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Abstract

We define Lie 3-algebras and prove that these are in 1-to-1 correspondence with the
3-term Lie infinity algebras whose bilinear and trilinear maps vanish in degree (1,1) and
in total degree 1, respectively. Further, we give an answer to a question of [Roy07] per-
taining to the use of the nerve and normalization functors in the study of the relationship
between categorified algebras and truncated sh algebras.
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1 Introduction

Higher structures — infinity algebras and other objects up to homotopy, higher categories,
“oidified” concepts, higher Lie theory, higher gauge theory... — are currently intensively in-
vestigated. In particular, higher generalizations of Lie algebras have been conceived under
various names, e.g. Lie infinity algebras, Lie n-algebras, quasi-free differential graded com-
mutative associative algebras (qfDGCAs for short), n-ary Lie algebras, see e.g. [Dzh05],
crossed modules [MP09] ...

More precisely, there are essentially two ways to increase the flexibility of an algebraic
structure: homotopification and categorification.

Homotopy, sh or infinity algebras [Sta63] are homotopy invariant extensions of differ-
ential graded algebras. This property explains their origin in BRST of closed string field
theory. One of the prominent applications of Lie infinity algebras [LLS93] is their appearance
in Deformation Quantization of Poisson manifolds. The deformation map can be extended
from differential graded Lie algebras (DGLAS) to L.-algebras and more precisely to a functor
from the category L., to the category Set. This functor transforms a weak equivalence into
a bijection. When applied to the DGLAs of polyvector fields and polydifferential operators,
the latter result, combined with the formality theorem, provides the 1-to-1 correspondence
between Poisson tensors and star products.
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On the other hand, categorification [CF94], [Cra95] is characterized by the replacement
of sets (resp. maps, equations) by categories (resp. functors, natural isomorphisms). Rather
than considering two maps as equal, one details a way of identifying them. Categorification
is a sharpened viewpoint that leads to astonishing results in TFT, bosonic string theory...
Categorified Lie algebras, i.e. Lie 2-algebras (alternatively, semistrict Lie 2-algebras) in the
category theoretical sense, have been introduced by J. Baez and A. Crans [BC04]. Their
generalization, weak Lie 2-algebras (alternatively, Lie 2-algebras), has been studied by D.
Roytenberg [Roy07].

It has been shown in [BCO04] that categorification and homotopification are tightly con-
nected. To be exact, Lie 2-algebras and 2-term Lie infinity algebras form equivalent 2-
categories. Due to this result, Lie n-algebras are often defined as sh Lie algebras concentrated
in the first n degrees [Hen08]. However, this ‘definition’ is merely a terminological conven-
tion, see e.g. Definition 4 in [SSO7b]. On the other hand, Lie infinity algebra structures on an
N-graded vector space V are in 1-to-1 correspondence with square 0 degree -1 (with respect
to the grading induced by V') coderivations of the free reduced graded commutative associa-
tive coalgebra S¢(sV), where s denotes the suspension operator, see e.g. [SS07b] or [GK94].
In finite dimension, the latter result admits a variant based on qfDGCAs instead of coalge-
bras. Higher morphisms of free DGCAs have been investigated under the name of derivation
homotopies in [SSO7b]. Quite a number of examples can be found in [SS07a].

Besides the proof of the mentioned correspondence between Lie 2-algebras and 2-term
Lie infinity algebras, the seminal work [BC04] provides a classification of all Lie infinity
algebras, whose only nontrivial terms are those of degree 0 and n — 1, by means of a Lie
algebra, a representation and an (n + 1)-cohomology class; for a possible extension of this
classification, see [Bae07].

In this paper, we give an explicit categorical definition of Lie 3-algebras and prove that
these are in 1-to-1 correspondence with the 3-term Lie infinity algebras, whose bilinear and
trilinear maps vanish in degree (1,1) and in total degree 1, respectively. Note that a ‘3-term’
Lie infinity algebra implemented by a 4-cocycle [BC04] is an example of a Lie 3-algebra in
the sense of the present work.

The correspondence between categorified and bounded homotopy algebras is expected to
involve classical functors and chain maps, like e.g. the normalization and Dold-Kan functors,
the (lax and oplax monoidal) Eilenberg-Zilber and Alexander-Whitney chain maps, the nerve
functor... We show that the challenge ultimately resides in an incompatibility of the cartesian
product of linear n-categories with the monoidal structure of this category, thus answering a
question of [Roy07].

The paper is organized as follows. Section 2 contains all relevant higher categorical def-
initions. In Section 3, we define Lie 3-algebras. The fourth section contains the proof of the
mentioned 1-to-1 correspondence between categorified algebras and truncated sh algebras —
the main result of this paper. A specific aspect of the monoidal structure of the category of
linear n-categories is highlighted in Section 5. In the last section, we show that this feature
is an obstruction to the use of the Eilenberg-Zilber map in the proof of the correspondence
“bracket functor — chain map”.



Categorification and homotopification 3

2 Higher linear categories and bounded chain complexes of
vector spaces

Let us emphasize that notation and terminology used in the present work originate in
[BCO4], [Roy07], as well as in [Lei04]. For instance, a linear n-category will be an (a strict) n-
category [Lei04] in Vect. Categories in Vect have been considered in [BC04] and also called
internal categories or 2-vector spaces. In [BC04], see Sections 2 and 3, the corresponding
morphisms (resp. 2-morphisms) are termed as linear functors (resp. linear natural transfor-
mations), and the resulting 2-category is denoted by VectCat and also by 2Vect. Therefore,
the (n+ 1)-category made up by linear n-categories (n-categories in Vect or (n+ 1)-vector
spaces), linear n-functors... will be denoted by Vect n-Cat or (n+ 1)Vect.

The following result is known. We briefly explain it here as its proof and the involved
concepts are important for an easy reading of this paper.

Proposition 1. The categories Vect n-Cat of linear n-categories and linear n-functors and
¢"t1(Vect) of (n+ 1)-term chain complexes of vector spaces and linear chain maps are
equivalent.

We first recall some definitions.

Definition 1. An n-globular vector space L, n € N, is a sequence

st st st

Li=Ly 1 =... =Ly =0, (D

of vector spaces L, and linear maps s,t such that

s(s(a)) = s(t(a)) and 1(s(a)) = 1(t(a)), (2)

foranya € Ly, me{1,...,n}. The maps s,t are called source map and target map, respec-
tively, and any element of Ly, is an m-cell.

By higher category we mean in this text a strict higher category. Roughly, a linear n-
category, n € N, is an n-globular vector space endowed with compositions of m-cells, 0 <
m < n, along a p-cell, 0 < p < m, and an identity associated to any m-cell, 0 < m < n. Two
m-cells (a,b) € Ly, x Ly, are composable along a p-cell, if "7 (a) = s™ P (b). The composite
m-cell will be denoted by a o), b (the cell that ‘acts’ first is written on the left) and the vector
subspace of L,, x L,, made up by the pairs of m-cells that can be composed along a p-cell will
be denoted by Ly, X1, Lm. The following figure schematizes the composition of two 3-cells
along a 0-, a 1-, and a 2-cell.
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Definition 2. A linear n-category, n € N, is an n-globular vector space L (with source and
target maps s,t) together with, for any m € {1,...,n} and any p € {0,...,m— 1}, a linear
composition map op : Ly X1, Lm — Ly and, for any m € {0,...,n— 1}, a linear identity map
1: L, — L1, such that the properties

o for (a,b) eL, XL, L,
if p=m—1, then s(ac,b) =s(a) and t(ac,b) =1(b),

if p<m-—2, then s(ao,b)=s(a)o,s(b)and t(aoc,b) =t(a)o,t(b),

e forany (a,b),(b,c) € Lm X1, Lm,
(aopb)o,c=aop(bopc),

1P o a=ao, 1" P

sm—pPg ~P plim—pg =4

are verified, as well as the compatibility conditions
e forq<p, (a,b),(c,d) € Ly X1, Ly and (a,c),(b,d) € Ly X1, Ly,
(aopb)og(copd) = (acyc)op(boyd),
e form <nand (a,b) € Ly X1, L,
laopb =140, 1.

