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Abstract

We show that any finite-variance, isotropic random field on a compact group is necessarily mean-

square continuous, under standard measurability assumptions. The result extends to isotropic random

fields defined on homogeneous spaces where the group acts continuously.
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1 Introduction

The analysis of the spectral representations of stationary and isotropic finite-variance random fields on
(subsets of) Rd is a classical topic of probability theory, presented in many standard textbooks in the
area (see for instance [1, 2, 13, 22]). Such representations are sometimes based on Karhunen-Loève
constructions (specially under Gaussianity assumptions), realized by first computing the eigenfunctions
associated with the covariance kernel, and then by expanding the field into these orthogonal components
(see for instance [2]). In other cases, the argument proceeds from the construction of an isometry
between an L2 space of deterministic square integrable functions, and some space of finite-variance random
variables, with inner product defined in terms of the covariance function of the process to be represented
(see for instance [13, 22]). In all these approaches, mean-square continuity is assumed as a necessary
condition to ensure that the spectral representation holds pointwise.

More recently, considerable attention has been drawn to the case where the process at hand is defined
on the homogenous space of a compact group (including the group itself). In this context, one of the
most relevant examples for applications is the sphere S2, which is well-known to be isomorphic to the
quotient space SO(3)/SO(2), where SO(d) denotes as usual the special group of rotations in Rd. Under
these circumstances, spectral representation results take a particularly neat form, as they can be viewed
as stochastic versions of the celebrated Peter-Weyl Theorem (see [8, Section 4.6] or [14, Section 2.5]); the
latter ensures that the matrix coefficients of the irreducible representations of a compact group G provide
an orthonormal basis for the space L2(G) of square-integrable functions on the group, endowed with the
Haar measure. This is the standpoint adopted for instance by [14, 16] – see also [4]. It should be noted
that random fields on the unit sphere S2 play now an extremely important role in many applied fields,
for instance in Cosmology – see [6, 9], [14] for an overview.

As we shall point out in the sections to follow, the argument based on the group-theoretic point
of view does not only provide an alternative proof for classical results, but yields also an unexpected
bonus: the assumption of mean-square continuity turns out to be no longer necessary for the spectral
representation to hold. More than that, mean-square continuity follows as a necessary consequence of
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the spectral representation, under standard measurability conditions. The aim of this short note is then
to highlight this result, which we can state concisely as follows:

Let T be a measurable finite-variance isotropic random field defined on the homogeneous space

of a compact group acting continuously. Then, T is necessarily mean-square continuous.

Our main findings are contained in the statements of Theorem 2 (for fields defined on compact groups)
and of Theorem 4 (for fields defined on homogeneous spaces). Section 2 and Section 3 contain preliminary
results, respectively on group representations and random fields. Some historical remarks are provided
in Section 6.

2 Preliminaries on group representations

We now provide a brief overview of the results about group representations that are used in this note.
For any unexplained definition or result, the reader is referred to [14, Chapter 2], as well as to the classic
reference [8].

A topological group is a pair (G,G), where G is a group and G is a topology such that the following
three conditions are satisfied: (i) G is a Hausdorff topological space, (ii) the multiplication G×G → G :
(g, h) 7→ gh is continuous, (iii) the inversion G → G : g 7→ g−1 is continuous. In what follows, we use the
symbol G to denote a topological group (the topology G being implicitly defined) which is also compact
and such that G has a countable basis. We will denote by C (G) the class of continuous, complex-valued
functions on G; G is the (Borel) σ-field generated by G; dg denotes the normalized Haar measure of G
(in particular,

∫
G
dg = 1). We shall denote by L2 (G,G, dg) = L2 (G) the Hilbert space of complex-valued

functions on G that are square-integrable with respect to dg. Plainly, the space L2 (G) is endowed with

the usual inner product 〈f1, f2〉G =
∫
G
f1 (g) f2 (g)dg; also, ‖·‖G = 〈·, ·〉1/2G .

