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a b s t r a c t

We compute explicit upper bounds on the distance between the law of a multivariate
Gaussian distribution and the joint law of wavelet/needlet coefficients based on a homoge-
neous spherical Poisson field. In particular,wedevelop some results fromPeccati and Zheng
(2010) [42], based on Malliavin calculus and Stein’s methods, to assess the rate of conver-
gence to Gaussianity for a triangular array of needlet coefficientswith growing dimensions.
Our results are motivated by astrophysical and cosmological applications, in particular re-
lated to the search for point sources in Cosmic Rays data.
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1. Introduction

The aim of this paper is to establishmultidimensional normal approximation results for vectors of random variables hav-
ing the form of wavelet coefficients integrated with respect to a Poisson measure on the unit sphere. The specificity of our
analysis is that we require the dimension of such vectors to grow to infinity. Our techniques are based on recently obtained
bounds for the normal approximation of functionals of general Poisson measures (see [40,42]), as well as on the use of the
localization properties of wavelet systems on the sphere (see [36], as well as the recent monograph [30]). A large part of the
paper is devoted to the explicit determination of the above quoted bounds in terms of dimension.

1.1. Motivation and overview

A classical problem in asymptotic statistics is the assessment of the speed of convergence to Gaussianity (that is, the com-
putation of explicit Berry–Esseen bounds) for parametric and nonparametric estimation procedures—for recent references
connected to the main topic of the present paper, see for instance [16,29,54]. In this area, an important novel development
is given by the derivation of effective Berry–Esseen bounds by means of the combination of two probabilistic techniques,
namely the Malliavin calculus of variations and the Stein’s method for probabilistic approximations. The monograph [6] is
the standard modern reference for Stein’s method, whereas [38] provides an exhaustive discussion of the use of Malliavin
calculus for proving normal approximation results on a Gaussian space. The fact that one can use Malliavin calculus to de-
duce normal approximation bounds (in total variation) for functionals of Gaussian fields was first exploited in [37]—where
one can find several quantitative versions of the ‘‘fourth moment theorem’’ for chaotic random variables proved in [39].
Lower bounds can also be computed, entailing that the rates of convergence provided by these techniques are sharp in
many instances—see again [38].
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In a recent series of contributions, the interaction between Stein’s method and Malliavin calculus has been further
exploited for dealing with the normal approximation of functionals of a general Poisson randommeasure. The most general
abstract results appear in [40] (for one-dimensional normal approximations) and [42] (for normal approximations in
arbitrary dimensions). These findings have recently found a wide range of applications in the field of stochastic geometry—
see [25,26,34,28,47] for a sample of geometric applications, as well as the webpage

http://www.iecn.u-nancy.fr/~nourdin/steinmalliavin.htm
for a constantly updated resource on the subject.

The purpose of this paper is to apply and extend the main findings of [40,42] in order to study the multidimensional
normal approximation of the elements of the first Wiener chaos of a given Poisson measure. Our main goal is to deduce
bounds that arewell-adapted to dealwith applicationswhere the dimension of a given statistic increaseswith the number of
observations. This is a framework which arises naturally in many relevant fields of modern statistical analysis; in particular,
our principal motivation originates from the implementation ofwavelet systems on the sphere. In these circumstances, when
more andmoredata becomeavailable, a higher number ofwavelet coefficients is evaluated, as it is customarily the casewhen
considering, for instance, thresholding nonparametric estimators. We shall hence be concerned with sequences of Poisson
fields, whose intensity grows monotonically. We then exploit the wavelet localization properties to establish bounds that
grow linearly with the number of functionals considered; we are then able to provide explicit recipes, for instance, for the
number of joint testing procedures that can be simultaneously entertained ensuring that the Gaussian approximation may
still be shown to hold, in a suitable sense.

1.2. Main contributions

Consider a sequence of i.i.d. random variables {Xi : i ≥ 1} with values in the unit sphere S2, and define {ψjk} to be the
collection of the spherical needlets associated with a certain constant B > 1, see Section 3.1 for more details and discussion.
Write also σ 2

jk = E[ψjk(X1)
2
] and bjk = E[ψjk(X1)], and consider an independent (possibly inhomogeneous) Poisson process

{Nt : t ≥ 0} on the real line such that E[Nt ] = R(t) → ∞, as t → ∞. Formally, our principal aim is to establish conditions
on the sequences {j(n) : n ≥ 1}, {R(n) : n ≥ 1} and {d(n) : n ≥ 1} ensuring that the distribution of the centered d(n)-
dimensional vector

Yn = (Yn,1, . . . , Yn,d(n))

=
1

√
R(n)


N(n)
i=1

ψj(n)k1(Xi)

σj(n)k1
−

R(n)bj(n)k1
σj(n)k1

, . . . ,

N(n)
i=1

ψj(n)kd(n)(Xi)

σj(n)kd(n)
−

R(n)bj(n)kd(n)
σj(n)kd(n)


(1.1)

is asymptotically close, in the sense of some smooth distance denoted d2 (seeDefinition 2.6), to the lawof a d(n)-dimensional
Gaussian vector, say Zn, with centered and independent components having unit variance. The use of a smooth distance
allows one to deduce minimal conditions for this kind of asymptotic Gaussianity. The crucial point is that we allow the
dimension d(n) to grow to infinity, so that our results require to explicitly assess the dependence of each bound on the
dimension. We shall perform our tasks through the following main steps: (i) Proposition 4.1 deals with one-dimensional
normal approximations, (ii) Proposition 5.4 deals with normal approximations in a fixed dimension, and finally (iii) in
Theorem 5.5 we deduce a bound that is well-adapted to the case d(n) → ∞. More precisely, Theorem 5.5 contains an
upper bound linear in d(n), that is, an estimate of the type

d2(Yn, Zn) ≤ C(n)× d(n). (1.2)
It will be shown in Corollary 5.6, that the sequence C(n) can be chosen to be

O

1/

R(n)B−2j(n)


;

as discussed below in Remark 4.3, R(n)×B−2j(n) can be viewed as ameasure of the ‘‘effective sample size’’ for the components
of Yn.

1.3. About de-Poissonization

Our results can be used in order to deduce the asymptotic normality of de-Poissonized linear statistics with growing
dimension. To illustrate this point, assume that the random variables Xi are uniformly distributed on the sphere. Then, it is
well known that bjk = 0, whenever j > 1. In this framework, when j(n) > 1 for every n, R(n) = n and d(n)/n1/4

→ 0,
the conditions implying that Yn is asymptotically close to Gaussian, automatically ensure that the law of the de-Poissonized
vector

Y ′

n = (Y ′

n,1, . . . , Y
′

n,d(n)) =
1

√
n


n

k=1

ψj(n)k1(Xi)

σj(n)k1
, . . . ,

n
k=1

ψj(n)kd(n)(Xi)

σj(n)kd(n)


(1.3)

is also asymptotically close to Gaussian. The reason for this phenomenon is nested in the statement of the forthcoming
(elementary) Lemma 1.1 (see also [9] for similar computations).

http://www.iecn.u-nancy.fr/~nourdin/steinmalliavin.htm
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Lemma 1.1. Assume that R(n) = n, that the Xi’s are uniformly distributed on the sphere, and that j(n) > 1 for every n. Then,
there exists a universal constant M such that, for every n and every Lipschitz function ϕ : Rd(n)

→ R, the following estimate
holds:

|E[ϕ(Y ′

n)] − E[ϕ(Yn)]| ≤ M∥ϕ∥Lip
d(n)
n1/4

.

