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Abstract
The first section of this paper gives the construction of an explicit contracting homotopy of the Chevalley-Eilenberg
resolution of any Lie algebra g over a ring containing the field of rational numbers. In the second section, this homotopy
is used to define a functorial quasi-inverse to the antisymmetrization map of Cartan and Eilenberg. More precisely, it is
shown that the Chevalley-Eilenberg (co)chain complex of g is a deformation retract of the Hochschild (co)chain complex
of its universal enveloping algebra.

Notations

1 A contracting homotopy for the Chevalley-Eilenberg resolution

1.1 Convolution, Cofree coalgebras and coderivations

Definition 1.1.1. Let (A, u) be an graded algebra and (C,A) be a graded coalgebra in the category of graded modules over
some commutative graded ring U equipped with the graded tensor product ®u. Then the graded module Homy,4-(C, A) of
graded U -linear morphisms from C to B (internal Hom) can be endowed with a graded associative composition product *,
called convolution product, defined by
frgi=po(f®g)oA

for all f and g in Homy (C, A).

Let R be a commutative ring, (C,€) be a cocommutative counital coalgebra in the category of graded R-modules, and
V a graded R-submodule of C. Denote by A : C' — C ®g C the coproduct of C, € : C — R its counit.

Definition 1.1.2. [Qui69] C is said to be connected if there exists morphism of coalgebras n: R — C' such that en = Idgr
and C := C/Imn is a conilpotent coalgebra.

Assume that C is connected. C is said to be cofreely generated by V if there exists a morphism of graded R-modules
p: C =V such that for every connected graded R-coalgebra D and every morphism of graded R-modules f : D — V, there
exists a unique morphism of coalgebras f : D — C' such that the following diagramm

p—1sc

N

commutes.
Denote by |z| the degree of an homogenous element in V.
Proposition 1.1.3. [[Qui69], appendix B.] Let V be a graded R-module.
e Two cofree connected cocommutative coalgebras cogenerated by V' are isomorphic.

e Moreover, one of them is given by the connected cocommutative coalgebra proj : S,V — V, where S,V is the quotient
of the (graded) tensor algebra T.V := @©,>0V®R™ by the ideal generated by relations of the form xQy— (—1)|Z‘|y‘y®$.
SV is a graded commutative algebra and can be equipped with a graded cocommutative coproduct A : S,V —
SV ®r S«V turning it into a Hopf algebra such that every element in V. C S,V is primitive. The projection
morphism proj : S.V — V is induced by the canonical projection of TV on its length 1 term.

o In particular, the unique morphism of coalgebras f : D — C lifting a given linear map f : D — V, where D is any
connected cocommutative coalgebra, can be defined thanks to convolution in Homg(D, S.V') (see via

fimep () =D L

with f*0 := ne.



Definition 1.1.4. Let (C,A) be a graded coalgebra, and ¢ : C — C be an endomorphism of coalgebra. A coderivation
of C along ¢ is a morphism d : C — C such that

Aod=(¢pRd+d®¢p)o A

When ¢ = Idc, we simply say that d is a coderivation.
Proposition 1.1.5. [[Qui69], appendix B.] Let d : S.V — V be a graded R-linear map. Then
e There exists a unique coderivation d : S,V — S,V along ¢ such that d = proj o d.
e d is given by d := d x ¢.
Proposition 1.1.6. Let ¢ : C — C and ¢ : C — C be two coalgebra endomorphisms of a given graded R-coalgebra C,
and d (resp. D) be a coderivation of C' along ¢ (resp. along v). Then
e Y od is a coderivation of C along i o ¢.
o Suppose that ¢ o =1 o ¢. Then the graded bracket

[d,D]:=doD —(=1)"""IDog

is a coderivation of C along ¢ o 1.

