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1. INTRODUCTION AND MAIN RESULTS

Due to many applications in probability and statistics, quadratic forms or more general
second order polynomials in Gaussian random variables are an object of great importance.
The aim of this paper is to present some new results about distributions of random vectors
whose components are such quadratic forms.

To be more specific, let us fix an integer number & > 2 and let us introduce an array
gij, 1 <i <k, j=12,...0f N(0,1) random variables. Assume that the variables g, ;
are jointly Gaussian and that E[g; j¢; 4] = 0 whenever j # j' (that is, for any fixed ¢, the
sequence ¢; 1,92, - - - is composed of independent N(0,1) random variables). Let us also
consider a random vector F' = (F}, ..., F},) € R* whose components are “quadratic forms”,
that is, for any i =1, ...k,

F, = Z)\m(gij —1) forsome \;; € R with Y722 A7, < oc. (1.1)
j=1

In his seminal paper [7], Kusuoka showed that the law of F' = (Fy,..., F) as above
is not absolutely continuous with respect to Lebesgue measure if and only if there exists
a nonconstant polynomial P on R¥ such that P(Fy,...,F;) = 0 almost surely (see also
[9, Theorem 3.1], where it is further shown that the degree of P can always be chosen
less than or equal to k2%1!). But what can be said about the usual linear dependence of
Fi, ..., F,? One of the goals of this paper is to provide a number of positive and negative
results in the spirit of the following theorem, which will be proved (actually in a more
general framework) in Section

Theorem 1.1. Let k € N be fized. Let F' = (Fy,. .., Fy) be a random vector given by (I.Tl)

such that the law of F is not absolutely continuous. Then, there exist k — 1 independent
1
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N(0,1) random variables 1y, ..., nx—1 and 2k — 1 real numbers ay, ..., ax,by,. .., bg_1 such
that (aq,...,ax) # (0,...,0) and almost surely

aFy+ - 4 apky, = 51(77% —1) 4+ bk—l(nlz—l —1).

In order to better understand the significance of this theorem, let us comment on it a
little bit. Let its assumptions hold. In case k = 1 this is only possible if F; = 0. When
k =2, it can be shown (see, e.g., [9, Proposition 3.2]) that one can actually choose b; = 0,
which means that F; and F5, are necessarily linearly dependent. When k& > 3, the situation
becomes more difficult. It is no longer true that the variables F; are necessarily linearly
dependent when F' is not absolutely continuous, as the following simple counterexample
shows. Let g1, g2 ~ N(0,1) be independent. Set F}; = g% — 1, F, = g2 — 1 and

Fy = g192 = ! [((511 +g2)2 — 1) — <<g1 —_ 92)2 — 1)}
2v/2 V2 V2
The second equality just shows that F3 is indeed of the form (I.]). It is readily checked
that the covariance matrix of Fi, Fy, F3 is not degenerate (hence Fi, Fy, F3 are linearly
independent), although the law of (F}, Fy, F3) is obviously not absolutely continuous, since
F}—(F1+1)(Fy+1) = 0. Therefore, the best one can achieve about the linear dependence
is precisely what we state in our theorem.

Let us now discuss the second main result of this paper, which is a description of the
possible limits in law for sequences of vectors of quadratic forms. To be in a position to
state a precise result, we first need to introduce some n in the previous framework. So, fix
an integer number £ > 1 and let now ¢; j,, 1 <i <k, j,n=1,2,..., be an array of N(0,1)
random variables. Assume that, for each fixed n, the variables g, ;, are jointly Gaussian
and that E[g; jngijn] = 0 whenever j # j'. Let us also consider a sequence of random
vectors F, = (Fip, ..., Fpn) € R* whose components are again “quadratic forms”: for any
t1=1,....,kand any n > 1,

Z i (97, — 1) for some X, € R with 3722 A7, < o0,

1,7,n

We then have the following theorem, which is our second main result.

Theorem 1.2. Let us assume that F,, = (Fi,,...,Fy,) converges in law as n — oo.
Then the limit law coincides with the distribution of a vector of the form n + F', where
F = (Fy,...,Fy) is of the form (1) and n = (m,...,n,) is an independent Gaussian
random vector.

