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Abstract

We consider quasifuchsian manifolds with “particles”, i.e., cone singularities of fixed angle less than π

going from one connected component of the boundary at infinity to the other. Each connected component
of the boundary at infinity is then endowed with a conformal structure marked by the endpoints of the
particles. We prove that this defines a homeomorphism from the space of quasifuchsian metrics with n

particles (of fixed angle) and the product of two copies of the Teichmüller space of a surface with n marked
points. This extends the Bers Double Uniformization theorem to quasifuchsian manifolds with “particles”.

Quasifuchsian manifolds with particles also have a convex core. Its boundary has a hyperbolic induced
metric, with cone singularities at the intersection with the particles, and is pleated along a measured geodesic
lamination. We prove that any two hyperbolic metrics with cone singularities (of prescribed angle) can
be obtained, and also that any two measured bending laminations, satisfying some obviously necessary
conditions, can be obtained, as in [BO04] in the non-singular case.

Résumé

On considère des variétés quasifuchsiennes “à particules”, c’est-à-dire ayant des singularités coniques
d’angle fixé inférieur à π allant d’une composante connexe à l’infini à l’autre. Chaque composante connexe
du bord à l’infini est alors muni d’une structure conforme marquée par les extrémités des particules. On
montre que ceci définit un homéomorphisme de l’espace des métriques quasifuchsiennes à n particules (d’angle
fixé) vers le produit de deux copies de l’espace de Teichmüller d’une surface à n points marqués. Ceci étend
le théorème de double uniformisation de Bers aux variétés quasifuchsiennes à “particules”.

Les variétés quasifuchsiennes à particules ont aussi un coeur convexe. Son bord a une métrique in-
duite hyperbolique, avec des singularités coniques aux intersections avec les particules, et est plissé le long
d’une lamination géodésique mesurée. On montre que toute paire de métriques hyperboliques à singularités
coniques (d’angle prescrit) peut être obtenu, et aussi que toute paire de laminations de plissages, satisfaisant
des conditions clairement nécessaires, peut être obtenus, comme dans le cas non-singulier [BO04].
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1 Introduction

1.1 Convex co-compact manifolds with particles

Quasifuchsian manifolds. A quasifuchsian manifold is a complete hyperbolic manifold M diffeomorphic to
S×R, where S is a closed, oriented surface of genus at least 2, which contains a non-empty, compact, geodesically
convex subset, see [Thu80]. Such a manifold has a boundary at infinity, which is the union of two copies of
S. Each of those two copies has a conformal structure, τ+ and τ−, induced by the hyperbolic metric on M .
A celebrated theorem of Bers [Ber60, AB60] asserts that the map sending a quasifuchsian metric to (τ+, τ−)
determines a parameterization of the space of quasifuchsian metrics on a M by the product of two copies of the
Teichmüller space of S.
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A quasifuchsian manifold M contains a smallest non-empty geodesically convex subset, called its convex core
C(M). Here we say that a subset K ⊂ M is geodesically convex if any geodesic segment in M with endpoints
in K is contained in K. This implies that the inclusion of K in M is a homotopy equivalence.

The boundary of C(M) is again the union of two copies of S, and each is a pleated surface in M , with a
hyperbolic induced metric m+,m− and a measured bending lamination λ+, λ−. (There is a special, “Fuchsian”
case, where C(M) is a totally geodesic surface, the two pleated surfaces mentioned here are then the same,
m+ = m−, and λ+ = λ− = 0.)

It is known that any two hyperbolic metrics can be obtained in this way, this follows from [EM86] or from
[Lab92], however it is not known whether any couple (m+,m−) can be uniquely obtained. Similarly, any two
measured laminations λ+, λ− can be obtained in this manner if the weight of any leaf is less than π and if λ+

and λ− fill S [BO04], but it is not known whether uniqueness holds. Recall that λ− and λ+ fill S if there exists
ǫ > 0 such that, for any closed curve c in S, i(λ−, c) + i(λ+, c) ≥ ǫ.

The main goal here is to extend those results to quasifuchsian manifols with “particles”, that is, cone sin-
gularities of a certain type connecting the two connected components of the boundary at infinity, as described
below.

Note that all the results mentioned here are actually known in the more general context of convex co-compact
hyperbolic manifolds, i.e., interiors of compact manifolds with boundary, with a complete hyperbolic metric,
containing a non-empty, compact, geodesically convex subset (or, even more generally for geometrically finite
hyperbolic manifolds), the result concerning the measured bending lamination of the boundary can then be
found in [Lec06]. We stick here to the quasifuchsian setting for simplicity.

Cone-manifolds. We consider here hyperbolic cone-manifolds of a special kind, which have cone singularities
along curves (a more general notion is defined in [Thu80], allowing for singularities along graphs). Let θ ∈ (0, π),
we call H3

θ the hyperbolic manifold with cone singularities obtained by gluing isometrically the two faces of
a hyperbolic wedge of angle θ (the closed domain in H3 between two half-planes having the same boundary
line). There is a unique such gluing which is the identity on the “axis” of the wedge. We will be using here the
following (restrictive) definition.

Definition 1.1. A hyperbolic cone-manifold is a manifold along with a metric for which each point has a
neighborhood modeled on H3

θ for some θ ∈ (0, π).

Let M be a hyperbolic cone-manifold, it has two kind of points. Those which have a neighborhood isometric
to a neighborhood of a point of some H3

θ outside the cone singularity are called regular points, while the others
are called singular points or cone points. The set of regular points will be denoted by Mr, and the set of singular
points by Ms. By definition, Ms is a union of curves, if M is complete then those curves can be either closed
curves or infinite lines. To each of those curves is associated an angle θ ∈ (0, π) — such that all points have
a neighborhood isometric to a neighborhood of the cone singularity in H3

θ — which is called its cone angle or
simply its angle.

Recall the usual notion of convexity, which differs from other possible notions (e.g. the local convexity of
the boundary of a domain).

Definition 1.2. Let M be a hyperbolic cone-manifold. A subset K ⊂ M is geodesically convex if any locally
geodesic segment in M with endpoints in K is contained in K.

A non-empty geodesically convex subset of M is homotopically equivalent to M and contains all closed
geodesics of M , see [MS09, Lemma A.12].

Quasifuchsian manifolds with particles. Quasifuchsian manifolds with particles are defined in the same
way as non-singular quasifuchsian manifold.

Definition 1.3. A quasifuchsian manifold with particles is a complete hyperbolic cone-manifold M iso-
metric to the product S ×R, where S is a closed, orientable surface, endowed with a complete hyperbolic metric
with cone singularities of angles in (0, π) on the lines {xi} × R, for x1, · · · , xn0

distinct points in S, which
contains a non-empty, compact, geodesically convex subset. We require that n0 ≥ 4 if S is a sphere, i.e. that M
has at least 4 singularities, and that n0 ≥ 1 if S is a torus.
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Notice that the definition also makes sense if S is a sphere and n0 = 3 but then the metric would be
uniquely defined (up to isotopy) by the cone angles. We are not considering this case for technical reasons but
also because there is not much to say about it.

Given a non-empty convex subset K of a quasifuchsian manifold with particles, then K contains all closed
geodesics of M (see [MS09, Lemma A.12]) and the inclusion of K in M is a homotopy equivalence (this is proved
below).

Geometrically, quasifuchsian manifolds with particles can be considered as I-bundles in the category of
hyperbolic 3-manifolds with cone singularities. The term “particle” comes from physical motivations. Quasi-
fuchsian manifolds have Lorentzian siblings called Anti-de Sitter (AdS) globally hyperbolic (GH) manifolds
which share many of the key properties recalled above, see [Mes07, ABB+07]. From a physics viewpoint, GH
AdS 3-manifolds are a 3-dimensional toy model for gravity, as they model an empty space with negative cos-
mological constant. To go beyond an empty model, massive point particles can be added and modeled as cone
singularities along time-like lines, see e.g. [tH96, tH93]. The resulting GH AdS manifolds with particles display
some properties which are parallel to those obtained here, see [BS09].

The restrictions on the cone angles — supposed to be in (0, π) — are necessary at several points here, as
they were in [MS09]. It seems to be physically relevant, too. We will mention some points where this hypothesis
is useful below as they occur. We do not know whether Theorem 1.7, for instance, can be extended to cone
angles less than 2π. In the parallel Lorentzian theory concerning globally hyperbolic anti-de Sitter manifolds,
new phenomena arise when the cone angles are larger than π, see [BBS11, BBS12].

Quasifuchsian manifolds with particles are always considered here up to isotopies.

Convex co-compact manifolds with particles. The previous definition can be extended to a definition of
convex co-compact manifolds with particles.

Definition 1.4. A convex co-compact hyperbolic manifold with particles is a complete hyperbolic
cone-manifold M such that:

• M is homeomorphic to the interior of a compact manifold with boundary N , with non-trivial fundamental
group,

• the singular locus corresponds under the homeomorphism to a disjoint union of curves in N with endpoints
on ∂N ,

• the angle at each singular curve is less than π,

• M contains a non-empty compact subset which is convex.

A further extension to geometrically finite manifolds with particles is possible, we leave the details to
the interested reader. We consider here only quasifuchsian mainfolds (with particles) although some of the
intermediate statements can be extended to convex co-compact manifolds with particles. There is also some
hope to extend the main results to this more general setting, however some technical hurdles have to be overcome
before this can be achieved.

Note that there is another possible notion of quasifuchsian manifolds with cone singularities: those which
are singular along closed curves, as studied in particular by Bromberg [Bro04b, Bro04a]. Although there
are similarities between those two kinds cone-manifolds (in particular concerning their rigidity), the questions
considered here are quite different from those usually associated to those considered for quasifuchsian cone-
manifolds with singularities along closed curves (drilling of geodesics, etc).

1.2 The conformal structure at infinity.

Conformal structures and hyperbolic metrics on surfaces. Let’s fix some notations.

Definition 1.5. Let S be a closed orientable surface, let x1, · · · , xn0
∈ S be distinct points with n0 ≥ 4 if S is

a sphere and n0 ≥ 1 is S is a torus, and let θ1, · · · , θn0
∈ (0, π). We then call:
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• TS,x the space of conformal structures on S, considered up to isotopies of S fixing the xi,

• HS,x,θ the space of hyperbolic metrics on S, with cone singularities at the xi where the angle is θi, con-
sidered up to isotopies fixing the xi.

There is a one-to-one map between TS,x and HS,x,θ, because any conformal structure contains a unique
hyperbolic metric with cone singularities at the xi of prescribed angle (see [Tro91]). We keep distinct notations
for clarity.

Notice again that these definition also make sense when S is a sphere and n0 = 3 provided that
∑n0

i=1 θi−2π <
0 . In this case the spaces TS,x and HS,x,θ are points.

The statements considered here are already well understood when n0 = 0, so we will focus below on the case
n0 ≥ 1.

The conformal structure at infinity. Non-singular quasifuchsian manifolds have a natural conformal struc-
ture at infinity, which can be defined by considering the action of their fundamental group on their discontinuity
domain, see [Thu80]. This definition cannot be used directly for quasifuchsian manifolds with particles, however
it is still possible to define a conformal structure at infinity, see [MS09, Section 3.2].

Therefore, to each quasifuchsian metric g ∈ QFθ1,···,θn0
are associated two points τ+, τ− ∈ TS,n0

correspond-
ing to the conformal structures — marked by the endpoints of the “particles” — on the upper, resp. lower,
connected component of the boundary at infinity.

Note that we always implicitly consider conformal structures on the boundary at infinity up to isotopy. (It
is therefore not necessary to consider markings.)

A compactness lemma for the conformal structure at infinity. We consider again a closed surface S
along with n0 distinct points (n0 ≥ 1) x1, · · · , xn0

∈ S and angles θ1, · · · , θn0
∈ (0, π) so that

2πχ(S)−
n0∑

i=1

(2π − θi) < 0 .

Proposition 1.6. Let (gn)n∈N be a sequence of quasifuchsian metrics on S×R, with particles (cone singularities)
on the lines {xi}×R, of angle equal to θi. Suppose that the conformal structures at infinity, τ−,n, τ+,n ∈ TS,n0

,
converge to conformal structures τ−,∞, τ+,∞. Then (gn)n∈N has a subsequence converging to a quasifuchsian
metric with particles.

The proof is contained in Section 6.2, it is based on the compactness results described below (in Section 3)
relative to the induced metric and bending lamination on the boundary of the convex core.

A Bers-type theorem with particles. Using the previous proposition, along with the main result of [MS09],
leads to an extension to quasifuchsian manifolds with particles of a classical result of Bers [Ber60] on “double
uniformization”.

Theorem 1.7. The map from QFS,x,θ to TS,x×TS,x sending a quasifuchsian hyperbolic metric to the conformal
structures at +∞ and at −∞ (marked by the endpoints of the particle) is a homeomorphism.

1.3 The geometry of the convex core

Measured laminations. We refer the reader to e.g. [CB88, PH92, Ota96] for the definition and main
properties of measured laminations on closed (non-singular) surfaces as well as the topology on the space of
measured laminations. There are two possible definitions. One is geometric, in terms of measured geodesic
laminations on hyperbolic surfaces, with a transverse measure, while the other definition is topological, and
can involve the boundary at infinity of the universal cover of the surface. The two definitions are equivalent,
basically because, in a closed (or finite volume) hyperbolic surface, any closed curve can be realized uniquely as
a closed geodesic.
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Proposition 1.8. Let Σ be a hyperbolic surface with cone singularities, where the angle is less than π. Let λ
be a (topological) lamination on Σ. Then λ can be realized uniquely as a geodesic lamination.

The space of measured geodesic laminations on a hyperbolic surface with cone singularities of angles less
than π therefore does not depend on the cone angles.

Definition 1.9. We call MLS,n0
the space of measured lamination on S with n0 marked points.

Thus, for any hyperbolic metric m on S with n cone singularities of angle less than π, MLS,n0
can be

canonically identified with the space of measured geodesic laminations on (S,m).

The convex core. The following basic proposition can be found in the appendix of [MS09].

Proposition 1.10. Let M be a convex co-compact hyperbolic manifold with particles, and let K and K ′ be two
non-empty geodesically convex subsets. Then K ∩K ′ is a non-empty geodesically convex subset.

It leads to a natural definition.

Definition 1.11. Let M be a quasifuchsian manifold with particles. Its convex core C(M) is the smallest
non-empty geodesically convex subset contained in it.

By construction, C(M) is a “minimal” convex subset of M and it follows from general arguments (see
[Thu80]) that its boundary is, outside the singular curves, a pleated surface (a locally convex, ruled surface). It
turns out that, under the condition that the cone angles are less than π, the boundary of C(M) intersects the
cone singularities orthogonally, and is even totally geodesic in the neighborhood of each such intersection, see
[MS09, Lemma A.15].

It follows that there is a well-defined notion of closest-point projection from M to C(M). As a consequence,
the inclusion of C(M) in M is a homotopy equivalence. The same holds for any non-empty convex subset of
M .

Therefore, given a quasifuchsian metric with particles g ∈ QFS,θ, the induced metrics on the upper and lower
boundary components of C(M) (which might coincide in special cases) are two hyperbolic metrics m+,m− ∈
HS,x,θ. Moreover, those two boundary components are pleated along measured bending laminations l+, l− ∈
MLS,n0

.

A remark on the hypothesis A well-known fact concerning hyperbolic surfaces with cone singularities is
that, as long as the cone angles are less than π, it remains true that any homotopy class of closed curves in
the regular part contains a unique geodesic (see e.g. [DP07]). A fairly direct consequence is that, as for closed
surfaces, any topological measured lamination (in the complement of the cone singularities) can be uniquely
realized as a measured geodesic lamination.

This is one reason — albeit not the only one — why it is relevant to consider here cone singularities of angle
less than π, rather than less than 2π. Indeed for cone singularities of angles less than 2π, the induced metric
on the boundary of the convex core might also have cone singularities of angle between π and 2π, and for those
metrics the one-to-one relation between measured laminations and measured geodesic laminations is lost.

1.4 Prescribing the bending lamination

Results in the non-singular case. For non-singular convex co-compact hyperbolic manifolds an existence
and uniqueness theorem for metrics with a given rational measured bending lamination was proved by Bonahon
and Otal [BO04]. (Recall that a lamination is rational if its support is a disjoint union of closed curves.)
When the lamination is not rational, an existence result was proved in [BO04] for manifolds with incompressible
boundary, it was extended in [Lec06] to manifolds with compressible boundary.
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Rational laminations with particles. As for quasifuchsian manifolds (without particles), it is possible to
give an existence and uniqueness statement concerning the bending lamination on the boundary of the convex
core, but only for rational laminations.

Theorem 1.12. Let S be a closed orientable surface, let x1, · · · , xn0
∈ S be distinct points, and let θ1, · · · , θn0

be in (0, π). Suppose that n0 ≥ 4 if S is a sphere, and that n0 ≥ 1 if S is a torus. Let λ−, λ+ ∈ MLS,x be
measured laminations, each with support a disjoint union of closed curves. Suppose that:

• λ− and λ+ fill S,

• each closed curve in the support of λ− (resp. λ+) has weight less than π.

Then there exists a metric g ∈ QFS,x,θ such that the measured bending lamination on the upper (resp. lower)
boundary component of the convex core of (S × R, g) is λ+ (resp. λ−). Moreover g is unique up to isotopies.

The proof, which is given in Section 4, is based on the rigidity theorem of Hodgson and Kerckhoff [HK98] for
closed hyperbolic manifolds with cone singularities. We prove in Lemma 4.3 that the hypothesis are necessary
conditions.

General laminations. When considering laminations which are not necessarily rational, we obtain only a
weaker result, because we can only claim existence, but not uniqueness (this remains an open problem even in
the non-singular case, see [BO04, Lec06]).

Theorem 1.13. Let S be a closed surface, let x1, · · · , xn0
∈ S be distinct points, and let θ1, · · · , θn0

be in (0, π).
Let λ−, λ+ ∈ MLS,x. Suppose that:

• λ− and λ+ fill S,

• each closed curve in the support of λ− (resp. λ+) has weight less than π.

Then there exists a metric g ∈ QFS,x,θ such that the measured pleating lamination on the upper (resp. lower)
boundary component of the convex core of (S × R, g) is λ+ (resp. λ−).

The two conditions on λ−, λ+ in this theorem are easily seen to be necessary when g is not fuchsian, see
Lemma 4.3. Note that both Theorem 1.12 and Theorem 1.13 are restricted to quasifuchsian manifolds with
particles, rather than more general convex co-compact manifolds with particles.

