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1. Introduction

The aim of this paper is to establish multidimensional normal approximation results for vectors of random variables hav-
ing the form of wavelet coefficients integrated with respect to a Poisson measure on the unit sphere. The specificity of our
analysis is that we require the dimension of such vectors to grow to infinity. Our techniques are based on recently obtained
bounds for the normal approximation of functionals of general Poisson measures (see [40,42]), as well as on the use of the
localization properties of wavelet systems on the sphere (see [36], as well as the recent monograph [30]). A large part of the
paper is devoted to the explicit determination of the above quoted bounds in terms of dimension.

1.1. Motivation and overview

A classical problem in asymptotic statistics is the assessment of the speed of convergence to Gaussianity (that is, the com-
putation of explicit Berry-Esseen bounds) for parametric and nonparametric estimation procedures—for recent references
connected to the main topic of the present paper, see for instance [16,29,54]. In this area, an important novel development
is given by the derivation of effective Berry-Esseen bounds by means of the combination of two probabilistic techniques,
namely the Malliavin calculus of variations and the Stein’s method for probabilistic approximations. The monograph [6] is
the standard modern reference for Stein’s method, whereas [38] provides an exhaustive discussion of the use of Malliavin
calculus for proving normal approximation results on a Gaussian space. The fact that one can use Malliavin calculus to de-
duce normal approximation bounds (in total variation) for functionals of Gaussian fields was first exploited in [37]—where
one can find several quantitative versions of the “fourth moment theorem” for chaotic random variables proved in [39].
Lower bounds can also be computed, entailing that the rates of convergence provided by these techniques are sharp in
many instances—see again [38].
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In a recent series of contributions, the interaction between Stein’s method and Malliavin calculus has been further
exploited for dealing with the normal approximation of functionals of a general Poisson random measure. The most general
abstract results appear in [40] (for one-dimensional normal approximations) and [42] (for normal approximations in
arbitrary dimensions). These findings have recently found a wide range of applications in the field of stochastic geometry—
see [25,26,34,28,47] for a sample of geometric applications, as well as the webpage

http://www.iecn.u-nancy.fr/~nourdin/steinmalliavin.htm

for a constantly updated resource on the subject.

The purpose of this paper is to apply and extend the main findings of [40,42] in order to study the multidimensional
normal approximation of the elements of the first Wiener chaos of a given Poisson measure. Our main goal is to deduce
bounds that are well-adapted to deal with applications where the dimension of a given statistic increases with the number of
observations. This is a framework which arises naturally in many relevant fields of modern statistical analysis; in particular,
our principal motivation originates from the implementation of wavelet systems on the sphere. In these circumstances, when
more and more data become available, a higher number of wavelet coefficients is evaluated, as it is customarily the case when
considering, for instance, thresholding nonparametric estimators. We shall hence be concerned with sequences of Poisson
fields, whose intensity grows monotonically. We then exploit the wavelet localization properties to establish bounds that
grow linearly with the number of functionals considered; we are then able to provide explicit recipes, for instance, for the
number of joint testing procedures that can be simultaneously entertained ensuring that the Gaussian approximation may
still be shown to hold, in a suitable sense.

1.2. Main contributions

Consider a sequence of i.i.d. random variables {X; : i > 1} with values in the unit sphere S?, and define {1/} to be the
collection of the spherical needlets associated with a certain constant B > 1, see Section 3.1 for more details and discussion.
Write also oji = E[wjk(on] and by, = E[¥x(X1)], and consider an independent (possibly inhomogeneous) Poisson process
{N; : t > 0} on the real line such that E[N;] = R(t) — o0, ast — oo. Formally, our principal aim is to establish conditions
on the sequences {j(n) : n > 1}, {R(n) : n > 1} and {d(n) : n > 1} ensuring that the distribution of the centered d(n)-
dimensional vector

yn = (Yn,h e Yn,d(n))
1 (N(n) Vi, X)) R(M)bji, L Vinkaqm Xi) _ R(n)bj(“)kd(n)>

VR

is asymptotically close, in the sense of some smooth distance denoted d, (see Definition 2.6), to the law of a d(n)-dimensional
Gaussian vector, say Z,, with centered and independent components having unit variance. The use of a smooth distance
allows one to deduce minimal conditions for this kind of asymptotic Gaussianity. The crucial point is that we allow the
dimension d(n) to grow to infinity, so that our results require to explicitly assess the dependence of each bound on the
dimension. We shall perform our tasks through the following main steps: (i) Proposition 4.1 deals with one-dimensional
normal approximations, (ii) Proposition 5.4 deals with normal approximations in a fixed dimension, and finally (iii) in
Theorem 5.5 we deduce a bound that is well-adapted to the case d(n) — o0. More precisely, Theorem 5.5 contains an
upper bound linear in d(n), that is, an estimate of the type

d2(Yn, Zo) < C(n) x d(n). (1.2)
It will be shown in Corollary 5.6, that the sequence C(n) can be chosen to be

0 (1/\/R(n)3721'<n>) ;

as discussed below in Remark 4.3, R(n) x B~¥™ can be viewed as a measure of the “effective sample size” for the components
of Yy.

, (1.1)
=1 Oimk Oj(n)k im1 Oimkqe) Oj(n)kq(ny

1.3. About de-Poissonization

Our results can be used in order to deduce the asymptotic normality of de-Poissonized linear statistics with growing
dimension. To illustrate this point, assume that the random variables X; are uniformly distributed on the sphere. Then, it is
well known that by, = 0, whenever j > 1. In this framework, when j(n) > 1 for every n, R(n) = n and d(n)/n'* - 0,
the conditions implying that Y;, is asymptotically close to Gaussian, automatically ensure that the law of the de-Poissonized
vector

Y — v 1( - Vi X) - ‘/’fm)ka(n)(xi)) (13)

!/
n n,l""’Yn,d(n)) = «/ﬁ

is also asymptotically close to Gaussian. The reason for this phenomenon is nested in the statement of the forthcoming
(elementary) Lemma 1.1 (see also [9] for similar computations).

