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Abstract: We use Malliavin operators in order to prove quantitative stable limit theorems on the
Wiener space, where the target distribution is given by a possibly multi-dimensional mixture of
Gaussian distributions. Our findings refine and generalize previous works by Nourdin and Nualart
(2010) and Harnett and Nualart (2012), and provide a substantial contribution to a recent line of
research, focussing on limit theorems on the Wiener space, obtained by means of the Malliavin
calculus of variations. Applications are given to quadratic functionals and weighted quadratic
variations of a fractional Brownian motion.
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1 Introduction and overview

Originally introduced by Rényi in the landmark paper [30], the notion of stable convergence for
random variables (see Definition 2.2 below) is an intermediate concept, bridging convergence
in distribution (which is a weaker notion) and convergence in probability (which is stronger).
One crucial feature of stably converging sequences is that they can be naturally paired with
sequences converging in probability (see e.g. the statement of Lemma 2.3 below), thus yielding a
vast array of non-central limit results — most notably convergence towards miztures of Gaussian
distributions. This last feature makes indeed stable convergence extremely useful for applications,
in particular to the asymptotic analysis of functionals of semimartingales, such as power variations,
empirical covariances, and other objects of statistical relevance. See the classical reference [9,
Chapter VIIL5|, as well as the recent survey [29], for a discussion of stable convergence results in
a semimartingale context.

Outside the (semi)martingale setting, the problem of characterizing stably converging se-
quences is for the time being much more delicate. Within the framework of limit theorems for
functionals of general Gaussian fields, a step in this direction appears in the paper |28], by Peccati
and Tudor, where it is shown that central limit theorems (CLTs) involving sequences of multiple
Wiener-1t6 integrals of order > 2 are always stable. Such a result is indeed an immediate conse-
quence of a general multidimensional CLT for chaotic random variables, and of the well-known
fact that the first Wiener chaos of a Gaussian field coincides with the L?-closed Gaussian space
generated by the field itself (see [16, Chapter 6] for a general discussion of multidimensional CLTs
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on the Wiener space). Some distinguished applications of the results in [28| appear e.g. in the
two papers |6, 1|, respectively by Corcuera et al. and by Barndorff-Nielsen et al., where the au-
thors establish stable limit theorems (towards a Gaussian mixture) for the power variations of
pathwise stochastic integrals with respect to a Gaussian process with stationary increments. See
[13] for applications to the weighted variations of an iterated Brownian motion. See [3] for some
quantitative analogous of the findings of [28] for functionals of a Poisson measure.

Albeit useful for many applications, the results proved in [28] do not provide any intrinsic
criterion for stable convergence towards Gaussian mixtures. In particular, the applications devel-
oped in [1, 6, 13] basically require that one is able to represent a given sequence of functionals as
the combination of three components — one converging in probability to some non-trivial random
element, one living in a finite sum of Wiener chaoses and one vanishing in the limit — so that the
results from [28| can be directly applied. This is in general a highly non-trivial task, and such a
strategy is technically too demanding to be put into practice in several situations (for instance,
when the chaotic decomposition of a given functional cannot be easily computed or assessed).

The problem of finding effective intrinsic criteria for stable convergence on the Wiener space
towards mixtures of Gaussian distributions — without resorting to chaotic decompositions — was
eventually tackled by Nourdin and Nualart in [11], where one can find general sufficient conditions
ensuring that a sequence of multiple Skorohod integrals stably converges to a mixture of Gaussian
distributions. Multiple Skorohod integrals are a generalization of multiple Wiener-Itd integrals
(in particular, they allow for random integrands), and are formally defined in Section 2.1 below.
It is interesting to note that the main results of [11] are proved by using a generalization of a
characteristic function method, originally applied by Nualart and Ortiz-Latorre in [23] to provide
a Malliavin calculus proof of the CLTs established in [24, 28|. In particular, when specialized to
multiple Wiener-Ito integrals, the results of [11] allow to recover the ‘fourth moment theorem’
by Nualart and Peccati [24]. A first application of these stable limit theorems appears in [11,
Section 5|, where one can find stable mixed Gaussian limit theorems for the weighted quadratic
variations of the fractional Brownian motion (fBm), complementing some previous findings from
[12]. Another class of remarkable applications of the results of [11] are the so-called Ité formulae
in law, see |7, 8, 20, 21|. Reference [7] also contains some multidimensional extensions of the
abstract results proved in [11] (with a proof again based on the characteristic function method).
Further applications of these techniques can be found in [31]. An alternative approach to stable
convergence on the Wiener space, based on decoupling techniques, has been developed by Peccati
and Taqqu in [27].

One evident limitation of the abstract results of [7, 11] is that they do not provide any informa-
tion about rates of convergence. The aim of this paper is to prove several quantitative versions of
the abstract results proved in 7, 11|, that is, statements allowing one to explicitly assess quantities
of the type

Ep(6% (u1), ..., 6% (uq))] — Elp(F)]|,

where ¢ is an appropriate test function on R?, each §% (u;) is a multiple Skorohod integral of
order ¢; > 1, and F' is a d-dimensional mixture of Gaussian distributions. Most importantly, we
shall show that our bounds also yield natural sufficient conditions for stable convergence towards
F'. To do this, we must overcome a number of technical difficulties, in particular:

— We will work in a general framework and without any underlying semimartingale structure,



in such a way that the powerful theory of stable convergence for semimartingales (see again
[9]) cannot be applied.

— To our knowledge, no reasonable version of Stein’s method exists for estimating the distance
from a mixture of Gaussian distributions, so that the usual strategy for proving CLTs via
Malliavin calculus and Stein’s method (as described in the monograph [16]) cannot be
suitably adapted to our framework.

Our techniques rely on an interpolation procedure and on the use of Malliavin operators. To
our knowledge, the main bounds proved in this paper, that is, the ones appearing in Proposi-
tion 3.1, Theorem 3.4 and Theorem 5.1, are first ever explicit upper bounds for mixed normal
approximations in a non-semimartingale setting.

Note that, in our discussion, we shall separate the case of one-dimensional Skorohod integrals
of order 1 (discussed in Section 3) from the general case (discussed in Section 5), since in the
former setting one can exploit some useful simplifications, as well as obtain some effective bounds
in the Wasserstein and Kolmogorov distances. As discussed below, our results can be seen as
abstract versions of classic limit theorems for Brownian martingales, such as the ones discussed
in [32, Chapter VIII].

To illustrate our findings, we provide applications to quadratic functionals of a fractional
Brownian motion (Section 3.3) and to weighted quadratic variations (Section 6). The results of
Section 3.3 generalize some previous findings by Peccati and Yor [25, 26], whereas those of Section
6 complement some findings by Nourdin, Nualart and Tudor [12].

The paper is organized as follows. Section 2 contains some preliminaries on Gaussian analysis
and stable convergence. In Section 3 we first derive estimates for the distance between the laws of a
Skorohod integral of order 1 and of a mixture of Gaussian distributions (see Proposition 3.1). As a
corollary, we deduce the stable limit theorem for a sequence of multiple Skorohod integrals of order
1 obtained in [7], and we obtain rates of convergence in the Wasserstein and Kolmogorov distances.
We apply these results to a sequence of quadratic functionals of the fractional Brownian motion.
Section 4 contains some additional notation and a technical lemma that are used in Section 5 to
establish bounds in the multidimensional case for Skorohod integrals of general orders. Finally, in
Section 6 we present the applications of these results to the case of weighted quadratic variations
of the fractional Brownian motion.

2 Gaussian analysis and stable convergence
In the next two subsections, we discuss some basic notions of Gaussian analysis and Malliavin

calculus. The reader is referred to the monographs [22| and [16] for any unexplained definition or
result.

2.1 Elements of Gaussian analysis

Let $ be a real separable infinite-dimensional Hilbert space. For any integer ¢ > 1, we denote by
$H% and H®9, respectively, the gth tensor product and the gth symmetric tensor product of £.
In what follows, we write X = {X (h) : h € $H} to indicate an isonormal Gaussian process over ).



This means that X is a centered Gaussian family, defined on some probability space (2, F, P),
with a covariance structure given by

E[X(h)X(9)] = (h,9)n, h,g€H. (2.1)

From now on, we assume that F is the P-completion of the o-field generated by X. For every
integer ¢ > 1, we let H, be the gth Wiener chaos of X, that is, the closed linear subspace of L3 ()
generated by the random variables {Hy(X (h)),h € 9, [|h|ly = 1}, where H; is the gth Hermite

polynomial defined by
d1 2
o 1\g 222 Y 2?2
Hy(z) = (—1)% o (e ).
We denote by H the space of constant random variables. For any ¢ > 1, the mapping I,(h®?) =
q'Hy(X (h)) provides a linear isometry between $? (equipped with the modified norm /q! ||-|| 5e4)
and H, (equipped with the L?(Q) norm). For ¢ = 0, we set by convention Ho = R and Iy equal

to the identity map.

It is well-known (Wiener chaos expansion) that L?(Q) can be decomposed into the infinite
orthogonal sum of the spaces H,, that is: any square integrable random variable F' € L*(Q)
admits the following chaotic expansion:

F =Y I(fy), (2.2)

q=0

where fo = E[F], and the f, € H97, ¢ > 1, are uniquely determined by F. For every ¢ > 0,
we denote by J; the orthogonal projection operator on the gth Wiener chaos. In particular, if
F € L?(Q) is as in (2.2), then J,F = I,(f,) for every ¢ > 0.

Let {eg, k > 1} be a complete orthonormal system in §. Given f € HP g € H®7 and
re{0,...,pAq}, the rth contraction of f and g is the element of HEP+9-2") defined by

[e.9]

F@rg= > (fen®... @ei)ger ® (g ey ©... @ e )gor. (2.3)

i1 peir=1

Notice that f ®, g is not necessarily symmetric. We denote its symmetrization by f®,g €
HOP+a=2r) - Moreover, f ®9 g = f ® g equals the tensor product of f and ¢ while, for p = ¢,
f®q9 = (f,9)52q. Contraction operators are useful for dealing with products of multiple Wiener-
It6 integrals.

