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Abstract

In this paper, a non-uniform rational B-spline based iso-geometric finite element method is used to study the

static and dynamic characteristics of functionally graded material (FGM) plates. The material properties are

assumed to be graded only in the thickness direction and the effective properties are computed either using

the rule of mixtures or by Mori-Tanaka homogenization scheme. The plate kinematics is based on the first

order shear deformation plate theory (FSDT). The shear correction factors are evaluated employing the energy

equivalence principle and a simple modification to the shear correction factor is presented to alleviate shear

locking. Static bending, mechanical and thermal buckling, linear free flexural vibration and supersonic flutter

analysis of FGM plates are numerically studied. The accuracy of the present formulation is validated against

available three-dimensional solutions. A detailed numerical study is carried out to examine the influence of

the gradient index, the plate aspect ratio and the plate thickness on the global response of functionally graded

material plates.
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1. Introduction

Since its introduction to decrease the thermal stresses in propulsion systems and in airframes for space appli-

cation [1], functionally graded materials (FGMs) have led researchers to investigate the structural behaviour of

such structures. FGMs are considered to be an alternative for certain class of aerospace structures exposed to

high temperature environment. FGMs are characterized by a smooth transition from one material to another,

thus circumventing high inter-laminar shear stresses and de-lamination that persists in laminated composites.

Thus, for structural integrity, FGMs have advantages over the fiber-matrix composites.

1.1. Background

The investigation of the static and the dynamic behaviour of FGM structures is fairly well covered in the

literature. Some of the important contributions are discussed here. Different plate theories, viz, FSDT [2, 3, 4],

second and other higher order accurate theory [5, 6, 7] have been used to describe plate kinematics. Existing

approaches in the literature to study plate and shell structures made up of FGMs uses finite element method

based on Lagrange basis functions [2, 8, 4], meshfree methods [5, 6]. All existing approaches show shear locking

when applied to thin plates. Different techniques by which the locking phenomenon can be suppressed include:

• Retain the original interpolations and subsequently use an optimal integration rule for evaluating the

bending and the shear terms;

• Mixed interpolation technique [9];

• Use field redistributed substitute shape functions [10, 11];

• Discrete shear gap method [12];
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• Stabilized conforming nodal integration [13], i.e., strain smoothing, SFEM [14, 15].

• Use p-adaptivity, for example Moving Least Square approximations [16].

He et al., [17] presented a finite element formulation based on thin plate theory for the vibration control of FGM

plates with integrated piezoelectric sensors and actuators under mechanical load, whereas Liew et al., [18] have

analyzed the active vibration control of plates subjected to a thermal gradient using shear deformation theory.

The parametric resonance of FGM plates is discussed in [19] by Ng et al., based on Hamilton’s principle and

the assumed mode technique. Yang and Shen [20, 3] have analyzed the dynamic response of thin FGM plates

subjected to impulsive loads using a Galerkin Procedure coupled with modal superposition methods, whereas,

by neglecting the heat conduction effect, such plates and panels in thermal environments have been examined

based on shear deformation with temperature dependent material properties [3]. The static deformation and

vibration of FGM plates based on higher-order shear deformation theory is studied by Qian et al., [5] using the

meshless local Petrov-Galerkin method (MLPG) and Natarajan and Ganapathi [7] using shear flexible elements.

Matsunaga [21] presented analytical solutions for simply supported rectangular FGM plates based on second-

order shear deformation theory, whereas, three dimensional solutions are proposed in [22, 23] for vibrations of

simply supported rectangular FGM plates. Reddy [2] presented finite element solutions for the dynamic analysis

of FGM plates and Ferreira et al., [6] performed dynamic analysis of FGM plates based on higher order shear and

normal deformable plate theory using MLPG. Birman [24] and Javaheri and Eslami [25] have studied buckling

of FGM plates subjected to in-plane compressive loading. Woo et al., [26] analyzed the thermo-mechanical

postbuckling behaviour of plates and shallow cylindrical FGM panels using a classical theory. Ganapathi et

al., [8], using a Co shear flexible quadrilateral element, studied buckling of non-rectangular FGM plates under

mechanical and thermal loads. Prakash and Ganapathi [27] studied the linear flutter characteristics of FGM

panels exposed to supersonic flow. Haddadpour et al., [28] and Sohn and Kim [29, 30] investigated the nonlinear

aspects of flutter characteristics using the finite element method. FGM plates, like other plate structures, may

develop flaws. Recently, Yang and Chen [31] and Kitipornchai et al., [32] studied the dynamic characteristics
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of FGM beams with an edge crack. Natarajan et al., [33, 34] and Baiz et al., [35] studied the influence of the

crack length on the free flexural vibrations of FGM plates using the XFEM and smoothed XFEM, respectively.

1.2. Approach

The main objective of this paper is to investigate the potential of NURBS based iso-geometric finite element

methods to study the static and dynamic characteristics of Reissner-Mindlin plates. The present formulation

also suffers from shear locking when lower order NURBS functions are used as basis functions. da Vaiga et

al., [36] showed that the shear locking phenomena can be suppressed by using higher order NURBS functions.

A similar approach was employed to suppress shear locking in the element-free Galerkin method [37]. In this

paper, we propose a simple technique to suppress shear locking, which relies on the introduction of an artificial

shear correction factor [38] when lower order NURBS basis functions are used. The drawback of this approach

is that the shear correction factor is problem dependent.

1.3. Outline

The paper is organized as follows. A brief overview on functionally graded materials and Reissner-Mindlin plate

theory is presented in the next section. Section 3 presents an overview of NURBS basis functions and a simple

correction to the shear terms to alleviate shear locking. The efficiency of the present formulation, numerical

results and parametric studies are presented in Section 5, followed by concluding remarks in the last section.

2. Theoretical Formulation

2.1. Functionally graded material

A rectangular plate made of a mixture of ceramic and metal is considered with the coordinates x, y along the in-

plane directions and z along the thickness direction (see Figure (1)). The material on the top surface (z = h/2)

of the plate is ceramic rich and is graded to metal at the bottom surface of the plate (z = −h/2) by a power
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law distribution. The effective properties of the FGM plate can be computed by using the rule of mixtures or

by employing the Mori-Tanaka homogenization scheme.

Let Vi(i = c,m) be the volume fraction of the phase material. The subscripts c and m refer to ceramic and

metal phases, respectively. The volume fraction of ceramic and metal phases are related by Vc+ Vm = 1 and Vc

is expressed as:

Vc(z) =

(

2z + h

2h

)n

(1)

where n is the volume fraction exponent (n ≥ 0), also known as the gradient index. The variation of the

composition of ceramic and metal is linear for n =1, the value of n = 0 represents a fully ceramic plate and any

other value of n yields a composite material with a smooth transition from ceramic to metal.