Proof. Fix l = 1, . . . , d(n), and write βl(x) =
ψj(n)kl (x)
σj(n)kl

, in such a way that E[βl(X1)
2
] = 1. One has that

E[(Y ′

n,l − Yn,l)
2
] = 2(1 − αn),

where

αn =
1
n

n
m=0

e−nnm

m!
(n ∧ m) = 1 −

e−nnn

n!
.

This gives the estimate

E[|Y ′

n,l − Yn,l|] ≤


E[(Y ′

n,l − Yn,l)2] ≤


2
e−nnn

n!
,

so that the conclusion follows from an application of Stirling’s formula and of the Lipschitz property of ϕ. �

Remark 1.2. (i) Lemma 1.1 implies that one can obtain an inequality similar to (1.2) for Y ′
n, that is:

d2(Y ′

n, Zn) ≤


C(n)+

M
n1/4


× d(n).

(ii) With some extra work, one can obtain estimates similar to those in Lemma 1.1 also when the constants bj(n)kl are
possibly different from zero. This point, that requires some lengthy technical considerations, falls slightly outside the
scope of this paper and will be pursued in full generality elsewhere.

(iii) In [5], Bentkus proved the following (yet unsurpassed) bound. Assume that {Xi : i ≥ 1} is a collection of i.i.d.
d-dimensional vectors, such that X1 is centered and with covariance equal to the identity matrix. Set Sn = n−1/2(X1 +

· · · + Xn), n ≥ 1 and let Z be a d-dimensional centered Gaussian vector with i.i.d. components having unit variance.
Then, for every convex set C ⊂ Rd

|E[1C (Sn)] − E[1C (Z)]| ≤ d1/4
400β
√
n
,

where β = E[∥X1∥
3
Rd ]. It is unclear whether one can effectively use this bound in order to investigate the asymptotic

Gaussianity of sequences of random vectors of the type (1.1)–(1.3), in particular because, for a fixed n, the components
of Yn, Y ′

n have in general a non trivial correlation. Note also that a simple application of Jensen inequality shows that
βd1/4n−1/2

≥ d7/4n−1/2. However, a direct comparison of Bentkus’ estimateswith our ‘‘linear’’ rate in d (see (1.2), aswell
as Theorem 5.5 below) is unfeasible, due to the differences with our setting, namely concerning the choice of distance,
the structure of the considered covariance matrices, the Poissonized environment, and the role of Bj(n) discussed in
Remark 4.3.

(iv) A careful inspection of the proofs of our main results reveals that the findings of this paper have a much more general
validity, and in particular can be extended to kernel estimators on compact spaces satisfying mild concentration and
equispacing properties (see also [19,20]). In this paper, however, we decided to stick to the presentation on the sphere
for definiteness, and to make the connection with applications clearer. Some more general frameworks are discussed
briefly at the end of Section 5.

(v) For notational simplicity, throughout this paper we will stick to the case where all the components in our vector statis-
tics are evaluated at the same scale j(n) (see below for more precise definitions and detailed discussion). The relaxation
of this assumption to cover multiple scales (j1(n), . . . , jd(n)) does not require any new ideas and is not considered here
for brevity’s sake.

1.4. Plan

The plan of the paper is as follows: in Section 2 we provide some background material on Stein–Malliavin bounds in
the case of Poisson random fields, and we describe a suitable setting for the current paper, entailing sequences of fields
with monotonically increasing governing measures. We provide also some new results, ensuring that the Central Limit
Theorems we are going to establish are stable, in the classical sense. In Section 3 we recall some backgroundmaterial on the
construction of tight wavelet systems on the sphere (see [36,35] for the original references, as well as [30, Chapter 10]) and
we explain how to express the corresponding wavelet coefficients in terms of stochastic integrals with respect to a Poisson
randommeasure. We also illustrate shortly some possible statistical applications. In Section 4 we provide our bounds in the
one-dimensional case; these are simple results which could have been established by many alternative techniques, but still
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they provide some interesting insights into the ‘‘effective area of influence’’ of a single component of the wavelet system.
The core of the paper is in Section 5, where the bound is provided in the multidimensional case, allowing in particular for
the number of coefficients to be evaluated to growwith the number of observations. This result requires a careful evaluation
of the upper bound, which is made possible by the localization properties in real space of the wavelet construction.

2. Poisson randommeasures and Stein–Malliavin bounds

In order to study the asymptotic behavior of linear functionals of Poissonmeasures on the sphere S2, we start by recalling
the definition of a Poisson randommeasure—formore details, see for instance [41,21,46,49].Wework on a probability space
(Ω,F , P).

Definition 2.1. Let (Θ,A, µ) be a σ -finite measure space such thatΘ is a Polish space and A is its associated Borel σ -field.
Assume that µ has no atoms (that is, µ({x}) = 0, for every x ∈ Θ). A collection of random variables {N(A) : A ∈ A}, taking
values in Z+ ∪ {+∞}, is called a Poisson random measure (PRM) on Θ with intensity measure (or control measure) µ if the
following two properties hold:

1. For every A ∈ A,N(A) has Poisson distribution with mean µ(A);
2. If A1, . . . , An ∈ A are pairwise disjoint, then N (A1) , . . . ,N (An) are independent.

Remark 2.2. (i) In Definition 2.1, a Poisson random variable with parameter λ = ∞ is implicitly set to be equal to ∞.
(ii) Points 1 and 2 in Definition 2.1 imply that, for every ω ∈ Ω , the mapping A → N (A, ω) is a measure on Θ . Moreover,

since µ is non-atomic, one has that

P

N({x}) = 0 or 1,∀x ∈ Θ


= 1. (2.4)

Assumption 2.3. Our framework for the rest of the paper will be the following special case of Definition 2.1:

(a) We takeΘ = R+ × S2, with A = B(Θ), the class of Borel subsets ofΘ .
(b) The symbol N indicates a Poisson random measure onΘ , with homogeneous intensity given by µ = ρ × ν, where ρ is

somemeasure on R+ and ν is a probability on S2 of the form ν(dx) = f (x)dx, where f is a density on the sphere.We shall
assume that ρ({0}) = 0 and that the mapping ρ → ρ([0, t]) is strictly increasing and diverging to infinity as t → ∞.
We also adopt the notation

Rt := ρ([0, t]), t ≥ 0, (2.5)

that is, t → Rt is the distribution function of ρ.

