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THE RENORMALIZED VOLUME AND THE VOLUME OF THE CONVEX CORE OF

QUASIFUCHSIAN MANIFOLDS

JEAN-MARC SCHLENKER

Abstract. We show that the renormalized volume of a quasifuchsian hyperbolic 3-manifold is equal, up to an
additive constant, to the volume of its convex core. We also provide a precise upper bound on the renormalized
volume in terms of the Weil-Petersson distance between the conformal structures at infinity. As a consequence
we show that holomorphic disks in Teichmüller space which are large enough must have “enough” negative
curvature.

1. Results

1.1. Notations. In all the paper we consider a closed surface S of genus g ≥ 2, and we call TS the Teichmüller
space of S. Given a complex structure c ∈ TS , we denote by Qc the vector space of holomorphic quadratic
differentials on (S, c). We also call GS the space of quasifuchsian metrics on S × R, considered up to isotopy.

The Bers Simultaneous Uniformization Theorem provides a homeomorphism between TS∪S and GS . So GS

is parameterized by T+ × T−, where T+ and T− are two copies of TS corresponding respectively to the upper
and lower boundaries at infinity of S × R.

For q ∈ G, we denote by VR(q) the renormalized volume of (S × R, g) (as defined in Section 3 following e.g.
[12]), while C(q) is the convex core of (S × R, g) and VC(q) is its volume.

1.2. Comparing the renormalized volume to the volume of the convex core. The first result pre-
sented here is a precise comparison between the volume of the convex core and the renormalized volume of a
quasifuchsian hyperbolic manifold.

Theorem 1.1. There exists a constant Cg > 0, depending only on the genus g of S, as follows. Let q ∈ GS be

a quasifuchsian metric. Then

VR(q) ≤ VC(q)− (1/4)Lm(l) ≤ VR(q) + Cg ,

where l is the measured bending lamination of the boundary of C(q), m is its induced metric, and Lm(l) is the

length of l with respect to m. Equality in the first inequality occurs exactly when q is Fuchsian.

Note that the the quantity VC(q)− (1/4)Lm(l) appearing in this theorem can be interpreted as the half-sum
of the volume and the “dual volume” of the convex core (as appearing e.g. in [11]). Recall also that there is an
bound on Lm(l) depending only on the genus g, see [2].

Theorem 1.1 can be extended to convex co-compact manifolds with incompressible boundary. We do not
elaborate on this here but the statement and proof of the extension should appear clearly from the proof of
Theorem 1.1 below.

1.3. An upper bound on the renormalized volume. The next result is a precise upper bound on the
renormalized volume of a quasifuchsian manifold, in terms of the Weil-Petersson distance between its conformal
structures at infinity.

Theorem 1.2. For any quasifuchsian metric q on S × R,

(1) VR(q) ≤ 3
√

π(g − 1)dWP (c−, c+) ,

where c− and c+ are the conformal structure at infinity of q and dWP is the Weil-Petersson distance.

This result is related, through Theorem 1.1, to the following result of Brock on the comparison between the
Weil-Petersson distance dWP (c−, c+) and the volume of the convex core VC(q).
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Theorem 1.3 (Brock [3]). For a given surface S, VC(c−, c+) is comparable to dWP (c−, c+), that is, there are

constants k1, k2 > 0 such that

(2)
dWP (c−, c+)

k1
− k2 ≤ VC(c−, c+) ≤ k1dWP (c−, c+) + k2 .

We will recover a precise form of the upper bound on VC from Theorem 1.1 and Theorem 1.2. Recall that
Bridgeman [2, Proposition 2] proved that the length of the measured bending lamination, Lm(l), is bounded from
above by a constant Kg depending only on the genus of S. The following statement then follows immediately
from Theorem 1.2 and Theorem 1.1.

Corollary 1.4. There exists a constant Kg depending only on the genus of S such that

VC(c−, c+) ≤ 3
√

π(g − 1)dWP (c−, c+) +Kg ,

This is a more precise version of the first inequality in (2).