Let X be a topological space. A continuous left action of G on X is a jointly measurable mapping
A : G × X : (g, x) 7→ A(g, x) := g · x, satisfying the following properties: (i) g · (h · x) = (gh) · x, (ii)
if e is the identity of G, then e · x = x for every x ∈ X , and (iii) the mapping (g, x) → g · x is jointly
continuous. Right actions are defined analogously and will not be directly considered in this note, albeit
every result concerning left actions proved below extends trivially to right actions. The space X is called
a G-homogeneous space if G acts transitively on X , that is: for every y, x ∈ X , there exists g ∈ G such
that y = g · x. Group representations (as described in the next paragraph) are distinguished examples of
group representations.

Let V be a normed finite-dimensional vector space over C. A (finite-dimensional) representation of
G in V is an homomorphism π, from G into GL (V ) (the set of complex isomorphisms of V into itself),
such that the mapping G × V → V : (g, v) 7→ π (g) (v) is continuous. Using e.g. [14, Proposition 2.25],
one sees that it is always possible to endow V with an inner product 〈·, ·〉V such that π is unitary with
respect to it, that is: for every g ∈ G and every u, v ∈ V , 〈π(g)u, π(g)v〉V = 〈u, v〉V . Note that 〈·, ·〉V can
be chosen in such a way that the associated norm preserves the topology of V (see [8, Corollary 4.2.2]).
The dimension dπ of a representation π is defined to be the dimension of V . A representation π of G
in V is irreducible, if the only closed π (G)-invariant subspaces of V are {0} and V . It is well-known
that unitary irreducible representations are defined up to equivalence classes (see [14, p. 25]). We will
denote by [π] the equivalence class of a given unitary irreducible representation π; the set of equivalence

classes of unitary irreducible representations of G is written Ĝ, and it is called the dual of G. We recall
that, according e.g. to [8, Theorem 4.3.4 (v)], since G is second countable (and therefore metrizable) Ĝ
is necessarily countable.

To every [π] ∈ Ĝ we associate a finite-dimensional subspace Mπ ⊆ L2 (G) in the following way. Select
an element π : G 7→ GL (V ) in [π], as well as an orthonormal basis e = {e1, ..., edπ

} of V . The space Mπ

is defined as the finite-dimensional complex vector space spanned by the functions

g 7→ πi,j (g) := 〈π(g)ej , ei〉V , i, j = 1, ..., dπ.
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Note that such a definition is well given, since Mπ does not depend on the choices of the representative
element of [π] and of the orthonormal basis of V . The following three facts are relevant for the subsequent
discussion: (i) {

√
dππij : i, j = 1, ..., dπ} is an orthonormal system of L2(G) (see [14, p. 34]); (ii)

dimMπ = d2π, and (iii) Mπ ⊆ C (G), for every [π] ∈ Ĝ.

To conclude, we recall that, if two representations π and π′ are not equivalent, then Mπ and Mπ′ are
orthogonal in L2(G). One crucial element of our discussion is the celebrated Peter-Weyl Theorem (see
[14, Section 2.5]), stating that

L2(G) =
⊕

[π]∈Ĝ

Mπ, (2.1)

that is: the family of finite-dimensional spaces {Mπ : [π] ∈ Ĝ} constitutes an orthogonal decomposition

of L2(G). In particular, the class {
√
dππij : [π] ∈ Ĝ, i, j = 1, ..., dπ} is an orthonormal basis of L2(G).

Plainly, the orthogonal projection of a given function f ∈ L2(G) on the space Mπ is given by the mapping

g 7→ fπ(g) =

dπ∑

i,j=1

dπ

∫

G

f(h)π̄i,j(h)dh× πi,j(g) = dπ

∫

G

f(h)χπ(h
−1g)dh, (2.2)

where χπ(g) = Traceπ(g) is the character of π. See [14, Section 2.4.5] for a discussion of the basic
properties of group characters; in particular, one has that two equivalent representations have the same
character, in such a way that the projection formula (2.2) is well-defined, in the sense that it does not
depend on the choice of the representative element of the equivalence class [π].

From now on, we shall fix a topological compact group (G,G), and freely use the notation and
terminology introduced above.

3 General setting and spectral decompositions

Let T = {T (g) : g ∈ G} be a finite variance, isotropic random field on G, by which we mean that T is a
real-valued random mapping on G verifying the following properties (a)–(c).

(a) (Joint measurability) The field T is defined on a probability space (Ω,F , P ), and the mapping
T : G×Ω → R : (g, ω) 7→ T (g, ω) is G⊗F -measurable, where (as before) G denotes the Borel σ-field
associated with (G,G).