The morphisms between two linear n-categories are the linear n-functors.

Definition 3. A linear n-functor F : L — L' between two linear n-categories is made up by
linear maps F : L, — L},, m € {0,...,n}, such that the categorical structure — source and
target maps, composition maps, identity maps — is respected.

Linear n-categories and linear n-functors form a category Vect n-Cat, see Proposition
1. To disambiguate this proposition, let us specify that the objects of C"!(Vect) are the
complexes whose underlying vector space V = @?_,V; is made up by n+1 terms V.

The proof of Proposition 1 is based upon the following result.

Proposition 2. Let L be any n-globular vector space with linear identity maps. If s,, denotes
the restriction of the source map to Ly, the vector spaces Ly, and L}, := @ Vi, Vi := kers;,
m € {0,...,n}, are isomorphic. Further, the n-globular vector space with identities can be
completed in a unique way by linear composition maps so to form a linear n-category. If we
identify Ly, with L), this unique linear n-categorical structure reads

S(V(),...,Vm):(V(),...,Vm_]), (3)
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t(vo, -y vm) = (Vo, -+ Vi—1 +1Vm), 4)
Lgsoovm) = (V05 -+ Vm, 0), (5)
(Vs sVm) ©p (Vs s Vi) = (VO,...,VP,Ver]+V‘/D+1,...,Vm+V:,n), (6)

where the two m-cells in Equation (6) are assumed to be composable along a p-cell.

Proof. As for the first part of this proposition, if m = 2 e.g., it suffices to observe that the
linear maps
o : L/2 =Vo@®Vi®V2 3 (vo,vi,v2) — 1%0 +1,,+mel,

and
Br:Ly>a— (sza,s(a— lfza),a— ls(a—lfz )~ lsza) ceVooViao, =L,

are inverses of each other. For arbitrary m € {0,...,n} and a € L,,, we set

— m—1
/
Bra = (Smaa" Z jﬁLa DA Z 11’ BLa) cEVd..aVid...oVu=L,,

where p; denotes the projection p; : L, — V; and where the components must be computed
from left to right.

For the second claim, note that when reading the source, target and identity maps
through the detailed isomorphism, we get s(vo,...,vm) = (Vo,---,Vi—1)s t(Vos--vyVim) =
(Vo5 -+« y V-1 +1v), and 1,y = (vo,-..,Vm,0). Eventually, set v = (vo,...,v;) and let
(v,w) and (V',w') be two pairs of m-cells that are composable along a p-cell. The compos-
ability condition, say for (v,w), reads

(W0, -, Wp) = (VO, -+, Vp—1,Vp +1Vpi1).

It follows from the linearity of Op i Lm X1, Ly — Ly, that (v+1') 0, (w+w') = (vo,w) +

(V' o,w'). When takingw = 17,7 ‘andV =1, we find

m— p sm— pw/,

/ / / / / /
(VO+W0s s Vp Wy Vpitseee s Vin) 0p (VO +Woy oo Vp Wy HEVp 1, Wy gy, Wyy)

= (Vo+ W,y Vi + W),

so that o, is necessarily the composition given by Equation (6). It is easily seen that, con-
versely, Equations (3) — (6) define a linear n-categorical structure. [l

Proof of Proposition 1. We define functors 91: Vect n-Cat — ¢"*!(Vect) and & : ¢"*! (Vect)
— Vect n-Cat that are inverses up to natural isomorphisms.

If we start from a linear n-category L, so in particular from an n-globular vector space L,
we define an (n+ 1)-term chain complex 91(L) by setting V,, = kers,,, C Ly, and d,, =ty
Vin = Viu—1. In view of the globular space conditions (2), the target space of d,, is actually
V.n—1 and we have d,,,_1d,,v;, = 0.

Moreover, if F : L — L’ denotes a linear n-functor, the value 91(F) : V — V' is defined on
Vin C Ly by W(F)m = Fulv,, : Vi — V,,. It is obvious that 91(F) is a linear chain map.
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It is obvious that 91 respects the categorical structures of Vect n-Cat and ¢! (Vect).

As for the second functor &, if (V,d), V = @7V}, is an (n+ 1)-term chain complex of
vector spaces, we define a linear n-category &(V) =L, L,, = @} ;V;, as in Proposition 2: the
source, target, identity and composition maps are defined by Equations (3) — (6), except that
tvy, in the RHS of Equation (4) is replaced by dv,.

The definition of & on a linear chain map ¢ : V — V' leads to a linear n-functor &(¢) :
L — L', which is defined on L,, = @,V by &(9),, = & ,¢;. Indeed, it is readily checked
that &(¢) respects the linear n-categorical structures of L and L'.

Furthermore, & respects the categorical structures of C"T!(Vect) and Vect n-Cat.
Eventually, there exist natural isomorphisms & : 916 = id and ¥ : 91 = id.

To define a natural transformation @ : 9® = id, note that L' = (91&)(L) is the linear
n-category made up by the vector spaces Lfn = @7 ,Vi, Vi = kers;, as well as by the source,
target, identities and compositions defined from V = 91(L) as in the above definition of &(V),
i.e. as in Proposition 2. It follows that oy, : L' — L, defined by oy, : L}, > (vo,...,vm) —
15 +...+ 1y, +Vm € Ly, m € {0,...,n}, which pulls the linear n-categorical structure
back from L to L', see Proposition 2, is an invertible linear n-functor. Moreover « is natural
in L.

It suffices now to observe that the composite &1 is the identity functor. [l
Next we further investigate the category Vect n-Cat.

Proposition 3. The category Vect n-Cat admits finite products.

Let L and L' be two linear n-categories. The product linear n-category L x L' is defined
by (LX L")y = Ly X Ly, S = Sm X Shy, Top =ty X by, Iy = 1, x 17, and O = o), X o;,. The
compositions (), coincide with the unique compositions that complete the n-globular vector
space with identities, thus providing a linear n-category. It is straightforwardly checked that

the product of linear n-categories verifies the universal property for binary products.

Proposition 4. The category Vect 2-Cat admits a 3-categorical structure. More precisely, its
2-cells are the linear natural 2-transformations and its 3-cells are the linear 2-modifications.