Rule of mixtures

Based on the rule of mixtures, the effective property of a FGM is computed using the following expression:

P = PcVc + PmVm (2)

Mori-Tanaka homogenization method

Based on the Mori-Tanaka homogenization method, the effective Young’s modulus and Poisson’s ratio are

computed from the effective bulk modulus K and the effective shear modulus G as [4]

Keff −Km

Kc −Km
=

Vc

1 + Vm
3(Kc−Km)
3Km+4Gm

Geff −Gm
Gc −Gm

=
Vc

1 + Vm
(Gc−Gm)
(Gm+f1)

(3)
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where

f1 =
Gm(9Km + 8Gm)

6(Km + 2Gm)
(4)

The effective Young’s modulus Eeff and Poisson’s ratio νeff can be computed from the following relations:

Eeff =
9KeffGeff

3Keff +Geff

νeff =
3Keff − 2Geff

2(3Keff +Geff)
(5)

The effective mass density ρ is computed using the rule of mixtures. The effective heat conductivity κeff and

the coefficient of thermal expansion αeff is given by:

κeff − κm
κc − κm

=
Vc

1 + Vm
(κc−κm)

3κm

αeff − αm
αc − αm

=

(

1
Keff

− 1
Km

)

(

1
Kc

− 1
Km

) (6)

Temperature distribution through the thickness

The temperature variation is assumed to occur in the thickness direction only and the temperature field is

considered to be constant in the xy-plane. In such a case, the temperature distribution along the thickness can

be obtained by solving a steady state heat transfer problem:

− d

dz

[

κ(z)
dT

dz

]

= 0, T = Tc at z = h/2; T = Tm at z = −h/2 (7)
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The solution of Equation (7) is obtained by means of a polynomial series [39] as

T (z) = Tm + (Tc − Tm)η(z, h) (8)

where,

η(z, h) =
1

C

[

(

2z + h

2h

)

− κcm
(n+ 1)κm

(

2z + h

2h

)n+1

+

κ2cm
(2n + 1)κ2m

(

2z + h

2h

)2n+1

− κ3cm
(3n+ 1)κ3m

(

2z + h

2h

)3n+1

+
κ4cm

(4n+ 1)κ4m

(

2z + h

2h

)4n+1

− κ5cm
(5n + 1)κ5m

(

2z + h

2h

)5n+1
]

;

(9)

C = 1− κcm
(n+ 1)κm

+
κ2cm

(2n + 1)κ2m
− κ3cm

(3n+ 1)κ3m

+
κ4cm

(4n+ 1)κ4m
− κ5cm

(5n+ 1)κ5m

(10)

2.2. Reissner-Mindlin Plates

The displacements u, v, w at a point (x, y, z) in the plate (see Figure (1)) from the medium surface are expressed

as functions of the mid-plane displacements uo, vo, wo and independent rotations θx, θy of the normal in yz and

xz planes, respectively, as:

u(x, y, z, t) = uo(x, y, t) + zθx(x, y, t)

v(x, y, z, t) = vo(x, y, t) + zθy(x, y, t)

w(x, y, z, t) = wo(x, y, t) (11)
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where t is the time.

z

x

y

a

b

h

(a)

ψ

y

y′

x, x′

a

b

(b)

Figure 1: (a) coordinate system of a rectangular FGM plate, (b) Coordinate system of a skew plate

The strains in terms of mid-plane deformation can be written as:

ε =











εp

0











+











zεb

εs











(12)

The midplane strains εp, bending strain εb, shear strain εs in Equation (12) are written as:

εp =































uo,x

vo,y

uo,y + vo,x































, εb =































θx,x

θy,y

θx,y + θy,x































,

εs =















θx + wo,x

θy + wo,y















. (13)

where the subscript ‘comma’ represents the partial derivative with respect to the spatial coordinate succeeding
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it. The membrane stress resultants N and the bending stress resultants M can be related to the membrane

strains, εp and bending strains εb through the following constitutive relations:

N =























Nxx

Nyy

Nxy























= Aεp +Bεb

M =























Mxx

Myy

Mxy























= Bεp +Dbεb (14)

where the matrices A = Aij,B = Bij and Db = Dij ; (i, j = 1, 2, 6) are the extensional, bending-extensional

coupling and bending stiffness coefficients and are defined as:

{Aij, Bij , Dij} =

∫ h/2

−h/2
Qij

{

1, z, z2
}

dz (15)

Similarly, the transverse shear force Q = {Qxz, Qyz} is related to the transverse shear strains εs through the

following equation:

Qij = Eijεs (16)

where Eij =
∫ h/2
−h/2Qυiυj dz; (i, j = 4, 5) is the transverse shear stiffness coefficient, υi, υj is the transverse shear

coefficient for non-uniform shear strain distribution through the plate thickness. The stiffness coefficients Qij

are defined as:
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Q11 = Q22 =
E(z)

1− ν2
; Q12 =

νE(z)

1− ν2
; Q16 = Q26 = 0

Q44 = Q55 = Q66 =
E(z)

2(1 + ν)
(17)

where the modulus of elasticity E(z) and Poisson’s ratio ν are given by Equation (5). The thermal stress

resultant Nth and the moment resultant Mth are:

Nth =























N th
xx

N th
yy

N th
xy























=

h/2
∫

−h/2

Qijα(z, T )























1

1

0























∆T (z) dz

Mth =























M th
xx

M th
yy

M th
xy























=

h/2
∫

−h/2

Qijα(z, T )























1

1

0























∆T (z) z dz

(18)

where the thermal coefficient of expansion α(z, T ) is given by Equation (6) and ∆T (z) = T (z) − To is the

temperature rise from the reference temperature and To is the temperature at which there are no thermal

strains. The strain energy function U is given by:

U(δ) =
1

2

∫

Ω

{

ε
T
pAεp + ε

T
pBεb + ε

T
b Bεp + ε

T
b Dεb + ε

T
s Eεs

}

dΩ (19)

where δ = {u, v, w, θx, θy} is the vector of the degree of freedom associated to the displacement field in a finite

element discretization. Following the procedure given in [40], the strain energy function U given in Equation
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(19) can be rewritten as:

U(δ) =
1

2
δ
TKδ (20)

where K is the linear stiffness matrix. The kinetic energy of the plate is given by:

T (δ) =
1

2

∫

Ω

{

p(u̇2o + v̇2o + ẇ2
o) + I(θ̇2x + θ̇2y)

}

dΩ (21)

where p =
∫ h/2
−h/2 ρ(z) dz, I =

∫ h/2
−h/2 z

2ρ(z) dz and ρ(z) is the mass density that varies through the thickness of

the plate. When the plate is subjected to a temperature field, this in turn results in in-plane stress resultants,

Nth. The external work due to the in-plane stress resultants developed in the plate under a thermal load is

given by:

V (δ) =

∫

Ω

{

1

2

[

N th
xxw

2
,x +N th

yyw
2
,y + 2N th

xyw,xw,y

]

+

h2

24

[

N th
xx

(

θ2x,x + θ2y,x
)

+N2
yy

(

θ2x,y + θ2y,y
)

+ 2N th
xy (θx,xθx,y + θy,xθy,y)

]

}

dΩ

(22)

The governing equations of motion are obtained by writing the Lagrange equations of motion given by:

d

dt

[

∂(T − U)

∂δ̇i

]

−
[

∂(T − U)

∂δi

]

= 0, i = 1, 2, · · · , n (23)

The governing equations obtained using the minimization of total potential energy are solved using Galerkin

finite element method. The finite element equations thus derived are:

Static bending:

(K+KG) δ = F (24)
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Free vibration:

Mδ̈ + (K+KG) δ = 0 (25)

Buckling analysis:

Mechanical Buckling.

(K+ λKG) δ = 0 (26)

Thermal Buckling.

(K+∆TKG) δ = 0 (27)

where δ is the vector of degree of freedom associated to the displacement field in a finite element discretization,

∆T (= Tc − Tm) is the critical temperature difference, λ is the critical buckling load and K, KG are the linear

stiffness and geometric stiffness matrices, respectively. The critical temperature difference is computed using a

standard eigenvalue algorithm.

Flutter analysis: The work done by the applied non-conservative loads is:

W (δ) =

∫

Ω
∆pw dΩ (28)

where ∆p is the aerodynamic pressure. The aerodynamic pressure based on first-order, high Mach number

approximation to linear potential flow is given by:

∆p =
ρaU

2
a

√

M2
∞

− 1

[

∂w

∂x
cos θ′ +

∂w

∂y
sin θ′ +

(

1

Ua

)

M2
∞

− 2

M2
∞

− 1

∂w

∂t

]

(29)

where ρa, Ua,M∞ and θ′ are the free stream air density, velocity of air, Mach number and flow angle, respectively.
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The static aerodynamic approximation for Mach numbers between
√
2 and 2 is [41]:

∆p =
ρaU

2
a

√

M2
∞

− 1

[

∂w

∂x
cos θ′ +

∂w

∂y
sin θ′

]

(30)

Substituting Equation (20) - (28) in Lagrange’s equations of motion, the following governing equation is obtained:

Mδ̈ + (K+ λA)δ = 0 (31)

After substituting the characteristic of the time function [42] δ̈ = −ω2δ, the following algebraic equation is

obtained:

[(

K+ λA
)

− ω2M
]

δ = 0 (32)

whereK is the stiffness matrix, M is the consistent mass matrix, λ = ρaU2
a√

M2
∞
−1

, A is the aerodynamic force matrix

and ω is the natural frequency. When λ =0, the eigenvalue of ω is real and positive, since the stiffness matrix

and mass matrix are symmetric and positive definite. However, the aerodynamic matrix A is unsymmetric and

hence complex eigenvalues ω are expected for λ > 0. As λ increases monotonically from zero, two of these

eigenvalues will approach each other and become complex conjugates. In this study, λcr is considered to be the

value of λ at which the first coalescence occurs.

3. Non-Uniform Rational B-Splines

In this study, the finite element approximation uses NURBS basis function. We give here only a brief introduction

to NURBS. More details on their use in FEM are given in [43, 44]. The key ingredients in the construction

of NURBS basis functions are: the knot vector (a non decreasing sequence of parameter values, ξi ≤ ξi+1, i =

0, 1, · · · ,m− 1), the control points, Pi, the degree of the curve p and the weight associated to a control point,

w. The ith B-spline basis function of degree p, denoted by Ni,p is defined as:
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Ni,0(ξ) =











1 if ξi ≤ ξ ≤ ξi+1

0 else

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (33)

A pth degree NURBS curve is defined as follows:

C(ξ) =

m
∑

i=0
Ni,p(ξ)wiPi

m
∑

i=0
Ni,p(ξ)wi

(34)

0 0.2 0.4 0.6 0.8 1
0
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u
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n
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Figure 2: non-uniform rational B-splines, order of the curve = 3

where Pi are the control points and wi are the associated weights. Figure (2) shows the third order non-uniform

rational B-splines for a knot vector, Ξ = {0, 0, 0, 0, 1/3, 1/3, 1/3, 1/2, 2/3, 1, 1, 1, 1}. NURBS basis

functions has the following properties: (i) non-negativity, (ii) partition of unity,
∑

i
Ni,p = 1; (iii) interpolatory
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at the end points. As the same function is also used to represent the geometry, the exact representation of

the geometry is preserved. It should be noted that the continuity of the NURBS functions can be tailored to

the needs of the problem. The B-spline surfaces are defined by the tensor product of basis functions in two

parametric dimensions ξ and η with two knot vectors, one in each dimension as:

C(ξ, η) =
n
∑

i=1

m
∑

j=1

Ni,p(ξ)Mj,q(η)Pi,j (35)

where Pi,j is the bidirectional control net and Ni,p and Mj,q are the B-spline basis functions defined on the knot

vectors over an m× n net of control points Pi,j . The NURBS surface is then defined by:

C(ξ, η) =

∑n
i=1

∑m
j=1Ni,p(ξ)Mj,q(η)Pi,jwiwj

w(ξ, η)
(36)

where w(ξ, η) is the weighting function. The displacement field within the control mesh is approximated by:

{ueo, veo, weo, θex, θey} = C(ξ, η){uoJ , voJ , woJ , θxJ , θyJ}, (37)

where uoJ , voJ , woJ , θxJ , θyJ are the nodal variables and C(ξ, η) are the basis functions given by Equation (36).

4. Shear Locking

Transverse shear deformations are included in the formulation of Mindlin theory for thick plates. In Mindlin

theory, the transverse normal to the mid surface of the plate before deformation remain straight but not

necessarily normal to the mid surface after deformation. This relaxed the continuity requirement on the assumed

displacement fields. But as the plate becomes very thin, care must be taken in not to violate the following

relationship

∇w + θ = 0 (38)
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i.e., the shear strain εs must vanish in the domain as the thickness approaches zero.