(b) (Isotropy) The distribution of T is invariant in law with respect to the action of G on itself.

This means that, for every h ∈ G, T (hg)
d
= T (g), where “

d
=” indicates equality in distribution

in the sense of stochastic processes, that is: for every d ≥ 1 and every g1, ..., gd ∈ G, the two
vectors (T (g1), ..., T (gd)) and (T (hg1), ..., T (hgd)) have the same distribution. Note that, since the
application g 7→ hg is continuous, then the mapping (g, ω) 7→ T (hg, ω) is jointly measurable, in the
sense of Point (a) above.

(c) (Finite variance) The field T has finite variance, i.e.: ET 2(g) =
∫
T 2(g, ω)dP (ω) < ∞, for every

g ∈ G. For notational simplicity, and without loss of generality, we will assume in the sequel that
ET (g) = 0.

Under the previous assumptions and by virtue of the invariance properties of Haar measures, one
has that, for every fixed g0 ∈ G, E[T 2(g0)] = E

[∫
G
T 2(g)dg

]
< ∞. This implies that there exists a

F -measurable set Ω′ of P -probability 1 such that, for every ω ∈ Ω′, the mapping T (·, ω) : g 7→ T (g, ω) is

an element of L2(G). For every [π] ∈ Ĝ, we now define the quantity T π(g, ω) according to (2.2), whenever

ω ∈ Ω′, and we set T π(g, ω) = 0 otherwise. It is easily checked that, for every [π] ∈ Ĝ, the mapping
(g, ω) 7→ T π(g, ω) is G ⊗ F measurable.

According to the results discussed in [14, Section 5.2.1], the following two facts take place.
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– The class {T, T π : [π] ∈ Ĝ} is an isotropic (possibly infinite-dimensional) square-integrable centered
field over G, that is: every T π is centered and square-integrable, and for every m, d ≥ 1, for every
[π1], ..., [πm] ∈ Ĝ and every h, g1, ..., gd ∈ G, the (m+ 1)d-dimensional vector

(
T (g1), ..., T (gd); T

πi(g1), ..., T
πi(gd), i = 1, ...,m

)

has the same distribution as
(
T (hg1), ..., T (hgd); T

πi(hg1), ..., T
πi(hgd), i = 1, ...,m

)

– Let {[πk] : k = 1, 2, ...} be any enumeration of Ĝ. Then, for every fixed g0 ∈ G one has that

lim
n→∞

E





∣∣∣∣∣T (g0)−
n∑

k=1

T πk(g0)

∣∣∣∣∣

2


 = lim

n→∞

E





∫

G

∣∣∣∣∣T (g)−
n∑

k=1

T πk(g)

∣∣∣∣∣

2

dg



 = 0, (3.3)

in other words: the sequence
∑n

k=1 T
πk , n ≥ 1, approximates T in the L2(P ) sense, both for every

fixed element of G, and in the sense of the space L2(G). Note that the equality in formula (3.3) is a
consequence of the invariance and finiteness properties of the Haar measure dg and of the isotropy
of {T, T π : [π] ∈ Ĝ}, yielding

E





∣∣∣∣∣T (g0)−
n∑

k=1

T πk(g0)

∣∣∣∣∣

2


=E





∫

G

∣∣∣∣∣T (gg0)−
n∑

k=1

T πk(gg0)

∣∣∣∣∣

2

dg



=E





∫

G

∣∣∣∣∣T (g)−
n∑

k=1

T πk(g)

∣∣∣∣∣

2

dg



 .

The proof of the isotropy of {T π : [π] ∈ Ĝ} is given in [14], see Proposition 5.3 on pages 116-117. It
should be noted that the proof of this Proposition implicitly exploits the fact that, under isotropy, for
every h ∈ G the scalar products of T (·) and T h(·) := T (h·) with any continuous function have necessarily
the same distribution (we thank P. Baldi for raising this point). This result is trivial under mean-square
continuity, but in the present general circumstances it is a bit less obvious, and hence we report here a
proof for completeness.