1.2 The Chevalley-Eilenberg resolution

Let L be a Lie algebra over some commmutative ring R of characteristic 0 with Lie bracket [—, —] : LAr L — L (Here Agr
stands for the exterior product of R-modules). Denote by UL its universal enveloping algebra, that is the algebra obtained
by quotienting the tensor algebra T'L := @,,>0L®" by the ideal generated by relations of the form ¢ ® ¢’ — ¢’ ® g — [g, ]
when g and ¢’ run over L. The product of two elements x and y of UL will be written zy. Recall that UL can be endowed
with

e a comultiplication A : UL — UL ®r UL determined by saying that every element of L. C UL is primitive,

e a counit € : UL — R and a unit n: R — UL, both induced by the canonical ones of T'L,

e an antipode S : UL — UL which is the only algebra antimorphism such that S(g) = —g for all g in L,

turning it into Hopf algebra (for a brief account on the Hopf algebra structure on UL, one can for instance consult [Kas93]).
Following [1.1.1} this Hopf algebra structure gives rise to a convolution product * on Endr(UL), the R-module of
linear endomorphism of UL, such that
frh:=p(f@h)A
for all f and h in Endr(UL), where p denotes the associative product of UL.

Definition 1.2.1. [Lod94], [Lod08], [Reu93|, [Lod98] The first eulerian idempotent of L is the R-linear endomorphism
pr: UL — UL defined by _

1) wit1

= Id —

pri=_ S (1d = ne)

i>0

—

Theorem 1.2.2. [Poincaré-Birkhoff-Witt] The first eulerian idempotent pr takes its values in L. Moreover, (UL, pr :
UL — L) is a cofree connected cocommutative coalgebra cogenerated by the R-module L.

Proof. The fact that pr takes its values in L is proved for instance in [Reu93]. To our knowledge, Quillen was the first to
notice in [Qui69] that the symmetrization map
sym: SL —- UL

sending a monomial g - - - g, in S™ L to its symmetrization dezn Jo(1) " * " Go(n) in UL is an isomorphism of cocommutative
coalgebras, which has for immediate consequence that UL is cofree cogenerated by L. The fact that the projection of
UL on its cogenerators is given by the first eulerian idempotent pr, defined this time as the multilinear part of the BCH
formula, is established in [Reu93| in the case when L is a free Lie algebra (which implies the general case) and an explicit
formula for it is given. More general formulas are given in [Hel89] and the definition of pr in terms of convolution seems
to appear in [Lod94] for the first time (see also [Lod98|). A more general formulation of the universality of the eulerian
idempotent in the framework of triple of operads is developped in [Lod08].

We give here a self-contained proof of theorem mainly based on ideas present in [Hel89] and [Lod94]:

Suppose that L = Lie(V) is the free Lie algebra generated by a K-module V. Then, using the universal property
characterizing U L, one sees that UL = TV, the free associative algebra generated by V', which is endowed with the shuffle
coproduct A : TV — TV ® TV, turning it into a Hopf algebra.

Clearly, the Lie subalgebra Prim(T'V') of primitive elements of TV satisfies

Lie(V) C Prim(TV)



The reverse inclusion also holds: this is Friedrichs’ theorem, a short proof of which can be found in [Wig89]. Thus, the
inclusion of Lie(V) in TV factors through an isomorphism on Prim(7T'V):

Lie(V) = Prim(TV) C TV

But clearly
(Id—ne)**(z)=0 ,k>2
for any primitive element = in TV, which implies that pr is the identity on Lie(V). Moreover, pr is a coderivation along
ne, i.e.
Aopr=(pr®ne+ne®pr)oA
which shows that O

Proposition 1.2.3. [Eulerian idempotents] For all k and | in N

1 a_ [ APt ifk=1
Pt opt _{ 0 ifk#l

Notice that L can be seen as a graded R-module concentrated in degree 0. When V = {V;};>¢ is a graded module,
denote by V1] the shifted module whose degree ¢ component is V[1]; := Vi_1.

Definition 1.2.4. The Chevalley-Filenberg resolution of L is the chain complex of R-modules C.(L) := UL ®r SL[1]
with differential d : Ci(L) — Cy—1(L) of degree —1 defined by

n
d(x®g1/\~~~/\gn)::Z(_l)”'lxgi@gl/\.../\gi/\..,/\gn

i=1
D ()M e @i A ANgi gl A NG A Agn
i<j
for allz in UL and g1,..., gn in L, where §g; means that g; has been omitted.

Remark 1.2.5. When V = {V,,}n>0 is a graded module concentrated in degree 1, we will always identify S,V with the
n-th exterior power A"V;.