This proposition is the linear version (with similar proof) of the well-known result that
the category 2-Cat is a 3-category with 2-categories as 0-cells, 2-functors as 1-cells, natural
2-transformations as 2-cells, and 2-modifications as 3-cells. The definitions of n-categories
and 2-functors are similar to those given above in the linear context (but they are formulated
without the use of set theoretical concepts). As for (linear) natural 2-transformations and
(linear) 2-modifications, let us recall their definition in the linear setting:

Definition 4. A linear natural 2-transformation 0 : F = G between two linear 2-functors
F,G: %€ — 9, between the same two linear 2-categories, assigns to any a € 6\ a unique
0, : F(a) — G(a) in 2, linear with respect to a and such that for any o : f = g in 65,
f,g:a— bin 6, we have

F(a)oglg, = 1lg,00G(a) . (7)
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If ¢ = L x L is a product linear 2-category, the last condition reads
F(a’ﬁ) 0 19120512!3 - 1Qr2a,s2ﬁ °0 G(Ol,ﬁ),
for all (o, ) € L, x Ly. As functors respect composition, i.e. as
F(0t,B) = Flaop 2y, 12500 B) = F(ot, 125) 00 F (12 4. B).

this naturality condition is verified if and only if it holds true in case all but one of the 2-
cells are identities 12, i.e. if and only if the transformation is natural with respect to all its
arguments separately.

Definition 5. Let ¢, be two linear 2-categories. A linear 2-modification 1 : ) = € be-
tween two linear natural 2-transformations 1n,€ : F = G, between the same two linear 2-
functors F,G : € — 9, assigns to any object a € 6y a unique [, : Ny = &, in P, which is
linear with respect to a and such that, for any & : f = g in 6>, f,g:a — b in 6}, we have

F(OC) oo Up = Uy ©0 G(OC) (8)

If € = L x Lis a product linear 2-category, it suffices again that the preceding modification
property be satisfied for tuples (a,8), in which all but one 2-cells are identities 12. The
explanation is the same as for natural transformations.

Beyond linear 2-functors, linear natural 2-transformations, and linear 2-modifications, we
use below multilinear cells. Bilinear cells e.g., are cells on a product linear 2-category, with
linearity replaced by bilinearity. For instance,

Definition 6. Ler L, L', and L" be linear 2-categories. A bilinear 2-functor F : L x L' — L”
is a 2-functor such that F : L,, X L, — L/ is bilinear for allm € {0,1,2}.
Similarly,

Definition 7. Let L, L', and L" be linear 2-categories. A bilinear natural 2-transformation
6 : F = G between two bilinear 2-functors F,G : L x L' — L", assigns to any (a,b) € Ly x L,
a unique 0, : F(a,b) — G(a,b) in L, which is bilinear with respect to (a,b) and such that
forany (o0,B) : (f,h) = (g,k) in Ly x L}, (f,h),(g,k) : (a,b) — (c,d) in Ly x L}, we have

F(Ol,ﬁ)O()lg(C,d) = 19(a,b) o) G((X,B) . (9)

3 Homotopy Lie algebras and categorified Lie algebras

We now recall the definition of a Lie infinity (strongly homotopy Lie, sh Lie, L..—) alge-
bra and specify it in the case of a 3-term Lie infinity algebra.

Definition 8. A Lie infinity algebra is an N-graded vector space V = @;cnV; together with
a family (¢;);cn+ of graded antisymmetric i-linear weight i — 2 maps on V, which verify the
sequence of conditions

x(0)(=1)UV0,(bi(ag,,- . a6,),dc,. - - a0,) =0, (10)
i+j=n+1(in—i) — shuffles o

where n € {1,2,...}, where x(0) is the product of the signature of ¢ and the Koszul sign
defined by ¢ and the homogeneous arguments ay,...,a, €V.
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For n = 1, the L..-condition (10) reads E% =0 and, for n = 2, it means that ¢; is a graded
derivation of /», or, equivalently, that ¢, is a chain map from (V ® V,/; ® id+id® ¢;) to
(V,4y).

In particular,

Definition 9. A 3-term Lie infinity algebra is a 3-term graded vector space V. =VydV; &V,
endowed with graded antisymmetric p-linear maps £, of weight p —2,

Vi = Vi (1<i<2),
fzIViXVj—>Vi+j (0§i+j§2),
€3ZV,'><V]'><V]€—>V,'+]"+]€+1 (0§i+j—|—k§1),
f42V()><V()><V()><V0—>V2

(11)

(all structure maps £p, p > 4, necessarily vanish), which satisfy Le.-condition (10) (that is
trivial for all n > 5).

In this 3-term situation, each L..-condition splits into a finite number of equations deter-
mined by the various combinations of argument degrees, see below.

On the other hand, we have the

Definition 10. A Lie 3-algebra is a linear 2-category L endowed with a bracket, i.e. an
antisymmetric bilinear 2-functor [—,—| : L x L — L, which verifies the Jacobi identity up to
a Jacobiator, i.e. a skew-symmetric trilinear natural 2-transformation

JX)’Z : [[xay]7z] — [[x,z],y] + [xa [y7z]]7 (12)

X,¥,2 € Lo, which in turn satisfies the Baez-Crans Jacobiator identity up to an Identiator, i.e.
a skew-symmetric quadrilinear 2-modification

Payzu * eyzs L) 00 (T 2],y [y,2]0) ©0 (Waxzus 1y] +1) 00 ([1x Syzu] + 1)

= Jx ]2 00 (Myu, L]+ 1) 00 (U, a2 Tz ey o)) (13)
x,y,z,u € Lo, required to verify the coherence law

ut+oy=atol, (14)

where 0 — 0ty are explicitly given in Definitions 12 — 15 and where superscript —1 denotes
the inverse for composition along a I1-cell.

Just as the Jacobiator is a natural transformation between the two sides of the Jacobi
identity, the Identiator is a modification between the two sides of the Baez-Crans Jacobiator
identity.

In this definition “skew-symmetric 2-transformation” (resp. “‘skew-symmetric 2-modification”)

means that, if we identify L,, with ®'" ;V;, V; = kers;, as in Proposition 2, the V;-component
of Jyy, € Ly (resp. the V,-component of Uy, € L) is antisymmetric. Moreover, the def-
inition makes sense, as the source and target in Equation (13) are quadrilinear natural 2-
transformations between quadrilinear 2-functors from L** to L. These 2-functors are simplest
obtained from the RHS of Equation (13). Further, the mentioned source and target actually
are natural 2-transformations, since a 2-functor composed (on the left or on the right) with a
natural 2-transformation is again a 2-transformation.
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4 Lie 3-algebras in comparison with 3-term Lie infinity al-
gebras

Remark 1. In the following, we systematically identify the vector spaces L,,, m € {0,...,n},
of a linear n-category with the spaces L, = &' \V;, V; = kers;, so that the categorical struc-
ture is given by Equations (3) — (6). In addition, we often substitute common, index-free
notations (e.g. o = (x,f,a)) for our notations (e.g. v= (vo,vi,v2) € Lp).

The next theorem is the main result of this paper.

Theorem 1. There exists a 1-to-1 correspondence between Lie 3-algebras and 3-term Lie
infinity algebras (V,{,,), whose structure maps {» and {3 vanish on V| x V| and on triplets of
total degree 1, respectively.

Example 1. There exists a 1-to-1 correspondence between (n+ 1)-term Lie infinity algebras
V =V @V, (whose intermediate terms vanish), n > 2, and (n+ 2)-cocycles of Lie algebras
endowed with a linear representation, see [BCO4], Theorem 6.7. A 3-term Lie infinity algebra
implemented by a 4-cocycle can therefore be viewed as a special case of a Lie 3-algebra.