1.4. Holomorphic disks in Teichmüller space. An interesting difference between Theorem 1.2 and Theorem
1.3 is that the renormalized volume has, in addition to the “coarse” properties of the volume of the convex core,
some remarkable analytic properties related to the Weil-Petersson metric on Teichmüller space. We will use
this and the upper bound on VC to obtain a statement on the global geometry of the Weil-Petersson metric on
Teichmüller space, more precisely on the maximal radius of holomorphic disks with curvature bounded from
below (see Theorem 1.5). The statement below is probably not optimal, it is more of an indication of the type
of results one can obtain using the remarkable properties of the renormalized volume.

Theorem 1.5. There exists a smooth, increasing function φ : [0, 1) → R≥0 with φ(0) = 0, φ′(0) = 2 and

lim1 φ = ∞ as follows. Let k > 0 be such that 3k2
√

π(g − 1) < 2. There is no immersed holomorphic disk D of

radius φ(3k2
√

π(g − 1)/2)/k in TS with curvature K ≥ −k2.

The radius here is the radius of the metric induced on D by the Weil-Petersson metric on TS . The expression
of the function φ can be obtained by solving a simple differential equation, see Section 6. This kind of statement
is presumably most interesting close to the boundary of TS for the Weil-Petersson metric, where the sectional
curvature tends to be close to 0 in many directions.

1.5. From the boundary of the convex core to infinity. There is a clear parallel between data “at infinity”
and corresponding data on the boundary of the convex core.

Boundary of the convex core At infinity

Induced metric m Conformal/hyperbolic metric at infinity
Measured bending lamination l II∗0

Bound on Lm(l) [2] Theorem 5.1
Volume of the convex core Renormalized volume
Bonahon’s Schläfli formula Proposition 3.10

Brock’s upper bound on VC [3] Theorem 1.2
Table 1. Infinity vs the boundary of the convex core

The results presented here can be considered as clarifying a few items to this correspondence.

Acknowledgements. The author would like to thank Juan Souto for useful conversations related to the results
presented here, and Frédéric Paulin for providing relevant references necessary at some points of the arguments.

2. Conformal changes of metrics

We gather in this short section some basic and well-known results on conformal changes of metrics on surfaces.

Lemma 2.1. Let h be a Riemannian metric on S, of curvature K. Let u : S → R, let h = e2uh, and let K be

the curvature of h. Then

K = e−2u(K +∆u) .

Here ∆ is the “geometer’s” Laplacian, that is, it is non-positive at the minima. The proof of this lemma can
be found e.g. in [1, Section 1]
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Lemma 2.2. Let h be a hyperbolic metric on S, and let u : S → R be such that e2uh has curvature K ≥ −1.
Then u ≥ 0.

Proof. Let x ∈ S be a point where u is minimal. Then ∆u ≤ 0 at x, and K = e−2u(−1 + ∆u) ≤ −e−2u. Since
K ≥ −1 it follows that u ≥ 0 at x. �

3. The renormalized volume

3.1. Some background. Consider a Poincaré-Einstein manifold M , that is, a manifold M with boundary,
with an Einstein metric g on the interior of M which can be written as

g =
g

ρ2
,

where ρ is a function which vanishes on ∂M with ‖dρ‖g = 1 on ∂M .
The volume of (M, g) is infinite, however there is a well-defined way to define a “regularized” version of this

volume, called the renormalized volume of M , which is finite (see e.g. [8, 7]). If the dimension of M is odd, it
depends on the choice of a metric in the conformal class of the boundary of (M, g), while if the dimension of
M is even it is canonically defined.

If M is a convex co-compact hyperbolic manifold, it is Poincaré-Einstein according to the definition above,
so that the definition of its renormalized volume applies. The fact that the metric has constant curvature makes
it possible to give an explicit description of the geometry of the leaves of an equidistant foliation, see [13]. Since
the dimension is odd, this renormalized volume depends on the choice of a metric at infinity, however there is
a canonical choice available for this metric: the unique metric of constant curvature −1 in the conformal class
at infinity.

This renormalized volumes turns out to be strongly related to the Liouville functional previously studied by
Takhtajan, Zograf and Teo [14, 15], see [9]. In particular it has some remarkable relations to the Weil-Petersson
metric on Teichmüller space. Moreover, there is a simpler definition specific to dimension 3. We recall below
this definition and the key properties of this 3-dimensional renormalized volume in a form suitable for the
applications considered here.

