Horizontal Diffusion in C' Path Space

Marc Arnaudon, Koléhe Abdoulaye Coulibaly, and Anton Thalmaier

Abstract We define horizontal diffusion in C! path space over a Riemannian
manifold and prove its existence. If the metric on the manifold is developing un-
der the forward Ricci flow, horizontal diffusion along Brownian motion turns out to
be length preserving. As application, we prove contraction properties in the Monge—
Kantorovich minimization problem for probability measures evolving along the heat
flow. For constant rank diffusions, differentiating a family of coupled diffusions
gives a derivative process with a covariant derivative of finite variation. This con-
struction provides an alternative method to filtering out redundant noise.

Keywords Brownian motion - Damped parallel transport - Horizontal diffusion
- Monge—Kantorovich problem - Ricci curvature

1 Preliminaries

The main concern of this paper is to answer the following question: Given a second
order differential operator L without constant term on a manifold M and a C! path
u — @(u) taking values in M, is it possible to construct a one parameter family
X (u) of diffusions with generator L and starting point Xo(u) = ¢(u), such that the
derivative with respect to u is locally uniformly bounded?

If the manifold is R" and the generator L a constant coefficient differential op-
erator, there is an obvious solution: the family X;(u) = ¢(u) + Y;, where Y; is
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an L-diffusion starting at 0, has the required properties. But already on R” with a
non-constant generator, the question becomes difficult.

In this paper we give a positive answer for elliptic operators L on general mani-
folds; the result also covers time-dependent elliptic generators L = L(¢).

It turns out that the constructed family of diffusions solves the ordinary differen-
tial equation in the space of semimartingales:

0u Xy (u) = W(X ()i (@(u)), (1)

where W(X(u)) is the so-called deformed parallel translation along the semimartin-
gale X (u).

The problem is similar to finding flows associated to derivative processes as stud-
ied in [7-10, 12—-15]. However it is transversal in the sense that in these papers
diffusions with the same starting point are deformed along a drift which vanishes at
time 0. In contrast, we want to move the starting point but to keep the generator. See
Stroock [22], Chap. 10, for a related construction.

Our strategy of proof consists in iterating parallel couplings for closer and closer
diffusions. In the limit, the solution may be considered as an infinite number of in-
finitesimally coupled diffusions. We call it horizontal L-diffusion in C'! path space.

If the generator L is degenerate, we are able to solve (1) only in the constant
rank case; by parallel coupling we construct a family of diffusions satisfying (1) at
u = 0. In particular, the derivative of X;(u) at u = 0 has finite variation compared
to parallel transport.

Note that our construction requires only a connection on the fiber bundle gener-
ated by the “carré du champ” operator. In the previous approach of [11], a stochastic
differential equation is needed and V has to be the Le Jan-Watanabe connection as-
sociated to the SDE.

The construction of families of L(¢)-diffusions X, (x) with 9, X, (u) locally uni-
formly bounded has a variety of applications. In Stochastic Analysis, for instance,
it allows to deduce Bismut type formulas without filtering redundant noise. If only
the derivative with respect to u# at u = 0 is needed, parallel coupling as constructed
in [5, 6] would be a sufficient tool. The horizontal diffusion however is much more
intrinsic by yielding a flow with the deformed parallel translation as derivative, well-
suited to applications in the analysis of path space. Moreover for any u, the diffusion
X.(u) generates the same filtration as X, (0), and has the same lifetime if the mani-
fold is complete.

In Sect. 4 we use the horizontal diffusion to establish a contraction property for
the Monge—Kantorovich optimal transport between probability measures evolving
under the heat flow. We only assume that the cost function is a non-decreasing
function of distance. This includes all Wasserstein distances with respect to the time-
dependent Riemannian metric generated by the symbol of the generator L(¢). For a
generator which is independent of time, the proof could be achieved using simple
parallel coupling. The time-dependent case however requires horizontal diffusion as
a tool.



Horizontal Diffusion in C! Path Space 75

2 Horizontal Diffusion in C! Path Space

Let M be a complete Riemannian manifold with p its Riemannian distance. The
Levi—Civita connection on M will be denoted by V.

Given a continuous semimartingale X taking values in M, we denote by dV X =
dX its Itd differential and by d,,, X the martingale part of dX. In local coordinates,

1. .
dVX =dx = (dX’ +§F;k(X)d<Xf,Xk>) — )

ox!t

where I’ }k are the Christoffel symbols of the Levi—Civita connection on M. In
addition, if ' . '

dX' =dM' + dA’
where M is a local martingale and A’ a finite variation process, then

-9
dpX =dM'—.
" dax!