1.5 The induced metric on the boundary of the convex core.

The Bers-type result on the conformal metric at infinity can be used to obtain an existence result concerning
the prescription of the induced metric on the boundary of the convex core.

Theorem 1.14. Let m−,m+ ∈ HS,n0,θ, where θ = (θ1, · · · , θn0
) ∈ (0, π)n. There exists a quasifuchsian metric

with particles on S × R, with particles of angle θi at the lines {xi} × R, for which the induced metric on the
boundary of the two connected components of the convex core are m− and m+.

In the smooth case – i.e. for quasifuchsian hyperbolic manifolds without conical singularities – the corre-
sponding result is well-known, it follows either from results of Labourie [Lab92] or from a partial answer, first
given by Epstein and Marden [EM86], to a conjecture of Sullivan. (The conjecture made by Sullivan turned out
to be wrong, see [EM05], but the result proved by Epstein and Marden is sufficient to prove Theorem 1.14 in
the non-singular context.)

As for the conformal structure at infinity, it might be possible to extend this statement to cover convex
co-compact (resp. geometrically finite) manifolds with particles. The uniqueness remains elusive, as in the
non-singular case.
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1.6 Applications

Quasifuchsian manifolds can be used as tools in Teichmüller theory. By extension, the quasifuchsian manifolds
with particles considered here can be used as tools for the study of the Teichmüller space of hyperbolic metrics
with cone singularities (of angle less than π) on a surface.

One such application is through the renormalized volume of those quasifuchsian manifolds with particles,
as considered in [KS08a, KS12]. In the non-singular case this renormalized volume is equal to the Liouville
functional (see [TZ87, TT03, TZ03]), it is a Kähler potential on HS,x,θ. Other applications of closely related
tools, in the non-singular context, for the global geometry of the Weil-Petersson metric on Teichmüller space,
can be found in [McM00]. Yet other applications, to some properties of the grafting map, are considered in
[KS08b], and the manifolds with particles considered here should allow for an extension to the grafting map on
HS,x,θ.

1.7 Outline of the proofs

We now turn to a description of the main technical points of the proofs.

Measured bending laminations. Theorem 1.12 is proved by an argument strongly influenced by the proof
given by Bonahon and Otal [BO04] for non-singular convex co-compact manifolds. Thanks to a doubling trick,
the infinitesimal rigidity of the convex cores of convex co-compact manifolds with particles, with respect to
the (rational) measured bending lamination, is reduced to an important infinitesimal rigidity result proved for
hyperbolic cone-manifolds by Hodgson and Kerckhoff [HK98]. A deformation argument then provides the proof
of the theorem.

The existence result for general laminations on quasifuchsian manifolds with particles (Theorem 1.13) can
then be obtained by an approximation argument, as in the non-singular case in [BO04, Lec06]. The key step
of the proof is a compactness statement, showing that if the measured bending laminations converge to a limit
having good properties, then the quasifuchsian metrics converge after extracting a subsequence. However the
arguments developed in [BO04, Lec06] cannot be used in the context of quasifuchsian manifolds with particles,
because they rely heavily on the representation of the fundamental group. Different arguments are therefore
used here, which are more differential-geometric in nature.

Those arguments are sometimes technically involved because of the added difficulties induced by the particles.
However, after stripping the proof of the elements which are needed only because of the particles (for instance
the multiple cover argument used in Section 3.4 to find simplicial surfaces with given boundary in the convex
core), the compactness proof given here is simpler than the one in [BO04, Lec06].

Prescribing the induced metric on the boundary of the convex core. We give in Section 6 a rather
elementary proof of Theorem 1.14, which has two parts. Call t− (resp. t+) the hyperbolic metric in the
conformal class τ− (resp. τ+) with cone angles θi at xi. The first part is an upper bound on the length of the
curves in the hyperbolic metric at infinity t±, following [Bri98, BC03].

Now recall that, by Thurston’s Earthquake Theorem [Ker83, Thu86a], there exists a unique right earthquake
sending a given hyperbolic metric to another one. This extends to hyperbolic metrics with cone singularities
of angle less than π, see [BS09]. In particular there is a unique measured lamination ν+ such that the right
earthquake along ν+, applied to m+, yields the hyperbolic metric t+. The second part of our proof is a bound
on the length of ν+ for m+ (see Proposition 5.2).

This is then used in Section 6 to prove Theorems 1.7 and 1.14. The proof of Theorem 1.7 also uses another
main ingredient, the local rigidity of quasifuchsian manifolds with particles proved in [MS09].

Quasi-conformal estimates. There is another possible way to prove Theorem 1.14, closer to the argument
used in the non-singular case (as seen in [EM86, Bri98, BC03]). It uses a bound on the quasi-conformal factor
between the conformal structure at infinity τ and the conformal class of the induced metric m on the boundary
of the convex core, both understood as elements of TS,n0

.
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Proposition 1.15. There exists a constant C > 0 (depending only on the topology of M) such that τ is
C-quasiconformal to m.

This proposition is not formally necessary to obtain the main results presented here, its proof can be found
in Appendix A.

As mentioned above, the proof of Theorem 1.14 through Proposition 1.15 would be much closer to the
proof(s) known in the non-singular case. It can be pointed out that the proof given in Section 6 is quite parallel,
but in the context of Teichmüller theory understood as the study of hyperbolic rather than complex surfaces.
From this viewpoint, Proposition 5.2 is a direct analog of Proposition 1.15, with quasiconformal deformations
replaced by earthquakes.

What follows. Section 2 presents the definition of the convex core of a convex co-compact manifold with
particles, and some of its simple properties, extending well-known properties with no cone singularity. In Section
3 we state and prove a key compactness statement with respect to the measured bending lamination on the
boundary of the convex core. Section 4 contains the proof of Theorem 1.12, using a local rigidity statement
of Hodgson and Kerckhoff [HK98] and the compactness Lemma of Section 3. Section 5 contains the proof of
Theorem 1.13, and Section 6 contains the proof of Theorem 1.7 and of Theorem 1.14. Section 7 contains some
remarks on the analogy with corresponding problems in anti-de Sitter geometry and on applications to the
Weil-Petersson metric of the Teichmüller space of hyperbolic metrics with cone singularities of prescribed angles
on a closed surface (see [KS08a, KS12, KS08b]). Finally, Appendix A contains the proof of Proposition 1.15,
based on the estimates on the length of the earthquake lamination obtained in Section 5.

2 The geometry of the convex core

This section contains some basic statements necessary to understand the geometry of convex co-compact mani-
folds with particles, concerning in particular the convex core and its boundary. We consider here such a convex
co-compact manifold with particles, M , and denote by Mr its regular part and by Ms its singular part (the
union of the singular lines).

We exclude below the simplest case where M is Fuchsian, that is, where it is the warped product of a
hyperbolic surfaces with cone singularities (S, h) by R, with the metric dt2 + cosh(t)2h. In this Fuchsian case
the convex core is a surfaces, corresponding to t = 0, and it is totally geodesic outside the intersection with the
particles, and orthogonal to those particles.

2.1 Surfaces orthogonal to the singular locus

We define here a natural notion of pleated surface orthogonal to the singular locus in M . The first step is to define
the notion of totally geodesic plane orthogonal to a cone singularity in a hyperbolic cone-manifold. The first
condition is that the surface is totally geodesic outside its intersections with the particles. The second condition
is local, in the neighborhood of the intersections with the particles; there, the surface should correspond to the
image in H3

θ of the restriction to the wedge (used to define H3
θ ) of a plane orthogonal to the axis of the wedge.

Definition 2.1. Let Σ be a pleated surface in Mr, and let Σ′ be its closure as a subset of M ; suppose that
Σ′ \ Σ ⊂ Ms. We say that Σ′ is orthogonal to the singular locus if any x ∈ Σ′ \ Σ has a neighborhood in Σ′

which is a totally geodesic surface orthogonal to the singular locus.

This definition can be extended to encompass more general surfaces, i.e., surfaces which are neither pleated
nor totally geodesic in the neighborhood of the singular locus. In this more general case the definition can be
given in terms of the convergence of the unit normal vector to a vector “tangent” to the singular locus at its
intersection with the surface. This will however not be needed here.
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2.2 The convex core of a manifold with particles

Among the defining properties of a quasifuchsian cone-manifold M is the fact that it contains a compact subset
K which is convex in the (strong) sense that any geodesic segment in M with endpoints in K is contained in
K. We have already seen that it is possible to define the convex core of M as the smallest compact subset of
M which is convex, denoted by C(M).

Theorem 2.2. Suppose that C(M) is not a totally geodesic surface. Then its boundary is the disjoint union
of surfaces which are orthogonal to the singular locus. Each connected component of the singular locus of M
intersects C(M) along a segment.

The proof is a consequence of two lemmas, both stated under the hypothesis of the theorem. The second
lemma in particular gives more precise informations on the geometry of the convex core, it is taken from [MS09,
Lemma A.14].

Lemma 2.3. The boundary of C(M) is a surface orthogonal to the singular locus.

Let x ∈ M , we denote by Lx the link of M at x, that is, the space of geodesic rays starting from x
(parametrized at speed 1), with its natural angle distance. When x is a regular point of M , Lx is isometric
to the 2-dimensional sphere S2, with its round metric. When x is contained in a singular line of angle θ, Lx

can be described as the metric completion of the quotient by a rotation of angle θ of the universal cover of the
complement of two antipodal points in S2.

Definition 2.4. Let K ⊂ M be convex, and let x ∈ M . The link of K at x is the set of vectors v ∈ Lx such
that there is a (small) geodesic ray starting from x in the direction of v which is contained in K. It is denoted
by Lx(K).

Clearly Lx(K) = ∅ when x is not contained in K, while Lx(K) = Lx when x is contained in the interior of
K.

To go further, we define the oriented normal bundle of ∂C(M), denoted by N1
r ∂C(M), as the set of (x, n) ∈

TM such that x ∈ C(M) is not in the singular locus of M and n is a unit vector such that its orthogonal is a
support plane of C(M) at x, and n is oriented towards the exterior of C(M).

Let x ∈ M be a non-singular point, let v ∈ TxM and let t ∈ R+. For t small enough, it is possible to
define the image of (x, tv) by the exponential map, it is the point exp(x, tv) := g(t), where g is the geodesic,
parametrized at constant speed, such that g(0)x and g′(0) = v. As t grows, exp(x, tv) remains well-defined until
g intersects the singular set of M .

Lemma 2.5. The exponential map is a homeomorphism from N1
r ∂C(M)× (0,∞) to the complement of C(M)

in M , and its restriction to the complement of the points of the form (x, v, t), for x ∈ Ms and v a singular point
of Lx, is a diffeomorphism to complement of C(M) in Mr. The map:

exp∞ : N1
r ∂C(M) → ∂∞M

(x, v) 7→ limt→∞ exp(x, tv)

is a homeomorphism from N1
r ∂C(M) to the complement in ∂∞M of the endpoints of the singular curves in M .

This follows directly from Lemma A.11 in [MS09].
The proof of Theorem 2.2 clearly follows from Lemma 2.3 and Lemma 2.5, since Lemma 2.5 shows that the

cone singularities cannot re-enter the convex core after exiting it.

2.3 The geometry of the boundary

By construction, C(M) is a minimal convex set in M , and it follows as in the non-singular case (see [Thu80])
that its boundary is a “pleated surface” except at its intersections with the singular curves.
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Lemma 2.6. The surface ∂C(M) has an induced metric which is hyperbolic (i.e. it has constant curvature −1)
with conical singularities at the intersections of ∂C(M) with the singular curves of M , where the total angle is
the same as the total angle around the corresponding singular curve. It is “pleated” along a measured lamination
λ in the complement of the singular points. Moreover the distance between the support of λ and the intersection
of the singular set of M with ∂C(M) is strictly positive.

Proof. Since C(M) is a minimal convex subset, its boundary is locally convex and ruled, therefore developable
(see [Spi75] for the Euclidean analog, or [Thu80]) so that its induced metric is hyperbolic. The fact that its
intersection points are conical singularities, with a total angle which is the same as the total angle around the
corresponding singularities, is a consequence of the fact that ∂C(M) is orthogonal to the singularities.

Similarly, the fact that ∂C(M) is pleated along a measured lamination is a direct consequence of the fact
that it is ruled and locally convex, i.e. that each point in ∂C(M) is in either a complete hyperbolic geodesics
or a totally geodesic ideal triangle. The support of λ is a disjoint union of embedded maximal geodesics, and it
is well-known (see e.g. [DP07]) that (under the hypothesis that the angles at the cone singularities are strictly
less than π) embedded geodesics remain at positive distance from the singular locus. So the distance between
the support of λ and the singular locus of ∂C(M) is strictly positive.

2.4 The distance between the singular curves

We state and prove here some elementary statements on the distance between singular points in the boundary
of C(M) and between singular curves in M . They will be useful at several points below.

Lemma 2.7. Let θ ∈ (0, π). There exists ǫ > 0 and ρ > 0, depending on θ, such that:

1. in a complete hyperbolic surface with cone singularities of angle less than θ (not homeomorphic to a
sphere), two cone singularities are at distance at least ǫ,

2. if D is a closed 2-dimensional geodesic disk of radius ǫ centered at a singular point x0 of cone angle θ,
and if Ω ⊂ D is a convex subset whose closure intersects the boundary of D, then Ω contains all points of
D at distance at most ρ from x0.

In particular, it follows from point (1) that no embedded geodesic in D can come within distance less than ρ
from the cone singularity.

Proof. The first point is well-known, see e.g. [DP07]. The interested reader can construct an elementary proof
based on Dirichlet domains, as in 3-dimensional manifolds in the proof of the second point, below.

For the second point let x1 ∈ ∂D∩Ω, and let γ be the minimizing geodesic segment from x0 to x1. Since D
contains no other singular point by the first point, the complement of γ in D is isometric to an angular sector
in the disk of radius ǫ in H2. This angular sector has three vertices, one corresponding to x0 and the other two
corresponding to x1. Since θ < π, it is convex at the vertex corresponding to x0. Let s be the geodesic segment
joining the two vertices corresponding to x1. Then Ω, being convex, contains the projection in D of the triangle
bounded by s and by the two geodesic segments in the boundary of D joining x0 to the two vertices projecting
to x1. This proves the statement, with ρ equal to the distance between x0 and s.

We now turn to a similar lemma, but concerning 3-dimensional manifolds with particles.

Lemma 2.8. Let θ ∈ (0, π). There exists ǫ > 0 and ρ > 0, depending on θ, such that, if M is a quasifuchsian
manifold with particles of angle less than θ, then any two particles in M are at distance at least ǫ.

Proof. We reason by contradiction, that is, we fix θ ∈ (0, π) and for any n > 0 there is a quasifuchsian manifold
Mn with particles of angles less than θ, with two particles pn, p

′
n at distance less than 1/n (and no two particles

strictly closer than pn and p′n). Let sn be the length-minimizing segment between pn and p′n, and let xn be its
midpoint. We call Dn the Dirichlet domain in Mn centered at xn.

We call (M ′
n, xn) the pointed cone-manifold obtained by performing on (Mn, xn) a homothety of ratio

1/L(sn), so that M ′
n has constant curvature L(sn)

2 ≤ 1/n2. Let D′
n be the Dirichet domain centered at xn in

M ′
n, so that D′

n is obtained by performing a homothety of ratio 1/L(sn) on Dn.
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By construction the cone singularities in M ′
n are at distance at least 1, so that, after extracting a sub-

sequence, (M ′
n, xn) converges in the pointed Gromov-Hausdorff topology to a pointed manifold (M ′, x). Still by

construction, M ′ contains at least two cone singularities p and p′, limits respectively of pn and p′n, at distance
1, with x at the midpoint of a geodesic segment of minimal length connecting p to p′. Let D′ be the Dirichlet
domain centered at x in M ′, then (D′, x) is the limit of the (D′

n, xn) in the pointed Gromov-Hausdorff topology.
By definition all D′

n are unbounded, so D′ is also unbounded.
Let θp and θp′ be the cone angles at p and p′, respectively, in M , so that θp, θp′ ≤ θ. We now consider D′

as a convex polyhedron in Euclidean space R
3, with two edges e and e′ corresponding to p and p′, respectively.

Let H1, H2 be the two half-planes bounded by p at angle θp/2 with s, and let H ′
1, H

′
2 be the two half-planes

bounded by p′ at angle θp′/2 with p′. Then H1, H2, H
′
1, H

′
2 are faces of D′, so that D′ is contained in D′′, the

intersection of the half-spaces bounded by the four planes containing H1, H2, H
′
1, H

′
2 and containing s.

Suppose that e and e′ are not parallel. Then D′′ has at most one end, so that D′ has also at most one end.
This is clearly impossible since all Mn are quasifuchsian manifolds with particles, so that all Dn have two ends.
Therefore, e and e′ are parallel. For the same reason any other edge of D′ which corresponds or not to a cone
singularity of M has to be parallel to e and to e′. So D′ is invariant under translations parallel to e, that it, it
is the product by R of a polygon π in a plane orthogonal to e. It follows that M ′ is also invariant by translation
parallel to p.

Consider the regular part M ′
reg of M ′. Since M ′

reg is a Euclidean manifold, its holonomy representation Hol
is a morphism from π1(M

′
reg) to Isom(R3) = R

3
⋊O(3). Since M ′ is invariant under translations parallel to p,

Hol actually takes values in R
3
⋊ O(2). We consider the morphism Hol′ : π1(M

′
reg) → R

2
⋊ O(2) = Isom(R2)

obtained by projecting the translation component of each element on the plane orthogonal to p.
Then Hol′ is the holonomy representation of a 3-dimensional Euclidean cone-manifold M ′

par. (We do not
discuss whether Hol = Hol′ in all cases.) By construction M ′

par contains a complete surface orthogonal to the
singular locus, say S. This surface has at least two singular points, and each of its singular points has angle
equal to the angle of the corresponding cone singularity of M ′, so those angles are less than θ. Since θ < π it
follows from the Gauss-Bonnet formula that S is homeomorphic to a sphere, and that it has at most three cone
singularities.

Still by construction, the fundamental group of M ′
reg surjects to the fundamental group of M ′

par. However
this surjection is actually an isomorphism, since otherwise an element of π1(M

′
reg) would act trivially on S,

which means that it would act on M ′
reg by translations parallel to the invariant direction, and this is impossible

since M ′
reg is non-compact.

This shows that M ′ is homeomorphic to the product of a sphere by a line, and that it has three cone
singularities. Therefore this is also true of all Mn for n large enough. But this is impossible since the Mn are
quasifuchsian manifolds with particles, and the definition explicitly excludes manifolds homeomorphic to the
product of a sphere by a line with three singularities.

