma in the introduction, observe that P is G-invariant,
P = C*(K,C(L, L)@ = A, But A is dense in A, whence A = P =
7. O]
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The proof that L—orbits are sets of synthesis follows the same trail.

Theorem 3.22. Let Z be a closed two—sided ideal in A = LYK, Q). Suppose that
the hull h(T), i.e., h(Z) := {P € Priv.A | P D I}, is equal to {kerslm; | ¢ € L}
for a certain j € J. Then T = Ny, ker 4 ;.

Proof. Clearly, 7 is contained in (N, ker 4 €7;. Fix, for the moment, i € J, i # j.
By the definition of h(Z), for each ¢ € L there exists g € Z with (¢m;)(g) # 0.
Again, consider the ideal p; * Z xp; =Z Np; x A*p; in A; = p; * A x p;.

As above one finds an element f € p; * Z * p; with ((¢m;)(f)E,€) > 2 <&, >
forall ¢ € L, £ € §;, from which one concludes again that f is invertible in A;,
whence p; € 7.

Therefore, the G—-invariant ideal P := {Zii]_ A *p; x A} is contained in 7.
Consider the closure P’ of the image of P in C*(A) = C*(K,C(L/L,)), which is

also G—invariant, and invariant under the involution. Since all closed subsets of
the primitive spectrum of any C*—algebra are “sets of synthesis” we conclude that

P = ﬂ kercs(4) £m;.

lel

We have the dense G—equivariant injections

P — P and
() kerybn;, — P

el

Again, by (1.10) and the Lemma in the introduction, the collections of their
respective G—finite vectors coincide. In particular, P& = {,c; ker4 Eﬂj}(G). But
{Neer ker 4 ﬁﬂj}(G) is dense in Nyep ker 4 ¢m;, whence P = Nyep kerqfn; CZ. O

For illustration and later applications we consider the special case that L is a
direct product L = S x K, where S is a compact abelian Lie group, not necessarily
connected. As we will see, in this case the collection of groups L7, j € J, is finite,
and a little more can be said on the structure of the C*-algebras Cpix (L, B(F;)).

One has two projections pry : L — S, pry : L — K. With the subgroup L, of
L there are associated four canonical subgroups, namely

(3.23) S, = L,NS,K,=KnNL,,S =pr,(L,)=5SNL,K,
K' = pry(L,) = KNSL,.

The subgroup K, is normal in K’, hence S, x K, is normal in S’ x K’. The image
of L, in §’/S, x K'/K, under the canonical map p:S" x K' — S'/S, x K'/ K,
is the graph of a certain isomorphism
(3.24)

k:S8'/S, — K'/K,, and L, is its pre-image, L, = *{(s,x(s)) | s € S'/S,}.
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In particular, also K’/K,, is a compact abelian Lie group. The connected compo-
nent (5'/S,), of S’/S,, will be written as S°/S,, with a certain subgroup S° of S’
of finite index. Likewise, we have (K'/K,), = K°/K,, and clearly x map S°/S,
onto K°/K,,.

If j € J is given, the subgroup L7 is of finite index in L,, and L’ contains
S, X L, hence

(3.25) L= H(s,k(s)) | s € S7/S,}

for a certain group S7, S, C S/ C S'. As L7 is of finite index in L,,, the group S’
has to contain S°. Thus, we see that {L’ | € J} is a finite collection. Moreover,
we define K7 by k(57/S,) = K7/K,. The group K’ can also be described as the
stabilizer in K’ of a; € K/). Next we choose a measurable projective extension &;
of a; to K7 with a measurable cocycle m; : K//K, x K/ /K, — T,

(3.26) a; - KV — B(V)), a;(x)a;(y) = my(z, y)a;(xy).

The cocycles on compact abelian Lie groups are very well known; replacing m;
by a cohomologous one (and modifying &; accordingly), we may assume that m;
lives on the finite group K7/K°. In particular, &; is then continuous.

The representation a; delivers an m;—projective representation Z; of K7/K,
in §; = L3 (K, V;) by

(3.27) (Zj(a)§)(k) = a;(a)é(ka)

for k € K and a € K7 (or a € K’/K,, clearly Z; is constant on K,—cosets), and
hence also a representation A; of the isomorphic copy 57/,

(3.28) Aj(s) = x()Z;(k(s))

for s € S7/S, with a certain unitary character x on S7/S, to be determined
later. Also A; is projective, the cocycle m) on S7/S,, being given by m/(s,t) =
m(s(5), K (1)), |

The intertwining operators X;(¢), Y;(¢), ¢ € L’ in V; resp. $);, see (2.2), (2.18),
can now be specified to be

(3:29)  X;(0) = a;(b)x(s) if €= (s,b) € LV, (V;(OE)(k) = X;(DE(C k).
The crucial properties of the representation A; are the following.

3.30. For any s € S7/S,, and any k € K the operators A;(s) and 7} (k) commute.
If ¢ = (s,b) € L’ and a € K, whence {a = (s,ba), then

Y(0)(a) = A; () (ba).

J
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The straightforward computations are omitted. This implies that the functions
[ €CLik(L,K(9;)), see (2.19), can alternatively be described as those functions
which are constant on S,—cosets, and which satisfy

(3.31) F(l(s k) = mi(k)* A;(s)* f(0)Aj(s)m(k) for £ € Lk € K, s € 5.

Finally, we choose, as above, a finite-dimensional {;~invariant, see (3.1), subspace
§; of §;, which we now assume to be irreducible. {;-invariant means, by (3.30),
to be invariant under A;(57/S,,) and under 7/(K). As these two groups commute,
§; decomposes into a tensor product,

3.32. §; = PB; ® Q;, where P; is an irreducible S7/S,—space, and Q; is an
wrreducible K —space.

Since the cocycle m; lives on Si/S°, the operators A;(s), s € S°/S,, are
scalar on ‘B;. Adapting the above x to the chosen subspace §; we can arrange
that A;(S5°/9S,) is trivial on ;.

As we have seen earlier, (3.9), the C*~hull of p;* L' (K, Q)xp; is Crix (L, B(3;)),
which is given analogous to (3.31), compare (2.19), (3.6). The functions in the
latter algebra are determined by their restriction to S, i.e., Cpix (L, B(F;)) can be
identified with

(3.33) Csi (S, B(B; ® Q;))
= {f:5 = B(B,; ®1Q,) | fis continuous, f(st) =
Aj(t)* ®Idg, o f(s) 0 Aj(t) @ 1dg, for s € S,t € 57}
= Cqi(S,B(B,)) @ B(Q;),

where Cg; (S, B(3;)) has the obvious meaning. A tensor ¢ ® B is mapped to the
function s — ¢(s) ® B. Actually, the functions in Cg; (S, B(*B;)) are constant
on S°-cosets, i.e., this space may be written as Cgj/s0(S/S°, B(%B;)). One should
note that

3.34. the S—isotypical components in Csi;s-(S/S°, B(P;)) @ B(Q;), S acts by left
translations, are clearly finite-dimensional, whence they coincide with the S-—
isotypical components in p; x L'(K, Q) * p;.