Alternatively, if
Pi(X)=PM(X): Tx,M — Tx,M

denotes parallel translation along X, then

dX; = P,(X)d (/ PS(X)_18XS)
0

t

and
dm Xy = P(X)dN;

where N; is the martingale part of the Stratonovich integral

t
/ P(X);'8X;.
0

If X is a diffusion with generator L, we denote by W(X) the so-called deformed
parallel translation along X . Recall that W(X); is a linear map Tx,M — Tx, M,
determined by the initial condition W(X )y = IdTXO M and the covariant It6 stochas-
tic differential equation:

1
DW(X); = =3 Ric*(W(X),) dt 4+ Vip(x), Z dt. 3)

By definition we have

DW(X): = P(X)d (P.(X)"'W(X)), . )
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Note that the Itd6 differential (2) and the parallel translation require only a
connection V on M. For the deformed parallel translation (3) however the con-
nection has to be adapted to a metric.

In this section the connection and the metric are independent of time. We shall
see in Sect. 3 how these notions can be extended to time-dependent connections and
metrics.

Theorem 2.1. Let R — M, u — ¢(u), be a C' path in M and let Z be a vector
field on M. Further let X° be a diffusion with generator
L=A/2+7Z,

starting at ¢(0), and lifetime &. There exists a unique family

ut— (X; (u))te[o,g[

of diffusions with generator L, almost surely continuous in (t,u) and C' in u, sat-

isfying X(0) = X°, Xo(u) = @(u) and
0u X () = W(X(u):(@(u)). 5

Furthermore, the process X (1) satisfies the Itd stochastic differential equation

dX: () = Pot du X + Zy, () dt. (6)

u
where P(fj(') : TX,OM — Tx, )M denotes parallel transport along the C! curve
0,u] > M, v X;(v).

Definition 2.2. We call ¢ +— (X,(u)),er the horizontal L-diffusion in C! path
space C1(R, M) over X, starting at ¢.

Remark 2.3. Given an elliptic generator L, we can always choose a metric g on M
such that
L=A/2+7Z

for some vector field Z where A is the Laplacian with respect to g. Assuming that
M is complete with respect to this metric, the assumptions of Theorem 2.1 are
fulfilled. In the non-complete case, a similar result holds with the only difference
that the lifetime of X, (u) then possibly depends on u.

Remark 2.4. Evenif L = A/2, the solution we are looking for is not the flow of a
Cameron—Martin vector field: firstly the starting point here is not fixed and secondly
the vector field would have to depend on the parameter u. Consequently one cannot
apply for instance Theorem 3.2 in [15]. An adaptation of the proof of the cited result
would be possible, but we prefer to give a proof using infinitesimal parallel coupling
which is more adapted to our situation.
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Proof (Proof of Theorem 2.1).

Without loss of generality we may restrict ourselves to the case u > 0.

A. Existence. Under the assumption that a solution X, () exists, we have for any
stopping time 7,

Wr 4t (X)(@() = Wi (X1 () (0X7 (1)),

fort €[0,&(w) — T(w)[ and w € {T < &}. Here 0X7 := (0X)7 denotes the deriva-
tive process dX with respect to u, stopped at the random time 7'; note that by (5),

(0X7) (W) = W(Xw)7(@(u)).

Consequently we may localize and replace the time interval [0, &[ by [0, T A fo] for
some 7o > 0, where t is the first exit time of X from a relatively compact open
subset U of M with smooth boundary.

We may also assume that U is sufficiently small and included in the domain of
a local chart; moreover we can choose ug € ]0, 1] with f(;’ % ||¢(u)|| du small enough
such that the processes constructed for u € [0, ug] stay in the domain U of the chart.
At this point we use the uniform boundedness of W on [0, T A #o].

For o > 0, we define by induction a family of processes (X;*(u));>o indexed by
u > 0 as follows: X%(0) = X%, X&(u) = ¢(u), and if u € Jna, (n + 1)a] for some
integer n > 0, X% (u) satisfies the It6 equation

dX7 () = Px(na),x2 @ dm X7 (n0) + Zxe ) dt, (7)

where Py, denotes parallel translation along the minimal geodesic from x to y.
We choose « sufficiently small so that all the minimizing geodesics are uniquely
determined and depend smoothly of the endpoints: since X (u) is constructed from
X%(na) via parallel coupling (7), there exists a constant C > 0 such that

PXF (), XF (n@)) < p(XG (), X§ (ne)) e < [|¢ o0 €™ ®)

(seee.g. [16]).
The process dX *(u) satisfies the covariant Itd stochastic differential equation

DAX®(u) = Vaxa() Pxe(na),.dm X2 (nat)
1
+ VaxewZ dt — 5 Ric?(0X % (u)) dr, 9)

(see [3] (4.7), along with Theorem 2.2).