3.2. Metrics at infinity and equidistant foliations. We now consider a quasifuchsian hyperbolic 3-manifold
(M, g).

Definition 3.1. Let E be an end of M . An equidistant foliation in E is a foliation of a neighborhood of infinity
in E by convex surfaces, (Sr)r≥r0 , for some r0 > 0, such that, for all r′ > r ≥ r0, Sr′ is between Sr and infinity,
and at constant distance r′ − r from Sr.

Two equidistant foliations in E will be identified if they coincide in a neighborhood of infinity. In this case
they can differ only by the first value r0 at which they are defined.

Note that given an equidistant foliation (Sr)r≥r0 and given r′ > r ≥ 0, there is a natural identification
between Sr and Sr′ , obtained by following the normal direction from Sr to Sr′ . This identification will be
implicitly used below.

Definition 3.2. Let M be a convex co-compact hyperbolic manifold, let E be an end of M , and let (Sr)r≥r0

be an equidistant foliation in E. The metric at infinity associated to (Sr)r≥r0 is the metric:

I∗ = lim
r→∞

e−2rIr ,

where Ir is the induced metric on Sr.

Proposition 3.3. I∗ always exists, and it is in the conformal class at infinity of E.

Let M be a convex co-compact hyperbolic manifold, let E be an end of M , and let h be a Riemannian metric

in the conformal class at infinity of E. There is a unique equidistant foliation in E such that the associated

metric at infinity is h.

This equidistant foliation can be defined from I∗ in terms of envelope of a family of horospheres, see [5], we
recall this construction here. Consider the hyperbolic space H3 as the universal cover of M , then I∗ lifts to
a metric on the domain of discontinuity Ω of M , in the canonical conformal class of ∂∞H3. Let x ∈ Ω. For
each y ∈ H3, the visual metric hy on ∂∞H3 is conformal to I∗. Let Hx,r be the set of points y ∈ H3 such that
hy ≥ e2rI∗ at x – it is not difficult to check that Hx,r is a horoball intersecting ∂∞H3 at x, and the lift of Sr

to H3 happens to be equal to the boundary of the union of the Hx,r, for x ∈ Ω.
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3.3. Definition and first variation of W .

Definition 3.4. Let N ⊂ M be a convex subset. We define

W (N) = V (N)−
1

4

∫

∂N

Hda .

Lemma 3.5. Under a first-order deformation of N ,

(3) W ′ =
1

4

∫

∂N

〈II ′ −
H

2
I ′, I〉da .

Lemma 3.6. Let r ≥ 0, let Nr be the set of points of M at distance at most r from N . Then W (Nr) =
W (N)− 2πrχ(∂M).

Proof. For s ∈ [0, r], let Ns be the set of points of M at distance at most s from N , and let w(s) = W (Ns). Let
Is, IIs, IIIs and Bs be the induced metric, second and third fundamental forms and the Weingarten operator of
∂Ns. According to standard differential geometry formulas,

I ′s = 2IIs , II ′s = IIIs + Is .

Lemma 3.5 therefore shows that

W (Ns)
′ =

∫

∂N

〈IIIs + Is −HsIIs, Is〉das =

∫

∂N

tr (B2
s ) + 2−H2

sdas =

=

∫

∂N

2− det(Bs)das =

∫

∂N

−Kdas = −2πχ(∂N) .

�

Definition 3.7. Let h be a metric on ∂M , in the conformal class at infinity. Let (Sr)r≥r0 be the equidistant
foliation at infinity associated to h. We define W (M,h) := W (Sr) + 2πrχ(∂M), for any choice of r ≥ 0.

This definition does not depend on the choice of r by Lemma 3.6.

Corollary 3.8. For any ρ ∈ R, W (M, e2ρh) = W (M,h)− 2πρχ(∂M).

3.4. Variational formula for W from infinity. Given an equidistant foliation of the end E, the hyperbolic
metric q actually takes a remarkably simple form. It can be written as

q = dr2 + e2rI∗ + 2II∗ + e−2rIII∗ ,

where I∗ is the metric at infinity called h above, and II∗ and III∗ are analogs at infinity of the second and third
fundamental forms of a surface. More precisely, there is a unique bundle morphism B∗ : TS → TS which is
self-adjoint for I∗ and such that

II∗ = I∗(B∗·, ·) , III∗ = I∗(B∗·, B∗·) .

