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Abstract

In recent years, algebras and modules of differential operators have been extensively studied.
Equivariant quantization and dequantization establish a tight link between invariant operators
connecting modules of differential operators on tensor densities, and module morphisms that con-
nect the corresponding dequantized spaces. In this paper, we investigate dequantized differential
operators as modules over a Lie subalgebra of vector fields that preserve an additional structure.
More precisely, we take an interest in invariant operators between dequantized spaces, viewed as
modules over the Lie subalgebra of infinitesimal contact or projective contact transformations.
The principal symbols of these invariant operators are invariant tensor fields. We first provide
full description of the algebras of such affine-contact- and contact-invariant tensor fields. These
characterizations allow showing that the algebra of projective-contact-invariant operators between
dequantized spaces implemented by the same density weight, is generated by the vertical cotan-
gent lift of the contact form and a generalized contact Hamiltonian. As an application, we prove
a second key-result, which asserts that the Casimir operator of the Lie algebra of infinitesimal
projective contact transformations, is diagonal. Eventually, this upshot is used to depict a family
of basic invariant operators between spaces induced by different density weights.

Key-words: Modules of differential operators, tensor densities, contact geometry, invariant oper-
ators, representation theory of algebras, equivariant quantization and dequantization
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1 Introduction

Equivariant quantization, in the sense of C. Duval, P. Lecomte, and V. Ovsienko, developed as
from 1996, see [LMT96], [LO99], [DLO99], [Lec00], [BMO01], [DOO01], [BHMPO02], [BMO06]. This proce-
dure requires equivariance of the quantization map with respect to the action of a finite-dimensional
Lie subgroup G C Diff(R") of the symmetry group Diff (R™) of configuration space R™, or, on the
infinitesimal level, with respect to the action of a Lie subalgebra of the Lie algebra of vector fields.
Such quantization maps are well-defined globally on manifolds endowed with a flat G-structure and
lead to invariant star-products, [L0O99],[DLO99]. Equivariant quantization has first been studied on
vector spaces, mainly for the projective and conformal groups, then extended in 2001 to arbitrary
manifolds, see [LecO1]. In this setting, equivariance with respect to all arguments and for the action
of the group of all (local) diffeomorphisms of the manifold (i.e. naturality in the sense of I. Kol4r,
P. W. Michor, and J. Slovdk, [KMS93]) has been ensured via quantization maps that depend on (the
projective class of) a connection. Existence of such natural and projectively invariant quantizations
has been investigated in several works, [Bor02], [MRO05], [Han06].
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From the very beginning, equivariant quantization and symbol calculus, and classification issues
in Representation Theory of Algebras appeared as dovetailing topics, see [LMT96], [LO99], [Mat99,1],
[BHMPO02], [Pon04]. In these works differential operators between sections of vector bundles have
been studied and classified as modules over the Lie algebra of vector fields. Except for [Mat99,2],
the case of differential operators as representations of a subalgebra of vector fields that preserve some
additional structure, was largely uninvestigated. The origin of this paper is the classification problem
of differential operators on a contact manifold between tensor densities of possibly different weights
(in the frame of equivariant quantization it is natural to consider linear differential operators between
densities rather than between functions, as [even mathematical] quantization maps should be valued
in a space of operators acting on a Hilbert or preHilbert space), as modules over the Lie subalgebra of
contact vector fields.

Let us give a rough description of our approach to the preceding multilayer problem. Further details
can be found below. Projectively equivariant quantization establishes a tight connection between the
“quantum level”’— classification of differential operators as representations of the algebra of contact
vector fields, and the “classical level”’— quest for intertwining operators between the corresponding
modules of symbols over the subalgebra of infinitesimal projective contact transformations. These
morphisms (in the category of modules) have (locally) again symbols and these are tensor fields. The
principal symbol map intertwines the natural actions on morphisms and tensor fields. Hence, the
principal symbol of any “classical” intertwining operator is an invariant tensor field. These invariant
fields can be computed. However, it turns out that the obvious technique that should allow lifting
invariant tensor fields to “classical” module morphisms is not sufficient for our purpose. The Casimir
operator (of the representation of infinitesimal projective contact transformations on symbols) proves
to be an efficient additional tool. Calculation of the Casimir itself requires a noncanonical splitting of
the module of symbols. This decomposition has been elaborated in a separate paper, see [FMPOT].

In the present work, we investigate the “classical level” problem, i.e. we study “dequantized”
differential operators between tensor densities as modules over infinitesimal contact transformations.

The paper is self-contained and organized as follows.

In Section 2, we recall essential facts in Contact Geometry, which are relevant to subsequent
sections. We place emphasis on global formulee, as till very recently most of the results were of local
nature.

Section 3 provides the whole picture related with infinitesimal projective contact transformations.
A good understanding of these upshots is crucial, particularly as regards the calculation, in Section
5, of invariant tensor fields, and in consideration of the computation of the aforementioned Casimir
operator, see Section 7.

Coordinate-free approaches to differential operators, their symbols, and all involved actions are
detailed in Section 4. This material is of importance with respect to the geometric meaning of several
invariant tensor fields constructed later.

In Section 5, we give a full description of the algebra of affine-contact-invariant tensor fields (local
investigation), see Theorem 2, and of the algebra of contact-invariant tensor fields (global result), see
Theorem 3.

A third main upshot, based on the preceding Section, is the assertion that the algebra of projective-
contact-invariant operators between symbol modules “implemented by the same density weight”, is
generated by two basic operators, the vertical cotangent lift of the contact form and a generalized
contact Hamiltonian, both introduced in [FMP07], see Theorem 4, Section 6.

As an application of the aforenoted noncanonical splitting of the module of symbols into submod-
ules, see [FMPO07], of Section 3, and of Section 6, we prove in Section 7, that the Casimir operator of
the canonical representation of the Lie subalgebra of infinitesimal projective contact transformations
on the mentioned symbol space, with respect to the Killing form, is diagonal, see Theorem 5.

Eventually, the computation of this Casimir operator—actually a challenge by itself—allows show-
ing that “basic” projective-contact-invariant operators between symbol modules “implemented by dif-
ferent density weights”, are necessarily powers of the generalized Hamiltonian or of the divergence
operator, see Section 8.
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2 Remarks on Contact Geometry

A contact structure on a manifold M is a co-dimension 1 smooth distribution £ that is completely
nonintegrable. Such a distribution is locally given by the kernel of a nowhere vanishing 1-form « defined
up to multiplication by a never vanishing function. Since (da)(X,Y) = X(a(Y))-Y (a(X))—a([X,Y]),
where notations are self-explaining, integrability of £, i.e. closeness of sections of £ under the Lie bracket
of vector fields, would require that da vanish on vectors in £&. By complete nonintegrability we mean
that da is nondegenerate in &, for any locally defining 1-form «. It follows that contact manifolds are
necessarily odd-dimensional. Eventually we get the following definition.

Definition 1. A contact manifold M is a manifold of odd dimension 2n + 1, together with a smooth
distribution & of hyperplanes in the tangent bundle of M, such that o A (da)™ is a nevervanishing top
form for any locally defining 1-form «. Distribution £ is a contact distribution or contact structure
on M. A Pfaffian manifold (A. Lichnerowicz) or coorientable contact manifold is a manifold M with
odd dimension 2n + 1 endowed with a globally defined differential 1-form «, such that a A (da)™ is a
volume form of M. Form « (which defines of course a contact distribution on M) is called a contact
form on M.

Example 1. Let (p1,...,pn,q,...,q" t,7) be canonical coordinates in R?"*+2  let i : R2n+1 s R2n+2
be the embedding that identifies R?"*! with the hyperplane 7 = 1 of R?"*2, and let o be the Liouville
1-form of R?"*2 (which induces the canonical symplectic structure of R?"*2). It is easily checked that
the pullback

n

O (prdd® — ¢*dpy) — dt)
k=1

a=1i0c=

N =

of the Liouville form ¢ by embedding i is a contact form on R?”*!. Any coorientable contact mani-
fold (M, ) can locally be identified with (R®*"*1 i*o), i.e. Darboux’ theorem holds true for contact
manifolds.

Remark 1. The preceding extraction of a contact structure from a symplectic structure is the shadow
of a tight connection between contact and symplectic manifolds. If (M, «) is a coorientable contact
manifold, if 7 : M x R — M is the canonical projection, and s a coordinate function in R, the
form w = d(e*7*a) is a symplectic form on M x R, which is homogeneous with respect to Js, i.e.
Ly,w = w. This symplectic homogeneous manifold (M x R,w,d,) is known as the symplectization
the initial contact manifold (M, «). Actually, there is a 1-to-1 correspondence between coorientable
contact structures on M and homogeneous symplectic structures on M x R (with vector field 95). This
relationship extends from the contact-symplectic to the Jacobi-Poisson setting, see [Lic78], for super-
Poissonization, see [GIMPUO04]. A coordinate-free description of symplectization is possible. Consider
a contact manifold (M,¢), let L C T*M be the line subbundle of the cotangent bundle, made up
by all covectors that vanish on &, and denote by Ly the submanifold of L obtained by removing the
0-section. The restriction to Ly of the standard symplectic form of T* M endows Ly with a symplectic
structure, see [Arn89, Ovs05]. Eventually, a contact structure on a manifold M can be viewed as a line
subbundle L of the cotangent bundle T*M such that the restriction to Ly of the standard symplec-
tic form on T M is symplectic. Of course, the contact structure is coorientable if and only if L is trivial.