In the particular case where = L?(A, A, u), with (A, A) is a measurable space and p is a
o-finite and non-atomic measure, one has that $°9 = L2(A9, A%4, ;%9) is the space of symmetric
and square integrable functions on A%. Moreover, for every f € $®, I,(f) coincides with the
multiple Wiener-1t6 integral of order g of f with respect to X (as defined e.g. in [22, Section
1.1.2]) and (2.3) can be written as

(f®rg)(t1a---atp+q72r) = ” f(tl,...,tp,r,sl,...,sT)

X g(tp—rt1s- -y tprg—2rsS15- -5 Sp)dp(s1) ... dp(sy).



2.2 Malliavin calculus

Let us now introduce some elements of the Malliavin calculus of variations with respect to the
isonormal Gaussian process X. Let S be the set of all smooth and cylindrical random variables
of the form

F:g(X(¢1)v"'7X(¢n))7 (2'4)

where n > 1, g : R™ — R is a infinitely differentiable function with compact support, and ¢; € $.
The Malliavin derivative of F' with respect to X is the element of L2(, §)) defined as

DF =Y %9 (X(61),.... X (b)) 6.

= 9
By iteration, one can define the ¢th derivative D?F for every ¢ > 2, which is an element of
L*(©,5°9).

For ¢ > 1 and p > 1, D% denotes the closure of & with respect to the norm || - ||pe.», defined
by the relation

q
IFI. = EIFPI+ Y E (ID'FI2s.).
=1

The Malliavin derivative D verifies the following chain rule. If ¢ : R® — R is continuously
differentiable with bounded partial derivatives and if F' = (F1,..., F,) is a vector of elements of
D2 then ¢(F) € D2 and

Dp(F) =Y 5F(F)DF;.
i=1 "

We denote by § the adjoint of the operator D, also called the divergence operator or Skorohod
integral (see e.g. [22, Section 1.3.2] for an explanation of this terminology). A random element
u € L?(£2,9) belongs to the domain of &, noted Domd, if and only if it verifies

|E((DF,u)s)| < cu v/ E(F?)

for any F' € DY2, where ¢, is a constant depending only on u. If w € Domé, then the random
variable d(u) is defined by the duality relationship (called ‘integration by parts formula’):

E(Fé(u)) = E((DF,u)g), (2.5)

which holds for every F' € D2, The formula (2.5) extends to the multiple Skorohod integral 6,
and we have

E(Fé%(u)) = E ((DF,u)ge,) , (2.6)

for any element u in the domain of §% and any random variable F' € D%2. Moreover, §7(h) = I,(h)
for any h € 9.
The following statement will be used in the paper, and is proved in [11].
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Lemma 2.1 Let ¢ > 1 be an integer. Suppose that F € D%2, and let u be a symmetric element
in Domd?. Assume that, for any 0 < r+ 7 < g, <D7"F, 8 (u >5®r € L2(Q,H%177=J). Then, for
anyr=0,...,q—1, (D"F,u) ¢, belongs to the domain of §97" and we have

q

Fsl(u) =" <z> 597" (D7 Fyu) e ) - (2.7)

r=0

(With the convention that 6°(v) = v, v € L*(Q), and D°F = F, F € L*(Q).)

For any Hilbert space V', we denote by D*P(V) the corresponding Sobolev space of V-valued
random variables (see [22, page 31]). The operator 47 is continuous from D*P($H%9) to DF~4P for
any p > 1 and any integers k > ¢ > 1, that is, we have

H(Sq(u)”]l])k—q,p < Ck,p ||UHID)k,p(5§®q) ) (2'8)

for all u € DFP($H®9), and some constant ¢, > 0. These estimates are consequences of Meyer
inequalities (see [22, Proposition 1.5.7]). In particular, these estimates imply that D%?($%9) C
Domd? for any integer ¢ > 1.

The following commutation relationship between the Malliavin derivative and the Skorohod
integral (see |22, Proposition 1.3.2]) is also useful:

Dé(u) = u+ 6(Du), (2.9)

for any u € D?2(£). By induction we can show the following formula for any symmetric element
w in ]Dj+k,2 (g)®j>

DF§ (u) = g <lz> <]Z:>i!5j_i(Dk_iu). (2.10)

1=0

Also, we will make sometimes use of the following formula for the variance of a multiple Skorohod
integral. Let u,v € D?%2($®9) C Domd? be two symmetric functions. Then

E(6%(u)d?(v)) = E({u, D1(0(v))) o)

(-0

I
MQ

1=0
q q 2 ) '
= 2 () B (DT"u®2¢-iD""0) (2.11)
1=0 ¢
with the notation
. . m . .
DI u®oq iD= Y (DTN u, & @ me)gear k) geai (D0, 66 @ 0) 520, 65) oo

J.kA=1

where {&;,7 > 1} and {n;,¢ > 1} are complete orthonormal systems in %9~ and H®, respec-
tively.



The operator L is defined on the Wiener chaos expansion as

00
L= ~aJs
q=0

and is called the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. The domain of this
operator in L?(£2) is the set

DomL = {F € L*(Q Zq 1TgF |72y < 00} = D>,

There is an important relationship between the operators D, ¢ and L (see [22, Proposition 1.4.3|).
A random variable F belongs to the domain of L if and only if F € Dom (§D) (i.e. F € DY? and
DF € Dom)), and in this case

§DF = —LF. (2.12)

Note also that a random variable F as in (2.2) is in D2 if and only if

o
> adll follfea < oo,
q=1

and, in this case, E (|[DF|3) = >t qq!||fq||%®q. If § = L?(A, A, u) (with p non-atomic), then
the derivative of a random variable F' as in (2.2) can be identified with the element of L?(A x Q)
given by

DoF = Zq 1 (fy(-ia)), ac A (2.13)

2.3 Stable convergence

The notion of stable convergence used in this paper is provided in the next definition. Recall that
the probability space (£2, F, P) is such that F is the P-completion of the o-field generated by the
isonormal process X.

Definition 2.2 (Stable convergence) Fix d > 1. Let {F,} be a sequence of random variables
with values in RY, all defined on the probability space (Q, F, P). Let F be a R%valued random
variable defined on some extended probability space (', F', P"). We say that F,, converges stably

to F', written F), 5 Fif
lim E [Zei“mmd} =F [Zei<’\’F >Rd,} (2.14)

n—oo

for every A € R? and every bounded F-measurable random variable Z.

Choosing Z =1 in (2.14), we see that stable convergence implies convergence in distribution.
For future reference, we now list some useful properties of stable convergence. The reader is
referred e.g. to |9, Chapter 4| for proofs. From now on, we will use the symbol £ to indicate
convergence in probability with respect to P.



Lemma 2.3 Let d > 1, and let {F,} be a sequence of random variables with values in RY.

law

1. F, % F if and only if (F,,,Z) — (F,Z), for every F-measurable random variable Z.

law

2. F, LF if and only if (F,Z) — (F,Z), for every random variable Z belonging to some
set & ={Zy: o € A} such that the P-completion of o(Z) coincides with F.

3. If F, X F and F is F-measurable, then necessarily F, Lyl

4. If F, A F and {Y,.} is another sequence of random elements, defined on (0, F, P) and such
that Y, 5 Y, then (F,,Y,) 3 (F,Y).

The following statement (to which we will compare many results of the present paper) contains
criteria for the stable convergence of vectors of multiple Skorohod integrals of the same order. The
case d = 1 was proved in [11, Corollary 3.3|, whereas the case of a general d is dealt with in |7,
Theorem 3.2]. Given d > 1, u € R? and a nonnegative definite d x d matrix C, we shall denote
by NMi(p, C) the law of a d-dimensional Gaussian vector with mean p and covariance matrix C'.

Theorem 2.4 Let q,d > 1 be integers, and suppose that Fy, is a sequence of random variables
in R? of the form F, = §(up) = (69(ub),...,6%us)), for a sequence of R'—valued symmetric
functions u,, in D?32(§®9). Suppose that the sequence Fy, is bounded in L'(2) and that:

1. <u%,®2n:1(DaﬁFﬂz) ® h)geq converges to zero in L'(Q) for all integers 1 < j,j, < d, all
integers 1 < aq,...,am,r < q—1 such that ay + -+ + ay +7r =q, and all h € H&.

2. For each 1 < i,j <d, <ufl,DqF£>ﬁ® converges in LY(Q) to a random variable sij, such
q

that the random matriz ¥ := (8;5) ;.4 5 nonnegative definite.

Then F, Lt F, where F is a random variable with values in R® and with conditional Gaussian
distribution Ng(0,%) given X.

2.4 Distances

For future reference, we recall the definition of some useful distances between the laws of two
real-valued random variables F, G.

— The Wasserstein distance between the laws of F' and G is defined by

dw(F.G)= sup |E[p(F)] - Elp(G)]].
@€Lip(1)

where Lip(1) indicates the collection of all Lipschitz functions ¢ with Lipschitz constant
less than or equal to 1.

— The Kolmogorov distance is

dico(F, G) = sup|P(F < z) — P(G < 2)|.
z€eR



— The total variation distance is

drv(F,G)= sup |P(FeA)—P(GeA)|
Ac#(R)

— The Fortet-Mourier distance is

drn(F.G)=  swp  |Elp(F)] ~ Elo(G)]].
€Lip(1),[l¢leo<1

Plainly, dw > dpar and dpy > dgo. We recall that the topologies induced by dyw, dgo and
dry, over the class of probability measures on the real line, are strictly stronger than the topology
of convergence in distribution, whereas dpp; metrizes convergence in distribution (see e.g. [16,
Appendix C] for a review of these facts).

3 Quantitative stable convergence in dimension one

We start by focussing on stable limits for one-dimensional Skorohod integrals of order one, that
is, random variables having the form F = §(u), where u € DY2(§)). As already discussed, this
framework permits some interesting simplifications that are not available for higher order integrals
and higher dimensions. Notice that any random variable F' such that E[F] = 0 and E[F?] < oo
can be written as F = §(u) for some u € Domd. For example we can take u = —DL~!F, or in
the context of the standard Brownian motion, we can take wu an adapted and square integrable
process.