When k£ = 1 (the one-dimensional case), Theorem [[.2] was actually shown by Arcones [2]
(see also Sevastyanov [14] or Nourdin and Poly [12]). At first glance one could be tempted
to think that, in order to show Theorem in the general case k > 2, it suffices to apply
the Arcones theorem along with the Cramér-Wold theorem. But if we try to implement
this strategy, we face a crucial issue. Indeed, consider a random vector G = (G1,...,Gy)
in R* and assume that each linear combination of the variables G; is a quadratic form in
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Gaussian random variables; how can we deduce from this that G' has the same law as F
given by (LII)?

The paper is organized as follows. Section 2 contains our results related to Theorem [I.1],
whereas the proof of Theorem is performed in Section 3.

2. SECOND ORDER POLYNOMIAL MAPPINGS WITH LINEARLY DEPENDENT MALLIAVIN
DERIVATIVES

A basic fact of the Malliavin calculus is that finitely many Sobolev functions Fi, ..., F, on
a space with a Gaussian p have a joint density of distribution provided that their Malliavin
gradients Dy F7y, ..., DgF, along the Cameron—Martin space H are linearly independent
almost everywhere. For this reason diverse sufficient conditions for such independence are of
interest, which leads to a natural question about consequences of the alternative situation
where the gradients are linearly dependent on a positive measure set. One can hardly
expect a useful general characterization of this, but the situation may be more favorable
for various special classes of functions, in particular, for measurable polynomials. One of the
first results in this direction (already mentioned above) was obtained by Kusuoka [7]. This
result has been recently extended in [9] as follows: the measure induced by (Fy,..., F,)
is not absolutely continuous precisely when there is a polynomial dependence between
Fy,..., F,, ie. there is a nonzero polynomial ¢ such that ¢ (F},..., F,) = 0. But what
can be said about usual linear dependence of F}, ..., F,? Of course, in general there might
be no such dependence even in the finite-dimensional case. However, there are cases where
the linear dependence of derivatives of mappings on R? on a positive measure set yields the
usual linear dependence of the mappings themselves. This is obviously the case for linear
functions and can be also verified for quadratic forms. The goal of this section is to present
a number of positive and negative results of this sort. We prove that if k& measurable linear
mappings Aj, ..., Ar on a space with a Gaussian measure p are such that the vectors
Ajz, ..., Agx are linearly dependent for every x in a set of positive u-measure, then there
is a measurable linear operator D of rank k — 1 such that the operators Ay, ..., A, D are
linearly dependent, i.e. D = ciA; + - -+ + ¢, Ax with some numbers ¢y, ..., c;. In general,
the rank of D cannot be made smaller. However, if &k = 2 and A; and A, are the second
derivatives along H of some second order polynomials, then the above assertion is true
with D = 0, that is, A; and A, are linearly dependent.

Let i be a centered Radon Gaussian measure on a locally convex space X with the
topological dual X*, i.e., every functional f € X* is a centered Gaussian random variable
on (X, p). Basic concepts and facts related to Gaussian measures can be found in [4] and
[5]. We recall some of them.

The Cameron—Martin space of y is the set

H={heX: |hlg< ool

where
|hlg = sup{l(h): I € X*, |[lllp2qy <1}
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It is known that the closure of H in X has full measure, so we shall assume throughout
that H is dense. Such a measure pu is called nondegenerate. An equivalent condition is
that the distribution of every nonzero f € X* has a density.

Let X, denote the closure of X* in L?*(i). The elements of X, are called measurable
linear functionals on X. Such a functional admits a version that is linear on all of X in the
usual algebraic sense. Conversely, every p-measurable function that is algebraically linear
belongs to the space X .

It is known that H consists of all vectors h such that p is equivalent to its shift u;, defined
by pn(B) = u(B — h). It is also known that every vector h € H generates a measurable

linear functional h on X such that
(f,h)e2y = f(h), feX"

Every element in X can be represented in this way, so that the mapping h — h is one-to-
one. It is known that H is a separable Hilbert space with the inner product

(hy k)i = (h, k) 2.

