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Abstract

We consider quasifuchsian manifolds with “particles”, i.e., cone singularities of fixed angle less than m
going from one connected component of the boundary at infinity to the other. Each connected component
of the boundary at infinity is then endowed with a conformal structure marked by the endpoints of the
particles. We prove that this defines a homeomorphism from the space of quasifuchsian metrics with n
particles (of fixed angle) and the product of two copies of the Teichmiiller space of a surface with n marked
points. This extends the Bers Double Uniformization theorem to quasifuchsian manifolds with “particles”.

Quasifuchsian manifolds with particles also have a convex core. Its boundary has a hyperbolic induced
metric, with cone singularities at the intersection with the particles, and is pleated along a measured geodesic
lamination. We prove that any two hyperbolic metrics with cone singularities (of prescribed angle) can
be obtained, and also that any two measured bending laminations, satisfying some obviously necessary
conditions, can be obtained, as in [BO04| in the non-singular case.

Résumé

On considére des variétés quasifuchsiennes “a particules”, c’est-a-dire ayant des singularités coniques
d’angle fixé inférieur a4 7 allant d’une composante connexe a 'infini a 'autre. Chaque composante connexe
du bord a linfini est alors muni d’une structure conforme marquée par les extrémités des particules. On
montre que ceci définit un homéomorphisme de 'espace des métriques quasifuchsiennes a n particules (d’angle
fixé) vers le produit de deux copies de I’espace de Teichmiiller d’une surface a n points marqués. Ceci étend
le théoréme de double uniformisation de Bers aux variétés quasifuchsiennes a “particules”.

Les variétés quasifuchsiennes a particules ont aussi un coeur convexe. Son bord a une métrique in-
duite hyperbolique, avec des singularités coniques aux intersections avec les particules, et est plissé le long
d’une lamination géodésique mesurée. On montre que toute paire de métriques hyperboliques a singularités
coniques (d’angle prescrit) peut étre obtenu, et aussi que toute paire de laminations de plissages, satisfaisant
des conditions clairement nécessaires, peut étre obtenus, comme dans le cas non-singulier [BO04].
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1 Introduction

1.1 Convex co-compact manifolds with particles

Quasifuchsian manifolds. A quasifuchsian manifold is a complete hyperbolic manifold M diffeomorphic to
S xR, where S is a closed, oriented surface of genus at least 2, which contains a non-empty, compact, geodesically
convex subset, see [Thu80]. Such a manifold has a boundary at infinity, which is the union of two copies of
S. Each of those two copies has a conformal structure, 7, and 7_, induced by the hyperbolic metric on M.
A celebrated theorem of Bers [Ber60, [AB60] asserts that the map sending a quasifuchsian metric to (74,7-)
determines a parameterization of the space of quasifuchsian metrics on a M by the product of two copies of the
Teichmiiller space of S.



A quasifuchsian manifold M contains a smallest non-empty geodesically convex subset, called its convex core
C(M). Here we say that a subset K C M is geodesically convex if any geodesic segment in M with endpoints
in K is contained in K. This implies that the inclusion of K in M is a homotopy equivalence.

The boundary of C'(M) is again the union of two copies of S, and each is a pleated surface in M, with a
hyperbolic induced metric m4,m_ and a measured bending lamination Ay, A_. (There is a special, “Fuchsian”
case, where C'(M) is a totally geodesic surface, the two pleated surfaces mentioned here are then the same,
my =m—_,and Ay =A_ =0.)

It is known that any two hyperbolic metrics can be obtained in this way, this follows from [EMS86G] or from
[Lab92], however it is not known whether any couple (m,,m_) can be uniquely obtained. Similarly, any two
measured laminations A, A_ can be obtained in this manner if the weight of any leaf is less than 7 and if A4
and A_ fill S [BOO4], but it is not known whether uniqueness holds. Recall that A_ and A fill S if there exists
€ > 0 such that, for any closed curve ¢ in S, i(A_,¢c) +i(A4,c) > e

The main goal here is to extend those results to quasifuchsian manifols with “particles”, that is, cone sin-
gularities of a certain type connecting the two connected components of the boundary at infinity, as described
below.

Note that all the results mentioned here are actually known in the more general context of convex co-compact
hyperbolic manifolds, i.e., interiors of compact manifolds with boundary, with a complete hyperbolic metric,
containing a non-empty, compact, geodesically convex subset (or, even more generally for geometrically finite
hyperbolic manifolds), the result concerning the measured bending lamination of the boundary can then be
found in [Lec06]. We stick here to the quasifuchsian setting for simplicity.

Cone-manifolds. We consider here hyperbolic cone-manifolds of a special kind, which have cone singularities
along curves (a more general notion is defined in [Thu80], allowing for singularities along graphs). Let 6 € (0, ),
we call Hj the hyperbolic manifold with cone singularities obtained by gluing isometrically the two faces of
a hyperbolic wedge of angle @ (the closed domain in H? between two half-planes having the same boundary
line). There is a unique such gluing which is the identity on the “axis” of the wedge. We will be using here the
following (restrictive) definition.

Definition 1.1. A hyperbolic cone-manifold is a manifold along with a metric for which each point has a
neighborhood modeled on Hy for some 6 € (0,).

Let M be a hyperbolic cone-manifold, it has two kind of points. Those which have a neighborhood isometric
to a neighborhood of a point of some H 93 outside the cone singularity are called regular points, while the others
are called singular points or cone points. The set of regular points will be denoted by M,., and the set of singular
points by M. By definition, M is a union of curves, if M is complete then those curves can be either closed
curves or infinite lines. To each of those curves is associated an angle § € (0,7) — such that all points have
a neighborhood isometric to a neighborhood of the cone singularity in Hy — which is called its cone angle or
simply its angle.

Recall the usual notion of convexity, which differs from other possible notions (e.g. the local convexity of
the boundary of a domain).

Definition 1.2. Let M be a hyperbolic cone-manifold. A subset K C M is geodesically convex if any locally
geodesic segment in M with endpoints in K is contained in K.

A non-empty geodesically convex subset of M is homotopically equivalent to M and contains all closed
geodesics of M, see [MS09, Lemma A.12].

Quasifuchsian manifolds with particles. Quasifuchsian manifolds with particles are defined in the same
way as non-singular quasifuchsian manifold.

Definition 1.3. A quasifuchsian manifold with particles is a complete hyperbolic cone-manifold M iso-
metric to the product S x R, where S is a closed, orientable surface, endowed with a complete hyperbolic metric
with cone singularities of angles in (0,7) on the lines {x;} X R, for x1,---,x,, distinct points in S, which
contains a non-empty, compact, geodesically convexr subset. We require that ng > 4 if S is a sphere, i.e. that M
has at least 4 singularities, and that ng > 1 if S is a torus.



Notice that the definition also makes sense if S is a sphere and ng = 3 but then the metric would be
uniquely defined (up to isotopy) by the cone angles. We are not considering this case for technical reasons but
also because there is not much to say about it.

Given a non-empty convex subset K of a quasifuchsian manifold with particles, then K contains all closed
geodesics of M (see [MS09, Lemma A.12]) and the inclusion of K in M is a homotopy equivalence (this is proved
below).

Geometrically, quasifuchsian manifolds with particles can be considered as I-bundles in the category of
hyperbolic 3-manifolds with cone singularities. The term “particle” comes from physical motivations. Quasi-
fuchsian manifolds have Lorentzian siblings called Anti-de Sitter (AdS) globally hyperbolic (GH) manifolds
which share many of the key properties recalled above, see [Mes07, I ABBT07]. From a physics viewpoint, GH
AdS 3-manifolds are a 3-dimensional toy model for gravity, as they model an empty space with negative cos-
mological constant. To go beyond an empty model, massive point particles can be added and modeled as cone
singularities along time-like lines, see e.g. [tH96, tH93]. The resulting GH AdS manifolds with particles display
some properties which are parallel to those obtained here, see [BS09].

The restrictions on the cone angles — supposed to be in (0,7) — are necessary at several points here, as
they were in [MS09]. It seems to be physically relevant, too. We will mention some points where this hypothesis
is useful below as they occur. We do not know whether Theorem [[L7] for instance, can be extended to cone
angles less than 27. In the parallel Lorentzian theory concerning globally hyperbolic anti-de Sitter manifolds,
new phenomena arise when the cone angles are larger than 7, see [BBS11, [BBS12].

Quasifuchsian manifolds with particles are always considered here up to isotopies.

Convex co-compact manifolds with particles. The previous definition can be extended to a definition of
convex co-compact manifolds with particles.

Definition 1.4. A convex co-compact hyperbolic manifold with particles is a complete hyperbolic
cone-manifold M such that:

e M is homeomorphic to the interior of a compact manifold with boundary N, with non-trivial fundamental
group,

o the singular locus corresponds under the homeomorphism to a disjoint union of curves in N with endpoints
on ON,

e the angle at each singular curve is less than m,
e M contains a non-empty compact subset which is convez.

A further extension to geometrically finite manifolds with particles is possible, we leave the details to
the interested reader. We consider here only quasifuchsian mainfolds (with particles) although some of the
intermediate statements can be extended to convex co-compact manifolds with particles. There is also some
hope to extend the main results to this more general setting, however some technical hurdles have to be overcome
before this can be achieved.

Note that there is another possible notion of quasifuchsian manifolds with cone singularities: those which
are singular along closed curves, as studied in particular by Bromberg [Bro04bl [BroO4a]. Although there
are similarities between those two kinds cone-manifolds (in particular concerning their rigidity), the questions
considered here are quite different from those usually associated to those considered for quasifuchsian cone-
manifolds with singularities along closed curves (drilling of geodesics, etc).

1.2 The conformal structure at infinity.

Conformal structures and hyperbolic metrics on surfaces. Let’s fix some notations.

Definition 1.5. Let S be a closed orientable surface, let x1,---,xn, € S be distinct points with ng > 4 if S is
a sphere and ng > 1 is S is a torus, and let 01,---,0,, € (0,7). We then call:



o s the space of conformal structures on S, considered up to isotopies of S fixing the x;,

o Hg o the space of hyperbolic metrics on S, with cone singularities at the x; where the angle is 0;, con-
sidered up to isotopies fixing the x;.

There is a one-to-one map between 7s, and Hg 9, because any conformal structure contains a unique
hyperbolic metric with cone singularities at the x; of prescribed angle (see [Tro91]). We keep distinct notations
for clarity.

Notice again that these definition also make sense when S is a sphere and ng = 3 provided that 27201 0;—2m <
0 . In this case the spaces Tg  and Hg ;¢ are points.

The statements considered here are already well understood when ng = 0, so we will focus below on the case
o > 1.

The conformal structure at infinity. Non-singular quasifuchsian manifolds have a natural conformal struc-
ture at infinity, which can be defined by considering the action of their fundamental group on their discontinuity
domain, see [Thu80]. This definition cannot be used directly for quasifuchsian manifolds with particles, however
it is still possible to define a conformal structure at infinity, see [MS09l Section 3.2].

Therefore, to each quasifuchsian metric g € QFy, ... 9, are associated two points 7, 7_ € Tg,,, correspond-
ing to the conformal structures — marked by the endpoints of the “particles” — on the upper, resp. lower,
connected component of the boundary at infinity.

Note that we always implicitly consider conformal structures on the boundary at infinity up to isotopy. (It
is therefore not necessary to consider markings.)

A compactness lemma for the conformal structure at infinity. We consider again a closed surface S

along with ng distinct points (ng > 1) x1,- -+, xn, € S and angles 61,---,0,, € (0,7) so that
no
27x(S) — 2(277 —0;) <0.
i=1

Proposition 1.6. Let (g, )nen be a sequence of quasifuchsian metrics on SxR, with particles (cone singularities)
on the lines {x;} x R, of angle equal to 0;. Suppose that the conformal structures at infinity, 7— n, T+ n € TS n,
converge to conformal structures T_ oo, T+ co- Then (gn)nen has a subsequence converging to a quasifuchsian
metric with particles.

The proof is contained in Section [6:2] it is based on the compactness results described below (in Section [3])
relative to the induced metric and bending lamination on the boundary of the convex core.

A Bers-type theorem with particles. Using the previous proposition, along with the main result of [MS09],
leads to an extension to quasifuchsian manifolds with particles of a classical result of Bers [Ber60] on “double
uniformization”.

Theorem 1.7. The map from QF s .0 to Tso X Ts,» sending a quasifuchsian hyperbolic metric to the conformal
structures at +00 and at —oo (marked by the endpoints of the particle) is a homeomorphism.

1.3 The geometry of the convex core

Measured laminations. We refer the reader to e.g. [CB88, [PH92| [0ta96] for the definition and main
properties of measured laminations on closed (non-singular) surfaces as well as the topology on the space of
measured laminations. There are two possible definitions. One is geometric, in terms of measured geodesic
laminations on hyperbolic surfaces, with a transverse measure, while the other definition is topological, and
can involve the boundary at infinity of the universal cover of the surface. The two definitions are equivalent,
basically because, in a closed (or finite volume) hyperbolic surface, any closed curve can be realized uniquely as
a closed geodesic.



Proposition 1.8. Let ¥ be a hyperbolic surface with cone singularities, where the angle is less than w. Let A
be a (topological) lamination on X. Then A can be realized uniquely as a geodesic lamination.

The space of measured geodesic laminations on a hyperbolic surface with cone singularities of angles less
than 7 therefore does not depend on the cone angles.

Definition 1.9. We call MLs ,, the space of measured lamination on S with ng marked points.

Thus, for any hyperbolic metric m on S with n cone singularities of angle less than m, MLg ,, can be
canonically identified with the space of measured geodesic laminations on (S, m).

The convex core. The following basic proposition can be found in the appendix of [MS09].

Proposition 1.10. Let M be a convex co-compact hyperbolic manifold with particles, and let K and K' be two
non-empty geodesically convexr subsets. Then K N K' is a non-empty geodesically conver subset.

It leads to a natural definition.

Definition 1.11. Let M be a quasifuchsian manifold with particles. Its convex core C(M) is the smallest
non-empty geodesically convex subset contained in it.

By construction, C(M) is a “minimal” convex subset of M and it follows from general arguments (see
[Thu80]) that its boundary is, outside the singular curves, a pleated surface (a locally convex, ruled surface). It
turns out that, under the condition that the cone angles are less than 7, the boundary of C(M) intersects the
cone singularities orthogonally, and is even totally geodesic in the neighborhood of each such intersection, see
[MS09, Lemma A.15].

It follows that there is a well-defined notion of closest-point projection from M to C'(M). As a consequence,
the inclusion of C'(M) in M is a homotopy equivalence. The same holds for any non-empty convex subset of
M.

Therefore, given a quasifuchsian metric with particles g € QF g g, the induced metrics on the upper and lower
boundary components of C(M) (which might coincide in special cases) are two hyperbolic metrics my,m_ €
Hs,z0. Moreover, those two boundary components are pleated along measured bending laminations [, ,I_ €

MLs ny.

A remark on the hypothesis A well-known fact concerning hyperbolic surfaces with cone singularities is
that, as long as the cone angles are less than 7, it remains true that any homotopy class of closed curves in
the regular part contains a unique geodesic (see e.g. [DP07]). A fairly direct consequence is that, as for closed
surfaces, any topological measured lamination (in the complement of the cone singularities) can be uniquely
realized as a measured geodesic lamination.

This is one reason — albeit not the only one — why it is relevant to consider here cone singularities of angle
less than m, rather than less than 27. Indeed for cone singularities of angles less than 27, the induced metric
on the boundary of the convex core might also have cone singularities of angle between 7 and 27, and for those
metrics the one-to-one relation between measured laminations and measured geodesic laminations is lost.

1.4 Prescribing the bending lamination

Results in the non-singular case. For non-singular convex co-compact hyperbolic manifolds an existence
and uniqueness theorem for metrics with a given rational measured bending lamination was proved by Bonahon
and Otal [BOO4]. (Recall that a lamination is rational if its support is a disjoint union of closed curves.)
When the lamination is not rational, an existence result was proved in [BO04] for manifolds with incompressible
boundary, it was extended in [Lec06] to manifolds with compressible boundary.



Rational laminations with particles. As for quasifuchsian manifolds (without particles), it is possible to
give an existence and uniqueness statement concerning the bending lamination on the boundary of the convex
core, but only for rational laminations.

Theorem 1.12. Let S be a closed orientable surface, let x1,---,x,, € S be distinct points, and let 0y, ---, 0y,
be in (0,m). Suppose that ng > 4 if S is a sphere, and that ng > 1 if S is a torus. Let A_, Ay € MLg, be
measured laminations, each with support a disjoint union of closed curves. Suppose that:

e \_and Ay fill S,
e cach closed curve in the support of A_ (resp. Ay ) has weight less than 7.

Then there exists a metric g € QF 5,50 such that the measured bending lamination on the upper (resp. lower)
boundary component of the convex core of (S X R, g) is Ay (resp. A_). Moreover g is unique up to isotopies.

The proof, which is given in Section[] is based on the rigidity theorem of Hodgson and Kerckhoff [HK9§]| for
closed hyperbolic manifolds with cone singularities. We prove in Lemma that the hypothesis are necessary
conditions.