RN
= Ok =1  Cimkam)
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Lemma 1.1. Assume that R(n) = n, that the X;’s are uniformly distributed on the sphere, and that j(n) > 1 for every n. Then,
there exists a universal constant M such that, for every n and every Lipschitz function ¢ : RY™® — R, the following estimate
holds:

/ d(n)
Ele(Y)] = Ele (Yl < Ml llup—777

Proof. Fix! = 1,...,d(n), and write §;(x) = o
JU)KL

,in such a way that E[$;(X1)?] = 1. One has that

E[(Yy, — Yn)’]l =201 — ap),
where
1 < e '™ e "n"
an:fz nAm=1-— .

! |
n =0 m: n:

This gives the estimate

4 e—nnn
EllYn, = Youll = \JEI(Yy, = Ya?] = /2 o

so that the conclusion follows from an application of Stirling’s formula and of the Lipschitz property of ¢. O

Remark 1.2. (i) Lemma 1.1 implies that one can obtain an inequality similar to (1.2) for Y;, that is:

, M
dy(Yy,, Zp) < (C(n) + W) x d(n).
n

(ii) With some extra work, one can obtain estimates similar to those in Lemma 1.1 also when the constants b, are
possibly different from zero. This point, that requires some lengthy technical considerations, falls slightly outside the
scope of this paper and will be pursued in full generality elsewhere.

(iii) In [5], Bentkus proved the following (yet unsurpassed) bound. Assume that {X; : i > 1} is a collection of i.i.d.
d-dimensional vectors, such that X is centered and with covariance equal to the identity matrix. Set S, = n="/2(X; +
--++ Xy),n > 1and let Z be a d-dimensional centered Gaussian vector with i.i.d. components having unit variance.
Then, for every convex set C C R¢

El1c(s0] — Ele@)]| < a4 2L,
where 8 = E[||X; ||%d]. It is unclear whether one can effectively use this bound in order to investigate the asymptotic
Gaussianity of sequences of random vectors of the type (1.1)-(1.3), in particular because, for a fixed n, the components
of Y,, Y, have in general a non trivial correlation. Note also that a simple application of Jensen inequality shows that
Bd*n=1/2 > d7/*n=1/2 However, a direct comparison of Bentkus’ estimates with our “linear” rate in d (see (1.2), as well
as Theorem 5.5 below) is unfeasible, due to the differences with our setting, namely concerning the choice of distance,
the structure of the considered covariance matrices, the Poissonized environment, and the role of B™ discussed in
Remark 4.3.

(iv) A careful inspection of the proofs of our main results reveals that the findings of this paper have a much more general
validity, and in particular can be extended to kernel estimators on compact spaces satisfying mild concentration and
equispacing properties (see also [19,20]). In this paper, however, we decided to stick to the presentation on the sphere
for definiteness, and to make the connection with applications clearer. Some more general frameworks are discussed
briefly at the end of Section 5.

(v) For notational simplicity, throughout this paper we will stick to the case where all the components in our vector statis-
tics are evaluated at the same scale j(n) (see below for more precise definitions and detailed discussion). The relaxation
of this assumption to cover multiple scales (j; (1), ..., jq(n)) does not require any new ideas and is not considered here
for brevity’s sake.

1.4. Plan

The plan of the paper is as follows: in Section 2 we provide some background material on Stein-Malliavin bounds in
the case of Poisson random fields, and we describe a suitable setting for the current paper, entailing sequences of fields
with monotonically increasing governing measures. We provide also some new results, ensuring that the Central Limit
Theorems we are going to establish are stable, in the classical sense. In Section 3 we recall some background material on the
construction of tight wavelet systems on the sphere (see [36,35] for the original references, as well as [30, Chapter 10]) and
we explain how to express the corresponding wavelet coefficients in terms of stochastic integrals with respect to a Poisson
random measure. We also illustrate shortly some possible statistical applications. In Section 4 we provide our bounds in the
one-dimensional case; these are simple results which could have been established by many alternative techniques, but still
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they provide some interesting insights into the “effective area of influence” of a single component of the wavelet system.
The core of the paper is in Section 5, where the bound is provided in the multidimensional case, allowing in particular for
the number of coefficients to be evaluated to grow with the number of observations. This result requires a careful evaluation
of the upper bound, which is made possible by the localization properties in real space of the wavelet construction.

2. Poisson random measures and Stein-Malliavin bounds

In order to study the asymptotic behavior of linear functionals of Poisson measures on the sphere S?, we start by recalling
the definition of a Poisson random measure—for more details, see for instance [41,21,46,49]. We work on a probability space
(£2,F,P).

Definition 2.1. Let (©, 4, 1) be a o-finite measure space such that @ is a Polish space and + is its associated Borel o -field.
Assume that x has no atoms (that is, u({x}) = 0, for every x € ®). A collection of random variables {N(A) : A € 4}, taking
values in Z U {400}, is called a Poisson random measure (PRM) on ®@ with intensity measure (or control measure) y if the
following two properties hold:

1. Forevery A € A, N(A) has Poisson distribution with mean w(A);
2. IfAq, ..., Ay € A are pairwise disjoint, then N (A1) , ..., N (A,) are independent.

Remark 2.2. (i) In Definition 2.1, a Poisson random variable with parameter A = oo is implicitly set to be equal to co.
(ii) Points 1 and 2 in Definition 2.1 imply that, for every w € §2, the mapping A — N (A, w) is a measure on ©. Moreover,
since w is non-atomic, one has that

P[N({x}) =0or1,¥x € 0] = 1. (2.4)

Assumption 2.3. Our framework for the rest of the paper will be the following special case of Definition 2.1:

(a) We take © = R, x S?, with A = B(O), the class of Borel subsets of ©.