If {e,} is an orthonormal basis in H, then

ﬁ(x) = Z(ha 6n)H€n($),

where the series converges in L?(u) and almost everywhere. In the case where p is the
standard Gaussian measure on R* (the countable power of R or the space of all real
sequences = = (z,,)) and {e,} is the standard basis in H = [?, we have ¢,(z) = z,, and

ﬁ(az) = i hny,.
n=1

Given a bounded operator A: H — H let A denote the associated measurable linear

operator on X, i.e., a measurable linear mapping from X to X such that ﬁ(gx) = /’;L(x)
for every h € H. This operator can be defined by the formula

Az = Z e, (x)Ae,,
n=1

where the series converges in X for almost all « (which is ensured by the Tsirelson theorem).
If A is a Hilbert—Schmidt operator (and only in this case) the operator A takes values

in H. Then (Az, h)y = ﬂ(:ﬂ) for every h € H and the above series converges in H for
almost all x.

The space L?(u) can be decomposed in the orthogonal sum @, X of mutually or-
thogonal closed subspaces X}, constructed as follows. Letting E}, be the closure in L?(u) of
polynomials of the form f(&;,. . .,&,), where f is a polynomial of order k on R™ and §; € X,
the space A&}, is the orthogonal complement of Fj_1 in Ey, Ey = A} is the one-dimensional
space of constants. For example, A1 = X, Functions in Ej, are called measurable polyno-
mials of order k. The elements of X} are also referred to as elements of the homogeneous
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Wiener chaos of order k (although they are not homogeneous polynomials excepting the
case k = 1). It has been recently shown in [3] that the class Ej coincides with the set of
p-measurable functions on X which admit versions that are polynomials of order k in the
usual algebraic sense (an algebraic polynomial of order & is a function whose restriction to
every straight line is a polynomial of order k).

The elements of X3 admit the following relatively simple representation: for every f e X,
there are numbers ¢, and an orthonormal sequence {¢,} C X such that » 7, 2 <
and

f=Y elé-1), (2.1)

where the series converges almost everywhere and in L?(u). For any k, the elements of X}
can be represented by series in Hermite polynomials of order k in the variables &,. Also,
in the case of the classical Wiener space, they can be written as multiple Wiener integrals.
In that case, X = C[0,1] or X = L?0,1], u is the Wiener measure, its Cameron—Martin
space H is the space of all absolutely continuous functions h on [0, 1] such that h(0) =0
and b’ € L*0,1]; (u,v)g = (v/,v")2. Every element in X, can be written as the Wiener
stochastic integral

&(x) :/0 u(t)dz(t), wu € L*[0,1].

Letting

we have £ = h. Similarly, any element in A5 can be written as the double Wiener integral

_ / / g(t, s)dx(t)dz(s),

where ¢ € L*([0,1]%). However, the first integral (s, z) = [ ¢(t, s)dz(t) must be an adapted
process (so that the second integral is already an Ito integral of an adapted process with
respect to the Wiener process), i.e., for every s, the random variable {(s,x) must be
measurable with respect to the o-field generated by the variables z(¢) with ¢ < s; for this
reason it is required that ¢(¢, s) = 0 whenever ¢ > s.

Every function f € X, has the Malliavin gradient Dy f along H that is a measurable
linear operator from X to H; for f of the form (Z1I) we have

DHf = chnfn ena

where {e,} is an orthonormal sequence in H such that &, = €,; without loss of generahty
we may assume that {e,} is a basis in H. Therefore, the second derivative D? f(z) is

the symmetric Hilbert—Schmidt operator with an eigenbasis {e,} and the corresponding
eigenvalues {2¢,}. So the situation is similar to the case of R, where the function Q(x) =

S en(z2 — 1) has the gradient VQ(z) = 23%_| ¢ zpe,. In the coordinate-free form

n=1

Qz) = (A:c x) — trace A, where A is a symmetric operator, VQ(z) = 2Az. The only
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difference is that the series of ¢,£2 does not have a separate meaning unless the series of
|cn| converges, so a typical element of X5 just formally looks like “a quadratic form minus
a constant”. -

It is clear that Dy f = 2D%f. Conversely, for any symmetric Hilbert—Schmidt operator
A that has an eigenbasis {e, } and eigenvalues {a,}, there is f € &3 of the form (2.]) such
that A = D2 f(z) and Az = Dy f(x).