Then B∗ satisfies the Codazzi equation d∇
∗

B∗ = 0, where ∇∗ is the Levi-Civita connection of I∗, and an analog
of the Gauss equation, tr (B∗) = −K∗, where K∗ is the curvature of I∗.

Going back to the setting above of a convex subset N ⊂ M , the data at infinity I∗, II∗, III∗ can be written in
terms of the data I, II, III on the boundary of N , and conversely. Using the transformation formulas, one can
write the first-order variation of W in terms of the data at infinity, and it turns out to be remarkably similar
to the variation formula (3) in terms of the data on ∂N .

(4) W ′ = −
1

4

∫

∂N

〈II∗′ −
H∗

2
I∗′, I∗〉da .

3.5. The renormalized volume. We can now give the definition of the renormalized volume of M .

Definition 3.9. The renormalized volume VC of M is defined as the equal to W (h) when the metric at infinity
h is the unique metric of constant curvature −1 in the conformal class at infinity of M .

Another possible definition is as the maximum of W (M,h) over all metrics h in the conformal class at infinity
of M , under the condition that the area of h is equal to −2πχ(∂M).
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3.6. A variational formula for the renormalized volume.

Proposition 3.10. Under a first-order deformation of the hyperbolic structure on M ,

dVR = −
1

4
〈II∗0 , İ

∗〉 .

Here 〈, 〉 is the duality bracket, II∗0 is considered as the real part of a holomorphic quadratic differential, and
therefore a vector in the cotangent bundle of T .

3.7. Comparing metrics at infinity.

Proposition 3.11. If h, h′ are two metrics in the conformal class at infinity on ∂M and h′ is everywhere at

least as large as h, then W (M,h′) ≥ W (M,h), with equality if and only if h = h′.

The proof of this proposition will follow the next two lemmas.

Lemma 3.12. Let h, h′ be two metrics in the conformal class at infinity on ∂M . Suppose that h′ is everywhere

at least as large as h. Let r be large enough so that both Sh,r and Sh′,r are well-defined. Then Sh,r is in the

interior of Sh′,r.

Proof. We have seen above that Sh,r can be defined as the boundary of the complement of the union of the
horoballs associated to h of “radius” r at points of ∂M . Since h′ is everywhere at least as large as h, the horoball
associated to h′ of radius r is at each point contained in the horoball associted to h of radius r. It follows that
Mh,r ⊂ Mh′,r. �

Definition 3.13. Let E be a hyperbolic end, let S, S′ be two surfaces in E such that S is contained in the
“interior” of S′. We set

W (S, S′) = V (S, S′)−
1

4

∫

S′

Hda+
1

4

∫

S

Hda .

It follows from this definition that if E is an end of M containing two surfaces S and S′ with S contained in
the interior of S′, if h is the metric at infinity in the conformal class at infinity on ∂M corresponding to S in
∂E and h′ is another metric in the conformal class at infinity on ∂M , equal to h except that it corresponds to
S′ in ∂E, then

W (M,h′) = W (M,h) +W (S, S′) .

Lemma 3.14. If S is contained in the interior of S′, then W (S, S′) ≥ 0, with equality only if S = S′.

Proof. Choose a smooth one-parameter family of surfaces, (St)t∈[0,1], with S0 = S, S1 = S′, and such that, for
t ≤ t′, St is contained in the interior of St′ . It is sufficient to prove that

d

dt
W (S, St) ≥ 0 ,

with equality only if St is stationary.
Consider now a fixed value of t, and suppose that the normal first order deformation of St is given by uN ,

where N is the unit exterior normal to St and u is a non-negative function on St. We know (see [10, Eq. (41)])
that the first-order variation of W (St) is given by

δW (St) =
1

4

∫

St

δH + 〈δI, II −
H

2
I〉da ,

where δH is the first-order variation of H and δI is the first-order variation of the induced metric.
Now a direct and classical computation shows that

δII = −Hess(u) + u(III + I) ,

while
δI = 2uII .

It follows that

δH = tr I(δII) −
H

2
〈δI, II〉 = ∆u+ 2u .