(b) The symbol N indicates a Poisson random measure on &, with homogeneous intensity given by u = p x v, where p is
some measure on R, and v is a probability on S? of the form v(dx) = f (x)dx, where f is a density on the sphere. We shall
assume that p({0}) = 0 and that the mapping p — p([0, t]) is strictly increasing and diverging to infinity as t — oo.
We also adopt the notation

R = p([0,t]), t=0, (2.5)

that is, t — R; is the distribution function of p.

Remark 2.4. (i) Fora fixed t > 0, the mapping

A Ni(A) :=V([0,t] xA) (2.6)
defines a Poisson random measure on S?, with non-atomic intensity
we(dx) = Ry - v(dx) = R, - f(x)dx. (2.7)
Throughout this paper, we shall assume f (x) to be bounded and bounded away from zero, e.g.
o <f(x) <&, someciy, s >0, forallx e S2. (2.8)
(ii) Let {X; = i > 1} be a sequence of i.i.d. random variables with values in S? and common distribution equal to v. Then,

for a fixed t > 0, the random measure A — N;(A) = V ([0, t] x A) has the same distribution as A — ZY:l dx. (A), were
8y indicates a Dirac mass at x, and V is an independent Poisson random variable with parameter R;. This is the so-called
binomial representation of a Poisson measure.

(iii) By definition, for every t; < t, one has that a random variable of the type N, (A) — N, (A),A C §?, is independent of
the random measure Ny, , as defined in (2.6).

(iv) To simplify the discussion, one can assume that p(ds) = R - £(ds), where £ is the Lebesgue measure and R > 0, in such
away thatR, =R -t.

We will now introduce two distances between laws of random variables taking values in R?. Both distances define
topologies, over the class of probability distributions on R, that are strictly stronger than convergence in law. One should
observe that, in this paper, the first one (Wasserstein distance) will be only used for random elements with values in R.
Given a function g € C1(R?), we write lIgllLip = SUPyegrd IVEX) lpa. If g € C2(RY), we set

M;(g) = sup |[Hess g(x)lop.

xeRd

where || - [|op indicates the operator norm.
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Definition 2.5. The Wasserstein distance dy,, between the laws of two random vectors X, Y with values in R¢ (d > 1) and
such that E ||X||gd , E ||Y||ge < 00, is given by:

dw X,Y)= sup [E[gX)]—E[g(V)]l.
g:llglip=1

Definition 2.6. The distance d, between the laws of two random vectors X, Y with values in RY (d > 1), such that
E|IX|lga, E |Y]lge < 00, is given by:

d, (X,Y) = sug |E[g X)] —E[gM)]I,
ges

where # denotes the collection of all functions g € €% (R?) such that ||g|lp < 1and My(g) < 1.

We now present, in a form adapted to our goals, two upper bounds involving random variables living in the so-called
first Wiener chaos of N. The first bound was proved in [40], and concerns normal approximations in dimension 1 with
respect to the Wasserstein distance. The second bound appears in [42], and provides estimates for multidimensional normal
approximations with respect to the distance d,. Both bounds are obtained by means of a combination of the Malliavin
calculus of variations and the Stein’s method for probabilistic approximations.

Remark 2.7. (i) Letf € I2(®, u) N LY(O, w). In what follows, we shall use the symbols N(f) and N(f), respectively, to
denote the Wiener-It6 integrals of f with respect to N and with respect to the compensated Poisson meastre

N(@A) = N@A) — u(A), Ac B(O), (2.9)

where one uses the convention N(A) — u(A) = oo whenever w(A) = oo (recall that u is o -finite). Note that, for N(f)
to be well-defined, one needs that f e L'(®@, u), whereas for the isometry property to hold one clearly needs that
f € I?(®, u). We will also make use of the following isometric property: for every f, g € L*(©, u),

EWUW@nszmawmmy (2.10)

2]
The reader is referred e.g. to [41, Chapter 5] for an introduction to Wiener-It6 integrals.

(ii) For most of this paper, we shall consider Wiener-It6 integrals of functions f having the form f = [0, t] x h, wheret > 0
and h € [*(S?, v) N L1(S?, v). For a function f of this type one simply writes

N(f) = N([0, t] x h) := Ne(h), and N(f) = N([0, t] x h) := N;(h). (2.11)

Observe that this notation is consistent with the one introduced in (2.6). Indeed, it is easily seen that N;(h) (resp.
N¢(h)) coincide with the Wiener-It6 integral of h with respect to N; (resp. with respect to the compensated measure
Ny =Ny — e = Nt — Re - v).

(iii) In view of Remark 2.4-(ii), one also has that, for h € [?(S?, v) N L1(S?, v),

Ne(y= Y h(, and N(= > h(x)—/zh(x)ut(dx), (2.12)

xesupp(Nr) xesupp(Nr) S

with u, defined as in (2.7).

Now write L2(v) := L?(S?, v) and, for a fixed integer d > 1,let Y ~ .4; (0, C), with C positive definite; let also
Fr= (Ft,la .- -7Ft,d) = (Nt (ht,l) EIII ﬁt (ht,d))
be a collection of d-dimensional random vectors such that h, ; € L*(v). We call I'; the covariance matrix of F, that is,

1@ b) = E [ (hea) R (o) | = (e heolpea - @b =100

Asusual, || - [lop and || - ||us. stand, respectively, for the operator and Hilbert-Schmidt norms. The formulation of the following
result is pretty close to [41,42].

Theorem 2.8. Let the notation and assumptions of this section prevail.
1. Let h € [*(v), let Z ~ .#(0, 1) and fix t > 0. Then, the following bound holds (see (2.7)):

dw(Ne(h),2) < 1= Ihl% 2,

+fmmmwn (2.13)
SZ
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2. For a fixed integer d > 1, we have

1 NG) 3 d
dy (F.Y) < |7, NG ||c—n||HAs_+T” fcM 2 Clop D f heiCo] [hej (] [he k(0] pe(dx), (2.14)
ij k=1Y5
1 d?\/2 3 d
= €7 oy IClep IE = Tills. + —5 e ||C||op2fsz [hei (0| e (). (2.15)
i=1

Remark 2.9. From the previous theorem, it follows immediately that, if {h;} C L*(v) N L3(v) is a collection of kernels
verifying, as t — oo,

lhellzg2 ) = 1 and  |Ihell3s2,,) — 0, (2.16)
one has the CLT
Nh) 2% 7, (2.17)

and the inequality (2.13) provides an explicit upper bound in the Wasserstein distance. Likewise, if I'; (a, b)) —> C (a, b)
and st ‘hm(x)]3 ue(dx) — O0ast —> oo, fora,b=1,...,d, thend, (F;, Y) —> 0 and F; converges in distribution to Y.