Example 2. Let o = i*o be the standard contact form of R*"*1. Set x = (p,q,t,7) = (2/,7). The
open half space Ri"” = {(«/,7) : 7 > 0}, endowed with its canonical symplectic structure w and
the Liouville vector field A = %5 , where & is the usual Euler field, can be viewed as symplectization
of (R?"*1 a). Indeed, RY""? ~ Uy cpensa{2’} x {7(2’,1) : 7 > 0} is a line bundle over R?"*! with
fiber coordinate s = In72. The projection of this bundle reads 7 : Ri”“ > (2/,7) — 77’ € R2nHL
Clearly, w has degree 1 with respect to A and it is easily checked that w = d(e*7*a) and A = 0.

In the following, unless otherwise stated, we consider coorientable contact manifolds (or trivial line
bundles).
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Definition 2. Let M be a (coorientable) contact manifold. A contact vector field is a vector field X
of M that preserves the contact distribution. In other words, for any fized contact form «, there is a
function fx € C°(M), such that Lxa = fxa. We denote by CVect(M) the space of contact vector
fields of M.

Tt is easily seen that space CVect(M) is a Lie subalgebra of the Lie algebra Vect(M) of all vector
fields of M, but not a C°°(M)-module.

Let us now fix a contact form a on M and view da as a bundle map doa : TM — T*M. It follows
from the nondegeneracy condition that the kernel ker da is a line bundle and that the tangent bundle
of M is canonically split: T'M = ker a & ker da.. Moreover,

Vect(M) = ker a @ ker do, (1)

where a and da are now viewed as maps between sections. It is clear that there is a unique vector
field E, such that igda = 0 and iga = 1 (normalization condition). This field is called the Reeb vector
field. Tt is strongly contact in the sense that Lpa = 0.

Pfaffian structures, just as symplectic structures, can be described by means of contravariant tensor
fields. These fields are obtained from « and do via the musical map b : Vect(M) 3 X — (ixa)a +
ixda € QY(M), which is a C°°(M)-module isomorphism, see e.g. [LLMP99]. The contravariant
objects in question are the Reeb vector field E = b~1(a) € Vect(M) =: X'(M) and the bivector field

A € X2(M), defined by
A(B, ) = (da) (071 (8),57 (7)),

B,y € QY(M). They verify [A, Alscu = 2EAA and LgA = 0, where [., Jscnu is the Schouten-Nijenhuis
bracket. Hence, any (coorientable) contact manifold is a Jacobi manifold.

Let us recall that Jacobi manifolds are precisely manifolds M endowed with a vector field E and a
bivector field A that verify the two preceding conditions. The space of functions of a Jacobi manifold
(M, A, E) carries a Lie algebra structure, defined by

{h,g} = A(dh,dg) + hEg — gEh, (2)

h,g € C*°(M). The Jacobi identity for this bracket is equivalent with the two conditions [A, A]lscuy =
2E AN A and LgA = 0 for Jacobi manifolds (these conditions can also be expressed in terms of the
Nijenhuis-Richardson bracket, see [NR67]). It is well-known that the “Hamiltonian map”

X:COO(M)9h—>X}L:idhA+hE€VeCt(M) (3)

is a Lie algebra homomorphism: Xyj sy = [Xp, Xy]. If dimM = 2n + 1 and E'A A" is a nowhere
vanishing tensor field, manifold M is coorientably contact. Furthermore, if we fix, in the Pfaffian case,
a contact form «, we get a Lie algebra isomorphism

X :C®(M)>h— X; € CVect(M) (4)

between functions and contact vector fields, see [Arn89]. It follows from the above formulse that
a(Xh) = h.

The main observation is that Jacobi brackets, see (2), are first order bidifferential operators. This
fact is basic in many recent papers, see e.g. [GMO3] (inter alia for an elegant approach to graded
Jacobi cohomology), or [GIMPUO04] (for Poisson-Jacobi reduction).

After the above global formulae and fundamental facts on Contact Geometry, we continue with other
remarks that are of importance for our investigations. The setting is still a (2n+1)-dimensional contact
manifold M with fixed contact form a. Contraction of the equation Lx,« = fx, a, h € C*° (M), with
the Reeb field E leads to fx, = E(h). If Q denotes the volume Q2 = a A (da)™, it is clear that, for any
contact vector field X, we have Lx$) = (n+ 1) fx . Hence,

divo X = (n+1)fx,VX € CVect(M), (5)
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and divg Xy, = (n+ 1)E(h), for any h € C°(M). It follows that for all h,g € C*>°(M),

{h, g9} = Xin(g) — gE(h) = Xn(g) — %Hg divo X, = Lx,, g, (6)

where g is function g viewed as tensor density of weight —1/(n 4 1). Tensor densities will be essential
below. For details on densities, we refer the reader to [FMPO07]. The afore-depicted Lie algebra iso-
morphism X between functions and contact vector fields, is also a CVect(M )-module isomorphism, if
we substitute the space F =L (M) of tensor densities of weight —1/(n+1) for the space of functions (of

course, the contact action is Lx, g = {B, g} on densities, and it is the adjoint action on contact fields).
Note that this distinction between functions and densities is necessary only if the module structure is
concerned.

We now come back to splitting (1). If we denote by TVect(M) the space of tangent vector fields,
i.e. the space kera of those vector fields of M that are tangent to the contact distribution, this
decomposition also reads

Vect(M) = TVect(M) @ C*(M)E.

As abovementioned, our final goal is the solution of the multilayer classification problem of differential
operators between tensor densities on a contact manifold, as modules over the Lie algebra of contact
vector fields. This question naturally leads to the quest for a splitting of some CVect(M )-modules
Or Sp(an+2)-modules of symbols, see below, and in particular of the module Vect(M) itself. Space
TVect(M), which is of course not a Lie algebra, is a C°°(M)-module and a CVect(M )-module. The
last upshot follows directly from formula ifxy; = [Lx,iy], X,Y € Vect(M). The second factor
C>(M)E however, is visibly not a CVect(M)-module (for instance [E, X},] = [X1, Xp] = Xgp) =
iq(emy)A+ E(h)E). In [Ovs05], V. Ovsienko proved the noncanonical decomposition

Vect(M) ~ TVect(M) & CVect(M) (7)

of Vect(M) into a direct sum of CVect(M)-modules. An extension of this decomposition, see [FMPO7],
will be exploited below.

3 Infinitesimal projective contact transformations

Let us first recall that the symplectic algebra sp(2n, C) is the Lie subalgebra of gl(2n, C) made up
by those matrices S that verify J,,S+.5J, = 0, where J,, is the symplectic unit. This condition exactly
means that the symplectic form defined by J, is invariant under the action of .S. Since

sp(2n,C) = {( é g ) :A,B,C,Degl(n,C),BzB,é:c,D:—A},

it is obvious that

d@eiinte@ejin (1<j<n), —Re;—T"®e; (i <j<n), —€@e;+eT"@ej4n (i,7 <n), (8)
is a basis of sp(2n,C). As usual, we denote by (ej,...,es,) the canonical basis of C?>* and by
(€b,...,€*m) its dual basis.

Observe now that the Jacobi (or [first] Lagrange) bracket on a contact manifold (M, a) can be built
out of contact form «, see Equation (2), or—in view of the aforementioned 1-to-1 correspondence—out
of the homogeneous symplectic structure of the symplectization. In the following, we briefly recall the
construction via symplectization, see [Mat99,2], of the Lagrange bracket, contact vector fields, and
the Lie algebra isomorphism X : C°(M) — CVect(M). We then use isomorphism X to depict Lie
subalgebras of contact fields, which play a central role in this work. As part of our construction is
purely local, we confine ourselves to the Euclidean setting.
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Take contact manifold (R?"*! «), a = i*o, and its symplectization (7 : Ri”“ — R2FL A, see
Example 2. Let H* = HMRY"™?) = {H € C=°(RY""?) : AH = AH} be the space of homogeneous
functions of degree A. Since w has degree 1, its contravariant counterpart II has degree —1, and the
corresponding Poisson bracket verifies {H*, H*}yp € H*T#~L. In particular, H! is a Lie subalgebra.

If Xy = {H, .}11 is the Hamiltonian vector field of a function H € H!, we have [A, Xz] = 0. Hence,
Xy is projectable, i.e. m, Xy is well-defined. As X'y is a symplectic vector field, 7, Xy is a contact field.
The correspondence m, o X : H}(R¥""?) — CVect(R?"*1) is obviously a Lie algebra homomorphism.
Remark now that a homogeneous function is known on the entire fiber 7=1(z’) = 7(2/,1) if it is
specified on the point (z/,1). Hence, homogeneous functions are in fact functions on the base. The
correspondence is (for functions of degree 1) of course

x:HY(RY?) 3 H — h e O®(R*™H), (9)

with h(z') = H(2/,1) and H(a',7) = 72H (7 '2’,1) = 72h(n(2',7)) (note that A = £&). As every
contact vector field is characterized by a unique base function h € C°(R?"*!), see Equation (4),
hence by a unique homogeneous function H € HI(RT”), morphism 7, o X is actually a Lie algebra
isomorphism.