Also, the L-action on Cprix(L,B(§;)) can easily be transferred into the new
picture. An ¢ = (t,k) € S x K acts on the tensor ¢ ® B € Cgj/50(S/5°, B(%B;)) ®
B(Q;) by l(p ® B) = ¢' @ B', where ¢/(s) = p(t™'s), B' = 7;(k) o B ow;(k)*.
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Propriété de Kazhdan et sous-groupes discrets

de covolume infini

J.-F. Quint

Résumé

Soient G un groupe de Lie réel presque simple, de centre fini, de rang
réel > 2 et G = K(expa™)K une décomposition de Cartan de G. Si T est
un sous-groupe discret Zariski dense de (G, son indicateur de croissance a
été défini dans [7]: c’est une fonction homogéne concave d’un cone convexe
de at dans R;. Si ' est un réseau de G, ¢r est la restriction a a™ de la
somme p des racines positives multipliées par la dimension de leurs espaces
poids. Nous montrons ici qu’il existe une forme linéaire 6 de a, strictement
positive sur a™\{0}, ne dépendant que de G et telle que, pour tout sous-
groupe discret I' de G' qui ne soit pas un réseau de G, Yr < p — 0.

Introduction

Soit G un groupe de Lie réel presque simple de centre fini.

Soient X l’espace symétrique de G, muni d’'une métrique riemannienne G-
invariante, z un point de X et K son stabilisateur dans G. Si I" est un sous-groupe
discret Zariski dense de GG, on note 7 ’exposant de convergence de la série de
Dirichlet

S e ean (1 e R).

vyel
C’est un réel > 0. L’exposant de convergence des réseaux de GG ne dépend que de
G. On le note 75.

Généralisant un phénoméne observé par K. Corlette dans 2] pour les groupes
de rang réel 1 ayant la propriété (T) de Kazhdan, E. Leuzinger a montré dans
[5] que, si G avait la propriété (T), il existait un réel € > 0 tel que, pour tout
sous-groupe [' discret de G' qui ne soit pas un réseau, on ait m < 76 — €.

Soit a un sous-espace de Cartan de I’algébre de Lie de G tel que le plat maximal
de X stable par expa contienne z. Soit a* C a une chambre de Weyl. Si T
est un sous-groupe discret Zariski dense de GG, nous avons introduit dans |7] son
indicateur de croissance : ¢’est une fonction homogéne concave positive, définie sur
un cone convexe fermé de at. Elle permet, par exemple, de décrire les exposants
de convergence de I' par rapport a toutes les métriques finsleriennes G-invariantes
de X. SiT est un réseau, son indicateur de croissance est la restriction a a™ d’une
forme linéaire p qui ne dépend que de G.
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Nous démontrons ici:

Théoréme. Supposons G de rang réel > 2. Il existe alors une forme linéaire 6,
strictement positive sur at\{0}, telle que, pour tout sous-groupe discret ' de G
qui me soit pas un réseau, on ait Yr < p — 0.

La démonstration de ce résultat repose sur une version forte de la propriété
(T), établie par H. Oh dans [6]: il s’agit d'une estimation de la vitesse de dé-
croissance dans G des coefficients matriciels associés aux vecteurs K-finis dans les
représentations unitaires de GG' ne contenant pas de vecteurs G-invariants.

Partant de ce résultat, on utilisera le plan et les méthodes de [3], o A. Eskin
et C. McMullen démontrent un résultat de comptage pour les réseaux de G. Pré-
cisément, étant donné un réseau I' dans G, dans 3], on commence par établir, &
partir du théoréme de Howe-Moore un résultat d’équidistribution des translatés
des K-orbites dans I'\G, puis on utilise cet énoncé pour estimer le nombre de
points de I' dans les parties K-invariantes a droite de G.

Ici, nous nous donnerons un sous-groupe discret I' de G qui ne soit pas un
réseau. Le théoréme de Oh nous permettra de démontrer un résultat de disparition
des translatés des K-orbites, la proposition 3.2. Nous en déduirons une majoration
pour le comptage des points de I" dans les parties K-invariantes & droite qui ménera
a notre théoréme.

Nous démontrerons aussi un analogue de ce résultat pour un groupe de Lie
presque simple défini sur n’importe quel corps local K de caractéristique # 2.

Je tiens a remercier Y. Benoist qui a attiré mon attention sur ces questions et
E. Leuzinger qui m’a communiqué son article [5].

1 Notations

Soit K un corps local de caractéristique différente de 2.

Si K est R ou C, on le munit de la valeur absolue usuelle et on pose ¢ = e et,
pour tout x # 0 dans K, w(z) = —log|z|.

Si K est non-archimédien, on note O l'anneau de valuation de K, m 1’idéal
maximal de O et ¢ le cardinal du corps résiduel O/m de K; on note w la valuation
de K telle que w(m\m?) = 1 et on munit K de la valeur absolue z — ¢~“®).

Soient G un K-groupe presque simple de K-rang > 2 et G le groupe de ses
K-points.

On choisit dans G un tore K-déployé maximal A. On note A le groupe de ses
K-points, Z le centralisateur de A dans G et Z le groupe des K-points de Z.

Soit X le groupe des caractéres de A. On note E 'espace vectoriel réel dual
de R ®z X et, pour y dans X, on note x“ la forme linéaire associée sur E. On
note v I'unique homomorphisme continu de Z dans E tel que, pour tous a dans
Aet x dans X, x“(v(a)) = —w(x(a)).
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Dorénavant, on identifie les éléments de X et les formes linéaires associées de
E. Soit ¥ 'ensemble des racines de A dans 'algeébre de Lie de G. Alors ¥ est un
systéme de racines dans E*. On choisit dans > un systéme de racines positives
Y. On note E* C E la chambre de Weyl positive de T et ZT = v~ 1(ET). On
note ¢ : £ — FE 'involution d’opposition de E™.

Enfin, on choisit dans G un bon sous-groupe compact maximal relativement a
A, qu’on note K. On a la décomposition de Cartan G = KZ 1K et, pour 21,2, dans
Z7%, z1 appartient & K2oK si et seulement si v(z;) = v(22). On note p 'unique
application bi-K-invariante de G dans Et dont la restriction & Z* vaut v. Pour
g dans G, on a u(g7t) = 1(u(g)). On a:

Proposition 1.1 (Benoist, [1, 5.1]). Pour toute partie compacte L de G, il
existe une partie compacte M de E telle que, pour tout g dans G, on ait u(LgL) C
u(g) + M.

Nous allons appliquer & des problémes de comptage dans G le résultat suivant
de H. Oh. 1l s’agit d’une quantification du fait que G posséde la propriété (T) de
Kazhdan :

Théoréme 1.2 (Oh, [6]). Il existe une fonction & : EY — R, invariante par ¢,
telle que
(i) pour toute représentation de G dans un espace de Hilbert H sans vecteurs
G-invariants, on ait, pour v,w K-invariants dans H et g dans G,

[{gv,w) < &(ulg)) [l lw] -

(i1) il existe une forme linéaire 6 de E, strictement positive sur ET\{0}, et telle
que, pour tout € > 0, 1l existe 0 < ¢ < d avec

Ve e BEY ¢q %@ < €(x) < dg=1790@),

Dorénavant, on fixe de tels & et 6.

2 Divergence exponentielle des sous-groupes dis-
crets

Nous rappelons ici les résultats de [7]| sur le comportement de 'image par p d’un
sous-groupe discret de G.

Soient v une mesure de Radon et N une norme sur F. Pour tout cone ouvert
C de E, on note 7¢ l'exposant de convergence de l'intégrale de Dirichlet :

/Ce_tN(’”)dl/(x) (t e R)

et, pour x dans F/, on pose:

¥, (x) = N(x)inf 7¢,
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la borne inférieure étant prise sur I’ensemble des cones ouverts C de E qui contien-
nent x. La fonction ¢, ne dépend pas de la norme choisie. On ’appelle indicateur
de croissance de v.