Remark 2.10. The estimate (2.14) will be used to deduce one of the main multidimensional bounds in the present paper.
It is a direct consequence of Theorem 3.3 in [42], where the following relation is proved: for every vector (Fy, ..., F;) of
sufficiently regular centered functionals of N;,

2
dy(F.X) < |||, ICHL ZE[C(u)— ~DLF)zg, |

d 2 /4
+ruc 1||3/2||C||0p/2ut(dz)E (szﬁ) (Z D.L 15) :
S i=1 =1

where

D:F(N(w)) = F;(N(@)) — F(N(w)), ae. —u(dz)P(dw),
and

F,(N(w)) = E(N(0) + §,),

that is, the random variable F, is obtained by adding to the argument of F (which is a function of the point measure N), a Dirac
mass at z, and L~! is the so-called pseudo-inverse of the Ornstein-Uhlenbeck operator. The estimate (2.14) is then obtained by
observing that, when F; = F;; = N;(h; ), then D,F; = —D,L™'F = h, ;(2), in such a way that

2
ZE[C@ P = (PR =Lz, | = 1€ = Kellus .

and

d 2 /4 d
[, wetare (Z |D2Ff|) (Z |DZL-1Fj|) = 3 [ Jheaol s 0] s
§? i=1 s2

j=1 ij,k=1

The next statement deals with the interesting fact that the convergence in law implied by Theorem 2.8 is indeed stable,
as defined e.g. in the classic Ref. [18, Chapter 4].

Proposition 2.11. The central limit theorem described at the end of Point 2 of Theorem 2.8 (and a fortiori the CLT at Point 1 of
the same theorem) is stable with respect to o (N) (the o -field generated by N) in the following sense: for every random variable
X that is o (N)-measurable, one has that

Law

X, F) —(X,Y),
where Y ~ #;(0, C) is independent of N.
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Proof. We just deal with the case d = 1, the extension to a general d following from elementary considerations. An
approximation argument shows that it is enough to prove the following claim: if N(h,) (h, € L?(u), n > 1) is a sequence

of random variables verifying E[N(h,)?] = ”h””zz(u) — land [ [h,|*die — O, then for every fixed f € L*(), the pair

(N(f), N(hn)) converges in distribution, as n — oo, to (N(f), Z),where Z ~ #(0, 1) is independent of N. To see this, we
start with the explicit formula (see e.g. [41, formula (5.3.31)]): forevery A, y € R

Ya(r, y) = E[exp(AN(f) + yN(h))]

= exp [ / [ It 1 —i(xf<x)+yhn(x>)]u(dx)].
[C]

Our aim is to prove that, under the stated assumptions,

VZ

lim log(ys (. ) = / [ = 1= iAf 0] () — Z-.

[©]

Standard computations show that

. 2
log(Ym (X, ¥)) — {/ [e"® — 1 —irf(0)] w(dx) — VZH
(G}

2 2

14 )4 2

—_ - — h d
) 2 /@ n(X)” 1 (dx)

ly?

< LA
6

+ YAl e, fizgn! + /) |1 () 1 (d).
@

2
2(w)
— 1by assumption. O

Since [, [h,(x)|>/1(dx) — 0 and the mapping n — | hy||

2
12(n)

is bounded, one has that (hy, f);2(,, — 0, and the conclusion
follows by using the fact that ||h,||

3. Needlet coefficients
3.1. Background: the needlet construction

We now provide an overview of the construction of the set of needlets on the unit sphere. The reader is referred to
[30, Chapter 10] for an introduction to this topic. Relevant references on this subject are: the seminal papers [36,35], where
needlets have been first defined; [12,13,11,14], among others, for generalizations to homogeneous spaces of compact groups
and spin fiber bundles; [3,4,27,32] for the analysis of needlets on spherical Gaussian fields, and [31,45,7,10] for some (among
many) applications to cosmological and astrophysical issues; see also [33,48] for other approaches to spherical wavelet
construction.

(Spherical harmonics) In Fourier analysis, the set of spherical harmonics
(Yip:1>0,m=-1,...,1}

provides an orthonormal basis for the space of square-integrable functions on the unit sphere L2 (SZ) =12 (SZ, dx), where dx

stands for the Lebesgue measure on S? (see for instance [1,23,30,52]). Spherical harmonics are defined as the eigenfunctions
of the spherical Laplacian A corresponding to eigenvalues —I (I + 1), e.g. Ag2Yym = —I(I + 1)Yin, see again [30,52,53]
for analytic expressions and more details and properties. For every | > 0, we define X, as the linear space given by the
restriction to the sphere of the polynomials with degree at most I. Plainly, one has that

I
K;:@span{Ykm:m=—k,...,k},
k=0

where the direct sum is in the sense of L? (S?).