General laminations. When considering laminations which are not necessarily rational, we obtain only a
weaker result, because we can only claim existence, but not uniqueness (this remains an open problem even in
the non-singular case, see [BO04, [Lec06]).

Theorem 1.13. Let S be a closed surface, let x1,- -+, xn, € S be distinct points, and let 61, -, 0,, be in (0,7).
Let \_, Ay € MLg . Suppose that:

e \_and Ay fill S,
e cach closed curve in the support of A_ (resp. Ay ) has weight less than 7.

Then there ezists a metric g € QF 5.0 such that the measured pleating lamination on the upper (resp. lower)
boundary component of the convex core of (S x R, g) is Ay (resp. A_).

The two conditions on A_, A} in this theorem are easily seen to be necessary when g is not fuchsian, see
Lemma Note that both Theorem [[.12] and Theorem [[L13] are restricted to quasifuchsian manifolds with
particles, rather than more general convex co-compact manifolds with particles.

1.5 The induced metric on the boundary of the convex core.

The Bers-type result on the conformal metric at infinity can be used to obtain an existence result concerning
the prescription of the induced metric on the boundary of the convex core.

Theorem 1.14. Let m_,m4 € Hgny.0, Where 0 = (01,---,0p,) € (0,m)". There exists a quasifuchsian metric
with particles on S x R, with particles of angle 0; at the lines {x;} x R, for which the induced metric on the
boundary of the two connected components of the convexr core are m_ and m.

In the smooth case — i.e. for quasifuchsian hyperbolic manifolds without conical singularities — the corre-
sponding result is well-known, it follows either from results of Labourie [Lab92] or from a partial answer, first
given by Epstein and Marden [EMS6], to a conjecture of Sullivan. (The conjecture made by Sullivan turned out
to be wrong, see [EM05], but the result proved by Epstein and Marden is sufficient to prove Theorem [[.T4] in
the non-singular context.)

As for the conformal structure at infinity, it might be possible to extend this statement to cover convex
co-compact (resp. geometrically finite) manifolds with particles. The uniqueness remains elusive, as in the
non-singular case.



1.6 Applications

Quasifuchsian manifolds can be used as tools in Teichmiiller theory. By extension, the quasifuchsian manifolds
with particles considered here can be used as tools for the study of the Teichmiiller space of hyperbolic metrics
with cone singularities (of angle less than 7) on a surface.

One such application is through the renormalized volume of those quasifuchsian manifolds with particles,
as considered in [KS08a, [KS12]. In the non-singular case this renormalized volume is equal to the Liouville
functional (see [TZ87, [TT03l [TZ03]), it is a Kéhler potential on Hg , ¢. Other applications of closely related
tools, in the non-singular context, for the global geometry of the Weil-Petersson metric on Teichmiiller space,
can be found in [McMO00]. Yet other applications, to some properties of the grafting map, are considered in
[KS08b|, and the manifolds with particles considered here should allow for an extension to the grafting map on
Hs,z,0-

1.7 Outline of the proofs

We now turn to a description of the main technical points of the proofs.

Measured bending laminations. Theorem [[.12]is proved by an argument strongly influenced by the proof
given by Bonahon and Otal [BO04] for non-singular convex co-compact manifolds. Thanks to a doubling trick,
the infinitesimal rigidity of the convex cores of convex co-compact manifolds with particles, with respect to
the (rational) measured bending lamination, is reduced to an important infinitesimal rigidity result proved for
hyperbolic cone-manifolds by Hodgson and Kerckhoff [HK98|. A deformation argument then provides the proof
of the theorem.

The existence result for general laminations on quasifuchsian manifolds with particles (Theorem [[LT3]) can
then be obtained by an approximation argument, as in the non-singular case in [BO04, [Lec06]. The key step
of the proof is a compactness statement, showing that if the measured bending laminations converge to a limit
having good properties, then the quasifuchsian metrics converge after extracting a subsequence. However the
arguments developed in [BO04| [Lec06] cannot be used in the context of quasifuchsian manifolds with particles,
because they rely heavily on the representation of the fundamental group. Different arguments are therefore
used here, which are more differential-geometric in nature.

Those arguments are sometimes technically involved because of the added difficulties induced by the particles.
However, after stripping the proof of the elements which are needed only because of the particles (for instance
the multiple cover argument used in Section [B.4] to find simplicial surfaces with given boundary in the convex
core), the compactness proof given here is simpler than the one in [BO04 [Lec06].

Prescribing the induced metric on the boundary of the convex core. We give in Section [0 a rather
elementary proof of Theorem [[T4] which has two parts. Call ¢_ (resp. t;) the hyperbolic metric in the
conformal class 7_ (resp. 74) with cone angles ; at x;. The first part is an upper bound on the length of the
curves in the hyperbolic metric at infinity ¢4, following [Bri98, [BC03].

Now recall that, by Thurston’s Earthquake Theorem [Ker83), [Thu86a], there exists a unique right earthquake
sending a given hyperbolic metric to another one. This extends to hyperbolic metrics with cone singularities
of angle less than 7, see [BS09|. In particular there is a unique measured lamination v such that the right
earthquake along v, applied to m, yields the hyperbolic metric . The second part of our proof is a bound
on the length of v for m4 (see Proposition (.2)).

This is then used in Section [f] to prove Theorems [[.7] and [[LT4l The proof of Theorem [I.7] also uses another
main ingredient, the local rigidity of quasifuchsian manifolds with particles proved in [MS09].

Quasi-conformal estimates. There is another possible way to prove Theorem [[.14] closer to the argument
used in the non-singular case (as seen in [EMS86] Bri98| [BC0O3]). It uses a bound on the quasi-conformal factor
between the conformal structure at infinity 7 and the conformal class of the induced metric m on the boundary
of the convex core, both understood as elements of Tg .



Proposition 1.15. There exists a constant C > 0 (depending only on the topology of M) such that T is
C-quasiconformal to m.

This proposition is not formally necessary to obtain the main results presented here, its proof can be found
in Appendix [Al

As mentioned above, the proof of Theorem [[LI4] through Proposition would be much closer to the
proof(s) known in the non-singular case. It can be pointed out that the proof given in Section [Glis quite parallel,
but in the context of Teichmiiller theory understood as the study of hyperbolic rather than complex surfaces.
From this viewpoint, Proposition is a direct analog of Proposition [[.TH with quasiconformal deformations
replaced by earthquakes.

What follows. Section 2 presents the definition of the convex core of a convex co-compact manifold with
particles, and some of its simple properties, extending well-known properties with no cone singularity. In Section
Bl we state and prove a key compactness statement with respect to the measured bending lamination on the
boundary of the convex core. Section M contains the proof of Theorem [[L12] using a local rigidity statement
of Hodgson and Kerckhoff [HK98| and the compactness Lemma of Section Bl Section [l contains the proof of
Theorem [L.T3] and Section [6 contains the proof of Theorem [I.7] and of Theorem [[L.T4l Section [7 contains some
remarks on the analogy with corresponding problems in anti-de Sitter geometry and on applications to the
Weil-Petersson metric of the Teichmiiller space of hyperbolic metrics with cone singularities of prescribed angles
on a closed surface (see [KS08al [KS12, [KSO8b]). Finally, Appendix [A] contains the proof of Proposition [LT5]
based on the estimates on the length of the earthquake lamination obtained in Section

2 The geometry of the convex core

This section contains some basic statements necessary to understand the geometry of convex co-compact mani-
folds with particles, concerning in particular the convex core and its boundary. We consider here such a convex
co-compact manifold with particles, M, and denote by M, its regular part and by M its singular part (the
union of the singular lines).

We exclude below the simplest case where M is Fuchsian, that is, where it is the warped product of a
hyperbolic surfaces with cone singularities (S, h) by R, with the metric dt? + cosh(¢)?h. In this Fuchsian case
the convex core is a surfaces, corresponding to ¢ = 0, and it is totally geodesic outside the intersection with the
particles, and orthogonal to those particles.

2.1 Surfaces orthogonal to the singular locus

We define here a natural notion of pleated surface orthogonal to the singular locus in M. The first step is to define
the notion of totally geodesic plane orthogonal to a cone singularity in a hyperbolic cone-manifold. The first
condition is that the surface is totally geodesic outside its intersections with the particles. The second condition
is local, in the neighborhood of the intersections with the particles; there, the surface should correspond to the
image in H, 5’ of the restriction to the wedge (used to define H, 5’) of a plane orthogonal to the axis of the wedge.

Definition 2.1. Let ¥ be a pleated surface in M,, and let X' be its closure as a subset of M ; suppose that
Y'\E C M;. We say that ¥/ is orthogonal to the singular locus if any x € X'\ ¥ has a neighborhood in %'
which is a totally geodesic surface orthogonal to the singular locus.

This definition can be extended to encompass more general surfaces, i.e., surfaces which are neither pleated
nor totally geodesic in the neighborhood of the singular locus. In this more general case the definition can be
given in terms of the convergence of the unit normal vector to a vector “tangent” to the singular locus at its
intersection with the surface. This will however not be needed here.



2.2 The convex core of a manifold with particles

Among the defining properties of a quasifuchsian cone-manifold M is the fact that it contains a compact subset
K which is convex in the (strong) sense that any geodesic segment in M with endpoints in K is contained in
K. We have already seen that it is possible to define the convex core of M as the smallest compact subset of
M which is convex, denoted by C(M).

Theorem 2.2. Suppose that C(M) is not a totally geodesic surface. Then its boundary is the disjoint union
of surfaces which are orthogonal to the singular locus. FEach connected component of the singular locus of M
intersects C'(M) along a segment.

The proof is a consequence of two lemmas, both stated under the hypothesis of the theorem. The second
lemma in particular gives more precise informations on the geometry of the convex core, it is taken from [MS09,
Lemma A.14].

Lemma 2.3. The boundary of C(M) is a surface orthogonal to the singular locus.

Let x € M, we denote by L, the link of M at z, that is, the space of geodesic rays starting from =z
(parametrized at speed 1), with its natural angle distance. When z is a regular point of M, L, is isometric
to the 2-dimensional sphere S?, with its round metric. When z is contained in a singular line of angle 6, L,
can be described as the metric completion of the quotient by a rotation of angle 6 of the universal cover of the
complement of two antipodal points in S2.

Definition 2.4. Let K C M be convex, and let x € M. The link of K at x is the set of vectors v € L, such
that there is a (small) geodesic ray starting from x in the direction of v which is contained in K. It is denoted
by L.(K).

Clearly L,(K) = ) when x is not contained in K, while L,(K) = L, when z is contained in the interior of
K.

To go further, we define the oriented normal bundle of dC(M), denoted by N}0C(M), as the set of (z,n) €
TM such that € C(M) is not in the singular locus of M and n is a unit vector such that its orthogonal is a
support plane of C'(M) at x, and n is oriented towards the exterior of C(M).

Let € M be a non-singular point, let v € T, M and let t € R,. For ¢t small enough, it is possible to
define the image of (z,tv) by the exponential map, it is the point exp(x,tv) := g(t), where g is the geodesic,
parametrized at constant speed, such that g(0)x and ¢’(0) = v. Ast grows, exp(z, tv) remains well-defined until
g intersects the singular set of M.

Lemma 2.5. The exponential map is a homeomorphism from N}OC(M) x (0,00) to the complement of C(M)
in M, and its restriction to the complement of the points of the form (x,v,t), for x € My and v a singular point
of Ly, is a diffeomorphism to complement of C(M) in M,. The map:

exp,, : NC(M) — 0..M
(z,v) = limy o exp(z, tv)
is a homeomorphism from N1OC(M) to the complement in Do M of the endpoints of the singular curves in M.

This follows directly from Lemma A.11 in [MS09].
The proof of Theorem clearly follows from Lemma and Lemma 23], since Lemma, shows that the
cone singularities cannot re-enter the convex core after exiting it.

2.3 The geometry of the boundary

By construction, C (M) is a minimal convex set in M, and it follows as in the non-singular case (see [Thu80|)
that its boundary is a “pleated surface” except at its intersections with the singular curves.
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Lemma 2.6. The surface 0C(M) has an induced metric which is hyperbolic (i.e. it has constant curvature —1)
with conical singularities at the intersections of OC(M) with the singular curves of M, where the total angle is
the same as the total angle around the corresponding singular curve. It is “pleated” along a measured lamination
A in the complement of the singular points. Moreover the distance between the support of X and the intersection
of the singular set of M with 0C(M) is strictly positive.

Proof. Since C'(M) is a minimal convex subset, its boundary is locally convex and ruled, therefore developable
(see [Spi75| for the Euclidean analog, or [Thu80]) so that its induced metric is hyperbolic. The fact that its
intersection points are conical singularities, with a total angle which is the same as the total angle around the
corresponding singularities, is a consequence of the fact that 9C (M) is orthogonal to the singularities.
Similarly, the fact that 9C(M) is pleated along a measured lamination is a direct consequence of the fact
that it is ruled and locally convex, i.e. that each point in dC(M) is in either a complete hyperbolic geodesics
or a totally geodesic ideal triangle. The support of A is a disjoint union of embedded maximal geodesics, and it
is well-known (see e.g. [DPOT]) that (under the hypothesis that the angles at the cone singularities are strictly
less than 7) embedded geodesics remain at positive distance from the singular locus. So the distance between
the support of A and the singular locus of 9C(M) is strictly positive. O

2.4 The distance between the singular curves

We state and prove here some elementary statements on the distance between singular points in the boundary
of C(M) and between singular curves in M. They will be useful at several points below.

Lemma 2.7. Let § € (0,7). There exists € > 0 and p > 0, depending on 0, such that:

1. in a complete hyperbolic surface with cone singularities of angle less than 6 (not homeomorphic to a
sphere), two cone singularities are at distance at least e,

2. if D is a closed 2-dimensional geodesic disk of radius € centered at a singular point xg of cone angle 0,
and if Q C D is a convex subset whose closure intersects the boundary of D, then ) contains all points of
D at distance at most p from xg.

In particular, it follows from point (1) that no embedded geodesic in D can come within distance less than p
from the cone singularity.

Proof. The first point is well-known, see e.g. [DP07]. The interested reader can construct an elementary proof
based on Dirichlet domains, as in 3-dimensional manifolds in the proof of the second point, below.

For the second point let 1 € 0D N, and let v be the minimizing geodesic segment from z¢ to 1. Since D
contains no other singular point by the first point, the complement of v in D is isometric to an angular sector
in the disk of radius € in H?. This angular sector has three vertices, one corresponding to zo and the other two
corresponding to x;. Since 6 < m, it is convex at the vertex corresponding to zy. Let s be the geodesic segment
joining the two vertices corresponding to 1. Then €2, being convex, contains the projection in D of the triangle
bounded by s and by the two geodesic segments in the boundary of D joining xg to the two vertices projecting
to x1. This proves the statement, with p equal to the distance between zg and s. ([l

We now turn to a similar lemma, but concerning 3-dimensional manifolds with particles.

Lemma 2.8. Let 6 € (0,7). There exists € > 0 and p > 0, depending on 0, such that, if M is a quasifuchsian
manifold with particles of angle less than 0, then any two particles in M are at distance at least €.

Proof. We reason by contradiction, that is, we fix # € (0, 7) and for any n > 0 there is a quasifuchsian manifold
M,, with particles of angles less than 6, with two particles p,, p!, at distance less than 1/n (and no two particles
strictly closer than p, and p),). Let s, be the length-minimizing segment between p,, and p/,, and let z,, be its
midpoint. We call D,, the Dirichlet domain in M,, centered at x,,.

We call (M],x,) the pointed cone-manifold obtained by performing on (M, z,) a homothety of ratio
1/L(sy), so that M/ has constant curvature L(s,)? < 1/n%. Let D!, be the Dirichet domain centered at z,, in
M), so that D!, is obtained by performing a homothety of ratio 1/L(s,) on D,,.

11



By construction the cone singularities in M/, are at distance at least 1, so that, after extracting a sub-
sequence, (M), x,,) converges in the pointed Gromov-Hausdorff topology to a pointed manifold (M’, ). Still by
construction, M’ contains at least two cone singularities p and p’, limits respectively of p, and p/,, at distance
1, with z at the midpoint of a geodesic segment of minimal length connecting p to p’. Let D’ be the Dirichlet
domain centered at  in M’, then (D', ) is the limit of the (D], x,) in the pointed Gromov-Hausdorff topology.
By definition all D), are unbounded, so D’ is also unbounded.

Let 6, and 6, be the cone angles at p and p’, respectively, in M, so that 6,60, < 6. We now consider D’
as a convex polyhedron in Euclidean space R?, with two edges e and e’ corresponding to p and p’, respectively.
Let Hq, H> be the two half-planes bounded by p at angle 6,/2 with s, and let H{, H5 be the two half-planes
bounded by p’ at angle 6,/ /2 with p’. Then Hi, Ho, H{, H), are faces of D', so that D’ is contained in D", the
intersection of the half-spaces bounded by the four planes containing Hq, Ho, Hj, H) and containing s.

Suppose that e and e’ are not parallel. Then D” has at most one end, so that D’ has also at most one end.
This is clearly impossible since all M,, are quasifuchsian manifolds with particles, so that all D,, have two ends.
Therefore, e and €’ are parallel. For the same reason any other edge of D’ which corresponds or not to a cone
singularity of M has to be parallel to e and to €’. So D’ is invariant under translations parallel to e, that it, it
is the product by R of a polygon 7 in a plane orthogonal to e. It follows that M’ is also invariant by translation
parallel to p.

