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STOCHASTIC FLOWS AND AN INTERFACE SDE ON
METRIC GRAPHS

HATEM HAJR AND OLIVIER RAIMON

ABSTRACT

We study a stochastic differential equation (SDE) driven by a finite
family of independent white noises on a star graph, each of these white
noises driving the SDE on a ray of the graph. This equation extends
the perturbed Tanaka’s equation recently studied by Prokaj [16] and Le
Jan-Raimond [I1] among others. We prove that there exists a (unique
in law) coalescing stochastic flow of mappings solution of this equa-
tion. Our proofs involve the study of a Brownian motion in the two
dimensional quadrant obliquely reflected at the boundary, with time
dependent angle of reflection. Filtering this coalescing flow with re-
spect to the family of white noises yields a Wiener stochastic flow of
kernels also solution of this SDE. This Wiener solution is also unique.
Moreover, if N denotes the number of rays constituting the star graph,
the Wiener solution and the coalescing solution coincide if and only if
N = 2. When N > 3, the problem of classifying all solutions is left
open. Finally, we define an extension of this equation on more general
metric graphs to which we apply some of our previous results [7]. As a
consequence, we deduce the existence and uniqueness in law of a flow
of mappings and a Wiener flow solutions of this SDE.

1. INTRODUCTION AND MAIN RESULTS

In [16], Prokaj proved that pathwise uniqueness holds for the per-
turbed Tanaka’s equation

(1) dX; = sgn(X;)dW} + \dW}?

for all A # 0 where W' and W? are two independent Brownian motions.
When A = 1, after rescaling, setting W+ = Wl\g‘ﬂ and W~ = %,
() rewrites

(2) dX; = 1{Xt>0}th+ + I{tho}dVVt_.
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Using different techniques, the same result in the case of (2]) has been
obtained also by Le Jan and Raimond [I1I] (see also [4], [I4]) and they
proved in addition that (2)) generates a stochastic coalescing flow. In-
tuitively, a solution to (2]) is a Brownian motion that follows W on
its positive excursions and follows W™ on its negative excursions. In
this paper, we first consider the analogous SDE on a star graph (by
a star graph, we mean a finite number of pieces of R, in which all
origins are identified). It is clear that a solution has to be a Walsh’s
Brownian motion on the graph. But it is less clear when it is a strong
solution and what are the flows solving this SDE. In this paper, we
give a complete answer to the first question and a partial answer to
the second one. Then we extend this SDE and these two questions to
more general metric graphs : To each edge of the graph is associated
a Brownian motion (such that the family of these Brownian motions
is independent) and the SDE considered here is such that if X is a
solution, then X is a Walsh’s Brownian motion which, when moving
on some edge, follows the Brownian motion associated to this edge.

1.1. Notations.

e If M is a locally compact metric space, Cy(M) and Cy(M) de-
note respectively the set of bounded continuous functions on M
and the set of continuous functions on M vanishing at co.

e For N > 2, a star graph with N rays is a metric graph G with
origin denoted by 0 and N edges (E;)1<i<y such that E;NE; =
{0} if ¢ # j and for each i, E; is isometric to [0, 00| via a
mapping e; : [0,00[— E;. Define ~ the equivalence relation on
G by x ~ y if there exists ¢ such that both x and y belong to FE;,
and when it is not the case, we use the notation z ¢ y. Let d be
the metric on G such that if x = e;(r) then |z| ;== d(z,0) = r, if
v~y then d(x,y) = [[y| — [¢]] and if x £ y. d(z, ) = || + |o].
We equip G with its Borel o-field B(G) and use the notations
Er = E;\ {0} and G* = G \ {0}.

e Fix N > 2 and py,...,py > 0 such that Zij\iﬂ?i =1 Let G
be a star graph with N rays. We denote by C?(G*) the set of
all continuous functions f : G — R such that for all i € [1, N],
foe;is C? on 0, 00| with bounded first and second derivatives
both with finite limits at 0. For f € CZ(G*) and x = ¢;(r) € G*,
set f'(z) = (foe)(r), () = (foe) (r). When x = 0 set
g’(o) = > pi(f o e) (0+) and f7(0) = 0%, pi(f 0 €)' (0+).

et

3) D={feC}G): f'(0) =0}
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e The two-dimensional quadrant is the set Q := [0,00[%. TIts

boundary is denoted by 0Q := 9, QU0O» Q, where 0, Q = [0, co[x{0}

and 0,Q = {0} x [0, 00[. We also set Q" = 9\ {(0,0)}.
e For X a continuous semimartingale, we will denote by L;(X)
its symmetric local time process at 0, i.e.

1
e For a family of random variables Z = (Z;+)s<; and a process
X = (X¢)i>0, we will use the usual notations

FZi=0(Zuws<u<v<t), F=0(X,0<u<t)

e A filtration generated by a finite or infinite sequence of inde-
pendent Brownian motions will be called a Brownian filtration.
e The Walsh’s Brownian motion on G is the Feller diffusion de-
fined via its Feller semigroup (P, ¢t > 0) as in [I]: Let (7;7,¢ > 0)
be the semigroup of reflecting Brownian motion on R, and let
(TP, t > 0) be the semigroup of Brownian motion on R killed
at 0, then for f € Cy(G) and x € E;, denoting f;(r) = foe;(r)

for 1 <j <N and f(r) =% pify,

Pof(x) =T f(l=]) + TP (fi — £)(J]).
e For a filtration (G;):, X is a (G;);-Walsh’s Brownian motion if

it is adapted to (G;); and if given G;, (X;15, s > 0) is a Walsh’s
Brownian motion started at X;.

1.2. The interface SDE on a star graph. Our main interest in this
paper is the following SDE, we call the interface SDE, which is the
natural extension of ([2) to star graphs.

Definition 1.1. A solution of the interface SDE (E) on a star graph
G is a pair (X, W) of processes defined on a filtered probability space
(Q, (F)i, P) such that
i) W = (WY ..., W¥) is a standard (F;)-Brownian motion in
RN,'
(ii) X is a (Fi)-adapted continuous process on G;
(iii) For all f € D,

N o et 1t
@ ) = X0+ 3 [ P endVi+g [ (s

We will say it is a strong solution if X is adapted to the filtration
(F")e.



STOCHASTIC FLOWS AND AN INTERFACE SDE ON METRIC GRAPHS 4

Note that it can easily be seen (by choosing for each i a function
fi € D such that f;(z) = |z| if € E;) that on E;, away from 0, X
follows the Brownian motion W*. Our first result is the following

Theorem 1.2. For all x € G,
(1) There exists a solution (X, W) with Xy = x, unique in law, of
the SDE (E). Moreover X is a Walsh’s Brownian motion.

(ii) The solution of the SDE (E) is a strong solution if and only if
N = 2.

To prove (ii) when N = 2, we will prove that pathwise uniqueness
holds for (E). Then, this implies that the solution (X, W) is a strong
one. The fact that when N > 3, (X, W) is not a strong solution is a
consequence of a result of Tsirelson [17] (see Theorem B.6l below) which
states that if N > 3 | there does not exist any (F;),-Walsh’s Brownian
motion on G with (F;); a Brownian filtration (see also [3]).

When N = 2, one can assume G = R, F} =] —00,0] and Ey = [0, o0].
Applying It6-Tanaka’s formula (or Theorem Bdlbelow), we see that (E)
is equivalent to the skew Brownian motion version of (2):

(5) dXy = 1ix, >0 dW," + Lix,<opdW, + (2p — 1)dLy(X)
where p = p; (note that when p = 1/2, [2)) and (@) coincide).

In this paper a stochastic flow of mappings as defined by Le Jan and
Raimond [12] will be called a SFM. We will be interested in SFM’s

solving (F) in the following sense.

Definition 1.3. On a probability space (2, A, P), let W = (Wi 1 <
i < N) be a family of independent real white noises (see [12], Definition
1.10]) and ¢ be a SFM on G. We say that (¢, W) solves (E) if for all
s<t, feDandx e, a.s.

flouao) = 1)+ 3 [ e NpualoDdWi+ 5 [ (puula))d

We will say it is a Wiener solution if for all s <t, F7, C ]:;/"Z.

It will be shown that as soon as (¢, W) solves (E), we have F)Y C FZ,
for all s <t and thus we may just say ¢ solves (E). Note that when ¢
is a Wiener solution, then FY, = F)Y for all s <.

We will prove the following

Theorem 1.4. (i) There exists a SFM ¢ solution of (E). This
solution 1s unique in law.
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(ii) The SFM ¢ is coalescing in the sense that for all s € R and
(r,y) € G?, a.s.,

Ty(w,y) = inf{t > s: p.4(7) = ps4(y)} < o0

and @s () = ps1(y) for allt > T(x,y).
(iii) The SFM ¢ is a Wiener solution if and only if N = 2.

Note that (iii) in this theorem is a consequence of (ii) in Theorem
Let ¢ be a SFM on GG and W be a family of independent white
noises such that (¢, W) is a solution to (E). As F)Y C F{;, Lemma 3.2
in [12] ensures that there exists a stochastic flow of kernels K"V (see
[12] for the definition) such that : for all s <t, z € G, a.s.

K;\Z(x) = E[(S@s,t(w)‘f;/,\li]'

A stochastic flow of kernels will be denoted from now on simply by
SFK. We will also be interested in SFK’s solving (£) in the following
sense.

Definition 1.5. Let K be a SFK on G and W = (W', 1 <i < N) be
a family of independent real white noises. We say that (K, W) solves
(E) if for alls <t, f €D and x € G, a.s.

(6) Kgif(x) :f(x)—l—Z/ K87u(1Eif/)($)dWi+%/ Kouf"(z)du.

We will say it is a Wiener solution if for all s <t, ]:s{(t C ]:;/7‘;.

Since we also have .7-";/7‘{ C .7-"5{(;, we may simply say that K solves
(E). Note that when K = §,, then K solves (E) if and only if ¢ also
solves (E). In this case, the SFK K will be called a SFM. We have the

following

Proposition 1.6. K" is the unique (up to modification) Wiener so-
lution of (E).