It is readily seen that in the case of the classical Wiener space and an element f € A,
represented by means of a double Wiener integral with a kernel g one has

(Dy f(x H—// (t,s) + q(s, t)|h/(t)dtdz(s), h e H.

For the second derivative we have

(D2 ()1, ha)r = /0 /0 lq(t, s) + q(s, )R, ()R (s)dtds, Ry, hs € H.

Now we may ask whether two elements f and g in X, are linearly dependent if their
gradients Dp f(z) and Dgg(z) are linearly dependent for almost all z; what about k
elements in X»? In terms of the second derivatives along H our question is this: if two
symmetric Hilbert—Schmidt operators A and B on H are such that Az and Bz are linearly
dependent for almost all z, is it true that the operators A and B are linearly dependent?
The same question can be asked about not necessarily symmetric operators on H and
also about more general measurable linear operators (as well as about more than two such
objects).

For example, given two quadratic forms (Az,z) and (Bx,z) on RY with symmetric
operators A and B, the linear dependence of the forms (or, what is the same, the linear
dependence of the corresponding elements (Ax,z) — trace A and (Bz, z) — trace B of Xj)
is equivalent to the linear dependence of the operators, and both follow from the condition
that Az and Bz are linearly dependent for x in a positive measure set. We are concerned
with infinite-dimensional generalizations of this fact.

Lemma 2.1. Two functions f,qg € Xo are linearly dependent precisely when the operators
D% f and D?g on H are linearly dependent.

Proof. If af(x) + Bg(x) = 0 for some numbers «, 3, then obviously aD% f + 3D%g = 0.
Suppose the latter equality holds. This means that the H-valued mapping aDgf + SDgg
has zero derivative along H. It follows that aDyf(z) + BDgg(x) is a constant vector
ho € H. Therefore, af(z) + Bg(x) = ho(x) 4 ¢, where ¢ is a constant. Since f and g are
orthogonal in L?(u) to all elements in F;, we conclude that ¢ = 0 and hy = 0. O

We recall the following zero-one law: for every p-measurable linear subspace L C X
one has either u(L) = 0 or u(L) = 1. There is also a similar zero-one law for measurable
polynomials ¢: the set {z: 1 (z) = 0} has measure either 0 or 1, see [4, Theorem 3.2.10
and Proposition 5.10.10].



7

Theorem 2.2. Let Ay, ./.;,Ak be/ﬁnearly independent Hilbert—Schmidt operators on H.

Then either the vectors Ayx, ..., Arpx are linearly independent a.e. or there is a finite-
dimensional bounded operator D of rank at most k—1 that is a nontrivial linear combination

OfAl, N Ak

Proof. Let k = 2. We may assume that Alx ;é 0 a.e., since otherwise Alx = 0 a.e. by the
zero-one law, hence A; = 0. Suppose that Alx A2:c are linearly dependent on a positive
measure set. By the zero-one law for polynomlals they are linearly dependent a.e., because
the set Z of of points z at which Alx and A2:c are linearly dependent is characterlzed by the
equality (Alzz AQ:E) (Alzz Alx) (AQ:E AQ:B)H = (. Hence there is a function &k on X
such that

Arz = l{:(x);l\lx a.e.

Then k(z) = (1/4\118, 1/4\258)1{/|1/4\1x|%{ The functions
P(2) = (Az, Agr)sr, Q(x) = |Avalyy

are obviously differentiable along H. Note that the derivatives of 21 and A\l along H are
just the initial operators A; and A,, respectively. Differentiating the equality

Q(a) Az = P(x) Az,
we get almost everywhere
Q(z)As + DyQ(z) @ Asx = P(z)A; + DyP(z) ® Az,

where for any two vectors u,v € H the operator u ® v is defined by u® v(h) = (u, h)gv. It
should be noted that differentiating is possible almost everywhere, since for almost every
xr € Z the set Z contains all straight lines x 4+ RA for every vector h € H that is a
linear combination of the elements of a fixed orthonormal basis {e;} in H with rational
coefficients.