Artificial shear correction factor

Lower order NURBS basis functions, like any other function, suffer from shear locking when applied to thin

plates. Kikuchi and Ishii [38] introduced an artificial shear correction factor to suppress shear locking in 4-noded

quadrilateral element. In this paper, we employ the same technique to suppress the shear locking syndrome in

lower order NURBS basis functions. The modified shear correction factor is given by:

υe = υ

(

h
βle

)2

(

1 +
(

h
βle

)2n
)1/n

(39)

where n, β are positive integers, le is the diameter of the element (=maximum or diagonal length of the element),

h is thickness of the element and υ is the shear correction factor. Here, the shear correction factor obtained

based on energy equivalence principle as outlined in [45, 33] is used.

5. Numerical Examples

In this section, we present the static bending response, free vibration, buckling and flutter analysis of FGM

plates using a NURBS based finite element method. The effect of various parameters, viz., material gradient

index n, skewness of the plate ψ, the plate aspect ratio a/b, the plate thickness a/h and boundary conditions on

the global response is numerically studied. The top surface of the plate is ceramic rich and the bottom surface

of the plate is metal rich. The material properties used for the FGM components are listed in Table 1.

Skew boundary transformation

For skew plates supported on two adjacent edges, the edges of the boundary elements may not be parallel to

the global axes (x, y, z). In order to specify the boundary conditions on skew edges, it is necessary to use

the edge displacements (u′o, v
′

o, w
′

o), etc., in a local coordinate system (x′, y′, z′) (see Figure (1)). The element
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Table 1: Material properties.

Property Aluminum Zirconia Zirconia Alumina

Al ZrO2-1 ZrO2-2 Al2O3

E (GPa) 70 200 151 380

ν 0.3 0.3 0.3 0.3

κ W/mK 204 2.09 2.09 10.4

α/◦C 23 ×10−6 10 ×10−6 10 ×10−6 7.2 ×10−6

ρ kg/m3 2707 5700 3000 3800

matrices corresponding to the skew edges are transformed from global axes to local axes on which the boundary

conditions can be conveniently specified. The relation between the global and local degrees of a particular node

can be obtained through the following transformation [33]

δ = Lgδ
′ (40)

where δ and δ
′ are the generalized displacement vector in the global and the local coordinate system, respectively.

The nodal transformation matrix for a node I on the skew boundary is given by

Lg =

























cosψ sinψ 0 0 0

− sinψ cosψ 0 0 0

0 0 1 0 0

0 0 0 cosψ sinψ

0 0 0 − sinψ cosψ

























(41)

where ψ defines the skewness of the plate.
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5.1. Static Bending

Let us consider a Al/ZrO2 FGM square plate with length-to-thickness a/h = 5, subjected to a uniform load

with fully simply supported (SSSS) and fully clamped (CCCC) boundary conditions. Four different values

for the gradient index (n = 0, 0.5, 1, 2) are considered in this study. The plate is modelled with 4, 8, 16, 24

and 32 control points per side. Tables 2 and 3 summarize the IGA results with quadratic, cubic and quartic

NURBS elements for SSSS and CCCC boundary conditions. It can be seen that for all polynomial orders, the

convergence of the results is quite fast. For cubic and quartic NURBS elements, the convergence is almost

achieved with 16 control points per side. Table 4 compares the results from the present formulation with other

approaches available in the literature [46, 47, 48] and a very good agreement can be observed.

Next, we illustrate the performance of the present isogeometric method for thin plate problems. A simply

supported and a clamped Al/ZrO2-1 square plates subjected to uniform load are considered, while the length-

to-thickness (a/h) varies from 5 to 106 and the gradient index ranges from 0 to 2. Two individual approaches are

employed: one applied the stabilization technique to eliminate shear locking named S-IGA and the other one,

normal IGA, without considering any specific technique for shear locking. The plate is modelled using quadratic

NURBS elements with 13×13 control points. The normalized center deflection wc = 100wc
Ech3

12(1−ν2)pa4
and the

normalized axial stress σxx = σxx
h2

pa2
at the top surface of the center of the plate for SSSS and CCCC boundary

conditions are depicted in Figures 3 - 4, respectively. It is observed that IGA results are subjected to shear

locking when the plate becomes thin ( a/h > 100). However, the S-IGA results are almost independent of the

length-to-thickness ratio for thin plates. The same observations also reported in [49] for laminated composite

plates. The results using the S-IGA agree very well with those given in [48] using the NS-DSG3 element.

FGM plates under thermo-mechanical loads

Here, the present isogeometric method is verified on FGM plates subjected to thermo-mechanical loads. A simply

supported Al/ZrO2 plate with aluminium at the bottom surface and zirconia at the top surface is considered.

The plate with length a = 0.2 m and thickness h=0.01 m is modelled employing quadratic NURBS elements. For
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Table 2: The normalized center deflection for fully simply supported Al/ZrO2-1 FGM square plate with a/h = 5, subjected to a
uniformly distributed load p using IGA. ∗At least 5 control points per side are needed for 1 quartic NURBS element.

Method Number of gradient index, n

Control Points 0 0.5 1 2

Quadratic

4 0.162098 0.218914 0.256018 0.293806

8 0.171617 0.232392 0.271879 0.311459

16 0.171649 0.232439 0.271935 0.311520

24 0.171651 0.232441 0.271938 0.311523

32 0.171651 0.232442 0.271938 0.311523

Cubic

4 0.163329 0.220598 0.257991 0.296053

8 0.171658 0.232452 0.271950 0.311536

16 0.171651 0.232441 0.271938 0.311522

24 0.171651 0.232442 0.271938 0.311523

32 0.171651 0.232442 0.271938 0.311523

Quartic

5∗ 0.172910 0.234167 0.273959 0.313821

8 0.171690 0.232495 0.272000 0.311594

16 0.171651 0.232442 0.271938 0.311523

24 0.171651 0.232442 0.271938 0.311523

32 0.171651 0.232442 0.271938 0.311523
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Table 3: The normalized center deflection for fully clamped Al/ZrO2-1 FGM square plate with a/h = 5, subjected to a uniformly
distributed load p using IGA. ∗At least 5 control points per side are needed for 1 quartic NURBS element.