Consider the regular part M., of M'. Since M,/ is a Euclidean manifold, its holonomy representation Hol
is a morphism from 71 (M, ,) to Isom(R?) = R? x O(3). Since M’ is invariant under translations parallel to p,

reg

Hol actually takes values in R® x O(2). We consider the morphism Hol’ : m;(M],,) — R? x O(2) = Isom(R?)
obtained by projecting the translation component of each element on the plane orthogonal to p.

Then Hol’ is the holonomy representation of a 3-dimensional Euclidean cone-manifold M,,,.. (We do not
discuss whether Hol = Hol’ in all cases.) By construction M,,, contains a complete surface orthogonal to the
singular locus, say S. This surface has at least two singular points, and each of its singular points has angle
equal to the angle of the corresponding cone singularity of M’, so those angles are less than . Since § < 7 it
follows from the Gauss-Bonnet formula that S is homeomorphic to a sphere, and that it has at most three cone
singularities.

Still by construction, the fundamental group of M;eg surjects to the fundamental group of M;ar. However
this surjection is actually an isomorphism, since otherwise an element of 7 (M;,,) would act trivially on S,
which means that it would act on M;eg by translations parallel to the invariant direction, and this is impossible
since M;,, is non-compact.

This shows that M’ is homeomorphic to the product of a sphere by a line, and that it has three cone
singularities. Therefore this is also true of all M,, for n large enough. But this is impossible since the M,, are
quasifuchsian manifolds with particles, and the definition explicitly excludes manifolds homeomorphic to the

product of a sphere by a line with three singularities. O

We now call ¢ > 0 the number € associated by the previous two lemmas to the maximum of the 6;, and pg
the corresponding value of p.

3 Compactness statements

3.1 Main statement.

The main goal of this section is to prove the following compactness lemma.

Lemma 3.1. Let M, be a sequence of quasifuchsian manifolds with particles with the same topological type
and converging angles. Let A, be the measured bending laminations on the boundary of the convexr core of M,,.
Suppose that A\, — Ao, where Aoy satisfies the hypothesis of Theorem [L13. Then, after taking a subsequence,
M, converges to a quasifuchsian manifold with particles with the common topological type, the limit particles
and measured bending lamination A .

Let us explain the definitions used in this statement. The topological type of a quasifuchsian manifold with

particles M has the form (S,z1,---,x,,) where S is a compact surface with genus at least 2 and 1, -+, xp,
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are distinct points on S. A quasifuchsian manifold with particles M has topological type (S, z1,- -, zp,) if M
is isometric to the product S x R endowed with a complete hyperbolic metric with cone singularities of angles
9" € (0,7) on the lines {z;} x R.

Consider a sequence of quasifuchsian manifolds M, with particles with the same topological type
(S,x1,"+,Zn,). Denote by 6% € (0, ) the cone angles of the metric of M,, on {z;} x R. Then the sequence M,,
has converging angles if and only if 6, converges in (0,7) when n goes to oo for any i < ng.

Notice that since A, converge to Ao, A, is eventually non trivial. In particular the manifolds M,, are not
fuchsian (i.e. their convex core is not a surface) except maybe for finitely many of them. Throughout this
section, when we consider a quasifuchsian manifold with particle, we will assume that it is not fuchsian so that
its convex core is a 3-dimensional manifold with boundary.

The convex core C(M) of M is homeomorphic to S x I. Thus 9C(M) is homeomorphic to S U S and
each copy of S in this union has k marked points z1,- - -, xn, corresponding to the endpoints of the particles.
The measured bending lamination on the boundary of C(M) is an element of the space MLg n, X MLg n,
of measured laminations on two copies of S with ny marked points. The space MLg ,, is endowed with the
topology of weak-* convergence of measures on compact transversals and MLg p, X MLg , is endowed with
the product topology. In simple terms, we can fix a finite but sufficiently large set of curves ¢; which are either
closed curves or segments between two singular points, then two measured laminations are close if and only if
their intersection with each of the ¢; are close.

Although Lemma [3lis a generalisation of the "Lemme de fermeture" of [BO04], the proof is very different.
The reason is that the two main ingredients of the proof in Bonahon-Otal’s paper are Culler-Morgan-Shalen
compactification of the character variety by actions on R-trees and the covering Theorem of Canary. Since both
these results hardly extend to manifolds with particles we had to use different arguments. Since our proof also
works without particles, we get a new proof of the main result of [BO04].

3.2 A finite cover argument

We work under the assumption that the cone angle around each singularity is less than 7. This assumption
guarantees that the singularities are never too close to each other, see Lemma 2.8 and that the boundary of
the convex core is well defined and is orthogonal to the singularities. On the other hand, cone singularities with
cone angles less than 7w can be viewed has singularities with concentrated positive curvature. But some of the
results we will use are easier to prove when the curvature is negative. To overcome this difficulty, we will use a
branched cover for which the cone angles are all greater than 2.

Let M be a quasifuchsian manifold with particles. A branched cover M — M branched along the singularities
is negatively curved if the cone angles around the singularities of the metric induced on M are all greater than
271. We call M a negatively curved branched cover of M.

This name comes from the fact that a singularity with cone angle greater than 27 can be viewed as a set
of concentrated negative curvature. More precisely M can be approximated by Riemannian manifolds with
curvature bounded above by —1 (in the bilipschitz topology). It follows that M has properties of negatively
curved manifolds, in particular the uniqueness of the geodesic segment joining two given points in a given
homotopy class.

We will construct such branched covers for sequences. Consider a sequence of quasifuchsian manifold with
particles M,, with the same topological type (S, 1, -, 2n,) (as defined in the preceding section). We denote
by g, the metric of M,, and by ¢ the cone angles of g, on ;. Assume that the sequence M,, has converging
angles, namely ¢, converge to some §° € (0, ) for any i < ng.

For each singularity z;, we choose an integer k; such that % is less than the angle 6° (the limit of 67). The
surface S with cone angle i—” at the point x; is a hyperbolic orbifold. As such it has a manifold cover h : S — S
which is a branched cover so that the lifts of the point x; have a branching index equal to k;. The branched
cover h : § — S extends naturally to a branched cover h: S x I — S x I.

For a fixed n, we have the metric g, on S x R with cone singularities ¢!, along {z;} N R. If we pull back
gn using the map h, we get a hyperbolic metric g, with cone singularities on S x R for which the covering
transformations are isometries. Let M,, = (S x R,g,) be the manifold with cone singularities thus obtained.
By the choice of {ki, ..., kn, }, for n large enough, we have k;0% > 27, hence the cone angle of g,, around each
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singularity of M is at least 2. Thus for n large enough, M, is a negatively curved branched cover of M,, and
the topological type of M, does not depend on n.

3.3 Pleated annuli

A technical device which will be useful later on is a simplicial annulus bounded by two given curves. As was
mentioned above, when we consider a quasifuchsian manifold with particle, we assume that it is not fuchsian.

Let us first fix some notations. We consider a quasifuchsian manifold with particles M with topological type
(S,21,+,Zny). We denote by g the complete hyperbolic metric with cone singularities of M and by C(M) the
convex core of M. We will use a negatively curved branched cover M of M (as defined in the previous section).
The construction of such a cover is explained above for a sequence M,,, here we take the constant sequence,
M,, = M for any n, to define M. We denote by C(M) C M the preimage of the convex core C(M) of M
under the covering projection, by X its bending measured geodesic lamination and by 7 the induced metric on
OC(M). We will use these notations throughout this section.

Now let us construct our simplicial annulus.

Lemma 3.2. Let M be a quasifuchsian manifold with particles and M a negatively curved branched cover of M.
Let d,d’ be homotopic simple closed geodesics, respectively on the upper and on the lower boundary component
of C(M). There exists an immersed annulus A in C(M) bounded by d Ud C OC(M) such that the metric
induced on A by g, is a hyperbolic metric with cone singularities with angles at least 2m. The area of A is at
most max{ly(d) 4 Ly (d"),i(\, d) +i(\ d)}.

Proof. Let us specify that 15(d), resp. Iy (d’), is the length of d, resp. d’, with respect to the metric m induced
by g on 0C(M).

Since d and d’ are disjoint homotopic simple closed curves, there is an embedded annulus A C C (M) with
OA = dud'. If the bending laminination of C'(M) intersects d and d’ finitely many times, then d and d’ are
piecewise geodesics. If not, we approximate them by piecewise geodesic curves and work on the approximates.
Consider a triangulation 7' of A whose vertices are all contained in d U d’ and such that any vertex of d and
d’ (when considered as piecewise geodesics) is a vertex of 7. As we have said before, in M, there is a unique
geodesic segment joining 2 given points in a given homotopy class. It follows that we can change A by a
homotopy so that each edge of T is a geodesic segment in C(M). Next, for each triangle T} of T, we choose a
vertex v and we substitute T; by the geodesic cone from v to the edge e, of T; not containing v. This geodesic
cone is the union of the geodesic segments joining v to the edge e, of T; (the homotopy class of such segment
is defined by the corresponding segment of 7;). Again the existence of this cone follows from the uniqueness of
geodesic paths. From now on we denote this cone by T;. By construction, it is a locally ruled surface and as
such has negative curvature:

Claim 3.3. Let M be a hyperbolic manifold with cone singularities with cone angles bigger than 2w. Given a
point v € M and a geodesic segment e, C M, a geodesic cone T; C M from v to e, is an union of polygons with
curvature —1. Furthermore, the sum of the angles of the polygons meeting at an interior vertex is at least 2.

Proof. The surface T; meets the singular locus M, of M along segments and at points. For each component
k of M, NT; we consider the two extremal segments joining v to e, and intersecting . Doing this for each
component of M, N T;, we get a family of segments which are geodesic for the metric of (M, g) and hence for
the induced metric on T;. We add the components of M, NT; which are segments to this family and get a new
family of geodesic segments. The closure of each complementary region is a polygon, i.e. a disc with piecewise
geodesic boundary (see Figure B.3). By construction each such polygon is a locally ruled surface in H? hence it
has curvature —1. Thus we have proved the first sentence of this Claim.

By construction, given an interior vertex v of this decomposition into polygons, there is a geodesic segment
(for the metric of (M, g)) which passes through v. On each side of this segment, the sum of the angles of the
polygons has to be at least m. Thus, we can conclude that the sum of the angles of the polygons around v is at
least 2. |
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Figure 1: Decomposition of T; into hyperbolic polygons

We change the annulus A so that it is a union of geodesic cones as described in Claim B3l Thus the induced
metric is hyperbolic with cone singularities with angles greater than 27w. By the Gauss-Bonnet Formula, the
area of A is at most the bending of 9A, namely Area(A) <i(0A,\,) = i(d, \p) +i(d', \n).

It remains to prove that Area(A) < Iy (d) + I (d'). By construction, A is a union of triangles 7; such that
one edge of each T lies in dUd’ and by Claim[33} the induced metric on each such triangle is a hyperbolic metric
with cone singularities with angles greater than 2. It follows that the induced metric can be approximated by
Riemannian metrics with curvature at most —1. Let 7" be a hyperbolic triangle (i.e. a geodesic triangle in H?)
such that the length of the edges of T/ are the same as the length of the edges of T}. Since the induced metric
on T; as curvature at most —1, we have Area(T;) < Area(T}'). On the other hand the area of a hyperbolic
triangle is less than the length of any of its edges (see [Thu80, Lemma 9.3.2]). It follows that Area(T;) is less
than the length of any of its edges, in particular it is less than the length of the edge of T; lying in dUd’. Since
this holds for all the triangles composing A, we have Area(A) < Iy, (d) + Lz (d'). O

3.4 Long geodesics in M.

In this section, we will show that, under the hypothesis of Lemma [B1] the induced metrics on 0C(M,,) are
bounded. In order to do that we will show that if some geodesic is long in the boundary of C(M), then the
boundary of some annulus is almost not bent or the bending lamination tends to have a leaf with a weight
greater than or equal to 7. Since this would contradict the conditions on A, it will follow that any given
simple closed curve on OC(M,,) has bounded length. As earlier, when we consider a quasifuchsian manifold
with particle, we assume that it is not fuchsian.

Throughout this section we use the following notations. We have a sequence of quasifuchsian manifolds with
particles M,, with the same topological type (S,z1, -, 2n,). We denote by (gn)nen the metric of M,,. We
assume that the sequence M,, has converging angles, namely ¢, converge in (0,7) for any i < ng. Since M,, is
quasifuchsian (with particles), C'(M,,) is homeomorphic to S x I. We denote by S and S’ the two components of
0C(M,,), S’ is homeomorphic to S. Let m,, be the metric defined on S U .S" by the identification with 0C(M,,)
endowed with the metric induce by the g,-length of paths. This metric m,, is a hyperbolic metric with cone
singularities of angles ¢ at the points {z;} € S and {z}} € S’. We denote by X\, € MLg ,, X MLg n, the
bending measured geodesic lamination of OC(M,,).

We will make use of the branched covers M,, defined in Section Recall that, for n large enough, M,
is a negatively curved branched cover of M,, and that the topological type of M, does not depend on n. We
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denote by C(M,), m, and A, the preimages of C(M,), m, and X, under the covering map M, — M,,.

We will use the next lemma to prove that, under the right hypothesis on Ay, the induced metric on dC(M,,)
is bounded.

Lemma 3.4. Let M, be a sequence of quasifuchsian manifolds with particles with the same topological type
and converging angles. Assume that (\,) converges to A (without any hypothesis on A\, ). Consider a simple
closed curve d C S. Let d,, C OC(M,) be the closed my,-geodesic freely homotopic to d. If L, (d,) — oo, then
either Ao contains a leaf with a weight greater than or equal to 7, or there is a sequence of essential annuli Ey,
such that i(Ay, 0E,) — 0.

Proof. Let S’ be the other boundary component of C(M) (i.e. not S), and let d/, be the closed m,-geodesic
freely homotopic to d lying in S’. Let M, be a negatively curved branched cover of M, so that for n large
enough the topological type of M, does not depend on n. Let d, and d!, ¢ 9C(M,) be homotopic lifts of d,,
and d;, respectively under the covering projection M — M. The preimage \,, € ML(OM) of ), is the bending
measured lamination of C(M n). Furthermore \n converges to the preimage oo 0f Ao

First we will show that if d,, is long compared to the area of an annulus A4, bounded d by d, Ud., then there
are shortcuts in A,,. Namely d,, U d/, contains points which are close to each other in M,, but far in d,, U d.,.
This can happen for instance if d,, and d], are close to each other in C(M,,).

Claim 3.5. Let M, be a sequence of quasifuchsian manifolds with particles and let M, be a negatively curved
branched cover of M, such that the topological type of M,, does not depend on n. Assume that (A, )nen converges
t0 Aoo. Let d C S be a simple closed curve and denote by d, CScC GC(MH) the simple closed m.,-geodesic in
the homotopy class of d.

If I, (d) — 00, then there is a My, -geodesic arc k, C C(M,,) such that £y, (k,) — 0 and that either k,
joins the two components of O0C(M,,) or the my,-geodesic arc Ry, C d, in the homotopy class of k, relative to
its boundary satisfies Uy, (Ry) — 00.

Proof. Denote by d, the closed m,-geodesic lying in S € dC (M) that is homotopic to d,, in C(M,,). Consider
the annulus A,, with 0A,, = d,,Ud., that was constructed in Lemma[32 Since l,5,, (d,) — oo, there is &, — 0
and a segment 5, C d,, such that I, (5,) — oo and i(5,,\,) < &,. Let £, C C(M,,) be the g,-geodesic
segment homotopic to §, relative to its endpoints. Since s, is almost not bent, its length is very close to the
length of ¢, (see |[Lec06, Lemme A2|). In particular, lj, (f,) — oo. Furthermore, for the same reason, any
point in 5, is close to t,. Namely there is 1, = n(e,) — 0 such that for any point z, C 5,, there is Z,, C t,
with dg, (Zn, Zn) < nn (see [Lec06, Affirmation A3J).

Since (A )nen converges t0 Ao, then the bending i(An,0A,,) of OA,, converges. By Lemma the area of
A, is bounded. Now, in d,,, we replace 5, by £,. By the previous paragraph, we can still consider the annulus
A, and its area is bounded. For any point in £, that is at distance at least 1l (tn) from 0Ot,, we consider in
A, an arc orthogonal to #,, that either hits 9A4,, at distance less than 7, from its basepoint or has length 7, (1,
will be specified later on). Let Z,, C A, be the union of those arcs that have length 7, and let z, be the union
of their starting points (i.e. their intersection with #,). The set Z,, is embedded and its area is the same as the
area of a strip of length ¢, (Z,) and width 7,. Notice that since the singularities of A, have cone angles at
least 27, the area of this strip at least the area of a hyperbolic strip with the same length and width, i.e. it is at
least £y, (Z,) sinh(n,). Let K be a number larger than the area of A,,. Taking 1, such that smh(nn) > g, (t 3
we get
3, (Zn)

Ui, (tn)

Hence (i, (Z,) < 30m, (tn). It follows that there exists an arc with length less than 7, orthogonal to ¢, whose
starting point @, C &, is at a distance at least 1z, () from Of, (distance measured on ¢,) and which hits
04, on a point g, C 0A4,.