Let x be any point where the previous equality holds and @(x) # 0. Then

Ay = k() Ay + Q(x) ' [DpP(x) — k(z)DyQ(x)] ® Aqz.
Setting ¢ := k(z) and
D = Q(z)"'[DyP(z) — k(z)DpQ(z)] ® Az,

we arrive at the identity As = cA; + D, where D has rank at most 1.
Suppose now that our assertion is true for some k > 2 and consider linearly independent

operators Ay, ..., Ag, Arr1. We may assume that ;l\lzz, cee ;1;:5 are linearly independent
a.e. If Ajx,..., Api 1z are linearly dependent on a positive measure set, then they are
linearly dependent a.e., hence there are functions ¢y, ...,c, on X such that a.e.

Zk:x = cl(x);l\lx + ck(:c)z;x

It is readily verified again that the functions ¢; (which can be found explicitly) are differ-
entiable along H a.e. Differentiating we arrive at the equality a.e.

Ak—l—l = Cl(l’)Al + -t Ck(LL’)Ak + D(l’),
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where D(x) is a sum of k one-dimensional operators, hence has rank at most k. It remains
to take x as a common point of differentiability of ¢y, ..., c. O

Remark 2.3. It is known (see, e.g., [16]) that for any measurable linear operator 7" from a
separable Fréchet space X with a Gaussian measure u (actually, not necessarily Gaussian)
to a separable Banach space Y there is a separable reflexive Banach space E compactly
embedded into X and having full measure such that 7' coincides almost everywhere with
a bounded linear operator from F to Y. Using this result, one can reduce the previous
theorem (in the case of Fréchet spaces) to the case of bounded operators.

Corollary 2.4. Let k = 2 and let A; and Ay be symmetric. If ;1\156 and :4\2x are linearly
dependent for vectors x in a set of positive measure, then Ay and As are linearly dependent.

Proof. Let us return to the proof of the theorem, where 1/4\2113' = k:(:z);l\lzz a.e. with some
measurable function k. We also have Ay = cA; + D, vzhere DAhas rank at most 1. Suppose
that D # 0. Clearly, D is also symmetric, hence D = Ahihy for some nonzero vector
hi € H and a nonzero number A. Since Dx = (k(x) — ¢)Ajx a.e. and Dz # 0 a.e.
(otherwise D = 0), we see A, takes its values in the one-dimensional range of D a.e. This
means that both A; and A, are one-dimensional and by their symmetry are of the form
h +— ¢;(h, h1)ghy with some constants ¢; and ¢, whence it is obvious that they are linearly
dependent. O

Corollary 2.5. Suppose that functions fi,..., fx, where k > 2, belong to X5 and are lin-
early independent. Then either they have a joint density of distribution or some nontrivial
linear combination c1fi + - + ¢, fn 1S a degenerate element of Xy of rank k — 1, i.e., a
second order polynomial in k —1 elements of the space X1 of measurable linear functionals.

Corollary 2.6. Let i be a nondegenerate centered Gaussian measure on a separable Fréchet
space X, let H be its Cameron—Martin space H, and let Ay, ..., Ay be linearly independent
continuous linear operators on X with values in a Banach space E. Then either the vectors
Az, ..., Agx are linearly independent a.e. or some nontrivial linear combination c; Ay +
<o+ ¢, Ay has rank at most k — 1.

Proof. Tt suffices to consider the case of infinite-dimensional H. We may assume that E
is separable. Embedding F into [? by means of an injective continuous linear operator we
can pass to the case EF = H. Finally, taking an injective Hilbert—Schmidt operator S and
dealing with the operators SA;, ..., SA, we arrive at the situation in the theorem (in fact,
there is no need to take .S, since the restrictions of our operators to H will be automatically
Hilbert—Schmidt operators, see [4, Proposition 3.7.10]). O

Let us show that the rank of a degenerate linear combination indicated in Theorem
cannot be made smaller in general.