We do not give a proof of this proposition here. This can be done
following [6l Proposition 8] where this result is proved when all the
W are equal, or following the proof of [I1, Proposition 3.1] where this
result is proved in the case of (2.

A consequence of Proposition and Theorem [I4] (iii) is

Corollary 1.7. K" is the only SFK solution of (E) if and only if
N =2.
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Proof. When N = 2, ¢ is a Wiener solution of (E). Suppose (K, W)
is another solution of (F), then E[K|W] is a Wiener solution of (£).
Since the Wiener solution is unique, for all s <t and z € G a.s.

5<ps,t(:c) = E[K&t(l’”fsy,g]
This yields that 0, ) = Ks(x) a.s. O

For N > 3, the SDE (F) may have other SFK’s solutions different
from ¢ and K". The problem of a complete classification of the laws
of all these flows is left open.

1.3. Brownian motions with oblique reflections. To prove The-
orems and [[.4] we shall study a Brownian motion in the two di-
mensional quadrant, obliquely reflected at the boundary and with time
dependent angles of reflections. We now give an application of our
methods to the obliquely reflected Brownian motion defined by Varad-
han and Williams in [18].

Fix 61,0, €]0,5[ and = > 0. Let (B', B?) be a two dimensional
Brownian motion and (X,Y’) be the reflected Brownian motion in Q
started from (z,0) with angles of reflections on 0;Q and on 3,Q re-
spectively given by #; and 65, and killed at time o, the hitting time of
(0,0). More precisely, for ¢ < oy,

dX; = dB}+dL(X) —tan(6,)dL,(Y), Xy = m;
dY, = dB} —tan(fy)dL,(X)+dL,(Y), Yy = 0.

Denote by L; = Li(X) + Li(Y) the local time accumulated at 0Q.
Then it is known that oy and L,, are finite (see [I8, [19]). Our next
result gives a necessary and sufficient condition for L,, to be integrable
with an explicit expression of its expectation.

Proposition 1.8. We have that
E[Ly,| < o0 if and only if tan(f;)tan(dy) > 1.

In this case

_ x(tan(fy) + 1)
ElLo] = tan(6;) tan(6y) — 1

The assumptions on the wedge and the angles considered here are
more suitable to our framework but our techniques may be applied to
give an expression of E[L,,] in other situations.
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1.4. Extension to metric graphs. Let G be a metric graph (see [7,
Section 2.1| for a definition) and denote by V' the set of its vertices, and
by {E;; i € I} the set of its edges. We assume in this paper that I is
finite (in particular V' is also finite). To each edge F;, we associate an
isometry e; : J; — Ej, with J; = [0, L;] when L; < co and J; = [0, 00)
when L; = co. When L; < oo, set {g;,d;} = {ei(0),e;(L;)}. When
L; = o0, set {g;,d;} = {e;(0),00}. Forallve V,set Il ={iel; g, =
vh, I ={i€l; di=wv}and I, = I UL . Denote by N, the cardinal
of I,. To each v € V and i € I,, we associate a parameter p € [0,1]
such that )., py = 1. Let G* = G\ V. We will denote by C7(G*) the
set of all continuous functions f : G — R such that for alli € I, foe; is
C? on the interior of J; with bounded first and second derivatives both
extendable by continuity to J;. For f € C?(G*) and z = ¢;(r) € G\V,
set f'(x) = (foe)(r), f"(x) = (foe)(r) and for all v € V| set
f'(v) = f/(v) and f"(v) = f”(v) where for g a real valued continuous
function on G* such that g o e; is extentable by continuity to J; for all
1€ 1, weset forallveV,

g(v) =Y pi(goe)(0+) = Y pilgoe)(Lim).
i€l iely
Finally set
D={feC}(G"): f'(v)=0forallveV}.

We can now define the different notions of solutions of an interface
SDE on G simply by replacing in Definitions 1] and the set
{1,...,N} by I and by taking for D the domain of functions defined
above. This SDE will be denoted by E(G,p), where p := (p! : v €
V,i € I,), and when there is no ambiguity in the notation, it will
simply be denoted by (F).

Note that if (X, W) solves (£), then up to the first hitting time of
two different vertices, (X, W) solves an SDE on a star graph. Using
this observation and Theorem [.2] one can prove that

Theorem 1.9. For all x € G,
(i) There exists a solution (X, W) with Xy = x, unique in law, of
the SDE (E).
(ii) The solution of the SDE (E) is strong if and only if N, < 2 for
allveV.

Our purpose now is to construct and study flows solutions of (E).
Our main tools will be Theorems 3.2 and 4.1 in [7].

Let us introduce some more notations. For each v € V, set G¥ =
{v} UUes, F;. Then there exists G? a star graph and a mapping i, :
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G, — G such that i, : G* — i,(G) is an isometry with i,(E;) C EY
and where (EY);cs, is the set of edges of G¥. Set for all v € V, p :=
(pY : i€ l,). For W:= (W;);es a family of independent white noises,
set for all v € V, WY := (W});es, the family of independent white
noises defined by Wy := ¢ W;, where ¢/ = 1 if g; = v and €/ = —1 if
not.

A family of o-fields (Fsy; s < t) will be said independent on disjoint
time intervals (abbreviated : i.d.i) as soon as for all (s;,t;)1<i<, With
s; <t; < 841, the o-fields (Fs, 1, )1<i<n are independent.

Then, [7, Theorem 3.2] states that to each family of flows (K),ey,
and to each W := (W;);e; a family of independent white noises such
that

(i) For all v € V, (K¥, ") is a solution of E(G", p") on GY;

A

(ii) The family of flows (K")yey isi.d.i. in the sense that the family
(Veev FE' s <t) is i.dj;

one can associate a solution (unique in law) (K, W) of (E).

Conversely [7, Theorem 4.1] states that out of a solution (K, W) of
(E), one can construct a family of flows (K?),ey for which (i) and (ii)
are satisfied and such that the law of (K,)V) is uniquely determined
by the law of this family. In the following, we will denote by P? the law
of the solution (K, W"). Then P is a function of the law of (K, W).

The idea behind these two results is that before passing through
two distinct vertices, a “global” flow solution of (£) determines (and
is determined by) a “local” flow solution of an interface SDE on a star
graph (associated to the vertex that has been visited).

We will prove (see Theorem [.I]) in Section 5 that the i.d.i. condi-
tion implies conditional independence with respect to VW of the flows
(K*)yey. This implies the following

Theorem 1.10. To each family (P*)yey, with P the law of a solution
of E(G",p"), is associated one and only one solution of (E).

Proof. Suppose we are given (I@’”)vev. Then on some probability space
it is possible to construct a family of independent white noises W =
(Wi, i e I) and a family (K*),ey of SFK’s respectively on G, such that
for all v € V, (K, W") is a solution of E(G”, p) distributed as P and

A

such that the flows (K"),cy are independent given W. In other words,

L(K)werW) = T £(& ")

veV
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where £ stands for the conditional law. This implies in particular that
the family (K*),ey is i.d.i., and Theorem 3.2 in [7] states that there
exists K a SFK on G such that (K, W) solves (F), with K obtained
by well concatenating the flows K.

The fact that (K, W) is the only possible (in law) associated solu-
tion comes from the fact that the i.d.i. condition implies conditional

independence. 0
This theorem and the results we obtained on star graphs imply

Theorem 1.11. (1) There exists a unique (in law) SFM solution
of (E).
(ii) A SFM solution of (E) is a Wiener solution if and only if N,, <
2 forallveV.
(iii) There ezists a unique (in law) SFK Wiener solution of (F).

A

Proof. Let (K,W) be a solution of (F), and denote by (K"),ey the
associated family of flows, respective solutions of F (G”, p"). Note that
K is a SFM if and only if the flows K¥ are SFM’s. Now (i) follows
from Theorem and Theorem [[4] (i). Note also that K is a Wiener
solution if and only if the flows KV are also Wiener solutions. Thus
(ii) follows from Theorem [[.4] (iii), and (iii) follows from Theorem
and Theorem [I4] (ii). O

Let us now remark that if (K, W) is a solution of (E), then the law
of (K, W) depends on the choice of the isometries (e;);c; which define
the orientation on G. However the law of K does not depend on this
choice, and is thus independent of the orientation of G.

1.5. Outline of contents. In Section Pl we study an obliquely re-
flected Brownian motion in Q, where the angles of reflections depend
on time and which is absorbed when it hits the corner. In Section [3]
we prove Theorem [[L2l In Section M, we prove Theorem [[4] (i) and
(ii), using in particular the results of Section 2l In Section [5, we prove
that the i.d.i. condition implies conditional independence thus com-
pleting the proof of Theorem [LI0 Finally in Section [ we discuss
some extensions of the present paper.

2. BROWNIAN MOTION IN THE QUADRANT WITH TIME DEPENDENT
ANGLES OF REFLECTION

In this section, we study a variation of the obliquely reflected Brow-
nian motion in Q where the angles of reflections depend on time and
which is absorbed when it hits the corner. This process is defined in
Section We will be interested in the following two questions:
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(I) Is the hitting time og of (0,0) finite a.s.?

(IT) Is Ly,, the local time accumulated at 9Q at time oy, finite a.s.?
In Sections 2.3 and 2.4l we prove that, under some assumptions on the
sequence of the angles of reflections, the answer to these two questions
is positive. The tools used are a scaling property and a precise study,
done in Section 21l of an obliquely reflected Brownian motion on the

quadrant started at (z,0), with > 0, and stopped when it hits {y =
0}. Finally in Section 2.5 we calculate E[L,,].