We now call ǫ0 > 0 the number ǫ associated by the previous two lemmas to the maximum of the θi, and ρ0
the corresponding value of ρ.

3 Compactness statements

3.1 Main statement.

The main goal of this section is to prove the following compactness lemma.

Lemma 3.1. Let Mn be a sequence of quasifuchsian manifolds with particles with the same topological type
and converging angles. Let λn be the measured bending laminations on the boundary of the convex core of Mn.
Suppose that λn → λ∞, where λ∞ satisfies the hypothesis of Theorem 1.13. Then, after taking a subsequence,
Mn converges to a quasifuchsian manifold with particles with the common topological type, the limit particles
and measured bending lamination λ∞.

Let us explain the definitions used in this statement. The topological type of a quasifuchsian manifold with
particles M has the form (S, x1, · · · , xn0

) where S is a compact surface with genus at least 2 and x1, · · · , xn0
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are distinct points on S. A quasifuchsian manifold with particles M has topological type (S, x1, · · · , xn0
) if M

is isometric to the product S × R endowed with a complete hyperbolic metric with cone singularities of angles
θi ∈ (0, π) on the lines {xi} × R.

Consider a sequence of quasifuchsian manifolds Mn with particles with the same topological type
(S, x1, · · · , xn0

). Denote by θin ∈ (0, π) the cone angles of the metric of Mn on {xi}×R. Then the sequence Mn

has converging angles if and only if θin converges in (0, π) when n goes to ∞ for any i ≤ n0.
Notice that since λn converge to λ∞, λn is eventually non trivial. In particular the manifolds Mn are not

fuchsian (i.e. their convex core is not a surface) except maybe for finitely many of them. Throughout this
section, when we consider a quasifuchsian manifold with particle, we will assume that it is not fuchsian so that
its convex core is a 3-dimensional manifold with boundary.

The convex core C(M) of M is homeomorphic to S × I. Thus ∂C(M) is homeomorphic to S ⊔ S and
each copy of S in this union has k marked points x1, · · · , xn0

corresponding to the endpoints of the particles.
The measured bending lamination on the boundary of C(M) is an element of the space MLS,n0

× MLS,n0

of measured laminations on two copies of S with n0 marked points. The space MLS,n0
is endowed with the

topology of weak-∗ convergence of measures on compact transversals and MLS,n0
×MLS,n0

is endowed with
the product topology. In simple terms, we can fix a finite but sufficiently large set of curves ci which are either
closed curves or segments between two singular points, then two measured laminations are close if and only if
their intersection with each of the ci are close.

Although Lemma 3.1 is a generalisation of the "Lemme de fermeture" of [BO04], the proof is very different.
The reason is that the two main ingredients of the proof in Bonahon-Otal’s paper are Culler-Morgan-Shalen
compactification of the character variety by actions on R-trees and the covering Theorem of Canary. Since both
these results hardly extend to manifolds with particles we had to use different arguments. Since our proof also
works without particles, we get a new proof of the main result of [BO04].

3.2 A finite cover argument

We work under the assumption that the cone angle around each singularity is less than π. This assumption
guarantees that the singularities are never too close to each other, see Lemma 2.8, and that the boundary of
the convex core is well defined and is orthogonal to the singularities. On the other hand, cone singularities with
cone angles less than π can be viewed has singularities with concentrated positive curvature. But some of the
results we will use are easier to prove when the curvature is negative. To overcome this difficulty, we will use a
branched cover for which the cone angles are all greater than 2π.

Let M be a quasifuchsian manifold with particles. A branched cover M → M branched along the singularities
is negatively curved if the cone angles around the singularities of the metric induced on M are all greater than
2π. We call M a negatively curved branched cover of M .

This name comes from the fact that a singularity with cone angle greater than 2π can be viewed as a set
of concentrated negative curvature. More precisely M can be approximated by Riemannian manifolds with
curvature bounded above by −1 (in the bilipschitz topology). It follows that M has properties of negatively
curved manifolds, in particular the uniqueness of the geodesic segment joining two given points in a given
homotopy class.

We will construct such branched covers for sequences. Consider a sequence of quasifuchsian manifold with
particles Mn with the same topological type (S, x1, · · · , xn0

) (as defined in the preceding section). We denote
by gn the metric of Mn and by θin the cone angles of gn on κi. Assume that the sequence Mn has converging
angles, namely θin converge to some θi ∈ (0, π) for any i ≤ n0.

For each singularity xi, we choose an integer ki such that 2π
ki

is less than the angle θi (the limit of θin). The

surface S with cone angle 2π
ki

at the point xi is a hyperbolic orbifold. As such it has a manifold cover h : S̄ → S
which is a branched cover so that the lifts of the point xi have a branching index equal to ki. The branched
cover h : S̄ → S extends naturally to a branched cover h : S̄ × I → S × I.

For a fixed n, we have the metric gn on S × R with cone singularities θin along {xi} ∩ R. If we pull back
gn using the map h, we get a hyperbolic metric ḡn with cone singularities on S̄ × R for which the covering
transformations are isometries. Let Mn = (S̄ × R, ḡn) be the manifold with cone singularities thus obtained.
By the choice of {k1, ..., kn0

}, for n large enough, we have kiθ
i
n ≥ 2π, hence the cone angle of ḡn around each
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singularity of M is at least 2π. Thus for n large enough, Mn is a negatively curved branched cover of Mn and
the topological type of Mn does not depend on n.

3.3 Pleated annuli

A technical device which will be useful later on is a simplicial annulus bounded by two given curves. As was
mentioned above, when we consider a quasifuchsian manifold with particle, we assume that it is not fuchsian.

Let us first fix some notations. We consider a quasifuchsian manifold with particles M with topological type
(S, x1, · · · , xn0

). We denote by g the complete hyperbolic metric with cone singularities of M and by C(M) the
convex core of M . We will use a negatively curved branched cover M of M (as defined in the previous section).
The construction of such a cover is explained above for a sequence Mn, here we take the constant sequence,
Mn = M for any n, to define M . We denote by C(M) ⊂ M the preimage of the convex core C(M) of M
under the covering projection, by λ̄ its bending measured geodesic lamination and by m̄ the induced metric on
∂C(M). We will use these notations throughout this section.

Now let us construct our simplicial annulus.

Lemma 3.2. Let M be a quasifuchsian manifold with particles and M a negatively curved branched cover of M .
Let d̄, d̄′ be homotopic simple closed geodesics, respectively on the upper and on the lower boundary component
of C(M). There exists an immersed annulus Ā in C(M̄) bounded by d̄ ∪ d̄′ ⊂ ∂C(M̄) such that the metric
induced on Ā by gn is a hyperbolic metric with cone singularities with angles at least 2π. The area of Ā is at
most max{lm̄(d̄) + lm̄(d̄′), i(λ̄, d̄) + i(λ̄, d̄′)}.

Proof. Let us specify that lm̄(d̄), resp. lm̄(d̄′), is the length of d̄, resp. d̄′, with respect to the metric m̄ induced
by ḡ on ∂C(M).

Since d̄ and d̄′ are disjoint homotopic simple closed curves, there is an embedded annulus Ā ⊂ C(M) with
∂Ā = d̄ ∪ d̄′. If the bending laminination of C(M ) intersects d̄ and d̄′ finitely many times, then d̄ and d̄′ are
piecewise geodesics. If not, we approximate them by piecewise geodesic curves and work on the approximates.
Consider a triangulation T of Ā whose vertices are all contained in d̄ ∪ d̄′ and such that any vertex of d̄ and
d̄′ (when considered as piecewise geodesics) is a vertex of T . As we have said before, in M , there is a unique
geodesic segment joining 2 given points in a given homotopy class. It follows that we can change Ā by a
homotopy so that each edge of T is a geodesic segment in C(M). Next, for each triangle Ti of T , we choose a
vertex v and we substitute Ti by the geodesic cone from v to the edge ev of Ti not containing v. This geodesic
cone is the union of the geodesic segments joining v to the edge ev of Ti (the homotopy class of such segment
is defined by the corresponding segment of Ti). Again the existence of this cone follows from the uniqueness of
geodesic paths. From now on we denote this cone by Ti. By construction, it is a locally ruled surface and as
such has negative curvature:

Claim 3.3. Let M be a hyperbolic manifold with cone singularities with cone angles bigger than 2π. Given a
point v ∈ M and a geodesic segment ev ⊂ M , a geodesic cone Ti ⊂ M from v to ev is an union of polygons with
curvature −1. Furthermore, the sum of the angles of the polygons meeting at an interior vertex is at least 2π.

Proof. The surface Ti meets the singular locus M s of M along segments and at points. For each component
κ of Ms ∩ Ti we consider the two extremal segments joining v to ev and intersecting κ. Doing this for each
component of M s ∩ Ti, we get a family of segments which are geodesic for the metric of (M, ḡ) and hence for
the induced metric on Ti. We add the components of M s ∩ Ti which are segments to this family and get a new
family of geodesic segments. The closure of each complementary region is a polygon, i.e. a disc with piecewise
geodesic boundary (see Figure 3.3). By construction each such polygon is a locally ruled surface in H

3 hence it
has curvature −1. Thus we have proved the first sentence of this Claim.

By construction, given an interior vertex v of this decomposition into polygons, there is a geodesic segment
(for the metric of (M, ḡ)) which passes through v. On each side of this segment, the sum of the angles of the
polygons has to be at least π. Thus, we can conclude that the sum of the angles of the polygons around v is at
least 2π.
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M s ∩ Ti

Figure 1: Decomposition of Ti into hyperbolic polygons

We change the annulus Ā so that it is a union of geodesic cones as described in Claim 3.3. Thus the induced
metric is hyperbolic with cone singularities with angles greater than 2π. By the Gauss-Bonnet Formula, the
area of Ā is at most the bending of ∂Ā, namely Area(Ā) ≤ i(∂Ā, λ̄n) = i(d̄, λ̄n) + i(d̄′, λ̄n).

It remains to prove that Area(Ā) ≤ lm̄(d̄) + lm̄(d̄′). By construction, Ā is a union of triangles Ti such that
one edge of each Ti lies in d̄∪ d̄′ and by Claim 3.3, the induced metric on each such triangle is a hyperbolic metric
with cone singularities with angles greater than 2π. It follows that the induced metric can be approximated by
Riemannian metrics with curvature at most −1. Let T h

i be a hyperbolic triangle (i.e. a geodesic triangle in H
2)

such that the length of the edges of T h
i are the same as the length of the edges of Ti. Since the induced metric

on Ti as curvature at most −1, we have Area(Ti) ≤ Area(T h
i ). On the other hand the area of a hyperbolic

triangle is less than the length of any of its edges (see [Thu80, Lemma 9.3.2]). It follows that Area(Ti) is less
than the length of any of its edges, in particular it is less than the length of the edge of Ti lying in d̄∪ d̄′. Since
this holds for all the triangles composing Ā, we have Area(Ā) ≤ lm̄(d̄) + lm̄(d̄′).

3.4 Long geodesics in M .

In this section, we will show that, under the hypothesis of Lemma 3.1, the induced metrics on ∂C(Mn) are
bounded. In order to do that we will show that if some geodesic is long in the boundary of C(M), then the
boundary of some annulus is almost not bent or the bending lamination tends to have a leaf with a weight
greater than or equal to π. Since this would contradict the conditions on λ∞, it will follow that any given
simple closed curve on ∂C(Mn) has bounded length. As earlier, when we consider a quasifuchsian manifold
with particle, we assume that it is not fuchsian.

Throughout this section we use the following notations. We have a sequence of quasifuchsian manifolds with
particles Mn with the same topological type (S, x1, · · · , xn0

). We denote by (gn)n∈N the metric of Mn. We
assume that the sequence Mn has converging angles, namely θin converge in (0, π) for any i ≤ n0. Since Mn is
quasifuchsian (with particles), C(Mn) is homeomorphic to S×I. We denote by S and S′ the two components of
∂C(Mn), S

′ is homeomorphic to S. Let mn be the metric defined on S ⊔ S′ by the identification with ∂C(Mn)
endowed with the metric induce by the gn-length of paths. This metric mn is a hyperbolic metric with cone
singularities of angles θin at the points {xi} ∈ S and {x′

i} ∈ S′. We denote by λn ∈ MLS,n0
× MLS,n0

the
bending measured geodesic lamination of ∂C(Mn).

We will make use of the branched covers Mn defined in Section 3.2. Recall that, for n large enough, Mn

is a negatively curved branched cover of Mn and that the topological type of Mn does not depend on n. We
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denote by C(Mn), m̄n and λ̄n the preimages of C(Mn), mn and λn under the covering map Mn → Mn.

We will use the next lemma to prove that, under the right hypothesis on λ∞, the induced metric on ∂C(Mn)
is bounded.

Lemma 3.4. Let Mn be a sequence of quasifuchsian manifolds with particles with the same topological type
and converging angles. Assume that (λn) converges to λ∞ (without any hypothesis on λ∞). Consider a simple
closed curve d ⊂ S. Let dn ⊂ ∂C(Mn) be the closed mn-geodesic freely homotopic to d. If lmn

(dn) −→ ∞, then
either λ∞ contains a leaf with a weight greater than or equal to π, or there is a sequence of essential annuli En

such that i(λn, ∂En) −→ 0.

Proof. Let S′ be the other boundary component of C(M) (i.e. not S), and let d′n be the closed mn-geodesic
freely homotopic to d lying in S′. Let Mn be a negatively curved branched cover of Mn so that for n large
enough the topological type of Mn does not depend on n. Let d̄n and d̄′n ⊂ ∂C(Mn) be homotopic lifts of dn
and d′n respectively under the covering projection M → M . The preimage λ̄n ∈ ML(∂M) of λn is the bending
measured lamination of C(Mn). Furthermore λ̄n converges to the preimage λ̄∞ of λ∞.

First we will show that if d̄n is long compared to the area of an annulus An bounded by d̄n ∪ d̄′n then there
are shortcuts in An. Namely d̄n ∪ d̄′n contains points which are close to each other in Mn but far in d̄n ∪ d̄′n.
This can happen for instance if dn and d′n are close to each other in C(Mn).

Claim 3.5. Let Mn be a sequence of quasifuchsian manifolds with particles and let Mn be a negatively curved
branched cover of Mn such that the topological type of Mn does not depend on n. Assume that (λ̄n)n∈N converges
to λ̄∞. Let d̄ ⊂ S̄ be a simple closed curve and denote by d̄n ⊂ S̄ ⊂ ∂C(Mn) the simple closed m̄n-geodesic in
the homotopy class of d̄.

If lm̄n
(dn) −→ ∞, then there is a m̄n-geodesic arc k̄n ⊂ C(Mn) such that ℓm̄n

(k̄n) −→ 0 and that either k̄n
joins the two components of ∂C(Mn) or the m̄n-geodesic arc κ̄n ⊂ d̄n in the homotopy class of k̄n relative to
its boundary satisfies ℓm̄n

(κ̄n) −→ ∞.

Proof. Denote by d̄′n the closed m̄n-geodesic lying in S̄′ ⊂ ∂C(Mn) that is homotopic to d̄n in C(Mn). Consider
the annulus Ān with ∂Ān = d̄n∪ d̄′n that was constructed in Lemma 3.2. Since lm̄n

(d̄n) −→ ∞, there is εn −→ 0
and a segment s̄n ⊂ d̄n such that lm̄n

(s̄n) −→ ∞ and i(s̄n, λ̄n) ≤ εn. Let t̄n ⊂ C(Mn) be the ḡn-geodesic
segment homotopic to s̄n relative to its endpoints. Since s̄n is almost not bent, its length is very close to the
length of t̄n (see [Lec06, Lemme A2]). In particular, lḡn(t̄n) −→ ∞. Furthermore, for the same reason, any
point in s̄n is close to t̄n. Namely there is ηn = η(εn) −→ 0 such that for any point z̄n ⊂ s̄n, there is x̄n ⊂ t̄n
with dḡn(x̄n, z̄n) ≤ ηn (see [Lec06, Affirmation A3]).

Since (λ̄n)n∈N converges to λ̄∞, then the bending i(λ̄n, ∂Ān) of ∂Ān converges. By Lemma 3.2 the area of
Ān is bounded. Now, in d̄n, we replace s̄n by t̄n. By the previous paragraph, we can still consider the annulus
Ān and its area is bounded. For any point in t̄n that is at distance at least 1

3 lm̄n
(t̄n) from ∂t̄n, we consider in

Ān an arc orthogonal to t̄n that either hits ∂Ān at distance less than ηn from its basepoint or has length ηn (ηn
will be specified later on). Let Z̄n ⊂ Ān be the union of those arcs that have length ηn and let z̄n be the union
of their starting points (i.e. their intersection with t̄n). The set Z̄n is embedded and its area is the same as the
area of a strip of length ℓm̄n

(z̄n) and width ηn. Notice that since the singularities of Ān have cone angles at
least 2π, the area of this strip at least the area of a hyperbolic strip with the same length and width, i.e. it is at
least ℓm̄n

(z̄n) sinh(ηn). Let K be a number larger than the area of Ān. Taking ηn such that sinh(ηn) >
3K

ℓm̄n
(t̄n)

,
we get

K ≥ Area(Z̄n) ≥ ℓm̄n
(z̄n) sinh(ηn) > K

3ℓm̄n
(z̄n)

ℓm̄n
(t̄n)

.

Hence ℓm̄n
(z̄n) <

1
3ℓm̄n

(t̄n). It follows that there exists an arc with length less than ηn orthogonal to t̄n whose
starting point x̄′

n ⊂ t̄n is at a distance at least 1
3 lm̄n

(t̄n) from ∂t̄n (distance measured on t̄n) and which hits
∂Ān on a point ȳn ⊂ ∂Ān.

As we have seen in the previous paragraph there is a point x̄n ⊂ k̄n very close to x̄′
n. It follows that x̄n ⊂ d̄n

and ȳn ⊂ d̄n ∪ d̄′n are joined in C(Mn) by an arc k̄n satisfying ℓgn(k̄n) −→ 0.
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If ȳn ∈ d̄′n then we are done. Otherwise x̄n and ȳn both lie in d̄n. By construction k̄n lies in an annulus
connecting d̄n to d̄′n. It follows that there is a m̄n-geodesic arc κ̄n ⊂ d̄n that is homotopic to k̄n relative to

{x̄n} ∪ {ȳn}. Since x̄n is at distance at least
lm̄n

(t̄n)
3 from the points in ∂s̄n, we have

ℓm̄n
(κ̄n) ≥

lm̄n
(t̄n)

3
−→ ∞ .