Les deux résultats élémentaires suivants sont prouvés dans |7, 5.2]:

Lemme 2.1. Soit 0 : E — R une fonction homogene et continue. On a .0, =
U, + 0.

Lemme 2.2. Soient v et V' des mesures de Radon sur E. S’il existe une partie
compacte M de E et un réel w > 0 tels que, pour tout borélien B de E, V'(B) <
wr(B+ M), alors 1, < 1,.

Si I' est un sous-groupe fermé de G, soit vr I'image par p d’'une mesure de
Haar de I"; on note ¢r la fonction @ww. Soit p la forme linéaire sur £ qui est la
somme des racines positives multipliées par la dimension de leurs espaces poids.
De la formule d’intégration pour la décomposition de Cartan [4, 1.5.2], on déduit
tout de suite:

Lemme 2.3. On a g = p.
Le résultat principal de [7] s’énonce :

Théoréme 2.4. Soit I' un sous-groupe discret Zariski dense de G. La fonction
Yr est majorée par p. Elle est concave, semi-continue supérieurement et positive
partout ou elle est > —oo.

3 Disparition des K-orbites

On fixe des mesures de Haar dg sur G et dk sur K. On suppose que [, dk = 1.
Rappelons une propriété usuelle des mesures de Haar :

Lemme 3.1. Soient H un groupe topologique localement compact unimodulaire
et K un sous-groupe fermé unimodulaire de H. Alors K\H posséde une unique
mesure de Radon H-invariante non triviale, a multiplication par un réel > 0 preés.
Munissons H et K de mesures de Haar a droite dh et dk. La mesure H-invariante
m de K\H peut-étre normalisée de fagon a ce que, si1) est une fonction mesurable
sur H, ¢ soit intégrable si et seulement si la fonction zﬂ : Kh — [ (kh)dk est
définie presque partout et intégrable sur K\H et que, alors, on ait:

ddm = [ w(h)an.
K\H H

Soit I' un sous-groupe discret de GG. On note m la mesure G-invariante sur
['\G associée a la mesure de Haar de G et & la mesure de comptage sur I'. On
suppose que ' n’est pas un réseau de G, c’est-a-dire que m(I'\G) = oo. On note
po I'image de e dans I'\G.

Dans cette section, nous allons prouver :
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Proposition 3.2. Soit p : T\G — C, une fonction continue a support compact.
1l existe un réel ¢ > 0 tel que, pour tout g dans G, on ait:

’/K sﬁ(pokg)dk" < c&(u(9))-

Nous commencerons par nous ramener au cas ou ¢ est K-invariante, grace a
un raisonnement simple de topologie:
Lemme 3.3. Soit X un espace topologique localement compact et K un groupe
compact agissant continiment sur X. Si ¢ est une fonction continue & support
compact sur X, il existe une fonction continue K-invariante, positive et a support
compact Y telle que |p| < 1.

Nous pouvons d’ores et déja conclure, dans le cas ou K est non-archimédien :

Démonstration de la proposition 3.2 quand K est non-archimédien. D’aprés le
lemme 3.3, on peut supposer que ¢ est K-invariante. Par ailleurs comme K est un
sous-groupe ouvert de GG, la mesure de Haar de K est la restriction de la mesure
de Haar de G, et, d’aprés le lemme 3.1, pour tout g dans GG, on a:

/K ¢(pokg)dk = card(I' N K) / ¢(pg)dm(p).

poK

Or, comme I' n’est pas un réseau de G, la représentation naturelle de G dans
L*(T'\G) ne posséde pas de vecteurs G-invariants ; le résultat est alors une consé-
quence du théoréme 1.2.[]

Intéressons-nous a présent au cas ou K est archimédien. Nous utiliserons une
décomposition de la mesure de Haar de G':
Lemme 3.4. I existe une base de voisinages de e dans G constituée de voisinages
V' pour lesquels il existe une mesure de Radon T sur'V telle que, pour toute fonction
@ continue a support compact dans KV, on ait:

| el9dg= [ plkv)dkdr(v)

Démonstration. C’est une conséquences de la formule d’intégration pour les dé-
compositions d'Iwasawa de G (cf. [4, 1.5.1]). O

Enfin, nous utiliserons un cas particulier du théoréme du front d’onde, de
A. Eskin et C. McMullen :
Lemme 3.5 (Eskin, McMullen, [3]). Pour tout voisinage U de e dans G, il
existe un voisinage V de e tel que, pour tout g dans G, KVg C KqU.

Démonstration. Remarquons que, par décomposition de Cartan, quitte & rem-
placer par la suite V par un voisinage plus petit normalisé par K, il suffit de
démontrer ce résultat pour des g dans ZTK.
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Soient P le K-sous-groupe parabolique minimal de G associé au choix de A et
de E* et P le groupe de ses K-points. Le groupe P posséde une base de voisinages
de I’élément neutre stables par I'action adjointe des éléments de (Z*)~!. Or, on
a la décomposition d'Iwasawa G = K P. Soient alors U un voisinage de e dans G
normalisé par K et V' C U un voisinage de e dans P tel que, pour tout z dans
Z%T, 27 'Wz C V. L’ensemble KV est un voisinage de e dans G et, pour z dans
Z% et k dans K, on a:

KVzk = Kz(2'V2)k C KzVk C KzUk = K(zk)U,
ce qu’il fallait démontrer.[]
Nous pouvons a présent démontrer notre proposition :

Démonstration de la proposition 3.2 quand K est R ou C. Soit U un voisi-
nage compact de e dans G. D’aprés le lemme 3.3, appliqué a la fonction p —
sup,cp |e(put)|, il existe une fonction ¢» K-invariante, positive, continue et a
support compact sur I'\G telle que, pour p dans I'\G et u dans U, on ait |p(p)| <
¥ (pu).

Soit alors, comme dans le lemme 3.5, un voisinage V' borné de e dans G tel que,
pour g dans G, KV g C KqgU. On suppose que V vérifie la propriété du lemme
3.4 et on choisit une mesure 7 sur V comme dans cet énoncé. Enfin, soit W un
voisinage borné de e tel que V' C W et que W soit normalisé par K. Comme I" n’est
pas un réseau de G, la représentation naturelle de G dans L?(I'\G) ne posséde
pas de vecteurs G-invariants et, donc, le théoréme 1.2 s’applique aux vecteurs
K-invariants que sont la fonction 1 et la fonction caractéristique de po KW . En
d’autres termes, il existe ¢ > 0 tel que, pour tout g dans G,

/poKV v(pg)dm(p) < U(pg)dm(p) < c&(u(g)).

po KW

Soit g dans GG. D’une part, on a, d’aprés le lemme 3.1 :

/KV »(pohg)dh = /poKV card(p N KV)¢(pg)dm(p)

<card(CNKVVE) [ (pg)dmip)

po KV

(ot I'on a employé le méme symbole pour un point de I'\G et pour la classe a
droite associée).

D’autre part, pour v dans V, il existe u dans U tel que Kvg = Kgu; par
conséquent, on a:

/ @b(pokvg)dk’z/ @D(pokQU)dk'Z/ lo(pokg)| dk
K K K
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et, donc,

/KV w(pog)dg:/v (/Kw(pok’vg)dk> dr(v) > T(V>/K|<P(pokg)\dk.

Il vient : AT A KVV-E)
J letookg)l di < SEEE e 9)),

ce qu’il fallait démontrer. [

4 Majoration des exposants de convergence

Dans cette section, nous utilisons la majoration précédente pour démontrer :
Théoréme 4.1. Soit I' un sous-groupe discret de G. Si I' n’est par un réseau de
G,onavypr<p-—20.