2.1. Brownian motion on the half-plane with oblique reflec-
tion. We fix 0 €]0,7/2[. Let Z = (X,Y) be the process started from
(z,y) in R x Ry obliquely reflected at {y = 0}, with angle of reflection
given by 6. More precisely,

dX, = dB} —tan(0)dL;, Xo ==

dY, = dB}+dL;, Yo=y
where B! and B? are two independent Brownian motions and L, is the
local time at 0 of Y. Set S = inf{s: X, = 0}. Denote by P’ the law

of (Zy; t < S) when y =0 and z > 0. Note that for all t < S, Z, € Q.
Observe that we have the following scaling property:

Proposition 2.1. For all x > 0, if the law of (Z; t < S) is P, then
the law of (xZ,—2; t < 225) is PY.

For z € C, arg(z), R(z) and Z(z) will denote respectively the ar-
gument, the real part and the imaginary part of z. Following [I§], if
f is holomorphic on an open set U containing Q* such that f(z) € R
for all z €]0, oo[, then ¢(x,y) := R(f(z + iy)e™™) is harmonic on U.
Moreover,

(7)) v1(0).Vo(x,0) =0 for x > 0, where v1(f) = (—tan(d),1).
Indeed, the fact that f is holomorphic with the condition f(z) € R for
all z €]0, co| implies that f'(z) € R for all z €]0, co[. Thus

Vo(@,0) = (R(f/(@)e ), R(if (w)e™)) = f(z)(cos(6), sin(8))
and () follows. These properties imply in particular that (¢(Zias));

is a local martingale. For b € R and f(z) = z° the function ¢ defined
above will be denoted by ¢y.

Lemma 2.2. Let (Z;; t < S) be a process of law PY.
(i) If0 <b < 1+420/7, then for all a > z,

T b
P(suplzsl >a) <a(2),
s<S a
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where ¢, = 1 if br /2 < 0 and ¢, = cos(0)/ cos(br/2 — 0) other-
wise.

(i) If0 <b<1—20/m, then for all a < z,

. a\®
P <;2£|Zs| < ) <a(y)
where ¢, = cos(f)/ cos(br /2 + 0).

Proof. Using the scaling property we may take z = 1. For a > 0, set
o, = inf{t : |Z;| = a}. Recall that for all b € R, (¢»(Zins)): is a local
martingale.
Proof of (i): Fixa > land 0 < b < 1+26/7. For ¢ = inf{cos(#), cos(bmr/2—
0)} and t < 5, we have
SN 2" < on(Zi) < |Zi)".

Moreover
P(sup | Zs| > a) = P(o, < 9).

s<S
By the martingale property, for all ¢ > 0,

cos(f) = ¢u(1) = Eloe(Zinsans)]
which is larger than
E[¢6(ZtAcra)1{oa<S}]-
As t — oo, this last term converges using dominated convergence to

Els(Zo,)1{oa<s1] = Aa’P(o, < 9).

This easily implies (i).
The proof of (ii) is similar: Fix a < 1 and 0 < b < 1 —26/7w. For
cp = cos(br/2+6) and t < S,

Cé|Zt|_b < o(Z) < |Zt|_b-
We also have that
P(;2£|Zs| <a)=Plo, <89).

By the martingale property, for all ¢ > 0,

cos(0) = ¢—4(1) = E[p-t(Ztrs,ns)]
which is larger than
E¢_s(Zirc, ) Lioe<s]

and this converges as t — oo to
E[¢_b(ZUa)1{0a<s}] > Cl%a_bp(ga < 5).
This easily implies (ii). O
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Corollary 2.3. Let (Z,; s < S) be distributed as P°. If =1 +20/7 <
b<1+20/m, then

E(sup | Z,|") < .
s<S

Proof. To simplify, assume x = 1. For b €]0,1 + 20/x[, let ¥ €]b,1 +
20/7[. Then

Bwp|Z[) = [ Plup|Z| > a)da
0

s<S s<S
< 1—|—cb/ a "da < co.
1
Forb €| —1+20/xm,0[,let b € — 1+ 260/m,b[. Then

Bowp|Z) = [ Pl |2] < alda
0 5=

s<S
& /
< 1—|—cb/ a "da < .
1

U
Corollary 2.4. Let (Zy; s < S) be distributed as P%. Let f be an

holomorphic function on an open set containing Q* such that f(z) € R
for all z €]0,00[. Assume there exists C' > 0, by €]0,1 + 20/7[ and
b €]0,1 —20/7[ with
|f(2)] < C(|2]7" +2["") forall =€ Q.
then setting ¢(z,y) = R(f(z +iy)e™), we have
E[¢(iYs)] = cos(0) f (x).

Proof. Recall that (¢(Z;as))¢ is a local martingale (stopped at time S).
Using Corollary 23] it is a uniformly integrable martingale. And we
conclude using the martingale property. 0

Note that the functions f(z) = 2%, for b €] — 1+ 20/x,1 + 20/7],
f(2) = log(2)" for £ > 0 satisfy the assumptions of Corollary 24l

Corollary 2.5. Let (Z; s < S) be distributed as P%. Then
cos(0)
cos(0 — brr/2)
o E[log(Ys)] = log(z) —g tan(6),

o E[Y{] =2 forbe]l —1+20/m, 1+ 26/x],

o E[(log(z7'Ys))? = 7;(1 + 2 tan*(0)).
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Proof. The calculation of E[Y?] is immediate. Using the scaling prop-
erty one only needs to do the next calculations when x = 1. Now, for
all ¢ >0 and x =1,

E[R((log(Ys) + im/2)'e™™)] = 0.
Applying this identity for £ = 1, we get the value of E[log(Ys)]. For
(=2, we get
E[((log(Ys))* — (7/2)?) cos(8) + mlog(Ys) sin(d)] = 0.
Thus
E[(log(¥s))"] = (7/2)* — nE[log(Ys)] tan(6)
(7/2)* + 2(7/2)*(tan(0))>.

U

2.2. Brownian motion on the quadrant with time dependent
reflections. In all this section, we fix z = (z,0) with = > 0, and
Omin €]0, 5[. Suppose we are given on some probability space (€2, A, P)
a sequence of random variables (0,,),>0 and a sequence of processes
(Z™)n>1, with Z™ = (Z = (X, Y;"); t < S,,), such that:

(i) With probability 1, for all n > 0, 6, €]0min, 5.
(ii) Set Up = x and for n > 1, U, = Y . Set also for n > 0,
G =0((0r,Z%); 1<k <n)Va(O).

Then given G,, Z™*! is distributed as IP’%;.

Define for 6 €]0, /2],
v1(0) = (—tan(f), 1) and vy(0) = (1, — tan(h)).

Our purpose in this section and in Section is to construct a process
Z = (X,Y), a reflected Brownian motion in Q stopped at time oy, the
first hitting time of (0,0) by Z.

Set Ty =0 and T, = >}, Sy for n > 1. For n > 0, set

Zy = (XPRL YRRy forallt € [Ton, Tonsl,

Zy = (Y2 XPrd2 ) for all t € [Tong, Tongol.

Using this procedure, we have defined a process (Z;; t < T.,), where
Tw = lim,, o T),. Set for t > T.,, Z; = (0,0). Then, by construction,
T = 09. It will be checked in Section (see Corollary 7)) that Z
is a continuous process.
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Note that there exists B a two-dimensional Brownian motion such
that for n > 0,

dZt = dBt + ’U1(@2n)dL% for all ¢ < [Tgn, T2n+1[,
dZt = dBt + U2(92n+1)dL? forall t € [T2n+1, T2n+2[,

with L' and L? being the local times processes of X and Y. Define
(vg; t < 0g) by: forn >0

vy = Ul(@gn) for all t € [Tgn, T2n+1[,
vy = U2(@2n+1) forall t € [T2n+1, T2n+2[.

Then for all ¢ < oy,

t
(8) Zy=Zy+ B, + / vsd L
0
where Zy = (2,0) and L = L' + L? is the accumulated local time at
0Q until ¢.
The purpose of the following sections is to answer the questions (I)
and (II) addressed in the beginning of Section

2.3. The corner is reached. For a > 0, set 0, := inf{t; |Z;| = a}.
Following [18], we will first prove that P(cy A ox < o0) = 1 for all
K > x. This is the major difficulty we encountered here although the
proof when the angles of reflections remain constant on each boundary
is quite easy [18, Lemma 2.1]. The main idea is inspired from [2]. Define
forn>1,V, = U(ﬁl' Then using the scaling property (Proposition
21 and the strong Markov property, we have that for all n > 0, given

Gn, Vyi1 is distributed as 575:, where ((Xt, f/t), t< S) has law IP’?".

Lemma 2.6. With probability 1, »_ -, U, is finite.

Proof. For all n > 1, we have that

U, = zexp <k§: log(Vk))

We denote by Eg, the conditional expectation with respect to Gj.
By Corollary 23] for all £ > 1, Eg, ,[log(Vi)] = —% tan(©x_;) and

2
Eg, . [(log(Vi))?] = %2(1 + 2tan?(0%_1)). Note now that

3

log(vk> =M, + Z Egkfl [log(vk)]

k=1 k=1
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where M, =Y}, (log(Vy) — Eg, ,[log(V})]) is a martingale. Denote
by (M), its quadratic variation given by

n n 2
2 s
> Eg, ., [(log(Vi) — Eq,_, [log(Vi)])7] = T (1+ tan?(Ox_1)).
k=1 k=1
Thus (M) = oo and a.s. lim, . M,/n = 0. Since infy>o Oy >
Opnin > 0, this easily implies the lemma. OJ

A first consequence of Lemma is
Corollary 2.7. With probability 1, lims,, Z; = (0,0).
Proof. For e > 0 and n > 0, set
A ={ sup |Z| > €}

" SE[T7L,Tn+1}
By Lemma 2.2 (i), with b = 1, for all n > 0,
P(A:|G,) < sup  cotan(f) U, = cotan(fpmin) Uy.

0€10rmin, I
Thus by Lemma 2.6, ) P(A;|G,) < oo and the corollary follows by
applying the conditional Borel-Cantelli lemma. U

Lemma will be also used to prove
Lemma 2.8. For all K >z, P(og N og < 00) = 1.