As we have seen in the previous paragraph there is a point Z,, C k,, very close to z,,. Tt follows that Z,, C d,
and ¥, C d, Ud,, are joined in C(M,) by an arc k,, satisfying ¢, (k,) — 0.

K > Area(Z,) > U, (Z,)sinh(n,) > K
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If 4, € d, then we are done. Otherwise Z,, and g, both lie in d,,. By construction k,, lies in an annulus

connecting d,, to dl,. Tt follows that there is a m,-geodesic arc &, C d,, that is homotopic to k, relative to
{Zn} U{n}. Since Z, is at distance at least % from the points in 95, we have

O

Consider the points Z,, and 7, constructed in Claim .5 and extract a subsequence such that either g, € d,,
for any n or g, € d!, for any n. We will show below that if g, lies in d,, then Ay, has a leaf with a weight
greater than or equal to 7 and that if g, lies in d, then there is a sequence of essential annuli £, C M such
that i(\,,0E,) — 0.

In the next step we are going to construct m.,-geodesic loops based at Z,, and ¥, that are almost not bent.

Claim 3.6. Let M, be a sequence of quasifuchsian manifolds with particles and let M, be a negatively curved
branched cover of M, such that the topological type of M, does not depend on n. Consider 2 points T, Yn €
OC(M,,) away from the singularities and a g, -geodesic arc k, C C(M,,) joining Z,, to §n such that {5, (k,) — 0
and that either T, and ¥, lie on different components of OC(M,,) or there is a m,,-geodesic arc R, € OC(M,)
that is homotopic to k,, relative to its boundary {Z,} U {§,} and that satisfies lm,, (Fpn) — 00.

Consider a loop 1, on OC(M,) based at Z,,, which is geodesic for m,, (except at Z, ). Let f, C OC(M,) be
the m,,-geodesic loop based at iy, that is homotopic to l Assume that Uy, (I,) is bounded. Then the bending of
I, and f, tends to 0, namely i(ln, A\n) — 0 and i(fn, An) — 0.

Proof. When saying that z,, and 7, are away from the singularities we mean that there is a uniform upper
bound on their distance to the singular locus of M,

Let M be the universal cover of M [, it is a simply connected hyperbolic 3-manifold with cone singularities.
Let C( ) be the lift of C(M,,) to M,. Let ln, kn, Zn, Jn be lifts of l,, k,, Z, and 7, with &, € I, and
Tp UYp = Ok,. The pomt T = = dl, \ Z, is the image of Z, under a covering transformation. Consider the
n-geodesic arc f, C OC (M,,) joining ¥, to its image g, under this covering transformation.

Let us first assume that there are no singularities in A,. Then Mn is isometric to H® and we choose the
isometry so that &, is identified with a fixed point of H3 (mdependantly of n). Let H(:in) be a support plane
for C( n) at T, namely a totally geodesic plane that intersects C( n) only along 9C( n) and contains ,,.
Up to moving , slightly, we may assume that it is disjoint from An so that there is only one support plane
at Z,,. The convex set C'(M,,) lies in a half-space E(Z,) bounded by II(Z,). Similarly let II(g,) be a support
plane at §, and let E(jj,) be the half-space bounded by II(f,) that contains C(M,,).

If Z,, and g, lie on different components of dC(M,,) then II(Z,,) and II(g,) are disjoint. Otherwise, since
Ly, (Rn) — 00, either TI(Z,,) and I1(§,) are disjoint or their intersection goes to co with n (namely the sequence
T1(%,,) NIL(§y,) lies outside larger and larger compact sets in H?). Since £5, (k,) — 0, §,, converges to &, (viewed
as a fixed point in H?) and, up to extracting a subsequence, I1(Z,,) and II(%,) converges to the same plane I,
in H3. Furthermore F(%,) converges to a half-space E(Z,) bounded by I, and E(f,) converges to the other
half-space E(gm) bounded by II

Let TI(Z),) be a support plane at Z},. Since £, ( fn) is bounded, up to extracting a subsequence, &, converges
in H3. Again since either z/, and g, he on different components of 8C( n) Or di, (Z1, Un,) — 00, I1(g,) NIL(Z],)
either is empty or goes to infinity. It follows that II(Z),) also converges to Il and that E(Z]) converges
to F(is). The external dihedral angle between II(#,) and II(Z)) is an upper bound for i(l,, \,), hence
i(lpy An) — 0.

It remains to show that i(f,, A,) —> 0.

By construction, dg, (&), 7,) = dg, (Zl,7,) = L5, (kn) — 0, hence TI(Z},) and TI(§,) converge to the same
plane I, in H3. If Z, and ¢, lie on different components of 80( n) then I1(Z7,) and II(g;,) are disjoint. It
follows that E (7)) converges to FE(§s) while E(Z]) converges to E(Zs) which implies i(fy, An) — 0 as above.
If Z,, and g, lie on the same component of OC(M,,) then dy,, (Z;,,9;,) = dp, (Tn,Jn) — oo. It follows that
E(7!) converge to F({) which again implies i(f,, \,,) — 0.
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When M, have singularities, we cannot define support planes, but we can define local support planes at
points which are disjoint from the singularities. Thus we can locally use the same arguments as in the non
singular case, leading to the same conclusion. O

Let us choose for [,, a shortest mn—geOQesic loop based at Z,. Since the area of (§ u s, M) 18 loounded,
there is a constant @ > 0 such that (,(l,) < Q. By Claim B.6 we have i(l,,\,) — 0. Let f, be the
my-geodesic loop based at g, that is homotopic to l By Claim [3.6] we have i(fn, An) — 0. Since [,, and f,

are freely homotopic in C'(M,,), there is an annulus E,, bounded by I,, and f,.

If 7, lies in d’,, then [,, and £, lie in different components of OM. In particular F,, is an essential annulus
for any n. Furthermore, we have i(\,, 0E,) < i(ln, An) + i(fny An) — 0.

Consider the projection E, of E, to C(M,). Although E, may not be embedded, it follows from the
Annulus Theorem [Wal67] that any neighbourhood of F,, contains an embedded annulus which we still denote
by E,. We have then i(\,,0F,) — 0.

Thus we have proved:

Claim 3.7. Let M, be a converging sequence of quasifuchsian manifolds with particles with the same topological
type and converging angles. Consider a geodesic arc k, C C(M,,) joining the two components of 0C(M,,) such
that £y, (kn) —> 0. Then there is a sequence of essential annuli E,, such that, up to extracting a subsequence,
i(An,0E,) — 0. O

If 3, lies in d,, then I,, and f,, are homotopic on C (Mn) We are going to show that in this case \,, tends
to have a leaf with a weight greater than or equal to 7.

Claim 3.8. Let M, be a sequence of quasifuchsian manifolds with converging angles and let M,, be a negatively
curved branched cover of M, such that the topological type of M, does not depend on n. Consider a G, -geodesic
arc k, C C(M,,) such that {5, (k,) — 0 and that there is a m,,-geodesic arc k, € OC(M,) that is homotopic
to k,, relative to its boundary and that satisfies Ly, (Rn) — 0o. Then liminf i(R,, A\n) > .

Proof. The curve k, U &, is a skew polygon (up to ‘approximating K, by piecewise geodesic segments) and
bounds a disc in C( »). Consider the geodesic cone D,, from Z,, to k, UR,. As in the proof of Lemma[3.2] the
induced metric on Dy, is a hyperbolic metric with cone singularities with cone angles of at least 27. Since ky is
short, the local support planes at the endpoints Z,, and 4, of k,, are close to each other (compare with the proof
of Claim B.8). It follows that the sum of the internal angles of D,, at Z, and g, is close to being greater than
m, namely there is €,, — 0 such that the sum of these 2 angles is greater than m — ,,. Now the Gauss-Bonnet
formula shows that liminf i(&,, \,,) > . O

Using this Claim we will now show that under the right hypothesis A,, tends to have a leaf with a weight
greater than or equal to 7.

Claim 3.9. Let M, be a sequence of quasifuchsian manifolds with particles with the same topological type S x I
and converging angles. Let d C S be a simple closed curve and consider its geodesic representative d, on one
component of OC(M,,). Consider an arc k, C d,, and denote by k, the geodesic arc in M, in the homotopy
class of ky, relative to its boundary. If Ly, (kn) — 0, £, (Kn) —> 00 and A, converges, its limit As has a leaf
with a weight greater than or equal to m.

Proof. Let M,, be a negatively curved branched cover of M,, whose topological does not depend on n. Let &,
and k,, be lifts of x,, and k, respectively. Let Z, and g, be the endpoints of ,, and let I, C 0C(M,,) be a
shortest geodesic loop based at T,,. Let fn C OC(M,) be the geodesic loop based at 7, that is homotopic to [,

on OC(M,,). Let S,, be the universal cover of the connected component of dC' (M,,) containing Z,, endowed with
the induced metric. Pick a connected component I, C S, of the preimage of I,, under the covering projection.
This broken geodesic ,, is invariant under a primitive covering transformation Yn and we denote by fp the
component of the preimage of f,, that is also invariant under ~,. The line I, and fn are disjoint and bound an
infinite band B, they are connected by a lift %, of %, and by its translates by ¥ k € 7. Pick a simple closed
geodesic e, C GC( ») and let &, be a lift of &, to S,. Tt is easy to check that a component a, of &, N B,
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which is an arc connecting I, to f,, satisfies i(Gn, M) > i( Ay Fn) — 8{@n N Uy 957n } (i (Ins An) + (fns An)) Where
A, is the preimage of \,, under the covering projection. By Claim 3.0 i(lny An) — 0 and i(fn, A\n) — 0 and
by Claim B8, lim inf i(K,, A,) > 7. Notice that §{a, N, g¥%,} is bounded except if &, spirals more and more
toward ¢,. If, for example, we assume that €, and ¢, converge to intersecting geodesic laminations, €, does
not spiral toward ¢, and we find that liminfi(&,, \,) > i(€,, ¢, ).

We will now use this inequality to conclude that, when A, converge, its limit Ay has a leaf with a weight
greater than or equal to 7.

Let us notice that, up to extracting a subsequence, the homotopy class of ¢,, does not depend on n. Otherwise
there is a simple closed curve & C S such that i(€,¢,) — oo. To see that, extract a subsequence such that
¢, converges in the Hausdorff topology, pick a simple closed curve € that intersects this limit transversally
and apply the inequality above to {€,} = {€}. But i(¢,&,) — oo would contradict the assumption that X,
converge.

Let ¢ C S be a simple closed curve in the homotopy class defined by ¢,. By the inequality above, we have
liminfi(e, \,) > i(€,é)r for any simple closed curve é. It follows easily that ¢ is a leaf of \,, with a weight
greater than or equal to m. Taking the quotient, we conclude that A\, has a a leaf with a weight greater than

or equal to . O

It is now easy to conclude the proof of Lemma 3.4 Under the assumptions of Lemma [3.4] namely when
there is a simple closed curve d such that ¢, (d,) — oo, it follows from Claims B3] B7 and that either
there is a sequence of essential annuli E,, C C(M,,) such that i(\,,0A,) — 0 or A contains a leaf with a
weight equal to at least . [l

We can now deduce from Lemma [B4] that under the assumptions of Lemma Bl the sequence of induced
metrics (my)nsy on OC(M,,) is bounded.

Lemma 3.10. Let M,, be a sequence of quasifuchsian manifolds with particles with the same topological type
and converging angles. Let A, be the measured bending laminations on the boundary of the convex core of My,
and suppose that A\, — Aoo. Let AE be the respective restrictions of Aso to the two components of the boundary
OC(M,,) of the convex core of M,,. Suppose that

e \_and Ay fill S,
e cach closed curve in the support of A_ (resp. Ay ) has weight less than .
Then the sequence of induced metrics (mp)nen on OC(M,,) is bounded.

Proof. If (my,) is unbounded, then there is a simple closed curve d C S with geodesic representative d,, C
0C(M,,) such that I, (dy) is unbounded. By Lemma B4 and the assumptions on A, there is a sequence E,, of
essential annuli such that i(\,, dE,) — 0. Such a sequence of annuli contradicts the assumption that A_ and
A fill S. O

3.5 Convergence of convex cores

The last step in the proof of Lemma [3.1]is to show that, under the assumption that the sequence of metrics on
the boundary are bounded, a subsequence of convex cores converges for the bilipschitz topology. Before starting
the proof, we will discuss the Margulis Lemma for quasifuchsian manifolds with particles. Let us first review
the Margulis Lemma for manifolds with variable curvature.

Theorem 3.11 (Margulis Lemma). Given n € N there are constant p = p(n) > 0 and I(n) € N with the
following property. Let X be an n-dimensional Hadamard manifold which satisfies the curvature condition
—1 < K <0 and let T be a discrete group of isometries acting on X. For x € X let I'y(xz) = {y € I'|ld,(z) < u}
be the subgroup generated by the elements v with d.(x) < p. Then I',(x) is almost nilpotent, thus it contains a
nilpotent subgroup of finite index. The index is bounded in I(n).
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This statement is taken from [BGSS85| §8.3]. Since we are considering a manifold M homeorphic to S x I,
an almost nilpotent subgroup of 71 (M) is cyclic.

Theorem [B.I1] does not hold for hyperbolic manifolds with cone singularities since the curvature is not
defined at the singularities. On the other it is not hard to replace the metric in a neighborhood of the singular
locus with a Riemannian metric. Furthermore, if the cone angle is at least 27, one can choose the Riemannian
metric so that it has negative curvature with a lower bound depending on the cone angles and the choice of the
neighborhood of the singularities. Now we consider a quasifuchsian manifold with particle M and a negatively
curved branched cover M of M. By Lemma 2.8 there are R,e > 0 such that any closed curve with length at
most ¢ is at distance at least R from the singularities. We replace the R-neighborhood of the singularities with
a smooth Riemannian metric and apply Lemma [B.I1] to the resulting manifold. Notice that the lower bound
on the curvature of the Riemannian metric thus obtained will depend on R and the cone angle. Thus we get ¢
depending on R and the cone angles so that for a given point z in the universal cover M of M the subgroup
of 71 (M) generated by the set {y € 7 (M)|d(x,vx) < e} is cyclic. Since M is a finite branched cover, we have
a similar statement for M, replacing € with £/p where p is the index of the cover which depends on the cone
angles of the singularities of M. It follows that we have a Margulis decomposition for quasifuchsian manifolds
with particles:

Lemma 3.12. Let M,, be a sequence of quasifuchsian manifolds with particles with the same topological type
and converging angles. There is € depending on the limit angles such that, for n large enough, each component
of the e-thin part of M,, is a neighborhood of a closed geodesic.

Notice that the Margulis tubes we obtain here are disjoint from the singularities so they are isometric to reg-
ular neighborhoods of geodesics in hyperbolic 3-manifolds. We can now discuss the convergence of quasifuchsian
manifolds with particles.

Lemma 3.13. Let M, be a sequence of quasifuchsian manifolds with particles with the same topological type and
converging angles. Suppose that the sequence (mp)nen (the induced metrics on the boundary of the convex cores)
converges. Then, after taking a subsequence, (My)nen converges to a quasifuchsian manifold with particles with
the same topological type as M, .

Proof. First notice that since the cone angles are less than 7, by Lemma 2.§] there is a positive lower bound
for the distance between two components of the singularity locus. Consider a point z,, € C(M,), extract a
subsequence such that the sequence (x,,, M) converges in the Gromov-Hausdorff topology (such a subsequence
always exists). By [BP01, Proposition 3.2.6], the limit (., Moo ) is a hyperbolic manifold with cone singularities.
By [BPOIl Proposition 3.3.1], the sequence (z,, M,,) converges to (2o, M) in the bilipschitz topology.

It remains to show that M., has the same topological type as M,, and that its metric is convex co-compact.
To do that we will show that the diameter of C'(M,,) is uniformly bounded. It will follow that C'(M,,) converges
to a convex set with the same topological type.

Lemma 3.14. Let (M, )nen be a sequence of quasifuchsian manifolds with particles with the same topological
type and converging angles. Suppose that the sequence of induced metrics (mp)nen on the boundary of the convex
cores converges. Then the diameter of C(M,) is uniformely bounded.

Proof. Consider a negatively curved ramified cover M,, of M,, whose topological type does not eventually depend
on n. It follows from the Margulis Lemma that a very short geodesic in M, lies in a very deep embedded tube.

Using this observation we will show that there is a uniform lower bound on the length of any fixed curve in
C(M).

Claim 3.15. Let M, be a sequence of quasifuchsian manifolds with particles and let M,, be a negatively curved
ramified cover of M,, whose topological type does not depend onn. Suppose that the sequence (My)nen converges.
Let € C S be a simple closed curve. Then there is Q > 0 such that if &, C C(M,) denotes the geodesic
representative of ¢, Iz, (¢,) > Q for any n € N.