Step 1 We prove that if X and Y are two L-diffusions stopped at o := t A fp and
living in U, then there exists a constant C such that

E [sup WX — W), H <CE Lsup 1, - quz} . o)
<%

<70

Here we use the Euclidean norm defined by the chart.
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Write N '
L=a"0;; +b70;

with a”/ = a/' fori, j € {1,...,dim M}.
For L-diffusions X and Y taking values in U, we denote by N, respectively
N7, their martingale parts in the chart U. Then Itd’s formula yields

((NX)k _ (NY)k, (NX)k _ (NY)k)t
= (Xf =Y’ = (X§ = ¥§)?

-2 (XE Y AN — (N
0

~2 / (k-1 (6% (x5 = b (7)) ds.
0

Thus, for U sufficiently small, denoting by (NX — NY|NX — NY) the corre-
sponding Riemannian quadratic variation, there exists a constant C > 0 (possibly
changing from line to line) such that

E[(NY = NYINY = NT)q ]

70
<CE [sup 1%, Yﬂ L CcYE [/ IXE — YE( B — bF ()| dz}
& 0

<10

to
<CE [sup 1, - Ytnz] + C/ E [sup X — Yﬂ d
0

<710 S<T0

<C+1t)E [sup | X: — Y,||2} .

<70

Finally, again changing C, we obtain

IE[(NX—NY|NX—NY),O] < CE[sup ||Xt—Y,||2] (11)

<70

Writing W(X) = P(X) (P(X Y Iw(x )), a straightforward calculation shows
that in the local chart

dW(X) = —I'(X)(dX, W(X))
_ %(dF)(X)(dX)(dX, W(X))
+ %F(X)(dX, F(X)(dX, W(X)))

1
-5 Rick(W(X)) dr
+ VW(X)Z dr. (12)
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We are going to use (12) to evaluate the difference W(Y) — W(X). Along with
the already established bound (11), taking into account that W(X), W(Y') and the
derivatives of the brackets of X and Y are bounded in U, we are able to get a bound
for

F(t) := IE[ sup |W(Y) — W(X)||2} .

S<tAT

Indeed, first an estimate of the type

t
F(t)§C1E|:SuP ”XS_YS||2:|+C2/ F(s)ds, 0=t =<t
0

S=T0

is derived which then by Gronwall’s lemma leads to
F(1) < C1e“'E [sup I1X; — Yﬂ . (13)
<70

Letting t = #p in (13) we obtain the desired bound (10).
Step 2 We prove that there exists C > 0 such that for all u € [0, uo],

E[sup P (X,"’(u),X;’"(u))} <Cla+d) (14)
<70

From the covariant equation (9) for dX/(v) and the definition of deformed
parallel translation (3),

1
DW(X)[! = ERic“(W(X);I)dt — Vipon1 Z dt,

we have for (¢, v) € [0, 7o] X [0, uo],

WX (), 9XF (v) = ¢(v) + /0 t WX ()5 Vaxe @) Pxg wa),. dn X (Va).
or equivalently,
X7 (v) = W(X*(0)): ¢(v)
+ W(X*(v)) /0 “wxe ;! Voxew) Px¢wa),.dm X5 (va) ~ (15)

with v, = noa, where the integer n is determined by ne < v < (n + 1)o.
Consequently, we obtain
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PXE (), X (u))

= /(')u <d,o, (BX;I (), 8Xf‘/ (v))> dv
= [ {ar. (W @mg. WO @eg)) o
4 /0 ' <dp, (W(X“(v))t /0 WX ()7 Ve s (ony..m X (va),0)>dv

u t
+/0 <d,0, (0, w(x« (v))t/O w(x¢« (v))s_lVan/(v) PXg/(Ua/),.de;x (va/))>dv.