Etablissons un résultat préliminaire. Pour tout borélien B de G /K, notons xp
la fonction indicatrice de I'ensemble B~! C K\G et Fp la fonction sur I'\G telle
que, pour tout g dans G, Fp(I'g) = card(I' N ¢B). Munissons K\G de sa mesure
G-invariante n associée au choix des mesures de Haar de G et de K. On a:

Lemme 4.2. Soit ¢ une fonction continue a support compact dans T\G. Il existe
un réel ¢ > 0 tel que, pour tout borélien B de mesure finie dans G/ K, on ait:

/ pFpdm
G

Démonstration. Soit B un borélien de mesure finie dans G/K. La fonction g —
xB(Kg) est intégrable sur G. Or, pour g dans G, on a:

Fp(Tg) =Y xs(19).

vyer

< C/B_l(f o p)dn.

D’aprés le lemme 3.1, la fonction Fp est intégrable sur I'\G et son intégrale est
égale a n(B™!). De méme, en appliquant le lemme 3.1 & T'\G et a K\G, pour
toute fonction continue ¢ a support compact dans I'\G, on a:

/F\G PEpdm = /G »(g)xs(Kg)dg = /Bf1 bdn,

ou, pour g dans G, on a (Kg) = [, p(T'kg)dk.

Or, d’aprés la proposition 3.2, si ¢ est une fonction continue & support com-
pact dans T'\G, il existe un réel ¢ > 0 tel que, pour tout g dans G, on ait
| [ o(Tkg)dk| < c£(u(g)). 11 vient bien, pour tout borélien B de mesure finie

dans G/K,
G

< c/Bil(f o w)dn.
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Terminons a présent :

Démonstration du théoreme 4.1. Soit V un voisinage compact de e dans G. D’apreés
le proposition 1.1, il existe une partie compacte M de E telle que, pour tout g dans
G, u(V=tg) C u(g) + M. Alors, pour g dans V', on a, pour tout borélien B de F,
(CNnp'(B)) c (TNgu (B+ M)) et, donc, Fj—1 (g (Lg) > card(I' N (B)).

Donnons-nous une fonction ¢ positive, continue, a support compact dans pgV/,
avec fF\G wdm = 1. Soit ¢ > 0, comme dans le lemme 4.2. On a, pour tout borélien
B de E,

dCNu ' (B)) < Frovpand </ dn.
card(I'N p(B)) < F\GSO p=L(B+M)AM = € (;rl(B+M))*1<£ o p)dn
Or (u ' (B+ M))™' = p ' (o(B+ M)) et, donc, en notant v l'image par p de la
mesure de Haar de G,

_1(5 o p)dn = /(B+M) Sdvg = /B+M bdve,

L

/(u‘l(BJrM))

d’otu le résultat, par définition de 0 et d’apres les lemmes 2.2 et 2.3. [J
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Singular masas of von Neumann algebras: examples from
the geometry of spaces of nonpositive curvature!

Guyan Robertson

Abstract

If T is a group, then the von Neumann algebra V' N (I') is the convolution
algebra of functions f € ¢5(I") which act by convolution on ¢2(I") as bounded
operators. Maximal abelian x-subalgebras (masas) of von Neumann algebras
have been studied from the early days.

If ' is a torsion free cocompact lattice in a semisimple Lie group G of
rank r with no centre and no compact factors then the geometry of the
symmetric space X = G/K may be used to define and study masas of
VN(I'). These masas are of the form VN(I'g), where Iy is the period group
of some I'-periodic maximal flat in X. There is a similar construction if I"
is a lattice in a p-adic Lie group G, acting on its Bruhat-Tits building.

Consider the compact locally symmetric space M = I'\ X. Assume that
T" is a totally geodesic flat torus in M and let I'g = Z" be the image of
the fundamental group m(7") under the natural monomorphism from 7 (7")
into I' = w(M). Then VN(I'y) is a masa of VN(I'"). If in addition diam(7™")
is less than the length of a shortest closed geodesic in M then VN(I'g) is
a stngular masa : its unitary normalizer is as small as possible. This last
result is joint work with A. M. Sinclair and R. R. Smith [RSS].

1 Background

Let I" be an ICC group: each element in I' other than the identity has infinite
conjugacy class. The group von Neumann algebra is the convolution algebra

VNIT) ={f e P): g fxg isin B(*T))}.

It is well known that VN(T') is a factor of type II;. This means
(a) VN(T') is a strongly closed x-subalgebra of B(¢*(T")), with trivial centre;
(b) there is a faithful trace on VN(I') defined by tr(f) := f(1).
The group I' may be embedded as a subgroup of the unitary group of VN(I") by
identifying an element v € I' with the corresponding delta function 6,. A major
result of A. Connes [Co, Corollary 3| implies:

! This research was supported by the Australian Research Council. It is based on the text of
a talk given to the conference on Harmonic Analysis, at the Centre Universitaire, Luxembourg,
September 9-12, 2002.
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Theorem. (A. Connes) If I';,I'y are countable amenable ICC groups then VN(I'y) =
VN(T'9), the algebra being isomorphic to the hyperfinite II; factor.

At the opposite extreme from amenable groups there is the
Rigidity Conjecture (A. Connes) If ICC groups I';,I'y have Property (T) of
Kazhdan, then

VN(Fl) = VN(FQ) =11 =1,

Compare this with the

Rigidity Theorem (Mostow-Margulis-Prasad) For i = 1,2, let T'; be a lattice in
G, a connected non-compact simple Lie group with trivial centre, G; # PSLy(R).
Then

Flgl—b:}GlgGg.

In Mostow’s proof of rigidity ([Mo|: the cocompact, higher rank case), max-
imal flats of symmetric spaces play an important role. There is some reason to
hope that masas of von Neumann algebras might play a similar role for Connes’
conjecture.

2 Maximal abelian x-subalgebras

Let A be a maximal abelian x-subalgebra (masa) of VN(I'). Say that A is a
singular masa if :
u € VN(I'), w unitary, udu* = A = u € A.
Singular masas ? always exist [P1], but are hard to construct explicitly.
If A= VN([y), where Iy is a subgroup of I', then
VN(T'y) embeds as a subalgebra of VN(T') via f — f, where

= ) flx) ifx ey,
J(w) = {O otherwise.

Lemma 2.1. Let I'y < 'y < I', with 'y abelian. Define the commutant VN(I'y)’
to be the centralizer of VN(I'y) in VN(I'g). Suppose that, for all x ¢ Ty, the set

Aa: = {ZL‘l_l.’L'l‘l X € Fl}
is infinite. Then VN(I'1)' = VN(L'y). In particular, VN(T'g) is a masa of VN(I).

(This result is contained in |Di], in the case I'y = T.)

2If the unitary normalizer of A generates VN(I') then A is a Cartan masa. VN(T') may not
contain a Cartan masa: e.g. I' = Fy. S. Popa [P2| has recently used Cartan masas to construct
isomorphism invariants for certain I1; factors.
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Proof. Let f € VN(I'1)" and x ¢ T'.

Then §,-1 % f % 0,, = f (for all z; € I'y)

= fis constant on A,

= f=0on A, (since f € (*(T') and #A, = 0)

= f(z)=0 (forall z ¢ I'y)

= f € VN(Ty). O

There is a conditional expectation E, : VN(I') — A onto any masa A,
which extends to an orthogonal projection on ¢*(T"). If A = VN(I'y), where Ty is
an abelian subgroup of I' and if f € VN(I'), then

f(z) ifx €Ty,
0 otherwise.