Therefore

δW (St) =
1

4

∫

St

∆u+ 2u+ 〈2uII, II −
H

2
I〉da .

Let k1, k2 be the principal curvatures of S. Then

2〈2uII, II −
H

2
I〉 = (k21 + k22 − 2k1k2) = (k1 − k2)

2 .
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If we call W this quantity (which is related to the Willmore energy) we find that

δW(St) =
1

4

∫

St

∆u+ 2u+ uWda .

But the integral of ∆u is zero, while the other two terms are positive, and the result follows. �

The proof of Proposition 3.11 clearly follows from this lemma.

4. Proof of Theorem 1.1

4.1. The upper bound on VR. Let hgr be the “grafting metric” on ∂∞M (it is also sometimes called the
Thurston metric). Recall that hgr is a metric with curvature in [−1, 0] in the conformal class at infinity. In
the simplest case where the support of l is a simple closed curve c, with a weight w, hgr is obtained by cutting
(∂M,m) along the geodesic realizing c and gluing in a flat strip of width w.

Lemma 4.1. Let m and l be the induced metric and the measured bending lamination on the boundary of the

convex core of M . Then

W (M,hgr) = VC(M)−
1

4
Lm(l) .

let h0 be the hyperbolic metric in the conformal class at infinity of M . It follows from Lemma 2.2 that
hgr ≥ h0 at all points of ∂∞M , and Proposition 3.11 therefore indicates that W (M,h0) ≤ W (M,hgr). Since
VR(M) = W (M,h0), we find that VR(M) ≤ VC(M)− Lm(l)/4.

4.2. The lower bound on VR. The area of hgr is equal to −2πχ(∂M) + Lm(l). Therefore, the metric

h′
gr :=

−2πχ(∂M)

−2πχ(∂M) + Lm(l)
hgr

has area equal to −2πχ(∂M), which is equal to the area of h0. Since VR(M) is the maximum over W (M,h) for
h a metric in the conformal class at infinity of area equal to the area of h0 (see [10, 12]) we find that

W (M,h′
gr) ≤ VR(M) .

However Corollary 3.8 indicates that

W (M,h′
gr) = W (M,hgr) + π log

(

−2πχ(∂M)

−2πχ(∂M) + Lm(l)

)

χ(∂M) .

It is also known that, if M has incompressible boundary, then Lm(l) ≤ C(M). It follows that

W (M,hgr) ≤ VR(M) + C′(M) ,

where C′(M) is a constant which can easily be explicitly computed in terms of C(M) and of χ(∂M). This
concludes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

5.1. The Bers embedding. We recall here a the basic setup of the Bers embedding. We consider a quasi-
fuchsian hyperbolic 3-manifold M ≃ S × R, denote by c+ and c− the complex structures at +∞ and −∞,
respectively, and by σ+ and σ− the complex projective structures at infinity. We also call σF

+ , σ
F
− the Fuch-

sian complex projective structures with underlying complex structures c+, c− on S. We can then define two
holomorphic quadratic differentials

q− = σ− − σF
− , q+ = σ+ − σF

+ ,

where the minus sign refers to the comparison of two complex projective structures on a given Riemann surface
using the Schwarzian derivative, see [4].

Then, if q is the holomorphic quadratic differential on (∂M, c) corresponding to q± on the corresponding
boundary component of M , we have (see [10, Lemma 8.3])

II∗0 = −Re(q) ,

that is, the real part of q is minus the traceless part of the second fundamental form at infinity.
We now fix the conformal structure c− on the lower boundary at infinity of M , and vary c+. Each choice

of c+ determines a complex projective structure σ− on the lower boundary at infinity of M , and therefore a
holomorphic quadratic differential q− ∈ Qc− . This defines a map B+ : T+ → Qc− , called the Bers embedding.

Using the hyperbolic metric h− in the conformal class of c−, we can measure at each point of S the norm of
q−. We call Q∞

c−
the vector space Qc− , endowed with this L∞ norm.
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Theorem 5.1 (Nehari). The image of B+ contains the ball of radius 2, and is contained in the ball of radius

6 in Q∞
c−
.

See [6, Theorem 1, p. 134].
Consider now on Qc− the L2-norm for the Weil-Petersson metric, and denote by Q2

c−
the vector space Qc−

endowed with this norm.