Map x is a vector space isomorphism that allows to push the Poisson bracket {.,.}m1 to the base.
The resultant bracket {h, g} = x{x *h, x 'g}m is the Lagrange bracket. Eventually, x is a Lie algebra
isomorphism.

HY(REMH?)
X s OX
|4 <
Coo (R2n+1) Cvect(R2n+1)

It is now easily checked that “contact Hamiltonian isomorphism” X is, for any h € C°(R?"+1),
given by
Xp =muXyo1p = Y _(Op hgr — OgrhOp, ) + Eshdy — OhEs — 200}, (10)
2

where (p1,...,Pn,q%-..,¢"t) = (p,q,t) = a’ are canonical coordinates in R*"*1 and where & =
> (PkOp, +¢"9,) is the spatial Euler field. When comparing this upshot with Equations (3) and (2),
we get the explicit local form of the Lagrange bracket.

We now depict the aforementioned Lie subalgebras of contact vector fields as algebras of contact
Hamiltonian vector fields of Lie subalgebras of functions. The algebra of Hamiltonian vector fields of the
Lie subalgebra Pol(R?"*1) ¢ C°°(R?*"*+1) of polynomial functions is the Lie subalgebra CVect*(R?"*1)
of polynomial contact vector fields, i.e. contact vector fields with polynomial coefficients. The space
of polynomials admits the decomposition Pol(R?"*!) = @,.cn Do Pk where P"* is the space of
polynomials t* P,_(p, q) of homogeneous total degree r that have homogeneous degree k in t. The Lie
subalgebra

POISQ(RQn—H) — @rﬁZ @2:0 rPrk’

which corresponds via x ! to the Lie subalgebra
Pol®(R2"+?) ¢ H(R3"2),

deserves particular attention (note that if we set g_o = P% g 1 = P10 gy = P11 @ P20 g, = P21, and
g2 = P22, we obtain a grading of POISZ(RQ”‘H) that is compatible with the Lie bracket [when read on
the symplectic level, this new grading means that we assign the degree —1 to coordinate 7, degree 1
to t, and degree 0 to any other coordinate]).
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Remember now the Lie algebra (anti) isomorphism J : gl(m,R) 3 A — Al279,: € Vect? (R™)
between the algebras of matrices and of linear vector fields (shifted degree). Its inverse is the Jacobian
map J~ : Vect’(R™) 3 X — 8,X € gl(m,R). The Lie subalgebra Pol?(R?") = P2 is mapped by Lie
algebra isomorphism X (remark that on the considered subalgebra X = X and {.,.} = {.,.}1) onto a
Lie subalgebra of CVect(R?"!) and of Vect’(R?"), which in turn corresponds through J~! to a Lie
subalgebra of gl(2n,R). A simple computation shows that the natural basis

pip; (i <j<n), q'¢d (i<j<n),piqd (i,j <n) (11)

of Pol?(R?") is transformed by morphism J~! o X into the above described basis of sp(2n,R), see
Equation (8). It is now clear that J~' o X is a Lie algebra isomorphism between (Pol*(R?"), {.,.}1)
and (sp(2n,R), [.,.]o), where [.,.], is the commutator. We denote by sp,,, the Lie subalgebra of contact
vector fields isomorphic to Pol?(R?") ~ sp(2n, R).

Eventually, we have the following diagram :

JloX
Pol?(R2"+2) ° sp(2n + 2, R)
X meoX
POIQ(R%H) X SPan+2

It is obvious that the right bottom algebra is a Lie subalgebra of contact vector fields that is isomorphic
with sp(2n+2,R): hence the notation. The right vertical arrow refers to the embedding of sp(2n+2, R)
into CVect(R?"*1) that can be realized just as the projective embedding of sl(m+1,R) into Vect(R™).
More precisely, the linear symplectic group SP(2n+ 2, R) naturally acts on R?"*2 by linear symplecto-
morphisms. The projection p(S)(z') := 7(S.(2/,1)), S € SP(2n + 2,R), 2/ € R+, of this action “.”
induces a “local” action on R?"*!. The tangent action to projection p is a Lie algebra homomorphism
that maps the symplectic algebra sp(2n + 2,R) into contact vector fields CVect(R?"*1). We refer to
the Lie subalgebra generated by the fundamental vector fields associated with this infinitesimal action
as the algebra of infinitesimal projective contact transformations. This algebra spy,, o is a maximal
proper Lie subalgebra of CVect*(R?"*1) (just as the projective embedding sl,, 1 of sl(m + 1,R) is
a maximal proper Lie subalgebra of Vect™(R™)). Over a Darboux chart, any (2n + 1)-dimensional
contact manifold can be identified with (R*"*! i*s). It is therefore natural to consider sp,, ., as a
subalgebra of vector fields over the chart.

Eventually, a basis of sp,,,, 5 can be deduced via isomorphism X from the canonical basis of
Pol=(R*"H) = @,.<5 @y P™.
Using Equation (10), we immediately verify that the contact Hamiltonian vector fields of 1 € P% and
pi,q° € P10 are ‘
X1 = —2815 = E, Xpi = aqi —piat,qu‘ = —8,,1. - qlat. (12)

These fields generate a Lie algebra Bn,l that is isomorphic to the Heisenberg algebra b,,. Let us recall
that the Heisenberg algebra b, is a nilpotent Lie algebra with basis vectors (a1, ...,an,b1,...,bn,c)
that verify the commutation relations

[ai, bj} = (51']'0, [ai, a]—] = [b“ bj} = [ai, C] = [bi7c] = 0
Similarly the Hamiltonian vector field of ¢t € P! is the modified Euler field

X, = —E — 2t8,, (13)
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and the Hamiltonian vector fields of p;p;, ¢q’, pjq* € P?° are

Xpipj :pjaqi +p’iaqj (Z <j< ’I’L), Xqiqf = _qja i _qiapj (Z <j< n)v ijqi = qiaqj _pjapi (Za.] S(?’L))

14
These fields form the basis of sp,,, that corresponds via J to the basis of sp(2n, R) specified in Equation
(8). Finally, p;t, ¢'t € P?!, and t* € P?? induce the fields

Xpi,t = t(ﬁqq 7])1‘8,5) 7p155 = taqi *ng, quit = t(—@m *qzat) fqié's = *tapi 7(]15, XtQ = —2t€. (15)

Again these fields generate a Lie algebra 6n,2 that is a model of the Heisenberg algebra b,,.

Observe also that the contact Hamiltonian vector field of a member of P™ (r > 3) is a polyno-
mial contact field of degree r. Finally, the algebra ﬁn,l @ RX; @ sp,,, is the algebra AVect(R?"+1) N
CVect(R?™+1) of affine contact vector fields.

4 Differential operators, symbols, actions, tensor densities

Let 7 : E — M and 7 : F — M be two (finite rank) vector bundles over a (smooth m-dimensional)
manifold M.

We denote by Dy (E, F), k € N, the space of kth order linear differential operators between the
spaces I'°(E) and I'*°(F) of smooth global sections of E and F (in the following we simply write
T(E) or T'(F)), i.e. the space of the linear maps D € Homg (T'(E),T'(F)) that factor through the kth
jet bundle J*E (i.e. for which there is a bundle map D : JFE — F, such that D = D 014°, where
i’ : E — J*E is the canonical injection and where the RHS is viewed as a map between sections). It
is obvious that 0 — order differential operators are just the sections I'(Hom(E, F)) ~ I'(E* ® F') and
that the space D(E, F) = UpDy(E, F) of all linear differential operators between E and F (or better
between I'(E) and T'(F)) is filtered by the order of differentiation.

The kth order principal symbol oy (D) of an operator D € Dy(E, F) is the map D o i*, where i
denotes the canonical injection i* : S¥T*M @ E — J¥E. Actually, this compound map is a bundle
morphism oy (D) : S*T*M ® E — F, or, equivalently, a section o1,(D) € I'(S*TM ® E* @ F). In the
following, we call symbol space (associated with D(E, F')), and denote by S(E, F), the graded space
S(E,F) = ©,S*(E, F), where S¥(E, F) :=T'(S*TM ® E* ® F). Since o}, : Dy(E, F) — S¥(E,F) is a
linear surjection, it induces a vector space isomorphism between the graded space associated with the
filtered space D(E, F') and the graded space S(E, F).

k

Roughly spoken, an equivariant or natural quantization is a vector space isomorphism @ :
S(E,F) — D(E, F) that verifies some normalization condition and intertwines the actions on S(E, F)
and D(FE, F) of some symmetry group G of base manifold M. However, in order to define such actions,
the action ™ of G on M should lift to E (and F) as an action ¢¥ (resp. ¢!') of G by vector bundle
maps gbf : E — FE, g € G, over the corresponding maps (j)é\/[ : M — M. Actually, the action ¢"'(E) of
G on I'(E) can then be defined by

(¢§(E)S)x = QSgE_l 'Sd)éw(??)’
g€ G,seT(E), r € M, and the action ¢P of G on D(E, F) is
o5 D =gy oD ool

for any g € G, D € D(E, F). Eventually, there is also a canonical action ¢ on symbols. Indeed, for
any g€ G, Pc S¥(E,F) =T(S*TM @ E* @ F), x € M, e € E,, it suffices to set

(65 P)a(e) = (SFTON @ @5 1) Py (o (0F'€).