Eaf(z) = {

Definition.[SS| Say that A is a strongly singular masa of VN(I') if

B = Ealloo2 = flu = Ea(u)lls

for all unitaries u € VN(T'). [Here || - ||oo2 means: operator norm on domain, ¢?
norm on range.|

This condition implies that any unitary v € VN(I') which normalizes A nec-
essarily lies in A. Therefore A is a singular masa.

2.1 Construction of masas

Let I be an ICC group and let I'y be an abelian subgroup. Here is a condition
that ensures that VN(I'y) is a strongly singular masa of VN(T').

(SS) If x4, ..., Zm, Y1, --,yn €T and

(2.1) Lo € Jziloy;

]

then some x; € T'y.

Theorem. Condition (SS) implies that VN(I'g) is a strongly singular masa of
VN(I).

The proof of this result is contained in [RSS]. It can be used to construct
strongly singular masas of VN(I'), for certain geometrically defined groups T,
acting on spaces of nonpositive curvature.
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Let G be a semisimple Lie group of rank r with no centre and no compact
factors. Let I' be a torsion free cocompact lattice in G. Then I' acts freely on the
symmetric space X = GG/K and the quotient manifold M = I'\X is a compact
locally symmetric space, with fundamental group 7(M) =T.

Let T" C M be a totally geodesic embedding of a flat r-torus in M. The
inclusion i : 7" — M induces an injective homomorphism i, : 7(T") — 7(M).
(Reason: no geodesic loop in M can be null-homotopic.)

Let T'yg = i.m(T") =2 Z" < I'. Under these assumptions, the following results
hold.

Theorem A. VN(I'y) is a masa of VN(I').

Theorem B. [RSS| Let o be the length of a shortest closed geodesic in M. If
diam(7T") < o then VN(I'g) is a strongly singular masa of VN(I').

3 Proofs

Theorem A is a consequence of a stronger result. Recall that a geodesic L in X
is reqular if it lies in only one maximal flat. See the appendix below for further
details. A regular geodesic in M = I'\ X is, by definition, the image of a regular
geodesic in X under the canonical projection. It follows from [Mo, §11] that 7"
contains a closed regular geodesic.

Theorem A’. Let x; € Iy be the class of a regular closed geodesic ¢ in T", and
Iy = <[L’1> =27 < FQ.

Then VN(I',) = VN(I).
Consequently VN(I'y) is the unique masa containing VN(I'y).

Proof of Theorem A’.  (Using Lemma 2.1.)
Lift ¢ to a geodesic L in X through &, where p(&) = .
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Regularity of the geodesic ¢ means that L lies in a unique maximal flat £ and
p(FQ) =1Tr.
Now z7 acts on L by translation.

Suppose that A, = {x;"zx] : n € Z} is finite, and let

§ = sup{d(n, z{"zzin) 1 n € [, 2:1€],n € Z}.

Then o
d(zin,zztn) <6 (ne€ [ €], n € Z).
Therefore
d(¢,x¢) < 6 for all ¢ € L.
In other words, L is a parallel translate of xL. This implies that L and zL lie in
a common maximal flat, namely Fy. In particular z€ € F,. It follows that p[é , xf]
is a closed geodesic in T". Consequently x € T'. ]

Rather than proving Theorem B in complete generality, we prove a special
case of it, which contains all the essential ideas of the general proof [RSS].

Corollary. Let I' = w(M,), the fundamental group of a compact Riemann surface
M, of genus g > 2. Let c be a closed geodesic of minimal length o in M,. Let
Yo = [c] € T, and let Ty = Z be the subgroup of T' generated by ~vo. Then VN(T'g)
is a strongly singular masa of the 11y factor VN(T').

Proof. This uses condition (SS). The universal covering of M, is the Poincaré
upper half-plane
H={z€C:3z>0}.

The boundary of $ is 99 = RU {oco}. Also I' acts isometrically on ).
The minimal closed geodesic ¢ lifts to a geodesic A in §). Fix v € A, and let
K = [v,vov]. Then

(3.1) A=K =ToK.

neL
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’Yg”U YoV

Suppose that z1,..., 2, y1,...,y, € ' and

(2]
Let § = max{d(y;k,k);1 < j <n, k € L}. Then
yj/C % K = FoyjIC % FOIC =A

[Here the notation P % () means that d(p,Q) <6, for all p € P|
Hence

(3.3) A:FOIC%xlAUxQAU-~-UxmA.

This implies that each boundary point of A is a boundary point of some z,A.

Now w = ~§°v is a boundary point of some z;A. We show that this implies
zj € I'g. Choose k € Z, a € A such that

d(zjvev, a) <

ol 9
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wlooa g
Choose ¢ € Z such that d(a,y{v) < % : e T — 4
<>

Then d(7g z7kv, v) = d{z;7kv,7fv) < d(zko, a) + dla,Afo) < o
This implies 7, exjy(’)“ = 1. For otherwise [v, v, éxj%’)“v} projects to a closed geodesic
in M, of length < o.

Therefore z; = 75 * € Ty, O

In the usual presentation of m(M,),

I'= <a1,...,ag,b1,...,bg

ﬁ[%bz‘] = 1>

=1

we can take 7o € {a;"", b},

v

Fundamental
Domain

M,
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3.1 The ICC Property

Recall that VN(T') is a II; factor if and only if the group I' is ICC. If I" were
a lattice in a semisimple Lie group then the argument of [GHJ, Lemma 3.3.1]
(which uses the Borel density theorem) proves that I' is IC'C. However not all
the groups of interest to us are embedded in a natural way as subgroups of linear
groups. We therefore show how to use a geometric argument to verify the IC'C
property of I'. This argument applies much more generally; in particular to the
group actions on buildings which we consider later.

Proposition. A group I' of isometries of ) which acts cocompactly on $ is ICC.

Proof. By assumption, I'C = § where K C § is compact.
Let z € ' — {1}. Suppose that C' = {y~'ay : y € ['} is finite.
Let § = max{d(k,y 'zyr) : kK € K,y € T'}. Then

d(yk, zyr) = d(k,y ‘oyr) <6, yel,kek.
Therefore, for all £ € ©
(3.4) (¢, x€) <.

Choose 1 € $ such that xn # n
Choose a geodesic A in § withn € A, zn ¢ A.

7
/—_.—.\
A
IT]e

Now it follows from (3.4) that A - xA. This implies that A = zA. In

particular xn € A, a contradiction. ]

3.2 A Free Group Analogue

If X is a finite connected graph with fundamental group I' = 7w(X) then I' is a
finitely generated free group. Also I' acts freely and cocompactly on the universal
covering tree X with boundary dX. Let 'y 2 Z be the subgroup of I' generated
by one of the free generators of T'.

This setup is a combinatorial analogue of the Corollary above, where the fun-
damental group I' of a Riemann surface acts on the Poincaré upper half plane.
Exactly the same proof shows that I', Iy, satisfy condition (SS).

In the figure below, I' = Z x Z = (a, b), the free group on two generators and
I'yp = (a) = Z. Thus VN(I'p) is a strongly singular masa of VN(I").
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3.3 Euclidean Buildings

More generally, suppose I" acts freely and transitively on the vertex set of a eu-
clidean building A and I'y is an abelian subgroup which acts transitively on the
vertex set of an apartment (flat). Then VN(I'y) is a strongly singular masa of
VN(T"). |[The proof is essentially the same as that of Theorem B.]

There exist many examples where I' < PGL3(K), K a nonarchimedean local

field [CMSZ|.