Corollary 5.2. The image of B+ is contained in the ball of radius 12
√

π(g − 1) in Q2
c−
.

5.2. The upper bound. We now prove Theorem 1.2. Let c−, c+ ∈ T , and let d = dWP (c−, c+).
With the notations introduced here, Proposition 3.10 can be written as follows. Recall that Qc− is naturally

identified with the complex cotangent space of T at c−.

Proposition 5.3. Under a first-order deformation of the hyperbolic structure on M ,

dVR =
1

4
(〈Re(q−), c

′
−〉+ 〈Re(q+), c

′
+〉) .

Proof of Theorem 1.2. Let c : [0, d] → T be the geodesic segment parameterized at constant velocity 1 between
c− and c+. Integrate the equation in the previous proposition with c+ replaced by c(t), t ∈ [0, d], in Proposition
5.3. This shows that

VR(c−, c+) =

∫ d

t=0

1

4
〈q(t), c′(t)〉dt ,

where q(t) is the holomorphic quadratic differential equal to the Schwarzian differential of the identity between
the Fuchsian complex projective structure obtained from Riemann uniformization from c(t), and the quasifuch-
sian complex projective structure obtained by applying the Bers double uniformization theorem to (c−, c(t)).

The inequality in Corollary 5.2 shows that for all t ∈ [0, d],

1

4
〈q(t), c′(t)〉 ≤ 3π

√

g − 1 ,

and the statement follows. �

6. The size of almost flat holomorphic disks

In this section we prove Theorem 1.5, giving an upper bound on the radius of holomorphic disk in TS which
are flat enough. The proof is based on a well-known upper bound on the curvature of gWP and on two key
properties of the renormalized volume, as collected in the next lemma.

Lemma 6.1. Let D be a holomorphic disk immersed in TS , with induced metric q, with center c0. Consider

the function u : D → R defined by u(c) = VR(c0, c) for all c ∈ D. Then

(1) q has negative curvature,

(2) ‖du‖q ≤ 3
√

π(g − 1),
(3) ∆qu = −2.

Proof. The first point follows from the fact that the Weil-Petersson metric on TS has negative sectional curvature
[16] and from the Gauss formula, which indicates that the curvature of a holomorphic disk in a Kähler manifold
is at most equal to the sectional curvature of the ambiant metric on its tangent space.

The second point follows from Proposition 3.10 and from Corollary 5.2.
For the third point recall that the renormalized volume VR(c−, ·), considered as a function on TS , is a Kähler

potential for the Weil-Petersson metric on cTS, see e.g. [14, 15, 10, 12]. In other terms:

2∂∂VR(c−, ·) = iωWP .

But the restriction of ∂∂ to D is ∂∂, so equal to −(1/4)∆q, where ∆q is the Laplace operator of (D, q). �

Lemma 6.2. There is continuous, increasing function φ : [0, 1) → R≥0 with φ(0) = 0 and lim1 φ = ∞ as

follows. Let (D, q) be a Riemannian disk of center c0, and let u : D → R be a smooth function. Suppose that:

• the radius of (D, q) is φ(δ),
• ∆qu = 1,
• the curvature Kq of q is in [−1, 0].

Then there is a point x ∈ D where ‖du‖q ≥ δ.

The precise value of the function φ can be obtained by solving a differential equation.
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Proof. For r ∈ (0, R] the geodesic disk B(r) of center c0 and radius r is convex. We denote by A(r) its area,
by L(r) the length of its boundary, by κ(r) the total curvature of its boundary, and by K(r) the mean of its
curvature. By definition, K(r) ∈ [−1, 0] for all r ∈ (0, R]. Moreover:

• A′(r) = L(r),
• L′(r) = κ(r),
• A(r)K(r) = 2π − κ(r) by the Gauss-Bonnet theorem.

It follows that

L′(r) = 2π −K(r)A(r) .

Let y(r) = A(r)/L(r). Then

y′(r) =
A′(r)L(r) −A(r)L′(r)

L(r)2
=

L(r)2 −A(r)(2π −A(r)K(r))

L(r)2
= 1 +

(

K(r) −
2π

A(r)

)

y(r)2 .