Proof. For all n > 0 and t € [0, S,,11], set
Wt = cos(0,) (X[ — U,) +sin(0,)Y,"!

Recall 09 = lim,,_, T},. Define the continuous process (Wy; t < o)
such that Wy = 0 and for n > 0 and t €|T,,, Ty, 1], Wi = V[Q"_%L +Wr,,.
Then, it is straightforward to check that (W ¢ < o) is a Brownian
motion stopped at 0q. Since for all n > 0, U,, > 0 and ©,, €]0,7/2],
we get that on the event {ox > T),11},

sup Wy <2K + Wrp .

tE[T7L7Tn+1]

Thus, on {ox = oo}, sup;c,, Wi < 2K + sup,5o Wr,. Now for all
n >0, Wg‘jfl = sin(0,,)U,+1 — cos(0,)U, < U,.1. Note that for all
n >0,

WTn+1 o WTn — Wn-‘rl

Sn+1 :
This implies that on the event {ox = oo}, sup,<,, Wi < 2K+3_ - U,
which is a.s. finite using Lemmal[2.6l This shows that a.s. {ox = 00} C

{00 < oo} and finishes the proof. O
And following [18], we will prove
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Theorem 2.9. With probability 1, we have oy < c0.

Proof. Set b = %min_ Let ¢(z,y) = R((z + iy)’e ?mn), then ¢ is
harmonic on some open set U containing Q*. Using b = %, we have
that

Vo(z,0) = bz’ (cos(Omin), sin(Omin)),
Vo(0,y) = by (sin(Bmin), coS(Omin)).-
Thus for all ¢t < oy with Z; € 0Q, we have v,.V¢(Z;) < 0. It follows
from (8) and It6’s formula that for all 0 < e <z < K and ¢t > 0,
E[¢(Zino.nor)] < &(x,0).

Letting ¢ — oo and using dominated convergence, we deduce

E[¢(ZJEAUK)] < ¢(x,0).
Obviously ¢(2) > cos(0pmin)|2|® for all z € Q. Setting p.x = P(o. <
oK), we get
c08(Opmin) (ebp@K + K1 - p@K)) < 2.
From this, we deduce

(K® — 2%/ cos(Omin))

As in [18], since g A ok < 00, lim._o pe k = P(0p < o), this yields

SL’b

- K? c08(Opmin)
Letting K — o0, it comes that P(oy < 00) = 1. O

(9) IP)(UO < O'K) >1

Remark 2.10. Using the inclusion {sup,., |Z; > €} C {0 < oo}
and ([4), we deduce that for all € > 0,

(10) lim P(sup |Z:] > €) =0

r—0+ t<oo

This fact will be used in Section 3.

2.4. The local time process. Following Williams [19], we prove in
this section that

Theorem 2.11. With probability 1, L,, = limye, Ly is finite.

Proof. In what follows, we refer to the proof of Theorem 1 in [I9] for

more details. Let 0 €]0, Opin A w/4] and set b= 4?‘;. Le ¢ be defined
as the function ¢ in the proof of Theorem R.9) with the parameters
(b, Omin) replaced by (b,0). Then there exists ¢ > 0 such that for all ¢

for which Z, € 8Q, we have v,.V(Z,) < —c|Z,|"~. For each v > 0,
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define f, = e?. Then f, is twice continuously differentiable in Q*
and

AL (2) =72 f,(2)(b]zPY)? for 2 € Q.
Moreover for all ¢ such that Z, € 09,

vV (Z) = —v[(Z) (Ut~v¢(Zt)) :

For t < oy, set

¢ 2 ot
A= [(wvoz )L+ 3 [ @z s
0 0

and A,, = lim,, A;. Then

00 - 72 o0 _ -
A, > o / iz ar,+ / (512.1)2ds.
0 0

[t6’s formula implies that for ¢ < oy,
t

f(Zye = f(Zo) + / e (Vf,(Z,).dBy).

0
Taking the expectation, we get

E{exp ( —cy /OUO |ZS|B_1dLS)} > f(Zo).

This easily implies that for all » > 0,

B a0
E{exp ( — fycrb_I/ 1{Z5|§r}dLs):| > f«/(ZO).
0

Letting v | 0, we get a.s.

00
(11) / 1{|Zs\§r}dLs < 00.
0

Let S, = sup{t > 0 : |Z;| > r}, then by the continuity of Z, S, < oy
and thus Lg, < 0o. By combining this with ([Il), we get Ly, < oco. O

2.5. On the integrability of L,,. In this section, Proposition [[.§ is
proved. We use the notation of Section in which the process 7 is
constructed. Note that L,, = > °, L¢ , where L™ is the local time at
0 of Y™ and where Z™ = (X", Y™). Recall that for n > 0, given G,,
the law of Z"*t! is Pg:, where Uy = x and U, =Yg forn > 1.

Let Z° = (X?,Y,%)i<50 be a process of law P?. Then, if L = L,(Y?),
for all t > 0, Y;OASO = Bt2/\50 + L?/\SO where (B?Aso)t is a Brownian
motion stopped at time S°. Thus E[Y}) o] = E[L?, ,]. Taking the limit



STOCHASTIC FLOWS AND AN INTERFACE SDE ON METRIC GRAPHS 18

as t — oo and using Corollary leads to E[LY,] = E[YV&]. But
E[Y&] =« cotan(f) by Corollary and this implies that

E[LE |G, = U, cotan(©,,).

Sn+1
Consequently
E[Le,) =Y E[U, cotan(6),,)].

n>0
Assume that for all n, U, and ©,, are independent, then

n

E[U,, cotan(©,,)] = E[cotan(©,,)|E[U,] =--- == HE[Cotan(@k)].

Therefore
E[Le,) =z Y J] Elcotan(6;)].
n>0 k=0

This gives a necessary and sufficient condition to have E[L, ] < occ.
Assume that ©,, = 0 €]0,7/2] for all n, we get

E[Ly,) =2 _ (cotan(§))""

n>0

which is finite if and only if 6 €]r/4, 7/2[. In this case

_ xcotan(d) x
ElLoo] = 1 —cotan(f)  tan(f) — 1’

Assume that ©,, = 0; and O,,1 = 5. Set ¢; = cotan(f;) and
¢y = cotan(f,). Then

E[LO'()] = ZL’(Cl + c1C2 + C%CQ + C%C% + .- )
= 01(1—0—02—0—01024-01@%4_...)
= Cl((1+c2)+(1+02)0162—|—---)

which is finite if and only if ¢;co < 1. In this case, we have

E[L, | = zcy (14 o)

1— C1Co

and Proposition [[.§ is proved.
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3. PROOF OF THEOREM

Theorem (i) is proved in Section Bl For the construction of
a solution, we will use Freidlin-Sheu formula for Walsh’s Brownian
motion (see Theorem BIlbelow). The uniqueness in law of the solution
of (E) will follow from the fact that Walsh’s Brownian motion is the
unique solution of a martingale problem.

Theorem (ii) is proved in Section To prove pathwise unique-
ness for (E) when N = 2, we proceed as in [4] using the local times
techniques introduced in [10, [I5]. The fact that the solution of (E) is
not strong when N > 3 is a consequence of a theorem by Tsirelson (see
Theorem [B.6] below).

We prove Theorem [[L2 only for z = 0, the case x # 0 following easily.

3.1. Proof of Theorem (i). Let us recall Freidlin-Sheu formula
(see [5] and also [6, Theorem 3]).

Theorem 3.1. [5] Let (X;)i>0 be a Walsh’s Brownian motion on G
started from Xo and BY = |X|; — |Xo| — L:(|X]|). Then B¥ is a
Brownian motion and for all f € CZ(G*), we have

t 1 t
F00) = F080) + [ OaBE + 5 [ C)ds + FO)L(X)).
0 0
We call BX the Brownian motion associated to X .

Remark that in this formula the local martingale part of f(X;) is
always a stochastic integral with respect to BX. This is an expected
fact since BX has the martingale representation property for (F;¥); ([I,
Theorem 4.1]). This martingale representation property will be used
to prove the uniqueness in law of the solutions to (E).

3.1.1. Construction of a solution to (E). Let X be a Walsh’s Brownian
motion with Xy, = 0 and let BX be the Brownian motion associated
to X. Take a N-dimensional Brownian motion V = (V! ... V)
independent of X. Let (F;) denote the filtration generated by X and
V. For i € [1, N|, define

t t
0 0

Then W := (W', ... W¥) is a N-dimensional (F;)-Brownian motion
by Lévy’s theorem and

N t
BX = Z/ Lix,emydW..
i=1 70
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Then, using Theorem B, (X, W) solves (E). Denote by u the law of
(X, W).

3.1.2. Uniqueness in law. To prove the uniqueness in law, we will apply
two lemmas. The first lemma states that the Walsh’s Brownian motion
is the unique solution of a martingale problem. The second lemma gives
conditions that ensure that a Walsh’s Brownian motion is independent
of a given family of Brownian motions.

Lemma 3.2. Let (F;) be a filtration and let X be a G-valued (F;)-
adapted and continuous process such that for all f € D,

]' ! "
(12) M = 1(06) = fa) =5 [ 1(Kas

is a martingale with respect to (F), then X is a (F;)- Walsh’s Brownian
motion.

Proof. We exactly follow the proof of [I, Theorem 3.2] and only check
that with our conventions f'(0) = f”(0) = 0 for f € D, we avoid all
trivial solutions to the previous martingale problem (with the hypothe-
sis of Theorem 3.2 of [I], the trivial process X; = 0 is a possible solution
of the martingale problem (3.3) in [I]). For ¢ € [1, N], set ¢; = 1 — p;
and let f; and g; be defined by

fi(x) = q|v|lgery — pilr|lwen,

6i(2) = (@)’ = @leP Ly + 1L,
Then f; and g; are C* on G*. We have f/(x) = ¢; for x € E}, fl(x) =
—p; for ¢ E; and f/(0) = 0. Moreover, for all z € G, f/'(z) = 0.
We also have gi(z) = 2¢?|z| for z € Ef, gi(z) = 2p?|x| for x ¢ FE; and
g/(0) = 0. Moreover, g/(x) = 2q¢? for z € E}, g/(x) = 2p? for x € E;
and ¢/(0) = 2p;q;. Set Y, := fi(Z;). Although f; is not bounded, by a
localization argument, we have that Y} is a local martingale. Using the

function g;, we also have that (Y;)2—1 [ g/(Z,)ds is a local martingale.