Consider the points x̄n and ȳn constructed in Claim 3.5 and extract a subsequence such that either ȳn ∈ d̄n
for any n or ȳn ∈ d̄′n for any n. We will show below that if ȳn lies in d̄n then λ∞ has a leaf with a weight
greater than or equal to π and that if ȳn lies in d̄′n then there is a sequence of essential annuli En ⊂ M such
that i(λn, ∂En) −→ 0.

In the next step we are going to construct m̄n-geodesic loops based at x̄n and ȳn that are almost not bent.

Claim 3.6. Let Mn be a sequence of quasifuchsian manifolds with particles and let Mn be a negatively curved
branched cover of Mn such that the topological type of Mn does not depend on n. Consider 2 points x̄n, ȳn ∈
∂C(Mn) away from the singularities and a ḡn-geodesic arc k̄n ⊂ C(Mn) joining x̄n to ȳn such that ℓḡn(k̄n) −→ 0
and that either x̄n and ȳn lie on different components of ∂C(Mn) or there is a m̄n-geodesic arc κ̄n ∈ ∂C(Mn)
that is homotopic to k̄n relative to its boundary {x̄n} ∪ {ȳn} and that satisfies ℓm̄n

(κ̄n) −→ ∞.
Consider a loop l̄n on ∂C(Mn) based at x̄n, which is geodesic for m̄n (except at x̄n). Let f̄n ⊂ ∂C(Mn) be

the m̄n-geodesic loop based at ȳn that is homotopic to l̄n. Assume that ℓm̄n
(l̄n) is bounded. Then the bending of

l̄n and f̄n tends to 0, namely i(l̄n, λ̄n) −→ 0 and i(f̄n, λ̄n) −→ 0.

Proof. When saying that x̄n and ȳn are away from the singularities we mean that there is a uniform upper
bound on their distance to the singular locus of Mn.

Let M̃n be the universal cover of Mn, it is a simply connected hyperbolic 3-manifold with cone singularities.
Let C(M̃n) be the lift of C(Mn) to M̃n. Let l̃n, k̃n, x̃n, ỹn be lifts of l̄n, k̄n, x̄n and ȳn with x̃n ∈ l̃n and
x̃n ∪ ỹn = ∂k̃n. The point x̄′

n = ∂l̃n \ x̃n is the image of x̄n under a covering transformation. Consider the

m̃n-geodesic arc f̃n ⊂ ∂C(M̃n) joining ȳn to its image ȳ′n under this covering transformation.

Let us first assume that there are no singularities in Mn. Then M̃n is isometric to H
3 and we choose the

isometry so that x̃n is identified with a fixed point of H3 (independantly of n). Let Π(x̃n) be a support plane

for C(M̃n) at x̃n, namely a totally geodesic plane that intersects C(M̃n) only along ∂C(M̃n) and contains x̃n.
Up to moving x̄n slightly, we may assume that it is disjoint from λ̄n so that there is only one support plane
at x̃n. The convex set C(M̃n) lies in a half-space E(x̃n) bounded by Π(x̃n). Similarly let Π(ỹn) be a support

plane at ỹn and let E(ỹn) be the half-space bounded by Π(ỹn) that contains C(M̃n).
If x̄n and ȳn lie on different components of ∂C(Mn) then Π(x̃n) and Π(ỹn) are disjoint. Otherwise, since

ℓm̄n
(κ̄n) −→ ∞, either Π(x̃n) and Π(ỹn) are disjoint or their intersection goes to ∞ with n (namely the sequence

Π(x̃n)∩Π(ỹn) lies outside larger and larger compact sets in H
3). Since ℓḡn(k̄n) −→ 0, ỹn converges to x̃n (viewed

as a fixed point in H
3) and, up to extracting a subsequence, Π(x̃n) and Π(ỹn) converges to the same plane Π∞

in H
3. Furthermore E(x̃n) converges to a half-space E(x̃∞) bounded by Π∞ and E(ỹn) converges to the other

half-space E(ỹ∞) bounded by Π∞.
Let Π(x̃′

n) be a support plane at x̃′
n. Since ℓm̄n

(f̄n) is bounded, up to extracting a subsequence, x̃′
n converges

in H
3. Again since either x̄′

n and ȳn lie on different components of ∂C(Mn) or dm̃n
(x̃′

n, ỹn) −→ ∞, Π(ỹn)∩Π(x̃′
n)

either is empty or goes to infinity. It follows that Π(x̃′
n) also converges to Π∞ and that E(x̃′

n) converges
to E(x̃∞). The external dihedral angle between Π(x̃n) and Π(x̃′

n) is an upper bound for i(l̄n, λ̄n), hence
i(l̄n, λ̄n) −→ 0.

It remains to show that i(f̄n, λ̄n) −→ 0.
By construction, dg̃n(x̃

′
n, ỹ

′
n) = dg̃n(x̃

′
n, ỹ

′
n) = ℓḡn(k̄n) −→ 0, hence Π(x̃′

n) and Π(ỹ′n) converge to the same
plane Π∞ in H

3. If x̄n and ȳn lie on different components of ∂C(Mn) then Π(x̃′
n) and Π(ỹ′n) are disjoint. It

follows that E(ỹ′n) converges to E(ỹ∞) while E(x̃′
n) converges to E(x̃∞) which implies i(f̄n, λ̄n) −→ 0 as above.

If x̄n and ȳn lie on the same component of ∂C(Mn) then dm̃n
(x̃′

n, ỹ
′
n) = dm̃n

(x̃n, ỹn) −→ ∞. It follows that
E(ỹ′n) converge to E(ỹ∞) which again implies i(f̄n, λ̄n) −→ 0.
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When Mn have singularities, we cannot define support planes, but we can define local support planes at
points which are disjoint from the singularities. Thus we can locally use the same arguments as in the non
singular case, leading to the same conclusion.

Let us choose for l̄n a shortest m̄n-geodesic loop based at x̄n. Since the area of (S̄ ⊔ S̄′, m̄n) is bounded,
there is a constant Q > 0 such that ℓm̄n

(l̄n) ≤ Q. By Claim 3.6, we have i(l̄n, λ̄n) −→ 0. Let f̄n be the
m̄n-geodesic loop based at ȳn that is homotopic to l̄n. By Claim 3.6, we have i(f̄n, λ̄n) −→ 0. Since l̄n and f̄n
are freely homotopic in C(Mn), there is an annulus Ēn bounded by l̄n and f̄n.

If ȳn lies in d̄′n, then l̄n and f̄n lie in different components of ∂M . In particular Ēn is an essential annulus
for any n. Furthermore, we have i(λ̄n, ∂Ēn) ≤ i(l̄n, λ̄n) + i(f̄n, λ̄n) −→ 0.

Consider the projection En of Ēn to C(Mn). Although En may not be embedded, it follows from the
Annulus Theorem [Wal67] that any neighbourhood of En contains an embedded annulus which we still denote
by En. We have then i(λn, ∂En) −→ 0.

Thus we have proved:

Claim 3.7. Let Mn be a converging sequence of quasifuchsian manifolds with particles with the same topological
type and converging angles. Consider a geodesic arc kn ⊂ C(Mn) joining the two components of ∂C(Mn) such
that ℓmn

(kn) −→ 0. Then there is a sequence of essential annuli En such that, up to extracting a subsequence,
i(λn, ∂En) −→ 0. �

If ȳn lies in d̄n then l̄n and f̄n are homotopic on ∂C(Mn). We are going to show that in this case λn tends
to have a leaf with a weight greater than or equal to π.

Claim 3.8. Let Mn be a sequence of quasifuchsian manifolds with converging angles and let Mn be a negatively
curved branched cover of Mn such that the topological type of Mn does not depend on n. Consider a ḡn-geodesic
arc k̄n ⊂ C(Mn) such that ℓḡn(k̄n) −→ 0 and that there is a m̄n-geodesic arc κ̄n ∈ ∂C(Mn) that is homotopic
to k̄n relative to its boundary and that satisfies ℓm̄n

(κ̄n) −→ ∞. Then lim inf i(κ̄n, λ̄n) ≥ π.

Proof. The curve k̄n ∪ κ̄n is a skew polygon (up to approximating κ̄n by piecewise geodesic segments) and
bounds a disc in C(Mn). Consider the geodesic cone D̄n from x̄n to k̄n ∪ κ̄n. As in the proof of Lemma 3.2, the
induced metric on D̄n is a hyperbolic metric with cone singularities with cone angles of at least 2π. Since k̄n is
short, the local support planes at the endpoints x̄n and ȳn of k̄n are close to each other (compare with the proof
of Claim 3.6). It follows that the sum of the internal angles of D̄n at x̄n and ȳn is close to being greater than
π, namely there is εn −→ 0 such that the sum of these 2 angles is greater than π − εn. Now the Gauss-Bonnet
formula shows that lim inf i(κ̄n, λ̄n) ≥ π.

Using this Claim we will now show that under the right hypothesis λn tends to have a leaf with a weight
greater than or equal to π.

Claim 3.9. Let Mn be a sequence of quasifuchsian manifolds with particles with the same topological type S× I
and converging angles. Let d ⊂ S be a simple closed curve and consider its geodesic representative dn on one
component of ∂C(Mn). Consider an arc κn ⊂ dn and denote by kn the geodesic arc in Mn in the homotopy
class of κn relative to its boundary. If ℓgn(kn) −→ 0, ℓmn

(κn) −→ ∞ and λn converges, its limit λ∞ has a leaf
with a weight greater than or equal to π.

Proof. Let Mn be a negatively curved branched cover of Mn whose topological does not depend on n. Let κ̄n

and k̄n be lifts of κn and kn respectively. Let x̄n and ȳn be the endpoints of κ̄n and let l̄n ⊂ ∂C(Mn) be a
shortest geodesic loop based at x̄n. Let f̄n ⊂ ∂C(Mn) be the geodesic loop based at ȳn that is homotopic to l̄n
on ∂C(Mn). Let S̃n be the universal cover of the connected component of ∂C(Mn) containing x̄n endowed with
the induced metric. Pick a connected component l̃n ⊂ S̃n of the preimage of l̄n under the covering projection.
This broken geodesic l̃n is invariant under a primitive covering transformation γn and we denote by f̃n the
component of the preimage of f̄n that is also invariant under γn. The line l̃n and f̃n are disjoint and bound an
infinite band B̃n, they are connected by a lift κ̃n of κ̄n and by its translates by γk

n, k ∈ Z. Pick a simple closed
geodesic ēn ⊂ ∂C(Mn) and let ẽn be a lift of ēn to S̃n. It is easy to check that a component ãn of ẽn ∩ B̃n
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which is an arc connecting l̃n to f̃n satisfies i(ãn, λ̃n) ≥ i(λ̃n, κ̃n)− ♯{ãn ∩
⋃

k g
k
nκ̃n}(i(l̄n, λ̄n) + i(f̄n, λ̄n)) where

λ̃n is the preimage of λ̄n under the covering projection. By Claim 3.6, i(l̄n, λ̄n) −→ 0 and i(f̄n, λ̄n) −→ 0 and
by Claim 3.8, lim inf i(κ̄n, λ̄n) ≥ π. Notice that ♯{ãn ∩

⋃
k g

k
nκ̃n} is bounded except if ēn spirals more and more

toward c̄n. If, for example, we assume that ēn and c̄n converge to intersecting geodesic laminations, ēn does
not spiral toward c̄n and we find that lim inf i(ēn, λ̄n) ≥ i(ēn, c̄n)π.

We will now use this inequality to conclude that, when λ̄n converge, its limit λ̄∞ has a leaf with a weight
greater than or equal to π.

Let us notice that, up to extracting a subsequence, the homotopy class of c̄n does not depend on n. Otherwise
there is a simple closed curve ē ⊂ S̄ such that i(ē, c̄n) −→ ∞. To see that, extract a subsequence such that
c̄n converges in the Hausdorff topology, pick a simple closed curve ē that intersects this limit transversally
and apply the inequality above to {ēn} = {ē}. But i(ē, c̄n) −→ ∞ would contradict the assumption that λ̄n

converge.
Let c̄ ⊂ S be a simple closed curve in the homotopy class defined by c̄n. By the inequality above, we have

lim inf i(ē, λ̄n) ≥ i(ē, c̄)π for any simple closed curve ē. It follows easily that c̄ is a leaf of λ̄n with a weight
greater than or equal to π. Taking the quotient, we conclude that λ∞ has a a leaf with a weight greater than
or equal to π.

It is now easy to conclude the proof of Lemma 3.4. Under the assumptions of Lemma 3.4, namely when
there is a simple closed curve d such that ℓmn

(dn) −→ ∞, it follows from Claims 3.5, 3.7 and 3.9 that either
there is a sequence of essential annuli En ⊂ C(Mn) such that i(λn, ∂An) −→ 0 or λ∞ contains a leaf with a
weight equal to at least π.

We can now deduce from Lemma 3.4 that under the assumptions of Lemma 3.1, the sequence of induced
metrics (mn)n∋N on ∂C(Mn) is bounded.

Lemma 3.10. Let Mn be a sequence of quasifuchsian manifolds with particles with the same topological type
and converging angles. Let λn be the measured bending laminations on the boundary of the convex core of Mn

and suppose that λn → λ∞. Let λ± be the respective restrictions of λ∞ to the two components of the boundary
∂C(Mn) of the convex core of Mn. Suppose that

• λ− and λ+ fill S,

• each closed curve in the support of λ− (resp. λ+) has weight less than π.

Then the sequence of induced metrics (mn)n∈N on ∂C(Mn) is bounded.

Proof. If (mn) is unbounded, then there is a simple closed curve d ⊂ S with geodesic representative dn ⊂
∂C(Mn) such that lmn

(dn) is unbounded. By Lemma 3.4 and the assumptions on λ, there is a sequence En of
essential annuli such that i(λn, ∂En) −→ 0. Such a sequence of annuli contradicts the assumption that λ− and
λ+ fill S.

3.5 Convergence of convex cores

The last step in the proof of Lemma 3.1 is to show that, under the assumption that the sequence of metrics on
the boundary are bounded, a subsequence of convex cores converges for the bilipschitz topology. Before starting
the proof, we will discuss the Margulis Lemma for quasifuchsian manifolds with particles. Let us first review
the Margulis Lemma for manifolds with variable curvature.

Theorem 3.11 (Margulis Lemma). Given n ∈ N there are constant µ = µ(n) > 0 and I(n) ∈ N with the
following property. Let X be an n-dimensional Hadamard manifold which satisfies the curvature condition
−1 ≤ K ≤ 0 and let Γ be a discrete group of isometries acting on X. For x ∈ X let Γµ(x) = {γ ∈ Γ|dγ(x) ≤ µ}
be the subgroup generated by the elements γ with dγ(x) ≤ µ. Then Γµ(x) is almost nilpotent, thus it contains a
nilpotent subgroup of finite index. The index is bounded in I(n).
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This statement is taken from [BGS85, §8.3]. Since we are considering a manifold M homeorphic to S × I,
an almost nilpotent subgroup of π1(M) is cyclic.

Theorem 3.11 does not hold for hyperbolic manifolds with cone singularities since the curvature is not
defined at the singularities. On the other it is not hard to replace the metric in a neighborhood of the singular
locus with a Riemannian metric. Furthermore, if the cone angle is at least 2π, one can choose the Riemannian
metric so that it has negative curvature with a lower bound depending on the cone angles and the choice of the
neighborhood of the singularities. Now we consider a quasifuchsian manifold with particle M and a negatively
curved branched cover M of M . By Lemma 2.8, there are R, ε > 0 such that any closed curve with length at
most ε is at distance at least R from the singularities. We replace the R-neighborhood of the singularities with
a smooth Riemannian metric and apply Lemma 3.11 to the resulting manifold. Notice that the lower bound
on the curvature of the Riemannian metric thus obtained will depend on R and the cone angle. Thus we get ε
depending on R and the cone angles so that for a given point x in the universal cover M̃ of M the subgroup
of π1(M) generated by the set {γ ∈ π1(M)|d(x, γx) ≤ ε} is cyclic. Since M is a finite branched cover, we have
a similar statement for M , replacing ε with ε/p where p is the index of the cover which depends on the cone
angles of the singularities of M . It follows that we have a Margulis decomposition for quasifuchsian manifolds
with particles:

Lemma 3.12. Let Mn be a sequence of quasifuchsian manifolds with particles with the same topological type
and converging angles. There is ε depending on the limit angles such that, for n large enough, each component
of the ε-thin part of Mn is a neighborhood of a closed geodesic.

Notice that the Margulis tubes we obtain here are disjoint from the singularities so they are isometric to reg-
ular neighborhoods of geodesics in hyperbolic 3-manifolds. We can now discuss the convergence of quasifuchsian
manifolds with particles.

Lemma 3.13. Let Mn be a sequence of quasifuchsian manifolds with particles with the same topological type and
converging angles. Suppose that the sequence (mn)n∈N (the induced metrics on the boundary of the convex cores)
converges. Then, after taking a subsequence, (Mn)n∈N converges to a quasifuchsian manifold with particles with
the same topological type as Mn.

Proof. First notice that since the cone angles are less than π, by Lemma 2.8 there is a positive lower bound
for the distance between two components of the singularity locus. Consider a point xn ∈ C(Mn), extract a
subsequence such that the sequence (xn,Mn) converges in the Gromov-Hausdorff topology (such a subsequence
always exists). By [BP01, Proposition 3.2.6], the limit (x∞,M∞) is a hyperbolic manifold with cone singularities.
By [BP01, Proposition 3.3.1], the sequence (xn,Mn) converges to (x∞,M∞) in the bilipschitz topology.

It remains to show that M∞ has the same topological type as Mn and that its metric is convex co-compact.
To do that we will show that the diameter of C(Mn) is uniformly bounded. It will follow that C(Mn) converges
to a convex set with the same topological type.

Lemma 3.14. Let (Mn)n∈N be a sequence of quasifuchsian manifolds with particles with the same topological
type and converging angles. Suppose that the sequence of induced metrics (mn)n∈N on the boundary of the convex
cores converges. Then the diameter of C(Mn) is uniformely bounded.

Proof. Consider a negatively curved ramified cover Mn of Mn whose topological type does not eventually depend
on n. It follows from the Margulis Lemma that a very short geodesic in Mn lies in a very deep embedded tube.
Using this observation we will show that there is a uniform lower bound on the length of any fixed curve in
C(Mn).