Remark 2.4. (i) For a fixed t > 0, the mapping

A → Nt(A) := V ([0, t] × A) (2.6)

defines a Poisson randommeasure on S2, with non-atomic intensity

µt(dx) = Rt · ν(dx) = Rt · f (x)dx. (2.7)

Throughout this paper, we shall assume f (x) to be bounded and bounded away from zero, e.g.

ζ1 ≤ f (x) ≤ ζ2, some ζ1, ζ2 > 0, for all x ∈ S2. (2.8)

(ii) Let {Xi = i ≥ 1} be a sequence of i.i.d. random variables with values in S2 and common distribution equal to ν. Then,
for a fixed t > 0, the randommeasure A → Nt(A) = V ([0, t] × A) has the same distribution as A →

V
i=1 δXi(A), were

δx indicates a Dirac mass at x, and V is an independent Poisson random variable with parameter Rt . This is the so-called
binomial representation of a Poisson measure.

(iii) By definition, for every t1 < t2 one has that a random variable of the type Nt2(A) − Nt1(A), A ⊂ S2, is independent of
the randommeasure Nt1 , as defined in (2.6).

(iv) To simplify the discussion, one can assume that ρ(ds) = R · ℓ(ds), where ℓ is the Lebesgue measure and R > 0, in such
a way that Rt = R · t .

We will now introduce two distances between laws of random variables taking values in Rd. Both distances define
topologies, over the class of probability distributions on Rd, that are strictly stronger than convergence in law. One should
observe that, in this paper, the first one (Wasserstein distance) will be only used for random elements with values in R.
Given a function g ∈ C1(Rd), we write ∥g∥Lip = supx∈Rd ∥∇g(x)∥Rd . If g ∈ C2(Rd), we set

M2(g) = sup
x∈Rd

∥Hess g(x)∥op,

where ∥ · ∥op indicates the operator norm.
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Definition 2.5. The Wasserstein distance dW , between the laws of two random vectors X, Y with values in Rd (d ≥ 1) and
such that E ∥X∥Rd , E ∥Y∥Rd < ∞, is given by:

dW (X, Y ) = sup
g:∥g∥Lip≤1

|E [g (X)] − E [g(Y )]| .

Definition 2.6. The distance d2 between the laws of two random vectors X, Y with values in Rd (d ≥ 1), such that
E ∥X∥Rd , E ∥Y∥Rd < ∞, is given by:

d2 (X, Y ) = sup
g∈H

|E [g (X)] − E [g(Y )]| ,

where H denotes the collection of all functions g ∈ C2

Rd

such that ∥g∥Lip ≤ 1 and M2(g) ≤ 1.

We now present, in a form adapted to our goals, two upper bounds involving random variables living in the so-called
first Wiener chaos of N . The first bound was proved in [40], and concerns normal approximations in dimension 1 with
respect to theWasserstein distance. The second bound appears in [42], and provides estimates formultidimensional normal
approximations with respect to the distance d2. Both bounds are obtained by means of a combination of the Malliavin
calculus of variations and the Stein’s method for probabilistic approximations.

Remark 2.7. (i) Let f ∈ L2(Θ, µ) ∩ L1(Θ, µ). In what follows, we shall use the symbols N(f ) and N̂(f ), respectively, to
denote the Wiener–Itô integrals of f with respect to N and with respect to the compensated Poisson measure

N̂(A) = N(A)− µ(A), A ∈ B(Θ), (2.9)

where one uses the convention N(A)− µ(A) = ∞ whenever µ(A) = ∞ (recall that µ is σ -finite). Note that, for N(f )
to be well-defined, one needs that f ∈ L1(Θ, µ), whereas for the isometry property to hold one clearly needs that
f ∈ L2(Θ, µ). We will also make use of the following isometric property: for every f , g ∈ L2(Θ, µ),

E[N̂(f )N̂(g)] =


Θ

f (x)g(x)µ(dx). (2.10)

The reader is referred e.g. to [41, Chapter 5] for an introduction to Wiener–Itô integrals.
(ii) Formost of this paper, we shall considerWiener–Itô integrals of functions f having the form f = [0, t]×h, where t > 0

and h ∈ L2(S2, ν) ∩ L1(S2, ν). For a function f of this type one simply writes

N(f ) = N([0, t] × h) := Nt(h), and N̂(f ) = N̂([0, t] × h) := N̂t(h). (2.11)

Observe that this notation is consistent with the one introduced in (2.6). Indeed, it is easily seen that Nt(h) (resp.
N̂t(h)) coincide with the Wiener–Itô integral of h with respect to Nt (resp. with respect to the compensated measure
N̂t = Nt − µt = Nt − Rt · ν).

(iii) In view of Remark 2.4-(ii), one also has that, for h ∈ L2(S2, ν) ∩ L1(S2, ν),

Nt(h) =


x∈supp(Nt )

h(x), and N̂t(h) =


x∈supp(Nt )

h(x)−


S2

h(x)µt(dx), (2.12)

with µt defined as in (2.7).

Now write L2(ν) := L2(S2, ν) and, for a fixed integer d ≥ 1, let Y ∼ Nd (0, C), with C positive definite; let also

Ft =

Ft,1, . . . , Ft,d


=


N̂t

ht,1


, . . . , N̂t


ht,d


be a collection of d-dimensional random vectors such that ht,a ∈ L2(ν). We call Γt the covariance matrix of Ft , that is,

Γt (a, b) = E

N̂t

ht,a

N̂t

ht,b


=

ht,a, ht,b


L2(S2,µt)

, a, b = 1, . . . , d.

As usual, ∥·∥op and ∥·∥H.S. stand, respectively, for the operator andHilbert–Schmidt norms. The formulation of the following
result is pretty close to [41,42].

Theorem 2.8. Let the notation and assumptions of this section prevail.

1. Let h ∈ L2(ν), let Z ∼ N (0, 1) and fix t > 0. Then, the following bound holds (see (2.7)):

dW (N̂t(h), Z) ≤

1 − ∥h∥2
L2(S2,µt )

+ 
S2

|h(z)|3µt(dz). (2.13)
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2. For a fixed integer d ≥ 1, we have

d2 (Ft , Y ) ≤
C−1


op ∥C∥

1
2
op ∥C − Γt∥H.S. +

√
2π
8

C−1
 3

2
op ∥C∥op

d
i,j,k=1


S2

ht,i(x)
 ht,j (x)

 ht,k(x)
µt(dx), (2.14)

≤
C−1


op ∥C∥

1
2
op ∥C − Γt∥H.S. +

d2
√
2π

8

C−1
 3

2
op ∥C∥op

d
i=1


S2

ht,i(x)
3 µt(dx). (2.15)

Remark 2.9. From the previous theorem, it follows immediately that, if {ht} ⊂ L2(ν) ∩ L3(ν) is a collection of kernels
verifying, as t → ∞,

∥ht∥L2(S2,µt ) → 1 and ∥ht∥L3(S2,µt ) → 0, (2.16)

one has the CLT

N̂(ht)
Law
−→ Z, (2.17)

and the inequality (2.13) provides an explicit upper bound in the Wasserstein distance. Likewise, if Γt (a, b) −→ C (a, b)
and


S2
ht,a(x)

3 µt(dx) −→ 0 as t −→ ∞, for a, b = 1, . . . , d, then d2 (Ft , Y ) −→ 0 and Ft converges in distribution to Y .