Proposition 1.2.6. Define PR : C.(L) - L®r R® R®g L[1] = L & L[1] by
PR :=pr ® ¢ 4+ € ® proj

Then (C«(L),PR) is a cofree cocommutative connected (graded) coalgebra generated by L & L[1]. Moreover, the differential
d is the unique coderivation generated by

d:C.(L) — L&lL[]
r®y + pr(zprojy)+ e(z)B(y)

for allz in UL and y in S« L[1], where B : S.L[1] — L[1] coincides with the Lie bracket in degree 2 and is zero elsewhere.

Let g be a Lie algebra over a commutative ring K containing Q, and denote by g[t] the K[¢]-Lie algebra g ®x K[t]. An
element of g[t] is just a polynomial expression in ¢ with coefficients in g. We have obvious isomorphisms

U(glt]) = Uglt] := Ug ®xk K[t]

and
Ci(g[t]) = Cu(9)[t] := Cu(g) ®x K[t]

Moreover, “formal integration on [0,1]” gives a K-linear map Ijo1; : K[t] — K, sending each t™ to %H’ providing a
morphism of chain complexes

which behaves with respect to “formal derivation” 4 : t" +— nt"~! as in the usual real case. The inclusion K C K[¢]

dt -
induces an inclusion of chain complexes
Ci(g) = Cu(0)t]

Given a K-module V, V[t] will always denote the K[t]-module V ® K[¢t], and K[t]-linear morphism from V[t] to some
other K[t]-module will always be defined on V' and extended to V[t] by linearity. Note that all previous considerations can
be easily generalized to the case when one replaces K[t] by K[t1, t2, - - - ,ts], the algebra of polynomials in n indeterminates
t1, t2, ..., tn. From sequel, ® will always mean ®Rx.



Notation 1.2.7. We’ll make an intensive use of Sweedler’s notation to write iterated comultiplications in cocommutative

coalgebras:
SV er@ . oo™
(=)
will stand for
(AQId® ") o (A®Id® ") o.. 0 (A®Id) o A(x)
Definition 1.2.8. Define two K[t]-linear maps ¢, : Ug[t] — Uglt] and A; : Ug ® g[t] — Ug[t] by

tk *k
t = Z Epr

k>0

and
Ai(z,9) = Au(z = "¢ 1(aM)pu(®g)
(€))
for all x in Ug and g in g.

Proposition 1.2.9. e As endomorphisms of Uglt1,t2] := Ug @k K[t1,t2]:
Gt © bty = Ptyty

and
Pty * Pty = Pty +1
e A, takes its values in g[t] i.e.
At(xvg) € g[t]
for all x in Ug and g in g.
o % = ¢, x pr as a K[t]-linear endomorphism of Uglt].
Definition 1.2.10. Define K[t]-linear morphisms of graded modules a; : Ci(g)[t] = Cx(g)[t] and by : C(g)[t] = Cut1(9)[t]
by
a(x®@ gL N Agn) = Zd)t(x(l)) @ Ae(z® gy A A A2 gn)
(z)
and
bi(x®@g1 A Agn) = Z pe(zM) @ pr(z@) A Au(2® g1) A A A2 )
(z)
Proposition 1.2.11. a¢ is an endomorphism of coalgebra and by is a degree +1 coderivation of C.(g)[t] along a:.
The following theorem implies that the Chevalley-Eilenberg resolution is indeed a resolution:

Theorem 1.2.12. The degree 1 K-linear map s : Cy(g) — Cuy1(g) defined by
s:=Iob;
is a contracting homotopy of the chain complex (C.(g),d).
Proof. The theorem is a direct consequence of the three following facts:
° jtat is a coderivation along a:: Proposition asserts that a; is a coalgebra endomorphism i.e.
Aar = (ar ® ar) A

Thus

d d d d d
Aaat d—Aat =5 —(ar ® ar)A = (@at ®ar+ar ® d—at)A

which exactely means that < Z;a¢ is a coderivation along a;.

e Proposition|1.2.11| (resp. |1.2.6|) tells us that b, (resp. d) is a coderivation along a; (resp. the identity map of C.(g)[t])-
By proposition [1.1.6] since the identity map obviously commutes with a¢, the graded bracket [d, b;] = db; + bid is a
coderivation along a:.