Proof. Assume the contrary, that is (after extracting a subsequence), limlg, (¢,) = 0. Then ¢, is the core of a
deep Margulis tube T',,. Notice that since (", m.,, )n,en converges, there is no short curve in dC(M,,). More
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precisely, there is a uniform lower bound on the length of simple closed geodesics on dC(M,,). Since the induced
metric on OC(M,,) is negatively curved, it can have a large diameter only if it contains a short curve. Thus
the uniform lower bound on the length of simple closed geodesics on dC(M,,) provides us with a bound on
the diameter of each component of dC(M,,). It follows that dC(M,,) does not go too deep into a Margulis
tube (compare with [Min99, Lemma 6.3]): Let 9 be a Margulis constant for the sequence M,, as provided by
Lemma [B.12] namely the eg-thin part M <%0 of M, is a union of Margulis tubes for n large enough. By [Mey87|
and [BM82] (see also [Min99, Lemma 6.1]) given ¢ small enough, the diameter of M50 — M << is large. In
particular, if a component of dC(M,,) intersects M,<¢ for a small ¢, it has a large diameter. Hence the bound
on the diameter of each component of 0C (Mn) provides us with a constant £ (depending on the sequence M,,)
so that C(M,,) is disjoint from the thin part M.

If we take T, to be an e-Margulis tube, we get that T, lies entirely in the interior of C'(M, ) Consider a
simple closed curve d C S that intersects & essentially. By Lemmal[3.2] there is an essential annulus A, CC(M,)
which is in the homotopy class defined by d x I such that the area of A, is at most £_ +(d+) + L, (d ). In

particular, since the sequence (7, )nen converges, the area of A, is bounded. On the other hand, since d
intersects ¢ essentially, A,, intersects &, essentially. In particular, A,, intersects T, along a disc D,,. When the
length of &, tends to 0, d(&,,0T,) — oo (see [Mey87], [BM82] and [Min99, Lemma 6.1]). It follows that the
diameter of D,,, and hence its area, tends to oo when the length of ¢, tends to 0. Thus an upper bound for the
area of A, D D, yields a lower bound for the length of &,. This concludes the proof of Claim |

Consider now two simple closed curves ¢,d C S such that the components of S\ (¢Ud) are discs. Two such
curves are said to fill the surface S. Consider essential annuli A, and B, in C(M,) in the homotopy classes
defined by ¢ and d, constructed as in Lemma B2 In particular A, and B, have bounded area. Since A,, and
B, have bounded areas and negative curvature, the only way for them to have a large diameter is to have a very
short core curve. But this would contradict Claim Thus we can conclude that A,, and B,, have uniformly
bounded diameters.

Let Bi<k<p be the closure of the components of S x I\ (¢ x I Ud x I). Our manifold N = S x I is the union
of the By and the By, are all balls. Define a surjective map f,, : S x I — C(M,) that maps ¢ x I and d x I to
A, and B, respectively and such that the restriction of f,, to each By is an immersion. For each k, the image
of OBy, lies in A,, U B,, UJC(M,,). Since A,, and B, have bounded diameters and since the induced metric
on C(M,) is bounded, the diameter of f,(0By) is bounded for any k. It follows that f,(Bx) has a bounded
diameter for any k. Since f,, is surjective, this implies that C'(M,,) has a uniformly bounded diameter. Since
the index of the cover M,, — M,, does not depend on n, C(M,,) has a bounded diameter. O

It remains to show that the convex core of My, is compact and homeomorphic to S x I (when M, is
homeomorphic to S x R). Once again we will use the negatively curved ramified cover M,,. Since (Z,,M,)
converge to (Too, M), there is R, — oo and a sequence of bilipschitz map ¢, : B(Zn, Ry) — B(Too, Rn)
such that the bilipschitz constants tend to 1. By Lemma 314} for n large enough, C(M,,) C B(x,, R,). Given
a geodesic segment v, C C(M,,), ¢,(7,) almost realizes the distance between its endpoints. Since M,, is a
hyperbolic manifold with cone singularities, ¢, (7,) is very close to the geodesic segment joining its endpoints.
It follows that, for n large enough, the convex hull of ¢,,(C(M,,)) lies in a small neighborhood V,, (¢, (C(M)))
of ¢n(C(M n)) This convex hull has to contain C(Mu) since it is the smallest convex set. Thus we have
C(Ms) C Viu(¢pn(C(My,))). Tt follows that C(M ) is compact. Furthermore, since the induced metric on
0C(M,,) is bounded, V,(¢,(C(M,))) is homeomorphic to S x I for n large enough. It follows that C(M )
is homeomorphic to S x I. Thus we have proved that M., is a quasifuchsian manifold with cone singularities
with the same topological type as M,. [l

In contrast to the other results of this section, we do not need to assume that the quasifuchsian manifolds

under consideration in Lemma [3.13] are not fuchsian.

3.6 The bending lamination of the convex core

To finish the proof of Lemma B.1] we only have to check that the induced bending lamination on the boundary
of the convex core of the limit manifold is the limit of the bending laminations. We can state the result as
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follows.

Lemma 3.16. Let N = S X R, let x1,- -, xy, be distincts points on S, and let k; = {z;} xR, 1 <i < k. Let
(gn)nen be a sequence of quasifuchsian metrics on N with particles of angles 0% along r;, 1 <1i < k. Let \,,
resp. My, be the measured bending laminations, resp. the induced metric, on the boundary of the conver core
of (N, gn). Suppose that (g.) converges in bilipschitz topology towards a quasifuchsian metric with particles g
on N, with cone angles 6* € (0,m) along k;. Then (my)nen converges to the induced metric m on the boundary
of the convex core of (N, g), while (An)nen converges to the measured bending lamination \ of the boundary of
the convex core of (N, g).

Proof. Set M = (N, g) and M,, = (N, g,,) and denote by C(M) the convex core of M and by C(M,,) the convex
core of M,. We consider as above the finite cover N of N ramified along the cone singularities, chosen so
that all cone angles in N have angle larger than 27. This is useful below since we will use negative curvature
arguments, in particular the existence of a geodesic segment in a homotopy class with fixed endpoints. Clearly
it is sufficient to prove the lemma for N, where the “convex core” considered is C'(M ), the lift to N of C'(M,,),
since once the result is obtained in N, we can take the quotient by the group of deck transformations to obtain
the result on N.

Let (7, )nen be a sequence of segments in N, with ,, geodesic for g, for all n € N. Suppose that (7, )nen
converges to a segment v. We know that g, — g in the bilipschitz topology and, in hyperbolic geometry, any
segment which is close to realizing the distance between its endpoints is close to a geodesic segment. So 7 is
geodesic for g. Conversely, any geodesic segment for g is a Hausdorff limit of geodesic segments for the g,,. The
same holds for closed geodesics.

Let (€2,)nen be a sequence of compact subsets of N such that, for all n € N, €2, is convex for g,,. Suppose
that ©,, — Q in the Hausdorff topology. The definition of a convex subset and the previous paragraph show
that €2 is convex, since any geodesic segment v in (IV,g) with endpoints in the interior of € is the limit of a
sequence of geodesic segments 7, with v, geodesic for g,. Since 7, has endpoints in Q,, (for n large enough)
and €, is convex for g,, v, C 2, and therefore 5 C €, and € is convex for g. Conversely, a similar argument
shows that any compact convex subset for g is the Hausdorff limit of a sequence of compact convex subsets of
the metrics gy,.

For all n, C(M,) contains all closed geodesics in (N, g,). Given a non-trivial homotopy class o in N, (the
complement of the singular curves in N), it is realized for each n € N by a (unique) closed geodesic v, in
(N, gn), and the sequence (7, )nen converges to the closed geodesic y which realizes a in (IV, §). For each n € N,
Y C C(M,,). Moreover we have seen that the diameter of the C'(M,,) is bounded. It follows that (C(M,))nen
converges — after extracting a subsequence — to a limit subset ¢’ which contains all closed geodesics in (N, ).

Since C" is the limit of a sequence of convex subset of the (N, g,), it is convex. Moreover if Q2 C C” is convex,
then it is the limit of a sequence of convex subsets Q,, C C(M,). But then (€2, N C(M,,))nen is a sequence of
convex subsets converging to Q. Because the C(M,,) are minimal convex subsets, Q, N C(M,) = C(M,) for
all n, so that Q = C’. So ¢’ = C(M). This shows that C(M) is the Hausdorff limit of the C(M,,).

Note that it is not clear at this point whether 9C(M,,) — dC(M) in the C* topology. However, a general
fact is that, if ¢ : S — H? is a smooth embedding of a surface, and if (¢, )nen is a sequence of Lipschitz
embeddings of S in H? which converges to ¢ in the C° topology, then the distance d,, induced on S by the ¢,
are larger, in the limit, than the distance d induced by ¢:

Va,y € S, limsupdn(z,y) > d(z,y) . (1)
n—oo

The same holds if ¢ is Lipschitz with locally convex image rather than smooth, see [AZ67|. Moreover, in case
of equality in Equation () and if the ¢,, also have locally convex images, then the convergence of (¢,) to ¢
is stronger, in the sense that the tangent plane to ¢, (S) almost everywhere converges to the tangent plane to

().
Coming back to 9C(M,,), the C° convergence towards OC(M) (together with the bilipschitz convergence of
gn to g) is sufficient to insure that the metric m, on 9C(M,,) is larger in the limit than the metric m induced
by g on OC(M). In other terms, if z,y € 9C(M) and z,,,y, € OC(M,) are such that limz, = z,limy, =y,
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then there exists for each € > 0 some Ny € N such that, for all n > Ny,
d'rﬁn (Z'n, yn) > (1 - €)dm(1', y) .

It follows that the lengths of the closed geodesics in S for m,, are bounded from below by (1 — €) times their
lengths for m.
Since the metrics m,, and m are hyperbolic metrics with cone singularities of fixed angles, this shows, using
standard arguments based for instance on pants decompositions, that m, — m (see Section [A2] or [DPOT]).
It then follows that as n — oo, M, is bounded from above by (1+ €)m: under the same hypothesis as above,

Since m,, — M in this sense of Equation (@), and moreover dC(M,,) — OC(M) in the C° topology, it follows
that the convergence is actually stronger, and the tangent plane to C(M,,) converges almost everywhere to
the tangent plane to OC (M) (both exist almost everywhere by convexity). This implies that the measured
laminations A, of dC,, converge to \. [l

4 Prescribing the measured bending lamination on the boundary of
the convex core

The goal of this section is to prove Theorem and then Theorem The proof of Theorem is

largely based on a well-known doubling argument already used for non-singular manifolds, which reduces the

infinitesimal rigidity with respect to the measured lamination (when the support of the lamination is along

closed curves) to a rigidity statement proved by Hodgson and Kerckhoff [HK98] for hyperbolic cone-manifolds.
Theorem is then a consequence, using the compactness statement proved in section [3l

4.1 A doubling argument

Let M be convex co-compact manifold with particles, and let C(M) be its convex core. Suppose that the
support of the measured bending lamination of C'(M) is a disjoint union of closed curves.

Definition 4.1. The doubled convex core of M is the 3-dimensional hyperbolic manifold with cone singular-
ities DC(M) obtained by gluing two copies of C(M) isometrically using the identification of their boundaries.

We have seen that the singular locus of M does not intersect the support of the bending lamination on
the boundary of the convex core — actually it even remains at a distance which is bounded from below by a
constant depending only on the cone angles. So the “particles” intersect the boundary of the convex core inside
faces, and moreover it does so orthogonally. It follows that the singular locus of DC(M) is a disjoint union of
closed curves, which are of two types:

e each “particle” p of M corresponds to a cone singularity along a closed curve in DC(M), of length equal
to twice the length of the intersection of p with C'(M),

e cach closed curve in the support of the measured bending lamination of the boundary of C'(M) corresponds
to a closed curve (of the same length) in DC(M).

Still by definition, DC'(M) admits an isometric involution — exchanging the two copies of C(M) which are
glued to obtain DC'(M) — and the set of fixed points of this involution is a (non connected)) closed surface S,
which corresponds to the boundaries of both copies of C(M). This surface is orthogonal to the singularities of
the first kind, and contains the singularities of the second kind.
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4.2 Local deformations

The doubling trick explained above leads directly to a rigidity statement. We consider again a convex co-
compact manifold M with particles, for which the measured bending lamination of the convex core is along
closed curves 71, - - -, yn, for which the bending angles are equal to ay,---,an € (0,7). As in the introduction,
we call 0y, ---,0,, the cone angles at the “particles”, and let 6 = (01, -, 60,,).

Lemma 4.2. There exists a neighborhood U of (a1,--+,ay) in (0,7)Y and a neighborhood V' of the hyperbolic
metric g on M in QF sny0 such that, if (of, -+, a'y) € U, there is a unique g’ € V' for which the support of
the measured bending lamination on C(M) is v U--- U~y and the bending angle on ~y; is o, 1 <i < N.

Proof. Hodgson and Kerckhoff [HK98| proved a local deformation result for hyperbolic cone-manifolds. It
follows from their result that there exists a unique cone-manifold close to DC(M) with the same topology as
DC(M) (including the singular locus), the same angles at the cone singularities corresponding to the particles
in M, and angles 2/, - - -, 2a/y instead of 2aq,- -, 2ay at the cone singularities corresponding to the pleating
lines of C(M).

The uniqueness of D’ shows that it has the same symmetry as DC(M), that is, it admits an isometric
involution fixing a surface S’ isotopic to the surface S fixed by the isometric involution on DC'(M). By an easy
symmetry argument, the cone singularities in D’ corresponding to the particles in M still have to be orthogonal
to S’, while those corresponding to the pleating lines of 9C (M) have to be contained in S” (see [BO04, Section
8] for details on the uniqueness part of this argument; the same argument can basically be used when particles
are present).

Therefore, D’ is the double of a hyperbolic manifold with convex boundary (obtained as the metric completion
of one half of the complement of S” in D’) with cone singularities orthogonal to the boundary. The boundary
of this manifold is convex with no extremal point, so that it is the convex core of a quasifuchsian manifold with
particles M’, with the same cone angle as M at the particles and such that 9C(M’) is pleated along the same

lines as 9C' (M), but with pleating angles o, - - -, &y instead of aq,- -+, an.
The uniqueness of such a manifold, in the neighborhood of M, follows from the uniqueness of D’ in the
neighborhood of DC(M). O

4.3 Proof of Theorem [1.12]

Let 41, - -, vn be the curves in the support of A, considered as curves in ON. Following the doubling construction
above, we define a closed manifold D(N) by gluing two copies of N along their boundary. D(NN) contains
two families of curves, which we still call ¢1,---, ¢, (corresponding to the particles in N) and ~1,---,yn
(corresponding to the pleating lines on the boundary of the convex core).

Let 61,---,0,, € (0,7) and of,---,a)y € (0,7) be chosen such that:

"Y' ng

o forallie {1,---,n0}, 0 <0, <6, and 0, = w/k; for some k; € N,
e forall j € {1,---,N}, 0 <o <a;/2, and o = 7/2l; for some [; € N.

The Orbifold Hyperbolization Theorem for cyclic orbifolds (initially stated by Thurston, and proved in [BPO1]
CHEKQQ]) can be applied to show that there is a unique hyperbolic orbifold structure on D(N) with singularities
of angles ¢; on the ¢; and 2a/; on the ;.

Since the 6; are in (0, 7), the result of Kojima [Ko0j98| shows that this orbifold structure can be deformed to
a unique cone-manifold structure, with cone angles #; on the curves ¢; and 2a§- on the curves ;.

Let (at)iefo,1) = (1,6, -, an,t)tefo,1) be the 1-parameter family defined by
= (1 —t)aj+ta;, 1<j<N.

Then for all j € {1,---, N}, ajo = o}, a1 = a;. Let I € [0,1] be the maximal interval containing 0 such that,
forall t € I:

e there exists a hyperbolic structure on D(N) with cone singularities of angle 6; on ¢;, 1 < i < ng, and a
cone singularity of angle 2a;+ on 7y;, 1 < j < N,
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e this hyperbolic structure has an isometric involution exchanging the two copies of N glued to obtain
D(N).

By construction, I # ). Lemma 2] shows that I is open, while Lemma [3] shows that I is closed. So I = [0, 1],
this proves the existence part of the statement because D(N) with the hyperbolic cone-structure for ¢t = 1 is
obtained by doubling the convex core of a convex co-compact hyperbolic manifold with particles of angles 6;
and pleating angles o; on the boundary, as needed.

For the uniqueness, the same deformation argument can be used to start from a cone-manifold structure on
D(N) and decrease the angles along the curves v;, 1 < j < N, from 2a; to 2aj. Lemma shows that the
corresponding deformation of the hyperbolic cone-manifold structure exists and is unique. Since the endpoint
of the deformation is unique (by the Orbifold Hyperbolization Theorem) there can be only one cone-manifold
structure on D(N) with angles 6; on the curves ¢;, 1 < i < ng, angle 2a; on the curve 75, 1 < j < N, and the
necessary symmetry property.

4.4 Proof of Theorem [I.13l

Given A_, i € MLg,, satisfying the hypothesis of Theorem [[LT3] both are limits of a sequence of measured
laminations (A_ n)neN, (At n)nen With support along a union of closed curves, which satisfy the hypothesis of
Theorem

For all n, Theorem shows that A_, and Ay, are the upper and lower measured bending laminations
of the boundary of the convex core for a unique quasifuchsian hyperbolic structure with particles g, on S x R.
Lemma 3] applied to this sequence of hyperbolic structures, shows that it has a subsequence which converges to
a quasifuchsian hyperbolic structure with particles, for which the lower and upper measured bending laminations
of the boundary of the convex core are A_ and A, respectively.