--------

X and 60X

Example: K = F,((X)), the field of Laurent series with coefficients in the
field F4 with four elements. Let I' be the torsion free group with generators
x;,0 < i < 20, and relations (written modulo 21):

TjTj78j01a = TiTjp1aTj47 =1 0 <7 <6,
Tjlij43Tj—6 = 1 0<3<20.

For each 5, 0 < 5 <6,
Lo = (@, 2jq7, Tjy1a) = 22

satisfies the hypotheses.
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3.4 A Borel subgroup

The geometric methods outlined above apply also to other situations. Here is an
example.

Proposition. Let I' be the upper triangular subgroup of PSL, (Q), n > 2, and let
[y be the diagonal subgroup of I'. Then VN(I'y) is a strongly singular masa of
VN(T).

We illustrate the proof in the case n = 2. Here I' acts on the Poincaré upper

half plane $.
I' ={g € PSLy(Q) : goo = 00} = [3 j :

* 0
Foz{geF:QOZO}:[O *1

Note that I'y stabilizes the geodesic
A = RY
= [k, where IC = [i, 21].

In order to show that condition (SS) holds, proceed as in the proof of the Corollary
in Section 3. As in (3.3), suppose that

A%l'lAUxQAU"'U:EmA,

for some z1,...,2,, € I', and 6 > 0. Then 0 is a boundary point of some z,A.
Now since z; € I', ;00 = oo. Therefore ;4 = A and 2,0 = 0. It follows that
X € Fo. ]
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4 Appendix: Symmetric Spaces

We conclude with a quick summary of some essential facts about symmetric and
locally symmetric spaces [BH|.

Let G be a semisimple Lie group with no centre and no compact factors.

The corresponding symmetric space is X = G/K where K is a maximal com-
pact subgroup.

The rank r of X is the dimension of a maximal flat in X. That is, the maximal
dimension of an isometrically embedded euclidean space in X.

A geodesic L in X is regular if it lies in only one maximal flat; it is called
singular if it is not regular.

Let F' be a maximal flat in X and let x € F. Let S, denote the union of all
the singular geodesics through z. A connected component of F' — S, is called a
Weyl chamber with origin x.

Example Consider a rank 2 example.

X = {2z eSL3(R):z is positive definite}

G acts transitively on X by z — gxg" and the stabilizer of I is SO3(R). Therefore
X = SLy(R)/S04(R)

A maximal flat F' is 2-dimensional. There are six Weyl chambers in F' with a
given origin x € F'.

N a regular geodesic

A flat through I has the form exp a, where a is a linear subspace of
Sp(R) = {z € M,(R) : z = 2', trace(z) = 0} (the tangent space at I)

such that zy = yx for all z,y € a.
The geodesic t +— exp tx through I in X is regular if and only if the eigenvalues
of z € S, (R) are all distinct. To see why this is so, consider

g = {diag(al,ag,ag) ap +as +asz = 0}
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Parametrize elements of ay by points on a plane through the origin in R3, as in
the figure below.

a; = ay
o = a3
a; = as

If a1, as, a3 are all distinct then a matrix in S,(R) which commutes with a =
diag(ay, as, as) is necessarily diagonal and so lies in ay. Thus the geodesic t +—
expta lies in a unique maximal flat exp a,.

4.1 Locally Symmetric Spaces

Let I be a torsion free cocompact lattice in G.
M =T\X is a compact locally symmetric space of nonpositive curvature.

X = G/K is the universal covering space of M and the fundamental group of
Mis (M) =T.
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On spectral characterizations of amenability
Claire Anantharaman-Delaroche

University of Orléans, France

Given a measured G-space (X, i) and a probability measure m on G, we discuss
the informations on the G-space X that are provided by the spectral analysis of
the operator mx(m), where mx is the unitary representation of G associated with
(X, ). Emphasis is put on characterizing the amenability of the G-action.

The heat kernel on symmetric spaces, fifteen years later
Jean—Philippe Anker

University of Orléans, France

At a previous conference (Luxembourg, September 1987), we conjectured an
upper bound for the heat kernel on noncompact Riemannian symmetric spaces
G/K. Our guess was based on explicit expressions available in some particular
cases, namely when rank(G/K) = 1, when G is complex or when G = SU(p, q).

In the meantime, this conjectural upper bound has been established in a rather
large range and has proved to be a lower bound too. We shall give an overview
of the present state of the subject, including recent joint work with P. Ostellari.

Divisible convex sets and prehomogeneous vector spaces
Yves Benoist

ENS Paris, France

A properly convex open cone in R™ is called divisible if there exists a discrete
subgroup I' of GL(R'™) preserving C such that the quotient I'\C' is compact. We
describe the Zariski closure G of such a group I'.

It was known that this group G is reductive. We show that if C' is divisible
but is neither a product nor a symmetric cone, then I' is Zariski dense in GL(R™).
The main step is to prove that the representation of G in R is prehomogeneous.
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Inducing and restricting unitary representations of nilpotent Lie groups
Hidenori Fujiwara

Kinki University, Japan

Let G = exp g be a connected, simply connected real nilpotent Lie group with
Lie algebra g. Given an analytic subgroup H = exp b of G with Lie algebra h and
a unitary character xy of H, we construct the induced representation 7 = indf[ X
of G. On the other hand, given an analytic subgroup K = exp £ and an irreducible
unitary representation 7w of GG, we restrict 7 to K.

It is well known that there exists a strong parallelism between these two op-
erations; inducing and restricting. We discuss this, focusing our attention on
algebras of differential operators and a Frobenius reciprocity attached to these
two procedures. Our study will be done in terms of the celebrated orbit method.

Extending positive definite functions from subgroups
of locally compact groups

Eberhard Kaniuth

University of Paderborn, Germany

Let G be a locally compact group and H a closed subgroup of G. We call H
an extending subgroup of G if every continuous positive definite function on H
extends to some continuous positive definite function on G. Also, G is said to have
the extension property when each closed subgroup of G is extending. The talk
will first give a survey on what is known for some time regarding these properties
and then focus on recent results for nilpotent groups.

Ramanujan complexes
Alex Lubotzky

University of Jerusalem, Israel

Ramanujan graphs are finite k-regular graphs the eigenvalues A of their ad-
jancency matrix satisfy |A\| < 2v/k — 1 or A = £k. Examples were constructed as
quotients of the tree associated to PG Lo(K) when K is a non-archimedean local
field.

The talk will describe a work in progress (jointly with B. Samuels and
U. Vishne) on generalizing this concept from graphs to higher dimensional sim-
plicial complexes, and constructions as quotients of the building associated with

PGLy(K).
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Bochner—Riesz means on the Heisenberg group and fractional
integration on the dual

Detlef Miiller

University of Kiel, Germany

Let L denote the sub-Laplacian on the Heisenberg group H,, and T2 := (1 —
7’L)3\r the corresponding Bochner—Riesz operator. Let () denote the homogeneous
dimension and D the Euclidean dimension of H,,.

In joint work with D. Gorges, we prove a.e. convergence of the Bochner—Riesz
means T2 f as r — 0 for A > 0 and for all f € LP(H,,), provided that

Qél(l— A) < 1/p < 1/2

2 D-1
Our proof is based on explicit formulas for the operators d,q, a € C, defined on
the dual of H,, by 0. f := w®f, which may be of independent interest. Here w is
given by w(z,u) := |z|? — 4iu for all (z,u) € H,.