3.1 Explicit estimates for smooth distances and stable CLTs

The following estimate measures the distance between a Skorohod integral of order 1, and a
(suitably regular) mixture of Gaussian distributions. In order to deduce a stable convergence
result in the subsequent Corollary 3.2, we also consider an element I7(h) in the first chaos of the
isonormal process X.

Proposition 3.1 Let F € D%? be such that E[F] = 0. Assume F = §(u) for some u € DY2($).
Let S > 0 be such that S* € D2, and let n ~ N(0,1) indicate a standard Gaussian random
variable independent of the underlying isonormal Gaussian process X. Let h € $. Assume that
@R =R is C3 with ||¢"|| oo, ¢ ||oc < 00. Then:

| Elo(F+1(h)] - Elp(Sn+L(R)]| < %HSOHHooEM(U, h)s| + [(u, DF)g — S7]] (3.15)

1
319" oo B I, DS?)5]-

Proof. We proceed by interpolation. Fix € > 0 and set S, = v/S2 +¢. Clearly, S, € DY2. Let
g(t) = E[p(I1(h) + VtF 4+ /1 —tSn)], t € [0,1], and observe that E[p(F +11(h))] — E[p(Sn +



Ii(h))] = g(1) — g(0) = ! o ¢'(t)dt. For t € (0,1), integrating by parts yields

V-t

(u,h)g + (u, DF)g + N n{u, DSe)s —Sf)] )

J(t) = iE 1 <>+fF+ﬁSe”><¢ ﬁ%ﬂ
- ;E (I (h) + VIF + V1= 15, ><\(/) ﬁ%)]

1

>

E_ "(Iy(h) + VtF + 1 — Sm)(\[

Integrating again by parts with respect to the law of n yields
J(t) = %E [ (L () + VEF +VT=1Sm) (+7/2(u, h)g + (u, DF)5 — 57|
- B [0 + VP + VT=T50)(u. D)5
where we have used the fact that S. DS, = %DS? = %DSQ. Therefore,

(Elp(Li(h) + F)] - Elp(L(h) + S| < 3 1" |0 E[2[¢u, h)s| + {u, DF)5 — 5% — €]

2
" 2 1 - t
+ll¢" Nl E[(u, DS >5’3H \[
and the conclusion follows letting € go to zero, because fol i—\_/%dt = % [ |

The following statement provides a stable limit theorem based on Proposition 3.1.

Corollary 3.2 Let S and n be as in the statement of Proposition 3.1. Let {F,} be a sequence
of random variables such that E[F,] = 0 and F,, = 6(uy), where u, € DY2($). Assume that the
following conditions hold as n — oo:

1. (up, DE,)g — S? in LY() ;
2. {un,h)g — 0 in LY(2), for every h € §;
3. {un, DS?)g — 0 in LY(Q).

Then, F, g Sn, and selecting h = 0 in (3.15) provides an upper bound for the rate of convergence
of the difference |E[p(F),)] —E[@(Sn)”, for every ¢ of class C® with bounded second and third
derivatives.

Proof. Relation (3.15) implies that, if Conditions 1-3 in the statement hold true, then ‘E’ L+
I1(h)]—E[p(Sn+11(h))]| — 0 for every h € § and every smooth test function ¢. Selecting ¢ to
be a complex exponential and using Point 2 of Lemma 2.3 yields the desired conclusion. [ |

Remark 3.3 (a) Corollary 3.2 should be compared with Theorem 2.4 in the case d = ¢ = 1
(which exactly corresponds to [11, Corollary 3.3]). This result states that, if (i) u,, € D*2($)
and (ii) {F,} is bounded in L!(2), then it is sufficient to check Conditions 1-2 in the
statement of Corollary 3.2 for some S? is in L'(£2) in order to deduce the stable convergence
of F,, to Sn. The fact that Corollary 3.2 requires more regularity on S?, as well as the
additional Condition 3, is compensated by the less stringent assumptions on u,, as well as
by the fact that we obtain explicit rates of convergence for a large class of smooth functions.
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(b) The statement of [11, Corollary 3.3] allows one also to recover a modification of the so-called
asymptotic Knight Theorem for Brownian martingales, as stated in [32, Theorem VIII.2.3|.
To see this, assume that X is the isonormal Gaussian process associated with a standard
Brownian motion B = {B; : t > 0} (corresponding to the case $§ = L*(R.,ds)) and also
that the sequence {u, : n > 1} is composed of square-integrable processes adapted to the
natural filtration of B. Then, F,, = §(un) = [ un(s)dBs, where the stochastic integral is
in the It6 sense, and the aforementioned asymptotic Knight theorem yields that the stable
convergence of F), to Sn is implied by the following: (A) fg un(s)ds £ 0, uniformly in ¢ in
compact sets and (B) [;¥ un(s)*ds — S% in L*(Q2).

3.2 Wasserstein and Kolmogorov distances

The following statement provides a way to deduce rates of convergence in the Wasserstein and
Kolmogorov distance from the previous results.

Theorem 3.4 Let F € D2 be such that E[F| = 0. Write F = §(u) for some u € DY2(§). Let
S € DY, and let n ~ N(0,1) indicate a standard Gaussian random variable independent of the
isonormal process X . Set

A = 3(\/12?E[<U,DF>5—S2|]—|—?E[|(u,DS2>5H> (3.16)

x max{&fﬂ[uu, DF)y - 8 + Y2 B0, DS ). \/Z 2+ E1$] +EUFH>} .

Then dw (F, Sn) < A. Moreover, if there exists a € (0,1] such that E[|S|~%] < oo, then
dicol(F, S1) < A= (14 E[|S| ). (3.17)

Remark 3.5 Theorem 3.4 is specifically relevant whenever one deals with sequences of random
variables living in a finite sum of Wiener chaoses. Indeed, in [19, Theorem 3.1] the following fact
is proved: let {F, : n > 1} be a sequence of random variables living in the subspace @ _, Hi,
and assume that F,, converges in distribution to a non-zero randomm variable Fi; then, there
exists a finite constant ¢ > 0 (independent of n) such that

dry (F, Foo) < ¢t (Fo, Foo) 75 < cdyy (F, Foo) %, 13> 1. (3.18)

Exploiting this estimate, and in the framework of random variables with a finite chaotic expansion,
the bounds in the Wasserstein distance obtained in Theorem 3.4 can be used to deduce rates
of convergence in total variation towards mixtures of Gaussian distributions. The forthcoming
Section 3.3 provides an explicit demonstration of this strategy, as applied to quadratic functionals
of a (fractional) Brownian motion.

Proof of Theorem 3.4. It is divided into two steps.

11



Step 1: Wasserstein distance. Let ¢ : R — R be a function of class C® which is bounded together
with all its first three derivatives. For any ¢ € [0, 1], define

oulz) = /R o(Viy + VT = ix)dy(y),

1

where dy(y) = —Qﬂe_yz/ 2dy denotes the standard Gaussian measure. Then, we may differentiate

and integrate by parts to get

ol(x) = 1f / ue (Viy + VI~ ix)dy(y) = —— / v — Do(Viy + VI~ iz)dy(y).
and
" (1 - t)3/2 2 /
@y (z) = Y /(y — 1)’ (Vty + V1 —tz)dy(y).
R

Hence for 0 < t < 1 we may bound

@ |loo
ot Hm*nwnw / plar() </ 2 1] (3.19)

and

1—t¢ 3/2 ! o \/§ / ~
Il < S22 e [ 2~ 11100) < W\/ [ 2 - v = 1=

Taylor expansion gives that
BlplP) - Bla(Pll < [ B [|e(iy+ VI=iF) - o(VT=1F)]] 109

+E [|p(vV1—tF) — o(F)|]
< Hso/Hoo\ft/R\y!dv(y)Jr!w’Hoo\\/l—t—llEHFH

< ﬂnsa’uoo{\/f +E[\Fu}.

Here we used that /1 —t— 1| =t/(v/1—t+ 1) < V. Similarly,

[Elp(Sn)] = Ele:(Sn)]] <\/75HSO’H<>O{\/5+E!SM} \[\f!\w!oo{lﬂLE[ ST}

Using (3.15) with (3.19)-(3.20) together with the triangle inequality and the previous inequalities,
we have

|E[p(F)] = Elp(Sn)]| < \/E\/ﬂ\s&'!oo{QJrE[SHE[IFH} (3.21)
\f E[|(u, DS?)g]] } :

+ ”‘p;"“’ {\/127E[‘<U,DF>5’3 — S]] +

12



Set

8 = /2 (24 B15) + EF).
and

V2

Oy = —E[[(uDF>g—S2|] ?E[KU,D‘S@)@H.

V2r

2/3
The function ¢t — t®; + %@2 attains its minimum at ty = (%) . Then, if ty) < 1 we choose
t = to and if ty) > 1 we choose t = 1. With these choices we obtain

1/3 - 2/3 o0x2/3
|Elp(F)] - Elp(Sm]| < [l¢/lle®y” (max((27° + 219277, 3857°) < ||e' . (3.22)
This inequality can be extended to all Lispchitz functions ¢, and this immediately yields that
dw(F, S?]) < A.
Step 2: Kolmogorov distance. Fix z € R and h > 0. Consider the function ¢y, : R — [0, 1] defined
by

1 fz<z
op(z) = 0 ifx>z+h
linear if z <z < z+h,

and observe that ¢y, is Lipschitz with ||} [|c = 1/h. Using that 1(_o .} < ¢n < Loz 4p) as well
as (3.22), we get

PIF < 2] - P[Sn < 2] < Elpn(F)] = E[1(—s,(SN)]
= Elpn(F)] — Elen(Sn)] + Elen(Sn)] — E[1(—c0,.1(Sn)]

< %+P[2< Sn < z+ hl.
On the other hand, we can write
[ <Sn < z+h)
= = [T ()P ()

= [ arso) [ TS [arst [ et
= — (s 6_2l'+/ ss/ e 2dx
\/% Ry z/s _ (z+h)/s

hlo 22 l1-«
< il /| | “dPs( </e 2<1@)dx>
< !h\aE [S17
l1-a 2 1—a
because (f ) a) dx) ( V1i—a . dy) < V2w, so that
A (e
PIF < 2] - PISy < 2] < 3 + B[S

13



Hence, by choosing h = Aa%rl, we get that

PIF < 2] - P[Sn < 2] < A= (1 + E[|S| ).
We prove similarly that

P[F < 2] — P[Sn < 2] > A= (1+ E[|S|7%]),

so the proof of (3.17) is done.
|

3.3 Quadratic functionals of Brownian motion and fractional Brow-
nian motion

We will now apply the results of the previous sections to some nonlinear functionals of a fractional
Brownian motion with Hurst parameter H > % Recall that a fractional Brownian motion (fBm)
with Hurst parameter H € (0, 1) is a centered Gaussian process B = {B; : t > 0} with covariance
function

E(BsBy) = - (7 + 27—t — s|?H).