e The two preceeding coderivations are equal:

d
dby + bud = —-au (1)

As both sides of this equation are coderivations along a, propositions [I.1.5] and [1.2.6] imply that all we need to check
is wether their postcompositioms by PR are equal. Since PR vamshes on Ug ® S>29[1], we can restrict to length
lower than 2. Let z be an element of Ug and g be in g:

(dbe + brd) () = > ¢(z)pr(a®) = ¢  pr(x)
@



But the last point of proposition 9| tells us that - d 4, = ¢ » pr so that
d d
PR(db; + bed)(z) = pr(aqﬁt(az)) = PRaat(a:)

which proves that holds in length 0. For length 1, we have, thanks to the cocommutativity of the coproduct and
the properties of ¢; listed in proposition [[.2.9}

(dbe + bid)(z @ g) = ¢ue(a)pr(a®) @ A (2, g) — () A (2®), g) @ pr(=®)
(z)
— ¢e(@™) @ [pr(@®), A (2, 9)| + Y ¢e((29)) @ pr((g)®)

(zg)
d
=Y Lol @ 4, ) + 1) @ pra®g) - 3 6 @ [pr(e®), Ai(e ), g)
() ()
But for any y in Ug
d
A w9) = =D o)Ay 9) + Doy ((wg) pr((wg) )

(v) (y)

== (™), A(y®, 9)] + pr(yg)
(v)

Thus

d
(dbe +bid)(2® 9) Zdt¢ (21 ® A2, g) + 61 © 7 Au(2®, g)

d
=z )

which obviously implies the desired equality by applying PR.
Finally, we have

sd + ds = I(byd + dby) = 1%

on Ci(g) C Ci(g)[t]. O

ar = a1 —ap = Idc*(g)

1.3 The Koszul resolution

The Chevalley-Eilenberg resolution of Ug enables one to build a new chain-complex, this time consisting of Ug-bimodules:

Definition 1.3.1. The Koszul resolution of Ug is the complex of Ug-bimodules CK.(g) defined by
CK.(g) :==Ug ® S.g[1] ® Ug

with differential d¥ : CK.(g) — CK._1(g) defined by

n

dK(1®g1/\---Agn®1)::Z(—l)”l( QPN AGA - AGn@L=1R G A AGi A Agn @ gi)

+ D TR a A Algn gl A AG A Aga @]
1<i<j<n
for all g1, g1, ..., gn N g.
Proposition 1.3.2. The degree +1 map h : CK.(g) — CK.11(g) defined in degree n by

h(z@gi A Ngn @y) : Z/ dt go(a'V) @ pr(e®) A A(@, gi) A A A@ " g0) @ dro (2 )y
()
for all z, y in Ug and g1, g1, ..., gn in @, is a contracting homotopy.
As a corollary, we recover the well known following fact (at least when g is free over K):

Corollary 1.3.3. If g is projective over K, the Koszul resolution of Ug is a projective resolution of the Ug-bimodule Ug
via the product map
CKo(g) =Ug®* — Uy
rR®Y = Ty



2 An inverse to the antisymmetrization map

In this section, we drop the symbol Z in Sweedler’s notation of iterated coproducts so that
()

will stand for

2.1 The antisymmetrization morphism F,

Definition 2.1.1. The bar resolution of Ug is the complex of Ug-bimodules B.(Ug) defined in degree n by
B,(Ug) := Ug ® Ug”" ® Ug

with differential d® : B.(Ug) — B._1(Ug) defined by

n—1
d?(a < x1| - |xn > b) i=az1 < o] |Tn > bJrZ(fl)ia < x| |ximiga| o |on >0
i=1

+ (71)”’@ < (L'1| R ‘mnfl > xnb
foralla, b, 1, ..., xn in Ug. The notation a < x1|---|zn > b stands for the element a @ 1 ®@ -+ @ T @ b in B, (Ug) =
Ug® ™2 and 1 < z1|---|zn > 1 will be abbreviated in < x1|--- |, > in the sequel.

Proposition 2.1.2. If g is projective over K, the bar resolution defined above is a projective resolution of the Ug-bimodule
Ug via the same map as CK.(g).