Claim 3.15. Let Mn be a sequence of quasifuchsian manifolds with particles and let Mn be a negatively curved
ramified cover of Mn whose topological type does not depend on n. Suppose that the sequence (m̄n)n∈N converges.
Let c̄ ⊂ S̄ be a simple closed curve. Then there is Q > 0 such that if c̄n ⊂ C(Mn) denotes the geodesic
representative of c̄, lḡn(c̄n) ≥ Q for any n ∈ N.

Proof. Assume the contrary, that is (after extracting a subsequence), lim lḡn(c̄n) = 0. Then c̄n is the core of a
deep Margulis tube Tn. Notice that since (m̄+

n , m̄
−
n )n∈N converges, there is no short curve in ∂C(Mn). More
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precisely, there is a uniform lower bound on the length of simple closed geodesics on ∂C(Mn). Since the induced
metric on ∂C(Mn) is negatively curved, it can have a large diameter only if it contains a short curve. Thus
the uniform lower bound on the length of simple closed geodesics on ∂C(Mn) provides us with a bound on
the diameter of each component of ∂C(Mn). It follows that ∂C(Mn) does not go too deep into a Margulis
tube (compare with [Min99, Lemma 6.3]): Let ε0 be a Margulis constant for the sequence Mn as provided by
Lemma 3.12, namely the ε0-thin part M<ε0

n of Mn is a union of Margulis tubes for n large enough. By [Mey87]
and [BM82] (see also [Min99, Lemma 6.1]) given ε small enough, the diameter of M<ε0

n − M<ε
n is large. In

particular, if a component of ∂C(Mn) intersects M<ε
n for a small ε, it has a large diameter. Hence the bound

on the diameter of each component of ∂C(Mn) provides us with a constant ε (depending on the sequence Mn)
so that ∂C(Mn) is disjoint from the thin part M<ε

n .
If we take Tn to be an ε-Margulis tube, we get that Tn lies entirely in the interior of C(Mn). Consider a

simple closed curve d̄ ⊂ S̄ that intersects c̄ essentially. By Lemma 3.2, there is an essential annulus An ⊂ C(Mn)
which is in the homotopy class defined by d̄ × I such that the area of An is at most ℓm̄+

n
(d̄+) + ℓm̄−

n
(d̄−). In

particular, since the sequence (m̄n)n∈N converges, the area of An is bounded. On the other hand, since d̄
intersects c̄ essentially, An intersects c̄n essentially. In particular, An intersects Tn along a disc Dn. When the
length of c̄n tends to 0, d(c̄n, ∂Tn) −→ ∞ (see [Mey87], [BM82] and [Min99, Lemma 6.1]). It follows that the
diameter of Dn, and hence its area, tends to ∞ when the length of c̄n tends to 0. Thus an upper bound for the
area of An ⊃ Dn yields a lower bound for the length of c̄n. This concludes the proof of Claim 3.15.

Consider now two simple closed curves c̄, d̄ ⊂ S̄ such that the components of S̄ \ (c̄ ∪ d̄) are discs. Two such
curves are said to fill the surface S̄. Consider essential annuli An and Bn in C(Mn) in the homotopy classes
defined by c̄ and d̄, constructed as in Lemma 3.2. In particular An and Bn have bounded area. Since An and
Bn have bounded areas and negative curvature, the only way for them to have a large diameter is to have a very
short core curve. But this would contradict Claim 3.15. Thus we can conclude that An and Bn have uniformly
bounded diameters.

Let B1≤k≤p be the closure of the components of S̄× I \ (c̄× I ∪ d̄× I). Our manifold N̄ = S̄× I is the union
of the Bk and the Bk are all balls. Define a surjective map fn : S̄ × I → C(Mn) that maps c̄× I and d̄× I to
An and Bn respectively and such that the restriction of fn to each Bk is an immersion. For each k, the image
of ∂Bk lies in An ∪ Bn ∪ ∂C(Mn). Since An and Bn have bounded diameters and since the induced metric
on ∂C(Mn) is bounded, the diameter of fn(∂Bk) is bounded for any k. It follows that fn(Bk) has a bounded
diameter for any k. Since fn is surjective, this implies that C(Mn) has a uniformly bounded diameter. Since
the index of the cover Mn → Mn does not depend on n, C(Mn) has a bounded diameter.

It remains to show that the convex core of M∞ is compact and homeomorphic to S × I (when Mn is
homeomorphic to S × R). Once again we will use the negatively curved ramified cover Mn. Since (x̄n,Mn)
converge to (x̄∞,M∞), there is Rn −→ ∞ and a sequence of bilipschitz map φn : B(x̄n, Rn) → B(x̄∞, Rn)
such that the bilipschitz constants tend to 1. By Lemma 3.14, for n large enough, C(Mn) ⊂ B(xn, Rn). Given
a geodesic segment γn ⊂ C(Mn), φn(γn) almost realizes the distance between its endpoints. Since Mn is a
hyperbolic manifold with cone singularities, φn(γn) is very close to the geodesic segment joining its endpoints.
It follows that, for n large enough, the convex hull of φn(C(Mn)) lies in a small neighborhood Vn(φn(C(Mn)))
of φn(C(Mn)). This convex hull has to contain C(M∞) since it is the smallest convex set. Thus we have
C(M∞) ⊂ Vn(φn(C(Mn))). It follows that C(M∞) is compact. Furthermore, since the induced metric on
∂C(Mn) is bounded, Vn(φn(C(Mn))) is homeomorphic to S̄ × I for n large enough. It follows that C(M∞)
is homeomorphic to S̄ × I. Thus we have proved that M∞ is a quasifuchsian manifold with cone singularities
with the same topological type as Mn.

In contrast to the other results of this section, we do not need to assume that the quasifuchsian manifolds
under consideration in Lemma 3.13 are not fuchsian.

3.6 The bending lamination of the convex core

To finish the proof of Lemma 3.1 we only have to check that the induced bending lamination on the boundary
of the convex core of the limit manifold is the limit of the bending laminations. We can state the result as
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follows.

Lemma 3.16. Let N = S × R, let x1, · · · , xn0
be distincts points on S, and let κi = {xi} × R, 1 ≤ i ≤ k. Let

(gn)n∈N be a sequence of quasifuchsian metrics on N with particles of angles θin along κi, 1 ≤ i ≤ k. Let λn,
resp. mn, be the measured bending laminations, resp. the induced metric, on the boundary of the convex core
of (N, gn). Suppose that (gn) converges in bilipschitz topology towards a quasifuchsian metric with particles g
on N , with cone angles θi ∈ (0, π) along κi. Then (mn)n∈N converges to the induced metric m on the boundary
of the convex core of (N, g), while (λn)n∈N converges to the measured bending lamination λ of the boundary of
the convex core of (N, g).

Proof. Set M = (N, g) and Mn = (N, gn) and denote by C(M) the convex core of M and by C(Mn) the convex
core of Mn. We consider as above the finite cover N̄ of N ramified along the cone singularities, chosen so
that all cone angles in N̄ have angle larger than 2π. This is useful below since we will use negative curvature
arguments, in particular the existence of a geodesic segment in a homotopy class with fixed endpoints. Clearly
it is sufficient to prove the lemma for N̄ , where the “convex core” considered is C(Mn), the lift to N̄ of C(Mn),
since once the result is obtained in N̄ , we can take the quotient by the group of deck transformations to obtain
the result on N .

Let (γn)n∈N be a sequence of segments in N̄ , with γn geodesic for ḡn for all n ∈ N. Suppose that (γn)n∈N

converges to a segment γ. We know that ḡn → ḡ in the bilipschitz topology and, in hyperbolic geometry, any
segment which is close to realizing the distance between its endpoints is close to a geodesic segment. So γ is
geodesic for ḡ. Conversely, any geodesic segment for ḡ is a Hausdorff limit of geodesic segments for the gn. The
same holds for closed geodesics.

Let (Ωn)n∈N be a sequence of compact subsets of N̄ such that, for all n ∈ N, Ωn is convex for ḡn. Suppose
that Ωn → Ω in the Hausdorff topology. The definition of a convex subset and the previous paragraph show
that Ω is convex, since any geodesic segment γ in (N̄ , ḡ) with endpoints in the interior of Ω is the limit of a
sequence of geodesic segments γn, with γn geodesic for ḡn. Since γn has endpoints in Ωn (for n large enough)
and Ωn is convex for ḡn, γn ⊂ Ωn, and therefore γ̄ ⊂ Ω, and Ω is convex for ḡ. Conversely, a similar argument
shows that any compact convex subset for ḡ is the Hausdorff limit of a sequence of compact convex subsets of
the metrics ḡn.

For all n, C(Mn) contains all closed geodesics in (N̄ , ḡn). Given a non-trivial homotopy class α in N̄r (the
complement of the singular curves in N̄), it is realized for each n ∈ N by a (unique) closed geodesic γn in
(N̄ , ḡn), and the sequence (γn)n∈N converges to the closed geodesic γ which realizes α in (N̄ , ḡ). For each n ∈ N,
γn ⊂ C(Mn). Moreover we have seen that the diameter of the C(Mn) is bounded. It follows that (C(Mn))n∈N

converges – after extracting a subsequence – to a limit subset C′ which contains all closed geodesics in (N̄ , ḡ).
Since C′ is the limit of a sequence of convex subset of the (N̄ , ḡn), it is convex. Moreover if Ω ⊂ C′ is convex,

then it is the limit of a sequence of convex subsets Ωn ⊂ C(Mn). But then (Ωn ∩ C(Mn))n∈N is a sequence of
convex subsets converging to Ω. Because the C(Mn) are minimal convex subsets, Ωn ∩ C(Mn) = C(Mn) for
all n, so that Ω = C′. So C′ = C(M). This shows that C(M) is the Hausdorff limit of the C(Mn).

Note that it is not clear at this point whether ∂C(Mn) → ∂C(M) in the C1 topology. However, a general
fact is that, if φ : S → H3 is a smooth embedding of a surface, and if (φn)n∈N is a sequence of Lipschitz
embeddings of S in H3 which converges to φ in the C0 topology, then the distance dn induced on S by the φn

are larger, in the limit, than the distance d induced by φ:

∀x, y ∈ S, lim sup
n→∞

dn(x, y) ≥ d(x, y) . (1)

The same holds if φ is Lipschitz with locally convex image rather than smooth, see [AZ67]. Moreover, in case
of equality in Equation (1) and if the φn also have locally convex images, then the convergence of (φn) to φ
is stronger, in the sense that the tangent plane to φn(S) almost everywhere converges to the tangent plane to
φ(S).

Coming back to ∂C(Mn), the C0 convergence towards ∂C(M) (together with the bilipschitz convergence of
ḡn to ḡ) is sufficient to insure that the metric m̄n on ∂C(Mn) is larger in the limit than the metric m̄ induced
by ḡ on ∂C(M). In other terms, if x, y ∈ ∂C(M) and xn, yn ∈ ∂C(Mn) are such that limxn = x, lim yn = y,
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then there exists for each ǫ > 0 some N0 ∈ N such that, for all n ≥ N0,

dm̄n
(xn, yn) ≥ (1− ǫ)dm̄(x, y) .

It follows that the lengths of the closed geodesics in S for m̄n are bounded from below by (1 − ǫ) times their
lengths for m̄.

Since the metrics m̄n and m̄ are hyperbolic metrics with cone singularities of fixed angles, this shows, using
standard arguments based for instance on pants decompositions, that m̄n → m̄ (see Section A.2, or [DP07]).

It then follows that as n → ∞, m̄n is bounded from above by (1+ ǫ)m̄: under the same hypothesis as above,

dm̄n
(xn, yn) ≤ (1 + ǫ)dm̄(x, y) . (2)

Since m̄n → m̄ in this sense of Equation (2), and moreover ∂C(Mn) → ∂C(M) in the C0 topology, it follows
that the convergence is actually stronger, and the tangent plane to ∂C(Mn) converges almost everywhere to
the tangent plane to ∂C(M) (both exist almost everywhere by convexity). This implies that the measured
laminations λn of ∂Cn converge to λ.

4 Prescribing the measured bending lamination on the boundary of

the convex core

The goal of this section is to prove Theorem 1.12 and then Theorem 1.13. The proof of Theorem 1.12 is
largely based on a well-known doubling argument already used for non-singular manifolds, which reduces the
infinitesimal rigidity with respect to the measured lamination (when the support of the lamination is along
closed curves) to a rigidity statement proved by Hodgson and Kerckhoff [HK98] for hyperbolic cone-manifolds.

Theorem 1.13 is then a consequence, using the compactness statement proved in section 3.

4.1 A doubling argument

Let M be convex co-compact manifold with particles, and let C(M) be its convex core. Suppose that the
support of the measured bending lamination of C(M) is a disjoint union of closed curves.

Definition 4.1. The doubled convex core of M is the 3-dimensional hyperbolic manifold with cone singular-
ities DC(M) obtained by gluing two copies of C(M) isometrically using the identification of their boundaries.

We have seen that the singular locus of M does not intersect the support of the bending lamination on
the boundary of the convex core — actually it even remains at a distance which is bounded from below by a
constant depending only on the cone angles. So the “particles” intersect the boundary of the convex core inside
faces, and moreover it does so orthogonally. It follows that the singular locus of DC(M) is a disjoint union of
closed curves, which are of two types:

• each “particle” p of M corresponds to a cone singularity along a closed curve in DC(M), of length equal
to twice the length of the intersection of p with C(M),

• each closed curve in the support of the measured bending lamination of the boundary of C(M) corresponds
to a closed curve (of the same length) in DC(M).

Still by definition, DC(M) admits an isometric involution — exchanging the two copies of C(M) which are
glued to obtain DC(M) — and the set of fixed points of this involution is a (non connected)) closed surface S,
which corresponds to the boundaries of both copies of C(M). This surface is orthogonal to the singularities of
the first kind, and contains the singularities of the second kind.
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4.2 Local deformations

The doubling trick explained above leads directly to a rigidity statement. We consider again a convex co-
compact manifold M with particles, for which the measured bending lamination of the convex core is along
closed curves γ1, · · · , γN , for which the bending angles are equal to α1, · · · , αN ∈ (0, π). As in the introduction,
we call θ1, · · · , θn0

the cone angles at the “particles”, and let θ = (θ1, · · · , θn0
).

Lemma 4.2. There exists a neighborhood U of (α1, · · · , αN ) in (0, π)N and a neighborhood V of the hyperbolic
metric g on M in QFS,n0,θ such that, if (α′

1, · · · , α
′
N ) ∈ U , there is a unique g′ ∈ V for which the support of

the measured bending lamination on C(M) is γ1 ∪ · · · ∪ γN and the bending angle on γi is α′
i, 1 ≤ i ≤ N .

Proof. Hodgson and Kerckhoff [HK98] proved a local deformation result for hyperbolic cone-manifolds. It
follows from their result that there exists a unique cone-manifold close to DC(M) with the same topology as
DC(M) (including the singular locus), the same angles at the cone singularities corresponding to the particles
in M , and angles 2α′

1, · · · , 2α
′
N instead of 2α1, · · · , 2αN at the cone singularities corresponding to the pleating

lines of C(M).
The uniqueness of D′ shows that it has the same symmetry as DC(M), that is, it admits an isometric

involution fixing a surface S′ isotopic to the surface S fixed by the isometric involution on DC(M). By an easy
symmetry argument, the cone singularities in D′ corresponding to the particles in M still have to be orthogonal
to S′, while those corresponding to the pleating lines of ∂C(M) have to be contained in S′ (see [BO04, Section
8] for details on the uniqueness part of this argument; the same argument can basically be used when particles
are present).

Therefore, D′ is the double of a hyperbolic manifold with convex boundary (obtained as the metric completion
of one half of the complement of S′ in D′) with cone singularities orthogonal to the boundary. The boundary
of this manifold is convex with no extremal point, so that it is the convex core of a quasifuchsian manifold with
particles M ′, with the same cone angle as M at the particles and such that ∂C(M ′) is pleated along the same
lines as ∂C(M), but with pleating angles α′

1, · · · , α
′
N instead of α1, · · · , αN .

The uniqueness of such a manifold, in the neighborhood of M , follows from the uniqueness of D′ in the
neighborhood of DC(M).

4.3 Proof of Theorem 1.12

Let γ1, · · · , γN be the curves in the support of λ, considered as curves in ∂N . Following the doubling construction
above, we define a closed manifold D(N) by gluing two copies of N along their boundary. D(N) contains
two families of curves, which we still call c1, · · · , cn0

(corresponding to the particles in N) and γ1, · · · , γN
(corresponding to the pleating lines on the boundary of the convex core).

Let θ′1, · · · , θ
′
n0

∈ (0, π) and α′
1, · · · , α

′
N ∈ (0, π) be chosen such that:

• for all i ∈ {1, · · · , n0}, 0 ≤ θ′i ≤ θi, and θ′i = π/ki for some ki ∈ N,

• for all j ∈ {1, · · · , N}, 0 ≤ α′
j ≤ αj/2, and α′

j = π/2lj for some lj ∈ N.

The Orbifold Hyperbolization Theorem for cyclic orbifolds (initially stated by Thurston, and proved in [BP01,
CHK00]) can be applied to show that there is a unique hyperbolic orbifold structure on D(N) with singularities
of angles θ′i on the ci and 2α′

j on the γj .
Since the θi are in (0, π), the result of Kojima [Koj98] shows that this orbifold structure can be deformed to

a unique cone-manifold structure, with cone angles θi on the curves ci and 2α′
j on the curves γj .

Let (αt)t∈[0,1] = (α1,t, · · · , αN,t)t∈[0,1] be the 1-parameter family defined by

αj,t = (1 − t)α′
j + tαj , 1 ≤ j ≤ N .

Then for all j ∈ {1, · · · , N}, αj,0 = α′
j , αj,1 = αj . Let I ∈ [0, 1] be the maximal interval containing 0 such that,

for all t ∈ I:

• there exists a hyperbolic structure on D(N) with cone singularities of angle θi on ci, 1 ≤ i ≤ n0, and a
cone singularity of angle 2αj,t on γj , 1 ≤ j ≤ N ,
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• this hyperbolic structure has an isometric involution exchanging the two copies of N glued to obtain
D(N).

By construction, I 6= ∅. Lemma 4.2 shows that I is open, while Lemma 3.1 shows that I is closed. So I = [0, 1],
this proves the existence part of the statement because D(N) with the hyperbolic cone-structure for t = 1 is
obtained by doubling the convex core of a convex co-compact hyperbolic manifold with particles of angles θi
and pleating angles αi on the boundary, as needed.