This yields, by means of boundedness of dp and deformed parallel translation,
together with (13) and the Burkholder—Davis—Gundy inequalities,

E |:sup 02 (Xt"‘(u), X,‘"/(u))} <C /OME [sup 02 (Xt“(v),Xt“/(v))} dv

<70 <70

u 70
+C/0 E[/O l|VaX;¥<v)PX§f<va),-||2dS} dv

+C/OE[/O

2
Vaxe' ) Pxe o). H ds} dv.

From here we obtain

E |:sup 02 (Xz"‘(u), X;"/(u)):| <C /OMIE |:sup 02 (Xt"‘(v), X;"/(v)):| dv

<170 <710

u 70
+ Ca2/0 E[/O 10X (v)]? ds} dv
u 70
+ CO/Z/ E [/
0 0

where we used the fact that forv € Tx M, V, Py, = 0, together with

2
8X§‘/ (v) ” ds:| dv,

p(XB(v), XB(vg)) <CB, B=ua,d,

see estimate (8).
Now, by (9) for DaX B there exists a constant C’ > 0 such that for all v € [0, uo],

i

x5 (v) szs:| <cC
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Consequently,

E [sup P (X, X7 (u))] <c / E [sup o (X, X (v))} dv
<70 0 <70
+2CC (a0 + )2,
which by Gronwall lemma yields
B sup o (X0, X7 W) ] < € @+
<70

for some constant C > 0. This is the desired inequality.

Step 3 Recall that - .
L =a" 0ij + b’ a9;.

Denoting by (a;; ) the inverse of (a”), we let V' be the connection with Christoffel
symbols

1
(1) = =5 @ik + aj)b". (16)
We are going to prove that all L-diffusions are V/-martingales:

(i) On one hand, V’'-martingales are characterized by the fact that for any k,
dx* + %(r’){; d(X’,X7) is the differential of a local martingale. ~ (17)
(i1) On the other hand, L-diffusions satisfy the following two conditions:
dxk —pk (X)dr is the differential of a local martingale, (18)

and
d(X', X7y = (@’ (X) + a’! (X)) dt. (19)

From this it is clear that (16), (18) together with (19) imply (17).
From inequality (14) we deduce that there exists a limiting process

(X () o<t <o, 0<u<uo

such that for all u € [0, ug] and o > 0,

E |:sup P (X2 (u), X, (u)):| < Ca?. (20)

<70

In other words, for any fixed u € [0,uo], the process (X7 (u));efo,r,] CON-
verges to (X;(u))se[o0,z,) uniformly in L? as o tends to 0. Since these processes are
V’-martingales, convergence also holds in the topology of semimartingales ([4],
Proposition 2.10). This implies in particular that for any u € [0, ug], the process
(X:(1))sefo,7o] 1s @ diffusion with generator L, stopped at time 7o.
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Extracting a subsequence (ax x>0 convergent to 0, we may assume that almost
surely, for all dyadic u € [0, uo],

sup p (X7 (u), X;(u))

<710

converges to 0. Moreover we can choose (ax)x>o of the form o = 27"F with
(nx)rk>0 an increasing sequence of positive integers. Due to (8), we can take a
version of the processes (z, u) — X;* (u) such that

u— X% (u)

is uniformly Lipschitz in u € Nay N [0, up] with a Lipschitz constant independent
of k and ¢. Passing to the limit, we obtain that a.s for any ¢ € [0, 7o), the map

ur> X;(u)

is uniformly Lipschitz in u € 2 N[0, uo] with a Lipschitz constant independent of ¢,
where & is the set of dyadic numbers. Finally we can choose a version of

(t,u) = X¢(u)

which is a.s. continuous in (¢, u) € [0, 7] % [0, up], and hence uniformly Lipschitz
inu € [0, ug).

Step 4 We prove that almost surely, X, (u) is differentiable in u with derivative

W(X(u)): (¢ (w).

More precisely, we show that in local coordinates, almost surely, for all ¢ € [0, to],
u € [0, uo],

X = X7+ [ W) . @)

From the construction it is clear that almost surely, for all ¢ € [0, 7o], u € [0, ug],
X0 = X0+ [ W e @ a
+ /0” (W(Xo‘k v)): /Ot W (X % (U))s_lvaxf‘k ) Px (Uak)“de;"k (vak)) dv.
This yields
Xiw = X0~ [ W)
= X, () — X[ (u) + /Ou (WX () = W(X(v))r) ¢(v) dv

u t
+/0 (W(Xak W /0 WX )5 Vaxe ) Pxce g, ), dm X3 (v“")) v
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The terms of right-hand-side are easily estimated, where in the estimates the con-
stant C may change from one line to another. First observe that

E [sup | X (u) — X;xk(u)||2:| < Coj.