N =

Notice that for H = % the process B is a standard Brownian motion. We denote by &£ the set of
step functions on [0,00). Let $ be the Hilbert space defined as the closure of £ with respect to
the scalar product

(Ljo.q, L0,5]) = E(BsBy).

The mapping 1 — B: can be extended to a linear isometry between the Hilbert space $)
and the Gaussian space spanned by B. We denote this isometry by ¢ — B(¢). In this way
{B(¢) : ¢ € 9} is an isonormal Gaussian process. In the case H > %, the space $ contains all
measurable functions ¢ : Ry — R such that

[ oot — s asan < o
0 0

and in this case if ¢ and ¢ are functions satisfying this integrability condition,
o oo
(p.8)y = HEH-1) [ [ )0t - P 2dsdt. (3.23)
o Jo

Furthermore, L%([O, 00)) is continuously embedded into $). In what follows, we shall write

cy =+/HQ2H-1I'(2H —1), H>1/2, (3.24)

. 1
and also c1 :=lim,, 1 cyg = —=.
2 Hiz “H = /3

The following statement contains explicit estimates in total variation for sequences of quadratic
Brownian functionals converging to a mixture of Gaussian distributions. It represents a significant
refinement of |25, Proposition 2.1] and [27, Proposition 18].

14



Theorem 3.6 Let {B;:t > 0} be a fBm of Hurst index H > % For every n > 1, define

n1+H

1
A, = / t"~Y(B? — B?)dt.
2 Jo

As n — 00, the sequence A, converges stably to Sn, where n is a random variable independent
of B with law N(0,1) and S = cg|Bi|. Moreover, there exists a constant k (independent of n)
such that

dry (An, Sn) < kn—lTH, n > 1.

The proof of Theorem 3.6 is based on the forthcoming Proposition 3.7 and Proposition 3.8,
dealing with the stable convergence of some auxiliary stochastic integrals, respectively in the cases
H =1/2 and H > 1/2. Notice that, since limy 1 cy = c1 = %, the statement of Proposition

2 2

3.7 can be regarded as the limit of the statement of Proposition 3.8, as H | %

Proposition 3.7 Let B = {B; : t > 0} be a standard Brownian motion. Consider the sequence
of Ité integrals

1
Fn = \/’E/ tnBtdBt, n Z 1.
0

Then, the sequence F,, converges stably to Sn asn — oo, where 1 is a random variable independent
of B with law N'(0,1) and S = |B—\[12|. Furthermore, we have the following bounds for the Wasserstein

and Kolmogorov distances
diol(Fn, Sn) < Cyn™7,

for any v < %, where C is a constant depending on vy, and
dw (Fy, Sn) < Cn_%,

where C' is a finite constant independent of n.

Proof. Taking into account that the Skorohod integral coincides with the It6 integral, we
can write F,, = d(uy), where u,(t) = \/ﬁtnBtlgo,l] (t). In order to apply Theorem 3.4 we need
to estimate the quantitites E (|(un, DFy,)g — S?|) and E (|(un, DS?)5 |). We recall that ) =
L*(Ry,ds). For s € [0,1] we can write

1
D,F, = /ns"Bs; + /n / t"dB;.
S

As a consequence,
1 1 1
(Un, DFy)g = n/ s*"B2ds +n / s" Bs (/ t”dBt) ds.
0 0 s

15



1

n

1
n/o sQnE(‘Bg—B%{)ds+’2 13

From the estimates

1 2
E(n/ s*"B2ds — B) <
0 2
1
< 2 ny1— sd
n/ sas+ ——~ 2@2n+ 1)
2n 1
—_— (1 —s)ds+ ——
\/2n+1\//0 R To Y
SIS
S Von o 4n]
and
1 1
nE(/ s" By </ t"dBt> ds) < / \/1—52"“(15
0 s 2’]’L+
< )
(n+ 5)\/211—1— \/ n
we obtain
2 \/§ 1
On the other hand,
1
1
DS | =vn E B/ "Bgd >\ vn < —. 3.26
o, D5 | = Vi B (|1 [ ) < Vi< (3.20
(3.27)

Notice that

Y
2n + ﬂ

2
(3.26) and (3.27) and with the notation of Theorem 3.4, for any constant

(il )

ng we have A < Cn~s. Therefore, dy (F,, Sn)

E(|F]) <

Therefore, using (3.25),
C < Cy, where

Wl

1 1 V2
Co=3|—(V2+ ) +
0 <\ﬁ27r ( 4) "3
there exists ng such that for all n >
n > ng. Moreover, E[|S|~%] < oo for any a < 1, which implies that

dKOl(Fna 87]) < C’yn_’ya
for any v < 75. This completes the proof of the proposition
As announced, the next result is an extension of Proposition 3.7 to the case of the fractional

1
< Cn7s for

Brownian motion with Hurst parameter H > 5
16



Proposition 3.8 Let B = {B; : t > 0} be fractional Brownian motion with Hurst parameter
H > % Consider the sequence of random variables F,, = §(uy), n > 1, where

Un (t) = nthBt]-[O,l] (t)

Then, the sequence F,, converges stably to Sm asn — oo, where 1 is a random variable independent
of B with law N(0,1) and S = cg|Bi|. Furthermore, we have the following bounds for the
Wasserstein and Kolmogorov distances

dKol(Fna 577) < C%HTL_’Y,

for any v < %, where C. i is a constant depending on vy and H, and

1-H

dw(Fn,Sn) < Cgn™ 3,

where Cpr is a constant depending on H.

Proof of Proposition 3.8.  Let us compute

1
D.F, = ns"B, + n'! / t"dB;.

s

As a consequence,

1
(tn, DFy) 5 = ||unl3 +n" <un/ t"dBt>
: K))

As in the proof of Proposition 3.7, we need to estimate the following quantities:

en = E ([unlls = %)),

1
6, = E ( nt <un/ t"dBt>
: )

We have, using (3.23)

and

)

1 t
en < HQH-1)n*"E (‘2/ / s"t" By By(t — 5)*"2dsdt — T'(2H — 1) B}
0 Jo

)

1 t
< H(2H - 1)n*E (‘2/ / s"t"[BsB; — BY](t — s)2H—2dsdtD
0 Jo

1 t
+H(2H — 1) 2n2H/ / s (t — s)H 1 2dsdt — T'(2H — 1)‘
0 JO

= ap+by,.
We can write for any s < ¢

E(|BsBy— Bi|) = E(|BsBy — BsB1 + BBy — Bf|) < (1 — )T + (1 — s)" < 2(1 — 5)".

17



Using this estimate we get

1 gt
an, < 4H(2H — 1)n2H/ / sU(1 — s)H (t — 5)2H 2 dsdt.
o Jo
For any positive integers n, m set

””m_/ / 7t — o) Pdsdt = T(n+ 2H)(n+m+ 2H) (3:28)

Then, by Hélder’s inequality

H
an < AH(2H —1)n*7pl- nH </ / s"t"(1 s)2H_2dsdt>

= 4H(2H — )n2Hprlz nH (Pnn — Prt1 n)

Taking into account that

L(n+1)(n(2H + 1) + 4H?)
Pnn — Pnt+ln = >
Fn+2H)2n+H)(n+2H)(2n+ 1+ 2H)

and using Stirling’s formula, we obtain that p,,, is less than of equal to a constant times n~2# and

Pnn — Pn+1,n 18 less than or equal to a constant times n~2H=1 This implies that a,, < Cygn~H,
for some constant Cy depending on H.
For the term by, using (3.28) we can write

by = H(2H — 1)['(2H — 1) ‘ 20" T(n+1) ' :

I'(n+2H)(2n+ 2H)

which converges to zero, by Stirling’s formula, at the rate n=!.

On the other hand,
1 1
s" Bg (/ T"dBr> |t — s|2H_2dsdtD
t

0 JO
1 1 1 2\ 11/2
< H(2H—1)n2H/ / st E</ r"dB, )
0 JO t

|t — 5|22 2dsdt. (3.29)
We can write, using the fact that Lu ([0,00)) is continuously embedded into £,

1 2 1 . 2H CH
E / rdB,| | < Cu (/ T‘HdT> <—5- (3.30)
t t (% +1)

Substituting (3.30) into (3.29) be obtain &, < Cyn~H, for some constant Cy, depending on H.
Thus,

6n = HQ2H-1)n*"E <

E (|{un, DF,)s — S?|) < Cyn~ ™.

18



Finally,

E(‘(un,DSQﬁJ ) = n E(

s"By|t — sFHstd4)

<

s”+H]t - 3\2H2dsdt’ < Cgnfi=t,

Notice that in this case E (|(un, DF,)g — S?|) converges to zero faster than E (|{u,, DS?)g |).