The appropriate setting for such investigations is the framework of natural functors (for all questions
related with natural functors and natural operations, we refer the reader to [KMS93], for a functorial
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approach to natural quantization, see [Bor02]). Indeed, let F and F’ be two natural vector bundle
functors and consider differential operators and symbols between the vector bundles £ = FM and
F = F'M over an m-dimensional smooth manifold M. If now ¢3/[ : M — M is a local diffeomorphism,
then qng = IF(%V[ : FM — FM (resp. ¢5 = IF’(béw) is a vector bundle map over (bg/f. Hence, actions
on the base lift canonically and actions of the group Diff(M) of local diffeomorphisms of M (and
of the algebra Vect(M) of vector fields of M) can be defined (as detailed above) on sections I'(FM)
and I'(F' M), as well as on differential operators D(FM,F' M) and symbols S(FM,F' M) between these
spaces of sections.

Remember now that there is a 1-to-1 correspondence between representations of the jet group Gj,
on vector spaces V and natural vector bundle functors I of order r on the category of m-dimensional
smooth manifolds M, see [KMS93, Proposition 14.8]. The objects of such a functor are the vector
bundles FM = P"M xgr V associated with the rth order frame bundles P"M. So the canonical
representation of G}, = GL(m, R) on the (rank 1) vector spaces A*R™ (X € R) of A-densities on R”
induces a 1-parameter family of natural 1st order vector bundle functors Fy. Hence, we get Diff (M)-
and Vect(M)-actions on sections of the (trivial) line bundles

FAM = P'M X gr(mp) A'R™ = AT M

of A-densities of M, i.e. on tensor densities Fy(M) := I'(FAM) of order A of M. As aforementioned
these actions generate actions on differential operators Dy, (M) := D(FaM,F, M) between tensor
densities of weights A and p, and on the corresponding symbols Ss(M) := S(FAM,F, M) =T'(STM ®
FiM@F,M)=T(STM @ FsM), where 6 =t — A.

Primarily the local forms of these actions are well-known. Below, we focus on the algebra actions
rather than on the group actions. Let us recall that triviality of the line bundles F M has been proven
via construction of a nowhere vanishing section pg of F1 M = A'TM that has at each point only strictly
positive values. If the considered manifold M is orientable, we can set py =|§2|, where  is a volume
of M. Let us choose such a trivialization py. The correspondences 73 : C*°(M) > f — fpp € Fa(M)
are then vector space isomorphisms and the actions L* of vector fields on the spaces Fy(M) are, for
any X € Vect(M) and any f € C*°(M), given by

LX(fpp) = (X(f) + Af divyy X)pp-
Furthermore, for any X € Vect(M), D € Dy, (M), and P € S;(M), we have
LxD =1Lk oD—DolLk%,
and
LxP = X*(P)+§Pdiv,, X, (16)

where X* denotes the cotangent lift of X and where we have omitted in the LHS the dependance of
the actions on A, u, and on 4, respectively.

5 Invariant tensor fields

Consider a (2n + 1)-dimensional smooth Hausdorff second countable (coorientable) contact man-
ifold (M, «). Let us recall that this work is originated from the classification problem of the spaces
(Dap(M), L) as modules over the Lie algebra CVect(M) of contact vector fields. A first approxi-
mation is the computation of the intertwining operators T' between the corresponding CVect(M)-
modules (S5(M), L). Note that locally these symbol spaces are also modules over the Lie subalgebra
SPa, 42 C CVect(M). If such a module morphism

T:S{(M)=T(STM @ FsM) — S™(M) =T(S™TM @ F.M)

is a kth order differential operator, its principal symbol o (T) € T(S*TM @ S"TM @ S*T*M QF, M),
v = e — 0, is (roughly spoken) again invariant, see below. Hence, the quest for tensor fields in the
preceding symbol space

Sip(M) =T(S"TM @ S"TM ®@ S'T*M @ F, M), (17)

k,m,l € N, v € R, which are CVect(M)- and, locally, spy,, ,o-invariant for the canonical action.
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5.1 CVect(M)- and sp,, ,-invariants

In the following, we need a result on Taylor expansions. If f € C°°(R™) and xy € R™, we denote
by tfj.o( f) the kth order Taylor expansion of f at z9. We use the same notation for Taylor expansions
of vector fields.

Proposition 1. For every f € C®(R?*"*1) and 2o € R we have

to (X) = o, (Xez_(1)-

Proof. First note that, in any coordinate system (z!,...,22"+1) if £ = 2'0,: is the Euler field, one
has, for all £ > 1,
am’i © t§0 = tio_l © aziv
(E—kid)oth = th-1o(£—kid).

This allows to show that
tio (Xf) = Xtio(f) + [tio (8£2n+1 f) - (8m2n+1 f)(.’l)‘o)“g - gﬁo].
The result follows, since the last term of the RHS and its partial derivatives vanish at zg. 1

It is clear that the spaces I'(®?T'M ®F, M) are again representations of the Lie algebra CVect(M).

Theorem 1. Let M be a (coorientable) contact manifold of dimension 2n + 1. A tensor field u €
D(@FTM ®TF, M) is CVect(M)-invariant if and only if, over any Darboux chart, u is spy,, , o-invariant.

Proof. The Lie derivative
L: Vect(M) x T(@TM @ F,M) — T(@TM @ F,M) : (X,u) — Lxu

is a differential operator that has order 1 in the first argument. In other words, the value (Lxu)z,,
xo € M, only depends on the first jet j;o (X) of X at 9. Hence, the result follows from Proposition
1. 1

5.2 Particular invariants

We continue to work on a (2n 4+ 1)-dimensional coorientable contact manifold (M, o) endowed with
a fixed contact form, and describe basic contact invariant or locally affine contact invariant tensor
fields in S(M) := ®rme, Sy (M), see Equation (17). Observe that locally we can view the elements
of 52;7 (M) as polynomials of homogeneous degrees k, m, and ¢ in fiber variables &, 7, and Y, with
coefficients in F, (M).

1. The identity endomorphism u € T(TM ® T*M) of TM can be viewed as a Vect(M)-invariant
element u; € S{H(M) and as a Vect(M)-invariant element uy € Sy(M). Locally, these two
invariant tensor fields read uy : (§,7,Y) — (Y, &) and us : (£,7,Y) — (Y, n), where (.,.) denotes
the contraction.

2. Contact form o induces a CVect(M)-invariant tensor field
us=a @ Q7" e 8 (M),

Q=aA (da)", 1= n%rl Invariance of uz with respect to the action of contact fields is a direct

consequence of Equation (5). The local form of uz is uz : (£,1,Y) — o(Y)|Q|~ L.

3. The next invariant tensor field is implemented by the Lagrange bracket. Let us first mention that
our construction of the Lagrange bracket on (R?"*1!, i*7), as pullback of the Poisson bracket of the
symplectization of this contact structure, can be generalized to an arbitrary contact manifold M,
see [OR92, Section 10.2, Corollary 2]: the Poisson bracket on the symplectization of M defines
a bracket {.,.}, called Lagrange bracket, on the space F_ (M) = T'(F_1M) of (—I)-tensor



Modules of differential operators over contact vector fields 11

densities of M. This bracket is a first order bidifferential operator between F_ (M) x F_1(M)
and F_ 1(M). Its principal symbol is defined just along the same lines than the principal symbol
of a differential operator, see Section 4. Hence, this symbol o11({.,.}) is a tensor field

Li:=on({..}) € (T'M ® TM @ F{M) = S5y (M).

It is a basic fact in equivariant quantization that the principal symbol of a (multi)differential
operator between tensor densities intertwines the actions L and £ of vector fields on symbols and
operators (a short computation in local coordinates also allows to assure oneself of this fact).
CVect(M)-invariance of L then follows from contact invariance of {.,.} that in turn is nothing
but a reformulation of the Jacobi identity, see Equation (6). The local polynomial form of L,
follows from Equation (10): Ll : (fﬂ%y) - (Zk(fpknqk - quﬁpk) + e <gsa§s> - §t<53777s>)|9|1,
where 35 = 3 — (:dt, for any one form (.

4. Eventually, the Reeb vector field E also induces an invariant tensor field u = E® |Q|' € T(TM ®
F{M), which can be viewed as an element uy € S&OI(M ) and as an element us € 88;11(M ). Since
(X, E] = —ige(s)A — E(f)E (confer end Section 2), it is easily seen that fields us and us are
not contact invariant, but only (locally) affine contact invariant (confer end Section 3). They
(locally) read uy : (£,1,Y) — —2&|Q|! and us : (£,1,Y) — —2n,Q| L.

5.3 Classifications
In this subsection we classify affine contact invariant and contact invariant tensor fields.

Theorem 2. The polynomials u;, i € {1,...,5}, and L; generate the algebra of AVect(R?"*1) N
CVect(R?>" 1) invariant polynomials in S(R?"+1).