(Cubature points) It is well-known that for every integer [ = 1, 2, ... there exists a finite set of cubature points @; C S?, as
well as a collection of weights {A,}, indexed by the elements of @,, such that

Wes [ roode=Y niom.
2

neQ

Now fix B > 1, and write [x] to indicate the integer part of a given real x. In what follows, we shall denote by X; = {£} and
{Aji}, respectively, the set @z+1 and the associated class of weights. We also write K; = card (XJ) As proved in [36,35],
cubature points and weights can be chosen to satisfy

M~ B K~ B, (3.18)
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where by a & b, we mean that there exists ¢y, ¢, > 0 such that c;a < b < cya(see also e.g. [2,43,44] and [30, Chapter 10]).
(Spherical needlets) Fix B > 1 as before, as well as a real-valued mapping b on (0, co). We assume that b verifies the following
properties: (i) the function b (-) has compact support in [B‘1 B] (in such a way that the mapping [ — b ( ) has compact

supportinl € [B’ 1 Bl“])(u) forevery & > 1, Z"o b?(EB~) = 1 (partition of unit property), and (iii) b (-) € C* (0, 0o).
Now, let us introduce the functionL; : [—1, 1] — R as

1
Li(cos ¥) == Pi(cosv), v €]0,n],

where P; (-) , | > 0, denotes as usual the set of Legendre polynomials. Note also that L;((x, y)) = an?, Y im (%)Y (), where

(-, -) denotes Euclidean inner product. The collection of spherical needlets {1}, associated with B and b(-), are then defined
as a weighted convolution, that is

Vi) = /A Y _b ( )mes,k)) (3.19)

=0

(Localization) The properties of b entail the following quasi-exponential localization property (see [36] or [30, Section 13.3]):
forany t = 1, 2, ... there exists «; > 0 such that for any x € S,

KB
(1 + Bl arccos ((x, &))"

where d(x, y) := arccos ({x, y)) is the spherical distance. From localization, the following bound can be established on the
L, (S?) norms: for all 1 < p < oo, there exist two positive constants g, and g, such that

Y| <

, (3.20)

() < el ) < 8. 621

(Needlets as frames) Finally, the fact that b is a partition of unit, allows on to deduce the following reconstruction formula (see
again [36]): for f € [* (S?):

K
FOO =" B,

>0 k=1

where the convergence of the series is in L?(S?), and

= o = [ P 0. (322

represents the so-called needlet coefficient of index j, k.

3.2. Two motivations: density estimates and point sources

The principal aim of this paper is to establish multidimensional asymptotic results for some possibly randomized version
of random variables of the type

B =By = ijk(x, i=1,2,..., k=1,...,K, (3.23)

where the function v is defined according to (3.19), and {X; : i > 1} is some adequate sequence of i.i.d. random variables.
We may also study the asymptotic behavior, as t — o0, of multidimensional object of the type {Ejk, k=1,2,..., I(j(t)},
where t — K;(t) is a non-decreasing mapping possibly diverging to infinity, and j may change with t. In other words,
as happens in realistic experimental circumstances, we may decide to focus on a growing number of coefficients as the
number of (expected) events increase. Two strong motivations for this analysis, both coming from statistical applications,
are detailed below.

(Density estimates) Consider a density function f on the sphere S?, that is: f is a mapping from S? into R, verifying
fgz f(x)dx = 1, where dx indicates the Lebesgue measure on S2. Let {X; : i = 1, ..., n} be a collection of i.i.d. observations

with values in S? with common distribution given by f(x)dx. A classical statistical problem, considered for instance by
[2,22,24], concerns the estimation of f by wavelet/needlet thresholding techniques. To this aim, keeping in mind the notation
(3.23), one uses [8,15] the following estimator of f:

fo = ZE’ijk(X), E’Z = Bjkﬂ{mjkhan}’
jk
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where t, = J/logn/n and c is a constant to be determined. Finite-sample approximations on the distributions of 'Ejk can
then be instrumental for the exact determination of the thresholding value ct;, see e.g. [8,15].

(Searching for point sources) The joint distribution of the coefficients {Ejk} (as defined in (3.23)) is required in statistical

procedures devised for the research of so-called point sources, again for instance in an astrophysical context (see for
instance [51]). The physical issue can be formalized as follows:

- Under the null hypothesis, we are observing a background of cosmic rays governed by a Poisson measure on the sphere
S?, with the form of the measure N; (-) defined in (2.6) for some t > 0. In particular, N; is built from a measure N verifying
Assumption 2.3, and the intensity of w;(dx) = E[N;(dx)] is given by the absolutely continuous measure R; - f (x)dx, where
R; > 0 and f is a density on the sphere. This situation corresponds, for instance, to the presence of a diffuse background
of cosmological emissions.

- Under the alternative hypothesis, the background of cosmic rays is generated by a Poisson measure of the type:

P
NY(A) = Ni(A) + Y NP8, (4),
p=1

where {£1, ..., &} C S?% each mapping t — Nt(p) is an independent Poisson process over [0, co) with intensity A,, and
J¢, is the Dirac mass at &. In this case, one has that Nf* is a Poisson measure with atomic intensity

1HA) = EIN}(A)] = /f(x)dx + Z Dt - 85 (A).
=1

In this context, the informal expression “searching for point sources” can then be translated into “testing for P = 0”
or “jointly testing for A, > Oatp = 1,..., P”. The number P and the locations {&;, ... &p} can be in general known or
unknown. We refer to [17,50] for astrophysical applications of these ideas.

Remark 3.1. In order to directly apply the findings of [40,42], in what follows we shall focus on a randomized version of
(3.23), where n is replaced by an independent Poisson number whose parameter diverges to infinity. Also, we will prefer
a deterministic normalization over a random one. As formally shown in the discussion to follow, the resulting randomized
coefficients can be neatly put into the framework of Section 2.

3.3. Needlet coefficients as Wiener-Ité integrals

Let N be a Poisson measure on R x S? satisfying the requirements of Assumption 2.3 (in particular, the intensity of N has
the form p x v, where v(dx) = f(x)dx, for some probability density f on the sphere, and one writes R, = p([0, t]), t > 0).
For every t > 0, let the Poisson measure N; on S? be defined as in (2.6). For everyj > 1andeveryk = 1, ..., N;j, consider
the function v defined in (3.19), and observe that v is trivially an element of L*(S?, v) N L3(S?, v) N L1(S?, v). We write

o2 = / VRfdx, by = / Y (Of ()dx.
SZ SZ

Observe that, if f(x) = é (that is, the uniform density on the sphere), then by, = 0 for every j > 1. On the other hand,
under (2.8),
gl Ol <ot <o v - (3.24)

Note that (see (3.21)) the L>-norm of {%k} is uniformly bounded above and below, and therefore the same is true for { Jk}

(indeed, there exists x > 0, independent of j and k, such that 0 < k < ||1/f]'k||l_2 &) < 1).Forevery t > 0 and every j, k, we
introduce the kernel

M = Dy e g, (3.25)
Riojk
and write
B =R () = / BN o = Y R0 —Re- / e (v (@). (326)
xesupp(Ny) §?