Proposition 2.7. For every k € N there exist operators Ai, ..., Ay: R¥ — R, where
d = k(k —1)/2, such that, for every vector x € R¥, the vectors Az, ..., Ayx are linearly
dependent, but for every nonzero vector x = (x1,...,xy) the operator Zle x;A; has rank
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k — 1. In particular, a nontrivial linear combination of A1, ..., Ar cannot be of rank less
than k — 1.

Proof. Let Ay, ..., Ay be certain operators from RF to RY. Each operator A; is represented
by a matrix (a"/)<q ;< with k columns A, ..., A¥ where A7 = (a}7,... a®7). We first

choose matrices A; such that A’ =0 and

k

i=1
The latter is equivalent to the following system of vector equations:
Al = —Aj, i # 7.

Thus, we obtain d = k(k — 1)/2 vector equations for k(k — 1) nonzero columns of the
matrices A;. Therefore, once we define d columns (one column for every equation), the
remaining columns will be uniquely determined from the equations.

Let us consider two cases: k is odd or k is even. Let k be odd, m = (k —1)/2. In
every matrix A; we define m columns (the remaining columns will be determined from

the equations) in the following way: Ag = €(i—lym+j—i> J =1+ 1,...,1+m mod k, where
e1,...,eq is the standard basis of R? and j mod k means the integer number r < k with
J = pk+r. Tt is easily seen that for every s € {1,...,d} there exists a unique pair of columns

Ag , A;'- with afj # 0; for different s such pairs are different. Now let us fix a nonzero vector
x € R*. Let y € Ker Zle x;A;. We obtain that z;y; — x;y; = 0 for all pairs 4, j, which
yields the linear dependence of the vectors x and y. Therefore, dim (Ker Zle :):iAi> =1,

which means that the rank of Zle x;A;is k — 1.

For example, let £k = 3. Then d = k(k—1)/2 =3, m = (k—1)/2 = 1. We have
k(k —1)/2 = 3 equations A = —A;, i # j. First we define one column in every matrix,
which along with the equality A} = 0 yields the following representation:

01 AP AV 00 0 A2 0

0 0 AB |, 1A 0 1|,[{0 A2 0

0 0 A¥ A3V 0 0 1 A3 0
From the equations we find that

A= —AL =(0,0,-1), Aj = —A? =(-1,0,0), A3 = —A3 = (0,—-1,0),

so that our matrices are

01 0 -1 00\ /0 0 0
00 o0],{o o1],[{0o -1 0
00 —1 0 00 1 0 0
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Suppose now we have a nontrivial linear combination

01 0 -1 0 0 0 0 0
A=2|0 0 O | +y|[ O O 1|+2z{0 -1 0
00 -1 0 00 1 0 0
and a vector y = (a,b,c) € Ker A. Then
a —ay + bx 0
AlbD]| =] yec—2b | =10
c —xc+ za 0

Hence the vectors (a,b,c) and (z,y, z) are linearly dependent, so dim Ker A = 1 and the
rank of A is 2.

In case of even k everything is similar. Let k& = 2m. In every matrix Ay,..., A1 we
define m columns in the following way. First, dealing with the columns A}, ..., A¥! and
ignoring the last k — 1 lines we define the matrix elements in the same way as for the odd
number k' = k — 1. Next, in the ith matrix (excepting the last one) in the kth column we
put 1 at the (d — (k — 1) + i)th position and put 0 at the other positions. O

Example 2.8. In case k = 3, we have a simple example of three linearly independent
elements xy, x> — 1, 4> — 1 of X, on the plane with the standard Gaussian measure such
that their gradients (y,z), (2x,0) and (0,2y) are linearly dependent at every point (z,y)
in the plane. Thus, their second derivatives are symmetric linearly independent operators
whose values on every fixed vector are linearly dependent.

3. CONVERGENCE IN LAW IN THE SECOND WIENER CHAOS
Let us first recall some important known results.

Theorem 3.1. Let g1, go, ... be a sequence of independent N(0,1) random variables. Let
F, be a sequence of the form F, =Y 771 apn(gp — 1) with > 5 of = %, i.e., B[F}] = 1.
Assume also that supys, [agn| — 0 as n — oo. Then F, Y N(0,1) as n — co.