Definition 2.1.3. The antisymmetrization map F. : CK.(g) — B.(Ug) is the morphism of graded Ug-bimodules defined
in degree n by

Fol@gi A Ngn®1):= Z sgn(o) < goy| - 19o(n) >
oEX,

forall g1, ..., gn in g, where X, denotes the n-th symmetric group and sgn(o) stands for the signature of a permutation o.

Theorem 2.1.4. [Cartan-Eilenberg] Suppose that g is projective over K. Then, the antisymmetrization map Fy :
CK.(g) — B.(Ug) defined above is a morphism of projective resolutions of the Ug-bimodule Ug over the identity map
Idyy : Ug — Ug.

Denoting by Ug°? the opposite algebra of Ug, this implies that

Corollary 2.1.5. For any Ug-bimodule M, the map Idy @ Fi : M Qugouger CKy(g) = M Qugguger B«(Ug) s an homotopy
equivalence of chain complezes.

2.2 Building a quasi-inverse to F,

Definition 2.2.1. Let G. : B.(Ug) — CK.(g) be the unique morphism of Ug-bimodules defined by induction on the
homological degree via
Go :=1d : Bo(Ug) = Ug®* — CKo(g) = Ug®?

and

Gn(1 <z1]--|2n > 1) := hGp1d® (1 < z1|--- |20 >1) , n>0 (2)
for all x4, ..., xn in Ug.
Proposition 2.2.2. The map G. : B«(Ug) — CK.(g) defined above is a morphism of resolutions of Ug over the identity
map Idyg : Ug — Ug.
Thanks to the explicit formula defining h, one can get rid of the induction in definition
Theorem 2.2.3. The morphism of resolutions G : B«(Ug) — CK.(g) defined above satisfies

Gn(Kz1] |20 >) :/dtl- -dty, Fn(ng)- ozl ®B,1L(x§2,)- oz PYA A Bﬁ(xgrﬁ-l}, xslnﬂ)) ® SFn(xY:J-r??, x&"+2))x§"~f3>x$”+3)

(0,1]™
_ (3)
for all x1, ..., &, in Ug. Here, Ty, : Ug®™ — Uglt1,--- ,ts] and BL : Ug®™ — Uglt1,--- ,tn], 1 < i < n are the operators
defined by
Pn(yn, s yn) 1= ¢, (Y101, (Y2015 (Y3 -~ D, (Yn) -+ +)))



and T
Bi =Ty i) )

for all y1, ..., yn in Ug.

Proof. Define G,, to be the K[t1,- -, tn]-linear map equal to the integrand under f -+ dty, of the right-hand side of
. We have to prove that for all n, G,, = f[o 1yn -, dtnGy. Since both are blmodule maps that coincide in degree
zero, we only have to check that the f[o 1]" - dty, Gn’s satisfy the induction relation on elementary tensors of the

form < x|+ |zn >
Lemma 2.2.4. For everyn > 0 and y1, ..., Yyn, y n Ug,
hG(<yil-++lyn >y) =0
where it is undersood that h has been extended to Cpn(g)[t1, - ,tn] by Klt1, - ,tn]-linearity.
Proof of lemma[2.2.4) Let h: : Cu(g)[t1, -+ ,tn] = Ci(9)[t,t1,- -« ,tn] be the K[t1,- -+ ,¢n] linear map defined by
he(@® g1 A+ Agn @b) := de(a™) @ pr(a®) A Ae(@®, g1) A A A(@" ), gn) @ pr-e (@)D
for all a, b in Ug and gi, ..., g» in g, so that
1
hGp, :/ dt heGp

0

on Ci(g)[t1, - ,tn]. We have
hiGin(<yal -+ lyn > ) =he (Ta(y oy @ BLYE: - y@) Ao A BRI g0 ) @ ST ("2 i 2 )y 2y )

= oyl yl ) @ pr (Tu - ) A A (T y?) Bry P ) A

A A, (Pn(y§2n+.1_). y(2"+1))7BZ(yg%T-Q-)yyan))) ® ¢1_+(T (y§2n+3) ,y,(z2"+3>))SFn(y§2"T-4-)~ y(2n+4))y§2n+5.)“y7(12n+5)