The proof of Theorem 1 consists of five lemmas.

4.1 Linear 2-category — three term chain complex of vector spaces

First, we recall the correspondence between the underlying structures of a Lie 3-algebra
and a 3-term Lie infinity algebra.

Lemma 1. There is a bijective correspondence between linear 2-categories L and 3-term
chain complexes of vector spaces (V, ().

Proof. In the proof of Proposition 1, we associated to any linear 2-category L a unique 3-
term chain complex of vector spaces 91(L) = V, whose spaces are given by V,, = kers,,,
m € {0, 1,2}, and whose differential ¢, coincides on V,, with the restriction #,,|y, . Conversely,
we assigned to any such chain complex V a unique linear 2-category & (V) = L, with spaces
Ly, =@ Vi,me {0,1,2} and target to(x) = 0, t; (x,f) = x+ (1f, tr(x,f,a) = (x,f+/1a). In
view of Remark 1, the maps 91 and & are inverses of each other. O]

Remark 2. The globular space condition is the categorical counterpart of L.-condition n =
1.

4.2 Bracket — chain map
We assume that we already built (V,¢;) from L or L from (V, ;).

Lemma 2. There is a bijective correspondence between antisymmetric bilinear 2-functors
[—,—] on L and graded antisymmetric chain maps £ : (V @V, 0} ®id+id®{;) — (V,£;) that
vanish on V| X V.
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Proof. Consider first an antisymmetric bilinear “2-map” [—, —] : L x L — L that verifies all
functorial requirements except as concerns composition. This bracket then respects the com-
positions, i.e., for each pairs (v,w), (Vv',w') € L, x Ly,, m € {1,2}, that are composable along
a p-cell, 0 < p < m, we have

[vopv',wopwl]:[v,w]op WV, w1, (15)

if and only if the following conditions hold true, for any f,g € V| and any a,b € V;:

f,g] = [Lir,g] = [f, i), (16)
[a,b] = [l;a,b] = [a, ;5] =0, (17)
[1¢,b] = [17,b] =0. (18)

To prove the first two conditions, it suffices to compute [foq 1,¢, 1g oo g, for the next three
conditions, we consider [aoj 1,5, lgo; b] and [acg 1%, 1% oo b], and for the last two, we focus on
[1gog 1%, 13 00b] and [1gog (1%+ 1), bogb’]. Conversely, it can be straightforwardly checked
that Equations (16) — (18) entail the general requirement (15).

On the other hand, a graded antisymmetric bilinear weight O map ¢, : V XV — V com-
mutes with the differentials /; and /; ® id+1id®/}, i.e., for all v,w € V, we have

€1(€2(V,w)) :ez(glv,w)—l—(—l)vgz(v,ﬁlw) (19)

(we assumed that v is homogeneous and denoted its degree by v as well), if and only if, for
anyye Vo, f,geVi,andacV,,

€1(€2(f7y>) 262(611.7);)7 (20)

010 (f,g)) = la(lif,g) — 6o(F, 418), (21)

61(62(37)])) ZKZ(EIaay)v (22)

0= 6r(4f,b) — £r(f,41b). (23)

Remark 3. Note that, in the correspondence () <>t and {, <> [—,—], Equations (20) and

(22) read as compatibility requirements of the bracket with the target and that Equations (21)
and (23) correspond to the second conditions of Equations (16) and (18), respectively.

Proof of Lemma 2 (continuation). To prove the announced 1-to-1 correspondence, we
first define a graded antisymmetric chain map 2([—,—]) = {2, l» : V®V — V from any
antisymmetric bilinear 2-functor [—,—] : L X L — L.

Let x,y € Vp, f,g € V|, and a,b € V5. Set lr(x,y) = [x,y] € Vp and lr(x,8) = [1x, 8] €
Vi. However, we must define ¢,(f,g) € V,, whereas [f,g] € V;. Moreover, in this case, the
antisymmetry properties do not match. The observation

if,g] = [Lir,8] = [f, Lig] = Lo (0if,g) = Lr(f, (1 g)

and Condition (21) force us to define ¢, on V| x V| as a symmetric bilinear map valued in
V> Nkerf;. We further set £5(x,b) = [12,b] € V,, and, as ¢, is required to have weight 0, we
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must set >(f,b) =0 and ¢, (a,b) = 0. It then follows from the functorial properties of [—, —]
that the conditions (20) — (22) are verified. In view of Equation (18), Property (23) reads

0 =[1%,b] — £2(£, £1b) = —Lo(F,£1b).

In other words, in addition to the preceding requirement, we must choose {» in a way that
it vanishes on V| X V1 if evaluated on a I-coboundary. These conditions are satisfied if we
choose /, =0on V| x V.

Conversely, from any graded antisymmetric chain map /¢, that vanishes on V| x V|, we
can construct an antisymmetric bilinear 2-functor &(¢;) = [—,—|. Indeed, using obvious
notations, we set

[xay] :EZ(XLV) € Lo, [1)67 1y] = 1[x7y] €Ly, [lxvg] :KZ(X,g) eViClL.

Again [f,g] € L; cannot be defined as ¢, (f,g) € V. Instead, if we wish to build a 2-functor,
we must set

[f.g] = [Lir,8] = [f, Lig] = Oo(0if,8) = O(F,618) € Vi C Ly,
which is possible in view of Equation (21), if ¢5 is on V| x V| valued in 2-cocycles (and in
particular if it vanishes on this subspace). Further, we define

(15,151 =12,y € Lo, [13, 1g] = 11, g € Lo, [13,b] = £2(x,b) € V2 C Lo, [l 1g] = Ijpg) € Lo.

Finally, we must set
[lf’b] = [ltzfvb] = £2<£1f7b) =0,

which is possible in view of Equation (23), if ¢, vanishes on V| x V| when evaluated on a
1-coboundary (and especially if it vanishes on the whole subspace V| x Vi), and

[a,b] = [1;a,b] = [a, 1] =0,

which is possible.
It follows from these definitions that the bracket of o = (x,f,a) = 12+ 1¢+a € L, and
B = (y.8,b) =12+ 1g+b € Ly is given by

[(X,ﬁ] = (EZ(X’y)v£2(x7g) +€2(f7tg)7€2(x7b) +€2(a7y)) S L27 (24)

where g = (y,g). The brackets of two elements of L; or L are obtained as special cases of
the latter result.

We thus defined an antisymmetric bilinear map [—, —| that assigns an i-cell to any pair
of i-cells, i € {0,1,2}, and that respects identities and sources. Moreover, since Equations
(16) — (18) are satisfied, the map [—, —] respects compositions provided it respects targets.
For the last of the first three defined brackets, the target condition is verified due to Equation
(20). For the fourth bracket, the target must coincide with [tf,7g] = ¢,(¢,f,¢,g) and it actu-
ally coincides with ¢[f,g] = ¢10,(¢1f,g) = ¢2(¢1f,418), again in view of (20). As regards the
seventh bracket, the target ¢[12,b] = £1/(x,b) = £2(x,£1b), due to (22), must coincide with
[1x,7b] = ¢>(x,¢1b). The targets of the two last brackets vanish and [f,tb] = ¢,(f,¢,¢;b) =0
and [ta,tb] = Ez(ﬁla,élélb) =0.