Proof. In the following we refer to the algebra of invariant polynomials generated by u1, ..., us, and
L as the space of classical invariant polynomials. In order to show that there are no other invariants,
we prove that the dimensions of the subspace S; of classical invariant polynomials in S(ZT (R27*1) and

of the subspace Sy of all invariant polynomials inside SgT(RQ”‘H) coincide, for any fixed (k, m, ¢, v).

Since the polynomials

Sa+d+f bte+f 9 (R2n+1)

a b c. d erf
uf ug uz ug ug Ly a+b+c;I(d+etf—

are independent and belong to SZT(R%“) if and only if (a,b,c,d, e, f) € N° is a solution of

at+d+ f = k
) b+e+ f = m
(51) : a+b+c =/ ’
d+e+f—c = (n+1l)wv

the dimension of S; is exactly the number (which is clearly finite) of solutions in N° of system (S7). (x)

Let now @ € Sg'(R?"*1) be an arbitrary invariant polynomial and set

m £

k
QEMY) =D D> &l (V) Qi jir (e ms, Ya),

i=0 j=0 r=0
where polynomial @Q; ; , is homogeneous of degree (k —i,m — j,£ —r). The degree defined by
Deg(féng (Yt)TQi’j,T(gsy MNs» YS)) =i+

will be basic in our investigation. Let us recall that the obvious extension of action (16) to Séf;gl (R2n+1)
reads, for all vector fields X € Vect(R?"*1),

LxQ = X(Q) — 0;X'm;0,,Q — 0;X'&;0¢,Q + 0; X' Y7 0y:Q + v9; X' Q, (18)
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where J) denotes the derivative with respect to the kth coordinate of R?"*+1. It is easily checked that
the invariance conditions with respect to the contact Hamiltonian vector fields X, X, , X4, and X;
(a € {1,...,n}), see Section 3, read

0: Qi jr . =
OpoQijor — O o Qi—1,j,r — Opya Qij—1,r + (r+0)Y9Qijry1 =
0o Qijir + e, Qi—1jr + 0y, Qij_1,r— (r+1)YPQi 5,41 =
E(Qijr) —[(k+m =0+ (i+j—71)=2(n+1v]Qi, =

S O O O

Let dy be the lowest degree Deg in Q. If Q; ;, is part of a term of degree dy, the first three equations
of the above system imply that Q;;, has constant coefficients. The fourth equation entails that
do =2(n+ 1)v — (k+m — £). An easy induction shows that all polynomials @Q; ;, have polynomial
coeflicients and that they are completely determined by the lowest degree terms. So, the dimension of
the space Sz of invariant polynomials in SgT(RQ”H) is at most the dimension of the space of lowest
degree terms. (%)

We now take a closer look at these lowest degree terms

S Gnl (Y Qi (€eina, Vo), (19)

i+j—r=do

where the polynomials @; ;,» have constant coefficients, and use the invariance conditions with respect
to the algebra sp,,,. Observe first that the Lie derivatives in the direction of the fields of this algebra
preserve the degree Deg. Indeed, for any field X of the basis of sp,,,, see Section 3, the derivatives
9; X" vanish for X* and for 8;. Hence, every polynomial @; ;. in (19) must be sp,,,-invariant. As these
polynomials have constant coefficients and the considered vector fields have vanishing divergence, this
means that any Q; ;, in (19) is invariant for the canonical sp(2n, R)-action. When applying a classical
result of Weyl, [Wey46], we conclude that each polynomial @Q; ; » in (19) is a polynomial in the variables
(Ys, &), (Ys,ms), and I1(&s, m5), where IT = 3~ ). AOya. Eventually, the lowest degree terms of @ read

Z CijraBy gzng(yt)r<Y;‘a§s>a<Y:97n5>ﬁH(fsanS)’ya
i,5,7,a,0,yEN

where ¢;jrapy € R and where (i, 7,7, o, 3,7) € N% is a solution of the system

o+ = k—1

) Bty = m—j

() : a+ = {—r
i+j—r = 2n+lv—(k+m—10)

This system implies in particular that (n + 1)v = k+m — £ — « is an integer. It is easily checked
that system (S3) is equivalent to system (S7). When taking into account upshots (x) and (¥x), we

finally see that the dimension of the space Sy of all invariant polynomials in SZT (R?7*1) is at most

the dimension of the space Sy of classical invariant polynomials in S§7'(R*"*1). i

As a corollary, we get the following

Theorem 3. For every (coorientable) contact manifold M, the fields uq,uq,us, and Ly generate the
algebra of CVect(M)-invariant fields in S(M).

Proof. Any CVect(M)-invariant field in SﬁT(M ) is over every Darboux chart an spy,, ,,-invariant
polynomial, Theorem 1. Hence, due to Theorem 2, it reads as a linear combination of polynomials
u%uguguiugL{ . Invariance with respect to the second Heisenberg algebra b, 2, see Section 3, allows to
satisfy oneself that d = e = 0. Computations are straightforward (but tedious) and will not be given

here.
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6 Invariant operators between symbol modules implemented
by the same density weight
We now use Theorem 3 concerning contact-invariant tensor fields to classify specific “classical”

module morphisms, i.e. intertwining operators between sp,,, ,,-modules of symbols induced by the
same density weight, see below.

We first recall the definition of two invariant operators that were basic in [FMP07].

Let (M, o) be a Pfaffian manifold. In the following, we denote the CVect(M)-invariant tensor field
uz=a®|Q~ e SY (M) =T(T*M @ F_ M) simply by «a (if more precise notation is not required
in order to guard against confusion). Contact form « can then be viewed as a contraction operator

io : SE(M) — SEZH(M),

where S¥(M) = I'(S*TM @ FsM). Due to invariance of «, the vertical cotangent lift i, of « is clearly
a CVect(M)-intertwining operator.

We also extend the contact Hamiltonian operator, see Equation (10), to the spaces S¥(R?"*1) of
symmetric contravariant density valued tensor fields over R?"*1. This generalized Hamiltonian

X : S§(R*Y) — SEFH(R>H)
maps S = S(§) to
X(8) = X()(&) = Y _(EqiOp, — &, 049)S (&) + &E6S (&) — (€6, £5)0eS(€) + a(k, 6)&:S(€),  (20)
J
where a(k,0) =2(n+1)d — k. If k = 0, operator X obviously coincides with the map
X:S3(M) > f—oi({f,.}) € Ssa(M),

where {.,.} is the Lagrange bracket and where {f,.} : S§(M) 3 g — {f, g} € 8§, 1(M). In [FMP07],
we proved the following

Proposition 2. Operator X : SF(R*"*!) — ng_'ll (R2"H1Y) intertwines the spy,, , o-action and does not
commute with the CVect(R*"*1)-action, unless k = 0.

Since the operators i, and X modify the density weight of their arguments, we introduce the space

Rs = ®penRY == BrenSy (R,

5+ 7k

Theorem 4. The algebra of spy,  o-invariant ( differential ) operators from Rs into Rs is generated
by ia and X. More precisely, the space of spy, - invariant operators from Rf; imto R’g s spanned by
{X™oittm=k  qup(0,k — ) <m < k}.

Proof. In order to simplify notations, we set M := R?"*1. Let I be an sp,,, i o-invariant differential
operator, say of order m, from R% into RY. The principal symbol o, (I) of I is an invariant tensor
field in

F(SmTM®Hom(SZTM®IF5+$ M, SkTM®F6+%M)) ~ F(SkTM®SmTM®S£T*M®]F%M),
see Remark 2 below. In view of Theorem 1 and Theorem 3, we then have

omI) = > Capea ufubu§L{  (Capea € R),
a,b,c,deN

where a, b, ¢, and d are subject to the conditions

a+d = k
b+d = m
atb+c = ¥
d—c = k—/
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This system has a unique solution a = k—m, b = 0, ¢ = {+m—k, and d = m, with sup(0, k—¢) < m < k.
Hence,
om (D) (1, & YY) = C ub=myfrm=rpm (C eR),

where we used conventional notations of affine symbol calculus, see Remark 2 below.
Observe now that operator X™ o ¢4t =% : R — RF is an sp,,, | ,-invariant differential operator of
order m (since X has order 1 and i, has order 0). Thus its principal symbol reads

T (X™ 0 il R (1, &Y = Co uf ™ uSTRLT (Co € Ry).

It follows that the operator I — C%Xm oiffm=F: RS — REis SPay, 4 o-invariant and of order < m—1.
An easy induction on the order of differentiation then yields the result. B

Remark 2. a. Let us mention that operator X™ is tightly related with the mth order Lagrange
bracket. This observation will be further developed in a subsequent work.

b. Although it is a known result in equivariant quantization, commutativity—for differential oper-
ators between symmetric contravariant density valued tensor fields—of the principal symbol and the
canonical actions of vector fields might not be obvious for all the readers. Beyond computations in
local coordinates, affine symbol calculus allows to elegantly make sure of the validity of this statement.
Affine symbol calculus is a non-standard computing technique. For further information we refer the
interested reader to [Pon04]. Below we give the proof, via symbol calculus, of the aforementioned
commutativity.