Thus
(Y', = /Ot (47 L(zeemsy + D L(zgmy + Ditiliz.=0)) ds.
Set
t
Ui = /0 (0 Lgvisoy + P Lvicoy + (i) ™ Limoy ) Y7

Then U} is a local martingale with (U*); = ¢; that is U is a Brownian
motion. Let ¢(y) = ¢ilyy=oy + Pily<oy + /PiGil{y=0y- Then Y* is a
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solution of the stochastic differential equation
t
v =Yg+ [ oviaus
0

As in [1], the solution of this SDE is pathwise unique and following the
end of the proof of [Il Theorem 3.2|, we arrive at

E[f(Z)|Fs] = Pr—s f(Z)
for all s <t and f : G — R a bounded measurable where P, is the

semigroup of the Walsh’s Brownian motion. U
Lemma 3.3. Let (G;) be a filtration. Let X be a (G;)-Walsh’s Brownian
motion, BX its associated Brownian motion and B = (B',---  B%) be a

(G:)-Brownian motion in R?, with d > 1. If BX and B are independent,
then X and B are independent.

Proof. Let U be a bounded o(B)-measurable random variable. Then

d oo
U =E[U] + Z/ HdB
i=1 V0

with A’ predictable for the filtration F? and E[[;~(H!)*ds] < co. Let
U’ be a bounded o(X )-measurable random variable. Since BX has the
martingale representation property for X [I, Theorem 4.1], we deduce
that

U =E[U]+ / H,dBX
0

with H predictable for F~ and E[[;°(H)?ds] < co. Then H and
(H%)1<i<q are also predictable for (G;). It is also easy to check that BX
is a (G;)-Brownian motion. Now

E[UU] = E[V|E[U']+E

d o0 [e.9]
> / H'dB: / H,dBX
i=1 70 0

= E[UE[V] + i E UOOO H{H.d(B', BX)%

— E[UE[V).

O

Let (X, W) be a solution of (£), defined on a filtered probability
space (€2, (F3),P), and such that Xy = 0. Without loss of generality, we
can assume that J;, = FXVFY. Forall f € D, 30 [ f/(X)x,emdW;
is a martingale, and therefore X is a solution to the martingale prob-
lem of Lemma [3:21 Thus X is a Walsh’s Brownian motion. Let B be a
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Brownian motion independent of (X, W), denote by BX the Brownian
motion associated to X and set G, = F; V ]-"tB. Note that BYX is a
(Gy)-Brownian motion. For ¢ € [1, N], define

t t
V) :/ 1{Xs€Ei}dBS+/ 1{XS¢Ei}dWSZ-
0 0

Then V := (V!,...  V¥) is a N-dimensional (G;)-Brownian motion
independent of B¥X. By the previous lemma V is also independent of
X. It is easy to check that for all i € [1, N],

t t
0 0
This proves that the law of (X, W) is p.
3.2. Proof of Theorem (ii).

3.2.1. The case N = 2. To prove that the solution is a strong one, it
suffices to prove that pathwise uniqueness holds for (£). Fix p €]0, 1],
and set § = %.

Lemma 3.4. Let BT and B~ be two independent Brownian motions.
Let also X andY be two continuous processes, with Y, = BX1{x>0y +
Xilix,<0y. Then (X, B*,B7) is a solution to (E) or equivalently of

(13)  dX; = Lixo0dB; + Lixi<oyd By + (2p — 1)dLy(X)

if and only if (Y, BT, B™) is a solution of the following SDE

(14) dYy = Blyv>0pdB) + Lyv,<opdBy .

Proof. Suppose (X, BT, B7) solves ([I3)). Set B, = fot Lix,>0pdBf +
lix,<oydB; . Then B, is a Brownian motion, and (X, B) is a solution

of the SDE X; = B+ (2p —1)Ly(X). It is well known (see for example
Section 5.2 in the survey [13]) that (Y, B) solves

dY; = Bliy,>0ydB; + 1yy,<01d By

and thus that (Y, BT, B7) solves (I4)). The converse can be proved in
the same way:. U

Proposition 3.5. Pathwise uniqueness holds for (E).

Proof. LemmalB.dlimplies that the proposition holds if pathwise unique-
ness holds for (I4). Let (Y, BT, B~) and (Y’, BT, B™) be two solutions
of (I4) with Yy = Yy = 0. Set sgn(y) = 1gy~0p — L{y<oy. We shall use
the same techniques as in [4] (see also [10] [15]) and first prove that a.s.

d
(15) / Loy - vH)'Y < .
10,4+00] a
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By the occupation times formula
da ¢ Y =Y’
LYY —Y)— = | lyyi_yso——
/]0,+oo} 3 ) a /0 R A
It is easily verified that
Ay =", < Clsan(Y,) — san(¥))|ds
where C' = (146?)/2. Let (f,), C C*(R) such that f,, — sgn pointwise

and (f,,), is uniformly bounded in total variation. By Fatou’s lemma,
we get

La Y — Y/ — < O l.IIl 'Ilf 1 v/ R s nAs d
/}07 ] t ( ) = 1 nl /0 {Ys—Y!>0} sz ]/S/ S

t 1
S C'lim lIlf/ l{Ys—YS’>0} / fT,L(Z;L)dU ds
" 0 0

where

Z'=(1—u)Ys+uY,
It is easy to check the existence of a constant A > 0 such that for all
s >0and u € [0,1], £(Z"); > A~'. Hence, setting C' = A x C, we
have

1 t
/ L:(Y—Y')@ < C’liminf/ / | fL(Z4)|d(Z") sdu
10,4-00] " 0 Jo

a

1
< ('liminf / / | fr(a)|L¢(Z*)dadu.
" 0 JR
Now taking the expectation and using Fatou’s lemma, we get

d
El/ L?(Y—Y’)—a} SC/liminf/ }f;(a)‘da sup  E[Ly(Z")].
]0,+00] a n R a€R,ue0,1]
It remains to prove that sup,cg yep1] E[L{(Z")] < co. By Tanaka’s
formula, we have

E[L{(ZY)] = E[|Z} - al] —E[}Zg—a\]—EUO sgn(Z" — a)dZ"

< Ellzy - Z|).

It is easy to check that the right-hand side is uniformly bounded with
respect to (a,u) which permits to deduce (IH). Consequently, since
lim, o L*(Y —=Y") = LY%(Y —Y”), ([I5) implies that LY(Y —Y”) =0 and
thus by Tanaka’s formula, |Y — Y”| is a local martingale which is also
a nonnegative supermartingale, with |Yy — Y| = 0 and finally Y and
Y’ are indistinguishable. O
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3.2.2. The case N > 3. Let (X, W) be a solution to (F). Then X is
a (F;)-Walsh’s Brownian motion, where F; = F~ Vv FV. If (X, W)
is a strong solution we thus have that X is a (F}")-Walsh’s Brownian
motion, which is impossible when N > 3 because of the following
Tsirelson’s theorem :

Theorem 3.6. [I7] There does not exist any (G;);- Walsh’s Brownian
motion on a star graph with three or more rays with (G;); a Brownian
filtration.

4. PROOF OF THEOREM [ 4]

In this section, we prove the assertions (i) and (ii) of Theorem [[4l
We first construct a coalescing SFM solution of (£). To construct this
SFM, we will use the following

Theorem 4.1. [12] Let (P™,n > 1) be a consistent family of Feller
semigroups acting respectively on Co(M™) where M is a locally compact
metric space such that

(16) PP 2z, z) = PV f2(2) for all f € Co(M), z € M, t > 0.

Then there exists a (unique in law) SFM ¢ = (ps+)s<t defined on some
probability space (2, A,P) such that

P f(w) = E[f(poe(21), , po(wn))]
foralln>1,t>0, f € Co(M™) and x € M™.

To apply this theorem, we construct a consistent family of n-point
motions (i.e. the Markov process associated to P(™) up to their first
coalescing times in Section LIl After associating to the two-point
motion an obliquely reflected Brownian motion in @ in Section [£2] we
prove the coalescing property in Section and the Feller property in
Section [£4l Tt is then possible to apply Theorem .1l and as a result we
get a flow . In Section .4l we also show that ¢ solves (E). Finally,
we prove in Section that ¢ is the unique SFM solving (F).

Note finaly that in the case of Le Jan and Raimond [IT], all the angles
of reflection of the obliquely reflected Brownian motion associated to
the two-point motion are equal to /4. This simplifies greatly the study
of Section 2

4.1. Construction of the n-point motion up to the first coa-
lescing time. Fix zy,---,x, € G such that |z,| < --- < |z,| and let
(X, W) be a solution of the SDE (F£), with X, = z;.
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Set, for t > 0, X"* = X, and for all j € [2,n], if x; € E;, define
X7° = ey + W)
Set
n=1inf{t >0:3j #1: X°=0}.
For t < 7, set X\™ = (X0, .-+, X™0).

Assume now that (7)<, and (Xt("))tgn have been defined such that
a.s.

o (Tx)1<k<e is an increasing sequence of stopping times with re-

spect to the filtration associated to (Xt(n))tgn;
e for all k, there exists an integer j; such that Xﬁ: = 0.

Now introduce an independent solution (X, W) of the SDE (£), with
Xo = 0. Define (Xt(n))te[mﬂZ ., by analogy with the construction of

(Xt(n)>t€[0,7—1} by replaCng (xl’ e 7:(:“) Wlth (X'z-ll’ e ’X%]-Zg), Whel"e (jf, o

are such that
0=|XI| <. < X,

Thus, we have defined Xt(") for all ¢t < 74, where 7 := lim;_,o 77.