It is straightforwardly checked that the maps 91 and & are inverses. [l
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Note that 91 actually assigns to any antisymmetric bilinear 2-functor a class of graded
antisymmetric chain maps that coincide outside V| x V| and whose restrictions to V| x V; are
valued in 2-cocycles and vanish when evaluated on a 1-coboundary. The map 91, with values
in chain maps, is well-defined thanks to a canonical choice of a representative of this class.
Conversely, the values on Vj x V; of the considered chain map cannot be encrypted into
the associated 2-functor, only the mentioned cohomological conditions are of importance.
Without the canonical choice, the map & would not be injective.

Remark 4. The categorical counterpart of L-condition n =2 is the functor condition on
compositions.

Remark 5. A 2-term Lie infinity algebra (resp. a Lie 2-algebra) can be viewed as a 3-term
Lie infinity algebra (resp. a Lie 3-algebra). The preceding correspondence then of course
reduces to the correspondence of [BCO4].

4.3 Jacobiator - third structure map

We suppose that we already constructed (V,¢;,¢,) from (L,[—,—]) or (L,[—,—]) from
(V7€17£2)'

Lemma 3. There exists a bijective correspondence between skew-symmetric trilinear natural
2-transformations J : [[—,—],8] = [[—,e],—| +[—,[—, ®]] and graded antisymmetric trilinear
weight 1 maps (3 : V>3 =V that verify Le-condition n = 3 and vanish in total degree 1.

Proof. A skew-symmetric trilinear natural 2-transformation J : [[—,—],e] = [[—,e],—
[—,[—,e]] is a map that assigns to any (x,y,z) € L;> a unique Jyy : [[x,y],2] — [[x z],y]
[x, [v,z]] in Ly, such that for any o = (z,f,a) € L, we have

022 afop s, =1y, o0 ([12.0], 12+ [12.[12,af))

2o

(as well as similar equations pertaining to naturality with respect to the other two variables).
A short computation shows that the last condition decomposes into the following two require-
ments on the V;- and the V,-component:

JX,y,ff—i_[ f] - [[IX7f]71y]+[1X7[1y7fH7 (25)
[I@y],a] = [[13,a], 1§+ [13, 17, a]]. (26)
A graded antisymmetric trilinear weight 1 map £3 : V>3 — V verifies L..-condition n = 3
if
(63 (v, w)) + (L2 (), w) = (= 1) Lo (b2, w),v) + (= 1) T (L (v, w). u)

+03(0, (), v, w) — (=130, (v), u,w) + (= 1)@ 3 (01 (), u,v) =0, (27)

for any homogeneous u,v,w € V. This condition is trivial for any arguments of total degree
d=u+v+w>2. Ford=0, we write (u,v,w) = (x,,2) € V;*, for d = 1, we consider
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(u,v) = (x,y) € VOX2 and w = f € Vi, for d = 2, either (u,v) = (x,y) € VOX2 andw=aecV,,
oru=ux¢€ Vpand (v,w) = (f,g) € V%, so that Equation (27) reads

01(03(x,9,2)) + L2 (b2(x,y),2) — L2 (b2(x,2),y) + L2 (2(y,2),X) =0, (28)
£1(£3(x7y7 ))+£2(€2( 7y),f) 4 (EZ(X f)uy)""EZ(EZ(y? )7 )+£3(€1(f)7x7y) :O, (29)
b6 (x,y),a) — bo(la(x,a),y) + (L2 (y,a),x) + £3(41(a), x,y) = 0, (30)
b (6(x,1),8) + la(L2(x, 8) ) + L2 (L2(F, 8),x) — L3(41(F),x,8) — €3(¢1(g),x,£) =0.  (31)

It is easy to associate to any such map /3 a unique Jacobiator &(¢3) = J: it suffices to
set Jy: := ([[x,y],2],43(x,y,2)) € Ly, for any x,y,z € Ly. Equation (28) means that J,,. has
the correct target. Equations (25) and (26) exactly correspond to Equations (29) and (30),
respectively, if we assume that in total degree d = 1, {3 is valued in 2-cocycles and vanishes
when evaluated on a 1-coboundary. These conditions are verified if we start from a structure
map /3 that vanishes on any arguments of total degree 1.

Remark 6. Remark that the values (3(x,y,f) € Vo cannot be encoded in a natural 2-
transformation J : L{> > (x,,2) — Jxy; € L (and that the same holds true for Equation (31),
whose first three terms are zero, since we started from a map (> that vanishes on Vi x V).

Proof of Lemma 3 (continuation). Conversely, to any Jacobiator J corresponds a unique
map N(J) = £3. Just set £3(x,y,2) := Jxy; € Vi and £3(x,y,f) =0, forall x,y,z € Vo and f € V
(as /3 is required to have weight 1, it must vanish if evaluated on elements of degree d > 2).

Obviously the composites 1@ and &1 are identity maps. ]

Remark 7. The naturality condition is, roughly speaking, the categorical analogue of the
Lo-condition n = 3.

4.4 Identiator — fourth structure map

For x,y,z,u € Ly, we set

Nxyzu = [JX,y,za 1,] oo (J[x,z],y.,u +Jx,Ly,z],u) 00 ([Fzus 1y] +1) o9 ([liyzu] +1) € L (32)

and
Exyau = Jxy].2u ©0 (Myus 12] 4+ 1) 00 (Jx,Ly7u],z iy +Jx7y7[z,u]) €Ly, (33)

see Definition 10. The identities 1 are uniquely determined by the sources of the involved
factors. The quadrilinear natural 2-transformations 1 and € are actually the left and right hand
composites of the Baez-Crans octagon that pictures the coherence law of a Lie 2-algebra, see
[BCO4], Definition 4.1.3. They connect the quadrilinear 2-functors F,G: LX LX L XL — L,
whose values at (x,y,z,u) are given by the source and the target of the 1-cells 7y, and €y,
as well as by the top and bottom sums of triple brackets of the mentioned octagon.

Lemma 4. The skew-symmetric quadrilinear 2-modifications WL : N = € are in I-to-1 cor-
respondence with the graded antisymmetric quadrilinear weight 2 maps {4 : V** =V that
verify the L.-condition n = 4.
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Proof. A skew-symmetric quadrilinear 2-modification i : ) = € maps every tuple (x,y,z,u) €
Lg4 to a unique fyyzy : Nxyzu = Exyzu in Ly, such that, for any o = (u,f,a) € Ly, we have

F(12,13,12,0) 00 fhyy 218 = Mayzu 00 G(13, 13,12, 1) (34)

X0 tyr Lz

(as well as similar results concerning naturality with respect to the three other variables). If
we decompose Uy, € Ly = VoDV © Vo,

,uxyzu - (F(x,y,z, u),hxyzu;mxyzu) = 171xyzu + meZ”?