In view of Remark 2.4-(ii), the random variable Ej(,f[ ) can always be represented in the form

i=1
ﬂk - ’
! \/RrUjk

Ne(s%)
Z W]k (X ) Rt jk)
2R _
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where {X; : i > 1} is a sequence of i.i.d. random variables with common distribution v, and independent of the centered
random variable N; (S?). Moreover, the following relations are immediately checked:

EBRY =0, E[(BR”)’1=1. (327)
Remark 3.2. Using the notation (3.23), we have that
(Nt(SZ) X ﬂ(Nt(S ) Rtbjk>
ﬁij '

BR) _
ﬂ]kt -

4. Bounds in dimension one

We are now going to apply the content of Theorem 2.8-(1) to the random variables Ej(,f‘) introduced in the previous
section. In the next statement, we write Z ~ A (0, 1) to indicate a centered Gaussian random variable with unit variance.
Recall that &, := sup,cs2 |f ()|, p > 1, and that the constants g, q; have been defined in (3.21).

Proposition 4.1. For every j, k and every t > 0, one has that

dy (ﬂ(R” z) (‘i/;iﬁ ‘
Ojk

It follows that for any sequence (j(n), k(n), t(n)), B ((nim)) converges in distribution to Z, as n — oo, provided B¥™ = o(Ryn)).
The convergence is o (N)-stable, in the sense of Proposition 2.11.

Proof. Using (3.25)-(3.26) together with (2.15) and (2.8),
dw (B 2) / \h%’f” (x)\ e (dy)

£ 3
T,k / [V’ f dx < TR 1lse)

IA

< (q3) ;2
= JRop,
where in the last inequality we use the property (3.21) with p = 3 to have:
3 1 353i(1-2 i
[l = @808 = @,p.

The last part of the statement follows from the fact that the topology induced by the Wasserstein distance (on the class of
probability distributions on the real line) is strictly stronger than the topology of convergence in law. O

Remark 4.2. For f(x) = {47}~ we have

1
=4 fs ¥ 0 de= ] 22y

and more generally, under (2.8),

~ B )3
dw (:Bj(lft)9z) = 7% =y(,kt). (4.28)
H Vi HLZ (s2)

Remark 4.3. The previous result can be given the following heuristic interpretation. The factor B~ can be viewed as the
“effective scale” of the wavelet, i.e. it is the radius of the region centered at £ where the value of the wavelet function is not
negligible. Because needlets are isotropic, the “effective area” is of order B~%. For governing measures with density which
is bounded and bounded away from zero, the expected number of observations on a spherical cap of radius B~ around &ik
is hence given by

E [card {X; : d(X;, &) < B7}] ~ Rtf f(x)dx,
d(x,&r)<B~
B ¥R <R, / f(x)dx < 5B~ R,
d(x,&jx)<B~
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using [4, Eq. (8)]. Because the Central Limit Theorem can hold only when the effective number of observations grows to
infinity, the condition B"%R, — oo is quite expected. In the thresholding literature, coefficients are usually considered up
to the frequency Jz such that B¥k ~ R,/ logR;, see for instance [15,2]; under these circumstances, we have

~ 1
d2< ](:li)sz> =O(m) —> 0 forR, — +00.
t

Therefore B};Rk‘ ) does converge in law to Z.

5. Multidimensional bounds

We are now going to apply Part 2 of Theorem 2.8 to the computation of multidimensional Berry-Esseen bounds involving
vectors of needlet coefficients of the type (3.26). After having proved some technical estimates in Section 5.1, we will consider
two bounds. One is proved in Section 5.2 by means of (2.15), and it is well adapted to the case where the number of needlet
coefficients, say d, is fixed. In Section 5.3, we shall focus on (2.14), and deduce a bound which is adapted to the case where
the number d is possibly growing to infinity.

5.1. Atechnical result

The following estimate, allowing one to bound the covariance between any two needlet coefficients, will be used
throughout this section. We let the notation and assumptions of the previous section prevail.

Lemma 5.1. Foranyj > 1and ky # k, < K; = card{X;} and every T > 0, there exists a constant E, > 0, solely depending on
T, and such that

E‘L’;Z
Ojk; Ojky (1 +Bd (‘i:jkl ’ Ejkz))r

Proof. We focus on t > 2; note that the inequality for any fixed value of T immediately implies the result for all t/ < 7.
For ky # k, we have:

SR SR
Tk, (ki ko) | = [EBRY Bt <

|FR[ (kl, kz)|

ik, ) Yrjre, (%) i (dX)

Rto}'kl Ojky Js?

__ R o

- Rtgjlq ik, /§2 WJkl (X)wjkz (x)f(X)dX
%) ‘ ‘

= Tjk1 Ojky /S~2 ‘w]kl (X)| ‘WJIQ (X)| dx.