Let T € Hom(S¥ (Rp),S(’f,l,/ (R?))10e, where subscript “loc” means that we confine ourselves to
support preserving operators. We fix coordinates and call affine symbol o, (T) of T, its total symbol
(the highest order terms of which coincide with the principal symbol o(T')). Hence, if T has order m,
oai(T) € (S, TR? @ Hom(S* TR? @ F5/R?, S TRP @ F5R?)), where S,,, TR? is the mth order filter
(of the increasing filtration) associated with the natural grading of STRP. Tt is easily checked that, for
any X € Vect(RP),

oat(LxT) = (XT)m:Y")— (X, n)7 (T(U;Y’“/))—X(eas)T(n;Y'“')

21

+T(n+ 0; X (09)Y*) + 6" (X, 0)T(1; Y*') — 6"(X,0)T (1 + 0; Y*'), 2
where we used standard notations, see [Pon04] (X.T denotes the derivatives of the coefficients of T,
Y =Y V...VY (K factors), Tex is just a notation for the translation (. + 6) — x(.), 7 symbolizes
the derivatives that act on the argument—represented by YH —of T, 6 symbolizes the derivatives of
the coefficients of X, and ¢ denotes the variable of the polynomials Y* and T (n; Yk/)). On the other
hand, we have

Lxo(T) = (X.o(T)(Y*) — (X,)(60,)o(T) o Y*) ,
— X (00¢)(o(T) (1 Y*')) + o (T) (m: X (69) V) + (5" — &')(X, ) (T) (m; Y*).

When selecting the highest order terms in Equation (21), we see that o(LxT) = Lxo(T),VX €
Vect(RP). It is a matter of common knowledge that the same result holds true for the total affine
symbol o,g, if we confine ourselves to the action of affine vector fields X € AVect(RP).

A similar proof is possible for differential operators T' acting between tensor densities. The corre-
sponding result has already been used earlier in this note. However, the observation that the principal
symbol intertwines the actions by Lie derivatives on operators and symbols, is not true in general. It
is for instance not valid for “quantum level operators” T' € Hom (D%, o (RP), Dk, u (RP))1oc-

7 Casimir operator

As an application of our decomposition of the module of symbols into submodules, see [FMPO07], of
Section 3, and Section 6, we now prove that the Casimir operator C’Z; of the canonical representation
of spy, o on RY (with respect to the Killing form) is diagonal. Computation of this Casimir is a
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challenge by itself, but, in addition, it will turn out that this operator imposes restrictions on the
parameters k, k', 8, 6’ of symbol modules R’g and RY, that are implemented by different density weights
0,0’ and are linked by an invariant operator.

The following upshots are well-known and mostly easily checked. The symplectic algebra sp(2n, C)
is a classical simple Lie algebra of type C,, (if n > 3). Its Killing form K reads K : sp(2n,C) x
sp(2n,C) 3 (S,8") — 2(n + 1)tr(SS’") € C, and its classical Cartan subalgebra C' C sp(2n,C) is
C = {diag(A, —A), A = diag(Aq,...,A,),A; € C}. The corresponding roots are

—(ity) (i<j<n), vitvy; (i<j<n), and vi—v; (i,5<n), (22)

where v, is the C-linear form of C' defined by v (diag(A, —A)) = Ag. If (eq1,. .., e2,) denotes as above
the canonical basis of C?" and (€!,. .., €>") the dual basis in C?™*, the respective eigenvectors are

€ ®eitnte ®ejin, —€T"Re;— €T @e;, and — € ®e; + €T ® €jpn. (23)

We thus recover the result that the eigenspaces sp, associated with the above-detailed roots v, see
Equation (22), are 1-dimensional for v # 0. Moreover, if A denotes the set of roots, we have the
decomposition sp(2n,C) = @wﬁo’ue A 5P, @ C. This splitting allows computing the Killing-dual basis
of basis (23), see also Equation (8).

Proposition 3. The bases
dReinteE@ein(i<j<n), T @e—T"@e; (1 <j<n), —¢ @e;+ €T Rejpn (1,5 < n)

and

kij(—T @ e — €T @€)), kij(€) @ €ign + € @ €jqn), k(—€ @ej + 7" @ €i4n)
of sp(2n,C) are dual with respect to the Killing form, if and only if ki; = —1/(4(n+ 1)(1 + d;5)) and
k=1/4(n+1)).

Proof. Remember first that if NV is a nilpotent subalgebra of a complex Lie algebra L, and if
vi,v2 € A are roots of N, such that v # —uvy, then the corresponding eigenspaces L,, and L,,
are orthogonal with respect to the Killing form K of L. Further, the basis —¢' ® ¢; + €™ ® ¢, 4,
(i€ {l,...,n}) of C is orthogonal with respect to K. Hence, it suffices to compute K on each pair of
nonorthogonal vectors. For instance, we have

kin(—€j+n ® €; — 6i+n ® 6]', Gj ® €i+n + Ei ® ej+n)

==2n+ Dk tr((T" @ e;+ €T ® ;) (¢! @ €jn + € @ €j4n))
= —2(77, + 1)kij tr(éijei X e; + € ® e; + e ® e; + (5ijGi (29 ei)

=1.

The result follows. i

Remarks.

e All the matrices used above are actually real matrices. The result on Killing-dual bases still
holds true for sp(2n,R) (sp(2n,R) is a split real form of sp(2n, C), the Killing form of sp(2n, R)
is the restriction of the Killing form of sp(2n,C)).

e If read through J~'oX : (Pol*(R?"), {.,.}11) — (sp(2n,R), [., .]o), see Equation (11), Proposition
3 states that the bases
pip; (i <j <n), d'q (i <j<n),piq (i,j <n)
and . 4
kijg'd (i < j<n), kijpipj (i <j<n), kpig’ (i,j <n)
of Pol?(R?") are Killing-dual.
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e The preceding result, written for space R?"*2 (coordinates: (p1,...,pn,q",...,q";t,7)) and read
through Lie algebra isomorphism X o y : (Pol*(R3"*?),{.,.};1) — (SPapia:[-»-]), see Equations
(9) and (10), shows that the bases

Xpip; (1 <J<n), Xop, (i€ {1,...,n}), X¢z;
Xyigi 1<7<n), Xy (1 €{1,...,n}), Xi; (24)

Xp,qi (1,5 <n), Xy (i €{1,...,n}), Xp, (1 €{1,...,n}), Xy
and
kij Xqiqj (7, <j< TL), —qui (Z S {1, R ,n}), —k/QXl,
kij Xpipj (i<j<n), —k Xip, (i €{l,....,n}), —k/2 Xp; (25)
kX, (ij <n), kX, (i€ {1,....n}), kX (i€ {1,...,n}), kX,
with ki; = —1/(4(n + 2)(1 + d;;)) and k = 1/(4(n + 2)), are bases of the algebra sp,, ,, of

infinitesimal projective contact transformations, which are dual with respect to the Killing form.
Observe that the first basis is the basis computed in Section 3 and that both bases are explicitly
known, see Equations (12), (13), (14), and (15).

We already mentioned that action (16) of X € Vect(R*™!) on P € S;(R*!) has the explicit
form ' ‘
LxP =X(P)— 0,X€:0¢ P+ 60, X' P, (26)

see Equation (18). Remark that in this section we denote the base coordinates by (p1, ..., pn,q', ..., q", 1)
and the fiber coordinates by (§,,,...,&p,,&q15 - -, &qn, &). Moreover, we took an interest in the Casimir

operator C¥ of the preceding action of sp,,, ,, on Rf = S(’;Jrk/(nﬂ) (R?7*1) so that the weight in Equa-

tion (26) must be modified accordingly. The actions on R of the dual bases (24) and (25) are now
straightforwardly obtained:

Lx, = 20,

Lx,. = 0p —pi0+ &0,

LXqi = _6pi - qiat + gtaﬁqw

Ly, = —& 240, + . 1 26,0 —2((n+ 1)5 + k),

Lx,,, = DOy +pi0 — &40, — &k,
Xpigi = _qjapi - qiapj + gpz' 85[1;' + fpj 8€qm (27)
Xpjat qiaqj — PO + &p, 8§pj — &g aiqw

LXth: = t(aqi —pi0s) — pi&s — EqiOe, +pile + 5(5)85[)1 —2((n+1)0 + k)p;,

LX,,qq‘, = _t(api + qiat) - qigs + gp,iaﬁt + qigﬁ + g(f)afqi - 2((” + 1)5 + k)qia

Lx,, = —2E 4 2t& +2E(£)0:, — 4((n+1)d + k)t.

In these equations, £ is the Euler field of R?*t!, £, is its spatial part, & is the Euler field with respect
to the fiber coordinates, & = &p,0¢, + &g 85qi + £10¢,, Ee, denotes the spatial part of &, and £(§) is
the contraction of £ and £ = &,,dp; + fqidqi + & dt.

When combining Equations (24), (25), and (27), we get the explicit form of Casimir operator C¥.
A direct computation and simplification of C(? are possible, but almost inextricable. In the sequel, we
provide a much more economic method based upon Theorem 4.

Set €, ={—-p/(2(n+1)):p=0,1,...,2k — 2}.

Theorem 5. The Casimir operator C’(’f of the Lie algebra sponyo of infinitesimal projective con-
tact transformations, with respect to its Killing form, and for its canonical action (26) on R§ =
S(’;Jrk/(nﬂ)(RQ”H), is given by

1

ch=_—
o n+2

(c(k,d)id+X oi,),

where 2
c(k,8) = (n+1)%6% — (n+1)26 + k(n +1)6 + —
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and where X (resp. i) is the generalized Hamiltonian (resp. the vertical cotangent lift of «) defined
in Section 6.