Condition (34) reads

F(lxa lya 117f) +hx,y,z,u+tf = hxyzu + G(lx; 1y7 1z>f); (35)
F(12, 13, 12,2) + My yp = My + G(12, 13, 12 a). (36)

On the other hand, a graded antisymmetric quadrilinear weight 2 map ¢4 : V** — V, and
more precisely /4 : VOX4 — V), verifies Lo-condition n = 4, if

ly(l4(a,b,c,d))

~b5(63(a,b,c),d) + (= 1)U (l3(a,b,d), c) — (=1)" iy (63(a,c,d), b)
+(=1)bFet Dy (03(b,¢,d),a) + l3(La(a,b),c,d) — (—1)Pl3(¢5(a,¢), b,d)
+(=1)4E* 3y (a,d) b, c) + (= 1)1V 3 (L (b, ¢),a,d)
—(—1)abradtedpy ) (b,d),a,c) + (—1) A 0305 (¢,d), a,b)
—L4(01(a),byc,d) + (= 1)Ly (1 (b),a,c,d)
—(=1) P41 (c),a,b,d) + (1)@ (0(d),a,b,¢) = 0, (37)

for all homogeneous a,b,c,d € V. The condition is trivial for d > 2. For d = 0, we write
(a,b,c,d) = (x,y,z,u) € VOX4, and, for d = 1, we take (a,b,c,d) = (x,y,z,f) € VOX3 X V1, so
that — since ¢, and /3 vanish on V| x V| and for d = 1, respectively — Condition (37) reads

61 (64(x,y,z, u)) - hxyzu + Cxyou = O; (38)

a1 (£),x,,2) =0, (39)
where hyy;, and ey, are the Vi-components of 1)y, and &, see Equations (32) and (33).

We can associate to any such map ¢4 a unique 2-modification &({y) = u, u:n=¢€. It
suffices to set, for x,y,z,u € Lo,

Mxyzu = (F(xayazau)ahxyzm —64(x,y,z,u)) € L.
In view of Equation (38), the target of this 2-cell is

flxyzu = (F(x7y,za”)7hxyzu — (€4(x,y,z,u))) = &y € Ly.
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Note now that the 2-naturality equations (25) and (26) show that 2-naturality of n : F = G
means that

F<1X7 1y7 1Z7f) +hx,y,z,u+tf — hxyzu + G<1X7 1y7 127f)7
F(12, 15, 12,a) = G(12, 13, 12 a).

When comparing with Equations (35) and (36), we conclude that u is a 2-modification if and
only if £4(¢;(f),x,y,z) = 0, which is exactly Equation (39).

Conversely, if we are given a skew-symmetric quadrilinear 2-modification i : N = €,
we define a map 91(u) = ¢4 by setting £4(x,y,z,u) = —my,,, with self-explaining notations.
Le.-condition n = 4 is equivalent with Equations (38) and (39). The first means that Ly,
must have the target &, and the second requires that my¢ . , . vanish — a consequence of the
2-naturality of 1 and of Equation (36).

The maps 91 and & are again inverses. ]

4.5 Coherence law — L..-condition n = 5

Lemma 5. Coherence law (14) is equivalent to L.-condition n = 5.

Proof. The sh Lie condition n = 5 reads,
62(64(x7y7za M)7V) _£2(€4(x7yaz7v)a l/[) +£2(£4(x7y7 u, V)7Z) _62(£4(X7Z7 Uﬂ’)?)’) +£2(€4()’;Zy u, V),)C)

—|—£4(€2(x,y),z,u,v) —€4(£2(X,Z),y,l/l,\/)+£4(€2 u),y,Z,V) _54(62()(7 v)y,z,u)+£4(€2(y,z),x,u,v)
2

—64@2()’7“)7%%")+€4(£2()’a V),X,Z,M)+€4(£

(x,
(zyu),x,y,v) —L4(La(z,v),x,y,u) +La (L2 (u,v),x,,2)
0, (40)

for any x,y,z,u,v € Vp. It is trivial in degree d > 1. Let us mention that it follows from
Equation (28) that (Vp, /) is a Lie algebra up to homotopy, and from Equation (30) that ¢; is
a representation of Vj on V,. Condition (40) then requires that /4 be a Lie algebra 4-cocycle
of Vy represented upon V,.

The coherence law for the 2-modification p corresponds to four different ways to re-
bracket the expression F([x,y],z,u,v) = [[[[x,y],z],u],v] by means of u, J, and [—, —]. More
precisely, we define, for any tuple (x,y,z,u,v) € Lgs , four 2-cells

a; . 0 = T,
i €{1,2,3,4}, in L,, where 0;,7; : A; — B;. Dependence on the considered tuple is under-
stood. We omit temporarily also index i. Of course, ¢ and 7 read o = (A,s) € L; and
T=(A,t) € L.

If @ =(A,s,a) € L, weset a ' = (A,t,—a) € L,

which is, as easily seen, the inverse of ¢ for composition along 1-cells.
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Definition 11. The coherence law for the 2-modification | of a Lie 3-algebra (L,|—,—],J, 1)
reads
utoy=atol, (41)

where Q1 — 0ty are detailed in the next definitions.

Definition 12. The first 2-cell o is given by

a1 = 11100 (Feyiz,un] + [Hoyevs 12]) 00 11200 (B yizn + Moyl s+ e+ 17) 5 (42)

where

=Ly qu 12 =1,

L+ Ui bl ool T 15 (43)

and where the 1% are the identity 2-cells associated with the elements of Ly provided by the
composability condition.

For instance, the squared target of the second factor of ¢ is G(x,y,z, [u,v]) +[G(x,y,2,v),u],
whereas the squared source of the third factor is

[[x, [z vI]y] (1B, vl 2] y] ul + ([P 2] D v ) 4

As the three first terms of this sum are three of the six terms of [G(x,y,z,v),u], the object
“...”, at which 12 in 1y, is evaluated, is the sum of the remaining terms and G(x,y,z, [u,v]).

Definition 13. The fourth 2-cell oy is equal to

0y = [.uxyzm 112/] og 14109 (u[x,u]y,z,v + Mo [y,u),z,v + au’x,y7[z,u]7v) o 142, (44)

where
2
141 - 1[‘][)5.14], Zy) H’[sz [yu]> H’[‘] [z,u] )7 ]+1

2
142 = 1H-]xquley]"'[unwl[’y7z]]+[1x>[‘]yuw12}]+[[]x:‘]zuv}7ly}"'[l)ﬁ[]y:-lzuv”_"[l[x,z] 7‘IYW] + 1 ’ (45)
Definition 14. The third 2-cell a3 reads

03 = Uiy y] 2 00 13100 ([Lhyurs 12] +17) 00 132 09 133, (46)

where
L =1y, 1) T 17,
132 = Vg et e et et ol i ol H e fusllove el i+ o Lol
133 = L st e+t 1 “47)
Definition 15. The second 2-cell o is defined as

0 = 12100 (s ]y + Mo fye] ) ©0 12200 ([13, Byzn] + [Mazuvs 17+ 1%) 00 123, (48)

where

_ _ 2 _ 2
121 o IH‘]xyz:lu]:lv]’ 122 o 1[lx7J[)f,z],v,u]+[‘,[x,z],v,uv1)‘] + 1 ) 123 o 1[]szl[);u]}_"[‘]xzuvl[y,v]]'i_[l[x,v] Jyzu}"‘[l[x,u] 7Jyzv] + 1

(49)
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To get the component expression
(A +Aq,81 +ts,a] —ag) = (A3 + Az, 83 +tr,a3 —ap) (50)
of the coherence law (41), we now comment on the computation of the components (A4;,s;, a;)
(resp. (A;,t;,—a;)) of ; (resp. Otl._l).