Now we can use a classical argument [36,35,4] to show that, for any T > 2, there exists C; > 0 such that:
(1t s Wiy )2 52y = f Wik (O [, |00
s

dx.

kB /SZ (] + Bid (X, Sjkl))t (1 + Bid (X, Ejkz))r

In order to evaluate this integral, we can for instance follow [36], by splitting the sphere S? into two regions:
S1={xes®:d(x &) > d (. &) /2)
S, ={xe S d(x &) > d (. &) /2} -

For what concerns the integral on S;, we obtain:

/ 1 1 dx < 27 / dx
S1 (1 +Bid (X’ é:jkl))t (1 + Bid (x’ Sjkz))r B (1 +Bd (é:jkw Ejkz))r 51 (1 +Bd (x7 Ejkz))r '

One also has that

/ dx </ dx —2n/ﬂ sin o
s (1+Bid (x, &))" ~ Jo2 (1+Bd (x, &))" o (1+B9)"

27 [y 27 /1 fOO1 ]
<7y < Ty [y
~ BY Jg (1+Y)Ty_321|:oyy 1 yoo

2nC
< —.
=
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Because calculations on the region S, are exactly the same and because S*> C S; U S,, we have that, for some constant ET
depending on 7,

~

G
(1+Bd (&, &3,))"

yielding the desired conclusion. O

<|ij1 |a |1lfjk2|)L2(S2) <

Remark 5.2. Assuming that d (éjkl, fjkz) > § uniformly for all j, we have immediately

2R Z(Re) ’ —jt
EBROBR| < il x BT,

ko T

where the constant «. & only depend on 7, &.

Remark 5.3. The previous lemma provides a tight bound, of some independent interest, on the high frequency behavior of
covariances among wavelet coefficients for Poisson random fields. For Gaussian isotropic random fields, analogous results
were provided by [3], in the case of standard needlets (bounded support), and by [27,29-32], in the “Mexican” case where
support may be unbounded in multipole space. It should be noted how asymptotic uncorrelation holds in much greater
generality for Poisson random fields than for Gaussian field: indeed in the latter case a regular variation condition had
to be imposed on the tail behavior of the angular power spectrum, and in the Mexican case this condition had to be
strengthened imposing an upper bound on the decay of the spectrum itself. The reason for such discrepancy is easily
understood: for Poisson random fields, non overlapping regions are independent, whence (heuristically) localization in pixel
space is sufficient to ensure asymptotic uncorrelation; on the contrary, in the Gaussian isotropic case different regions of the
field are correlated at any angular distance, and asymptotic uncorrelation for the coefficients requires a much more delicate
cancellation argument.

5.2. Fixed dimension

Fixd > 2 andj > 1, consider a fixed number of sampling points {éjk] e Ejkg } and define the associated d-dimensional
vector
2R ) (Re) 2 (Re)
ﬂ ‘ (,Bjklt PRI ,Bjkdt ),
whose covariance matrix will be denoted by I} (note that, by construction, I3 (i, i) = 1foreveryi =1, ..., d). Ouraimis to

apply the rough bound (2.15) in order to estimate the distance between the law of Ej(‘R[) and the law of a random Gaussian
vector Z ~ Ny4(0, I;), where C = I; stands for the identity d x d matrix. Using Lemma 5.1, one has the following basic
estimates:

1
lc™H,p = liClSy = 1.

d

= | Y fe[Eere])

k1#£ky=1

A

1€ — Il

1 ’6152
d sup j ’
ky#ky=1,....d Ojk; Ojk, (]j_ Bd (5 §ka))
- LZ y Crg‘Z
4145 (1 +B inf  d (&, Ejkz))

k1#ky=1,....d

IA

= = A(t). (5.29)

Applying (2.15) yields therefore that
e d
Z(Re) 2 V21 ®) |
d, (ﬂj : ,z) < AW + & Z R[fgz ‘hjkt (x)' Fx)dx

3
\/2 R ik (x
= A + @Yk / L’"g)’ dx
? =1 /2 Ojk
d3§2 3
mgf/qu 8 ijkHP(Sz)

/\3 43
SA(t)+ (q3)d;2 \/EB],

VRiiPq3 8

where we used (3.21) and (3.24) to yield ak > §3/2 3. We write this result as a separate statement.

< A +
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Proposition 5.4. Under the above notation and assumptions,

- C BT 343 .
0 (,3}'“&2) s dC. 5B n \(/q») ;1/2523 v;n
Cl‘ﬁ (1 + ky ;&k;gﬁ YYYY d (S}k] ) gﬂ(z)) g

Because t can be chosen arbitrarily large, it is immediately seen that the leading term in the d, distance is decaying
with the same rate as in the univariate case, e.g. B'/+/R;. Assuming however that d = d;, i.e. the case where the number
of coefficients is itself growing with t, the previous bound may become too large to be applicable. We shall hence try to
establish a tighter bound, as detailed in the next section.

5.3. Growing dimension

In this section we allow for a growing number of coefficients to be evaluated simultaneously, and investigate the bounds
that can be obtained under these circumstances. More precisely, we are now focusing on

ZRe) . 2 (Re) 2 (Re)
By = Bty - -+ Pitoky, )
where d; — o0, ast — oo.Throughout the sequel, we shall assume that the points at which these coefficients are evaluated
satisfy the condition:

1
inf d (Eityky» & N —.
L (& - o) N
Condition (5.30) is rather minimal; in fact, the cubature points for a standard needlet/wavelet construction can be taken to
form a maximal (d;)~'/?-net (see [4,12,36,43] for more details and discussion). The following result is the main achievement
of the paper.

(5.30)

Theorem 5.5. Let the previous assumptions and notation prevail. Then for all Tt = 2, 3. .., there exist positive constants ¢ and
¢/, (depending on t, ¢y, £, but not from t, j(t), d(t)) such that we have

> Cdt + 21 C’dtBi([)
. i ’ 8 @ UR
(1 + Bi® ’ ln{ ; d (&icoyky » fj(t)kz)) g Re

k1#ky=1,..., t

d (/31((’:;% z (5.31)

Proof. In view of (2.14) and (5.29), we just have to prove that the quantity

V21 R[

5 : RN NG / Yiok @| |Viok @] [Yiors @] f@)dz

I<1k2k3

is smaller than the second summand on the RHS of (5.31). Now note that

:Z me)k(l)’}

/ [Vicok @] |Viok @ [Viok, @) dz < Z/

kkoks B(Ej)r-B —i(0))

where, for any z € 8§, Bi®)

de de j(t)
C.B
Yiok(@)| < ,
zk:| ' | Zk: {1+ BOdEon, 2)}
P .
< CHO N ¢ CrB’([)
= T