Remark 2.10. The estimate (2.14) will be used to deduce one of the main multidimensional bounds in the present paper.
It is a direct consequence of Theorem 3.3 in [42], where the following relation is proved: for every vector (F1, . . . , Fd) of
sufficiently regular centered functionals of N̂t ,

d2(F , X) ≤
C−1


op ∥C∥

1/2
op

 d
i,j

E

C(i, j)−


DFi,−DL−1Fj


L2(µt )

2

+

√
2π
8

C−1
3/2
op ∥C∥op


S2
µt(dz)E

 d
i=1

|DzFi|

2  d
j=1

DzL−1Fj
 ,

where

DzF(N(ω)) = Fz(N(ω))− F(N(ω)), a.e. −µ(dz)P(dω),

and

Fz(N(ω)) = Fz(N(ω)+ δz),

that is, the randomvariable Fz is obtained by adding to the argument of F (which is a function of the pointmeasureN), a Dirac
mass at z, and L−1 is the so-called pseudo-inverse of the Ornstein–Uhlenbeck operator. The estimate (2.14) is then obtained by
observing that, when Fi = Ft,i = N̂t(ht,i), then DzFi = −DzL−1F = ht,i(z), in such a way that d

i,j

E

C(i, j)−


DFi,−DL−1Fj


L2(µ)

2
= ∥C − Kt∥H.S. ,

and 
S2
µt(dz)E

 d
i=1

|DzFi|

2  d
j=1

DzL−1Fj
 =

d
i,j,k=1


S2

ht,i(x)
 ht,j (x)

 ht,k(x)
µt(dx).

The next statement deals with the interesting fact that the convergence in law implied by Theorem 2.8 is indeed stable,
as defined e.g. in the classic Ref. [18, Chapter 4].

Proposition 2.11. The central limit theorem described at the end of Point 2 of Theorem 2.8 (and a fortiori the CLT at Point 1 of
the same theorem) is stable with respect to σ(N) (the σ -field generated by N) in the following sense: for every random variable
X that is σ(N)-measurable, one has that

(X, Ft)
Law
−→(X, Y ),

where Y ∼ Nd(0, C) is independent of N.
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Proof. We just deal with the case d = 1, the extension to a general d following from elementary considerations. An
approximation argument shows that it is enough to prove the following claim: if N̂(hn) (hn ∈ L2(µ), n ≥ 1) is a sequence
of random variables verifying E[N̂(hn)

2
] = ∥hn∥

2
L2(µ) → 1 and


Θ

|hn|
3dµ → 0, then for every fixed f ∈ L2(µ), the pair

(N̂(f ), N̂(hn)) converges in distribution, as n → ∞, to (N̂(f ), Z), where Z ∼ N (0, 1) is independent of N . To see this, we
start with the explicit formula (see e.g. [41, formula (5.3.31)]): for every λ, γ ∈ R

ψn(λ, γ ) := E[exp(iλN̂(f )+ γ N̂(hn))]

= exp


Θ


eiλf (x)+iγ hn(x) − 1 − i(λf (x)+ γ hn(x))


µ(dx)


.

Our aim is to prove that, under the stated assumptions,

lim
n→∞

log(ψn(λ, γ )) =


Θ


eiλf (x) − 1 − iλf (x)


µ(dx)−

γ 2

2
.

Standard computations show thatlog(ψn(λ, γ ))−


Θ


eiλf (x) − 1 − iλf (x)


µ(dx)−

γ 2

2


≤

γ 2

2
−
γ 2

2


Θ

hn(x)2µ(dx)
+ |γ λ| |⟨hn, f ⟩L2(µ)| +

|γ |
3

6


Θ

|hn(x)|3µ(dx).

Since

Θ

|hn(x)|3µ(dx) → 0 and the mapping n → ∥hn∥
2
L2(µ)

is bounded, one has that ⟨hn, f ⟩L2(µ) → 0, and the conclusion
follows by using the fact that ∥hn∥

2
L2(µ) → 1 by assumption. �

3. Needlet coefficients

3.1. Background: the needlet construction

We now provide an overview of the construction of the set of needlets on the unit sphere. The reader is referred to
[30, Chapter 10] for an introduction to this topic. Relevant references on this subject are: the seminal papers [36,35], where
needlets have been first defined; [12,13,11,14], among others, for generalizations to homogeneous spaces of compact groups
and spin fiber bundles; [3,4,27,32] for the analysis of needlets on spherical Gaussian fields, and [31,45,7,10] for some (among
many) applications to cosmological and astrophysical issues; see also [33,48] for other approaches to spherical wavelet
construction.
(Spherical harmonics) In Fourier analysis, the set of spherical harmonics

{Ylm : l ≥ 0,m = −l, . . . , l}

provides an orthonormal basis for the space of square-integrable functions on the unit sphere L2

S2


:= L2

S2, dx


, where dx

stands for the Lebesguemeasure on S2 (see for instance [1,23,30,52]). Spherical harmonics are defined as the eigenfunctions
of the spherical Laplacian ∆S2 corresponding to eigenvalues −l (l + 1), e.g. ∆S2Ylm = −l(l + 1)Ylm, see again [30,52,53]
for analytic expressions and more details and properties. For every l ≥ 0, we define Kl as the linear space given by the
restriction to the sphere of the polynomials with degree at most l. Plainly, one has that

Kl =

l
k=0

span {Ykm : m = −k, . . . , k} ,

where the direct sum is in the sense of L2

S2

.

(Cubature points) It is well-known that for every integer l = 1, 2, . . . there exists a finite set of cubature points Ql ⊂ S2, as
well as a collection of weights {λη}, indexed by the elements of Ql, such that

∀f ∈ Kl,


S2

f (x)dx =


η∈Ql

ληf (η).

Now fix B > 1, and write [x] to indicate the integer part of a given real x. In what follows, we shall denote by Xj = {ξjk} and
{λjk}, respectively, the set Q[2Bj+1] and the associated class of weights. We also write Kj = card


Xj

. As proved in [36,35],

cubature points and weights can be chosen to satisfy

λjk ≈ B−2j, Kj ≈ B2j, (3.18)
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where by a ≈ b, we mean that there exists c1, c2 > 0 such that c1a ≤ b ≤ c2a (see also e.g. [2,43,44] and [30, Chapter 10]).
(Spherical needlets) Fix B > 1 as before, aswell as a real-valuedmapping b on (0,∞). We assume that b verifies the following
properties: (i) the function b (·) has compact support in


B−1, B


(in such a way that the mapping l → b


l
Bj


has compact

support in l ∈

Bj−1, Bj+1


) (ii) for every ξ ≥ 1,


∞

j=0 b
2(ξB−j) = 1 (partition of unit property), and (iii) b (·) ∈ C∞ (0,∞).