We denote by P{° the law of (X™);<,. Notice that if we set
XM = (X' ..., X"), then for all i and all ¢, (Xirs,) is a Walsh’s
Brownian motion stopped at time 7,. Thus a.s. on the event {7, < oo},

Xg? = limyy, Xt(") exists. Note also that a.s. on the event {7, < oo},
there exist ¢ # j such that Xil = XJ = 0 for infinitely many £’s.

Te+1
This implies that a.s. on the event {7, < oo}, there exist i # j such

that limy, X; = limy, th = 0, and thus that Xﬁfj € A,, with

A, = {(z1,-,2,) € G": Fi # j,x; = x;}. Now, by construction, 7.
coincides with
(17) Ta, =inf{t >0: X™ € A,}.

Note that in the particular case n = 2, on the event {7, < oo}, a.s.
X2 = (0,0). We will prove in Section that 7o, < 0o a.s.

4.2. An obliquely reflected Brownian motion associated to the
2-point motion. Fix z € G, and let i such that © € E;. Recall the
construction of (X,Y") of law IPE?O). We have 79 = 0 and for k£ > 0,

7-2k+1 = 1nf{t Z Tk - Xt = 0},
Tok+2 — 1nf{t Z Tok+1 - Y;g == 0}

Jn)
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For n > 0, let iy, and 45,1 bein {1,... N} such that X,, € F;, and
Y, €k Then for n > 0,

Ton+1 2n+1"°

T2n

Xt = €y, <|X7—2n‘ -+ WZQ" - WiQ") for t S [Tgn,Tng_l[,

_ 12n41 i
Vi = iy (Vo W2 = W) for ¢ € [rania, Tonsal

T2n+1
Define, for i € [1, N], f': G — R by
fi(z) = —|z|if x € B; and f'(x) = |z if not.
Define now (U, V;)i<,., such that for n >0

(U V) —_ (|Xt|a fZZn(Y;)) for t e [7-27177-2714-1[;
o (f2r+1(Xe), [Yy])  for t € [Tong1, Tonyol-

Remark that (Uz, V;)i<-., is a continuous process with values in {(u, v) €
R? : w+ v > 0} and such that for all n > 0, U, > 0, V,,, = 0,

Un,y = 0and V,, . > 0. Note that the excursions of this process
outside of Q@ occur on straight lines parallel to {y = —x}.
Let, for n > 0,

©,, = arctan (L)
1 —pi,
Define for t < 7,

t t
A(t) 2/ 1{(US,VS)€Q}dSZ/ Lix,0y,1ds.
0 0

Set v(t) = inf{s > 0 : A(s) > t}. Set for n > 0, T,, = A(7,) and
Spa1 = Thy1 — T),. Define for t < T, :=lim,, o, T},

UL V) = s, Vo)
and for ¢t > T, (U, V;") = (0,0). Note that Ty,1 = inf{t > Ty, :
V7 =0} and Th,q0 = inf{t > Ty,41 : U] = 0} and that ~(7},) = 7.

Lemma 4.2. Given Oy, the law of (U, V' )i<s, is P

|| -

The proof of this lemma is given at the end of this section.

Notice that since a.s. |Y-, | = V7. # 0, then the sequence (7)) defined
above is a.s. strictly increasing. It is also a sequence of stopping times
with respect to the filtration F;, = O’((XS, Ys); s < t),t > 0.

Define the sequence of processes (Z"),>1 such that for n > 0,

2n+1 r r
Z - ( t—l—Tgant—i—Tzn)tSS%Hv

2n+2 r r
Z - (‘/;+T2n+1 ) Ut+T2n+1 )tSS2n+2 .

Set also for n > 0, Uy, = Uy, and Us,q1 = VC};”H.
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Applying Lemma [4.2] and using the strong Markov property at the
stopping times 7,,, with the fact that if (X,Y") is distributed as IP’(x W)’

then (Y, X) is distributed as ng)x), one has the following

M

Lemma 4.3. For alln >0, given F,, the law of Z"* is Py

This lemma shows that the sequences (0,,),>0 and (Z"),>1 satisfy
(i) and (ii) in the beginning of Section 22l since for all n > 0,

G, = a((@k,Zk); 1 <k<n)Vo(©y) CF,.

Thus (U/, V] )i<r,, is a Brownian motion in Q* started from (|z|,0),
with time dependent angle of reflections at the boundaries given by
(©,)n>0 and stopped when it hits (0,0), as defined in Section 2. In par-
ticular, (U", V") is a continuous process and limyr, (U}, V") = (0,0).
We will now denote the process (U, V") by Z .

Remark 4.4. Note that (i,)n>0 is an homogeneous Markov chain started
fmm g = 1 with transition matriz (P, ;) given by : for (i,j) € [1, NJ?,
P ; Zk — . Remark also that given G,,, Z"*" and 4,1 are indepen-

dent and a fortiori Z"' and ©,,4, are also independent.

Proof of Lemma Let i be such that z € E;. Let (Y,WW) be a
solution of (E) with Yy = 0 and define X; = ¢;(|z| + W) for 0 <t < 71y
where 77 = inf{s > 0 : |z| + W! = 0}. Set for t > 0, (U, V;) =
(|z| + W, fi(Y2)) where f{(y) = |y|ly¢r, — |y|lyer,. Note that for
t S 71, Ut = |Xt|

Since Y is a Walsh’s Brownian motion started at 0, it is well known
that V' is a skew Brownian motion with parameter 1 — p;. This can be
seen using Freidlin-Sheu formula, which shows that

t
(18) Vi = / (Livosop — Lvacoy)dBY + (1= 2p) Ly (V).
0

Define A(t fo Ly, >0ds = fo 1{YS¢E yds and ~(t) = inf{s > 0 :
A(s) > t} It is also well known that V;" := V. is a reflecting Brownian
motion on Ry. Set M, = [} 1v,20ydVi = [y 1iv,¢p,ydBY. Then B} :=
M, is a Brownian motion. We also have that V; V 0 = M, + (1—
pi)Li(V'), which implies that V;" = B} + (1 — p;) L) (V) and therefore
that L,(V") = (1 — p;) Ly (V). Note finally that L(V) = L(|Y]).

Set for t > 0, B} = V( ) Liv,=0ydW{. By Lévy’s theorem B' and B?
are two independent Browman motions. Finally, set Uj = U, ). Then
(U7, VI )i<y(r) s equal in law to the process (U7, ‘/;T)tggl given in the
statement of Lemma

Lemma is a direct consequence of the following.
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Lemma 4.5. For allt > 0,
Di

Ui = el + B - L no)

i

Vi = B+ LJ(V").

Proof. We closely follow the proof of [I1 Lemma 4.3]. Let ¢ > 0 and
define the sequences of stopping times o}, and 75 such that 7§ = 0 and
for k > 0,
op = nf{t =7 Vi=—c},
Teyr = inf{t >op; V, =0}

Note first that (I8) implies that

Z (Vcri/\fy(t) - VT;M(t))

k>0

converges in probability as € — 0 towards B} + (1 —2p;) L (V). Since
Vi =B} + (1 — p;) Ly (V), if we set

Ly = (Ve i) = Vorna)

k>0

as € = 0, Ly" converges towards p;L«) (V') in probability. Now for
t >0,

Uy = |zl + ) (Une, no) — Urtnotn))-

k>0
Set for t > 0,

Btg’l - Z ( ;;/\v(t) - Tiﬁl\v(t))‘

k>0

Note that d(Us +Vs) = 3=,; Liv,em;ydW and thus when Y; € Ef (i.e.

when Vj is negative), Us + V; remains constant, and we have

U = el + ) Ust i) = Usinow) + Y (Usgnaw) = Urtno)

k>0 k>0
= fol = L7+ By,

Since B; 1 converges in probability towards B}, we get
U = 2|+ B} = pily (V).
And we conclude using that L;(V") = (1 — p;) Ly (V). O
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4.3. Coalescing property. Our purpose in this section is to prove
that 7, defined above is finite a.s. By symmetry and the strong Markov
property, it suffices to prove this for n = 2 and (X, Yy) = (z,0) for
some z € G*. We use the notations of Section

Proposition 4.6. With probability 1, 7., < 00.

Proof. Since (| X¢|,t < 7) is a reflected Brownian motion stopped at
time 7., it will suffice to prove that a.s. L,_(|X]|) < oco. Denote by
L} and L? the local times accumulated by Z respectively on {u = 0}
and {v = 0} up to t and L, = L} + L?. First, note that for ¢ < S,
Li(V") = (1=p) Ly (V) = (1=pi) Lo (Y ]). Thus L, (|Y]) = “552.
Note also that L, (|X]) = 0. Thus

Ls
Lo (IXD) + L (Y]) = 17—
By induction, we get that
L —L
LX)+ Lo (VD) = 3 =52 == < Cla,
n>0 n

with C' = supg<;<ny (1 = p;) " By Theorem 1T a.s. Ly, < oo, and
so L. (| X])+ L. (]Y]) < o0. O

The fact that when n > 3, 7., < 0o a.s., with 7., defined in Section
4.1l is an immediate consequence of Proposition .6l

4.4. Construction of ¢. Let (P™ n > 1) be the unique consistent
family of Markovian semigroups such that
(i) PW is the semigroup of the Walsh’s Brownian motion on G.
(i) The n-point motion of P™ started from x# € G™ up to its
entrance time in A,, is distributed as chn)’o.
(iii) The n-point motion (X!,..., X™) of P is such that if X! = X7
then X} = X7 for all t > s.
We will prove that all P™ are Feller and that (I6) holds. By [12|
Lemma 1.11], this amounts to check the following condition.