. T
kst 510y 11 B [dE 0k §or) — @ Gon]}
di C,B®
BOd ek, Eon) ]

<GBV +
k:j()k €8 (&i(yr,BO) {

Now for & & B(Ejyn, B7P), x € B(&jok, B7), we have by triangle inequality
Ao &) + dCjcok, X) = dEjor, X),
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and because
A&k Ejn) = dEjon, ¥),  and  2dEys Ejyr) = d(Ejeoyn. X),

we obtain

de C.B®

j(t . . T
ki k@B Ejon BTO) (B (k. &)}

de

_ Z 1 1 B

dx
or, BIO Loy (BOdE . E)
k:&i() k€8 (o -BTO) meas(B §jer. 7)) Jan.80) {B'( Yd(Ejceyks gj(t)k)}

de

1 K, 2°B©® ,
= 2 =) o T50d wdx < K B,
i #8 ras BO) meas(B &k, B7D)) Jae8-10) {BOdE e, %)}

arguing as in [3, Lemma 6]. Hence

de )
> [Wiow@| < /B, (5.32)
k

uniformly over z € S2, which immediately provides the bound.

de 3
ol s S [ ey
;./.;(Ej(mﬁﬂ[ZWJ()’(Z)}} e ); 8 P= )

P’ Ejoyn-B7TO)

Finally, to establish the sharper constraint

d 3 |
/ {ZWM)k (z)|} dz < %.d, BV,
§? k

it is sufficient to note that, exploiting (5.32)

Z/ [Vion, @) Z [ Yok, @] Z |Vicows (2)| dz
ke V& ky k3

. dt .
< ’BI0 ) /Sz Wik @ | dz = k?BIOdje [ ieon] 1 e2)

kq

< dBHOBT = dc?BO,
: 1_1 .
where we have used again ”l/lja)k”fp(sz) = 0(B¥Vz27pP) = o(BOP-2) for p = 1.Thus (5.31) is established. [

For definiteness, we shall also impose tighter conditions on the rate of growth of d;, B® with respect to R;, so that we
can obtain a much more explicit bound, as follows:

Corollary 5.6. Let the previous assumptions and notation prevail, and assume moreover that there exists «, § such that, as
t —> o0

B0 ~R O0<a<1  d~R, 0<B<a.
There exists a constant « (depending on {1, {,, but not on j, d;, B) such that
~ 4B
(Re) t
dz( j(r)nz) =K JR (5.33)

for all vectors (B}(k’?), s ,E](;Z)) such that (5.30) holds.
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Proof. It suffices to note that

d[K/

to - = 0(B 904"
T
_o (w (Rd>/>
\/RT B(T+1)2j(t)
and
. 1+t —
B(i[ﬁ;j(t) — Igtﬁ-l)a = Rt_a+r(/3—a)+1 =o(1), fort > ;_ 8

Remark 5.7. From (5.33), it follows that for R, ~ 10'? we can establish asymptotic joint Gaussianity for all sequences of

coefficients (B} . B}i’igid(t)) of dimensions such that

J(©kq(t) * -
dtBi(t)

VRe

e.g. we can take d; >~ o(/R;/B®) ~ 0(105/B®), so that even at multipoles in the order of B®® = 0(10%) we might take
around 103 coefficients with the multivariate Gaussian approximation still holding. These arrays would not be sufficient
for the map reconstruction at this scale, but would indeed provide a basis for joint multiple testing procedures as those
described earlier.

=o0(1),

Remark 5.8. Assume that d; scales as B¥®; loosely speaking, this corresponds to the situation when one focuses on the
whole set of coefficients corresponding to scale j, so that exact reconstruction for bandlimited functions with I = O(B) is
feasible. Under this requirement, however, the “covariance” term A(t), i.e. the first element on the right-hand side of (5.31),
is no longer asymptotically negligible and the approximation with Gaussian independent variables cannot be expected to
hold. The approximation may however be implemented in terms of a Gaussian vector with dependent components. For the
second term, convergence to zero when dj;, ~ B¥® requires B¥® = o(\/R;). In terms of astrophysical applications, for
R ~ 10" this implies that one can focus on scales until 180°/B ~ 180°/10% =~ 2°; this is close to the resolution level
considered for ground-based Cosmic Rays experiments such as ARGO-YB] [17]. Of course, this value is much lower than
the factor B = o(+/R;) = 0(10°) required for the Gaussian approximation to hold in the one-dimensional case (e.g., on a
univariate sequence of coefficients, for instance corresponding to a single location on the sphere).

Remark 5.9. As mentioned in the introduction, in this paper we decided to focus on a specific framework (spherical Poisson
fields), which we believe of interest from the theoretical and the applied point of view. It is readily verified, however, how
our results continue to hold with trivial modifications in a much greater span of circumstances, indeed in some cases with
simpler proofs. Assume for instance we observe a sample of i.i.d. random variables {X;}, with probability density function
f(.) which is bounded and has support in [a, b] C R. Consider the kernel estimates

i 1 < Xt — Xnk
Xnk) = —— K{\———), 5.34
fn( nk) nB—i L ( B ( )

where K (.) denotes a compactly supported and bounded kernel satisfying standard regularity conditions, and for each j the
evaluation points (X, . . ., X,z ) form a B~/-net; for instance

a )
a=12Xpp <Xp1... <X =Db, Xk =a+k i k=0,1,...,B.

As argued earlier, conditionally on N; ([a, b]) = n, (5.34) has the same distribution as
_ 1 b — X
Xpk) = ——————— K - dN; (u),
) = s [ R ( v
where N; is a Poisson measure governed by R; x fAf(x)dx forall A C [a, b]. Considering that % —a.s. 1, a bound analogous

to (5.33) can be established with little efforts for the vectorﬁ(xm) = {ﬁ *n1), ... ,ﬁ(an,-)}. We leave this and related
developments for further research.
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