Lemma 1 Let T be an a.s. square-integrable invariant random field on G and define, for f ∈ L2(X ),

T (f) :=

∫

G

T (x)f(x) dx (3.4)

Then, for every h ∈ G and every f1, . . . , fm ∈ L2(G), the two random variables

(T (f1), . . . , T (fm)) and (T h(f1), . . . , T
h(fm))

have the same distribution.

Proof. For the sake of simplicity, we shall only deal with the case m = 1; the general case follows
along similar lines. For every n > 0 let Tn = T ∧ n ∨ (−n), which is a bounded random field, itself
invariant. Now, if f ∈ L2(G), by dominated convergence,

Tn(f)
a.s.→

n→∞

T (f) and T g
n(f)

a.s.→
n→∞

T g(f) ,

and therefore the convergence takes place also in distribution. Hence it is sufficient to prove the statement
under the additional assumption that T is bounded. But in this case the two r.v.’s T (f), T h(f) are
themselves bounded and in order to prove that they are equi-distributed it is sufficient to show that they
have the same moments, i.e. that, for every choice of integers p, q ≥ 0,

E[(ReT (f))p(ImT (f))q] = E[(ReT h(f))p(ImT h(f))q] .

4
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Now
E[(ReT (f))p(ImT (f))q]

= E

(∫

G

Re(T (x1)f(x1))dx1...

∫

G

Re(T (xp)f(xp))

∫

G

Im(T (y1)f(y1))dy1...

∫

G

Re(T (yq)f(yq))dyq

)
.

Developing the real and imaginary parts and applying Fubini’s theorem, the previous expectation reduces
to a sum of terms of the form

∫

G

. . .

∫

G

E [b1(x1) . . . bp(xp)c1(y1) . . . cq(yq)] d1(x1) . . . dp(xp)e1(y1) . . . eq(yq) dx1 . . . dxmdy1 . . . dyk

where bi(xi) (resp. cj(yj)) can be equal to ReT (xi) or ImT (xi) (resp. ReT (yj) or ImT (yj)) and di(xi)
(resp. ej(yj)) can be equal to ±Ref(xi) or ±Imf(xi) (resp ±Ref(yj) or ±Imf(yj)). Now just remark
that the quantity E [b1(x1) . . . bp(xp)c1(y1) . . . cq(yq)] does not change if the random field T is replaced
by its rotated version T h, as such an expectation only depends on the joint distribution; this concludes
the proof.

4 Mean-square continuity on G

In the next statement we show that isotropic fields such as those of the previous section are necessarily
mean-square continuous.

Theorem 2 Let T be a square-integrable centered isotropic field on the topological compact group G,
verifying properties (a)–(c) of Section 3. Then, T is mean-square continuous: for every g ∈ G

lim
h→g

E |T (g)− T (h)|2 = 0. (4.5)

Remark 3 Since (G,G) is a topological space, equation (4.5) has to be interpreted in the following sense:

for every net {hi} ⊂ G converging to g, one has that E |T (g)− T (hi)|2 → 0. See [7, p. 28ff] for details
on these notions.

Proof of Theorem 2. Let {[πk] : k ≥ 1} be an arbitrary enumeration of Ĝ. In view of (3.3), for every
ǫ > 0, there exists n ≥ 1 such that

sup
g∈G

E





∣∣∣∣∣T (g)−
n∑

k=1

T πk(g)

∣∣∣∣∣

2


 ≤ ǫ

6
,

in such a way that, for every h, g ∈ G,

E |T (g)− T (h)|2 ≤ 3



E



∣∣∣∣∣T (g)−

n∑

k=1

T πk(g)

∣∣∣∣∣

2

+ E



∣∣∣∣∣T (h)−

n∑

k=1

T πk(h)

∣∣∣∣∣

2






+3E



∣∣∣∣∣

n∑

k=1

(T πk(g)− T πk(h))

∣∣∣∣∣

2



≤ ǫ+ 3E



∣∣∣∣∣

n∑

k=1

(T πk(g)− T πk(h))

∣∣∣∣∣

2

 = ǫ+ 3

n∑

k=1

E
[
|T πk(g)− T πk(h)|2

]
,

where in the last relation we have used the fact that, for k 6= k′, the two fields T πk and T π
k′ are

uncorrelated (see [14, Proposition 5.4]). Now, for every [π] ∈ Ĝ, we define T̂ π
i,j :=

∫
G
T (h)π̄i,j(h)dh (it is

5
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easily seen that T̂ π
i,j is a square-integrable random variable). Using (2.2), we therefore deduce that, for

every k ≥ 1,

E
[
|T πk(g)− T πk(h)|2

]
≤ d2πk

dπ
k∑

i,j=1

E[|T̂ πk

i,j |2]× |πi,j(g)− πi,j(h)|2.