For the uniqueness, the same deformation argument can be used to start from a cone-manifold structure on
D(N) and decrease the angles along the curves γj , 1 ≤ j ≤ N , from 2αj to 2α′

j . Lemma 4.2 shows that the
corresponding deformation of the hyperbolic cone-manifold structure exists and is unique. Since the endpoint
of the deformation is unique (by the Orbifold Hyperbolization Theorem) there can be only one cone-manifold
structure on D(N) with angles θi on the curves ci, 1 ≤ i ≤ n0, angle 2αj on the curve γj , 1 ≤ j ≤ N , and the
necessary symmetry property.

4.4 Proof of Theorem 1.13.

Given λ−, λ+ ∈ MLS,x satisfying the hypothesis of Theorem 1.13, both are limits of a sequence of measured
laminations (λ−,n)n∈N, (λ+,n)n∈N with support along a union of closed curves, which satisfy the hypothesis of
Theorem 1.12.

For all n, Theorem 1.12 shows that λ−,n and λ+,n are the upper and lower measured bending laminations
of the boundary of the convex core for a unique quasifuchsian hyperbolic structure with particles gn on S ×R.
Lemma 3.1, applied to this sequence of hyperbolic structures, shows that it has a subsequence which converges to
a quasifuchsian hyperbolic structure with particles, for which the lower and upper measured bending laminations
of the boundary of the convex core are λ− and λ+, respectively.

4.5 The conditions are necessary

Finally we check here that the hypothesis in Theorem 1.13 are necessary. It obviously follows that the hypothesis
in Theorem 1.12 are also necessary.

Lemma 4.3. Let M be a non Fuchsian quasifuchsian manifold with particles, let λ be the measured bending
lamination on the boundary of its convex core. Then λ satisfies the hypothesis of Theorem 1.13.

Proof. The hypothesis that the weight of each closed curve in the support of λ− and λ+ is less than π is clearly
a consequence of the fact that C(M) is convex and compact.

Suppose by contradiction that λ− and λ+ do not fill S. There exists then a sequence (cn)n∈N of simple
closed curve in S such that

i(λ−, cn) + i(λ+, cn) → 0 .

Let c−n and c+n be the geodesic representatives of cn in the lower and upper boundary components of C(M),
respectively.

Let c̄−n and c̄+n be lifts of c−n and c+n , respectively, to M̄ , corresponding to the same lift of c. Lemma 3.2
shows that there exists an annulus An ⊂ M̄ bounded by c̄−n and c̄+n on which the induced metric is hyperbolic
with cone points of negative singular curvature (cone angle larger than 2π). Moreover, the boundary of An

is convex (for the induced metric) and its total curvature goes to 0 as n → ∞. The Gauss-Bonnet formula
then implies that the area of An goes to 0 as n → ∞. Since the lengths of the c̄−n and c̄+n are bounded from
below, this means that the distance between c̄−n and c̄+n in An goes to 0 as n → ∞. Therefore, the distance
between the upper and lower boundary of C(M) is zero, a contradiction because we have supposed that M is
not Fuchsian.

5 Earthquakes estimates

In this section we consider a convex co-compact manifold with particles M . The arguments in this more general
case are the same as in the specific situation of quasifuchsian manifolds with particles. Its boundary ∂M has a
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number of marked points x1, · · · , x2n0
which are the endpoints of the n0 “particles”, and to each is attached an

angle θk ∈ (0, π), 1 ≤ k ≤ 2n0, which is the angle at the corresponding particle.
We identify ∂M with the boundary of its convex core (see Lemma 2.5). We will use the following notations.

• λ is the measured bending lamination of the boundary of the convex core.

• m is its induced metric.

• t is the (unique) hyperbolic metric in the conformal class at infinity τ , with cone singularities of prescribed
angle θk at the marked point xk.

• Gλ(m) is the metric obtained by grafting the hyperbolic metric m along the measured lamination λ, so
that Gλ(m) has curvature in [−1, 0]. If for instance λ is rational, then Gλ(m) is obtained by inserting a
flat annulus in (∂M,m) for each closed curve in the support of λ, see e.g. [Dum08].

This section contains a basic estimates relating t to m. It will be useful in proving the compactness of a
certain map and Theorem 1.7. Its statement is based on the following extension to hyperbolic surfaces with
cone singularities of Thurston’s Earthquake Theorem (as found in [Thu86b, Ker83]).

Theorem 5.1 ([BS09]). For any h, h′ ∈ TΣ,x,θ, there is a unique measured lamination ν ∈ MLΣ,x such that
the right earthquake along ν sends h to h′.

The main estimate proved in this section, and the main tool for the proof of Theorems 1.7 and 1.14, is the
following.

Proposition 5.2. There exists a constant C > 0 (depending only on the topology of M) such that, if ν ∈
ML∂M,x is the measured lamination such that t = Er(ν)(m), then the length Lm(ν) is at most C.

It is proved in Section 5.4, after some preliminary considerations. It is used below in Section 6.

5.1 The average curvature of geodesics

In this part we prove a technical statement which is useful at several points below. It is an extension to convex
co-compact manifolds with particles of a result proved earlier by Bridgeman [Bri98] for the convex core of
non-singular convex co-compact manifolds, or more generally of pleated surfaces in H3. However the argument
used here is inspired by Bonahon and Otal [BO04].

We consider a quasifuchsian manifold with particles, M , and call θ1, · · · , θn0
the cone angles at the particles.

By definition, θ1, · · · , θn0
∈ (0, π). Here S is one of the connected components of ∂C(M).

Proposition 5.3. There exists a constant C0 > 0 such that, if γ is a geodesic segment on S transverse to λ,
i(γ, λ) ≤ C0(lm(γ) + 1).

Note that C0 depends on the θi (at least the argument we use here does depend on the maximum of the θi)
but not otherwise on M .

Proposition 5.3 will follow from the following lemma. We use here the constant ǫ0 coming from Lemma 2.7
and Lemma 2.8.

Lemma 5.4. There exists λ1 > 0 such that if γ is at distance at least ǫ0/2 from the intersection of S with the
singular set of M and if lm(γ) ≤ ǫ0/4, then i(λ, γ) ≤ λ1.

The proof of this lemma is based on some intermediate steps. The first is a consequence of Lemma 2.7 and
Lemma 2.8.

Claim 5.5. There exists ρ0 > 0 such that any point in S at distance at least ǫ0 in S from the singular points
of S is also at distance at least ρ0 in M from the singular set of M .
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Proof. Let x ∈ S which is at distance at least ǫ0 from the singular points of S, suppose that it is at distance
strictly less than ǫ0 from a particle p. Let y be a point in p which is closest from x, and let D be the totally
geodesic disk of radius ǫ0 orthogonal to p at y. This disk does not encounter any other particle by Lemma 2.8.
Moreover x ∈ D because y is at minimal distance from x among the points of p. We can therefore apply the
second point in Lemma 2.7 to D, with Ω equal to the intersection of D with the convex core of M . The result
follows.

Corollary 5.6. Let x ∈ S be contained in the support of the bending lamination λ, and let D′ be the totally
geodesic disk of radius ρ0 in M orthogonal to λ at x. Then D′ does not intersect the singular set of M .

After taking ρ0 smaller if necessary, we have another simple statement which will be necessary below.

Claim 5.7. Let y ∈ λ be a point in the connected component of x in the intersection of S with D′, and let gy
be the geodesic segment in the support of λ centered at y and of length 2ǫ0. Then the angle between gy and D′

at y is at least π/4.

Proof. We call gx the geodesic segment contained in the support of λ centered at x and of length 2ǫ0. gx is
disjoint from gy on S while x is at distance at most ρ0 from y, it follows that there exists c > 0 (depending on ǫ0
and ρ0, and going to 0 as ρ0 → 0 for fixed ǫ0) such that the distance to gx in S of any point of gy([−ǫ0+ρ0, ǫ0−ρ0])

is at most cǫ0. The same estimate holds in M̃ , the universal cover of M . If ρ0 is small enough — relative to ǫ0
— the result follows.

Remark 5.8. There exists k0 > 0, depending only on ρ0, such that, if Ω is a convex subset in the disk of radius
ρ0 in H2, the total curvature of the boundary of Ω is at most k0.

Proof. This follows from the Gauss-Bonnet Theorem applied to Ω, with k0 equal to 2π plus the area of the
hyperbolic disk of radius ρ0.

Proof of Lemma 5.4. If γ does not intersect the support of λ the statement obviously holds, so we suppose that
some point x ∈ γ is in the support of λ. Let D be the totally geodesic disk of radius ǫ0/2 centered at x and
orthogonal, at x, to the support of λ. By construction D is disjoint from Ms.

Remark 5.8 shows that the total curvature of the connected component c of D∩S containing x is at most k0.
By Claim 5.7, each geodesic in the support of λ which intersects c makes with D an angle at least π/4. It follows
that i(c, λ) ≤ 2k0. It also follows, since the length of γ is less than ǫ0/4, that γ can be deformed transversally
to λ to a segment of c, so that i(γ, λ) ≤ i(c, λ). Therefore i(γ, λ) ≤ 2k0, and this proves the lemma.

Proof of Proposition 5.3. Notice first that Lemma 5.4, although stated only for geodesic segments γ that are at
distance at least ǫ0/2 from the cone singularities, actually applies without this hypothesis. This is because, by
Lemma 2.7, the support of λ cannot enter the ǫ0-neighborhood of the singular points, so that any part of γ at
distance less than ǫ0 from the singular set of S has zero intersection with λ.

Let n ∈ N be the unique integer such that nǫ0/4 ≤ lm(γ) < (n+ 1)ǫ0/4. Then γ can be cut into a sequence
of segments γ1, · · · , γn of length ǫ0/4 and one last segment γn+1 of length smaller than ǫ0/4. Lemma 5.4 can
be applied to each of those segments, it yields that i(λ, γi) ≤ λ1, 1 ≤ i ≤ n+ 1, so that

i(λ, γ) ≤ (n+ 1)λ1 ≤

(
4lm(γ)

ǫ0
+ 1

)
λ1 ,

this proves the proposition.

5.2 The grafted metric and the hyperbolic metric at infinity.

We consider here the relation between the grafted metric Gλ(m) and the hyperbolic metric at infinity t.
We first recall the definition of the grafting map

G : ML× T → T

(l,m) 7→ Gl(m)
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on a closed surface S.
The definition of Gl(m) is simpler when l is a weighted multicurve, that is, its support is a disjoint union of

closed curves c1, · · · , cN . The transverse measure is then described by a positive weight wi on ci, for 1 ≤ i ≤ N .
Then Gl(m) is obtained by realizing each curve ci as a closed geodesics in (S,m), cutting S open along each
ci, and gluing in a flat strip of width wi. Thurston showed that this map extends by continuity from weighted
multicurves to measured laminations, see [KP94].

We now return to the setting where m and λ are the induced metric and measured bending lamination of
the convex core of a quasifuchsian manifold M . The grafted metric Gλ(m) is then isometric to the induced
metric on the unit normal bundle of C(M) in the unit tangent bundle of M . (The unit normal bundle of C(M)
is the space of unit vectors at points of ∂C(M) which are the oriented normals of a support plane of C(M).)

One of the key properties of the grafted metric Gλ(m) (see e.g. [KP94]) is that it is in the conformal class
τ at infinity — more precisely, there is a natural “Gauss map” defined from the unit normal bundle of ∂C(M)
with its “grafted metric” to the boundary at infinity of M , which is conformal. This means that Gλ(m) is
conformal to t. Moreover, since the angles θi are in (0, π), the intersection of the boundary of the convex core
with the particles is at non-zero distance (for m) from the support of λ, so that the cone angles of the grafted
metric at the intersections with the particles of the boundary of the convex core is equal to the cone angle of
the corresponding singularities.

The fact that t is conformal to Gλ(m) translates as

t = e2uGλ(m) ,

where u : ∂M → R is a function.

Lemma 5.9. The function u is non-positive on ∂M .

Proof. Consider two metrics g and g′ with g′ = e2ug, and let K and K ′ be their curvatures. Then (see e.g.
chapter 1 of [Bes87])

K ′ = e−2u(∆u +K) .

We can apply this formula here with g = Gλ(m) and g′ = t, so that K ′ = −1 while K ∈ [−1, 0]. It takes the
form:

∆u = −K − e2u = |K| − e2u ,

with K ∈ [−1, 0] (this equation is understood in a distributional sense).
Since the cone angles are the same for t and for Gλ(m), u is continuous and bounded at the singular points

(see [Tro91]). Let xM ∈ S be a point where u achieves its maximum. Suppose first that xM is not a singular
point, then u is C2 at xM by elliptic regularity (see [Tro91]). Moreover ∆u ≥ 0 at xM since xM is a maximum
of u. It follows that e2u ≤ |K| ≤ 1, so that u ≤ 0. To complete the proof it is sufficient to prove that u cannot
achieve a positive maximum at a singular point of S. So we consider a singular point x0 of S, and suppose that
u > 0 at x0. We will show that u cannot have a maximum at x0.

Let D be the geodesic disk of radius r centered at x0 in (S,Gλ(m)). Since λ does not enter a small
neighborhood of x0, D is hyperbolic, with only one cone singularity at x0, if r is small enough. Let i0 be the
isometric map between D, with the metric Gλ(m), and the hyperbolic disk H2

α with one cone singularity of
angle α, where α is the cone angle of S at x0. Let i1 : D → H2

α be the isometric embedding of (D, t) in H2
α.

Call v0 the vertex of H2
α, i.e., its singular point. Since u > 0 at x0, if r is small enough, then

∀x ∈ D \ {x0}, d(i1(x), v0) > d(i0(x), v0) .

There is a natural complex map φ : H2
α → H2, given in holomorphic coordinates centered at the singular

point by z → z2π/α. It is conformal and multiplies the metric by a factor (2π/α)2d(x, v0)
2(2π/α−1). Consider

the composition
Φ := φ ◦ i1 ◦ i

−1
0 ◦ φ−1 : (φ ◦ i0)(D) → (φ ◦ i1)

−1(D) .

It is a conformal map, with conformal factor equal to

(2π/α)2d(i1(x), v0)
2(2π/α−1)e2v(2π/α)−2d(i0(x), v0)

−2(2π/α−1) ,
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with v = u ◦ (φ ◦ i0)
−1. This can be written as

(
d(i1(x), v0)

d(i0(x), v0)

)2(2π/α−1)

e2v ,

and is bigger than 1 since u > 0 and d(i1(x), v0) > d(i0(x), v0).
Since Φ is a conformal map between two hyperbolic domains, its conformal factor cannot have a local

maximum bigger than 1 at an interior point by the argument given at the beginning of this proof. Therefore,
u cannot have a positive maximum at x0.

The following notion will be useful in this section and the next.

Definition 5.10. A c-curve on ∂M is either a closed curve or a segment with endpoints at cone singularities,
which does not contain any singular point (except at its endpoints if it’s not a closed curve).

We will sometimes implicitly consider c-curves up to homotopy in the complement of the singular points
in ∂M . Each homotopy class (with fixed endpoints) contains a unique geodesic for any non-positively curved
metric on ∂M (in particular for m, t and Gλ(m)). Given a c-curve γ, we will denote by Lm(γ) (resp. Lt(γ),
LGλ(m)(γ)) the length of that geodesic for the corresponding metric.

Corollary 5.11. Let γ be a c-curve in ∂M , then Lt(γ) ≤ LGλ(m)(γ).

This follows directly from Lemma 5.9, since any minimizing c-curve in (S,Gλ(m)) has shorter length for t,
and the minimizing curve in (S, t) in the same homotopy class is even shorter. Note also that for any c-curve
γ, i(λ, γ) ≤ CLm(γ). This follows from Proposition 5.3, and by the fact that the lengths of the c-curves which
are segments between two singular points of S is bounded from below.

5.3 An upper bound on the lengths of the curves at infinity

The second step in the proof of Proposition 5.2 is a comparison between the lengths of c-curves in the metrics
t and m.

Proposition 5.12. There exists a constant C > 0 (independent of M) such that:

1. for each c-curve γ in ∂M , Lt(γ) ≤ CLm(γ),

2. for each long tube T in the thin part of (∂M,m), T might also be a long tube for t, but its length for t is
at most its length for m plus C.

The proof uses some simple statements on the geometry of long hyperbolic tubes in (S, t). Recall (see
[DP07]) that the Margulis Lemma applies to hyperbolic surfaces with cone singularities of angle at most θ,
when θ ∈ (0, π): there exists a constant cM , depending on θ only, such that the set of points where the
injectivity radius is less than cM is a disjoint union of cusps, disks centered at a cone singularity, and tubes
with core of length less than 2cM .

We consider in this subsection a hyperbolic tube T , which can be described as isometric to the set of points
at distance at most L (for some L > 0) from the unique simple closed geodesic in the quotient of the hyperbolic
plane H2 by a hyperbolic translation of length l. Moreover l is supposed to be small and L large, so that the
lengths of the boundary components of T — which are both equal to l cosh(L) — are equal to cM . We call
σ the core of T , in other terms the unique simple closed geodesic contained in T , and we denote by σM the
cM -neighborhood of σ — the set of points at distance at most cM from σ in T .

Lemma 5.13. There exists a constant C > 0 such that i(λ, ∂σM ) ≤ Ce−L: the intersection of λ with the
boundary of σM is at most Ce−L.

Proof. Any maximal embedded geodesic segment in T intersects exactly once σ, but also each of the two
connected components of ∂σM . It follows that the intersection with λ of each of the connected components of
∂σM is equal to i(λ, σ). But since the length of σ is l = e−L, Proposition 5.3 — applied to long segments that
wrap many times around σ — shows that i(λ, σ) ≤ Ce−L.
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Lemma 5.14. There exists a constant C > 0 such that, if g is an embedded maximal geodesic segment in T ,
then the length of the orthogonal projection on σM of g ∩ (T \ σM ) is at most C.

Proof. If g ⊂ σ, then g ∩ (T \ σM ) = ∅ and the result applies. We suppose from here on that g is not contained
in σ. If g is contained in one connected component of the complement of σ in T then, since g is embedded, its
orthogonal projection on σ is injective, so that the length of its orthogonal projection is bounded by the length
of σ. Otherwise, it follows from standard hyperbolic geometry arguments that g intersects σ exactly once.

Consider the universal cover T̃ of T , it is isometric to the set of points at distance at most L from a geodesic
σ̃ ⊂ H2 which is the lift of σ. Choose one of the connected components, say g̃, of the lift of g to T̃ . It intersects
the lift of ∂σM with an angle which is bounded from below — otherwise g could not intersect σ. It follows
from this, and from elementary geometric properties of the hyperbolic plane, that the length of the orthogonal
projection on σ̃ of each of the segment of g̃ outside the lift of σM is bounded from above by a constant.