This result is a very special case of a classical extension of the Lindeberg theorem (see
[6, Section 21] or [8, Section 21.2]) on convergence of a sequence of series F,, = > 7 &ip
with independent in every series centered random variables such that Y ° | E&;, = 1. The
condition of convergence in law to the standard normal distribution is that

ZE(@?,@IMMEJ — 0 for every ¢ > 0.
k=1

In our case this condition is obviously satisfied, since

Blagn(9® = Dljg_y>=] < ai,VE[(g? —1)7] \/P(Ig2 — 1| = ¢/lakal)

lag pl

C|ak,n|3

IA

¢ 5
< —sup |ag .| X s
15 € k>1
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where g has the standard normal distribution. It is worth noting that we could also use a
recent result of Nualart and Peccati [12] on convergence of distributions of multiple Wiener
integrals.

We shall also need the following result of Peccati and Tudor [13] (see also [10, Chapter

6]).

Theorem 3.2. Let ki, ky € N be fixed and let k = ki + ko. Suppose we are given standard
normal variables g; j,, 1 <1 <k, j,n=1,2,..., such that, for each fixed n, the variables
Gijn are jointly Gaussian and E[g; jngij'n) = 0 for any i whenever j # j'. Let us consider
random vectors F, = (Fy,, ..., Fy.,) € R¥, where F;,, = gi1n ifi=1,...,k and

27]777/

F,= Z )‘ivjyn(gz?,j,n —1) ifi=Fk +1,...,k + ko, where \; j, € R, Z‘;‘;l A2 < oo.
j=1

Assume that a finite limit C; ; == lim E[F; , F;,| exists for all i,j. Then the following two
n—oo
assertions are equivalent:
(a) (Fl,na e Fk,n) 1a_v>v Nk(O, C) as n — oQ, where C' = (Ci,j)lgi,jgk;

(b) F, oy N1(0,C4) asn — oo for eachi=ky +1,... ki + ko.
We now use Corollary 3.1 and Theorem [3.2] to prove Theorem .2

Proof. We can assume that the limit of the distributions of F}, is not the Dirac mass at
zero (otherwise the desired conclusion is trivial). It is known that convergence in law for
a sequence of measurable polynomials of a fixed degree yields boundedness in all L? (see,
e.g., [Il Lemma 1], [5, Exercise 9.8.19] or [12, Lemma 2.4]). Therefore, without loss of
generality we may assume that, for all ¢ and n,

1
A==
Z i,k,n 27
k=1
that is, E[F?,] = 1 for all 7 and n. We can also assume that
|)\i,1,n| Z |)\i,2,n| 2 T
Finally, using a suitable diagonalization a la Cantor, we can assume that
)\i,j,n — Wi a8 N — OQ.
By Fatou’s lemma we have Cj := Y7, pi7, < 1. On the other hand, we claim that there
exist natural numbers D, ,, — oo such that
Di,n
Cin = Z()\,kn — ui7k)2 —0 asn— oo. (3.1)
k=1
Indeed, let a;xn = (Nign — pir)?. For every k > 1, let B, > 1 be the smallest integer
such that if n > B;, then a; 1, + ...+ a0 < % It is clear that (B, )r>1 is an increasing
sequence. Without loss of generality, one can assume that B;; — oo as k — oo (if
B, # oo, then B, = B, , for all k large enough, which means that a; 1, +...+a;nn < %
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for all n > B; o and all N; then a;;, = 0 for all j and all n > B; , so that the existence
of D;,, becomes obvious). Set D;, = sup{k: B;; < n}. In particular, one has Bp,, <n,
implying in turn that a; 1, +...+a; D, ,,m < Din' Moreover, D, T oo (since n < Bz‘,Di,n +1;

if D;,, / oo, then D;,, = D, o for n large endugh, which is absurd when n — 00).
It is clear from (B.1]) that

)

1,n

(law) 2 >
Y il = 1) =D Nignlgiin = 1) B Y miglgi — 1) asn = oc.
- 2

j=1

On the other hand, we claim that

Z Nijn(020 — 1) = N(0,1 - 2C). (3.2)