Using (10) and (20) we have
|:sup
<70

= /0 E[sup ||W(X°‘k(v))z—W(X(U))z”z} dv

<710

/ (WX (0)); — W(X())r) dv

|
[sup / WX (), — WX P dv}

<710

< Coj,

and finally

|:sup
<70
(/ WX @)y lvBXO”‘(U) X5 (v ), e d X;xk(vak)) .
< C/ |:sup
0 t<t9
u 70
= fel)
0 0
u 70
< Ca?} / ]E|: / ||8X;"k(v)||2ds} dv
0 0

where in the last but one inequality we used V, Px,, = 0 for any v € Ty M which
implies

/ WX (0));

]

/ WX ()5 Vy ok () Pyo (v 2, I X5 (V)

2
]dv

Vank (U)P o (vag H ds:| dv (since wis bounded)

Vo Py |* < C p(x, 9)? (0%,

and the last inequality is a consequence of (9).
We deduce that

E |:sup
<70

Xo(u) — X0 — /0 WX ) (6 (v) dv

2
:| < Cot,%.
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Since this is true for any oy, using continuity in u of X;(u), we finally get almost
surely for all 7, u,

X = X0+ [ WG,
0
Step 5 Finally we are able to prove (6):

dXe () = Pt dm X0 + Zx, 0 dt.

Since a.s. the mapping (¢, u) — 0X;(u) is continuous, the map u — 90X (u) is
continuous in the topology of uniform convergence in probability. We want to prove
that u — 0X(u) is continuous in the topology of semimartingales.

Since for a given connection on a manifold, the topology of uniform convergence
in probability and the topology of semimartingale coincide on the set of martingales
(Proposition 2.10 of [4]), it is sufficient to find a connection on TM for which
0X (1) is a martingale for any u. Again we can localize in the domain of a chart.
Recall that for all u, the process X(u) is a V’-martingale where V' is defined in
step 1. Then by [1], Theorem 3.3, this implies that the derivative with respect to
u with values in TM, denoted here by 90X (u), is a (V’)¢-martingale with respect
to the complete lift (V')¢ of V’. This proves that u +> 0X(u) is continuous in the
topology of semimartingales.

Remark 2.5. Alternatively, one could have used that given a generator L', the
topologies of uniform convergence in probability on compact sets and the topology
of semimartingales coincide on the space of L’-diffusions. Since the processes
0X (u) are diffusions with the same generator, the result could be derived as well.

As a consequence, Itd integrals commute with derivatives with respect to u (see
e.g. [4], Corollary 3.18 and Lemma 3.15). We write it formally as

1
DX =V,dX — ER(E)X, dX)dX. (22)
Since

dX () @ dX(u) = g~ 1 (X(u)) dt

where g is the metric tensor, (22) becomes
DIX = V,dX — %Ric#(aX) dr.
On the other hand, (5) and (3) for W yield
DIX = —% Ric*(0X) dr + Vyx Z dr.

From the last two equations we obtain

V,dX = Vyx Z dt.
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This along with the original equation
dX°% =d, X% + Zyo dt

gives
dXe () = Pt dm X0 + Zx, o dt,

where X
PO Ty, M — Ty, ()M

denotes parallel transport along the C! curve v — X, (v).

B. Uniqueness. Again we may localize in the domain of a chart U. Letting X ()
and Y (u) be two solutions of (5), then for (¢,u) € [0, To[X][0, uo] we find in local
coordinates,

Y2 () — X () = /0 (WY @), — W(X©)):) () dv. 23)

On the other hand, using (10) we have

[sup o) — Xt(u>||2}sc / [sup 1Y) — X,(v)nz}dv 24)

<70 <70

from which we deduce that almost surely, for all ¢ € [0, o], X; (1) = Y;(u). Conse-
quently, exploiting the fact that the two processes are continuous in (¢, ), they must
be indistinguishable. O

3 Horizontal Diffusion Along Non-Homogeneous Diffusion

In this section we assume that the elliptic generator is a C! function of time:
L =L(t) fort > 0. Let g(¢) be the metric on M such that

L) = %At + Z(1)

where A’ is the g(¢)-Laplacian and Z(¢) a vector field on M.
Let (X;) be an inhomogeneous diffusion with generator L(¢). Parallel transport
P!(X), along the L(¢)-diffusion X, is defined analogously to [2] as the linear map

P(X);: TxyM — Tx,M

which satisfies |
D'P!(X); = =3 &H(P" (X)) dr (25)
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where g denotes the derivative of g with respect to time; the covariant differen-
tial D’ is defined in local coordinates by the same formulas as D, with the only
difference that Christoffel symbols now depend on ¢.