As concerns 0, it is straightforwardly seen that all compositions make sense, that its
Vo-component is
Al = F([X>)’];Z>M7V)>

and that the V,-component is
a; =

—54(X,y,z, £2<u7 V)) _62(54()67)772, V), u) _64(62()67 V),y,Z, Lt) —£4<X, 62()7, V>7Z7 l/t) _£4(x7y7 62(Z7 V)a I/l).
When actually examining the composability conditions, we find that 12 in the fourth factor of

. 2 2 .
opis 1 G,z i) and thus that the target 1“(; is made up by the 24 terms

G([x,v],y,z,u) + G(x, [y,v], z,u) + G(x,, [z,v],u) + G(x,Y,z, [u,V]).

The computation of the Vi-component s; is tedious but simple — it leads to a sum of 29 terms
of the type “l30205, l2030>, or {20>¢3”. We will comment on it in the case of Oql, which is
slightly more interesting.

The Vy-component of o, Lis
A4 = [nyzuyv] = F([X,y],Z,M,V)
and its V,-component is equal to

—a = 82(54(x,y,z, M),V) —|—€4(€2()€, M),y,z,v) —|—€4(x,£2(y,u),z,v) +€4(x,y,€2(z,u),v).

The Vi-component t4 of o, lis the Vi-component of the target of oy. This target is the
composition of the targets of the four factors of o and its Vj-component is given by

ts = [exyzu, L]+ T ey W]+ Wezfyads D]+ Do yo ]+ €y + € cw T €xy e

+[[unva 1z]> ly] + [unw 1[y,z]] + [1)67 [Jyuw 12” + Hlanzuv]a 1y] + [lm [lywlzuv]] + [1[x,z]7Jyuv]-

The definition (33) of € immediately provides its Vi-component e as a sum of 5 terms of the
type “/34, or £243”. The preceding Vi-component t4 of o, ! can thus be explicitly written as
a sum of 29 terms of the type “l30>05, 030, or {>{>¢3”. It can moreover be checked that the
target tzoq lis again a sum of 24 terms — the same as for r2q; .

The Vp-component of 03 is
A3 - F([X,y],Z,M,V>,

the Vi-component s3 can be computed as before and is a sum of 25 terms of the usual type
“U3lrly, Url3ls, or L2005, whereas the V,-component is equal to

a3 = —E4(€2(x,y),z,u,v) —€2(€4(x,y,u7v),z).
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Again t?3 is made up by the same 24 terms as >« and tzog L

Eventually, the Vp-component of o, Uis
AZ = F([xvy]azvuav)v

the Vj-component t, is straightforwardly obtained as a sum of 27 terms of the form “/3/,/;,
Uyl30, or £l053”, and the V,-component reads

—az = g4(€2(X,Z),y,I/£,V) +€4(X,€2(y,z),u,v) +€2(X,€4(y,z,u,v)) +€2(€4(X,Z,M,V),y).

The target tzocz_ I'is the same as in the preceding cases.

Coherence condition (41) and its component expression (50) can now be understood. The
condition on the Vy-components is obviously trivial. The condition on the V,-components
is nothing but L.-condition n = 5, see Equation (40). The verification of triviality of the
condition on the Vj-components is lengthy: 6 pairs (resp. 3 pairs) of terms of the LHS s| +t4
(resp. RHS s3 +t;) are opposite and cancel out, 25 terms of the LHS coincide with terms of
the RHS, and, finally, 7 triplets of LHS-terms combine with triplets of RHS-terms and provide
7 sums of 6 terms, e.g.

U3(L2(02(x,y),2),u,v) + Lo (L3 (x,9,2), €2 (u,v)) + L2 (L2 (43(x,y,2),V), u)
—0 (62 (l3(x,y,2),u),v) = L3(L2(2(x,2),¥),u,v) — £3(La(x, £2(y,2)), 1, V).
Since, for f = /3(x,y,z) € V}, we have

01 (£) = tdiye = C2(L2(x,2),Y) + L2 (x, €2y, 2)) — L2 (L2(x,),2),

the preceding sum vanishes in view of Equation (29). Indeed, if we associate a Lie 3-algebra
to a 3-term Lie infinity algebra, we started from a homotopy algebra whose term /3 van-
ishes in total degree 1, and if we build an sh algebra from a categorified algebra, we already
constructed an /3-map with that property. Finally, the condition on V|-components is really
trivial and the coherence law (41) is actually equivalent to L..-condition n = 5. ]

5 Monoidal structure of the category Vect n-Cat

In this section we exhibit a specific aspect of the natural monoidal structure of the category
of linear n-categories.

Proposition 5. If L and L' are linear n-categories, a family F,, : L,, — L}, of linear maps that
respects sources, targets, and identities, commutes automatically with compositions and thus
defines a linear n-functor F : L — L.

Proof. Itv = (vo,...,vm),w = (W0, ...,wn) € L, are composable along a p-cell, then F,,v =
(Fovo, - - -, Fpvm) and E,w = (Fowo, ..., F,wy,) are composable as well, and F,,(vo, w) =
(Fnv) op (Fyw) in view of Equation (6). O

Proposition 6. The category Vect n-Cat admits a canonical symmetric monoidal structure
.
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Proof. We first define the product X of two linear n-categories L and L. The n-globular
vector space that underlies the linear n-category LIXIL’ is defined in the obvious way, (LX
Ly =LnRL,, Syu=5m®s,,, Tn=t,t,. Identities are clear as well, [, = 1, ® 1},. These
data can be completed by the unique possible compositions [, that then provide a linear
n-categorical structure.

IfF:L—MandF':L — M are two linear n-functors, we set

(FRF'),, = Fy,®F, € Homg (L, ®L,,,M,, @ M,,),

where K denotes the ground field. Due to Proposition 5, the family (F X F'),, defines a linear
n-functor FXF' : LKL — MXM' .

It is immediately checked that X respects composition and is therefore a functor from the
product category (Vect n-Cat)*? to Vect n-Cat. Further, the linear n-category K, defined by
K, =K, s, =t, =1idg (m > 0), and 1,, = idg (m < n), acts as identity object for X. Its is
now clear that X endows Vect n-Cat with a symmetric monoidal structure. O

Proposition 7. Let L, L', and L" be linear n-categories. For any bilinear n-functor F :
Lx L' — L", there exists a unique linear n-functor F : LKL — L", such that XF = F. Here
X :LxL — LKL denotes the family of bilinear maps X, : L, X L), 3 (v,V') = vV €
L, ®L,,, and juxtaposition denotes the obvious composition of the first with the second factor.

Proof. The result is a straightforward consequence of the universal property of the tensor
product of vector spaces. [

The next remark is essential.

Remark 8. Proposition 7 is not a Universal Property for the tensor product X of Vect n-Cat,
since X : L x L' — LWL is not a bilinear n-functor. It follows that bilinear n-functors on
a product category L x L' cannot be identified with linear n-functors on the corresponding
tensor product category LK L.