4.5 The conditions are necessary

Finally we check here that the hypothesis in Theorem[[.I3]are necessary. It obviously follows that the hypothesis
in Theorem are also necessary.

Lemma 4.3. Let M be a non Fuchsian quasifuchsian manifold with particles, let A be the measured bending
lamination on the boundary of its convex core. Then X satisfies the hypothesis of Theorem [I13.

Proof. The hypothesis that the weight of each closed curve in the support of A_ and Ay is less than 7 is clearly
a consequence of the fact that C (M) is convex and compact.
Suppose by contradiction that A_ and A; do not fill S. There exists then a sequence (cy)nen of simple
closed curve in S such that
1A, en) +i(Ag,en) = 0.

Let ¢, and ¢ be the geodesic representatives of ¢, in the lower and upper boundary components of C'(M),
respectively.

Let ¢, and ¢ be lifts of ¢, and ¢, respectively, to M, corresponding to the same lift of c. Lemma
shows that there exists an annulus A,, C M bounded by ¢, and & on which the induced metric is hyperbolic
with cone points of negative singular curvature (cone angle larger than 27). Moreover, the boundary of A,
is convex (for the induced metric) and its total curvature goes to 0 as n — co. The Gauss-Bonnet formula
then implies that the area of A, goes to 0 as n — oo. Since the lengths of the ¢, and ¢} are bounded from
below, this means that the distance between ¢, and ¢} in A, goes to 0 as n — oo. Therefore, the distance
between the upper and lower boundary of C(M) is zero, a contradiction because we have supposed that M is

not Fuchsian. O

5 Earthquakes estimates

In this section we consider a convex co-compact manifold with particles M. The arguments in this more general
case are the same as in the specific situation of quasifuchsian manifolds with particles. Its boundary M has a
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number of marked points z1, - - -, x2,, which are the endpoints of the ny “particles”, and to each is attached an
angle 0 € (0,7), 1 <k < 2ng, which is the angle at the corresponding particle.
We identify OM with the boundary of its convex core (see Lemma [2.5). We will use the following notations.

e ) is the measured bending lamination of the boundary of the convex core.
e m is its induced metric.

e ¢ is the (unique) hyperbolic metric in the conformal class at infinity 7, with cone singularities of prescribed
angle 0y at the marked point xj.

e G(m) is the metric obtained by grafting the hyperbolic metric m along the measured lamination A, so
that G(m) has curvature in [—1,0]. If for instance A is rational, then Gx(m) is obtained by inserting a
flat annulus in (0M, m) for each closed curve in the support of A, see e.g. [Dum08§].

This section contains a basic estimates relating ¢ to m. It will be useful in proving the compactness of a
certain map and Theorem [[L7 Its statement is based on the following extension to hyperbolic surfaces with
cone singularities of Thurston’s Earthquake Theorem (as found in [Thu86bl Ker83]).

Theorem 5.1 ([BS09]). For any h,h' € Ts 5, there is a unique measured lamination v € MLy, , such that
the right earthquake along v sends h to h'.

The main estimate proved in this section, and the main tool for the proof of Theorems [[.7 and [[.14] is the
following.

Proposition 5.2. There exists a constant C > 0 (depending only on the topology of M) such that, if v €
MCLan o is the measured lamination such that t = E.(v)(m), then the length Ly, (v) is at most C.

It is proved in Section [5.4] after some preliminary considerations. It is used below in Section

5.1 The average curvature of geodesics

In this part we prove a technical statement which is useful at several points below. It is an extension to convex
co-compact manifolds with particles of a result proved earlier by Bridgeman [Bri98| for the convex core of
non-singular convex co-compact manifolds, or more generally of pleated surfaces in H3. However the argument
used here is inspired by Bonahon and Otal [BO04].

We consider a quasifuchsian manifold with particles, M, and call 81, - - -, 8,,, the cone angles at the particles.
By definition, 61, -,0,, € (0,7). Here S is one of the connected components of 9C(M).

Proposition 5.3. There exists a constant Cy > 0 such that, if v is a geodesic segment on S transverse to ),
i(7,A) < Co(lm(y) +1).

Note that Cy depends on the 6; (at least the argument we use here does depend on the maximum of the 6;)
but not otherwise on M.

Proposition 5.3l will follow from the following lemma. We use here the constant €y coming from Lemma 2.7
and Lemma 2.8

Lemma 5.4. There exists \y > 0 such that if v is at distance at least €g/2 from the intersection of S with the
singular set of M and if L, () < eo/4, then i(A\,y) < A1.

The proof of this lemma is based on some intermediate steps. The first is a consequence of Lemma 277 and
Lemma

Claim 5.5. There exists pg > 0 such that any point in S at distance at least €y in S from the singular points
of S is also at distance at least pg in M from the singular set of M.

26



Proof. Let x € S which is at distance at least ¢y from the singular points of S, suppose that it is at distance
strictly less than ¢y from a particle p. Let y be a point in p which is closest from x, and let D be the totally
geodesic disk of radius €y orthogonal to p at y. This disk does not encounter any other particle by Lemma
Moreover x € D because y is at minimal distance from x among the points of p. We can therefore apply the
second point in Lemma 27 to D, with Q equal to the intersection of D with the convex core of M. The result
follows. |

Corollary 5.6. Let x € S be contained in the support of the bending lamination X\, and let D’ be the totally
geodesic disk of radius pg in M orthogonal to X at x. Then D' does not intersect the singular set of M.

After taking pg smaller if necessary, we have another simple statement which will be necessary below.

Claim 5.7. Let y € X be a point in the connected component of x in the intersection of S with D', and let g,
be the geodesic segment in the support of A centered at y and of length 2¢o. Then the angle between g, and D’
at y is at least 7w /4.

Proof. We call g, the geodesic segment contained in the support of A centered at x and of length 2¢y. g, is
disjoint from g, on S while z is at distance at most pg from y, it follows that there exists ¢ > 0 (depending on €
and po, and going to 0 as pg — 0 for fixed €p) such that the distance to g, in S of any point of g, ([—€o+po, €0—po))
is at most ceg. The same estimate holds in M, the universal cover of M. If po is small enough — relative to ¢g
— the result follows. |

Remark 5.8. There exists kg > 0, depending only on pg, such that, if Q) is a convex subset in the disk of radius
po in H?, the total curvature of the boundary of Q is at most kg.

Proof. This follows from the Gauss-Bonnet Theorem applied to 2, with ky equal to 27 plus the area of the
hyperbolic disk of radius pg. O

Proof of Lemma[5.4) If -y does not intersect the support of A the statement obviously holds, so we suppose that
some point & € v is in the support of A. Let D be the totally geodesic disk of radius €y/2 centered at x and
orthogonal, at x, to the support of A\. By construction D is disjoint from Mj.

Remark .8 shows that the total curvature of the connected component ¢ of DN .S containing «x is at most kg.
By Claim[5.7], each geodesic in the support of A which intersects ¢ makes with D an angle at least 7/4. It follows
that i(c, A) < 2ko. It also follows, since the length of ~ is less than €y/4, that v can be deformed transversally
to A to a segment of ¢, so that i(v, \) < i(c, A). Therefore i(v, \) < 2kg, and this proves the lemma. O

Proof of Proposition[5.3. Notice first that Lemma [5.4] although stated only for geodesic segments ~ that are at
distance at least €p/2 from the cone singularities, actually applies without this hypothesis. This is because, by
Lemma 2.7, the support of A\ cannot enter the eyp-neighborhood of the singular points, so that any part of v at
distance less than €y from the singular set of S has zero intersection with A.

Let n € N be the unique integer such that neg/4 < l,,(v) < (n+ 1)eo/4. Then ~ can be cut into a sequence
of segments 71, - - -,v, of length €y/4 and one last segment -, of length smaller than ep/4. Lemma 5.4 can
be applied to each of those segments, it yields that i(\,7;) < A1, 1 <i <n+1, so that

i) < (n+ D < <4l’:—0(” + 1) A

this proves the proposition. [l

5.2 The grafted metric and the hyperbolic metric at infinity.

We consider here the relation between the grafted metric G (m) and the hyperbolic metric at infinity ¢.
We first recall the definition of the grafting map

G: MLXxT =T
(I,m) — Gi(m)
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on a closed surface S.

The definition of Gj(m) is simpler when [ is a weighted multicurve, that is, its support is a disjoint union of
closed curves ¢y, - - -, cny. The transverse measure is then described by a positive weight w; on ¢;, for 1 <7 < N.
Then G;(m) is obtained by realizing each curve ¢; as a closed geodesics in (S,m), cutting S open along each
¢;, and gluing in a flat strip of width w;. Thurston showed that this map extends by continuity from weighted
multicurves to measured laminations, see [KP94].

We now return to the setting where m and A are the induced metric and measured bending lamination of
the convex core of a quasifuchsian manifold M. The grafted metric G(m) is then isometric to the induced
metric on the unit normal bundle of C'(M) in the unit tangent bundle of M. (The unit normal bundle of C'(M)
is the space of unit vectors at points of C (M) which are the oriented normals of a support plane of C'(M).)

One of the key properties of the grafted metric G(m) (see e.g. [KP94]) is that it is in the conformal class
7 at infinity — more precisely, there is a natural “Gauss map” defined from the unit normal bundle of dC(M)
with its “grafted metric” to the boundary at infinity of M, which is conformal. This means that Gx(m) is
conformal to ¢. Moreover, since the angles 6; are in (0, 7), the intersection of the boundary of the convex core
with the particles is at non-zero distance (for m) from the support of A, so that the cone angles of the grafted
metric at the intersections with the particles of the boundary of the convex core is equal to the cone angle of
the corresponding singularities.

The fact that ¢ is conformal to G(m) translates as

t =e*"Gy(m) ,
where u : 9M — R is a function.
Lemma 5.9. The function u is non-positive on OM .

Proof. Consider two metrics g and ¢’ with ¢’ = e?“g, and let K and K’ be their curvatures. Then (see e.g.
chapter 1 of [Bes87])
K =e(Au+K) .

We can apply this formula here with g = Gx(m) and ¢’ = ¢, so that K’ = —1 while K € [—1,0]. It takes the
form:
Au=—K —e* = |K| —e?" |

with K € [—1,0] (this equation is understood in a distributional sense).

Since the cone angles are the same for ¢ and for G(m), u is continuous and bounded at the singular points
(see [Tro91]). Let zpr € S be a point where u achieves its maximum. Suppose first that x)s is not a singular
point, then u is C? at x)s by elliptic regularity (see [Tro91]). Moreover Au > 0 at 2 since zjs is a maximum
of u. It follows that e?* < |K| < 1, so that u < 0. To complete the proof it is sufficient to prove that u cannot
achieve a positive maximum at a singular point of S. So we consider a singular point xy of S, and suppose that
u > 0 at xg. We will show that v cannot have a maximum at xg.

Let D be the geodesic disk of radius r centered at xg in (S,Gx(m)). Since A does not enter a small
neighborhood of xy, D is hyperbolic, with only one cone singularity at xg, if r is small enough. Let iy be the
isometric map between D, with the metric Gx(m), and the hyperbolic disk H?2 with one cone singularity of
angle o, where « is the cone angle of S at xg. Let iy : D — H2 be the isometric embedding of (D,t) in H2.
Call vy the vertex of H?2, i.e., its singular point. Since v > 0 at xg, if r is small enough, then

Ve e D \ {xo},d(il(z),vo) > d(io(x),vo) .

There is a natural complex map ¢ : H2 — H?, given in holomorphic coordinates centered at the singular
point by z — 227/@. Tt is conformal and multiplies the metric by a factor (27/a)?d(x,v9)??7/*=1. Consider
the composition

P:=gpoiroigtop t:i(poig)(D) = (poir) YD) .

It is a conformal map, with conformal factor equal to

(27r/a)2d(i1 (x), v0)2(2”/0‘_1)62” (27T/Oé)_2d(i0(l'), UQ)_Q(QW/Q_U ,
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with v = u o (¢ 0ip)~ L. This can be written as

()™

and is bigger than 1 since u > 0 and d(i1(z),v9) > d(io(x), vo).

Since ® is a conformal map between two hyperbolic domains, its conformal factor cannot have a local
maximum bigger than 1 at an interior point by the argument given at the beginning of this proof. Therefore,
u cannot have a positive maximum at xg. O

)

The following notion will be useful in this section and the next.

Definition 5.10. A c-curve on OM is either a closed curve or a segment with endpoints at cone singularities,
which does not contain any singular point (except at its endpoints if it’s not a closed curve).

We will sometimes implicitly consider c-curves up to homotopy in the complement of the singular points
in OM. Each homotopy class (with fixed endpoints) contains a unique geodesic for any non-positively curved
metric on OM (in particular for m,¢ and G(m)). Given a c-curve 7, we will denote by Ly, () (resp. Li(y),
L¢, (m)(7)) the length of that geodesic for the corresponding metric.

Corollary 5.11. Let v be a c-curve in OM, then Li(v) < La, m)(7)-

This follows directly from Lemma [5.9] since any minimizing c-curve in (S, Gx(m)) has shorter length for ¢,
and the minimizing curve in (S,t) in the same homotopy class is even shorter. Note also that for any c-curve
v, (A7) < CLp (). This follows from Proposition 53] and by the fact that the lengths of the c-curves which
are segments between two singular points of S is bounded from below.

5.3 An upper bound on the lengths of the curves at infinity

The second step in the proof of Proposition is a comparison between the lengths of c-curves in the metrics
t and m.

Proposition 5.12. There exists a constant C > 0 (independent of M) such that:
1. for each c-curve v in OM, Li(y) < CLp(Y),

2. for each long tube T in the thin part of (OM,m), T might also be a long tube for t, but its length for t is
at most its length for m plus C.

The proof uses some simple statements on the geometry of long hyperbolic tubes in (S,¢). Recall (see
[DP07]) that the Margulis Lemma applies to hyperbolic surfaces with cone singularities of angle at most 6,
when 0 € (0,7): there exists a constant cps, depending on € only, such that the set of points where the
injectivity radius is less than cp; is a disjoint union of cusps, disks centered at a cone singularity, and tubes
with core of length less than 2cy,.

We consider in this subsection a hyperbolic tube T', which can be described as isometric to the set of points
at distance at most L (for some L > 0) from the unique simple closed geodesic in the quotient of the hyperbolic
plane H? by a hyperbolic translation of length I. Moreover [ is supposed to be small and L large, so that the
lengths of the boundary components of T — which are both equal to [ cosh(L) — are equal to cp;. We call
o the core of T, in other terms the unique simple closed geodesic contained in T', and we denote by o,; the
cp-neighborhood of ¢ — the set of points at distance at most cp; from o in T

Lemma 5.13. There exists a constant C > 0 such that i(\,0op) < Ce~L: the intersection of \ with the
boundary of ops is at most Ce™ L.

Proof. Any maximal embedded geodesic segment in T intersects exactly once o, but also each of the two
connected components of doys. It follows that the intersection with A of each of the connected components of
doyr is equal to i(\, o). But since the length of o is | = e~%, Proposition 53] — applied to long segments that
wrap many times around o — shows that i(\, o) < Ce™ L. |
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Lemma 5.14. There exists a constant C' > 0 such that, if g is an embedded mazximal geodesic segment in T,
then the length of the orthogonal projection on oy of g N (T \ opr) is at most C.

Proof. If g C o, then gN (T \ ops) = 0 and the result applies. We suppose from here on that g is not contained
in o. If g is contained in one connected component of the complement of ¢ in T then, since g is embedded, its
orthogonal projection on ¢ is injective, so that the length of its orthogonal projection is bounded by the length
of 0. Otherwise, it follows from standard hyperbolic geometry arguments that g intersects o exactly once.
Consider the universal cover T" of T, it is isometric to the set of points at distance at most L from a geodesic
& C H? which is the lift of . Choose one of the connected components, say §, of the lift of ¢ to T". It intersects
the lift of dop; with an angle which is bounded from below — otherwise g could not intersect o. It follows
from this, and from elementary geometric properties of the hyperbolic plane, that the length of the orthogonal
projection on & of each of the segment of § outside the lift of op; is bounded from above by a constant. [l

Corollary 5.15. There ezists a constant C > 0 such that, whenever go is a maximal geodesic segment in T
such that the orthogonal projection of go on o is injective, then i(Ajp\g,,,90) < C.

Proof. Let ¢ be a maximal geodesic segment in the intersection with T' of the support of A, and let ¢’ be one of
the connected components of cNT'\ ops. Since both ¢ and gy are geodesic segments, the union of the orthogonal
projections on o of the segments of gy and of ¢ between two successive intersections between them covers o.

It follows that the number of intersections between ¢’ and go is at most equal to (I + 14, ) /I, where [ is the
length of the orthogonal projection of ¢ on o and [, is the length of the orthogonal projection of go on ¢ (and
[ is the length of o).

But the hypothesis on go shows that l5, < [, while Lemma [5.14] shows that [~ < C. So the number of
intersections between ¢’ and g is at most Ce”, where C is some positive constant.