Let us first recall two results obtained in [FMPO07].
Proposition 4. In R§ and for ¢ € Ny, we have
o0 X=X 0t +r(0, k)X,
where r(£,k) = —%(2(71 +1)0+2k+£¢—1).
Theorem 6. If § ¢ &, then

k

k
R’g — @ ng,e = @Xe(Rif_e Nkerig).
m=0

=0
The last upshot, which extends splitting (7), is the main result of [FMPO07] and has actually been
proved in view of the present application.

Proof of Theorem 5. The proof consists of four stages.

First suppose that 0 ¢ €.
1. Casimir operator CZ; reads

Ccy = _81(n41+2)’(LX1 o Lx,, +Lx,, 0 Lx,) + 55073y (LXt)z ~ qry 2i(Lx © Ly, + Lixiy, © Lx,)
+ mZi(LXpi OLX,,(I@' +Lthi ° LXpi) n+2) Z (LX w0 Lx »? + Lx »? OLX 72)
- 4(n1+2) Zi<j(LXqiqj OLXPin +LXPiI’j OLquqJ) 4(n+2 Z Z LX piadd OLX

it

Pjdq

(28)
Since X o x : (Pol*(R2"*2),{.,.}11) — (SPansas[»-]) and L : (Speny2,[,.]) — (End(RE),[.,.]o) are
Lie algebra homomorphisms, and {7%,#*};; = —4t¢7, we have [Lx,,Lx,]o = —4Lx,. Hence, the

first term of the RHS of Equation (28) is equal to —1/( n+2))(Lx,, o Lx, —2Lx, ). When using
similarly the Poisson brackets {rq’, tp;}n = —piq¢* — t7, {Tpi,t¢*}n = —piq* + t1, {¢, p?}u = —4pig’,
{d'd,pipitn = —piq" — pj¢’ (i # j), we finally get

ck = 4(HQ)LX oLx, + 4(n+2) (LXt) mzi(Lxmi oLx, —Lx,, oLx,)
- n+2) i LX . oLx @z (n+2) qu LXpipj °© LXqiqj (29)
* n+2) X Z Xp ctanalx + 4(7::;12) 2 Lx, i
2. Theorem 4 entails that
inf(2,k)
> ok, Xmoill (ck,, €R), (30)

where we have used the fact that Casimir C¥ is a second order differential operator, see Equation (26).
Observe also that it follows from Proposition 4 that R?’e = X"(Rg_é Nkeriy), £ € {0,...,k}, is an
eigenspace of C¥ with eigenvalue

inf(2,£)
5§ . - Z C]g,mnfzé—m-&-lr(i? k - é) (31)
m=0
In particular,
C¥lgro = cioid, Cf [ gra = (cf o + (1, k — 1)cf ;) id,
C§|R§,2 = (clg’o +7r(2,k— 2)c§’1 +r(1,k—2)r(2,k — 2)032) id .
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Let now Pfa be the polynomial (p1&; + fql)’C viewed as an element of S§+%(R2"+1). Since, for

any S € RE, the contraction i,S € ng_l is given by

(109)(€) = § | S (0s0k,, —'0x,)) — 0%, | 5(6),

J

see Section 6, it is clear that P«i € ng,o. Moreover, it is easily checked, see Equation (20), that

X(PE7NY = (2(n+1)0 + 2k — 2)&PE~ = —2r(1,k — 1)&, P € RY!

Op—1

and that
X2(PE2) = (2n+1)6 + 2k — 4)(2(n + 1)6 + 2k — 3)E2PE 2 = 2r(1,k — 2)r(2,k — 2)2Pf 2 € RY?,

where the coefficients in the RHS of the two last equations do not vanish, since § ¢ €. As gener-

alized Hamiltonian X intertwines the sp,,, ,,-action, see Proposition 2, we also have C¥X (Pg:ll) =

XC’(];*l(Pf;ll). If we now apply Equation (32) to both sides, we get (clg,o +r(l,k— 1)0’571)X(P£j) =
o' X(Pyh). Thus,

k=1 _ k
ko 06,0 - 06,0
LT k1) (33)
When proceeding analogously for X 2(ng;_i), we obtain
Lk k) 2k Dk ek a
82— r(Lk—1Dr(1k—2)r(2,k —2)

3. Hence, Casimir operator C¥ is completely known, see Equations (30), (33), and (34), if we find
clg)o. In this effect, we use Equation (32) for Pg‘; € ng’o, and compute the LHS by means of Equation
(29). Straightforward (and even fairly short) computations allow checking the contributions of the
successive terms 71T of the RHS of (29).

TPE =0, TP = gk (2n+1)0 + k)2 PE TsP, = 0,TyP, = A5 Ph TsPk = S0Pk
k _ k(n=1+k k k _ 1 1 k k _ k(n+1 k
TePE = "G50 PE Ty PE = =324 (2(n+ 1)0 + k)P, TsPE, = — 5“3 PL.
When summing up these terms, we get
1
¢ho = 75 ((n+1)%0° = (n+ 1% + k(n+ 1)5 + (K — £)/2), (35)

and when substituting in Equations (33) and (34), we obtain

1
k k
Csq1 = and c§ 5, = 0. 36
5= o 5.2 (36)

4. For every &, operator C¥ is a member of the finite dimensional space of differential operators
of order at most two, with polynomial coefficients of degree at most four, in view of equations (27)
and (29). Still using these equations, we see that Cg“ depends in a polynomial way on §. Since this
operator coincides with the desired expression for every 6 € R\ €, it is equal to this expression for
every 0. I

Proposition 5. If 6 ¢ €, space R§ is the direct sum of the eigenspaces R?é, ¢ e {0,...,k}, of
Casimir operator C¥. The corresponding eigenvalues are Elg’é =1/(n+2)(c(k,0) + r(l,k — 1)), see
Theorem 5 and Proposition 4, and eigenvalues 6?’6 associated with different £ cannot coincide.

Proof. The first assertion and the values of the eg’e, ¢ € {0,...,k}, are direct consequences of
Theorem 6 and Equations (31), (35), and (36). Assume now that, for ¢; # f5, we have slg’el = 6§’£2.
This means that r(¢1,k — 1) = r(la, k — ls), i.e. that (€1 —€2)(2(n+1)0 +2k — ({1 + 62 +1)) =0. As
2 < {1+ ¥ly+ 1 < 2k, the last result is possible only if § € €. 11
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8 Invariant operators between symbol modules implemented
by different density weights

In this section, we investigate invariant operators T : R’g — R between symbol spaces imple-
mented by different weights ¢ and ¢'.

Let T: Rf — R}g,/ be an sp,,, , o-invariant operator and assume for a moment that § ¢ &, 6’ & €.

It then easily follows from TCF = C?,,T that, for any eigenspace ng’e, ¢ € {0,...,k}, the restriction

Ty of T to R s ¢, either vanishes, or is an SPo,, 1 2-invariant operator from R§ into an eigenspace R" 5 i
¢ € {0,...,k'}, where ¢’ verifies the equation 5?,’€ = elge. A short computation shows that this
condition reads

2(n+1)2(6+6 —1)(6 =)+ (k+ kK —1)(k— k) +2(n+1)(k§ — k') (37)
—2(n4+ 1) = 00"y =20k =K Y+ U+ +1)({—-0)=0

On the one hand, the appearance of this Diophantine-type equation [ let us recall that Diophan-
tine equations are indeterminate polynomial equations with integer variables, that Y. Matiyasevich’s
solution of Hilbert’s 10th problem shows that there is no algorithm that allows solving arbitrary Dio-
phantine systems, and that one of the most celebrated results in this field is of course A. Wiles’
conclusion concerning Fermat’s equation z™ + y™ = 2™, n > 2 | is the shadow of the intricacy of
the investigated problem and points out that the entire classification of all the invariant operators
T:Rf— ng,l, 0 # ¢, cannot be given in the frame of this work.

On the other hand, Equation (37) entails for instance that 1,6, ', §2,56’, 8’2 are linearly independent
over the field Q of rational numbers, which is known to be a very strong condition on ¢ and ¢'.

We explain below that any invariant operator 7T : R’g — Rg,/ has a “trace” in the family of invariant
operators T': R’g Nkeri, — Ré“,/ Nkeri,, we provide a complete description of this family, and conclude
that the number of possible values of § and ¢’ is definitely very limited.

8.1 Reduction of the problem and contact-affine invariant operators

Let ,

T: R§ — Rk/

be a nontrivial sp,,, | o-invariant differential operator. If 6 ¢ €, the source space R’g is graded by the
subspaces ng’é = XK(R{;% Nkeriy), £ € {0,...,k}, Whereas the target space R(s: is filtered by the
increasing subspaces R’g,: = RE Nkeril, [ € {O + 1}, where Ré/ o = 0 and R(;, K4l = = RY,
see [FMPO7]. Hence, there exist £ € {0,...,k} and l 6 {1 .k’ +1}, such that Ty is a nonvambhmg
SPo,, 4 o-invariant differential operator T : ng’e — R’g,: I whose image im T} is not contained in R(;,, -1
Eventually, Ty :=i'-! o T o X* is a nonvanishing sps,, 4 o-invariant differential operator

Ty : RE Nkeri, — RE ! Nkeriy,. (38)

Any sp,,, ,o-invariant operator is of course CVect(R***!) N AVect(R?*"*!)-invariant. The following
proposition describes the algebra of contact-affine invariant operators.