Since πi,j ∈ C(G), this last relation together with the previous estimates implies that

lim sup
h→g

E |T (g)− T (h)|2 ≤ ǫ,

and the conclusion follows from the fact that ǫ is arbitrary. �

5 Mean-square continuity on homogeneous spaces

We now fix a topological compact group G, and consider a topological space X which is also a G-
homogeneous space, where G acts transitively and continuously from the left. Let T = {T (x) : x ∈ X}
be a centered, finite-variance isotropic random field on X . This means that the following three properties
are verified: (i) the field T is defined on a probability space (Ω,F , P ), and the mapping T : X × Ω →
R : (x, ω) 7→ T (x, ω) is X ⊗ F -measurable, with X denoting the Borel σ-field associated with X ; (ii)

for every h ∈ G, T (hx)
d
= T (x), where “

d
=” indicates as before equality in distribution in the sense of

stochastic processes; (iii) ET 2(x) =
∫
T 2(x, ω)dP (ω) < ∞ and ET (x) = 0, for every x ∈ X . Plainly

isotropic fields as those introduced in Section 3 are special cases of the above class, obtained by taking
X = G. To simplify the discussion, in what follows we implicitly assume that both X and G are metric
spaces. The following result shows that the content of Theorem 2 extends to random fields defined on X .

Theorem 4 Let T be a square-integrable centered isotropic field on the G-homogeneous space X, verifying
properties (i)–(iii) above. Then, T is mean-square continuous: for every x ∈ X,

lim
y→x

E |T (y)− T (x)|2 = 0. (5.6)

The proof of Theorem 4 is based on the following lemma.

Lemma 5 Let {xn} ⊂ X be a sequence converging to x0 ∈ X in the topology of the homogeneous space
(written xn →X x0). Then, there exists a subsequence {x′

n} ⊂ {xn} verifying the following property:
there exists a sequence {gn} ⊂ G such that gn · x0 = x′

n for every n, and gn →G e, where e denotes the
identity element of G.

Proof. By transitivity, there exists a sequence {g′′n} such that g′′n · x0 ≡ xn for every n. Moreover,
because the group is compact, this sequence admits a subsequence {g′n} ⊂ {g′′n} such that g′n →G g0.
Note that g0 need not be the identity (otherwise the proof would be finished), but it does need to belong
to the isotropy group of x0, written g0 ∈ Iso(x0), meaning that g0 ·x0 = x0. Write x′

n = g′n ·x0. We claim
that there exists a sequence {hn} ⊂ G such that the sequence gn := hng

′

n, n ≥ 1, satisfies the following
two properties:

(A) : gn · x0 = hng
′

n · x0 = g′n · x0 = x′

n (that is, hng
′

n ∈ Iso(x′

n))

and
(B) : gn = hng

′

n →G e .

Such a sequence is given by hn := g′ng
−1
0 (g′n)

−1. Indeed, it is immediate to see that

hng
′

n · x0 = g′ng
−1
0 (g′n)

−1g′n · x0 = g′ng
−1
0 · x0

= g′n · x0 = x′

n ,

6
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where we have exploited the trivial fact that g−1
0 is an element of Iso(xn), because g0 is. Hence, (A) is

fulfilled. Moreover, since g′n →G g0, by continuity one infers that

hn →G g−1
0 , and consequently hng

′

n →G e,

yielding (B). It follows that the sequence {x′

n} satisfies the requirements in the statement, and the proof
is concluded.

Proof of Theorem 4 Fix x ∈ X and let xn →X x. Using the assumptions on T , one infers that the
mapping g 7→ T (g · x) := Tx(g) is a centered finite-variance isotropic field on G, in the sense of Section
3. According to Lemma 5, there exist sequences {x′

n} ⊂ {xn} and {gn} ⊂ G such that x′

n = gnx and
gn →G e. By virtue of Theorem 2, we therefore conclude that

lim
n→∞

E |T (x′

n)− T (x)|2 = lim
n→∞

E |Tx(gn)− Tx(e)|2 = 0.