The point is that the family [X,, of bilinear maps respects sources, targets, and identities,
but not compositions (in contrast with a similar family of linear maps, see Proposition 5).
Indeed, if (v,v'),(w,w') € L,, x L}, are two p-composable pairs (note that this condition is
equivalent with the requirement that v,w € L,, and v/, w’ € L] be p-composable), we have

&m(("v V/) Op <W> W/)) = (V Op W) ® (V/ ©p W/) € Ly ®L:n7 (51)
and
X (v,V') 0p Bp(w,w') = (v V) o, (wew) € L, L, (52)

As the elements (51) and (52) arise from the compositions in L,, x L, and L, ® L, re-
spectively, — which are forced by linearity and thus involve the completely different linear
structures of these spaces — it can be expected that the two elements do not coincide.

Indeed, when confining ourselves, to simplify, to the case n = 1 of linear categories, we
easily check that

(vow)®@ (Vow)=(wveV)owew)+(v—1,) W +wa (V' —1,). (53)
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Observe also that the source spaces of the linear maps
o ® o, i (L1 X, L1) @ (Ly Xy L1) 2 (nw) @ (v, W) = (vow) @ (Vow') € Li ® L)
and
oz (L1 @ L) X pyery (LI ®LY) 3 (v@V), (w@w')) = (vev)o(wew) € L ®L;
are connected by

ly: (Ly <y Ly)® (L) XL6L/1) > (mw)@(V, W)= (vev,wew') e (L QL)) Xroery (L1 ®L))
(54)
— a linear map with nontrivial kernel.

6 Discussion

We continue working in the case n = 1 and investigate a more conceptual approach to
the construction of a chain map ¢, : M(L) @ N(L) — MN(L) from a bilinear functor [—,—] :
LxL—L.

When denoting by [—,—] : LIKL — L the induced linear functor, we get a chain map
N([—,—]) : M(LRL) — MN(L), so that it is natural to look for a second chain map

0 ML) SN(L) — NLEL).

The informed reader may skip the following subsection.

6.1 Nerve and normalization functors, Eilenberg-Zilber chain map

The objects of the simplicial category A are the finite ordinals n = {0,...,n— 1}, n > 0.
Its morphisms f : m — n are the order respecting functions between the sets m and n. Let
0; : n— n+ 1 be the injection that omits image i, i € {0,...,n}, and let 0; : n+ 1 — n be the
surjection that assigns the same image to i and i+ 1, € {0,...,n— 1}. Any order respecting
function f : m — n reads uniquely as f = 6}, ...0;,0;, ... 6;,, where the j, are decreasing and
the i increasing. The application of this epi-monic decomposition to binary composites 6;0;,
0;0;, and §;0; yields three basic commutation relations.

A simplicial object in the category Vect is a functor S € [AT °P Vect], where AT denotes
the full subcategory of A made up by the nonzero finite ordinals. We write this functorn+1 +—
S(n+1) =: 8y, n >0, (S, is the vector space of n-simplices), &; — S(&;) =:d; : Sp — Sy—1,
i €{0,...,n} (d; is a face operator), o; — S(0;) =: 5;: Sy — Spt1, i €{0,...,n} (s; is a
degeneracy operator). The d; and s; verify the duals of the mentioned commutation rules.
The simplicial data (S,,d},s}) (we added superscript n) of course completely determine the
functor S. Simplicial objects in Vect form themselves a category, namely the functor category
s(Vect) := [A1 °P Vect], for which the morphisms, called simplicial morphisms, are the
natural transformations between such functors. In view of the epi-monic factorization, a
simplicial map « : S — T is exactly a family of linear maps «, : S,, — T, that commute with

the face and degeneracy operators.
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The nerve functor
A :VectCat — s(Vect)

is defined on a linear category L as the sequence Lo,Li,Ly := Ly X, Li,L3 := L1 Xy,
Ly X, Ly... of vector spaces of 0,1,2,3... simplices, together with the face operators
“composition” and the degeneracy operators “insertion of identity”, which verify the sim-
plicial commutation rules. Moreover, any linear functor F : L — L’ defines linear maps
Fo:Ly>(vi,...,vq) = (F(v1),...,F(v,)) € L}, that implement a simplicial map.

The normalized or Moore chain complex of a simplicial vector space S = (S,,d!",s?) is
given by N(S), =N, kerd! C S, and d, = djj. Normalization actually provides a functor

N :s(Vect) <> CT(Vect) : T’

valued in the category of nonnegatively graded chain complexes of vector spaces. Indeed, if
o : S — T is a simplicial map, then o, 1d} = d/'@,. Thus, N(cot) : N(S) — N(T), defined on
cn €N(S), by N(a),(cp) = ay(cy), is valued in N(T'), and is further a chain map. Moreover,
the Dold-Kan correspondence claims that the normalization functor N admits a right adjoint
I" and that these functors combine into an equivalence of categories.

It is straightforwardly seen that, for any linear category L, we have
N(A (L)) = N(L). (55)

The categories s(Vect) and C*(Vect) have well-known monoidal structures (we de-
note the unit objects by I; and Ig, respectively). The normalization functor N : s(Vect) —
CT(Vect) is lax monoidal, i.e. it respects the tensor products and unit objects up to coherent
chain maps € : I — N(I;) and

EZS’T ZN(S)@N(T) —>N<S®T)

(functorial in S,T € s(Vect)), where EZsr is the Eilenberg-Zilber map. Functor N is
lax comonoidal or oplax monoidal as well, the chain morphism being here the Alexander-
Whitney map AWg r. These chain maps are inverses of each other up to chain homotopy,
EZAW =1, AWEZ ~ 1.

The Eilenberg-Zilber map is defined as follows. Leta®@ b € N(S), N (T), C S, ® T, be
an element of degree p +¢. The chain map EZgs r sends a®b to an element of N(S®T') p44 C
(SOT)p+q = Sp+q @ Tp+q. We have

EZsr(a®b) = ) sign(i,v) sy, (... (5v,0)) @ sy, (... (51,0)) € Spsq @ Tpsg,
(p.q)—shuffles (u,v)

where the shuffles are permutations of (0,...,p+ ¢ — 1) and where the s; are the degeneracy
operators.

6.2 Monoidal structure and obstruction

We now come back to the construction of a chain map ¢ : 9(L) @ (L) — N(LKL).
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For L’ = L, the linear map (54) reads
b: (N (L)RA(L)2d mw)@(V W)= (vav waw')e S/ (LKL),.

If its obvious extensions ¢, to all other spaces (4 (L) ® A4 '(L)), define a simplicial map
0: N (L)@ A (L) — A (LKL), then

N({):N(A (L)@ AN (L)) = N(A(LKL))
is a chain map. Its composition with the Eilenberg-Zilber chain map
EZ vy vy N(A (L) @N(A (L)) = N(A (L) @A (L))

finally provides the searched chain map ¢, see Equation (55).
However, the ¢,, do not commute with all degeneracy and face operators. Indeed, we have
for instance

BB © ) (W) & (VW) = (Wi, (vow) & ( o w)),
whereas
a3 (03 ((u,v,w) @ (VW) = (u@u',(v@v) o (waw)).

Equation (53), which means that X : L x L' — LX L' is not a functor, shows that these results
do not coincide.

A natural idea would be to change the involved monoidal structures X of VectCat or ® of
C*(Vect). However, even if we substitute the Loday-Pirashvili tensor product @1 p of 2-term
chain complexes of vector spaces, 1.e. of linear maps [LP98], for the usual tensor product &,
we do not get N(L) @Lp N(L) = N(LKL).

Acknowledgements. The authors thank the referee for having pointed out to them additional
relevant literature.
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