) 1IN ) yJIn

But for all 21, ..., 2, in Ug, the identities of proposition [[.2.9] imply that

or,
At (Fn(zgl)7 U 7221))7 BTIL(Z:(12>7 e 72512))) :¢—i(Fn(zil)a T 21)))¢1(87tl(2§2>, T 512)))
—tpr(Ta(zr, -, 20)

Thus, we see that by cocommutativity of the coproduct of Ug, htén(< y1| -+ |yn > y) is invariant under the transposition

that exchanges its first and second wedge factors, which implies that it must be zero.
O

We are now ready to prove that the f[o 1 by - dtn,Gr's satisfy the induction relation l} Indeed, the preceeding

lemma implies that all terms but the first of dB(< T1, 0, Tp >) =21 < T2| - |Tn >+ are sent to zero under heGhn_1.
Writing G! 1, T _1 and BY_, for the operators Gn_1, I'n_1 and B!_; where the variables ¢1, ..., tn_1 have been changed
to 2, ..., tn, One gets

hey G 1dP (< x| - @0 >) =hey Gy 1 (21 < 22| -+ |20 >)
= ¢t1($gl)riz—1($glv) ',ﬂfgzm)) ® pr («’552)1‘21—1(9722)»"' ’xglz))) A Agy ( S)Fn 1 (23 ) 55513)):3;1—1(9953)' : ‘7$£z4>)) A
A A, (x§"+2)F;_1(mé2?~+~1-) 7:57(12n+1))7B;Ln:11 (xéQ?iQ), mglzn+2))) ®
® 1y ()" (g ) STy (@57 a2t
Since, for all z1, ..., 2z, in Ug and ¢ in {1,--- ,n — 1} the following identities hold
o ¢ (21T 1(22,--+ ,20)) = Tnlz1,- -, 20),
o pr(ziln1(z2,+,2n)) = Bala1, -, zn),
o Ay (zlrn 1(2512 L2, Bl (252,) ,zg))) =Bt (21, , 2n),

o P14, (zlfﬁl,l(zél), 2SIy (zéz,) L2 = SFn(zil), 2o, ,zn)zf),



this leads to

hey G _1dP (< z1| - @ >) = Gu(< 21| - |20 >)
Thus, by an obvious change of variables, we get that
/ dti - dtn Gu(<x1] |20 >) :/ dty---dty by G 1dB (< z1]- - | zn >)
[0,1]™ [0,1]™

Zh/ dtl"~dtn_1én_1dB(<(L'1|'--|ZEn >)
[0

S

which proves that the right-hand side of satifies the induction relation and concludes the proof of theorem m
O

As a consequence of theorem [2.2.3] and proposition [2.2.2] we have the following
Corollary 2.2.5. For any Ug-bimodule M, the pair of maps

Idp @ Fx
P
M Qugguger B« (Ug) Tn ®Cn M Qugeugor CK+(g)

is a deformation retract of chain complexes.

Note that the preceeding corollary means that G o Fi = Idck, (g), which follows easily from the properties of the
eulerian idempotent and the B;,’s, and that there exists a graded map of Ug-bimodules H, : B,(Ug) — B.4+1(Ug) of degree
+1 such that

H.od” +d° o H, = F, 0 G, — 1dg, (1),

with the convention B_;(Ug) := {0}.

If the existence of H, is a consequence of the fundamental lemma of calculus of derived functors, one may ask for an
explicit formula for it, in view of further applications. It turns out that once again, the answer relies on the knowledge of
some explicit contracting homotopy. Let us first recall the following standard result:

Definition-Proposition 2.2.6.
1. The degree +1 graded K-linear map h® : B.(Ug) — B.y1(Ug) defined in degree n by

RP(a < x| - |@n > b) =1 < al|z1]| - |zn > b

forall a, b, x1, ..., zn in Uy, is a contracting homotopy of the bar resolution B, (Ug).