Lemma 4.7. Let (X,Y) be the two point motion associated to P,
then for all positive e > 0
3 (2)70 .
i PR > 4 =0
Proof. As in the proof of Proposition 4.6 we take y = 0. Then using the
same notations, for all positive €, {d(Xy,Y;) > €} C {sup,,, |Z;| > €}.
Now the result of the lemma follows from Remark 2.10] U
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By Theorem B}, a SFM ¢ can be associated to (P™),,.

Proposition 4.8. Let ¢ be a SFM associated to (P™),. Then there
exists a family of independent white noises W = (W', 1 <i < N) such
that

(i) FYY C FZ, for all s <t and

(ii) (¢, W) solves (E).

Proof. Let V;.(z) be the Brownian motion associated to ¢,.(x). For
all i € [1, N] and s <, set
Wi, = lim Vii().
’ |z| = o00,z€Fy,|z|€Q
For alli € [1, N] and s < t, with probability 1, this limit exists. Indeed
if z,y € E; are such that |z| < |y|, then a.s. Vi (z) = V4 (y) for all
s <t <78 =inf{u > s p.u(r) = 0}. Moreover W' = (W{, s < t)
is a real white noise. Indeed, W is centered and Gaussian, and by the
flow property of ¢ and using s (z) = e;(|z] + Wi,) if s < u < 77
and = € E;, we have W}, = W!, + W/ . It is also clear that W' has
independent increments with respect to (s,t). Thus, W' is a real white
noise. The fact that W = (W, 1 <i < N) is a family of independent
real white noises easily holds.
For x € G and t > 0,

t
Wi V(@)= lm (Va(y) Vi(@) = / Lo oy

ly|—o0,y€E;,|y|€Q

This yields

N t
Vialz) =) / s u(@erydW.
i=1"Y%
By Theorem B.], we deduce that (¢, W) solves (E). O
Denote by Pg the law of (¢, W).

4.5. Uniqueness in law of a SFM solution of (£). In this section,
we show that the SEFM ¢ constructed in Section .4 is the only SFM
solution of (E). More precisely, we show

Proposition 4.9. Let (¢, W) be a solution of (E), with ¢ a SFM.
Then the law of (0, W) is Pg.

Proof. We start by showing

Lemma 4.10. For all x = e;(r) € G, we have @q4(x) = e;i(r + W/,
forall s <t < 77 = inf{t > s : py4(x) = 0}. In particular for all
1<i<N, s<t, wehavef%lezt.
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Proof. Let f € D such that f(z) = |z| for all x € E;. By applying f in
(E), we deduce the first claim. The second claim is then an immediate
consequence by taking a sequence (xy)r C E; converging to co. 0

With this lemma and Theorem we prove the following

Lemma 4.11. Let © = (21, -+ ,x,) € G". Let S = inf{t > 0 :
(o(w1), -+ woi(wn)) € An}. Then (wo(x1),- -+, woi(Tn))ics is dis-
tributed like ch")’o.

Proof. Suppose |r1| < -+ < |z,]. For k € [1,n], set Y}* = g (x1)
and Y, = (Y',..., "), Set for i € [I,N], W} = W§, and W, =
(W} ...,W). Note that for all k € [1,n], (Y*, W) is a solution of
(E). Set

oy =inf{t>0: Ik #1:Y}F =0}
and for £ > 1, set

o =inf{t >0,: I €[1,n]: YF=0,YF #£0}.

) ay

Let S™ = limy_,, 04, then S™ = S = inf{t : Y;(n) € A, }. From Theorem
M2 the law of (Y, W) is uniquely determined. Now, for k € [2,n)]
with z;, € E;, we have that for t < oy, Y}* = e;(|xx| + W}). This shows
that (V,™)i<,, is distributed as (X\™),<,,, constructed in Subsection
M1l Adapting the previous argument on the time interval [oy, 04 1], we
show that for all £ > 1, (V,"),<,, is distributed as (X™),<,,. This
thus shows the lemma. 0

Lemma [A.IT] permits to conclude the proof of Proposition 4.9 In-
deed, the law of a SFM is uniquely determined by its family of n-point
motions X™. Using the fact that A, is an absorbing set for X (™,
the strong Markov property at time 7" = inf{t; Xt(n) € A,} and the
consistency of the family of n-point motions, we see that the law of a
SFM is uniquely determined by its family of n-point motions stopped
at its first entrance time in A,,. ]

5. EXTENSION TO METRIC GRAPHS

In this section, we consider a family of star graphs (Gj)1<k<x with
G = Uier B} and for each 1 < k < K, a family of parameters py :=
(ph.)icr, associated to Gy such that 0 < pi <1 and Zielk pi. = 1. Set
I =A(i,k):i€ly,1 <k <K} Forie Ugly, set k(i) = inf{k, i €
I}. Let W= {W}, (i,k) € I} be a family of white noises such that

. {W,i(i), i € Upli} is a family of independent white noises.
elforall 1 <k#(¢(<K,and i€ [N, W, +W;=0.
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In particular, for all 1 < k < K, W, := {W}, ¢ € I} is a family
independent white noises.
Theorem 5.1. Let (Ky)1<k<x be a family of SFK’s respectively defined
on Gy,. Assume that

e For all k, (Ky, Wy) solves E(G, p),

o (Fop = ViFLF)set is i.d.i.
Then, the flows (Kj)1<k<k are independent given W.

The rest of this section will consist in proving Theorem [B.1], and the
assumptions of the theorem are supposed to be satisfied. For a SFK K,
K(t) and K(s,t) respectively denote Ky; and K, for a white noise
W, W(t) and W (s,t) denote Wy, and W, and for a semigroup P,
P(t) denotes P;.

5.1. Feller semigroups. Let n := (ny)i1<x<x be a family of nonnega-
tive integers and set G = [[, G Fort >0,z := () 1<k<k € G™
and w € Rl set for f € C,(G™) and g € Cy(RI),

Q" (f @ g)(x,w) = E[( @ (Ki()®™) f(x)g(w + W (1)].
Note that the i.d.i property implies that Q) defines a Feller semigroup
on G x RV, Denote by @EZ?U)) the law of the diffusion started at (z,w)
associated to this semigroup.
Define also for all k, ng’"’“) the Feller semigroup on G.* x R such
that for fi, € Cy(G}*) and g € Cy(RI),

E (i © g) (s w) = E[(Kx(0)®™ fie) (i) g (w + W (D))].

Denote as above by QEI; "1’2 the law of the diffusion started at (xy,w)

associated to this semigroup.

Let (X, W) be a diffusion of law @EZ?O), then for all (i, k), (X}, W) is
a diffusion of law ngllo and (X}, W) is a solution of E(Gj,py) with
Xi(0) = . This fact can easily be seen as a consequence of
Lemma 5.2. For all k € {1,...,K} and all x € Gy, if (X, W) is a
diffusion of law Q(;po then (X, W) is a solution of E(Gy, py).

Proof. In the following, set G = Gy, p = pr, Q; = Ek’l and N = ||

It is obvious that W is a N-dimensional Brownian motion. It is also
clear that X is a Walsh’s Brownian motion. Denote by B¥ the Brow-
nian motion associated to X. Then by Freidlin-Sheu formula, (X, W)

solves E(G,p) as soon as B = Y, fot Lix,epdW!. It is enough to
prove (BX W), = fot lix,cp,yds for all 7.



STOCHASTIC FLOWS AND AN INTERFACE SDE ON METRIC GRAPHS 33

Recall the definition of D from [B)) and set Dy ={f €D : f, [, f" €
Co(G)}. Denote by A the generator of Q; and D(A) its domain, then
D; ® C3(RY) C D(A) and for all f € Dy and g € Cg(RN)

A(F © 9)( w) = 5 f(2)Ag(w) + 3 " (2)glew) + Z F15)(
Thus for all f € Dy and g € CZ(RY),

(19) f(Xy)g(Wy) — /Ot A(f ® g)(Xs, Wy)ds is a martingale.

On the other hand, (I9), Freidlin-Sheu and It6’s formulas imply that

é/otu'l&)()f W.)ds —Z/ (1

Since this holds for all f € D; and all ¢ € CZ(RY), we get that
(BX, W), = [} 1{x,cp,ds for all i. O

( $)A(BY, Wi)s.

5.2. A sufficient condition for conditional independence. For
x = (1), € G™ and w € RI!I define IP’(" ) the law of (X, ..., Xx, W)
such that X1, ..., Xk are independent glven W and for all k, (X, W)
is distributed as QEI; njj} Denote by E(I the expectation with respect
to IP’EZ?U)). Denote also by IE( the expectatlon with respect to IP’Ek ""))
When 7 is a U(W)—measurable random variable, with W a white noise,
we simply denote E{") [Z] and E(;")[Z] by E[Z].

(zg,w)

Proposition 5.3. If for all n := (ng), and all  := (),
(20) Q) = Poty
then the flows (Ky)x are independent given W.

Proof. For n := (ng)y, © := (xx)r, f = @ fr, with fi € Co(G*),
E[][(5:()®™ fi(z)] = Q"(f®1)(=,0)

_ Egg}o)[ﬂfk<xk<t>>}
~ E[HEEZZ”S [ (X)) W]

k
Then the proposition follows from the fact that

(21) EG 5 L (X(0)) W] = E[(Kx(£) ™ f(y) W],
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Let go,...g; be in Co(RI') and let 0 = ty < --- < t; = t. Then
setting, for all g € Co(RIN, h € Co(Gy* x RH) and all t > 0,

Qih(z,w) = g(w)@gk’"’“)h(x, w), one has (to lighten the notation below,
fr, o, Xi and (K (t))®™ are denoted by f, x, X and Kj)

E[Kif(x) [T ¢s(W(H)] = Q---Qf=, ,(f ® g.)(x,0)

0<j<J
= B (X)) [T 90v(#))]
0<j<J
= E[EGH FX@)W] T o7 @),
0<j<J
which suffices to deduce (21). D

Note that the Feller property implies that (20) is satisfied for all n
and all z if it is satisfied for all n and all z in a dense subset of G,

5.3. Uniqueness up to the first meeting time at 0. Take n =
(ni)r and choose x = (xy);, such that for all k # ¢, 0 & {z},1 < i <
ey N {z],1 < j < m}. In the following, (X, W) will be distributed
as IP’EZ?O) or as QEZ?O) with X = (X1, -+, Xk), and (F;);>o denotes the
filtration generated by (X, W). Fort > 0, let Ry(t) := {Xi(t) |1 <i <
ny}. Define the sequence of stopping times (o;);>0 such that oy = 0
and for all 7 > 0,

(22) Oj4+1 = ll'lf{t Z 0j | Ell{?, 0e Rk(t) and 0 ¢ Rk(O'])}

Using the strong Markov property, it is easy to see that for all j > 1,
there is only one k such that 0 € Ry (o;) and that the sequence (0;);>1
is strictly increasing. Denote by o = lim;_, ;.