Now, let us introduce the function Ll : [−1, 1] → R as

Ll(cosϑ) :=
2l + 1
4π

Pl (cosϑ) , ϑ ∈ [0, π ] ,

where Pl (·) , l ≥ 0, denotes as usual the set of Legendre polynomials. Note also that Ll(⟨x, y⟩) =
l

m=−l Y lm(x)Ylm(y), where
⟨·, ·⟩ denotes Euclidean inner product. The collection of spherical needlets {ψjk}, associated with B and b(·), are then defined
as a weighted convolution, that is

ψjk(x) :=

λjk

l≥0

b


l
Bj


Ll(⟨x, ξjk⟩). (3.19)

(Localization) The properties of b entail the following quasi-exponential localization property (see [36] or [30, Section 13.3]):
for any τ = 1, 2, . . . there exists κτ > 0 such that for any x ∈ S2,ψjk(x)

 ≤
κτBj

1 + Bj arccos

x, ξjk

τ , (3.20)

where d(x, y) := arccos (⟨x, y⟩) is the spherical distance. From localization, the following bound can be established on the
Lp

S2

norms: for all 1 ≤ p ≤ +∞, there exist two positive constants qp and q′

p such that

qpB
j

1− 2

p


≤
ψjk


Lp(S2)

≤ q′

pB
j

1− 2

p


. (3.21)

(Needlets as frames) Finally, the fact that b is a partition of unit, allows on to deduce the following reconstruction formula (see
again [36]): for f ∈ L2


S2

:

f (x) =


j≥0

Kj
k=1

βjkψjk(x),

where the convergence of the series is in L2(S2), and

βjk :=

f , ψjk


L2(S2)

=


S2

f (x)ψjk (x) dx, (3.22)

represents the so-called needlet coefficient of index j, k.

3.2. Two motivations: density estimates and point sources

The principal aim of this paper is to establishmultidimensional asymptotic results for some possibly randomized version
of random variables of the type

βjk = β(n)jk =
1
n

n
i=1

ψjk (Xi) , j = 1, 2, . . . , k = 1, . . . , Kj, (3.23)

where the function ψjk is defined according to (3.19), and {Xi : i ≥ 1} is some adequate sequence of i.i.d. random variables.
We may also study the asymptotic behavior, as t → ∞, of multidimensional object of the type

βjk, k = 1, 2, . . . , Kj(t)

,

where t → Kj(t) is a non-decreasing mapping possibly diverging to infinity, and j may change with t . In other words,
as happens in realistic experimental circumstances, we may decide to focus on a growing number of coefficients as the
number of (expected) events increase. Two strong motivations for this analysis, both coming from statistical applications,
are detailed below.
(Density estimates) Consider a density function f on the sphere S2, that is: f is a mapping from S2 into R+, verifying

S2 f (x)dx = 1, where dx indicates the Lebesgue measure on S2. Let {Xi : i = 1, . . . , n} be a collection of i.i.d. observations
with values in S2 with common distribution given by f (x)dx. A classical statistical problem, considered for instance by
[2,22,24], concerns the estimation of f by wavelet/needlet thresholding techniques. To this aim, keeping in mind the notation
(3.23), one uses [8,15] the following estimator of f :f (x) =


jk

βH
jkψjk(x), βH

jk := βjkI{|βjk|≥ctn},
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where tn =
√
log n/n and c is a constant to be determined. Finite-sample approximations on the distributions ofβjk can

then be instrumental for the exact determination of the thresholding value ctn, see e.g. [8,15].
(Searching for point sources) The joint distribution of the coefficients {βjk} (as defined in (3.23)) is required in statistical
procedures devised for the research of so-called point sources, again for instance in an astrophysical context (see for
instance [51]). The physical issue can be formalized as follows:
– Under the null hypothesis, we are observing a background of cosmic rays governed by a Poisson measure on the sphere

S2, with the form of themeasureNt(·) defined in (2.6) for some t > 0. In particular,Nt is built from ameasureN verifying
Assumption 2.3, and the intensity ofµt(dx) = E[Nt(dx)] is given by the absolutely continuousmeasure Rt · f (x)dx, where
Rt > 0 and f is a density on the sphere. This situation corresponds, for instance, to the presence of a diffuse background
of cosmological emissions.

– Under the alternative hypothesis, the background of cosmic rays is generated by a Poisson measure of the type:

N∗

t (A) = Nt(A)+

P
p=1

N (p)t δξp(A),

where {ξ1, . . . , ξP} ⊂ S2, each mapping t → N (p)t is an independent Poisson process over [0,∞) with intensity λp, and
δξp is the Dirac mass at ξp. In this case, one has that N∗

t is a Poisson measure with atomic intensity

µ∗

t (A) := E[N∗

t (A)] = Rt


A
f (x)dx +

P
p=1

λpt · δξp(A).

In this context, the informal expression ‘‘searching for point sources’’ can then be translated into ‘‘testing for P = 0’’
or ‘‘jointly testing for λp > 0 at p = 1, . . . , P ’’. The number P and the locations {ξ1, . . . ξP} can be in general known or
unknown. We refer to [17,50] for astrophysical applications of these ideas.

Remark 3.1. In order to directly apply the findings of [40,42], in what follows we shall focus on a randomized version of
(3.23), where n is replaced by an independent Poisson number whose parameter diverges to infinity. Also, we will prefer
a deterministic normalization over a random one. As formally shown in the discussion to follow, the resulting randomized
coefficients can be neatly put into the framework of Section 2.

3.3. Needlet coefficients as Wiener–Itô integrals

LetN be a Poissonmeasure onR+×S2 satisfying the requirements of Assumption 2.3 (in particular, the intensity ofN has
the form ρ × ν, where ν(dx) = f (x)dx, for some probability density f on the sphere, and one writes Rt = ρ([0, t]), t > 0).
For every t > 0, let the Poisson measure Nt on S2 be defined as in (2.6). For every j ≥ 1 and every k = 1, . . . ,Nj, consider
the function ψjk defined in (3.19), and observe that ψjk is trivially an element of L3(S2, ν) ∩ L2(S2, ν) ∩ L1(S2, ν). We write

σ 2
jk :=


S2
ψ2

jk(x)f (x)dx, bjk :=


S2
ψjk(x)f (x)dx.

Observe that, if f (x) =
1
4π (that is, the uniform density on the sphere), then bjk = 0 for every j > 1. On the other hand,

under (2.8),

ζ1
ψjk (.)

2
L2 ≤ σ 2

jk ≤ ζ2
ψjk (.)