Root graded Lie groups
Karl-Hermann Neeb

University of Darmstadt, Germany

Root graded Lie groups are (mostly infinite-dimensional) Lie groups whose Lie
algebra is root graded in a topological sense. This means that it has a grading
like a finite-dimensional simple complex Lie algebra by a finite irreducible reduced
root system A, it contains the corresponding finite-dimensional simple complex Lie
algebra, and it is generated by the root spaces. These Lie algebras are determined
up to central extensions by the root system A and a coordinate structure. Root
graded Lie algebras show up naturally in many geometric situations and also in
mathematical physics, so that it is natural to ask for corresponding Lie groups.
This problem is discussed in our lecture. We show that under natural assumptions
on the coordinate structures there always is a centerfree Lie group corresponding
to the centerfree Lie algebra for a given root system and coordinate structure.
Then one has to face the problem to construct central extensions of these groups,
which leads to interesting period maps relating K-groups and cyclic homology
of topological algebras. In particular we obtain Lie group versions of Steinberg
groups for algebras whose period maps satisfy a certain discreteness condition.
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Hilbert bimodules associated to self-similar group actions
Volodia Nekrashevych

University of Kiev, Ukraine

We will talk about the Hilbert bimodules related to self-similar actions of
groups and semigroups on the shifts of finite type. Basic examples of such groups
and semigroups are the adding machines, the branch groups (like the Grigorchuk
group), the groups related to aperiodic tilings, etc. The respective Cuntz-Pimsner
algebras will be considered. Relations with hyperbolic dynamics and Thompson
groups will be discussed.

Hierarchomorphisms of trees and combinatorial analogs
of the group of diffeomorphisms of the circle

Yuri A. Neretin

University of Moscow, Russia

Let T be an inifinite tree, Abs be its boundary. A homeomorphism ¢ : Abs —
Abs is a hierarchomorphism if there exists a finite subtree I C T such that ¢ admits
an extension to a map 7'\ I — T. A group Hier(T) of hierarchomorphisms con-
tains the R. Thompson group and the group of locally analytical diffeomorphisms
of the p-adic projective line. Properties of groups Hier(T') are similar to proper-
ties of the group of diffeomorphisms of the circle. We discuss some constructions
of unitary representations of Hier(T).

Synthesis properties of orbits of compact groups
Detlev Poguntke
University of Bielefeld, Germany

The notion of sets of synthesis is best known in the case of £!(G), G a locally
compact abelian group. With each closed ideal I in £!(G) there is associated a
closed subset of the structure space £'(G) = G, namely the hull h(I) = {x €
G | kergigyx D I}. A closed subset A of G is called a set of synthesis if there
exists exactly one closed ideal I in £!'(G) with h(I) = A; then [ is necessarily
equal to the kernel k(A) := (N, e kerzig) x of A.

This notion (or these notions) can be generalized immediately to arbitrary
Banach algebras, as soon as one agrees on the structure space to be considered.
After recalling some known results on £!-algebras of nilpotent Lie groups, mainly
where A is an orbit of a compact group acting homomorphically, we consider
algebras of the following type:
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Let K be a closed normal subgroup of a compact group L, and let ) be a
symmetric semisimple involutive commutative Banach algebra, on which L acts.
Suppose that L acts transitively on the Gelfand space Q Then one may form the
generalized L!-algebra B := L1(K, Q), which is endowed with a natural L-action.

As structure space B we take the collection of kernels of irreducible involutive
representations of B (which coincides with the set Priv(B) of all primitive ideals)
equipped with the Jacobson topology. It is shown that L-orbits in B are closed
(which is not completely obvious!), and that they are sets of synthesis. Also the
empty set is a set of synthesis, i.e., each proper closed ideal in B is contained
in the kernel of an irreducible representation. The proof, briefly scetched, is an
exercise in representation theory of compact groups.

Singular masas of von Neumann algebras:
examples from the geometry of spaces of nonpositive curvature

Guyan Robertson

University of Newcastle, Australia

If T is a group, then the von Neumann algebra VN(I') is the convolution
algebra of functions f € ¢5(I') which act by convolution on ¢5(I') as bounded
operators. Maximal abelian x-subalgebras (masas) of von Neumann algebras have
been studied from the early days.

If I" is a torsion free cocompact lattice in a semisimple Lie group G of rank r
with no centre and no compact factors then the geometry of the symmetric space
X = G/K may be used to define and study masas of VN(I'). These masas are
of the form VN(I'y), where I'y is the period group of some I'-periodic maximal
flat in X. There is a similar construction if I is a lattice in a p-adic Lie group G,
acting on its Bruhat-Tits building.

Consider the compact locally symmetric space M = I"'\ X. Assume that 7" is
a totally geodesic flat torus in M and let 'y = Z" be the image of the fundamental
group 7(7") under the natural monomorphism from 7(7") into I' = 7(M). Then
VN(Ty) is a masa of VN(I'). If in addition diam(7T™") is less than the length of
a shortest closed geodesic in M then VN(I'y) is a (strongly) singular masa : its
unitary normalizer is as small as possible. This result is part of joint work with

A. M. Sinclair and R. R. Smith.

Free Group Representations and Their Realizations on the Boundary
Tim Steger
University of Sassari, Italy
Let I' be a noncommutative free group on finitely many generators. We con-

sider unitary representations of I' which are weakly contained in the regular rep-
resentations. Equivalently, these are the “tempered” representations, those whose
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matrix coefficients are almost in /2. Let 2 be the natural boundary of I'. A repre-
sentation which acts in a certain well-defined natural way on some L?-space on )
is called a boundary representation. All boundary representations are tempered.
Conversely, if 7 is any tempered representation, there is an inclusion of 7 into
some boundary representation. Such an inclusion is a boundary realization of 7.

Consideration of examples leads to the duplicity conjecture: a given irreducible
tempered representation has at most two inequivalent, irreducible boundary real-
izations. We give the details of this conjecture.

There are lots of representations of I', and one’s intuition is that a “generic”
representation is irreducibile. However, proving the irreducibility of a specific
representation is usually difficult. In many cases, an analysis going by way of
boundary realizations works. In certain cases one can prove simultaneously that a
representation is irreducible and that it has exactly two inequivalent, irreducible
boundary realizations; in others that it has exactly one boundary realization.

We sketch the construction of a large class of examples of irreducibile tempered
representations of I'. The construction is based on vector-valued multiplicative
functions, and covers in a uniform way many of the previously studied examples.

Finally, we mention Paschke’s Conjecture: if f € ¢}(T') is of finite support,
then there are at most finitely many irreducibile tempered representations m such
that 7(f) has a nonzero kernel.

The Plancherel formula for real almost algebraic groups
Pierre Torasso
University of Poitiers, France

(joint work with M. S. Khalgui, Tunisia.)

In his lectures given at the University of Maryland during the special year
held in 1982-83, M. Duflo stated a concrete Plancherel formula for real almost
algebraic groups. We give a proof of it in the philosophy of the orbit method and
following the lines of the one given in 1987 by M. Duflo and M. Vergne for simply
connected semi-simple Lie groups.

Let G be our almost algebraic Lie group and g its Lie algebra. The main
ingredients of the proof are :

- the Harish-Chandra’s descent method which, interpreting Plancherel formula
as an equality of semi-invariant generalized functions, allows one to reduce it to
such an equality on a neighbourhood of zero in g(s), the centralizer in g of any
elliptic element s in G,

- the character formula near elliptic elements for the representations of the
group constructed by M. Duflo, recently proved by the authors : roughly speaking,
the character of a representation associated to a coadjoint orbit €2 is given, near
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an elliptic element s of GG, by the Fourier transform of a canonical measure closely
related to the Liouville measure on 2°, the set of s-fixed points in €2,

- the Poisson-Plancherel formula near peculiar elliptic elements, the one said to
be in good position. If s is such an element, this formula, generalizing the classical
Poisson summation formula, states that the Fourier transform of an invariant
distribution, which is the sum of a series of Harish-Chandra type orbital integrals
of elliptic elements in g(s), is a generalized function on g(s)* whose product by
a Lebesgue measure is a tempered complex measure supported on the set of G-
admissible and strongly regular forms contained in g(s)*.