Alternatively, if J is a semimartingale over X, the covariant differential D’ J
may be defined as D(0,J) = (0,D'J), where (0,J) is a semimartingale along
(t,X;)in M = [0, T] x M endowed with the connection V defined as follows: if

s> @(s) = (f(s), 0(s))
isa C! pathin M and s — ii(s) = (a(s),u(s)) € TM is C! path over @, then
Vii(s) = (d(s), (v/ (S)u)(s))

where V! denotes the Levi—Civita connection associated to g(¢). It is proven in [2]
that P’ (X); is an isometry from (Tx, M, g(0, Xo)) to (Tx, M. g(t, X;)).
The damped parallel translation W (X), along X; is the linear map

W (X) : TxyM — Tx,M
satisfying
D'W'(X), = (Vévf(X), Z(t,-)— %(Ric’)#(W’(X),)) dr. (26)
If Z = 0 and g(¢) is solution to the backward Ricci flow:
¢ = Ric, (27)
then damped parallel translation coincides with the usual parallel translation:
PI(X) = W' (X),

(see [2], Theorem 2.3).
The 1t6 differential d¥Y = d¥'Y of an M-valued semimartingale Y is defined
by formula (2), with the only difference that the Christoffel symbols depend on time.

Theorem 3.1. Keeping the assumptions of this section, let
R—> M, uw o),

be a C! path in M and let X° be an L(t)-diffusion with starting point ¢(0) and
lifetime &. Assume that (M, g(t)) is complete for every t. There exists a unique

family
u > (Xe())refo,¢]

of L(t)-diffusions, which is a.s. continuous in (t,u) and C' in u, satisfying

X(0) = X° and Xo(u) = ¢(u),
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and solving the equation
X (u) = W'(X ()i (9(w)). (28)
Furthermore, X (u) solves the Ité stochastic differential equation
AV X, () = YO dVOX, + Z(t, X, (w)) dr, (29)

where X
P(;:u ‘0 : TXIOM = Tx, M
denotes parallel transport along the C' curve

0,u] > M, v X;(v),

with respect to the metric g(t).
If Z = 0and if g(¢) is given as solution to the backward Ricci flow equation,
then almost surely for all t,

10X: (Wl gy = ¢l o) - (30)
Definition 3.2. We call
= (Xt(u))ueR
the horizontal L(¢)-diffusion in C'! path space C (R, M) over X, started at ¢.
Remark 3.3. Equation (30) says that if Z = 0 and if g is solution to the backward

Ricci flow equation, then the horizontal g(¢)-Brownian motion is length preserving
(with respect to the moving metric).

Remark 3.4. Again if the manifold (M, g(¢)) is not necessarily complete for all #, a
similar result holds with the lifetime of X, () possibly depending on u.

Proof (Proof of Theorem 3.1). The proof is similar to the one of Theorem 2.1. We
restrict ourselves to explaining the differences.

The localization procedure carries over immediately; we work on the time inter-
val [0, T A to].

For o > 0, we define the approximating process X/ (1) by induction as

X2 0) =X, X§w) = e,
and ifu € |na, (n + 1)a] for some integer n > 0, then X * () solves the It6 equation

AVXE W) = Plouay xo o dm X[ (n0) + Z(1, Xe () dt 31)

where P;, y 1s the parallel transport along the minimal geodesic from x to y, for the
connection V'.
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Alternatively, letting X £ = (t, X[), we may write (31) as
dV X% (u) = 13@ (na0), X;x(u)dm)f,“ (nat) + Z(X*(u)) dt (32)

where 15;, 5 denotes parallel translation along the minimal geodesic from X to y for
the connection V.

Denoting by p(¢, x, y) the distance from x to y with respect to the metric g(t),
1td’s formula shows that the process p (t, XX, X/ (na)) has locally bounded vari-
ation. Moreover since locally d;p(t, x, y) < Cp(t, x, y) for x # y, we find similarly
to (8),

p(t, X (), XF (n@) < p(0, X§ (), X5 (n)) e" < [|¢]lo0 .
Since all Riemannian distances are locally equivalent, this implies
P(XJ (). X7 (n)) < p(X§ (). X§ (n)) e" < |plloo e (33)

where p = p(0, -, -).
Next, differentiating (32) yields

l’jau)zta(u) - 6auX;;1(u)P}?;x(na),.dm)zta(na)
~ 1 -~ ~ ~ ~
+ VB,,)?,“(M)Z dr — ER(aqu‘(u), dXto‘(u))dXt“(u).

Using the fact that the first component of X /(u) has finite variation, a careful com-
putation of R leads to the equation
D' 3, X7 (u) = Vi yar Pxe ey, . dm X7 (n00)

(ha

|y
+ Vi xe o 2 ) = E(Rlct)ﬂ(aux;x (w)) dt.