2
L2 . (3.24)

Note that (see (3.21)) the L2-norm of

ψjk

is uniformly bounded above and below, and therefore the same is true for


σ 2
jk


(indeed, there exists κ > 0, independent of j and k, such that 0 < κ <

ψjk
2
L2(S2)

< 1). For every t > 0 and every j, k, we
introduce the kernel

h(Rt )jk (x) =
ψjk(x)
√
Rtσjk

, x ∈ S2, (3.25)

and write

β(Rt )jk := N̂t


h(Rt )jk


=


S2

h(Rt )jk (x)N̂t (dx) =


x∈supp(Nt )

h(Rt )jk (x)− Rt ·


S2

h(Rt )jk (x)ν(dx). (3.26)

In view of Remark 2.4-(ii), the random variableβ(Rt )jk can always be represented in the form

β(Rt )jk =


Nt (S2)
i=1

ψjk (Xi)− Rtbjk


√
Rtσjk

,
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where {Xi : i ≥ 1} is a sequence of i.i.d. random variables with common distribution ν, and independent of the centered
random variable N̂t(S2). Moreover, the following relations are immediately checked:

Eβ(Rt )jk = 0, E[(β(Rt )jk )2] = 1. (3.27)

Remark 3.2. Using the notation (3.23), we have that

β(Rt )jk =


Nt(S2)×β(Nt (S2))

jk − Rtbjk


√
Rtσjk

.

4. Bounds in dimension one

We are now going to apply the content of Theorem 2.8-(1) to the random variables β(Rt )jk introduced in the previous
section. In the next statement, we write Z ∼ N (0, 1) to indicate a centered Gaussian random variable with unit variance.
Recall that ζ2 := supx∈S2 |f (x)| , p ≥ 1, and that the constants qp, q′

p have been defined in (3.21).

Proposition 4.1. For every j, k and every t > 0, one has that

dW
β(Rt )jk , Z


≤
(q′

3)
3ζ2Bj

√
Rtσ

3
jk

.

It follows that for any sequence (j(n), k(n), t(n)), β(Rt(n))j(n)k(n) converges in distribution to Z, as n → ∞, provided B2j(n)
= o(Rt(n)).

The convergence is σ(N)-stable, in the sense of Proposition 2.11.
Proof. Using (3.25)–(3.26) together with (2.15) and (2.8),

dW
β(Rt )jk , Z


≤


S2

h(Rt )jk (x)
3 µt(dx)

=
Rt
R3
t σ

3
jk


S2

ψjk(x)
3 f (x)dx ≤

ζ2
√
Rtσ

3
jk

ψjk
3
L3(S2)

≤
(q′

3)
3ζ2Bj

√
Rtσ

3
jk

,

where in the last inequality we use the property (3.21) with p = 3 to have:ψjk
3
L3(S2)

≤ (q′

3)
3B3j


1− 2

3


= (q′

3)
3Bj.

The last part of the statement follows from the fact that the topology induced by the Wasserstein distance (on the class of
probability distributions on the real line) is strictly stronger than the topology of convergence in law. �

Remark 4.2. For f (x) ≡ {4π}
−1 we have

σ 2
jk =

1
4π


S2
ψ2

jk (x) dx =
ψjk

2
L2(S2)

,

and more generally, under (2.8),

dW
β(Rt )jk , Z


≤

Bj

√
Rt

(q′

3)
3ζ2

ζ
3/2
1

ψjk
3/2
L2(S2)

:= γ (j, k, t). (4.28)

Remark 4.3. The previous result can be given the following heuristic interpretation. The factor B−j can be viewed as the
‘‘effective scale’’ of the wavelet, i.e. it is the radius of the region centered at ξjk where the value of the wavelet function is not
negligible. Because needlets are isotropic, the ‘‘effective area’’ is of order B−2j. For governing measures with density which
is bounded and bounded away from zero, the expected number of observations on a spherical cap of radius B−j around ξjk
is hence given by

E

card


Xi : d(Xi, ξjk) ≤ B−j

≃ Rt


d(x,ξjk)≤B−j

f (x)dx,

ζ1B−2jRt ≤ Rt


d(x,ξjk)≤B−j

f (x)dx ≤ ζ2B−2jRt ,
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using [4, Eq. (8)]. Because the Central Limit Theorem can hold only when the effective number of observations grows to
infinity, the condition B−2jRt → ∞ is quite expected. In the thresholding literature, coefficients are usually considered up
to the frequency JR such that B2JR ≃ Rt/ log Rt , see for instance [15,2]; under these circumstances, we have

d2
β(Rt )JRk

, Z


= O


1
√
log Rt


−→ 0 for Rt −→ +∞.

Thereforeβ(Rt )JRk
does converge in law to Z .

5. Multidimensional bounds

Weare now going to apply Part 2 of Theorem 2.8 to the computation ofmultidimensional Berry–Esseen bounds involving
vectors of needlet coefficients of the type (3.26). After havingproved some technical estimates in Section5.1,wewill consider
two bounds. One is proved in Section 5.2 by means of (2.15), and it is well adapted to the case where the number of needlet
coefficients, say d, is fixed. In Section 5.3, we shall focus on (2.14), and deduce a bound which is adapted to the case where
the number d is possibly growing to infinity.

5.1. A technical result

The following estimate, allowing one to bound the covariance between any two needlet coefficients, will be used
throughout this section. We let the notation and assumptions of the previous section prevail.

Lemma 5.1. For any j ≥ 1 and k1 ≠ k2 ≤ Kj = card{Xj} and every τ > 0, there exists a constantCτ > 0, solely depending on
τ , and such that

|ΓRt (k1, k2) | := |Eβ(Rt )jk1
β(Rt )jk2

| ≤

Cτ ζ2
σjk1σjk2


1 + Bjd


ξjk1 , ξjk2

τ .
Proof. We focus on τ > 2; note that the inequality for any fixed value of τ immediately implies the result for all τ ′ < τ .
For k1 ≠ k2 we have:ΓRt (k1, k2)

 =

 1
Rtσjk1σjk2


S2
ψjk1(x)ψjk2(x)µt(dx)


=

Rt

Rtσjk1σjk2


S2
ψjk1(x)ψjk2(x)f (x)dx


≤

ζ2

σjk1σjk2


S2

ψjk1(x)
 ψjk2(x)

 dx.
Now we can use a classical argument [36,35,4] to show that, for any τ > 2, there exists Cτ > 0 such that:

|ψjk1 |, |ψjk2 |

L2(S2)

=


S2

|ψjk1(x)| |ψjk2 |(x)dx

≤ κτB2j


S2

1
1 + Bjd


x, ξjk1

τ 1
1 + Bjd


x, ξjk2

τ dx.
In order to evaluate this integral, we can for instance follow [36], by splitting the sphere S2 into two regions:

S1 =

x ∈ S2

: d

x, ξjk1


> d


ξjk1 , ξjk2


/2


S2 =

x ∈ S2

: d

x, ξjk2


> d


ξjk1 , ξjk2


/2

.