H-1
As a consequence, A < Cgn~ 3, for some constant C'y and we conclude the proof using Theorem
3.4. [

Proof of Theorem 3.6. Using It6 formula (in its classical form for H = %, and in the form discussed
e.g. in [22, pp. 293-294] for the case H > %) yields that

1
(1 _2H
S(1— 24
(note that & (B.l[t’l} ()) is a classical Itd integral in the case H = %) Interchanging deterministic
and stochastic integration by means of a stochastic Fubini theorem yields therefore that

nH

2H +n

In view of Propositions 3.7 and 3.8, this implies that A, converges in distribution to Sn. The
crucial point is now that each random variable A,, belongs to the direct sum Hy @ Ho: it follows
that one can exploit the estimate (3.18) in the case p = 2 to deduce that there exists a constant
c such that

dTV(AnaSn) CdW(AmST/) (dW(FnaSn) +dW(AmF ))

%(B% — B}) =6 (B1py() +

A, =F,+H

cn\»—A

where we have applied the triangle inequality. Since (trivially) dw (A, Fn) < 2}} o < nH—1
we deduce the desired conclusion by applying the estimates in the Wasserstein distance stated in
Propositions 3.7 and 3.8. [ |

4 Further notation and a technical lemma

4.1 A technical lemma
The following technical lemma is needed in the subsequent sections.

Lemma 4.1 Let n,...,nq be a collection of i.i.d. N(0,1) random Uarz'ables Fiz ay,...,aq0 € R
and integers ki, ...,kq > 0. Then, for every f : R* — R of class C* (where k=ki+-+kq)
such that f and all its partial derivatives have polynomial gmwth,

k
E[f(cam, ... Q) 'Udd]

(k1/2] [ka/2] d
=3
2.7l 2]l ']‘

71=0 7a=0 [=1

Gkr+-tka—2(j1++ja)
x B

floam, ..., Oéaﬂ]d)] .

k1—2j1 kq—2jq
02 ol
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Proof. By independence and conditioning, it suffices to prove the claim for d = 1, and in this
case we write 71 = 717, k1 = k, and so on. The decomposition of the random variable 7* in terms
of Hermite polynomials is given by

where Hj_9j(x) is the (k — 2j)th Hermite polynomial. Using the relation E[f(an)Hy_2;(n)] =
oF=2 E[f#=29) (am)], we deduce the desired conclusion. ]

4.2 Notation

The following notation is needed in order to state our next results. For the rest of this section we
fix integers m > 0 and d > 1.

(i) In what follows, we shall consider smooth functions

Vi R™D SR (Y1, ooy Y Ty ooy Tq) = V(Y1 ooy Yns T1s oons Tq). (4.31)
Here, the implicit convention is that, if m = 0, then 1) does not depend on (y1, ..., ym). We
also write
0
= — k=1,..,d.
ka akav ) 9

(ii) For every integer ¢ > 1, we write <7 (q) = </(¢; m,d) (the dependence on m,d is dropped
whenever there is no risk of confusion) to indicate the collection of all (m + ¢(1 + d))-
dimensional vectors with nonnegative integer entries of the type

alD = (ky, o kg @, oy amsbig, i=1,.,¢, § = 1,...,d), (4.32)

verifying the set of Diophantine equations

ki+2ke+---+qky = g,
ar+--+am+bi+--+bu k1,
bor + -+ bag = ko

b+ + b = kg

(iii) Given ¢ > 1 and o/ as in (4.32), we define

!
Clal?) = q

q ks m .| q d " (433)
iz R T @l T, Hj:l bi;!
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(iv) Given a smooth function 1 as in (4.31) and a vector a!? € o7 (q) as in (4.32), we set

oFrt-tka

aa(q)w — (4.34)

b b b1a+--+b
8y¢11 . 8yam8x 11+ tbgr -(9.I‘d1d qd

The coefficients C'(a(?)) and the differential operators Bo‘(q), defined respectively in (4.33)
and (4.34), enter the generalized Faa di Bruno formula (as proved e.g. in [10]) that we will
use in the proof of our main results.

(v) For every integer ¢ > 1, the symbol Z(q) = #B(q; m, d) indicates the class of all (m+q(1+2d))-
dimensional vectors w1th nonnegative integer entries of the type

/B(q (klu .. 7kq;a17 .. a’m)b;_]?b;/_] J 7 e g, j - 1)"'7d)7 (435)
such that
A(BD) = (k1 ooy gi a1, ooy a3 Uy + b5 1 = 1, g, = 1,y d), (4.36)
is an element of @7 (q), as defined at Point (ii). Given 39 as in (4.35), we also adopt the
notation
q
v] := ZZbU, b"| := ZZbg’J, ol =Y b, j=1,...d (4.37)
=1 j=1 =1 j=1 =1

(vi) For every 8@ ¢ %(q) as in (4.35) and every (Ii,...,lg) such that I, € {0,...,||bl]/2]},
s=1,...,d, we set

@ @ TTTT (%5 Y\ T [bes!
W(BDs1, 1) == CaBN T T] ( i ]) II T (4.38)
11 Lo (o, — 2111

where C(a(B(9)) is defined in (4.33), and

oI 1=2(li++la)

ax|b/.’1|7211 O |b//d| 2y’
1

8£’8(q>;l1"”’ld) — 9a(BD) (4.39)

where (3@ is given in (4.36), and 9*(*”) is defined according to (4.34).

(vii) The Beta function B(u,v) is defined as

1
B(u,v) = / N1 =)t u,v > 0.
0

21



5 Bounds for general orders and dimensions

5.1 A general statement

The following statement contains a general upper bound, yielding stable limit theorems and
associated explicit rates of convergence on the Wiener space.

Theorem 5.1 Fiz integers m >0, d>1andq; > 1, j=1,...,d. Let n = (n1,...,nq) be a vector
of i.i.d. A (0,1) random variables independent of the isonormal Gaussian process X. Define
¢ = maxj—1,. qq;. Foreveryj=1,....d, consider a symmetric random element u; € D244 ($5295 ),
and introduce the following notation:

— Fj :=0%(uy), and F := (F1, ..., Fy);

— (81,...,84) is a vector of real-valued elements of D944, and
Sem = (Sim, ..., Sana)-

Assume that the function ¢ : R™*% — R admits continuous and bounded partial derivatives up to
the order 2¢ + 1. Then, for every hq,...,hpy € 9,

|Ele(X (h1), o, X (hin); F)] = Elp(X (h1), .., X (hm); S - n)]]

d
1 o2

Llbgy /2] LIbyl/2]

d
J%Z Z Z Z /W(ﬁ(q’v);ll,...,ld)’

(ag).
6£5 ak 7l17m7ld)80wk (5.41)
k=1 g(qk)eggo(qk) 11=0 l4=0 o
d g d ' )
xE ] SPe=2 <uk hr - @ hE (X)) {(szj)% ® (Dzsj)®bij}> ,
s=1 =1 j=1 H®

where we have adopted the same notation as in Section 4.2, with the following additional conven-
tions: (a) Bo(q) is the subset of B(q) composed of those B(qx) as in (4.35) such that b;j =0 for

J=1,..d, (b) W(B; 1y, .. 1g) == W(BW); 1y, ... 1) x B(|V/| + 1/2; || + 1), where B is the

Beta function.

5.2 Casem=0,d=1

Specializing Theorem 5.1 to the choice of parameters m = 0, d = 1 and ¢ > 1 yields the following
estimate on the distance between the laws of a (multiple) Skorohod integral and of a mixture of
Gaussian distributions.

Proposition 5.2 Suppose that v € D?349(H29) is symmetric. Let F = §%(u). Let S € D944,
and let n ~ N(0,1) indicate a standard Gaussian random variable, independent of the underlying
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isonormal process X . Assume that ¢ : R — R is C?9T1 with Hgo(k)Hoo < oo foranyk=0,...,2q+
1. Then

[Ble(F)] ~ Elo(Sn)]| < 51"l E[l{u, D)y — 7]
L1 ]1/2]

X Z Z Catt b H(p(mb |+-2|b |72j)H

(' b")EQb,=0  j=0

< E |:S\b//\—2j ‘<U, (DF)®b/1 Q- Q (Dq—lF)®b;_1 ® (DS)®b’1’ ® - ® (Dq5)®bg>

o0

I

where Q is the set of all pairs of q-ples b' = (b, bh,...,by) and " = (b],...,by) of nonnegative
integers satisfying the constraint by + 2by + - -+ + qbl, + by + 205 + - -- + qby = q, and cqp 1 ; are
some positive constants.

f’)@q

In the particular case ¢ = 2 we obtain the following result.

Proposition 5.3 Suppose that u € D*8(H*) is symmetric. Let F = 6%(u). Let S € D*®, and
let n ~ N(0,1) indicate a standard Gaussian random variable, independent of the underlying

isonormal process X. Assume that ¢ : R — R is C° with |[p®]| < oo for any k = 0,...,5.
Then

|E[o(F)] = Elp(Sn)]| < %II«P”IIOOEU(% D?F)geg — 5%]]

| + (8] DF & DS) 0]
1)

Taking into account that DS? = 25DS and D?S? = 2DS ® DS + 2SD?S, we can write the
above estimate in terms of the derivatives of S2, which is helpful in the applications. In this way
we obtain

+O max [l oo ( B[] (D))

+E[(87+1) (0. (D)),

} VE [5 ’<u, DS),.,

for some constant C.

|Blo(F)] ~ Blo(Sn)]| < 3l1¢" oo B, D*F)goq — 57

| +E[|(w, DF @ DS)gs]]

} ) . (5.42)

Notice that a factor S~2 appears in the right hand of the above inequality.

+C g el ( B ([ (0F)2),5

+E [(5*2 +1) ‘<u, (DS)®2)

|+ E|(w D%s)

§©2 §©2
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5.3 Casem>0,d=1

Fix ¢ > 1. In the case m > 0, d = 1, the class #(q) is the collection of all vectors with nonnegative
integer entries of the type 8@ = (al, ey Q3 01, O 5 o by, b)) verifying
a1+ - 4 am + (0 +0) + -+ q(b), + b)) =g,

whereas %y(q) is the subset of %(q) verifying b, = 0. Specializing Theorem 5.1 yields upper
bounds for one-dimensional o (X )-stable convergence.