Jj=Din+1

Indeed, if C; = %, then

M

(>\i,j,n - Mi,j)z = 22 Hij — ,jn /~Lz,]

7j=1

> 1/2 , & 1/2
< 2 Z |l pti g = Aigml + 2(2 |ij — /\i,j,n|2) ( > M?,])
= =1 J=N+1
N o0 5\ /2
< 2 Z i jllpei; — Nijnl + 2\@( Z :U’i,j> ;
j=1

j=N+1
so that
1/2
hmsupz e =2va( 3 )"

whence it follows that Zk:1()‘i,j,n — pij)*> — 0 as n — co. As a result, one has

Z )\2]"—22 1,4, ,UZJ +2 Z /"LZ]—>0

Jj= Dz ntl Jj= Dz ntl
and ([3.2) is shown whenever C; = % Assume now that C; < % Since D, ,, — oo and

1
Dl”)‘zD“L—l—lnS)‘zln +>\2Dln,n§2

we obtain that A; p, ,+1,» — 0 as n — oo. Let us consider the variables

Gin = —1).
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It is readily verified that E[G},] = 1 for all n and that

sup Aigml |\i,D; ot 1,n]
i>Din+1 /1 = 2C;, = /1 —=2C;,

By Theorem B.1] we obtain that G, =N (0,1), which yields in turn that (3.2) holds true
whenever C; < %
Extracting a subsequence, we may assume that a finite limit

—0 asn— 0.

Qi g = nh_{lolo E[Qi,jmgi',jcn] (3-3)
exists for all 4,7, 7, j'. Note that a;; ;; = d;5,, where ¢;; is the Kronecker symbol. Let

Boo = (gi,j,oo)izl,...,d,j:1,2,...
be a centered Gaussian family satisfying E[g; j oG j/.00] = @i j. By B.2), B.3) and
Theorem [3.2] we obtain (possibly, passing to a subsequence) that, for any fixed m > 1, as
n — oo

law

(gl,l,na e J1mmy -5 9d1ny o 9dmon Vn) — (gl,l,ooa c oy J1muc0r - - -9 9d 1,005 - - -5 dm,oos /g\)>
(3.4)
where g := (91, ..., ga) is centered Gaussian and independent of g.,. Let us now introduce

some additional notation. For any n,m > 1, set
Din Dgn

U, = <Z )\1,j,n(gij’n - 1), ceey Z )‘dJ,TL(gﬁ,j,n — 1))’
Jj=1 j=1
VvV, = < Z At (Gt — 1), Z Mg (9 im — 1)),

j=D1,n+1 Jj=Dgn+1

Won = (Z :ul,j(g%,jm —-1),..., Z udvj(gim — 1)) (here n = oo is possible),
j=1 j=1

ZOO = (Z :ulyj(g%,jpo - 1)7 ] Z ,ud,j(g?l’jpo — 1)) .
J=1 j=1

As an immediate consequence of ([3.4]), we have

li_)rn dist(Won, Vi); (Winoo,8)) =0 for any fixed m, (3.5)

where dist stands for any distance that metrizes convergence in probability (such as the
Fortet—Mourier distance for instance). On the other hand, since

lim E[|U, - W,.[I’] =0, lim E[[|[W,,c — Zsl|*] =0,
m—o0

n,m—00
where the usual norm in R? is used, we have

lim dist((Un, Vi); (Wi, Vi) =0, Lim dist(Woom, 8); (Zsc,8)) =0.  (3.6)

n,Mm—00
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By combining (3.5) and (B.6]) with
dist((U,, V3)i (2o, 8)) < dist(Upn, Vy); (W, Vi) + dist (W, Vi); (Wineo, 8))

+dist(Wnoo, 8); (Zoo, 8)),

we get that lim dist((U,, V,,); (Zw, g)) = 0, which yields the desired conclusion. O
n—oo

It should be noted that Theorem generalizes the Arcones theorem to the multidimen-
sional case, but it is not known whether in the one-dimensional case the set of distributions
of measurable polynomials of a fixed degree k > 2 is closed.
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