For what concerns the integral on S1, we obtain:
S1

1
1 + Bjd


x, ξjk1

τ 1
1 + Bjd


x, ξjk2

τ dx ≤
2τ

1 + Bjd

ξjk1 , ξjk2

τ 
S1

dx
1 + Bjd


x, ξjk2

τ .
One also has that

S1

dx
1 + Bjd


x, ξjk2

τ ≤


S2

dx
1 + Bjd


x, ξjk2

τ = 2π
 π

0

sinϑ
1 + Bjϑ

τ dϑ
≤

2π
B2j


∞

0

y
(1 + y)τ

dy ≤
2π
B2j

 1

0
ydy +


∞

1
y1−τdy


≤

2πC
B2j

.
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Because calculations on the region S2 are exactly the same and because S2
⊂ S1 ∪ S2, we have that, for some constantCτ

depending on τ ,
|ψjk1 |, |ψjk2 |


L2(S2)

≤

Cτ
1 + Bjd


ξjk1 , ξjk2

τ ,
yielding the desired conclusion. �

Remark 5.2. Assuming that d

ξjk1 , ξjk2


> δ uniformly for all j, we have immediately

|Eβ(Rt )jk1
β(Rt )jk2

| ≤ κ ′

τ ,ζ2
× B−jτ ,

where the constant κ ′

τ ,ζ2
only depend on τ , ζ2.

Remark 5.3. The previous lemma provides a tight bound, of some independent interest, on the high frequency behavior of
covariances among wavelet coefficients for Poisson random fields. For Gaussian isotropic random fields, analogous results
were provided by [3], in the case of standard needlets (bounded support), and by [27,29–32], in the ‘‘Mexican’’ case where
support may be unbounded in multipole space. It should be noted how asymptotic uncorrelation holds in much greater
generality for Poisson random fields than for Gaussian field: indeed in the latter case a regular variation condition had
to be imposed on the tail behavior of the angular power spectrum, and in the Mexican case this condition had to be
strengthened imposing an upper bound on the decay of the spectrum itself. The reason for such discrepancy is easily
understood: for Poisson random fields, non overlapping regions are independent, whence (heuristically) localization in pixel
space is sufficient to ensure asymptotic uncorrelation; on the contrary, in the Gaussian isotropic case different regions of the
field are correlated at any angular distance, and asymptotic uncorrelation for the coefficients requires a muchmore delicate
cancellation argument.

5.2. Fixed dimension

Fix d ≥ 2 and j ≥ 1, consider a fixed number of sampling points

ξjk1 , . . . , ξjkd


, and define the associated d-dimensional

vectorβ(Rt )j· :=
β(Rt )jk1

, . . . ,β(Rt )jkd


,

whose covariance matrix will be denoted by Γt (note that, by construction, Γt(i, i) = 1 for every i = 1, . . . , d). Our aim is to
apply the rough bound (2.15) in order to estimate the distance between the law ofβ(Rt )j· and the law of a random Gaussian
vector Z ∼ Nd(0, Id), where C = Id stands for the identity d × d matrix. Using Lemma 5.1, one has the following basic
estimates:C−1


op = ∥C∥

1
2
op = 1,

∥C − Γt∥H.S. ≤

 d
k1≠k2=1


E
β(Rt )jk1

β(Rt )jk2

2
≤ d sup

k1≠k2=1,...,d

1
σjk1σjk2

Cτ ζ2
1 + Bjd


ξjk1 , ξjk2

τ
≤

d
ζ1q22

×

Cτ ζ2
1 + Bj inf

k1≠k2=1,...,d
d

ξjk1 , ξjk2

τ = A(t). (5.29)

Applying (2.15) yields therefore that

d2
β(Rt )j , Z


≤ A(t)+ d2

√
2π
8

d
k=1

Rt


S2

h(Rt )jk (x)
3 f (x)dx

= A(t)+ d2
√
2π
8

ζ2Rt
R3
t

d
k=1


S2

ψjk (x)
3

σ 3
jk

dx

≤ A(t)+
d3ζ2

√
Rtζ

3/2
1 q32

√
2π
8

ψjk
3
L3(S2)

≤ A(t)+
(q′

3)
3d3ζ2

√
Rtζ

3/2
1 q32

√
2π
8

Bj,

where we used (3.21) and (3.24) to yield σ 3
jk ≥ ζ

3/2
1 q32. We write this result as a separate statement.
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Proposition 5.4. Under the above notation and assumptions,

d2
β(Rt )j , Z


≤

dCτ ζ2B−jτ

ζ1q22


1 + inf

k1≠k2=1,...,d
d

ξjk1 , ξjk2

τ +
(q′

3)
3d3ζ2

√
Rtζ

3/2
1 q32

√
2π
8

Bj.

Because τ can be chosen arbitrarily large, it is immediately seen that the leading term in the d2 distance is decaying
with the same rate as in the univariate case, e.g. Bj/

√
Rt . Assuming however that d = dt , i.e. the case where the number

of coefficients is itself growing with t , the previous bound may become too large to be applicable. We shall hence try to
establish a tighter bound, as detailed in the next section.

5.3. Growing dimension

In this section we allow for a growing number of coefficients to be evaluated simultaneously, and investigate the bounds
that can be obtained under these circumstances. More precisely, we are now focusing onβ(Rt )j(t)· :=

β(Rt )j(t)k1
, . . . ,β(Rt )j(t)kdt


,

where dt → ∞, as t → ∞. Throughout the sequel, we shall assume that the points at which these coefficients are evaluated
satisfy the condition:

inf
k1≠k2=1,...,dt

d

ξj(t)k1 , ξj(t)k2


≈

1
√
dt
. (5.30)

Condition (5.30) is rather minimal; in fact, the cubature points for a standard needlet/wavelet construction can be taken to
form amaximal (dt)−1/2-net (see [4,12,36,43] formore details and discussion). The following result is themain achievement
of the paper.

Theorem 5.5. Let the previous assumptions and notation prevail. Then for all τ = 2, 3 . . . , there exist positive constants c and
c ′, (depending on τ , ζ1, ζ2 but not from t, j(t), d(t)) such that we have

d2
β(Rt )j(t). , Z


≤

cdt
1 + Bj(t) inf

k1≠k2=1,...,dt
d

ξj(t)k1 , ξj(t)k2

τ +

√
2π
8

c ′dtBj(t)

ζ
3/2
1 q32

√
Rt
. (5.31)

Proof. In view of (2.14) and (5.29), we just have to prove that the quantity
√
2π
8

Rt

ζ
3/2
1 q32


R3
t

dt
k1k2k3


S2

ψj(t)k1(z)
 ψj(t)k2 (z)

 ψj(t)k3(z)
 f (z)dz

is smaller than the second summand on the RHS of (5.31). Now note that

dt
k1k2k3


S2

ψj(t)k1(z)
 ψj(t)k2 (z)

 ψj(t)k3(z)
 dz ≤


λ


B(ξj(t)λ,B−j(t))


dt
k

ψj(t)k(z)
3

dz,

where, for any z ∈ B(ξj(t)λ, B−j(t))

dt
k

ψj(t)k(z)
 ≤

dt
k

CτBj(t)
1 + Bj(t)d(ξj(t)k, z)

τ
≤ CτBj(t)

+

dt
k:ξj(t)k∉B(ξj(t)λ,B−j(t))

CτBj(t)
1 + Bj(t)


d(ξj(t)k, ξj(t)λ)− d(z, ξj(t)λ)

τ
≤ CτBj(t)

+

dt
k:ξj(t)k∉B(ξj(t)λ,B−j(t))

CτBj(t)
Bj(t)d(ξj(t)k, ξj(t)λ)