This argument shows that every sequence {xn} converging to x in X admits a subsequence {x′

n} such
that T (x′

n) converges to T (x) in L2(P ), and this fact is exactly equivalent to relation (5.6). �

As already recalled, our findings apply to the important case where X equals the n dimensional unit
sphere Sn, n ≥ 1, on which the compact group SO(n + 1) acts transitively. Assume for notational
simplicity that T is zero-mean (ET = 0), and write Γ(x1, x2) := ET (x1)T (x2) for the covariance function

of the random field, Γ : Sn × Sn → R . By isotropy, there exists a function Γ̃(.) : R+ → R such that

Γ(x1, x2) = Γ̃(‖x1 − x2‖), where the symbol ‖ · ‖ stands for Euclidean norm; it is hence straightforward
(and well-known, see for instance [2, 13, 22]) that, under isotropy, mean-square continuity is equivalent

to continuity of the function Γ̃ at the origin.
Of course, it is not difficult to figure out rotationally invariant, positive-definite functions which violate

the continuity of Γ̃ at the origin: a simple example is provided by Γ : Sn × Sn → R such that

Γ(x, x) = Γ̃(0) = 1 , Γ(x1, x2) = Γ̃(‖x1 − x2‖) = 0 , for all x1 6= x2 , x1, x2 ∈ Sn . (5.7)

A consequence of Theorem 4 is that such a Γ(., .) cannot be the covariance function of a measurable

isotropic process. More generally, under isotropy it is immediate to see that continuity of Γ̃ at the origin
entails continuity everywhere of the covariance function Γ, indeed

Γ(x1, y1)− Γ(x2, y2) = E {T (x1)(T (y1)− T (y2))} + E {T (y2)(T (x1)− T (x2))}
≤

√
ET 2(x1)E(T (y1)− T (y2))2 +

√
ET 2(y2)E(T (x1)− T (x2))2,

and the last term of the previous chain of inequalities converges to zero, whenever (x1, y1) → (x2, y2) and

the isotropic field T is mean-square continuous (or, equivalently, Γ̃ is continuous at the origin). We can
hence state the following:

Corollary 6 The covariance function of a measurable finite-variance isotropic random field on the ho-
mogenous space of a compact group is necessarily everywhere continuous.

6 Some Historical Remarks

Our result can be viewed as a characterization of covariance functions for random fields defined on
homogenous spaces of compact groups. In a related setting, the characterization of covariance functions
for stationary and isotropic random fields in Rd was first considered in a celebrated paper by Schoenberg
(1938), see [17]. In this reference, it was conjectured that the only form of discontinuity which could be
allowed for such covariance functions would occur at the origin, i.e. given any zero-mean, finite-variance
and isotropic random field Z : Rd → R, its covariance function should be of the form

EZ(0, ..., 0)Z(t1, ..., td) = Γ(‖t1, ..., td‖)
= Γ̃(t) = Γ̃0(t) + Γ̃1(t) ,
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where as before t := ‖t1, ..., td‖ is Euclidean norm, and Γ̃0(.),Γ̃1(.) : R
+ → R are such that

Γ̃0(t) =

{
γ ≥ 0 , for t = 0 ,
0 otherwise ,

while Γ̃1(t) is nonnegative definite and continuous. In a later paper which went largely unnoticed, Crum
(1956) ([5]) proved the conjecture to be right for d ≥ 2. This result was drawn to the attention of
the Geostatistics community by Gneiting and Sasvari in 1997 (see [10]) who argued then that isotropic
random fields could be always expressed as a mean-square continuous component plus a ”nugget effect”,
e.g. a purely discontinuous component. The fact that this latter component should be necessarily non-
measurable was pointed out (for instance) in an oral presentation by Starkloff (2009) – see [18, p. 13],
as well as Example 1.2.5 in [12]. Our results in this note, though, are obtained in a somewhat different
setting (e.g. homogeneous spaces of compact groups), and we leave for future research a complete analysis
of the relationship between measurability and mean-square continuity in non-compact circumstances.
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