Method Number of gradient index, n

Control Points 0 0.5 1 2

Quadratic

4 0.052510 0.06818 0.079306 0.093421

8 0.075831 0.101036 0.117946 0.136557

16 0.076017 0.101305 0.118264 0.136905

24 0.076024 0.101315 0.118276 0.136918

32 0.076025 0.101316 0.118278 0.136920

Cubic

4 0.056337 0.07342 0.085447 0.100403

8 0.076031 0.101324 0.118287 0.136931

16 0.076025 0.101316 0.118277 0.136921

24 0.076025 0.101317 0.118278 0.136921

32 0.076026 0.101317 0.118279 0.136921

Quartic

5∗ 0.077690 0.103620 0.120980 0.139973

8 0.076092 0.101409 0.118387 0.137043

16 0.076026 0.101317 0.118279 0.136921

24 0.076026 0.101317 0.118279 0.136921

32 0.076026 0.101317 0.118279 0.136921
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Table 4: The normalized center deflection for fully clamped Al/ZrO2-1 FGM square plate with a/h = 5, subjected to a uniformly
distributed load p using 13 ×13 control points for various boundary conditions. ∗At least 5 control points per side are needed for 1
quartic NURBS element.

Method Number of gradient index, n

Control Points 0 0.5 1 2

SSSS

IGA-Quadratic 0.1717 0.2324 0.2719 0.3115

IGA-Cubic 0.1717 0.2324 0.2719 0.3115

IGA-Quartic 0.1717 0.2324 0.2719 0.3115

NS-DSG3 [48] 0.1721 0.2326 0.2716 0.3107

ES-DSG3 [48] 0.1700 0.2296 0.2680 0.3066

MITC4 [48] 0.1715 0.2317 0.2704 0.3093

kp−Ritz [47] 0.1722 0.2403 0.2811 0.3221

MLPG [46] 0.1671 0.2505 0.2905 0.3280

CCCC

IGA-Quadratic 0.0760 0.1013 0.1183 0.1369

IGA-Cubic 0.0760 0.1014 0.1183 0.1369

IGA-Quartic 0.0760 0.1014 0.1183 0.1369

NS-DSG3 [48] 0.0788 0.1051 0.1227 0.1420

ES-DSG3 [48] 0.0761 0.1013 0.1183 0.1370

MITC4 [48] 0.0758 0.1010 0.1179 0.1365

kp−Ritz [47] 0.0774 0.1034 0.1207 0.1404

MLPG [46] 0.0731 0.1073 0.1253 0.1444
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Figure 3: The normalized center deflection, wc and the normalized axial stress σxx as a function of a/h for a simply supported
Al/Zr02-1 FGM square plate subjected to a uniform load, p: (a) normalized center deflection and (b) normalized center stress.
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Figure 4: The normalized center deflection, wc and the normalized axial stress σxx as a function of a/h for a clamped Al/Zr02-1
FGM square plate subjected to a uniform load, p: (a) normalized center deflection and (b) normalized center stress.
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comparison, a mesh with 13 control points per side is used. At first, we study the behaviour of SSSS Al/ZrO2-I

FGM plate under a uniform mechanical load. Figure (5) shows the distributions of the normalized axial stress

through the thickness of the plate computed for different values of the gradient index n. The results are in

excellent agreement with those given in [46, 48]. Figure (6) plots the central deflection wc = 100wc
Ech3

12(1−ν2)pa4

of the plate with respect to various load parameters, p = pa4/(Emh
4), given in the interval [-14, 0] for different

values of the gradient index n. It can be seen that the central deflection of the plate linearly increases with

respect to the load. It is also observed that the central deflection increases with the gradient index k. As

expected, the metallic plate has the largest deflection, while the ceramic plate has the lowest. Note that the

results match well with those given in [48, 50]. Figure (6) shows the normalized axial stress at points on the

vertical line passing through the centroid of simply supported Al/ZrO2-2 FGM square plate subjected to a

uniform mechanical load p. The results agree well with the results reported in [47, 48]. It is observed that

for isotropic plates (i.e, n = 0) the axial stress distribution is linear while it is nonlinear for FGM plates. For

FGM plates, the magnitude of the axial stress at the bottom is less than the one at the top. The maximum

compressive stress at the top surface of the plate has been obtained for the FGM plate with n = 2, whilst the

metallic only or ceramic only plates has the minimum tensile stress at the bottom surface.

FGM plates subjected to thermal loading

Next, we study the behaviour of FGM plates under the thermal loading. A Al/ZrO2-2 FGM plate with length

a = 0.2m and thickness h = 0.01m is considered. The temperature at the top surface of the plate is varied

from 0◦C to 500◦C, while the temperature at the bottom surface is maintained at 20◦C. The temperature of

the stress free state is assumed to be at To = 0◦C. Figure (7) depicts the non-dimensional center deflection of

the plate under the thermal load. This problem was solved by Zhao and Liew, using the element free kp-Ritz

method [51] and by Xuan et al., [48] using NS-DSG3 elements. The results obtained with our IGA method agree

very well with those given in [51, 48]. From Figure (7), it is observed that the metal plate gives the maximum

deflection because of its high thermal conductivity. The deflection of the FGM plate with the gradient index
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Figure 5: The normalized axial stress σxx = σxx
h2

pL2 at points on the vertical line passing through the centroid of a simply supported

square Al/Zr02 FGM plate subjected to uniform mechanical load p.

n = 1 is minimum. Generally, it can be seen that the deflections of the FGM plates are much lower than those

of isotropic plates (i.e., n = 0), which implies high temperature resistance behaviour of the functionally graded

plates.

Now, we investigate the FGM plate under thermo-mechanical loads. The temperature at the top surface of the

plate is held at 300◦C (top surface is assumed to be rich in ceramic) and the temperature at the bottom surface

(assumed to be rich in metal) is Tm =20◦C. Figure (9) shows the center deflection wc = wc/h of the plate with

respect to various load parameters p = pa4/(Emh
4) given in the interval -14 ≤ p ≤ 0 for different values of

the gradient index. It can be seen that the central deflection of the plate is completely different from the case

with a purely mechanical loading (see Figure (6)). However, similarly to the case of the FGM plate under pure

mechanical loading, the center deflection of the plate linearly increases with the load. The metallic phase shows

the maximum range of deflection changes and the ceramic plate the least.

Figure (9) plots the distribution of axial stress through the thickness of the plate under the uniform mechanical

25

Administrador
Texto insertado
how can it be lower than \delta_{ceramic}?