τ .
Now for ξj(t)k ∉ B(ξj(t)λ, B−j(t)), x ∈ B(ξj(t)k, B−j(t)), we have by triangle inequality

d(ξj(t)k, ξj(t)λ)+ d(ξj(t)k, x) ≥ d(ξj(t)λ, x),
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and because

d(ξj(t)k, ξj(t)λ) ≥ d(ξj(t)k, x), and 2d(ξj(t)k, ξj(t)λ) ≥ d(ξj(t)λ, x),

we obtain

dt
k:ξj(t)k∉B(ξj(t)λ,B−j(t))

CτBj(t)
Bj(t)d(ξj(t)k, ξj(t)λ)

τ
=

dt
k:ξj(t)k∉B(ξj(t)λ,B−j(t))

1
meas(B(ξj(t)k, B−j(t)))


B(ξj(t)k,B−j(t))

κτBj(t)
Bj(t)d(ξj(t)k, ξj(t)λ)

τ dx
≤

dt
k:ξj(t)k∉B(ξj(t)λ,B−j(t))

1
meas(B(ξj(t)k, B−j(t)))


B(ξj(t)k,B−j(t))

κτ2τBj(t)
Bj(t)d(ξj(t)λ, x)

τ dx ≤ κ ′

τB
j(t),

arguing as in [3, Lemma 6]. Hence

dt
k

ψj(t)k(z)
 ≤ κ ′′

τ B
j(t), (5.32)

uniformly over z ∈ S2, which immediately provides the bound.


λ


B(ξj(t)λ,B−j)


dt
k

ψj(t)k(z)
3

dz ≤ (κ ′′

τ B
j)3

λ


B(ξj(t)λ,B−j(t))

dz = (κ ′′′Bj(t))3.

Finally, to establish the sharper constraint
S2


dt
k

ψj(t)k (z)
3

dz ≤κτdtBj(t),

it is sufficient to note that, exploiting (5.32)
k1


S2

ψj(t)k1 (z)


k2

ψj(t)k2(z)


k3

ψj(t)k3(z)
 dz

≤ κ2B2j(t)
dt
k1


S2

ψj(t)k1(z)
 dz = κ2B2j(t)dj(t)

ψj(t)k

L1(S2)

≤ dtκ2B2j(t)B−j(t)
= dtκ2Bj(t),

where we have used again
ψj(t)k

p
Lp(S2) = O(B2j(t)( 12 −

1
p )p) = O(Bj(t)(p−2)), for p = 1. Thus (5.31) is established. �

For definiteness, we shall also impose tighter conditions on the rate of growth of dt , Bj(t) with respect to Rt , so that we
can obtain a much more explicit bound, as follows:

Corollary 5.6. Let the previous assumptions and notation prevail, and assume moreover that there exists α, β such that, as
t → ∞

B2j(t)
≈ Rαt , 0 < α < 1, dt ≈ Rβt , 0 < β < α.

There exists a constant κ (depending on ζ1, ζ2, but not on j, dj, B) such that

d2
β(Rt )j(t). , Z


≤ κ

dtBj(t)

√
Rt
, (5.33)

for all vectors
β(Rt )jk1

, . . . ,β(Rt )jkdt


, such that (5.30) holds.
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Proof. It suffices to note that
dtκ ′

τ ,ζ2
1 + Bj(t) inf

k1≠k2=1,...,dt
d

ξjk1 , ξjk2

τ = O(B−τ j(t)d1+τ/2t )

= O


dtBj(t)

√
Rt


Rtdτt

B(τ+1)2j(t)

1/2


and

Rtdτt
B(τ+1)2j(t)

=
R1+βτ
t

R(τ+1)α
t

= R−α+τ(β−α)+1
t = o(1), for τ >

1 − α

α − β
. �

Remark 5.7. From (5.33), it follows that for Rt ≃ 1012 we can establish asymptotic joint Gaussianity for all sequences of
coefficients (β(Rt )j(t)k1(t)

, . . . ,β(Rt )j(t)kd(t)
) of dimensions such that

dtBj(t)

√
Rt

= o(1),

e.g. we can take dt ≃ o(
√
Rt/Bj(t)) ≃ o(106/Bj(t)), so that even at multipoles in the order of Bj(t)

= O(103) we might take
around 103 coefficients with the multivariate Gaussian approximation still holding. These arrays would not be sufficient
for the map reconstruction at this scale, but would indeed provide a basis for joint multiple testing procedures as those
described earlier.

Remark 5.8. Assume that dt scales as B2j(t); loosely speaking, this corresponds to the situation when one focuses on the
whole set of coefficients corresponding to scale j, so that exact reconstruction for bandlimited functions with l = O(Bj) is
feasible. Under this requirement, however, the ‘‘covariance’’ term A(t), i.e. the first element on the right-hand side of (5.31),
is no longer asymptotically negligible and the approximation with Gaussian independent variables cannot be expected to
hold. The approximation may however be implemented in terms of a Gaussian vector with dependent components. For the
second term, convergence to zero when dj(t) ≈ B2j(t) requires B3j(t)

= o(
√
Rt). In terms of astrophysical applications, for

Rt ≃ 1012 this implies that one can focus on scales until 180°/Bj
≃ 180°/102

≃ 2°; this is close to the resolution level
considered for ground-based Cosmic Rays experiments such as ARGO-YBJ [17]. Of course, this value is much lower than
the factor Bj

= o(
√
Rt) = o(106) required for the Gaussian approximation to hold in the one-dimensional case (e.g., on a

univariate sequence of coefficients, for instance corresponding to a single location on the sphere).

Remark 5.9. Asmentioned in the introduction, in this paper we decided to focus on a specific framework (spherical Poisson
fields), which we believe of interest from the theoretical and the applied point of view. It is readily verified, however, how
our results continue to hold with trivial modifications in a much greater span of circumstances, indeed in some cases with
simpler proofs. Assume for instance we observe a sample of i.i.d. random variables {Xt}, with probability density function
f (.)which is bounded and has support in [a, b] ⊂ R. Consider the kernel estimates

fn(xnk) :=
1

nB−j

n
t=1

K

Xt − xnk

B−j


, (5.34)

where K(.) denotes a compactly supported and bounded kernel satisfying standard regularity conditions, and for each j the
evaluation points (xn0, . . . , xnBj) form a B−j-net; for instance

a = xn0 < xn1 . . . < xnBj = b, xnk = a + k
b − a
Bj

, k = 0, 1, . . . , Bj.

As argued earlier, conditionally on Nt([a, b]) = n, (5.34) has the same distribution as

fNt (xnk) :=
1

Nt [a, b]B−j

 b

a
K

u − xnk
B−j


dNt(u),

where Nt is a Poisson measure governed by Rt ×

A f (x)dx for all A ⊂ [a, b]. Considering that Nt

Rt
→a.s. 1, a bound analogous

to (5.33) can be established with little efforts for the vectorfn(xn.) :=
fn(xn1), . . . ,fn(xnBj). We leave this and related

developments for further research.
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