The initial condition is lim0 y = 0 since A(r) ∼ πr2 and L(r) ∼ 2πr at 0. Since q has curvature in [−1, 0],
A(r) ≥ πr2 and K(r) ≥ −1 for all r, so that

(5) y′(r) ≥ 1−

(

1 +
2

r2

)

y(r)2 .

So y(r) ≥ y0(r), where y0 is the solution vanishing at 0 of the equation obtaining by taking the equality in (5).
Let u(r) be the mean of u over ∂B(r). Then

u′(r) =
1

L(r)

∫

∂B(r)

du(n) =
1

L(r)

∫

B(r)

∆quda =
A(r)

L(r)
= y(r) .

It follows that there exists a point at distance r from c where ∂u/∂r ≥ y(r), and therefore where ‖du‖q ≥
y(r) ≥ y0(r).

The lemma follows, with φ equal to the reciprocal of y0. �

Corollary 6.3. Let ∆0, k, δ > 0. Let (D, q) be a Riemannian disk of center c0, and let u : D → R be a smooth

function. Suppose that:

• the radius of (D, q) is φ(k2δ/∆0)/k,
• ∆qu = ∆0,

• the curvature Kq of q is in [−k2, 0].

Then there is a point x ∈ D where ‖du‖q ≥ δ.

Proof. The statement is obtained by scaling the metric q by a factor k2 and the function u by a factor k2/∆0

in Lemma 6.2. �

Proof of Theorem 1.5. It follows directly from Lemma 6.1 and from Corollary 6.3. The function φ is inverse
function of the solution of the differential equation

y′(r) = 1−

(

1 +
2

r2

)

y(r)2

which vanishes at 0. An easy asymptotic analysis shows that lim∞ y = 1, while y′(0) = 1/2. It follows that φ
is defined on [0, 1) with lim1 φ = ∞, and that φ′(0) = 2. �

References

1. Arthur Besse, Einstein manifolds, Springer, 1987.
2. Martin Bridgeman, Average bending of convex pleated planes in hyperbolic three-space, Invent. Math. 132 (1998), no. 2, 381–391.

MR MR1621436 (99f:57015)
3. Jeffrey F. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16

(2003), no. 3, 495–535 (electronic). MR 1969203 (2004c:32027)
4. David Dumas, Complex projective structures, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13,
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Winter School “Geometry and Physics” (Srńı, 1999), no. 63, 2000, pp. 31–42. MR MR1758076 (2002c:53073)

9. Kirill Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000), no. 4, 929–979. MR MR1867510
(2002k:81230)

http://arxiv.org/abs/hep-th/9901021


THE RENORMALIZED VOLUME AND THE VOLUME OF THE CONVEX CORE OF QUASIFUCHSIAN MANIFOLDS 9

10. Kirill Krasnov and Jean-Marc Schlenker, On the renormalized volume of hyperbolic 3-manifolds, Comm. Math. Phys. 279

(2008), no. 3, 637–668. MR MR2386723
11. Kirill Krasnov and Jean-Marc Schlenker, A symplectic map between hyperbolic and complex Teichmüller theory,

arXiv:0806.0010. Duke Math. J. 150(2009):2, 331-356, 2008.
12. , The Weil-Petersson metric and the renormalized volume of hyperbolic 3-manifolds, arXiv:0907.2590. To appear,

Handbook of Teichmüller theory, vol. III., 2009.
13. S. J. Patterson and Peter A. Perry, The divisor of Selberg’s zeta function for Kleinian groups, Duke Math. J. 106 (2001), no. 2,

321–390, Appendix A by Charles Epstein. MR MR1813434 (2002a:11103)
14. L. Takhtajan and P. Zograf, On uniformization of Riemann surfaces and the Weil-Petersson metric on the Teichmüller and

Schottky spaces, Mat. Sb. 132 (1987), 303–320, English translation in Math. USSR Sb. 60:297-313, 1988.
15. Leon A. Takhtajan and Lee-Peng Teo, Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian

reciprocity and holography, Comm. Math. Phys. 239 (2003), no. 1-2, 183–240. MR MR1997440 (2005c:32021)
16. S.A. Wolpert, Chern forms and the riemann tensor for the moduli space of curves, Inventiones Mathematicae 85 (1986), no. 1,

119–145.
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