Administrador
Tachado

Administrador
Texto insertado
8

Administrador
Tachado

Administrador
Texto insertado
plate

Administrador
Texto insertado
Fig 7 also show linear response.



−14 −12 −10 −8 −6 −4 −2 0
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Load parameter

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

 

 

ceramic
n=0.5
n=1
n=2
metal

(a)

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
−0.5

0

0.5

Normalized axial stress

N
or

m
al

iz
ed

 th
ic

kn
es

s

 

 

ceramic
n=0.5
n=1
n=2
metal

(b)

Figure 6: The normalized center deflection wc and the normalized axial stress σxx of a simply supported square Al/Zr02 FGM
plate subjected to uniform mechanical load p: (a)The normalized center deflection, wc = wc/hwith p = pa4/(Emh

4) and (b) The

normalized axial stress σxx = σxx
h2

pa2 at points on the vertical line passing through the centroid with load p.
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Figure 7: The normalized center deflection wc = wc/h of a simply supported square Al/ZrO2 FGM plate subjected to thermal load.
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Figure 8: The normalized center deflection wc = wc/h of a simply supported square Al/ZrO2 FGM plate subjected to thermo-
mechanical load.
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Figure 9: The normalized center deflection wc = wc/h of a simply supported square Al/ZrO2 FGM plate subjected to thermo-
mechanical load.

load p = -106 N/m2. Comparing to Figure (6) for purely mechanical load, it is seen that the maximum

compressive stress at the top surface of the plate has been obtained for the FGM plate with a gradient index

n = 1. Again, the metallic or ceramic plate shows the minimum tensile stress at the bottom surface. Note that

the results match very well with those given in [51, 48].

Skew plates

In this example, we study the behaviour of FGM skew plates under mechanical loads. A simply supported

Al/ZrO2 FGM skew plate with length a = 10m and thickness h = 0.1m is considered. The plate is subjected

to a uniform mechanical load p = -104 N/m2. A mesh of quadratic NURBS elements with 17 × 17 control

points is used for modelling the plate. Figure (10) shows the distribution of non-dimensional axial stress

σxx = σxxh
2/(pa2) through the thickness of the plate for different skew angles with gradient index n = 0.5. It

can be observed that the axial stresses increase as the skew angle decreases. Similar behaviour can be found for

gradient indices n = 1 and n = 2 in Figures 11 and 12, respectively. The results obtained by our isogeometric
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analysis are in a good agreement with those reported in [47] using the element free kp− Ritz method and the

results of NS-DSG3 [48] and ES-DSG3 [52].
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Figure 10: The effect of skew angle on the axial stress σxx = σxx
h2

pL2 profile for simply supported FGM Al/ZrO2 subjected to a
mechanical load with gradient index n = 0.5.

5.2. Free flexural vibrations

In this section, the free flexural vibration characteristics of FGM plates are studied numerically. In all cases, we

present the non-dimensionalized free flexural frequency defined as, unless otherwise stated:

ω = ωh

√

ρc
Ec

(42)

where ω is the natural frequency, ρc, Ec are the mass density and Young’s modulus of the ceramic phase. Before

proceeding with a detailed study on the effect of gradient index on the natural frequencies, the formulation

developed herein is validated against available analytical/numerical solutions in the literature.
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Figure 11: The effect of skew angle on the axial stress σxx = σxx
h2

pL2 profile for simply supported FGM Al/ZrO2 subjected to a
mechanical load with gradient index n = 1.0.
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Figure 12: The effect of skew angle on the axial stress σxx = σxx
h2

pL2 profile for simply supported FGM Al/ZrO2 subjected to a
mechanical load with gradient index n = 2.0.
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Square plates

A simply supported Al/Al2O3 FGM square plate with various length-to-thickness ratio is considered. The plate

is modelled employing quadratic, cubic and quartic NURBS elements with meshes of 8, 14 and 20 control points

per side. The results obtained from the isogeometric analysis for the first normalized frequency parameter ω

are presented in Tables 5 and 6 for different plate aspect ratios (a/h = 5, 10, 20) and compared with the results

available in the literature [21, 52, 53, 54]. The first normalized frequency (= ω/ωanalytical) is shown in Figures 13

- Figure (15) for various a/h ratios (a/h = 5, 10, 20). The results of IGA shown in these figures are computed

using quadratic NURBS elements with 14 control points per side. It is seen that the results from IGA are

superior to compared to other methods, irrespective of the material gradient index.
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Figure 13: The normalized first frequency ω∗ = ω/ωref versus volume fraction exponents for SSSS Al/Al2O3 FGM plate with a/h =
5. The frequency is normalized with the analytical solution.

Figures 16 - (17) shows the first four non-dimensionalized frequencies for a Al/ZrO2 FGM plate with a/h =

10 with various boundary conditions (CCCC, SSSS and CFFF). It can be seen that very good agreement is

obtained with the results available in the literature. For CFFF boundary conditions, the difference between the
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Figure 14: The normalized first frequency ω∗ = ω/ωref versus volume fraction exponents for SSSS Al/Al2O3 FGM plate with a/h =
10. The frequency is normalized with the analytical solution.
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Figure 15: The normalized first frequency ω∗ = ω/ωref versus volume fraction exponents for SSSS Al/Al2O3 FGM plate with a/h =
20. The frequency is normalized with the analytical solution.
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Figure 16: The non-dimensional frequency ω = ωa2

h

√

ρc
Eo

versus various volume fraction exponent of Al/ZrO2 FGM plate with

different boundary conditions: (a) Mode 1 and (b) Mode 2.
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Figure 17: The non-dimensional frequency ω = ωa2

h

√

ρc
Eo

versus various volume fraction exponent of Al/ZrO2 FGM plate with

different boundary conditions: (a) Mode 3 and (b) Mode 4.
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IGA and the element free kp−Ritz is ranged from 0.3% to 2.1%, while it is about 2.2 - 3.3% and 1.6 - 2.5% for

CCCC and SSSS boundary conditions, respectively. Note that all the present results agree very well with those

given in [48, 52].

Table 5: The first normalized frequency parameter ω = ωh
√

ρc
Ec

for fully simply supported Al/Al2O3 FGM square plate for a/h =

5.