Proposition 5.4 Suppose that u € D?34($29) is symmetric, select hy,...,hy, € 9, and write
X = (X(h1),...; X (hn)). Let F = §9(u). Let S € D94, and let n ~ N(0,1) indicate a standard

Gaussian random variable, independent of the underlying Gaussian field X. Assume that

R XR =R (Y1, oo, Yy &) = @Y1y vy Y, T)
admits continuous and bounded partial derivatives up to the order 2q + 1. Then,

|E[o(X, F)] = E[p(X, Sn)]|

11l 82 LIe”1/2)
=X IR PR EEED DI SR
o ﬁqe% q) =0
olal YLV [+2[6"[—25
DY Oyl =2 Y
(o)
q
x B | SIP1=% <u,h?“1®---®h;?;“m®{(pip)®bé®(Di5)®b2’}> ]
=1 H®a

where |a| = a1 + -+ + .

5.4 Proof of Theorem 5.1

The proof is based on the use of an interpolation argument. Write X = (X (h1), ..., X (hs,)) and

gt ) [ (X; \/F ++V1—tS-n)], t € [0,1], and observe that E[p(X;F)] — Elp(X;Sn)] =
g(1) fo t)dt. For t € (0,1), by integrating by parts with respect either to F' or to 7,
we get
d
/ 1 [ <Fk Skk >]
t) = = E oy, (X;VEF++v1—1tS-
g (1) 5 kz_; up (X5 VEF + n) NN =
d
1 0% (u) Sk
= ZE[goxk(X;\/%F+\/1—tS~n)( -
2 Pt Vit v1—t

x\

- o Ll T ), ]
;iE[ O(X; VEF ++/1—1tS - n)sk}
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Using the Faa di Bruno formula for the iterated derivative of the composition of a function with

a vector of functions (see |10, Theorem 2.1]), we infer that, for every k =1, ...,d,

(DT gz, (X VIF + V1 —1tS ), Uk) @ a,
= Y )9 g, (X VIF + VI 1S 1)

o) o/ (q)

q d
x<hi@‘” ® -+ @ hi' (R QD' (VEF; + \/17—t5j77j))®b”,uk>

i=1 j=1

For every i =1, ..., qi, every j = 1, ...,d and every symmetric v € %% we have

<(Di(\/£Fj + \/msjﬁj))®bijav>

%0

bij
bi‘ u/2 bii—u)/2, (bji—u ) u 7 bii—u
:Z()(uﬂ>t /2(1 — ¢) =2 by )<(D F)®" @ (D'S;)® by )’U>5®bij'

Substituting (5.44) into (5.43), and taking into account the symmetry of wuy, yields

E [<Dq’“<pxk(X; VEF + 1 —tS - 1), uk>5®%}
_ Z C( (qk))t\b’|/2 1—¢t b”|/2HH <b’ +b//>

Blar) e B(qp) 1=1j=1
lbg; |

d
x B [0°C ) o, (X VEF + VI — 1S ) [[ 0, "
j=1

a d
% <uk’h?a1®...®h%am®®{ DF ”®(D’LS )®b”}

=1 j=1

and this sum is equal to

T O WHH( b")

Blr) e By (q1) i=1j=1

E |76 ™) o (X VIF + VI=1S -7 Hnlb

q d
” <“’“ RY™ ® - @ hg ® 024 {(D'F)™ @ (Dz'sj>®bés}>

d
82
+Y ViE [axkaxl (X; VEF +V1—tS - n)(D®™F, uk%a%]
=1

.= D(k,t) + F(k,t).
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Since

< (5.40),

d
\[ZFkt ;ZEL)QQ@X VEF +/1—tS - n)sk}
k=1

the theorem is proved once we show that

1 &
NG ;/0 |D(k,t)|dt

is less than the sum in (5.41). Using the independence of n and X, conditioning with respect to
X and applying Lemma 4.1 yields

‘b"

d
E |9°0 g, (X VIF +V1—18-0) [] 0
7j=1

. d
) <“’“7h?‘“ o0 @E{(DE) e <Disj>®bée}>
HOU%

i=1 j=1
Lbgrl/2)  LIbgyl/2] 4

b’.’s!'
=2 ) H2l (b2 = 21)11,!

11=0 lg=0 s=1

qe d
. <uk ™ @@ hpt () {(DiFj)@’b;f ® (DiSj)®b$}>

i=1 j=1

57)®qk

xHSlbsl 2B Wbl o (X VI + VT =15 1) | |

and the desired estimate follows by using the Cauchy-Schwarz inequality, and by integrating
|D(k,t)| with respect to t. ]

6 Application to weighted quadratic variations

In this section we apply the previous results to the case of weighted quadratic variations of the
Brownian motion and fractional Brownian motion. Let us introduce first some notation.

We say that a function f : R — R has moderate growth if there exist positive constants A,
B and o < 2 such that for all z € R, |f(z)| < Aexp (B|z|¥). Consider a fractional Brownian
motion B = {B; : t > 0} with Hurst parameter H € (0,1). We consider the uniform partition of
the interval [0,1], and for any n > 1 and k = 0,...,n — 1 we denote ABy,/, = B(i11)/n — Bi/n,
Ok/n = Lik/n,(ka1)/n]) 0 €k = L[ok/n]-

Given a function f: R — R, we define

n—1

k=0
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We are interested in the asymptotic behavior of the quadratic functionals

n—1 n—1
k=0 k=0

6.1 Weighted quadratic variation of Brownian motion

In the case H = %, the process B is a standard Brownian motion and, taking into account that
B has independent increments, we can write

E, = 6%(uy). (6.46)

Then, applying the estimate obtained in the last section in the case d = 1, m = 0 and ¢ = 2,
we can prove the following result, which is a quantitative version of a classical weak convergence
result that can be obtained using semimartingale methods (see, for instance, [9]).

Proposition 6.1 Consider a function f : R — R of class C% such that f and his first 6 derivatives
have moderate growth. Consider the sequence of random variables F,, defined by (6.45). Suppose

that E[S™%] < oo for some a > 2, where S = \/2f01 f2(Bs)ds. Then, for any function ¢ : R — R
of class C° with ||™®||o < 0o for any k =0,...,5 we have

_ (4) ~3
|Elp(Fn)] = Elp(Sn)]| < € max [0 |loon ™2,
for some constant C' which depends on f, where n is a standard normal random variable indepen-

dent of B

Proof.  Along the proof C will denote a constant that may vary from line to line, and might
depend on f. Taking into account the equality (6.46) and the estimate (5.42), it suffices to show
the following inequalities.

E (|{un, D*Fp) 212y — S°|) < \% (6.47)
E ([{un, DE) o)) - < \% (6.48)

E ([{un, D(S*)*%) p2oa]) - < \% (6.49)

B (|t DS N 1aoar) < = (6.50)

E ([{un, DF, ® D(S*)) 12(0.12)]) < \% (6.51)



The derivatives of F,, and S? have the following expressions

D(s?) = / (1) (Bo) 1y ds.
DX(s?) = 4 / (f'2+ff")(Bs)1[o,s}2d8,

k=0 =i
n—1
k=0 k=0

n—1
VY (Bryn) L2057 e
k=0
We are now ready to prove (6.47)-(6.51).

Proof of (6.60). We have

1 1
EH(un,DZF@Lz([O,lP)—SQH < 2F fQ(Bk/n)—/O f2(By)ds

‘ k=0

n 0<k<i<n—1
— 2B(|Au)) + E(|Ba).

+E

For the second summand we can write

1
BB = — S BBy By f(Byn) (B O L(5R)]
" o<k<izn—10<i<jen—1

= = XY BB By B By IG5

0<k<l<n—10<i<j<n—1

b S BBy By By PRGR)]

0<k<jl<n—1

0<k<jl<n—1

The last term is clearly of order n~!, whereas one can apply the duality formula for the first two
terms and get a bound of the form Cn=2. To estimate E(|A,|), we write

+1)/n
P8 - [ (815 = Z /k F2(Bu) — £2(B))ds.
k
Using that E\(fQ( jn) — f2(Bs)|) < T for s € [k/n, (k + 1)/n], for some constant C, we easily
get that F(|A4,|) < %
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Proof of (6.61). We have

n—1
4
(un, DF?) r201p2) = 752 F2(Bryn) 1 (0gyn)?
k=0

2
tom 2 PBy By Gy L)
n0<k<l<n71

+\/2?z D FBuym)f Buya)f (Bim) () (577).

o<k<l,j<n—1

Similarly as in the previous step, by considering E[(un, DF®2)22([O 1]2)] and then applying the

product and duality formulas, we get that E[(u,, DF? >L2([0 1]2)] < Cn~1, from which (6.61)
follows.

Proof of (6.62). We can write

n—1
(Un, D(S*)®*) 2012y = 16V f(Biyn)

k=0

< ITABILNBOG, Lot oot
It is clear that (Lp/n, (k41)/n)2> L[0,s]x[0,6)) L2([0,1]2) < n~2, so that (6.62) is well in order.

Proof of (6.63). We have

n—1 1
(tn, D*(S%)) r2((0,112) = 4\/52 f(Bi/n) /0 (f 4+ [ F")(Bs) Ok /ms Li0,8) F2(j0.17) 48
=0

Because (6k/n, 1jo ) r2(j0,1)) < 7, estimate (6.63) holds obviously true.

Proof of (6.64). We have

(tn, DF,, ® D(S)) r2(0,172)

= 82/ (FF)(Bs) F2(Bieyn) 11 (81 /) Ok s Lio,8)) £2([0,1) 45
+4) /ff )£ (Bieyn) ' (Biyn) 12(81/1%%) (81 /s Lj0,5)) 120,17y 4.
0<k<i<n—1

Here again, by considering E[(un,DF ® D(5%))2 L2([0 1]2)] and then applying the product and

duality formulas, we get that E[(u,, DF, ® D(5? )>L2([0 12 )] < On~2, from which (6.64) follows.
The proof is now complete. ]
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6.2 Weighted quadratic variation of fractional Brownian motion

Suppose that B = {B; : t > 0} is a fractional Brownian motion with Hurst parameter H € (%, 1).
We make use of the following lemma from [11].