Corollary 5.15. There exists a constant C > 0 such that, whenever g0 is a maximal geodesic segment in T
such that the orthogonal projection of g0 on σ is injective, then i(λ|T\σM

, g0) ≤ C.

Proof. Let c be a maximal geodesic segment in the intersection with T of the support of λ, and let c′ be one of
the connected components of c∩T \σM . Since both c and g0 are geodesic segments, the union of the orthogonal
projections on σ of the segments of g0 and of c between two successive intersections between them covers σ.

It follows that the number of intersections between c′ and g0 is at most equal to (lc′ + lg0)/l, where lc′ is the
length of the orthogonal projection of c′ on σ and lg0 is the length of the orthogonal projection of g0 on σ (and
l is the length of σ).

But the hypothesis on g0 shows that lg0 ≤ l, while Lemma 5.14 shows that lc′ ≤ C. So the number of
intersections between c′ and g0 is at most CeL, where C is some positive constant.

Since this inequality applies to all geodesic segments in the support of λ, we find that

i(λT\σM
, g0) ≤ CeLi(λ, ∂σM ) ,

and Lemma 5.13 then shows that i(λT\σM
, g0) is bounded by a positive constant.

Proof of Proposition 5.12. Let γ be a c-curve in ∂M . It follows from Proposition 5.3 that

LGλ(m)(γ) ≤ Lm(γ) + i(λ, γ) ≤ C(Lm(γ) + 1) ,

where here again C is a constant depending only on the topology of M . Moreover Corollary 5.11 indicates that

Lt(γ) ≤ LGλ(m)(γ) ,

and point (1.) follows.
For point (2.) consider a closed geodesic γ contained in the union of T and of the thick part of ∂M , such

that

• the intersection of γ with T has two connected components γ1 and γ2,

• the intersection of γ with the thick part of ∂M (for m) has two connected components γ′
1 and γ′

2, and
each has length bounded by C.

If T separates the boundary component of ∂M containing it, γ has to go through T twice, otherwise it is not
necessary but it is still possible to choose γ with this property, and both cases can then be treated in a uniform
manner.

Once such a curve γ has been found, it is possible to change it by Dehn twists so that, in addition to the
conditions above, the segments γ1 and γ2 “wrap” at most once around T , i.e., their orthogonal projection to the
core σ of T is injective. This is achieved by “untwisting” γ as much as is necessary.

Denote as above by σ the core of T , and by σM the set of points at distance at most cM from σ. Since
γ wraps at most once around T , the length of the intersection of γ1 and γ2 with σM is at most 3cM . It then
follows from Proposition 5.3 that

i(λ|σM
, γ) ≤ C ,
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where C is some positive constant. By the same proposition, the intersection of γ with the restriction of λ to
the thick part of (∂M,m) is at most C. But Corollary 5.15 shows that

i(λ|T\σM
, γ) ≤ C .

Putting together those estimates we obtain that i(λ, γ) ≤ C, where C is yet another positive constant. The
definition of the grafted metric then proves that

LGλ(m)(γ) ≤ Lm(γ) + C .

Finally Lemma 5.9 indicates that the length of γ for t is less than that for Gλ(m). The result follows.

5.4 A bound on the length of the earthquake lamination

We now switch from 3-dimensional to 2-dimensional geometry to show that an upper bound on the length of
curves in (∂M, t) — relative to the length of the same curves in (∂M,m), as stated in Proposition 5.12 —
implies a lower bound on the same lengths. Proposition 5.2 will follow.

We consider a closed surface Σ, with some marked points x1, · · · , xn0
, and an angle θi ∈ (0, π) attached to

xi.

Proposition 5.16. For each C > 0 there is a constant C′ > 0 as follows. Let h, h′ ∈ HΣ,x,θ be two hyperbolic
metrics such that:

1. for each c-curve γ in Σ, Lh′(γ) ≤ CLh(γ),

2. for each long tube T in the thin part of (Σ, h), T might also be a long tube for h′, but its length for h′ is
at most its length for h plus C.

Let ν ∈ MΣ,x be the measured lamination such that h′ = Er(ν)(h). Then the length Lh(ν) is at most C′.

The proof of Proposition 5.16 will use a basic estimate on the variation of the length of curves under an
earthquake, essentially taken from [BS09].

Proposition 5.17. Let m ∈ MLΣ,x be a measured lamination, let g ∈ HΣ,x,θ be a hyperbolic metric with cone
singularities, and let g′ := Er

m(g). Let γ be a c-curve. Then

|Lg(γ)− Lg′(γ)| ≤ i(m, γ) ≤ Lg(γ) + Lg′(γ) .

Proof. The upper bound on i(m, γ) can be found in [BS09] (Lemma 7.1, p. 76); it is stated there for closed
curves, but the proof extends directly to segments between two singular points.

For the lower bound on i(m, γ), suppose first that the support of m is a disjoint union of simple closed
curves. Consider the geodesic (for g) γ0 homotopic to γ in Σx, and let γ1 be its image by the earthquake
Er

m, along with the union of the segments in the support of m between two points corresponding — after the
earthquake — to one intersection of m with γ0. γ1 is homotopic to γ0 in Σx. Clearly Lg′(γ1) = Lg(γ)+ i(m, γ),
while Lg′(γ) ≤ Lg′(γ1). It follows that Lg′(γ) ≤ Lg(γ) + i(m, γ). The same inequality also holds with g and g′

exchanged, and the lower bound on i(m, γ) follows. The result when m is a general lamination — not rational
— holds by density of the rational laminations in MLΣ,x.

We now return to the notations used in Proposition 5.16. Note that the support of ν is a geodesic lamination
in (Σ, g). It is therefore possible to consider the intersection of ν with the thin (resp. thick) part of Σ for g,
which we call νt (resp. νT ). The same decomposition can be done for g′, leading to ν′t and ν′T .

We first state a basic property of hyperbolic surfaces, which is necessary below.

Lemma 5.18. There exist r > 0, C > 0 and θ0 ∈ (0, π), depending only on the supremum θM of the θi and on
the genus of Σ, such that, for any x ∈ ΣT and any geodesic segment γ0 of length 2r centered at x, there exists
a closed geodesic in Σ of length at most C intersecting γ0 with angle at least θ0.
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Proof. Note that any maximal segment in the thick part of a topologically non-trivial hyperbolic surface (with
cone singularities of angle less than π) intersects some closed geodesic, of length bounded by a constant C.

The statement therefore follows from a straightforward compactness argument. Indeed, if the constant
θ < θM did not exist, there would be a sequence of thick hyperbolic surfaces with boundary ΣT,n (with cone
singularities of angles less than π), for which the optimal value of r would go to infinity, or the optimal value of
θ would go to π, as n → ∞. This sequence could be taken of fixed topology, and the diameter of those surfaces
would then be bounded, so that r would necessarily be bounded.

We could then choose a converging subsequence, and obtain a thick hyperbolic surface (with cone singularities
of angle less than θM ) for which some maximal geodesic segment intersects no closed geodesic of length less
than C transversally, a contradiction.

Lemma 5.19. There exists a constant C (depending only on the genus of Σ) so that the length of νT is at most
C.

Proof. Let r0 > 0 be smaller than the injectivity radius of (Σ, h) at each point of ΣT . There exists another
number r1 ∈ (0, r0) with the following property: if γ0 and γ1 are two disjoints geodesics in H2 and x ∈ γ0 is at
distance at most r1 from γ1, then any geodesic intersecting γ0 at distance less than r1 from x and making an
angle bigger than θ0 with γ0 intersects γ1 at distance at most r0 from x.

Choose a large constant C1 > 0. If the length of νT were bigger than some large constant, the sum
of the weights of the segments of the support of ν intersecting some geodesic disk of radius r1 and center
x ∈ supp(ν) ∩ ΣT would be bigger than C1. Applying the previous lemma, with γ0 equal to a segment
containing x in the support of ν, would yield a closed curve c in ΣT , of bounded length, such that i(c, ν) is
arbitrarily large.

Proposition 5.17 would then show that the length of c for h′ is much larger than the length of c for h,
contradicting point (1) in the hypothesis of Proposition 5.16.

Lemma 5.20. There exists a constant C > 0 as follows. Let γ ⊂ ΣT be a geodesic segment of length at most
cM . Then

i(ν, γ) ≤ CL(νT ) .

Proof. We will consider the case when ν is rational, the general case follows by density of the rational measured
laminations.

Let r be the injectivity radius of ΣT . Let νγ be the union of the intersections with ΣT of all geodesic
segments centered at a point x ∈ γ, of length 2r, in the support of ν. Each of those segments has length at
least r, since at least one side of x is contained in ΣT .

By definition of r, those segments intersect γ exactly once. Moreover, the length of νT is larger than the
sum over the segments of their length times their weight (this sum is finite since ν is rational). But this sum is
at least ri(ν, γ), so that L(νT ) ≥ ri(ν, γ). This proves the lemma.

Lemma 5.21. There exists a constant C > 0 such that, if T is a tube of length 2L in (Σt, h), with core σ, then
i(ν, σ) ≤ Ce−L.

Proof. Lh(σ) = c1e
−L, where c1 is some constant. Point (1) in the hypothesis of Proposition 5.16 shows that

the length of σ for h′ is at most c2e
−L, where c2 is another positive constant. But Proposition 5.17 then yields

the result.

Recall that we call σM the set of points at distance at most cM from σ.

Lemma 5.22. There exists a constant C > 0 such that, if T is a tube of length 2L in (Σt, h), with core σ, then
the length for h of the restriction of ν to σM is at most C.

Note that there is no reason to believe that this statement is optimal; indeed, it appears quite reasonable
to think that the bound could be improved to Ce−L. The bound given here, however, is both sufficient for our
needs and easier to obtain.
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Proof. We know by Lemma 5.21 that i(ν, σ) ≤ C1e
−L, where C1 > 0 is some constant. It follows that, if

Lh(ν|σM
) is larger than some constant C2, then each leaf of ν intersects σ with a very small angle, and for any

geodesic segment γ going through T and intersecting σ with angle bigger than π/4, i(γ, ν|σM
) ≥ C2e

L.
Let γ1 be a closed geodesic in (Σ, h) which has two segments in ΣT and two segments going through T .

Furthermore we choose γ1 with the smallest length. Since ΣT has bounded diameter, there is C > 0 such
that ℓh(γ1) ≤ C + 2T . Since γ1 has minimal length, it intersects σ with angle at most π/4 at each of the two
intersections. Then i(ν, γ1) ≥ 2C2e

L, so that, by Proposition 5.17, Lh′(γ1) is much larger than Lh(γ1). This
contradicts the hypothesis of Proposition 5.16.

Proof of Proposition 5.16. According to Lemma 5.19, the length of the restriction of ν to the thick part of Σ is
bounded by a constant (depending only on the genus of Σ). Σ is the union of ΣT , a finite set of neighborhoods
of cusps and cone singularities (which can be disregarded because geodesic laminations do not enter them), and
a finite set of long thin tubes, the number of those tubes being at most 3g− 3, where g is the genus of Σ. Let T
be one of those tubes, and let σ be its core. Then L(ν|σM

) is bounded by a constant by Lemma 5.22. Moreover,
the length of each maximal segment of the support of ν in T \ σM is at most 2eL, and each is contained in a
maximal segment in T (contained in the support of ν) which intersects σ once. Since i(ν, σ) ≤ CeL, the length
of the restriction of ν to T \ σM is at most 4C. Summing all contributions to the length of ν yields the desired
result.

Proof of Proposition 5.2. The statement clearly follows from Proposition 5.12 and from Proposition 5.16.

6 The conformal structure at infinity

This section contains the proof of Theorems 1.7 and 1.14, mostly as a consequence of Lemma 5.2.

6.1 A topological lemma

We first state a simple topological lemma, necessary below to apply Proposition 5.2 as directly as possible.
We fix a closed surface S of genus at least 2, a n-tuple of points x = (x1, · · · , xn0

) and a n0-tuple of angles
θ = (θ1, · · · , θn0

) ∈ (0, π)n.

Lemma 6.1. Let c > 0, and let K ⊂ HS,x,θ be a compact subset. The set of all elements of HS,x,θ obtained by
a right earthquake along a measured lamination of length at most c on an element of K is relatively compact.

Proof. Let m ∈ K. The set of measured laminations l ∈ ML of length less than c for m is compact in MLS,x.
Since the earthquake map is continuous relative to the measured lamination factor, the set

Er({l ∈ MLS,x | Lm(l) ≤ c} × {m})

is compact in HS,x,θ.
Again because the earthquake map Er is continuous, it follows that there is a neighborhood Um of m in

HS,x,θ such that the image by Er of

{(l,m′) ∈ MLS,x × Um | Lm′(l) ≤ C}

is relatively compact.
Since K is compact, it is covered by finitely many such neighborhoods Umi

, for mi in K. The result
follows.

6.2 Compactness relative to the conformal structure at infinity

The previous considerations lead to a simple proof of Proposition 1.6 from Proposition 5.2 and Lemma 3.13.
Consider a sequence (gn)n∈N of quasifuchsian metrics with particles, as in Proposition 1.6. Let (mn)n∈N be

the sequence of induced metrics on the boundary of the convex core, and let tn be the sequence of hyperbolic
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metrics in the conformal class at infinity τn. Since (τn)n∈N converges by the hypothesis of Proposition 1.6,
(tn)n∈N converges to a limit t, so it remains in a compact subset of HS,x,θ ×HS,x,θ.

But mn is obtained from tn by an earthquake along a measured lamination νn which, by Proposition 5.2,
has bounded length. Lemma 6.1 therefore shows that (mn)n∈N remains in a compact subset of HS,x,θ ×HS,x,θ.
We can therefore extract a sub-sequence so that (mn)n∈N converges.

Lemma 3.13 then shows that (gn)n∈N has a subsequence which converges to a quasifuchsian metric with
particles. This proves the proposition.

6.3 Proof of Theorem 1.7

We are now ready to prove Theorem 1.7. It is helpful to introduce additional notations:

• MS,x := ∪θ∈(0,π)NMS,x,θ is the space of quasifuchsian metrics with particles on S×R with a fixed number
of particles but with varying angles,

• HS,x := ∪θ∈(0,π)NHS,x,θ is the space of hyperbolic metrics on S with a fixed number of cone singularities
but with varying angles,

• ∆S,x := ∪θ∈(0,π)NHS,x,θ ×HS,x,θ is a kind of diagonal with respect to the angle variable in HS,x ×HS,x.

Note that, by a result of Troyanov [Tro91] already mentioned above, HS,x can be naturally identified with
TS,x × (0, π)N . The notation is nonetheless useful in the argument presented here.

Consider the natural map:
ΦS,x : MS,x → HS,x ×HS,x

sending a hyperbolic metric with particles on S×R (with cone angles given by the θi) to the conformal structures
at ±∞. It follows from the definition that the image of ΦS,x is contained in ∆S,x.

Let ΦS,x,θ be the restriction of ΦS,x to MS,x,θ, for a fixed θ ∈ (0, π)N . The main result of [MS09] is that
— in a slightly more general context, allowing for more topology and for singularities along a graph — ΦS,x,θ

is a local homeomorphism from MS,x,θ to HS,x,θ ×HS,x,θ. It follows that ΦS,x is a local homeomorphism from
MS,x to ∆S,x. Moreover, ΦS,x is proper by Proposition 1.6, so that it is a covering of TS,x,θ × TS,x,θ.

To prove that ΦS,x is a (global) homeomorphism we need to show that some elements of the target space
have exactly one inverse image. Suppose that for all i ∈ {1, · · · , N}, θi = 2π/ki, where ki ∈ N, ki ≥ 2. Let
τ+, τ− ∈ HS,x,θ. There exists a finite covering π : S → S, with ramification of order ki at the xi, such that τ+
(resp. τ−) lifts to a non-singular hyperbolic metric τ+ (resp. τ−). By the Bers double uniformization theorem
[Ber60] τ+ and τ− are in the conformal class at infinity of a unique quasifuchsian hyperbolic metric, say g,
on S × R. Since it is unique, g is invariant under the deck transformations of π, so that g is the pull-back to
S × R of a hyperbolic metric g on S × R, with cone singularities of angle θi along {xi} × R, 1 ≤ i ≤ N . This
construction also shows that g is unique — since any other hyperbolic metric with particles of the given angles
would lift to a non-singular quasifuchsian metric on S ×R, which would have to be g. This shows that (τ+, τ−)
has a unique inverse image by ΦS,x, so that ΦS,x is a homeomorphism from MS,x to ∆S,x.

6.4 Proof of Theorem 1.14

We need another natural map.

Definition 6.2. Let ΨS,x,θ : HS,x,θ ×HS,x,θ → HS,x,θ ×HS,x,θ be defined as follows. Given (t+, t−) ∈ HS,x,θ ×
HS,x,θ and θ = (θ1, · · · , θn0

) ∈ (0, π)n, there is by Theorem 1.7 a unique quasifuchsian metric with particles
g ∈ MS,x,θ such that ΦS,x,θ(g) = ([t+], [t−]). Then

ΨS,x,θ(t+, t−) = (m+,m−) ,

where m+ and m− are the conformal classes of the induced metrics on the upper and lower boundary components
of the convex core of (S × R, g), respectively.
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According to Proposition 5.2 and Lemma 6.1, if (m+,m−) = ΨS,x,θ(t+, t−), then m+ is Cq-quasi-conformal
to t+, and m− is Cq-quasi-conformal to t−. This shows that ΨS,x,θ is proper and extends continuously to a map
which is the identity on the boundary at infinity of HS,x,θ × HS,x,θ, so that it is onto. This proves Theorem
1.14.

7 Some questions and remarks

7.1 Some questions.

The quasifuchsian cone-manifolds described above are direct extensions of the “usual” quasifuchsian hyperbolic
manifolds which have received much attention over the last couple of decades. It is quite natural to wonder
whether some properties which have been conjectured in the smooth case can be extended to the singular
setting.

Question 7.1. Does uniqueness hold in Theorem 1.14?

Another natural question, which is “dual” to the previous one in a precise sense (see e.g. [Sch03]) concerns
the measured bending lamination on the boundary of the convex core.

Question 7.2. Does uniqueness hold in Theorem 1.13?