To finish the proof, it is sufficient to remark that in step 1, (11) still holds true for
X and Y g(¢)-Brownian motions living in a small open set U, and that in step 5, the
map u — 0X(u) is continuous in the topology of semimartingales. This last point is
due to the fact that all dX («) are inhomogeneous diffusions with the same generator,
say L’, and the fact that the topology of uniform convergence on compact sets and
the topology of semimartingales coincide on L’-diffusions. O

4 Application to Optimal Transport

In this section we assume again that the elliptic generator L(¢) is a C! function of
time with associated metric g(t):

L(t) = %A’ +Z(@t), telo,T],
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where A’ is the Laplacian associated to g(7) and Z(¢) is a vector field. We assume
further that for any ¢, the Riemannian manifold (M, g(¢)) is metrically complete,
and L(¢) diffusions have lifetime 7.

Letting ¢: [0, T] — R4 be a non-decreasing function, we define a cost function

ct,x,y) =@p(t, x,y)) (34)

where p(z, -, -) denotes distance with respect to g(z).
To the cost function ¢ we associate the Monge—Kantorovich minimization be-
tween two probability measures on M

Wer(uv) = inf / c(t.x.y) dn(x. ) (35)
nell(i,v) JMxM

where IT(u, v) is the set of all probability measures on M x M with marginals p
and v. We denote

Wi (o) = (Zpr 1 (1)) ? (36)

the Wasserstein distance associated to p > 0. For a probability measure w on M,
the solution of the heat flow equation associated to L(¢) will be denoted by uP.

Define a section (V! Z)" € I'(T*M © T*M) as follows: for any x € M and
u,veTyM,

1

(V'Z)*(u,v) = = (g)(VIZ,v) + g(t)(u, V! Z)) .

(]

In case the metric is independent of  and Z = grad V for some C? function V
on M, then
(V' Z)’(u,v) = VdV(u,v).

Theorem 4.1. We keep notation and assumptions from above.

(a) Assume
Ric! —g —2(V'Z)* >0, €[0,T]. (37)

Then the function
t — %J(,LLP;, UPt)

is non-increasing on [0, T].
(b) Iffor some k € R,

Ric' —g —2(V'Z)’ > kg, t€][0,T]. (38)
then we have for all p > 0

Woit(UWPr, vPy) < e kt/2 Wpo(i,v), tel0,T]
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Remark 4.2. Before turning to the proof of Theorem 4.1, let us mention that in the
case Z = 0, g constant, p = 2 and k = 0, item (b) is due to [21] and [20]. In the
case where g is a backward Ricci flow solution, Z = 0 and p = 2, statement (b)
for M compact is due to Lott [ 18] and McCann—Topping [19]. For extensions about
L-transportation, see [23].

Proof (Proof of Theorem 4.1). (a) Assume that Ric’ —¢ — 2(V?Z)" > 0. Then for
any L(t)-diffusion (X;), we have

d(gO)W(X)e, W(X)y))
= () (W(X)e, W(X),) dt + 2g(t) (D'W(X):, W(X);)
= &O(W(X)s, W(X),) dr

.
+22(1) (VémZ(z, ) = S R W (X)), W(X),) dr

— (6 t7\b st

= (g +2(V'Z)’ — Ric ) (W(X). W(X),) dt <0.
Consequently, for any ¢ > 0,

[W(X):ell: = IW(X)ollo = 1. (39)

Forx,y € M,letu — y(x,y)(u)beaminimal g(0)-geodesic from x to y in time 1:
y(x,y)(0) = x and y(x, y)(1) = y. Denote by X**¥ (u) a horizontal L (¢)-diffusion

with initial condition y(x, y).
For n € I1(w, v), define the measure ; on M x M by

naxB) = [P0 € 4 X 0) € Bldnt.y)

where A and B are Borel subsets of M. Then 7; has marginals P and vP;. Con-
sequently it is sufficient to prove that for any such 7,

/ Efc(r. X2 (0), X (1)] dn(x. y) < / c(0.x. ) dy(x.y).  (40)
MxM

MxM

On the other hand, we have a.s.,

1
p(t. X5 (0), X (1)) < /0 10X ()], du
1
- /0 [ WX () 7 (x, y) @), du

1
5/0 7. 9@, du

= p(0,x,y),
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and this clearly implies
c(t, X,x’y(O),th’y(l)) <c(0,x,y) as.,

and then (40).
(b) Under condition (38), we have

SO0, WO =~k OO0, WOX,)

which implies
IW(X) e < e*72,

and then
p(t. X2 (0). X (1) < e7™*72p(0,x. y).

The result follows. O

5 Derivative Process Along Constant Rank Diffusion

In this section we consider a generator L of constant rank: the image E of the “carré
du champ” operator I'(L) € I'(TM ® TM) defines a subbundle of TM . In E we
then have an intrinsic metric given by

g(x)=(M(L)Ex)™", xeM.