Property (T) and harmonic maps
Alain Valette

University of Neuchatel, Switzerland

We plan to sketch the proofs of the following two results:

Theorem 1 (Y. Shalom, unpublished). Let G be a simple Lie group with finite
centre, and maximal compact subgroup K. If G does not have property (T), then
there exists a Hibert space-valued, non constant harmonic map G/K — H which
is equivariant with respect to an action of G on ‘H by affine isometries.

Theorem 2. For G = Sp(n,1) with n > 2, every harmonic G-equivariant
map G/K — 'H is constant.

The proof of Theorem 2 is based on recent ideas of M. Gromov. Altogether,
these two results provide a new, geometric proof of property (T) for Sp(n, 1).

Xk ok ok skk

Harish-Chandra decomposition of Banach-Lie groups
Harald Biller
University of Darmstadt, Germany
The Harish-Chandra decomposition, a construction principle for unitary rep-

resentations of semi-simple Lie groups on Hilbert spaces of holomorphic functions,
is generalized to certain linear Lie groups of infinite dimension.
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Haagerup property and spaces with walls
Pierre-Alain Chérix

University of Geneva, Switzerland

In the late seventies Haagerup proved that the length function associated with
a free generating system of a non abelian free group is conditionnally negative
definite. The existence of such a proper conditionnally negative definite function
is one possible definition of Haagerup property. In the eighties, many different def-
initions of that property were introduced and were proved to be equivalent. Later
Haaglund and Paulin introduced the notion of space with walls and of groups
acting properly on such spaces. With Valette, they proved that a group acting
properly on a space with walls has Haagerup property. The result of Haagerup
can be translated directly in that context. It seems natural to ask whether the
converse is true or not. In a joined work with Martin and Valette, we introduced
a generalized notion of mesured space with walls and we proved that for count-
able groups,the converse is true. Namely, a countable group which has Haagerup
property is acting properly on a measured space with walls.

Unitary duality, weak topologies and thin sets
in locally compact groups

Jorge Galindo

University Jaume I de Castellon, Spain

Let G be a locally compact group with sufficiently many finite-dimensional
representations (i.e. a MAP group). A general (probably exceedingly general)
question is to what extent its finite-dimensional representations can be used to
understand G.

In this talk we shall discuss some of the well-known cases of groups strongly
determined by their finite-dimensional representations, such as Abelian or Moore
groups, and some obstructions to a general theory, represented by van der Waerden
or Kazhdan groups. The discussion will be based on unitary dualities, Bohr
compactifications and thin sets as ways to relate a group to its finite-dimensional
representations.

Turning to concrete results, we shall sketch joint work with Salvador Hernandez
characterizing the existence of Bohr compact subsets in a locally compact group
G (that is, sets that are compact in the Bohr compactification bG of G) by means
of the existence of Ip-sets in the sense of Hartman and Ryll-Nardzewski (a set
A C G is an Iy-set if every complex-valued function on A can be extended to an
almost periodic function on G). This will be essential in proving that a locally
compact group has no infinite ly-sets if and only if it has at most countably many
inequivalent irreducible finite-dimensional representations. A similar approach
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will be used to show that discrete goups always contain infinite weak Sidon sets in
the sense of Picardello (a subset A of a locally compact group is a weak Sidon set

if every complex-valued function on A can be extended to a function belonging to
B(G), the Fourier-Stieltjes algebra of G).

Fourier inversion on rank one compact symmetric spaces
Francisco Gonzalez

University of Lausanne, Switzerland

Conditions for the pointwise Fourier inversion of K-invariant functions using
Cesaro means of a given order are established on rank one compact symmetric
spaces G/ K.

Spectral decomposition and discrete series representations
on a p-adic group

Volker Heiermann

Humboldt University, Berlin, Germany

Topic of my talk will be the proof of a conjecture of A. Silberger on infinitesimal
characters of discrete series representations of a p-adic group GG. More precisely, I’ll
show the following: a cuspidal representation ¢ of a Levi subgroup L corresponds
to the infinitesimal character of a discrete series representation of G, if and only
if o is a pole of Harish-Chandra’s p-function of order equal to the parabolic rank
of L. The proof is by a spectral decomposition starting from a Fourier inversion
formula analog to the Plancherel formula. This formula has been established
previously in |Une formule de Plancherel pour les éléments de l'algébre de Hecke
d’un groupe réductif p-adique, Comm. Math. Helv. 76, 388-415, 2001]. The
results take part of my Habilitation thesis.

Integral Geometry and hypergroups
Grigori Litvinov

International Sophus Lie Center, Moscow, Russia
(The corresponding results are joint with M.I. Graev).

It is well known that the Radon Transform is closely related to the Fourier
transform and harmonic analysis on the group of real numbers (or the additive
groups of vectors in a finite dimensional real linear space). Similarly there are
relations between some standard problems of Integral Geometry (in the sense of
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Gelfand and Graev) and some commutative hypergroups (in the sense of
J. Delsarte) and harmonic analysis on these hypergoups. This result can be
treated as an answer for an old I.M. Gelfand’s question on algebraic foundations
of Integral Geometry.

Théorie des représentations et K-Théorie
Nicolas Prudhon

University Louis Pasteur, Strasbourg, France

Dans cet exposé, nous nous intéresserons aux liens entre la K-théorie des C*-
algébres associées aux groupes de Lie semi-simples et I la théorie des représenta-
tions de ces groupes.

Nous rappellerons tout d’abord quelques notions concernant la K-théorie des
C*-algébres, puis nous expliquerons comment calculer la K-théorie de la C*-
algebre réduite C*(G) d’un groupe de Lie semi-simple connexe G, via ’application
d’indice de Connes-Kasparov, I'induc- tion de Dirac

1 R(K) — K.(CHG))

ou K est un sous groupe compact maximal de G. Celle-ci est un ismorphisme,
comme 'ont démontré A. Wassermann puis V. Lafforgue. Nous expliciterons sur
I'exemple de SL2(R) le lien avec la théorie des séries discrétes. Ces résultats sont
T rapprocher avec ceux de Atiyah-Schmid sur la construction des séries discrétes
sur le noyau L? d’un opérateur de Dirac.

Pour finir, nous nous intéresserons au calcul de la K-théorie de la C*-algébre
maximale C*(G) d’un tel groupe G. Nous verrons que lorsque le groupe posséde
la propriété T' de Kazhdan, la K-théorie de cette C*-algébre est différente de celle
précédemment étudiée en ce sens que la représentation réguliére

\: CHG) — C*(@)

n’induit pas un ismorphisme en K-théorie (alors que c’est le cas par exemple pour
SLy(R)), et nous verrons comment la propriété T est "détectée" par I'induction
de Dirac.

Property (T) and exponential growth of discrete subgroups
Jean-Francois Quint
ENS Paris, France

We recall the definition and properties of the indicator of growth of a discrete
subgroup of a semisimple Lie group. In case the ambient Lie group has real ranq
greater than 2, we apply results of H. Oh, related to property (T), to give controls
on the indicator of growth.
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