The same questions can be asked for submanifolds of quasifuchsian cone-manifolds which are convex but
have a smooth boundary, which is orthogonal to the singular locus. In the smooth case it is known [Sch06] that
one can prescribe the induced metric on the boundary, as well as the its third fundamental form (the smooth
analog of the measured bending lamination) and that each is obtained uniquely, it would be interesting to know
whether the same is true for quasi-fuchsian cone-manifold. The methods of [Sch06] do not appear to extend
directly to the singular case.

Since the Alhfors-Bers theorem extends as Theorem 1.7 to quasifuchsian manifolds with particles, it is quite
natural to ask whether the Ending Lamination Conjecture (see [BMM10, BCM12]) can also be extended to
hyperbolic manifolds with particles. A natural starting point would be to consider manifolds homeomorphic to
S × R, where S is a closed surface of genus at least 2.

Note also that those questions are not necessarily restricted to quasifuchsian cone-manifolds, and could also
be asked for “convex co-compact cone-manifolds”, if that term is understood in a proper way.

7.2 AdS manifolds with particles.

Mess [Mes07, ABB+07] discovered a remarkable analogy between quasifuchsian hyperbolic 3-manifolds and
globally hyperbolic maximal compact (GHMC) AdS manifolds. In particular he proved an analog of the Bers
double uniformization theorem form GHMC AdS manifolds: on a manifold homeomorphic to S×R, where S is
a closed surface of genus at least 2, the space of GHMC AdS manifolds is parametrized by the product of two
copies of the Teichmüller space of S, through the “left” and “right” parts of the holonomy representation.

GHMC AdS manifolds also have a convex core, whose boundary has a hyperbolic induced metric, as in the
quasifuchsian setting, and is pleated along a measured lamination. The analog of Theorem 1.13 holds in that
context [BS12]: any two measured laminations that fill S can be obtained as the bending lamination of the
boundary of the convex core. But the uniqueness remains elusive, as in the quasifuchsian setting. Moreover,
the analog of Theorem 1.14 is also conjectured to be true but no result is known.

It is also possible to consider GHMC AdS manifolds with “particles”, i.e., cone singularities along time-like
geodesics, for which the angle is less than π. The analog of the Bers double uniformization theorem (more
directly, the analog of Theorem 1.7) holds in this AdS setting [BS09]. The analog of Theorem 1.13 is also true
in that setting [BS12]. However no analog of Theorem 1.14 is known.

Still in the AdS setting, new phenomena can occur when the singularity is along a graph (so that the particles
are allowed to interact), see [BBS11, BBS12]. One can associate to a GHMC AdS manifold with a graph of
interacting particles a sequence of pairs of points in the Teichmüller space of the underlying surface, with each
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pair corresponding to a “slice” where no interaction occurs. It would be interesting to know whether any analog
of this description holds for quasifuchsian hyperbolic manifolds with cone singularities along a graph (perhaps
with some conditions on the cone angles, for instance cone angles less tha 2π).

7.3 The renormalized volume.

Theorem 1.7 for quasifuchsian manifolds with particles has possible applications to the Teichmüller theory of
hyperbolic surfaces with cone singularities (of fixed angles) on a surface. Indeed it was remarked in [KS08a] that
the definition of the renormalized volume of a quasifuchsian 3-manifolds extends to manifolds with particles.
Knowing Theorem 1.7, it is possible to remark that the key property of the renormalized volume — to be a
Kähler potential for the Weil-Petersson metric on Teichmüller space — extends to the natural Weil-Petersson
metric on the Teichmüller space of hyperbolic metrics with cone singularities (of prescribed angle less than π)
on a surface; the proof from [KS08a, KS12] directly extends to this setting.

One direct consequence is that this Weil-Petersson metric is Kähler, as was discovered by Schumacher and
Trapani [ST08] by other means. This metric, however, seems to depend on the choice of the cone angles.

Another possible application is to some properties of the grafting map considered on hyperbolic surfaces
with cone singularities of angle less than π, as considered in [KS08b, KS12]. This is however less directly related
to what we are doing here, since it only uses the geometry of 3-dimensional hyperbolic ends — rather than
quasifuchsian metrics — with particles.

A Quasiconformal estimates

This appendix contains the proof of Proposition 1.15. The first step is a simple extension to hyperbolic surfaces
with cone singularities of some classical tools concerning pants decompositions.

A.1 Pants decompositions

The content of this subsection is probably well known, see e.g. [DP07] for closely related considerations. We
include this material for completeness.

Let S be a closed surface, and let h be a hyperbolic metric on S with cone singularities at some points
x1, · · · , xn0

, with cone angles θ1, · · · , θn0
∈ (0, π). If h had cusps — or geodesic boundary components — at the

xi rather than cone singularities, it would be quite natural to consider pants decompositions of (S, h). With
cone singularities of angles less than π, it remains possible.

Definition A.1. A singular pair of pants is a hyperbolic surface with geodesic boundary, possibly containing
cone singularities of angle less than π, which is either:

• a hyperbolic pair of pants (with geodesic boundary) containing no cone singularity,

• a hyperbolic annulus with geodesic boundary containing exactly one cone singularity,

• a hyperbolic disk with geodesic boundary containing exactly two cone singularities.

Given a singular hyperbolic pair of pants, its three geodesic boundary components or cone singularities will
be called its legs. We hope that the reader will excuse us for this weird and perhaps confusing terminology.

Definition A.2. A pants decomposition of S is a decomposition S = S1 ∪ · · · ∪ Sn of S as the union of
finitely many subsurfaces with disjoint interior, each of which is a singular pair of pants.

It is implicit in this definition that the boundary of the Si contains no cone singularities; the cone singularities
are each contained in the interior of one of the singular pairs of pants.

Lemma A.3. There exists a constant Cp > 0 such that, for any choice of S and h, (S, h) has a pants decom-
position with all boundary curves of length less than Cp.
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Sketch of the proof. A standard recursive argument (see e.g. [BP92]) reduces the proof to showing that, for any
hyperbolic surface with cone singularities (of angle less than π) and geodesic boundary, there is a simple closed
geodesic of length at most Cp which is not homotopic to a singular point or to a boundary component.

This in turn follows from other standard arguments, for instance based on comparing the area of the surface
(given by a suitable Gauss-Bonnet formula, see e.g. [Tro91]) to the area of embedded geodesic disks.

Definition A.4. Let P be a singular pant. Its leg invariants are the length of its geodesic boundary components
and the angles at its cone singularities.

For instance, the boundary invariants of a (non-singular) hyperbolic pair of pants are the lengths of its
boundary components.

Lemma A.5. Each hyperbolic pair of pants is uniquely determined, up to isometry, by its leg invariants and
by the type of its “legs” — whether they are boundary components or cone singularities.

The proof follows the classical arguments used for non-singular hyperbolic pairs of pants, it is based on
elementary properties of some hyperideal hyperbolic triangles stated below in three propositions (the first two
have probably been known since Lobachevsky).

Recall that a hyperideal triangle can be defined, using the projective model of the hyperbolic plane, as
a triangle which might have its vertices either in the hyperbolic plane, on its ideal boundary, or outside the
closure of the hyperbolic plane (considered as the interior of a disk in the projective plane), but with all edges
intersecting the hyperbolic plane. A vertex is then ideal if it is on the ideal boundary, and strictly hyperideal
if it is outside the closed disk.

Recall also that given a point v0 outside the closure of the projective model of H2 (in the projective plane),
there is a unique hyperbolic geodesic, v∗0 , such that any the intersection with the projective model of H2 of any
projective line containing v0 is orthogonal to v∗0 . This geodesic is called the line dual to v0.

We introduce here a slightly restricted notion of hyperideal triangle.

Definition A.6. An extended hyperbolic triangle is a hyperbolic triangle with one or more strictly hyper-
ideal vertices and its other vertices in the “interior” of the hyperbolic plane. A truncated hyperbolic triangle

is the intersection of an extended hyperbolic triangle with the hyperbolic half-planes bounded by the lines dual to
its strictly hyperideal vertices (and not containing the endpoints of the edges going towards those vertices).

For instance, a right-angle hyperbolic hexagon can be considered — in two ways — as a truncated hyperbolic
triangle, with three strictly hyperideal vertices. Given a hyperbolic triangle, its angles are the hyperbolic angles
at the non-hyperideal vertices and the length of its intersections with the lines dual to the strictly hyperideal
vertices. Notes that those lengths can quite naturally be considered as angles (they are then imaginary numbers)
but it is not necessary to enter such considerations here (see e.g. [Sch98, Sch01] for more details).

There is a natural way to define the edge lengths of an extended hyperbolic triangle. The length of the edge
joining two vertices v and v′ is:

• the hyperbolic distance between v and v′, if neither v nor v′ is strictly hyperideal,

• the hyperbolic distance between v and the line dual to v′, when v′ is hyperideal but v is not,

• the distance between the lines dual to v and v′, when both are strictly hyperideal.

It is useful to remark that the lengths and angles of an extended hyperbolic triangle satisfy a natural
extension of the cosine formula. Moreover it is quite easy to check that an extended hyperbolic triangle, with
vertices of given type, is uniquely determined by two lengths and one angle, or by two angles and one length.

Lemma A.7. An extended hyperbolic triangle is uniquely determined by the type of its vertices — whether they
are “usual” or strictly hyperideal vertices — and its edge lengths.
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Proof. This statement is classical for “usual” hyperbolic triangles, with no strictly hyperideal vertex. It is also
well-known for triangles with three strictly hyperideal vertices, see [BP92].

Consider an extended hyperbolic triangle, with exactly one strictly hyperideal vertex, say v1, and two usual
vertices, v2 and v3. Let li be the length of the edge between vj and vk, for {i, j, k} = {1, 2, 3}. Consider l2, l3
as fixed, then l1 is easily seen (using for instance the cosine formula for extended hyperbolic triangles) to be a
strictly increasing function of the angle δ at v1. This proves the lemma in this case.

Consider now the situation where v1 is a “usual” vertex, while v2 and v3 are strictly hyperideal. Then given
v1, the positions of the lines dual to v2 and v3 are completely determined by the angle α at v1. Moreover the
distance between those lines, which by definition is equal to l1, is a strictly increasing function of α. This shows
the result in this last case.

The same arguments can be used to prove the “dual” lemma, concerning the possible angles. Here we need
a more precise statement, in addition to the fact that the angles determine the triangle we need to know that
a large class of triples of angles can actually be realized.

Lemma A.8. An extended hyperbolic triangle is uniquely determined by the type of its vertices — whether they
are “usual” or strictly hyperideal vertices — and its angles. The angles at the “usual” vertices can take any value
in (0, π/2), while the “angles” at the strictly hyperideal vertices can be any numbers in (0,∞).

Proof. Again the case where all vertices are “usual” is classical, while the case where all three vertices are strictly
hyperideal is well-known.

Consider a triangle T with one “usual” vertex, say v1, and two strictly hyperideal vertices, v2 and v3. Let
e1, e2, e3 be the edges opposite to v1, v2, v3 respectively. The triangle T is completely determined by the length
l1 of the edge e1 and by the “angles” α2 and α3, that is, the lengths of the segments of the lines v∗2 , v

∗
3 dual to

v2, v3 between their intersections with e1 and with e3 and e2, respectively.
Given α2 and α3, the possible values of l1 vary between a minimal value l1,m and a maximal value l1,M .

Suppose for instance that α2 ≥ α3, then l1,m corresponds to the situation where e3 is reduced to a point. Then,
after truncation, T corresponds to a quadrilateral with 3 right angles. The last angle, between v∗2 and e2, has
to be less than π/2 by the Gauss-Bonnet theorem. This means that for l1 slightly larger than l1,m, α3 > π/2.
On the other hand, α3 → 0 as l1 → l1,M , and α3 is a decreasing function of l1 ∈ (l1,m, l1,M ). This proves the
lemma for triangles with two strictly hyperideal vertices.

Consider now a triangle T ′ with one strictly hyperideal vertex, say v1, and two “usual” vertices, v2 and v3.
Consider α2, α3 ∈ (0, π/2) as fixed, T ′ is then entirely determined by l1. l1 can vary between a minimal value
l1,m > 0 and ∞, where l1,m corresponds to the case where v1 is an ideal vertex. The angle α1 then varies
between 0 and ∞, and is a strictly increasing function of l1. The result follows.

Lemma A.9. Each singular pair of pants has a unique decomposition as the union of two copies of a truncated
hyperbolic triangle (glued along their common boundary).

Proof. Let v1, v2, v3 be the three legs — which could be either singular points or boundary components. There
is a unique homotopy class of embedded segment joining vi to vj , for i 6= j. Those three segments can be
uniquely realized as minimizing geodesics, which are then orthogonal to the boundary components. Cutting the
pair of pants along those three geodesic segments yields two extended hyperbolic triangles, glued along their
edges. Those two extended triangles have the same edge lengths, so that they are isometric by Lemma A.7.

Proof of Lemma A.5. By Lemma A.8, the two extended triangles glued to obtain a hyperbolic pair of pants are
uniquely determined by their angles, which can take any value as long as the angles at the “usual” vertices are
less than π/2. This shows that hyperbolic pairs of pants are uniquely determined by their leg invariants, and
any values are possible as long as the angles at the singular points are less than π.

We now turn to the parameterization of hyperbolic metrics with cone singularities by Fenchel-Nielsen type
coordinates. We first state a lemma on the existence and uniqueness of a pants decomposition from topological
data, leaving the proof to the reader since it is the same as in the non-singular case.
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Lemma A.10. A pants decomposition is uniquely determined by the choice of the boundary curves γ1, · · · , γN ,
considered as simple closed curves in S \ {x1, · · · , xn0

}, under the hypothesis that:

• the γi can be realized as pairwise disjoint curves,

• each connected component of their complement is either a pair of pants containing none of the xi, or a
cylinder containing exactly one of the xi, or a disk containing exactly two of the xi.

Finally we state the main consequence, on the parameterization of hyperbolic metrics with cone singularities
of fixed angle by Fenchel-Nielse coordinates, again leaving the proof to the reader. Note that the Dehn twist
parameters are defined only in a relative way, however this is exactly the same as in the non-singular case (see
e.g. [BP92]).

Corollary A.11. Given a (topological) pants decomposition of S with boundary curves γ1, · · · , γN , there is a
homeomorphism

TS,x,θ → (R>0 × R)N

sending a hyperbolic metric to the length and fractional Dehn twist parameters at the γi.

The fractional Dehn twist parameters used here are the translation length of one side with respect to the
other so that, for a boundary curve of length l, a parameter equal to l corresponds to a “usual” Dehn twist (the
other possibility is to use an “angle” parameter, where 2π corresponds to full Dehn twist).

A.2 Proof of Proposition 1.15

It is now possible to use the pants decomposition provided by Lemma A.3 to prove Proposition 1.15: the induced
metric on the boundary of the convex core is (uniformly) quasi-conformal to the conformal structure at infinity.

The starting point is that a pants decomposition of (∂M,m) with boundary curves of bounded length
defines a pants decomposition of (∂M, τ) with boundary curves of approximately the same length. Recall that
the constant Cp was introduced in Lemma A.3.

Lemma A.12. There exists a constant C > 0 as follows. Let γ1, · · · , γN be simple closed curves on ∂M ,
defining a pants decomposition, of lengths less than Cp for m. Then

∀i ∈ {1, · · · , N},
Lm(γi)

C
≤ Lτ (γi) ≤ CLm(γi) .

Proof. The upper bound is a direct consequence of the first point in Proposition 5.12. If γi is short for m —
i.e., it is the core of a long tube in the thin part of (∂M,m) — then the second point of Proposition 5.12 proves
the lower bound for γi.

Suppose now that γi is realized in (∂M,m) as a closed geodesic in the thick part of ∂M . Then there exists a
closed geodesic γ′ intersecting γi of length at most Cp. If the length of γi in (∂M, τ) were small, than γi would
be realized in (∂M, τ) as the core of a long tube T in the thin part of (∂M, τ). But then γ′ would have to be
long (at least as long as the T ). This would contradict the first point in Proposition 5.12, and this proves the
lower bound for γi.

Lemma A.13. There exists a constant C > 0 such that, for each of the γi, the difference in the Dehn twist
parameter corresponding to γi in m and in τ is at most C(| log(Lm(γi))|+ 1).

The precise form of the estimate is important only if γi is short for m (and therefore for τ), in which case
| log(Lm(γi))| is half the length of the tube in the thin part of (∂M,m) containing γi.

Proof. Suppose first that γi is not short. Then it is contained in the thick part of (∂M,m), and there exists
another curve γ′, intersecting γi, of uniformly bounded length. A Dehn twist parameter bigger than some
constant would extend the length of γ′ by more than is allowed by Proposition 5.12, this proves the lemma in
this first case.

The same argument can be used when γi is short (i.e. when it is the core of a long thin tube), then γ′ can
be chosen to have length bounded by a constant time | log(Lm(γi))|, and this defines the maximal Dehn twist
parameter along γi.
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Proof of Proposition 1.15. Let γ1, · · · , γN be disjoint closed curves, defining a pants decomposition of (∂M,m)
with boundary curves of length less than Cp, as in Lemma A.3. Let l1, · · · , lN be the length of the γi for m,
and let d1, · · · , dN be the Dehn twist parameters for the same curves.

Lemma A.10 shows that the γi also define a pant decomposition of (∂M, τ), let l′i be the length of the γi for
τ , and let d′i be their Dehn twist parameters. Lemma A.12 indicates that the l′i are within a fixed multiplicative
constant from the li, while, by Lemma A.13,

|d′i − di| ≤ C(| log(li)|+ 1) , (3)

where C is some positive constant.
Let m′ be the hyperbolic metric with cone singularities obtained by gluing pairs of pants with boundary

lengths equal to the li, but with Dehn twist parameters equal to the d′i.
Note that m′ is C1-quasi-conformal to m, for some uniform constant C1 > 0. To prove this remark that

for each i ∈ {1, · · · , N} the set of points at distance at most C(| log(Lm(γi))|+ cM ) from γi is an annulus, and
that those annuli are disjoint. One can therefore build a C1-quasi-conformal diffeomorphism between m and m′

which is an isometry in the complement of those annuli around the γi, and which is “twisted” in those annuli,
with a twisting parameter which is an affine function of the distance to the γi.

The second and last step is that m′ is C3-quasi-conformal τ . Since those two metrics differ only by the
lengths of the boundary curves γi, and in view of (3), this follows again from a simple and explicit construction
which we leave to the interested reader.

Note that it might be possible to prove Proposition 1.15 using the same type of arguments as those used by
Epstein and Marden [EM86] in the non-singular case. This would have the advantage of providing directly a
quasiconformal constant independent on the genus of the boundar.
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