Proposition 5.4. The law of (X(t),W(t))i<o., s the same under

QEZ?O) and under PEZ?O).

Proof. Let (X, W) be distributed as QEZ)O). Without loss of generality,

assume there exists ¢ such that 0 € R,(0) and 0 ¢ Uy Ry(0). Then
{(Xk(t),t <0oy), k # £} is o(W)-measurable and therefore {( X (), <
01), 1 <k < K} is a family of independent random variables given
W. So the conditional law of this family given W is the same as
the conditional law of {(Xx(t),t < 01),1 < k < K} given W when

(X, W) is distributed as IP’EZ)O). Denote this law by p(z, W). Using the

strong Markov property at time o,,, we get that given F, and W, the
law of {(Xx(t 4+ on),t < ops1 —0on), 1 <k < K} is p(X(o,), W(- +
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on)— W (0y,)). Since this characterizes the law of (X (¢), W(t))i<o.., the
proposition is proved. 0

This proposition implies in particular that if IPEZ)O) (00 = 00) = 1,

n) _ p)
then @(%0) = IP’(%O).

5.4. The meeting time at 0 is infinite. Our purpose here is to prove
the following

Proposition 5.5. For all n = (ng), and all x = (xy) such that for all
k#0,0¢&{xi,1<i<ng}n{z],1<j<n}, wehave

P (0o = 00) = 1.

Proof. Assume K = 2, ny = ny = 1 and take x = (x1,23) such that
x1 # 0 and x9 = 0. It is easy to see that if the proposition holds in
this particular case, then it also holds in the general case. We use in
the following the notations of Subsection Note that

OO0 = mf{t 2 0: Xl(t) = Xg(t) = 0}
and that for k € {1,2}, (X, Wy) is a solution of E(Gy,px). Set I¢ =
I NI and set for k € {1,2}, I} := L\I°. Recall that for i € I°
Wi+ Wi =0. For k € {1,2} and i € I, set 0, = arctan (I;f’;“). For
k
ke {1,2} and i & I}, set i = 0.
Say 1 ~ my if there exists i € ¢ such that z; € Fi and x5 € E and

say 1 ¢ xy otherwise. Recall the definition of (0,), : 0o = 0 and for
all £> 0,

Oopyr1 = mf{t Z 09y Xl(t) = 0},
Oopt2 = mf{t Z O2k+1 : Xg(t) = O}
For all £ > 0, set U3, = |X:(02)| and U3, = | Xa(02e41)|. Define also

ige and dy04q such that X;(oy) € B and Xy(09041) € E;ﬂ“.
Set for all t > 0

t
A= / Lixi(s)pxa(s)yds
0

and
v =inf{s >0: A, >t}, G =F,.
Set forn >0, S, = A,, and Sy, = lim,, ,o S, = A,__.

Our purpose now is to define a cadlag process (U, V;)i<s.,, contin-
uous on [S,_1,5,) for all n > 1, taking its values in the quadrant Q
and such that (Us,,Vs,) = (U2,0) for all n > 0. Its left limit will be
denoted by (U;_, Vi—) = limy (Us, Vi), t < Sx.
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Let us explain the procedure for n = 0. We have Uy = |21, X;(t) €
E° and | X, (t)| = |a1| + Wio(t) for t < oy.

Now we discuss the following two cases:
First case: 79 € I7, then for all t < oy, X5(t) 4 Xi(t), A(t) =t
and S = o1. Set for t < Sy, Uy = |Xi(t)| and V; = |X5(¢)|. Then
(Ui, Vi)i<s, is a reflected Brownian motion in the quadrant Q started
at (|z1],0) and stopped when hitting {x = 0}. Here the reflection is
normal and the angle of reflection is 65 = 0.
Second case: ig € I°. For t < oy, set X; = |X;(t)| and

Y, = [Xo ()] (Lixamrexi ) — Lixam~xi0)})-

For t <oy, Ay = f(f liv,>0yds and 1lgy,<opd(Xy 4+ Y;) = 0. The process
(Xt, Y3)i<o, behaves as a two dimensional Brownian motion in the inte-
rior of @ and outside Q, it evolves on straight lines parallel to {y = z}.
Finally set (Ut, Vt) = (X Y. ), for t < .5;.

Vo TV

Lemma 5.6. Assume ig € 1°. There exist two independent (Gy),-
Brownian motions B* and B? such that fort < Sy,

dU, = dB} + tan (63)dLi(V),
dVi = dB} +dL,V).

Moreover U; > 0 for allt < Sy, Vs, = 0 if Xo(01) € EY and Us,_ =0
if not.

The proof of this lemma follows exactly Lemma and is omitted.
Note that this lemma also holds if iy ¢ I°.

In the same way, we construct (Uy, V;)ie(s,_1,s,) such that condi-
tionally on F,, |, (Us, Vi)iels,_.,s,) is an obliquely reflected Brownian
motion in the quadrant Q started at (U°_,,0) at time S,_;, stopped
at time S,, such that U, > 0 for all t < S, and

e If nisodd, Vs,_ =0 if Xy(0,) € E5" " and Ug,_ = 0 if not.
e If niseven, Vg, =0if X;(0,) € E;"" and Us,_ = 0 if not.

Moreover the reflection occurs only at the boundary {y = 0}, and the
angle of reflection is —6}" if n is odd and is —64" if n is even.

When t € [S,_1,5,), we denote by ©, this angle of reflection. Note
that U? = Us, when Ug, ~ > 0 and U? = Vg, when Ug,_ = 0.

Define the sequence (7});>0 by 7o = 0 and for all j > 0

Tj1 =inf{S, : S, > T, and Ug,_ = 0}.

Set Too = limj oo Tj = S = A,... Then (Ui, Vi)i<s.. is continuous
expect at the times 7}, j > 1. Moreover, we have the following
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Lemma 5.7. The process (U, Vi) is (Gi)i-adapted. There exist two
independent (Gy)¢-Brownian motions B' and B?, such that for all t €

[,ijvtrj—l-l)7

t
Ut — UTj _|_/ (dB; — tan (@s)dLs(V)),

T.

Vi = /t (dB2 + dLy(V)).

T.
Moreover Ur, = Vr,—, Ur,,,— = 0 and Uy > 0 for all t < S...

The process (U, V) is not continuous, but out of it, one can construct
an obliquely reflected Brownian motion on Q (7] = (X],Y])),t < T,),
and satisfying the following lemma.

Lemma 5.8. For alln >0, Yy, =Ur,, Xy, =Un,,,
Tony1 = inf{t > Ty, : Y =0},
Tonie = inf{t > Ty, 4y : X[ =0},
To = inf{t>0:2 =(0,0)},
and for all t < T,
dX; = dB}+dL,(X") — tan (0,)dL,(Y"),
dY] = dB} —tan (0,)dLi(X") + dL,(Y").
Moreover Ty, = oo implies 0, = 0.

To conclude the proof of Proposition £ it remains to prove that
a.s. T, = 00. We exactly follow [9, Page 161]. For all a > 0, define

7, =1inf{t > 0:|Z]| = a}.

Take € < |z1] < A and set 7. 4 = 7. A T4, then by Itd’s formula, setting
R, =|Z]|, we have that, for all t > 0,

log(Rnr, ) = log(|z1]) + M, + C,

where M is a martingale started from 0 and C' is a nonnegative nonde-
creasing process (using that ©; < 0). Thus by letting t — oo, we get
Eflog(R-, ,)] = log(|z1]). So

log(e)P(7e < 74) + log(A)(1 — P(7. < 74)) > log(|z1|)

and consequently

log(A) —log(|z1])
log(A) — log(e)

]P)(T6 < TA) S
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Replacing e with e(A) = (%)%, yields

i
P(To < 00) = lim P(Too < 74) < lim P(7a) < 74) = 0.

6. FINAL REMARKS

It is also possible to extend the framework of the present paper to the
case of a metric star graph with an infinite family of rays G = U,,enE,,.
We only give a formal discussion of the problem. Suppose we are
given a family p = (p,)nen CJ0,1[ such that ) p, = 1. Then the
law of the Walsh’s Brownian motion associated to p is still defined via
its semigroup (see the introduction). It satisfies also a Freidlin-Sheu
formula similar to the finite case (see [8]):

4 (%) = F(Z)ABY + 3 (2t

where BZ is again the martingale part of |Z| and f runs over an appro-
priate domain of test functions D. Now suppose given a family (W"),,en
of independent Brownian motions, then the natural extension of (FE)
associated to p is the following

U(Z) = 3 (118 (Z)AW; + 3 f"(Z)idt, f € D

n

which we denote again by (FE). The Brownian motion BZ has also
the martingale representation property for (F?); [3, Proposition 19
(ii)]. Thus following our arguments, under some conditions on Z, the
law of any solution (Z, W™, n € N) to (E) is unique. One could also
investigate stochastic flows solutions of (E). However, in contrast to
the discrete case, here we have

Pn

inf{arctan(l ):neN}:O.

n
This is the new difficulty with respect to the present paper. We leave
the question of existence of a SFM in this case open.

Acknowledgement. We are grateful to Michel Emery for very use-
ful discussions.
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