Method Control points gradient index n

0 0.5 1 4 10

IGA-Quadratic

8 0.21128 0.18051 0.16309 0.13962 0.13231

14 0.21121 0.18045 0.16303 0.13957 0.13227

20 0.21121 0.18044 0.16303 0.13957 0.13227

IGA-Cubic

8 0.21121 0.18044 0.16303 0.13957 0.13227

14 0.21121 0.18044 0.16303 0.13957 0.13227

20 0.21121 0.18044 0.16303 0.13957 0.13227

IGA-Quartic

8 0.21121 0.18044 0.16303 0.13957 0.13227

14 0.21121 0.18044 0.16303 0.13957 0.13227

20 0.21121 0.18044 0.16303 0.13957 0.13227

ES-DSG3 (20×20) [52] 0.21218 0.18114 0.16351 0.13992 0.13272

DSG3 (16×16) [52] 0.21335 0.18216 0.16444 0.14069 0.13343

MITC4 (16×16) [52] 0.21182 0.18082 0.16323 0.13968 0.13251

HSDT [21] 0.21210 0.18190 0.16400 0.13830 0.13060

kp−Ritz [53] 0.20550 0.17570 0.15870 0.13560 0.12840

Ref. [54] 0.21120 0.18050 0.16310 0.13970 0.13240

Skew plate

Next, the effects of the skewness of the plate on the free flexural vibration of the FGM plate is studied. A

Al/ZrO2-2 skew FGM plate with length-to-thickness ratio a/h = 10 and various skew angles are considered
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Table 6: The first normalized frequency parameter ω = ωh
√

ρc
Ec

for fully simply supported Al/Al2O3 FGM square plate for a/h =

10, 20.

a/h Method gradient index n

0 0.5 1 4 10

10

IGA-Quadratic (20 points) 0.05769 0.04899 0.4418 0.03821 0.03655

IGA-Cubic (20 points) 0.05769 0.04898 0.04417 0.03821 0.03655

IGA-Quartic (20 points) 0.05769 0.04898 0.04417 0.03821 0.03655

ES-DSG3 (20×20) [52] 0.05800 0.04924 0.04439 0.03839 0.03973

DSG3 (16×16) [52] 0.05834 0.04954 0.04467 0.03861 0.03693

MITC4 (16×16) [52] 0.05787 0.049132 0.04429 0.03830 0.03665

HSDT [21] 0.05777 0.04917 0.04426 0.03811 0.03642

kp−Ritz [53] 0.05673 0.04818 0.04346 0.3757 0.03591

Ref. [54] 0.05770 0.04900 0.04420 0.03820 0.03660

20

IGA-Quadratic (20 points) 0.01480 0.01254 0.01130 0.00981 0.00944

IGA-Cubic (20 points) 0.01480 0.01254 0.01130 0.00981 0.00944

IGA-Quartic (20 points) 0.01480 0.01254 0.01130 0.00981 0.00944

ES-DSG3 (20×20) [52] 0.01488 0.01261 0.01137 0.00986 0.00946

DSG3 (16×16) [52] 0.01498 0.012704 0.01145 0.00993 0.00952

MITC4 (16×16) [52] 0.01485 0.01258 0.01134 0.00984 0.00944

kp−Ritz [53] 0.01464 0.01241 0.01118 0.00970 0.00931

Ref. [54] 0.01480 0.01250 0.01130 0.00980 0.00940
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in this example. The skew plate is modelled using quadratic NURBS elements with 17 × 17 control points.

The first two non-dimensionalized frequencies are shown in Figures 18 - (19) for SSSS and CCCC boundary

conditions, respectively. For comparison, the results from the element free kp−Ritz [53] are also plotted. From

the figures, it is seen that the IGA gives higher frequencies than the element free kp−Ritz method. It is also

observed that by increasing the gradient index or decreasing the skew angle, the frequency decreases. In both

cases, the decrease in the natural frequency can be attributed to the stiffness degradation. In the case of gradient

index, the stiffness degradation is due to increased metallic volume fraction, while the geometry of the plate is

a contributing factor in decreasing the frequency when the skew angle decreases. The first eight mode shapes

of fully clamped Al/ZrO2-2 skew plate with skew angle ψ = 45◦ and gradient index n = 0.5 is plotted in Figure

(20).

Remark 5.1. In the next two sections, the present formulation is extended to study the buckling and flutter

characteristics of the the FGM plates. For the whole, quadratic NUBRS functions with 17 × 17 control points

are used, unless otherwise specified.

5.3. Buckling analysis

In this section, we present the mechanical and thermal buckling behaviour of functionally graded skew plates.

The FGM plate considered here consists of aluminum and alumina (see Table 1 for material properties).

Mechanical Buckling

The critical buckling parameters are defined for uni- and bi- axial compressive loads as:

λcru =
N0

xxcrb
2

π2Dc

λcrb =
N0

yycrb
2

π2Dc
(43)
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Figure 18: The non-dimensional frequency ω = ωa2
√

ρc/Ec for a simply supported Al/ZrO2-2 skew plate versus various skew angles
for different values of gradient index with a/h = 10.
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Figure 19: The non-dimensional frequency ω = ωa2
√

ρc/Ec for a clamped Al/ZrO2-2 skew plate versus various skew angles for
different values of gradient index with a/h = 10.
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Figure 20: First eight mode shapes for a clamped Al/Zro2 skew plate with a/h = 10, gradient index n = 0.5 and ψ = 45◦.
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where, Dc = Ech
3/(12(1 − ν2)). The critical buckling loads evaluated by varying the skew angle of the plate,

volume fraction index and considering mechanical loads such as uni- and biaxial compressive loads are shown

in Tables 7 - 8 for two different thickness ratios. The efficacy of the present formulation is demonstrated by

comparing our results with those in [8]. It can be seen that increasing the gradient index decreases the critical

buckling load. It is also observed that the decrease in the critical value is significant for the material gradient

index n ≤ 2 and that further increase in n yields less reduction in the critical value, irrespective of the skew

angle.

Table 7: Critical buckling parameters for a thin simply supported FGM skew plate with a/h = 100 and a/b = 1.

Skew angle λcr Gradient index, n

0 1 2 5 10

Ref. [8] Present Ref. [8] Present

0◦
λcru 4.0010 3.9998 1.7956 1.8034 1.5320 1.2606 1.0830

λcrb 2.0002 1.9999 0.8980 0.9017 0.7660 0.6303 0.5415

15◦
λcru 4.3946 4.3946 1.9716 1.9716 1.6752 1.3800 1.1868

λcrb 2.1154 2.1154 0.9517 0.9517 0.8086 0.6652 0.5716

30◦
λcru 5.8966 5.8966 2.6496 2.6496 2.2515 1.8607 1.6032

λcrb 2.5365 2.5365 1.1519 1.1519 0.9788 0.8044 0.6905

45◦
λcru 10.1031 10.1031 4.5445 4.5445 3.8625 3.2234 2.7964

λcrb 3.6399 3.6399 1.6863 1.6863 1.4330 1.1774 1.0103

Thermal Buckling

The temperature rise of Tm = 5◦C in the metal-rich surface of the plate is assumed in the present study. In

addition to nonlinear temperature distribution across the plate thickness, the linear case is also considered in

the present analysis by truncating the higher order terms in Equation (9). The plate is of uniform thickness and

simply supported on all four edges. The critical buckling temperature difference ∆Tcr using two values of the
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Table 8: Critical buckling parameters for a thick simply supported FGM skew plate with a/h = 10 and a/b = 1.