Since this inequality applies to all geodesic segments in the support of A, we find that

i(AT\G'M ) 90) S CGL’L-(A, aJM) 5
and Lemma 5.13] then shows that i(Ap\,,,, go) is bounded by a positive constant. O

Proof of Proposition[5.13. Let v be a c-curve in M. It follows from Proposition that

Ly my(7) < Ln(y) + (A7) < C(Lm(y) + 1),

where here again C'is a constant depending only on the topology of M. Moreover Corollary [5.11] indicates that

Lt(’Y) < LGx(m)(V) )

and point (1.) follows.
For point (2.) consider a closed geodesic v contained in the union of T' and of the thick part of 9M, such
that

e the intersection of v with 7" has two connected components v; and s,

e the intersection of v with the thick part of OM (for m) has two connected components v and ~4, and
each has length bounded by C.

If T separates the boundary component of M containing it, v has to go through T twice, otherwise it is not
necessary but it is still possible to choose v with this property, and both cases can then be treated in a uniform
manner.

Once such a curve v has been found, it is possible to change it by Dehn twists so that, in addition to the
conditions above, the segments v; and 72 “wrap” at most once around T, i.e., their orthogonal projection to the
core o of T is injective. This is achieved by “untwisting” v as much as is necessary.

Denote as above by o the core of T', and by oj); the set of points at distance at most cp; from o. Since
~v wraps at most once around 7', the length of the intersection of v; and o with ops is at most 3cas. It then
follows from Proposition [5.3] that

i()‘\GM”Y) <C,
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where C' is some positive constant. By the same proposition, the intersection of v with the restriction of A to
the thick part of (OM,m) is at most C'. But Corollary 515 shows that

7:()\|T\UA457) S C.

Putting together those estimates we obtain that i(A,v) < C, where C is yet another positive constant. The
definition of the grafted metric then proves that

Le,my(Y) < Lin() +C .

Finally Lemma indicates that the length of « for ¢ is less than that for G(m). The result follows. O

5.4 A bound on the length of the earthquake lamination

We now switch from 3-dimensional to 2-dimensional geometry to show that an upper bound on the length of
curves in (OM,t) — relative to the length of the same curves in (9M,m), as stated in Proposition E12 —
implies a lower bound on the same lengths. Proposition will follow.

We consider a closed surface X, with some marked points 21, - - -, Z,,, and an angle §; € (0, 7) attached to
Z;.

Proposition 5.16. For each C > 0 there is a constant C' > 0 as follows. Let h,h' € Hx 59 be two hyperbolic
metrics such that:

1. for each c-curve vy in X, Ly () < CLyp(7),

2. for each long tube T in the thin part of (3,h), T might also be a long tube for h', but its length for h' is
at most its length for h plus C.

Let v € My, ; be the measured lamination such that ' = E,.(v)(h). Then the length Ly (v) is at most C".

The proof of Proposition E.16] will use a basic estimate on the variation of the length of curves under an
earthquake, essentially taken from [BS09|.

Proposition 5.17. Let m € MLy , be a measured lamination, let g € Hs 50 be a hyperbolic metric with cone
singularities, and let ¢' :== E¥ (g). Let v be a c-curve. Then

|Lg(7) — Ly (V)] <i(m,v) < Lg('Y) + Ly (y) -

Proof. The upper bound on i(m,v) can be found in [BS09| (Lemma 7.1, p. 76); it is stated there for closed
curves, but the proof extends directly to segments between two singular points.

For the lower bound on i(m,~), suppose first that the support of m is a disjoint union of simple closed
curves. Consider the geodesic (for g) vo homotopic to v in 3,, and let 4; be its image by the earthquake
E7., along with the union of the segments in the support of m between two points corresponding — after the
earthquake — to one intersection of m with ~. 71 is homotopic to 7o in X,. Clearly Ly (v1) = Lg(7y) +i(m,7),
while Ly () < Lg/(m1). It follows that Ly () < Lg(y) + i(m, 7). The same inequality also holds with g and ¢’
exchanged, and the lower bound on i(m, ) follows. The result when m is a general lamination — not rational
— holds by density of the rational laminations in MLy, . O

We now return to the notations used in Proposition[5.16l Note that the support of v is a geodesic lamination
in (X2, g). It is therefore possible to consider the intersection of v with the thin (resp. thick) part of ¥ for g,
which we call v; (resp. vr). The same decomposition can be done for ¢’, leading to v; and /..

We first state a basic property of hyperbolic surfaces, which is necessary below.

Lemma 5.18. There exist r > 0, C > 0 and 6y € (0,7), depending only on the supremum Oy of the 6; and on
the genus of X, such that, for any © € X and any geodesic segment 7y of length 2r centered at x, there exists
a closed geodesic in X2 of length at most C intersecting vo with angle at least 0.
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Proof. Note that any maximal segment in the thick part of a topologically non-trivial hyperbolic surface (with
cone singularities of angle less than ) intersects some closed geodesic, of length bounded by a constant C.

The statement therefore follows from a straightforward compactness argument. Indeed, if the constant
0 < 0 did not exist, there would be a sequence of thick hyperbolic surfaces with boundary Xr , (with cone
singularities of angles less than ), for which the optimal value of r would go to infinity, or the optimal value of
0 would go to w, as n — oo. This sequence could be taken of fixed topology, and the diameter of those surfaces
would then be bounded, so that r would necessarily be bounded.

We could then choose a converging subsequence, and obtain a thick hyperbolic surface (with cone singularities
of angle less than 6),) for which some maximal geodesic segment intersects no closed geodesic of length less
than C transversally, a contradiction. O

Lemma 5.19. There exists a constant C (depending only on the genus of ¥) so that the length of vy is at most
C.

Proof. Let rg > 0 be smaller than the injectivity radius of (X, h) at each point of ¥r. There exists another
number r; € (0,70) with the following property: if vy and 7; are two disjoints geodesics in H? and = € v is at
distance at most r1 from 77, then any geodesic intersecting =y, at distance less than r; from z and making an
angle bigger than 6y with g intersects 1 at distance at most r¢ from z.

Choose a large constant C'y > 0. If the length of vp were bigger than some large constant, the sum
of the weights of the segments of the support of v intersecting some geodesic disk of radius r; and center
x € supp(v) N X7 would be bigger than Cy. Applying the previous lemma, with v equal to a segment
containing z in the support of v, would yield a closed curve ¢ in X, of bounded length, such that i(c,v) is
arbitrarily large.

Proposition .17 would then show that the length of ¢ for A’ is much larger than the length of ¢ for h,
contradicting point (1) in the hypothesis of Proposition [B.16 O

Lemma 5.20. There exists a constant C > 0 as follows. Let v C X1 be a geodesic segment of length at most
cy- Then
i(v,y) < CL(vr) .

Proof. We will consider the case when v is rational, the general case follows by density of the rational measured
laminations.

Let r be the injectivity radius of 7. Let v, be the union of the intersections with X7 of all geodesic
segments centered at a point x € +, of length 2r, in the support of v. Each of those segments has length at
least r, since at least one side of x is contained in 7.

By definition of r, those segments intersect v exactly once. Moreover, the length of vp is larger than the
sum over the segments of their length times their weight (this sum is finite since v is rational). But this sum is
at least ri(v, ), so that L(vr) > ri(v,v). This proves the lemma. O

Lemma 5.21. There exists a constant C > 0 such that, if T is a tube of length 2L in (X¢, h), with core o, then
i(v,0) < Ce L.

Proof. Lp(o) = c1e~F, where c; is some constant. Point (1) in the hypothesis of Proposition [F.16] shows that
the length of o for A’ is at most coe ™%, where ¢ is another positive constant. But Proposition [[.17 then yields
the result. O

Recall that we call op; the set of points at distance at most cp; from o.

Lemma 5.22. There exists a constant C > 0 such that, if T is a tube of length 2L in (X, h), with core o, then
the length for h of the restriction of v to opr is at most C.

Note that there is no reason to believe that this statement is optimal; indeed, it appears quite reasonable
to think that the bound could be improved to Ce™%. The bound given here, however, is both sufficient for our
needs and easier to obtain.
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Proof. We know by Lemma [5.21] that i(v,0) < Cie~, where C; > 0 is some constant. It follows that, if
Ly(V|s,, ) is larger than some constant Cs, then each leaf of v intersects o with a very small angle, and for any
geodesic segment 7 going through 7" and intersecting o with angle bigger than 7 /4, i(y,v|,,,) > Cye.

Let 1 be a closed geodesic in (3, h) which has two segments in X7 and two segments going through 7.
Furthermore we choose ~; with the smallest length. Since ¥7 has bounded diameter, there is C' > 0 such
that £5(y1) < C + 2T. Since 77 has minimal length, it intersects o with angle at most /4 at each of the two
intersections. Then i(v,y1) > 2Cae%, so that, by Proposition 5.1, Ly (1) is much larger than Ly(v1). This
contradicts the hypothesis of Proposition O

Proof of Proposition[5.16. According to Lemma [5.19 the length of the restriction of v to the thick part of ¥ is
bounded by a constant (depending only on the genus of ). ¥ is the union of ¥, a finite set of neighborhoods
of cusps and cone singularities (which can be disregarded because geodesic laminations do not enter them), and
a finite set of long thin tubes, the number of those tubes being at most 3g — 3, where ¢ is the genus of X. Let T'
be one of those tubes, and let o be its core. Then L(v|,,,) is bounded by a constant by Lemma [5.221 Moreover,
the length of each maximal segment of the support of v in T \ o)/ is at most 2e’; and each is contained in a
maximal segment in 7' (contained in the support of v) which intersects o once. Since i(v,0) < Ce”, the length
of the restriction of v to T\ o/ is at most 4C. Summing all contributions to the length of v yields the desired
result. |

Proof of Proposition[2.2. The statement clearly follows from Proposition (.12 and from Proposition (.16 [l

6 The conformal structure at infinity

This section contains the proof of Theorems [[.7] and [[.T4] mostly as a consequence of Lemma

6.1 A topological lemma

We first state a simple topological lemma, necessary below to apply Proposition as directly as possible.
We fix a closed surface S of genus at least 2, a n-tuple of points = (1, -, zy,) and a ng-tuple of angles
0= (01, ,0n,) € (0,7)"

Lemma 6.1. Let ¢ > 0, and let K C Hs 5,9 be a compact subset. The set of all elements of Hs ¢ obtained by
a right earthquake along a measured lamination of length at most ¢ on an element of K is relatively compact.

Proof. Let m € K. The set of measured laminations [ € ML of length less than ¢ for m is compact in MLg ;.
Since the earthquake map is continuous relative to the measured lamination factor, the set

E.({l € MLsy | Lin(l) < c} x {m})

is compact in Hg ;9.
Again because the earthquake map F,. is continuous, it follows that there is a neighborhood U,, of m in
Hs 2,6 such that the image by E.. of

{(,m') € MLs.p X Uy | Ly (1) < C}

is relatively compact.
Since K is compact, it is covered by finitely many such neighborhoods U,,,, for m; in K. The result
follows. |

6.2 Compactness relative to the conformal structure at infinity

The previous considerations lead to a simple proof of Proposition from Proposition and Lemma [3.13]
Consider a sequence (gp)nen of quasifuchsian metrics with particles, as in Proposition [ Let (m,)nen be
the sequence of induced metrics on the boundary of the convex core, and let t,, be the sequence of hyperbolic
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metrics in the conformal class at infinity 7,. Since (7, )nen converges by the hypothesis of Proposition [
(tn)nen converges to a limit ¢, so it remains in a compact subset of Hg 5 0 X Hs z.6-

But m,, is obtained from ¢, by an earthquake along a measured lamination v, which, by Proposition (£.2]
has bounded length. Lemma therefore shows that (my)nen remains in a compact subset of Hs 4.9 X Hg,z,0-
We can therefore extract a sub-sequence so that (my)nen converges.

Lemma [B.13] then shows that (g,,)nen has a subsequence which converges to a quasifuchsian metric with
particles. This proves the proposition.

6.3 Proof of Theorem [I.7

We are now ready to prove Theorem [[L7l It is helpful to introduce additional notations:

® My o := Uge(o,x)n Ms 1.0 is the space of quasifuchsian metrics with particles on S x R with a fixed number
of particles but with varying angles,

o Hg, = UQE(O,W)NHS,m,Q is the space of hyperbolic metrics on S with a fixed number of cone singularities
but with varying angles,

o Ag .= Upco,mnHszo X Hs e is a kind of diagonal with respect to the angle variable in Hg, x Hs ..

Note that, by a result of Troyanov [Tro91] already mentioned above, Hs, can be naturally identified with
Ts.z x (0,7)N. The notation is nonetheless useful in the argument presented here.
Consider the natural map:
(I)S,z : MS,z — HS,m X HS,m

sending a hyperbolic metric with particles on S xR (with cone angles given by the 6;) to the conformal structures
at +oo. It follows from the definition that the image of ®g . is contained in Ag ;.

Let @5, ¢ be the restriction of @5, to Mg ,.g, for a fixed § € (0,7)". The main result of [MS09] is that
— in a slightly more general context, allowing for more topology and for singularities along a graph — ®g . ¢
is a local homeomorphism from Mg ;9 to Hs 2,0 X Hs,z,0. It follows that ®g , is a local homeomorphism from
Mgz to Ag ;. Moreover, ®g , is proper by Proposition [[Lf so that it is a covering of Tg 4.0 X Ts,z.0-

To prove that ®g . is a (global) homeomorphism we need to show that some elements of the target space
have exactly one inverse image. Suppose that for all i € {1,--- N}, 0, = 27 /k;, where k; € N, k; > 2. Let
T4, T— € Hg 9. There exists a finite covering  : S — S, with ramification of order k; at the z;, such that 7.,
(resp. 7_) lifts to a non-singular hyperbolic metric 7 (resp. 7_). By the Bers double uniformization theorem
[Ber60] 74 and 7_ are in the conformal class at infinity of a unique quasifuchsian hyperbolic metric, say g,
on S x R. Since it is unique, g is invariant under the deck transformations of 7, so that g is the pull-back to
S x R of a hyperbolic metric g on S x R, with cone singularities of angle #; along {x;} x R, 1 <i < N. This
construction also shows that g is unique — since any other hyperbolic metric with particles of the given angles
would lift to a non-singular quasifuchsian metric on S x R, which would have to be . This shows that (74,7_)
has a unique inverse image by ®g ., so that ®g , is a homeomorphism from Mg, to Ag ;.

6.4 Proof of Theorem [1.14]

We need another natural map.

Definition 6.2. Let Vs, 0: Hsz0 X Hsp0 = Hszo X Hs o be defined as follows. Given (t4,t_) € Hg 9 X
Hszo and 0 = (01,---,0,,) € (0,71)", there is by Theorem [L70 a unique quasifuchsian metric with particles
g € MS,z,G such that @S,xﬁ(g) = ([tJr]a [t*]) Then

Usao(ty,t—) = (my,m_),

where m4 and m_ are the conformal classes of the induced metrics on the upper and lower boundary components
of the convex core of (S x R, g), respectively.
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According to Proposition 5.2l and Lemma [6.1], if (m4,m_) = ¥ 4 ¢(t4,t-), then m, is Cy-quasi-conformal
to t4, and m_ is Cy-quasi-conformal to ¢_. This shows that ¥, ¢ is proper and extends continuously to a map
which is the identity on the boundary at infinity of Hg ;6 X Hs 2,0, so that it is onto. This proves Theorem

LI14

7 Some questions and remarks

7.1 Some questions.

The quasifuchsian cone-manifolds described above are direct extensions of the “usual” quasifuchsian hyperbolic
manifolds which have received much attention over the last couple of decades. It is quite natural to wonder
whether some properties which have been conjectured in the smooth case can be extended to the singular
setting.

Question 7.1. Does uniqueness hold in Theorem [1.14)?

Another natural question, which is “dual” to the previous one in a precise sense (see e.g. [Sch03|) concerns
the measured bending lamination on the boundary of the convex core.

Question 7.2. Does uniqueness hold in Theorem [L. 137

The same questions can be asked for submanifolds of quasifuchsian cone-manifolds which are convex but
have a smooth boundary, which is orthogonal to the singular locus. In the smooth case it is known [Sch06] that
one can prescribe the induced metric on the boundary, as well as the its third fundamental form (the smooth
analog of the measured bending lamination) and that each is obtained uniquely, it would be interesting to know
whether the same is true for quasi-fuchsian cone-manifold. The methods of [Sch06] do not appear to extend
directly to the singular case.

Since the Alhfors-Bers theorem extends as Theorem [[.7] to quasifuchsian manifolds with particles, it is quite
natural to ask whether the Ending Lamination Conjecture (see [BMMI0, BCM12]) can also be extended to
hyperbolic manifolds with particles. A natural starting point would be to consider manifolds homeomorphic to
S x R, where S is a closed surface of genus at least 2.

Note also that those questions are not necessarily restricted to quasifuchsian cone-manifolds, and could also
be asked for “convex co-compact cone-manifolds”, if that term is understood in a proper way.