Lemma 6.2 LetH<2 Letn>1and k=0,...,n—1. We have
(a) ‘<1[0,t}> ak:/n>5‘ <n2H for any t € [0,1].

(b) supseo 1 S ’<1[07t], 3k/n>5‘ = O(1) as n tends to infinity.

(¢) For any integer ¢ > 1, we can write
Z ’( i /> 8k/n ‘ = O(n*~2H)  as n tends to infinity. (6.52)
k,j=0

The next result is an extension of Proposition 6.1 to the case of a fractional Brownian motion
with Hurst parameter H € ( and it represents a quantitative version of the weak convergence
proved in [12].

4’2)

Proposition 6.3 Consider a function f : R — R of class C° such that f and his first 9 derivatives
have moderate growth. Consider the sequence of random variables F,, defined by (6.45). Suppose

that E[S™%] < oo for some o > 2, where S = y/fol 1%(Bs)ds. Set

o0

1
on=5 > (p+1P"+lp—1" —2pP")*.

p=—00
Then, for any function ¢ : R — R of class C° with ||¢™®||o < 0o for any k =0,...,5 we have

[Elp(Fu)] = Elp(onSn)]| < C max [lp?[laonz 1, (6.53)

for some constant C' which depends on f and H, where n is a standard normal variable be inde-
pendent of B.

Proof.  Along the proof C will denote a generic constant that might depend on F' and H. Notice
first that the equality (6.46) is no longer true in the case H # % For this reason, we define

Gpn = 6%(uy,), and we claim that the difference F,, — G}, is smaller than a constant times ns—2H
in D*2. That is,

E(|F, - Gu|?] < Oon'™ (6.54)

E[|DF, — DG,|3]] < Cn'™*# (6.55)

E[|D*F, — D*Gyl3e2]] < Cn'™*. (6.56)
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In order to show these estimates we first deal with F,, — GG;, using Lemma 2.1, and we obtain

F, — = 2H77 Z 2(5 Bk/n 5k/n) <6k/n7 6k/n>57)
L n—1 9
+n?H=3 Z f//(Bk/n) <6k/n7 5k/n>5
k=0

Using the equality

8 (f'(Brn)Ok/n) = f'(Bryn)10ksn) = " (Bryn) (€kjns Ok jn) sy »

yields

n—1
1
F, -G, = n?f=2 E QfI(Bk/n)Il((;k/n) <€k/n35k/n>y}
k=0

n—1
1
n2H7§ Z f”(Bk/n) <6k/n7 6k/n>;
k=0
= 2M, — R,.

Point (a) of Lemma 6.2 implies

E[RZ] < Cn'™H, (6.57)
On the other hand,

E[M2 4H ! Z E f /nf Bk/n)ll(éj/n)ll 5k/n <€j/na ]/”>,6 <€k/na5k/n>y}v

7,k=0

and using the relation

11(65/0) T B )] = 1285 /0@ ) + (8 /s Ok jn)
and the duality relationship (2.5) yields

E[Mg] < 4H ! Z ]/nyfsk/n f)‘ + ’< €j/ns j/n> <€k/n76k/n>f3| + |<6j/n75k/n>f)<€k/n75j/n>f}”
7,k=0

X‘<Ej/na 6j/n>fJ <€k/na 6k/n>f)|'

Finally, applying points (a) and (c) of Lemma 6.2, and taking into account that 2H is larger than
4H — 1 because H < %, we obtain

E[M2] < Cn*=1 (n =20 2= 40 =40 — ¢ (n =20 4 14 < ol =41, (6.58)
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Then, the estimates (6.57) and (6.58) imply (6.54). In a similar way, (6.55) and (6.56) would
follow from the expressions

n—1

DF, — DG, = nQH_% Z 2f”(Bk/n)Il(5k’/n) <€k/na (Slc/n>5~j €k/n
k=0

n—1
1
+n2H7§ Z 2f/(Bk/n) <6k/n) 5k/n>3:J 6k/n
k=0
n—1

_1
_n2H 2 Z f/”(Bk/n) <6k/n7 5k/n>52:J €k/n
k=0
and

n—1

1
D2Fn - DQGn = n2H_§ Z 2f/”(Bk/n)Il (5k/n) <6k/n7 6k/n>5 6?/271
k=0
n—1

_1 2
+n*72 N "2 " (Byojn) (€kfns Ok/n ) 5, O jn @k /m
k=0

_1
n*H QZf (Bi/n) €k/n75k/n>)~j kjn’

Notice also that from point (c) of Lemma 6.2 we deduce

[HunH.FJ 4H ! Z ]/TL Bk/n)]<5j/n76k/n>f) <C (6'59)
7,k=0

Taking into account the estimates (6.54), (6.55), (6.56) and (6.59), the estimate (6.53) will
follow from (5.42), provided we show the following inequalities for some constant C' depending on
f and H.

E (|(tn, D*Fp)ge2 — 0% S?|) < Cnz 72, (6.60)
E (|(un, DF®?)ge0|) < Cnz—2H, (6.61)

E (|(tn, D(S” ®2>5®2\) < Cn272M (6.62)

E (|[(un, D*(8%))ge2|) < Cnz—2H, (6.63)

E (|(un, DF, @ D(S?)ge|) < Cnz?M, (6.64)
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As in the case of the Brownian motion, the derivatives of Fj, and S? are given by the following
expressions

1
D(s?) = / (FF)(B) 1y ds,
1
D2(5?) = / (2 + F1")(Ba)1g yeds,

n—1 n—1
_1 _1
DE, = 20*72 % " f(Bin) 11 (Gk/n)kym + 102772 f'(Byn) 2(0) 1 )erms
k=0 k=0

n—1 n—1
DQFn = 2n2H7% Z f(Bk/n 5](?/2n + 4”2H7% Z fl(Bk/n)Il(ék/n)(sk/n é) €k,n
=0 k=0

n—1
1
nQH—§ § f”(Bk’/n)IQ((SI(?;n)ekn
k=0

We are now ready to prove (6.60)-(6.64).

Proof of (6.60). We have

|<un,D2Fn)5®2 - 0%,52’

n—1
< 2N BBy f(Bga) 53 e — o / (B
k=0
ntt=1 Z f j/n Bk/n)Il((Sk/n)@j/m5k/n>5§<6j/m6k/n>ﬁ
7,k=0
4H ! Z f j/n Bk/n)IQ(ék/nx(sj/n?6k/n>.%
7,k=0
= |An| + 4By + |Cnl.
We have
n—1
E[B}] = n®2 Z E[f(Bj/n) ' (Bin) f(Bisn) ' (Bin) 11 (65 1) 11(61/)]
ki d=0

X <5j/na 5k/n>-") <5j/n7 6k/n>fJ <52/n7 5l/n>fJ <5i/nv 6l/n>f)‘

The product formula for multiple stochastic integrals yields

Il(dk/n)ll (5l/n) = 12(5k/n®5l/n) + <5k/n75l/n>_ﬁ .
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As a consequence, using that [(§;/n, €x/n) 5| < n~2H by point (a) in Lemma 6.2, and applying the
duality formula for I, we obtain

n—1
E[Bi] < Cn4H_2 Z ’<6J/n75k/n>3§<57,/n76l/n>57)’
G,k,i,l=0
X{ sup (61 /ns L0505 (O1/n> Ljo,8) 5| + )<5k/na6l/n>ﬁ‘ }
s,t€[0,1]

Finally, from (a) and (c) in Lemma 6.2 we get

2
n—1

]7k:O
n—1

+on'=2 Y ‘ (0 /> Ok /) (G s S1ym) o (ks 51/”>ﬁ‘
4.k,i,1=0

< C (n*4H + n’2H) .
Taking into account that 2H is larger than 4H — 1 because H < %, we get the desired estimate.
For the second term we have

n—1

ElC2 = n®f2 N E[f(Bj/n>f”<Bl~c/n)f(Bi/n)f”(Bl/n)IQ(5]%271)I2(6;?121)}
ki l=0

x <5j/n7 Ek/n>5273 <51/n7 6l/n>%

The product formula for multiple stochastic integrals yields
~ ~ 2

As a consequence, by points (a), (b) and (¢) in Lemma 6.2 and using the duality relationship we
get

n—1
EIC2 < Cn2 N (8 meyn) 8 Gipmo €ym)s (073 07 (G s G1ynd | + (Gsms G1ym)3)
Jerid=0
n—1 2 n—1
< et Sl[zpuZWj/ml[o,s])ﬁ\ Y (0T G Gumds |+ (ks Gyn)5)
sel01] =0 k,1=0

< Cn ™ pp 1720 47,

This leads to the desired estimate.
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To estimate E(|A,|), we write

n-1
opAH-1 Z F(Bjn)f(Bin) <5j/n75k/n>,26

7,k=0
1 . 2
= % Z f(B]/n)f(Bk/n) (|k_]+1|2H+‘k 1‘2H—2’k‘ j|2H)
7,k=0
(n—1)A(n—1-p) ,
= Z F(Bjm)f (Bijapym) (Ip+ 127 4 Ip — 127 —2|p|*)".

p——oo j=0V—p

If we replace f(Bq ]+p) /n) by f(Bj/y) we make an error in expectation of (p/n)¥, so this produces

a total error of n™**. On the other hand, the series
2
ST (p+ 1P+ [p— 121 - 2[p*)
Ip|>n

converges to zero at the rate n*H=3_ Tt remains to estimate

—Zﬂ Biyw) / (B ds—Z / 2By - (B
n k n

Using that E[|f%(By/,) — f2(Bs)]] < Cn for s € [k/n, (k + 1)/n], we easily get the desired
estimate for E(|A,]).

Proof of (6.61). We have

(tn, DEE?) o2

3w
=4n%772 N F(Bjn) f(Brsn) F(Biyn) 1 Oy 11 (610) 65 /ms 01 ) 565 1m0 Ot
.k =0

n—1
3
772 " f(Bjsn) f(Bion) f (Bl/n>11(5k/n)j2(5l/n)<5j/m5k/n>5§<5j/n>€l/n>~6
j,k,l—O

_3
6H 2 Z f ]/n Bk:/n)f/(Bl/n)IQ(dlgn) (5§n)<5j/nv 6k/n>-‘§ <5j/n7 6l/n>57J
k=0
=4A, + 4B, + C,.