Skew angle λcr Gradient index, n

0 1 2 5 10

Ref. [8] Present Ref. [8] Present

0◦
λcru 3.7374 3.7307 1.6892 1.6793 1.4198 1.1632 0.9999

λcrb 1.8686 1.8654 0.8449 0.8397 0.7099 0.5816 0.4999

15◦
λcru 4.0791 4.0791 1.8458 1.8458 1.5616 1.2810 1.1021

λcrb 1.9660 1.9660 0.8923 0.8923 0.7550 0.6184 0.5315

30◦
λcru 5.3571 5.3571 2.4298 2.4298 2.0533 1.6886 1.4565

λcrb 2.3226 2.3226 1.0659 1.0659 0.9011 0.7367 0.6326

45◦
λcru 8.5261 8.5261 3.8835 3.8835 3.2679 2.7046 2.3521

λcrb 3.1962 3.1962 1.5030 1.5030 1.2680 1.0335 0.8871

aspect ratio a/b = 1 and 2 with a/h = 10 and for various skew angles is given in Table 9. It can been seen that

the results from the present formulation are in good agreement with the results available in the literature. The

decrease in the critical buckling load with the material gradient index n is attributed to the stiffness degradation

due to the increase in the metallic volume fraction. The thermal stability of the plate increases with the skew

angle of the plate and the same behavior is observed for other values of gradient index n. It can also be seen

that the nonlinear temperature variation through the thickness yields higher critical values compared to the

linear distribution case.

5.4. Flutter analyses

In this section, the present formulation is extended to analyse the flutter characteristics of functionally graded

material plates. Both simply supported and clamped boundary conditions are considered in this study and the

flow direction is assumed to be at right angles to the plate. Only square plate is considered and the results are

presented only for a/h = 100. It should be noted that the present formulation is not limited to this alone. In
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Table 9: Critical buckling temperature ∆Tcr for a thin simply supported FGM skew plate with a/h = 100 and a/b = 1 under linear
and nonlinear temperature rise through the thickness of the plate.

a/b Skew angle Temperature rise Gradient index, n

0

Ref. [55] Present 0.5 1 5

1

0◦
Linear 24.1951 24.1912 9.3787 5.5207 3.8987

Nonlinear 24.1951 24.1912 12.3629 7.6615 4.8740

30◦
Linear 33.9558 33.9503 14.9115 9.7737 7.4681

Nonlinear 33.9558 33.9503 19.6600 13.558 9.3399

60◦
Linear 123.0974 123.1172 65.4519 48.6271 40.0647

Nonlinear 123.0974 123.1172 86.2949 67.4989 50.1064

2

0◦ Nonlinear 75.4278 75.4475 50.6564 38.6525 28.3067

30◦ Nonlinear 100.9349 100.9512 69.7225 54.0838 39.9718

60◦ Nonlinear 304.6912 304.6421 222.0921 177.4280 133.1456
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all cases, we present the non dimensionalized critical aerodynamic pressure, λcr and critical frequency ωcr as,

unless specified otherwise:

Ωcr = ωcra
2

√

ρch

Dc

λcr = λcr
a3

Dc
(44)

where Dc =
Ech3

12(1−ν2c )
is the bending rigidity of the plate, Ec, νc are the Young’s modulus and Poisson’s ratio of

the ceramic material and ρc is the mass density. In order to be consistent with the existing literature, properties

of the ceramic are used for normalization.

Table 10: Comparison of critical aerodynamic pressure and coalescence frequency for an isotropic plate with various boundary
conditions (a/b = 1, a/h = 100, ν = 0.3, θ′ = 0).

Reference Flutter bounds Boundary condition

1 1 Simply supported Clamped

Ref. [27]
λcr 511.11 852.34

ωcr 1840.29 4274.32

Present
λcr 511.92 854.88

ωcr 1844.80 4305.30

Before proceeding with the detailed study, the formulation developed herein is validated against available results

pertaining to the critical aerodynamic pressure and critical frequency for an isotropic plate with and without

a crack. The computed critical aerodynamic pressure and the critical frequency for an isotropic square plate

with various boundary conditions is given in Table 10. Next, the influence of boundary conditions on the flutter

characteristics is studied. For this study, consider a square FGM plate made up of Aluminum-Alumina with

a/h = 100. Figure (21) shows the influence of the boundary conditions on the critical aerodynamic pressure for

various gradient index. It can be seen that the critical pressure is more for the clamped plate in comparison
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with that of the simply supported plate as expected. It is also seen that the aerodynamic pressure decreases

with increase in the gradient index n. However the rate of decrease is high for low values of n. This can be

attributed to the fact that the stiffness is high for the ceramic plate and minimum for the metallic plate and it

degrades gradually with increase in the gradient index n.
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Figure 21: Effect of boundary conditions on the critical aerodynamic pressure λcr

6. Conclusions

In this paper, we applied the NURBS based Bubnov-Galerkin iso-geometric finite element method to study the

static and dynamic response of functionally graded material plates. The first order shear deformation plate

theory (FSDT) was used to describe the plate kinematics. Of course the present method is not limited to FSDT

and can easily be extended to higher order plate theories. It is to be noted that with NURBS basis functions,

geometry could be exactly represented. Although in the present study only simple geometries are considered,

the only thing that would change is the information pertaining to the geometry represented by the NURBS

basis functions, when it is applied to model and/or analyze complex geometries. The formulation when applied
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to thin plates, suffers from shear locking, which is alleviated by employing a modified shear correction factor.

Numerical experiments have been conducted to bring out the influence of the gradient index, the plate aspect

ratio and the plate thickness on the global response of functionally graded material plates. From the detailed

numerical study, it can be concluded that with increasing gradient index n, the static deflection increases, while

the free flexural vibration, critical buckling load and the flutter frequency decreases. This can be attributed to

the reduction in stiffness of the material structure due to increase in the metallic volume fraction.
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