Let V be a connection on E with preserves g, and denote by V' the associated semi-
connection: if U € I'(TM) is a vector field, V, U is defined only if v € E and
satisfies

V.U = Vo,V +[V.Ulx,

where V € I'(E) is such that Vy, = v (see [11], Sect. 1.3). We denote by Z(x) the
drift of L with respect to the connection V.

For the construction of a flow of L-diffusions we will use an extension of V to
TM denoted by V. Then the associated semi-connection V’ is the restriction of the
classical adjoint of v (see [11], Proposition 1.3.1).

Remark 5.1. Itis proven in [11] that a connection V always exists, for instance, we
may take the Le Jan-Watanabe connection associated to a well chosen vector bundle
homomorphism from a trivial bundle M x H to E where H is a Hilbert space.

If X; is an L-diffusion, the parallel transport

P(X)::Ex, — Ex,
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along X; (with respect to the connection V) depends only on V. The same applies
for the Ito differential dX, = dV X,. We still denote by d;; X; its martingale part.
We denote by
P'(X), : Tx,M — Tx,M

the parallel transport along X; for the adjoint connection (VY, and by D’J the
covariant differential (with respect to (V)’) of a semimartingale J € TM above X,
compare (4) for the definition.

Theorem 5.2. We keep the notation and assumptions from above. Let xg be a fixed
point in M and X;(xo) an L-diffusion starting at xo. For x € M close to xo, we
define the L-diffusion X;(x), started at x, by

dX;(X) = Px, (xo).X, () dm Xz (x0) + Z(X;(x)) dt (41)

where f’x,y denotes parallel transport (with respect to 6) along the unique
V-geodesic from x to y. Then

3 . 1
D'TeX = Vr, xZdt — 5 Ric*(Ty, X) dt (42)

where
d

Ricf(u) = > R(u.e;)ei, ue TM,
i=1

and (e;)i=1,...4 an orthonormal basis of Ex for the metric g. 5
Under the additional assumption that Z € I'(E), the differential D'Ty, X does
not depend on the extension V, and we have

D'TeyX = Vr, xZdt — %Ricﬁ(TXOX) dr. (43)
Proof. From [3, eq. (7.4)] we have
D'TeX = V1, x Px, (xo),. dn X1 (x0) + Vr, x Z dt
. % (R/(Txox, dX (x0)) dX (x0) + V'T/(dX (xo). Ty X, dX(xO)))

1~, -~
— 3 T'(D'Ty X.dX)

where T’ denotes the torsion tensor of V’. Since for all x € M~, @U }Sx,, = 0if
v € Ty M, the first term in the right vanishes. As a consequence, D’ Ty, X has finite
variation, and 7' (D'Ty,X,dX) = 0. Then using the identity

R'(v,wu+ V'T (u,v,u) = R, u)u, u,veTM,
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which is a particular case of identity (C.17) in [11], we obtain
D'TyyX =Vr, xZdi — %R’(TXOX, dX (x0))dX (xo).
Finally writing
R(Tyy X, dX (x0))dX (x0) = Rick(Ty, X) dr

yields the result. O

Remark 5.3. Inthe non-degenerate case, V is the Levi—Civita connection associated
to the metric generated by L, and we are in the situation of Sect. 2. In the degenerate
case, in general, V does not extend to a metric connection on M. However condi-
tions are given in [11] (1.3.C) under which P’(X) is adapted to some metric, and in
this case T, X is bounded with respect to the metric.

One would like to extend Theorem 2.1 to degenerate diffusions of constant rank,
by solving the equation

- 1
0uX () = Va,xZ dt — 5 Ric (3, X (u)) dt.

Our proof does not work in this situation for two reasons. The first one is that in
general P'(X ) is not adapted to a metric. The second one is the lack of an inequality
of the type (8) since V does not have an extension V which is the Levi-Civita
connection of some metric.

Remark 5.4. When M is a Lie group and L is left invariant, then V can be chosen
as the left invariant connection. In this case (V) is the right invariant connection,
which is metric.

Acknowledgements The first named author wishes to thank the University of Luxembourg for
support.

Note added in proof Using recent results of Kuwada and Philipowski [17], the condition at the
beginning of Sect. 4 that L(¢) diffusions have lifetime 7 is automatically satisfied in the case of
a family of metrics g(¢) evolving by backward Ricci flow on a g(0)-complete manifold M. Thus
our Theorem 4.1 extends in particular the result of McCann—Topping [19] and Topping [23] from
compact to complete manifolds.
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