7.2 AdS manifolds with particles.

Mess [Mes07, IABBT07| discovered a remarkable analogy between quasifuchsian hyperbolic 3-manifolds and
globally hyperbolic maximal compact (GHMC) AdS manifolds. In particular he proved an analog of the Bers
double uniformization theorem form GHMC AdS manifolds: on a manifold homeomorphic to S x R, where S is
a closed surface of genus at least 2, the space of GHMC AdS manifolds is parametrized by the product of two
copies of the Teichmiiller space of S, through the “left” and “right” parts of the holonomy representation.

GHMC AdS manifolds also have a convex core, whose boundary has a hyperbolic induced metric, as in the
quasifuchsian setting, and is pleated along a measured lamination. The analog of Theorem holds in that
context [BS12|: any two measured laminations that fill S can be obtained as the bending lamination of the
boundary of the convex core. But the uniqueness remains elusive, as in the quasifuchsian setting. Moreover,
the analog of Theorem [[.T4l is also conjectured to be true but no result is known.

It is also possible to consider GHMC AdS manifolds with “particles”, i.e., cone singularities along time-like
geodesics, for which the angle is less than w. The analog of the Bers double uniformization theorem (more
directly, the analog of Theorem [[7)) holds in this AdS setting [BS09]. The analog of Theorem [[.I3]is also true
in that setting [BS12]. However no analog of Theorem [[T4] is known.

Still in the AdS setting, new phenomena can occur when the singularity is along a graph (so that the particles
are allowed to interact), see [BBS11), BBS12]. One can associate to a GHMC AdS manifold with a graph of
interacting particles a sequence of pairs of points in the Teichmiiller space of the underlying surface, with each
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pair corresponding to a “slice” where no interaction occurs. It would be interesting to know whether any analog
of this description holds for quasifuchsian hyperbolic manifolds with cone singularities along a graph (perhaps
with some conditions on the cone angles, for instance cone angles less tha 27).

7.3 The renormalized volume.

Theorem [I7 for quasifuchsian manifolds with particles has possible applications to the Teichmiiller theory of
hyperbolic surfaces with cone singularities (of fixed angles) on a surface. Indeed it was remarked in [KS08a] that
the definition of the renormalized volume of a quasifuchsian 3-manifolds extends to manifolds with particles.
Knowing Theorem [[L7] it is possible to remark that the key property of the renormalized volume — to be a
Kahler potential for the Weil-Petersson metric on Teichmiiller space — extends to the natural Weil-Petersson
metric on the Teichmiiller space of hyperbolic metrics with cone singularities (of prescribed angle less than )
on a surface; the proof from [KS08al, [KS12] directly extends to this setting.

One direct consequence is that this Weil-Petersson metric is Kéhler, as was discovered by Schumacher and
Trapani [ST08] by other means. This metric, however, seems to depend on the choice of the cone angles.

Another possible application is to some properties of the grafting map considered on hyperbolic surfaces
with cone singularities of angle less than , as considered in [KS08b| [KS12|. This is however less directly related
to what we are doing here, since it only uses the geometry of 3-dimensional hyperbolic ends — rather than
quasifuchsian metrics — with particles.

A Quasiconformal estimates

This appendix contains the proof of Proposition [LT5l The first step is a simple extension to hyperbolic surfaces
with cone singularities of some classical tools concerning pants decompositions.

A.1 Pants decompositions

The content of this subsection is probably well known, see e.g. [DP07] for closely related considerations. We
include this material for completeness.

Let S be a closed surface, and let h be a hyperbolic metric on S with cone singularities at some points
X1, Tny, With cone angles 01, -+, 0,, € (0,7). If h had cusps — or geodesic boundary components — at the
x; rather than cone singularities, it would be quite natural to consider pants decompositions of (S,h). With
cone singularities of angles less than , it remains possible.

Definition A.1. A singular pair of pants is a hyperbolic surface with geodesic boundary, possibly containing
cone singularities of angle less than w, which is either:

e a hyperbolic pair of pants (with geodesic boundary) containing no cone singularity,
e a hyperbolic annulus with geodesic boundary containing exactly one cone singularity,
e a hyperbolic disk with geodesic boundary containing exactly two cone singularities.

Given a singular hyperbolic pair of pants, its three geodesic boundary components or cone singularities will
be called its legs. We hope that the reader will excuse us for this weird and perhaps confusing terminology.

Definition A.2. A pants decomposition of S is a decomposition S = S U---U S, of S as the union of
finitely many subsurfaces with disjoint interior, each of which is a singular pair of pants.

It is implicit in this definition that the boundary of the S; contains no cone singularities; the cone singularities
are each contained in the interior of one of the singular pairs of pants.

Lemma A.3. There exists a constant C, > 0 such that, for any choice of S and h, (S,h) has a pants decom-
position with all boundary curves of length less than C,,.
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Sketch of the proof. A standard recursive argument (see e.g. [BP92]) reduces the proof to showing that, for any
hyperbolic surface with cone singularities (of angle less than 7) and geodesic boundary, there is a simple closed
geodesic of length at most C,, which is not homotopic to a singular point or to a boundary component.

This in turn follows from other standard arguments, for instance based on comparing the area of the surface
(given by a suitable Gauss-Bonnet formula, see e.g. [Tro91]) to the area of embedded geodesic disks. O

Definition A.4. Let P be a singular pant. Its leg invariants are the length of its geodesic boundary components
and the angles at its cone singularities.

For instance, the boundary invariants of a (non-singular) hyperbolic pair of pants are the lengths of its
boundary components.

Lemma A.5. Each hyperbolic pair of pants is uniquely determined, up to isometry, by its leg invariants and
by the type of its “legs” — whether they are boundary components or cone singularities.

The proof follows the classical arguments used for non-singular hyperbolic pairs of pants, it is based on
elementary properties of some hyperideal hyperbolic triangles stated below in three propositions (the first two
have probably been known since Lobachevsky).

Recall that a hyperideal triangle can be defined, using the projective model of the hyperbolic plane, as
a triangle which might have its vertices either in the hyperbolic plane, on its ideal boundary, or outside the
closure of the hyperbolic plane (considered as the interior of a disk in the projective plane), but with all edges
intersecting the hyperbolic plane. A vertex is then ideal if it is on the ideal boundary, and strictly hyperideal
if it is outside the closed disk.

Recall also that given a point vy outside the closure of the projective model of H? (in the projective plane),
there is a unique hyperbolic geodesic, v, such that any the intersection with the projective model of H? of any
projective line containing vy is orthogonal to v5. This geodesic is called the line dual to vg.

We introduce here a slightly restricted notion of hyperideal triangle.

Definition A.6. An extended hyperbolic triangle is a hyperbolic triangle with one or more strictly hyper-
ideal vertices and its other vertices in the “interior” of the hyperbolic plane. A truncated hyperbolic triangle
is the intersection of an extended hyperbolic triangle with the hyperbolic half-planes bounded by the lines dual to
its strictly hyperideal vertices (and not containing the endpoints of the edges going towards those vertices).

For instance, a right-angle hyperbolic hexagon can be considered — in two ways — as a truncated hyperbolic
triangle, with three strictly hyperideal vertices. Given a hyperbolic triangle, its angles are the hyperbolic angles
at the non-hyperideal vertices and the length of its intersections with the lines dual to the strictly hyperideal
vertices. Notes that those lengths can quite naturally be considered as angles (they are then imaginary numbers)
but it is not necessary to enter such considerations here (see e.g. [Sch98 [Sch01] for more details).

There is a natural way to define the edge lengths of an extended hyperbolic triangle. The length of the edge
joining two vertices v and v’ is:

e the hyperbolic distance between v and v’, if neither v nor v’ is strictly hyperideal,
e the hyperbolic distance between v and the line dual to v/, when v’ is hyperideal but v is not,
e the distance between the lines dual to v and v’, when both are strictly hyperideal.

It is useful to remark that the lengths and angles of an extended hyperbolic triangle satisfy a natural
extension of the cosine formula. Moreover it is quite easy to check that an extended hyperbolic triangle, with
vertices of given type, is uniquely determined by two lengths and one angle, or by two angles and one length.

Lemma A.7. An extended hyperbolic triangle is uniquely determined by the type of its vertices — whether they
are “usual” or strictly hyperideal vertices — and its edge lengths.
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Proof. This statement is classical for “usual” hyperbolic triangles, with no strictly hyperideal vertex. It is also
well-known for triangles with three strictly hyperideal vertices, see [BP92].

Consider an extended hyperbolic triangle, with exactly one strictly hyperideal vertex, say v, and two usual
vertices, vo and v3. Let [; be the length of the edge between v; and vy, for {3, j, k} = {1,2,3}. Consider ls, I3
as fixed, then [y is easily seen (using for instance the cosine formula for extended hyperbolic triangles) to be a
strictly increasing function of the angle § at v;. This proves the lemma in this case.

Consider now the situation where v; is a “usual” vertex, while vy and vs are strictly hyperideal. Then given
v1, the positions of the lines dual to v and v3 are completely determined by the angle « at v;. Moreover the
distance between those lines, which by definition is equal to l1, is a strictly increasing function of a. This shows
the result in this last case. |

The same arguments can be used to prove the “dual” lemma, concerning the possible angles. Here we need
a more precise statement, in addition to the fact that the angles determine the triangle we need to know that
a large class of triples of angles can actually be realized.

Lemma A.8. An extended hyperbolic triangle is uniquely determined by the type of its vertices — whether they
are “usual” or strictly hyperideal vertices — and its angles. The angles at the “usual” vertices can take any value
in (0,7/2), while the “angles” at the strictly hyperideal vertices can be any numbers in (0,00).

Proof. Again the case where all vertices are “usual” is classical, while the case where all three vertices are strictly
hyperideal is well-known.

Consider a triangle T' with one “usual” vertex, say vi, and two strictly hyperideal vertices, vy and vs. Let
e1, €2, e3 be the edges opposite to v, va, v3 respectively. The triangle T' is completely determined by the length
[y of the edge e; and by the “angles” as and ag, that is, the lengths of the segments of the lines v3, v; dual to
V9, V3 between their intersections with e; and with es and es, respectively.

Given ap and a3, the possible values of [; vary between a minimal value [ ,, and a maximal value [ ;.
Suppose for instance that ap > as, then l; ,,, corresponds to the situation where e3 is reduced to a point. Then,
after truncation, 7' corresponds to a quadrilateral with 3 right angles. The last angle, between v3 and e, has
to be less than 7/2 by the Gauss-Bonnet theorem. This means that for [y slightly larger than Iy ,,,, az > 7/2.
On the other hand, a3 — 0 as Iy — l1, p, and ag is a decreasing function of i1 € (I1,m,{1,m). This proves the
lemma for triangles with two strictly hyperideal vertices.

Consider now a triangle 77 with one strictly hyperideal vertex, say v1, and two “usual” vertices, vy and vs.
Consider ag, a3 € (0,7/2) as fixed, T” is then entirely determined by l;. [; can vary between a minimal value
li,m > 0 and oo, where Iy 5, corresponds to the case where v; is an ideal vertex. The angle c; then varies
between 0 and oo, and is a strictly increasing function of ;. The result follows. O

Lemma A.9. Fach singular pair of pants has a unique decomposition as the union of two copies of a truncated
hyperbolic triangle (glued along their common boundary).

Proof. Let vy, vs,v3 be the three legs — which could be either singular points or boundary components. There
is a unique homotopy class of embedded segment joining v; to v;, for ¢ # j. Those three segments can be
uniquely realized as minimizing geodesics, which are then orthogonal to the boundary components. Cutting the
pair of pants along those three geodesic segments yields two extended hyperbolic triangles, glued along their
edges. Those two extended triangles have the same edge lengths, so that they are isometric by Lemma[A7l O

Proof of Lemmal[4A.3 By Lemma[A.8 the two extended triangles glued to obtain a hyperbolic pair of pants are
uniquely determined by their angles, which can take any value as long as the angles at the “usual” vertices are
less than /2. This shows that hyperbolic pairs of pants are uniquely determined by their leg invariants, and
any values are possible as long as the angles at the singular points are less than . O

We now turn to the parameterization of hyperbolic metrics with cone singularities by Fenchel-Nielsen type
coordinates. We first state a lemma on the existence and uniqueness of a pants decomposition from topological
data, leaving the proof to the reader since it is the same as in the non-singular case.
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Lemma A.10. A pants decomposition is uniquely determined by the choice of the boundary curves vi,---,YN,
considered as simple closed curves in S\ {21, -+, Tn, }, under the hypothesis that:

e the v; can be realized as pairwise disjoint curves,

e cach connected component of their complement is either a pair of pants containing none of the x;, or a
cylinder containing exactly one of the x;, or a disk containing exactly two of the x;.

Finally we state the main consequence, on the parameterization of hyperbolic metrics with cone singularities
of fixed angle by Fenchel-Nielse coordinates, again leaving the proof to the reader. Note that the Dehn twist
parameters are defined only in a relative way, however this is exactly the same as in the non-singular case (see
e.g. [BP92)).

Corollary A.11. Given a (topological) pants decomposition of S with boundary curves v1,---,vn, there is a
homeomorphism

Ts.w0 = (Rso x R)Y
sending a hyperbolic metric to the length and fractional Dehn twist parameters at the ;.

The fractional Dehn twist parameters used here are the translation length of one side with respect to the
other so that, for a boundary curve of length [, a parameter equal to [ corresponds to a “usual” Dehn twist (the
other possibility is to use an “angle” parameter, where 27 corresponds to full Dehn twist).

A.2 Proof of Proposition [1.15

It is now possible to use the pants decomposition provided by Lemma[A3|to prove Proposition[[.I5t the induced
metric on the boundary of the convex core is (uniformly) quasi-conformal to the conformal structure at infinity.

The starting point is that a pants decomposition of (OM,m) with boundary curves of bounded length
defines a pants decomposition of (M, 7) with boundary curves of approximately the same length. Recall that
the constant C), was introduced in Lemma [A.3]

Lemma A.12. There exists a constant C > 0 as follows. Let v1,---,vn be simple closed curves on OM,
defining a pants decomposition, of lengths less than C, for m. Then
Lm A
vie {1, Ny Em0) o p oy cen

C

Proof. The upper bound is a direct consequence of the first point in Proposition If ~; is short for m —
i.e., it is the core of a long tube in the thin part of (OM,m) — then the second point of Proposition 512 proves
the lower bound for ~;.

Suppose now that -; is realized in (OM,m) as a closed geodesic in the thick part of 9M. Then there exists a
closed geodesic v/ intersecting ; of length at most C),. If the length of 7; in (OM, 7) were small, than +; would
be realized in (OM, 1) as the core of a long tube T in the thin part of (M, 7). But then +" would have to be
long (at least as long as the T'). This would contradict the first point in Proposition [5.12] and this proves the
lower bound for ~;. O

Lemma A.13. There exists a constant C' > 0 such that, for each of the ~y;, the difference in the Dehn twist
parameter corresponding to vy; in m and in 7 is at most C(|log(Lm(v:))| +1).

The precise form of the estimate is important only if ~; is short for m (and therefore for 7), in which case
|log(Lm (7:))| is half the length of the tube in the thin part of (9M,m) containing ;.

Proof. Suppose first that +; is not short. Then it is contained in the thick part of (9M,m), and there exists
another curve «/, intersecting -;, of uniformly bounded length. A Dehn twist parameter bigger than some
constant would extend the length of v/ by more than is allowed by Proposition [5.12] this proves the lemma in
this first case.

The same argument can be used when ~; is short (i.e. when it is the core of a long thin tube), then v can
be chosen to have length bounded by a constant time |log(L,,(7;))|, and this defines the maximal Dehn twist
parameter along ~;. O
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Proof of Proposition L1 Let v1,---,vyn be disjoint closed curves, defining a pants decomposition of (OM,m)
with boundary curves of length less than C), as in Lemma [A.3] Let l,---,Ix be the length of the ; for m,
and let dq,---,dx be the Dehn twist parameters for the same curves.

Lemma [A-T0] shows that the ~; also define a pant decomposition of (M, 7), let I be the length of the ~; for
7, and let d} be their Dehn twist parameters. Lemma[A 2] indicates that the I, are within a fixed multiplicative
constant from the [;, while, by Lemma [AT3]

|d; — di| < C(Jlog(ly)| + 1), (3)

where C' is some positive constant.

Let m’ be the hyperbolic metric with cone singularities obtained by gluing pairs of pants with boundary
lengths equal to the [;, but with Dehn twist parameters equal to the d.

Note that m' is Ci-quasi-conformal to m, for some uniform constant C; > 0. To prove this remark that
for each i € {1,---, N} the set of points at distance at most C(|log(Lm, (7:))| + ¢ar) from ; is an annulus, and
that those annuli are disjoint. One can therefore build a C;-quasi-conformal diffeomorphism between m and m/
which is an isometry in the complement of those annuli around the ~y;, and which is “twisted” in those annuli,
with a twisting parameter which is an affine function of the distance to the ~;.

The second and last step is that m' is Cs-quasi-conformal 7. Since those two metrics differ only by the
lengths of the boundary curves v;, and in view of (B]), this follows again from a simple and explicit construction
which we leave to the interested reader. O

Note that it might be possible to prove Proposition [L.T5] using the same type of arguments as those used by
Epstein and Marden [EMS86| in the non-singular case. This would have the advantage of providing directly a
quasiconformal constant independent on the genus of the boundar.
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