2. Moreover, the graded map h : B.(Ug) — Ba..1(Ug) defined from h® by
h:=hPodPoh®,
is still a contracting homotopy of B.(Ug), which satisfies in addition the gauge condition
R =0

Definition-Proposition 2.2.7. Let H. : B.(Ug) — B.4+1(Ug) be the unique graded endomorphism of Ug-bimodule of
degree +1 defined by induction on the degree n via

Hy :=0: Bo(Ug) — B1(Ug)
and
Hpsi (< @]+ 2nsr >) i= ho (Fas1Gnir — 1, (wg) — Hnd®)(< 21|+ [@n41>) , n>0 (4)
for all x1, ..., xn in Ug. Then H. is a homotopy between Fi.Gx and Idp, (vg)-
Proof. Let us prove that H, satisfies
Hno1d® +d°H, = F,Gn —1dp, @y ,n>0 (5)

by induction on n. For n = 0 we have
FoGo — Idgy g = 0 = d” Hy.



Assuming that is true for all 0 < n < k, using that dPh+ hd® =1d in strictly positive degrees, we get

d® Hypr (< o1+ |z >) =d°h(Frs1Grar — g, (wg) — Hred®)(< 1]« |zrgs >)
=(Fe41Grpr — 1dp, 0y — Hrd®)(< 1]+ [2hgn >)
— hd® (Fri1Gri1 — 1dp, ,, (vg) — Hed®)(< 21+ |2pg1 >)
But, because F. G+ is an endomorphism of chain complex and thanks to the induction hypothesis:
d® (Fry1Gri1 — I, (vg) — Hed®) = (FiGy, — ldp, () — d° Hy)d® = Hy—1(d")* =0
Thus

A" Hyir (< @]+ |21 >) = (Fer1Grn — g, wg) — Hrd®)(< @1 -+ [@hs >)

which proves that is true for n = k + 1, when applied to tensors of the form < z1|---|xr+1 >. As both sides of are
morphisms of bimodules, this implies that they have to coincide on the whole Byt1(Ug).
O

One could ask why, in the preceeding proposition, we have used h® instead of h to define the homotopy H., since
the proof doesn’t involve the gauge condition h?> = 0. This choice of particular contraction is in fact motivated by the
following result:

Proposition 2.2.8. Denote by C. : B.(Ug) — B.(Ug) the endomorphism of graded bimodule F.G. — Idp, (). The
homotopy H, defined in[2.2.7] satisfies

n—1

Hy(< 1| Jon >) =Y (1) h(@i(h(wa - h(@i 1 hCoisa (< @il -+ |10 >)) ) (6)
i=1
for all z1, ..., xn in Ug.
Proof. Let H, : B.(Ug) — B.11(Ug) be the degree +1 endomorphism of bimodule defined by the right hand side of @
on tensors of the form < zi|---|xn >.
_As dB(< x| |zn >) =x1 < 22|+ |¥n > +R, where R is a sum of tensors of the form < ya|---[yn > yn+1 on which
h o H,_1 vanishes because h? = 0, we see that

h(Cn — Hy 1d®) (< 21|+ |2n >) = hCn(< 21|+ |20 >) — h(z1Hp 1 (< o] -+ @0 >)) = Ho(< z1] - -+ |0 >)

which proves that, as H., H., satisfies the induction relation . Since Hy = Hy = 0, they have to coincide on the whole
B..(Uy). O
Corollary 2.2.9. For all xz in Ug,
1
Hi(<az>) = / dt < ¢ (zV)pr(z®) > dr_o(@®) — < o>
0

Proof. Let x be an element of Ug. Then
Hy(< x>) =hCi(< z >)

1
=hPd®n® </ dt ¢ () < pr(@@) > ¢, (2®) — <z >)
0

:hB(/l dt §:(zV) < pr(a®) > g1-e(@P) = < gi(@)pr(@?) > ¢1-4(2P)+ < ¢u(2) > pr(z®) g1 (=)
0

—<1>w)

1 1
=h? (/ dt ¢ (V) < pr(z?) > ¢1_(zP) 7/ dt% (< de(zM) > ¢1—z($(2))) -<1> x)

0 0

1
:/ dt < ¢z pr@®) > ¢1-1(c®) — <1z >
0

O

Remark 2.2.10. In fact, hBC) = RC1 so choosing h? instead of h in the definition of H. would have led to the same
result in degree 1. This doesn’t seem to be true any longer in higher degrees, and it is not clear whether a compact formula
like (@ could be obtained without the gauge condition.



Appendix A The Poincaré-Birkhoff-Witt theorem
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