Similarly as in the previous step, we have to consider E[(un,DF ®2>%®2] and then apply the

n
product and duality formulas. Since the computations are more involved here, we are going to

use some helpful notation. Set

N = £(Bjjn) f(Bryn) f(Bism),

25 = £(Bj/n) f(Biya) ' (Bism)s
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and
&35 = F(Bjn) ' (Biyn) ' (Byn)-

Also set B = (j/ns Or/n)s and agy = (Jj/n, Ljo4)5- The term A, can be decomposed as follows:
A, = AL + A2

where

n—1
_3 i ~
AL =072 3 I 1 (8),801/) BB

j,k,1=0
and
5 n—1
_3 j kL
AL =nS""2 N P88 k85
j,Je,1=0
Then,
n—1
_ ikl x5 K1 > I~
B((A)?) =n"T3 N BN ) (010 ®01) T2 (01 yn D0y 1) B kB Bir e By
j7k7l7j/7k/7l/:0

By the product formula for multiple stochastic integrals, we can write

12(61/n®8113) 12 (O3 10 @0y 1) = 1a((01 /@01 /0) D (O jn @0y 1))
+Br s 12 (81 /n @0y 1) + Brer 12 (610 @0k ) + Bipr T2 (8 jn @8y 1) + Brir T2 (85 @0y 1)
+ Bk Bry + Brep Bipe -
As a consequence, we obtain

n—1

E((A)%) < on™"7% " |BBiaBy e B

j’k7l7.j/’k/7l/:0

+ | Br

{ sup ‘ak,tal,takﬁtal',t
te(0,¢]

}

sup |oy o g| + | Brw B
te(0,t]
< O (1 g IRy,

In fact, taking into account that j3; = n~2H py (5 — k), where

(I + 122 + 15 — 122 — 5125,

N | =

pu(j) =

and that 3772 |pr(j)| < oo, because H < 3, We obtain

n—1 n—1
S BiBiBiwBrel < 0¥ " oG = koG — Deu(i' = K)o (i = 1)
j7k‘7l7j,7k/7l/:0 j7k7l7jl7kl’ll:0
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So, for the first summand we obtain the power 12H —3+2—8H —8H = —1 —4H, for the second
one 12H —3+2—8H —6H = —1 — 2H and for the third one 12H —3+2—-8H —4H = —1. For
the term A2 we obtain

n—1
242 12H-3 kel g i’ kL
E((A2)?) = n Y. BIeLT ey 1BkBiBiaBu v By By

j7k7l7j/7kl7l/:0

n—1
12H— -1
< Cpt?=3 Z | Br1 81,685,181 1 By o Bjr v | < Cm
j)k?l7j,’k/7l,:0

Consider now the term B,. The product formula for multiple stochastic integrals yields

L0k ) 12(07%) = I3(0k/n@8772) + Brali (3ym)-

Thus, the term B, can be decomposed as follows

B, = B! + B2,
where
5 n—1
_3 ikl =
By =72 N O I (61/n@072) By ks
4k 1=0

and

2 _ nﬁH** Z (I) Il 5l/n Bkl/Bj k5.1 n-
Gk =0

Then, we can write

n—1
B(By)?) = o170 N BNl 1(0m @62 13 (0 n©55, )]
7.k, 0Lg" K I'=0

X Bk /nBjr b Q1 -
By the product formula for multiple stochastic integrals,
(5k/n®5l/n)13(5k//n®5l//n> I6((Sr/mn®0}2) @ (Sh @0} 1))
+7 [5k,k/f4(5[€}>i 5?/2,1) + 5k,ﬂ4(5l/n®(5k'/n®5l//n))
B0k La (O /n @01/ ) @0, 1) + ﬁz,l'14((5k/n<§>5wn)<§~9)(5k'/n®5z'/n))]
+§ [ﬁk,k/ﬁl,z'b(51/n®5l'/n) + Biotr B 12610 @01 1)

+Br 1t B T (810 @By 1) + ﬂz%ﬂz(%/né%/n)]
9B BLr + B Buw Buy]-
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We can write the above expression as

I3(6k/n®5ﬁi)l3(5k’/n®5§/2n) = R I Br s B + By Bui Byl

where \Ifﬁ’l’kl’ll is the sum of the terms that contain multiple integrals. Then, by the duality

relationship we obtain
Gkl d KU gk LE —8H
E[<I’n72 Q5 " Uy, | <Cn .

Therefore, using points (a) and (c) in Lemma 6.2 we obtain

2

n—1 n—1 2
ey < e (S ) (s S
ik tel0,t] 7 =0
n—1
+Cn13 Z (18,1857 e Brose Biae | + | BsaeBir i B Buw Bryr )
j7k7l7j/7kl7l/:0
< C (Tf1 + n*QH) .
On the other hand,
n—1
_ kel 3K
E((B2)?) = p'2-3 Z E®)5 @) 5 1 (81/0) 11 (0 1)) Br.a B ki m B 10 Bjr ke O 1 -
j7k7l’j’7k/7ll:O

From the equality

L (6yn) 11 (8 1) = To(81/n @6y 1) + Brurs

and applying the duality relationship we obtain
ik x5 KU _
B8 LGy B Gl < C (07 + )

Consequently, using points (a) and (c¢) in Lemma 6.2 we obtain

2 2
n—1 n—1
E((B2)?) < Cn*3 3" 84 (Sup Zlaz,t\)

4,k=0 te(0,t] =0
n—1
8H—-3 1 o
+Cn Z ‘Bk-lﬁjvkﬁk/,l/Bj/,kfﬁz.w <C (n +n ) .
j»k)l’j,»klyl/:(]

Finally, consider the term C,,. By the product formula for multiple stochastic integrals
12(5;?}2”)12(552) = 14(5?/1595%) + AL (85 /@61 /) Bret + 2871,
and we make the decomposition

C, = C} 4+ 4C% + 203,
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where

n—1
1_  6H-2 j,kl ®2 ®2
Cp=n"2 % @p S (62 @617 ) ki ms
J,k,1=0

n—1
_3 j kel ~
CEL = 7’LGH 2 Z qﬂl’g I2(5k/n®6l/n)/Bk,laj,k/naj,l/n>

j,k,1=0
and
e
Cf’; = nﬁH_% Z @i’g’lﬁivlajﬁk/naj,l/m
j.k,l=0
Then,
n—1
B((Cp) = oM 3 Bl L(eg) 86 (6, 8677 )]
RN

XOG ke /n QG ! k! n O 1 -

We can write, using point (c¢) in Lemma 6.2,

n—1
— k,l K l
B((C)?) <n= 37 sup | Blogk el L0280 1052, 805 )]
kLK /= —0 JJ

By the product formula of multiple stochastic integrals and the duality relationship we deduce

n—1

ikl ",k” 2 2 4—12H
> ‘E[(I)f%?) ;5 (5§/n®5l/n) (5§/n®5l//n)]‘ Cn
LK I'=0

+C Z 0 (| By Brr B | + BBl

kLK I'=0
n—1
+C > (IBRw Bl + | Bk Bra Buw B | + Br 8w -
k1K '=0
Point (c) of Lemma 6.2 yields

n—1

> (1BewBruBiw| + B w|Brol) < Cn®~H

kLK =0

and

n—1

Z (|51%,kw852,1/ + | Bk Bre,v Biw B | + 5;%71/5127;4) < On?84

kLK 1 =0
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Therefore,
E((C)*) <C(n 2" +n7h).

On the other hand,

n—1

E(C%H?) = o173 N Bl 5 1(80@010) T2 (O @0y )]
7.k LG K U=

X ﬁk,za]’,k/n%,l/nﬁk',l/aj/,k//noéj/,z//n~

In this case, it suffices to use the Holder inequality and the equivalence of the LP norms on multiple
stochastic integrals to obtain

k,l k J —
E[@)5'® O 5 I (8 @011 ) L2 (O 0 @1 )] | < O,
Then,
2 2
n—1
E((CR)*) < Cn™™ 73 [ 3" [l Sup Z|Oégt| <Cnl
k,I=0 0.1] =0
Finally,
n—1
— NN KU
E((Cg)2) = leH 3 Z E[@J q)] ]Bk lﬁk‘/ Z/Oéj k/naj l/na i’ k//na il n
j7k7l7jl7k/7ll:0
2 2
n—1
< CnBH73 Z ﬁ,%’l sup Z |l <Cnl.
k.1=0 tel0,1] =0

Proof of (6.62). We have

s DS )0 = 166214 S F(Byn) / 1 / BB
’ ° k=0 " 0 Jo

X <5kz/n7 1[0,5]>f)<5k/n7 1[0,t]>«‘7)d‘9dt‘

Then, we can write, using points (a) and (b) of Lemma 6.2,

n—1
E [|(un, D(S?)%%)ge2] < Cn?H 2 Su[(I]Dl]Z| 8k jm 10,609 Ok jms 1o,0)s| < Cn 2.
Ste k=0

Proof of (6.63). We have
(un,D2(52)>5®2 = 4n2H Zf Bk/n / f,2 +ff”)( ))<6k/n71[0,s}>%ds
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As a consequence, applying points (a) and (b) of Lemma 6.2 yields

n—1
1

EH<unaD2(52)>YJ®2H <Cn 2= 2 sup Z 5k/m Os]> <COnz.
5€(0,1] .20

Proof of (6.64). We have

(tn, DFy, @ D(S?)) g2

n—1
J,k=0

n—1

4 FByja)F (Brym) 265265 ms ehym)s / (F£)(Bo) 6 s Lo,

7,k=0

Considering [(un, DF, ® D(SQ))%W] and then applying the product and duality formulas, we
get that E[(u,, DF, ® D(52)>%®2] < Cn'~*1 | from which (6.64) easily follows. This completes

the proof of the proposition. [
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