Proposition 6. The associative algebra of contact-affine invariant differential operators is generated
by the identity map and the operators

D: Rf — R5™, P D(P)(€) := 3(Eqip, — &p,0qi ) P(E) + &EP(E) — (€5, €5) 0P (€)

div: RE — Ry} i)s P = diV(P)(€) i= 32, 0410, P(€) + 32, 0y, 0, P(€) + 0,0¢, P(€)

o R’g — R’g_l,PH 1o P

Ry : R — RETY P Ri(P)(€) := &P(€)
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® Ry: Rf — RS, /1), P Ra(P)(€) := 8, P(€)
Moreover, every contact-affine invariant differential operator defined on R§ is a linear combination of
operators of the form

R o R o D¢ odiv?oil, (a,b,c,d,e € N).

Proof. As the affine symbol map o,g provides a CVect(R?" 1) N AVect(R?*"*+!)-module isomorphism
from differential operators onto symbols, see Remark 2.b., Section 6, it suffices to use Theorem 2. The
possibility of writing the generators in the announced order, is a consequence of the next proposition,
which is easily checked by direct computation. i

Proposition 7. The following commutation relations hold true on R%:

1. [D,div] = =Ry o div+(2n + k) Ry
D, ia] = (k/2)id +R; o iq
[D,R1] =0
[D,Ry] =0
2. [div,ia] = 0
[diV7 Rl] = R2
[div, Re] = 0
3. Jin, R] = —(1/2)id
[ia7 RQ] =0
4. [R1,R2] =0

Observe now that, since there is an invariant projector p& from RY to RF Nkeri,, see [FMPO7],
every invariant differential operator I defined on R’g Nker ., is canonically the restriction of an invariant
differential operator I o p’g defined on R’g . Therefore, any contact-affine invariant differential operator
on R’g Nkeri, is a linear combination of operators of shape

R¢o R oDCodiv? (a,b,c,d € N). 39
2 1

Eventually, in view of Equations (38) and (39), any sp,,_,-invariant differential operator T' :
RF — R?: induces an sp,,, , o-invariant differential operator T : Rf Nkeri, — R’g: N ker<,, which is a
combination of terms of the type R$ o RS o D¢ o div?, a,b,c,d € N. In the sequel, we refer to these
invariants as basic invariants and provide a complete description, which is valid in whole generality,
i.e. for regular and for singular weights.

8.2 Contact-projective invariant operators

We first give two examples of basic spy,, , o,-invariant differential operators.
1. For any k € N and any ¢ € {0,...,k}, the operator

L. pk k—¢
div' : Ry — Rs\ /(41 (40)

is, for £ # 0, sly,4o-invariant (and thus sp,,, | o-invariant), if

C2n+1-—4
o 2(n+1) 7

For details pertaining to the projective embedding sla, 2 of sl(2n + 2,R) into Vect(R2?"+1),
see Section 3, for the proof of the sl o-invariance of div’, see [Lec00]. The commutation

relation [i,,div] = 0 implies that the restriction of this operator to R’g N keri, is valued in

k—¢ .
R5+£/(n+1) N kerig,.
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2. For any r € N, the operator

X": RE — RATT, (41)
where X : R — Ry is defined by X = D+ (2(n+1)8 + k)R, see Section 6 and Proposition 6,
is an spy,, | o-invariant differential operator. The commutation relation [io, X"] = —(r/2)(2(n +

1)6 + 2k + r — 1)X"~1, which is valid on R¥, see [FMPO7], entails that the restriction of X",
r # 0, to R§ N ker i, is valued in Rf;” Nkerig, if and only if

1-2k—r
- 2(n+1)

It is easy to see that, for this special value of §, operator X" coincides on R’g with
X' =M (D= (k+j —1)R),

where, due to commutation relation [D, R;] = 0, the RHS factors may be ordered arbitrarily. Let
us also immediately mention, that, whatever the value of §, the RHS composite operator reads
on R’g

(D= (k+j—1)R) = (D~ Ri0&)", (42)

where & denotes the Euler field with respect to & € R***! and that it follows from Proposition
7 that this operator maps R’g N ker ¢, into R§+T Nkerig.

In order to classify the basic invariant operators, we now prove a series of propositions, which
specify the form of these operators and impose restrictions on the involved parameters.

Proposition 8. If T is a nonvanishing spy,, o-invariant differential operator from RENkeri, to R’g:,
then ' =6 +4/(n+1) for some £ € {0,...,k} and k' =k — L+ r for some r € N. Moreover, operator
T reads

T =D"odivi+) C,R}oD "odiv, (43)
u=1

where the C,, are real constants.

Proof. The considered invariant operator has the form T = Y. C R§ o R} o D¢ o div?, C' € R,
a,b,c,d € N (Ry, Ry, D, and div are differential operators of homogeneous order 1, 0, 1, and 1, re-
spectively). Its principal symbol o(T) is a member of the algebra of sp,, , ,-invariant tensor fields,

which is generated by u1, us, usg, and L; (that correspond to div : R’g — R?;ll/(nﬂ), id : R§ — R§,

io @ RY — R’g_l, and D : RF — R’g“, respectively), see Theorem 1 and Theorem 3. Hence, up to
multiplication by a nonvanishing constant, the highest order term of T is D" o div? : R’g — R’g;ﬁr& 41y
for some £ € {0,...,k} and some r € N. As the target space of T is now fixed, the lower order terms

have necessarily the announced form. B

The next proposition takes into account the inclusion in ker i, of the target space of the invariant.

Proposition 9. If T is a nonvanishing sp,, -invariant differential operator from R’g N keri, to

R’g;f;r(:lﬂ) Nkeriy, £ €{0,...,k}, r €N, then T is necessarily a scalar multiple of

T =(D—Ryo&) odiv’. (44)

Proof. Any operator of the type (43) can be rewritten in the form
T=> byRyolll_{(D— (k—{+j—1)Ry)odiv’ (b, €R).
u=0

This claim just amounts to a triangular system of equations in the unknowns b,. Let now P €
R’g N keri,. According to the above comments on the inclusion of the operator image in keri,, see
afore-detailed Examples 1 and 2, we have

(D — (k= £+ j — ) R1)(div' P) € Ry (/74 Nkerig.



Modules of differential operators over contact vector fields 22

Since i[, RY = (—1)"2 7 "u(u —1)...(u —r 4+ 1)RY™" on keri,, the computation of i/, (T'(P)) leads to
b, = 0, whereas that of i".~}(T'(P)),...,is(T(P)) gives b,_1 = 0,...,b; = 0. The result then follows
from Equation (42). il

The Casimir operator promptly provides a first condition on k, 4, ¢, r.

Proposition 10. If there exists a nontrivial spy,, , »-invariant operator from R’gﬂker iq tO ng;ﬁ_(;H) N
keriy, the parameters k, 8, £, and r verify

2n+ 1) (L +7)6 =€ — 02 + 20n + 1 — 2kr — 12

Proof. According to Theorem 5 and the subsequent remark on the extension of this upshot to
all weights, critical or not, the restriction of the Casimir operator C(’f to R’g N keri, is given by
CF = c(k,8)/(n+2) id. As any sp,,,, o-invariant operator intertwines the Casimir operator, we get

clk,0)=clk—C+r,6 +¢/(n+1)),

and the result follows. B

Existence of a nonvanishing invariant operator imposes further restrictions on the parameters.

Proposition 11. If there exists a nontrivial spy,, , 5-invariant operator from RENkeri, to ng;ﬁ'&ﬂ) N
keriq, then either r =0 or2(n+1)d +2k+r—1=0.
1 k
Proof. It suffices to write the invariance property for the symbol eP* w, k € N, and vector
field X1, see Equation (15). Computations are straightforward but tedious and will not be repro-
duced here. 1

We are now prepared to explain the main result of this section.

Theorem 7. The basic Spy, ,o-invariant operators from RY Nkeri, to RE N keriy are the scalar
multiples of divt, ¢ € {0,...,k}, and X", r € N.

Proof. If T # 0 denotes such an operator, it follows from Propositions 8 and 9 that ¢’ = §+¢/(n+1),
0e{0,....k},and ¥ =k —{+r,r € N, and that T = C(D — Ry 0 &)" o div’, C € Ry. Further,
Proposition 10 yields

20n + 1) (£ +7)6 =€ — 0%+ 20n 41 — 2kr — 12, (45)
whereas Proposition 11 entails that » =0 or 2(n+ 1) + 2k +7r — 1= 0.

If r = 0, Equation (45) shows that, either { =0 and T = C'id, C € Rp, or 6 = 2n+1—-¢)/(2(n+1))
and T = Cdiv’, C' € Ry (which is then actually a basic invariant).

Otherwise, we have § = (1—2k—r)/(2(n+1)) and Equation (45) implies that ¢(2k+r+2n—2¢) = 0,
so that £ = 0, as the second factor is nonnegative, and T'= CX", C € Ry (which is a basic invariant). I
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