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Abstract

We study the problem of non-explosion of diffusion processes on a manifold with time-
dependent Riemannian metric. In particular we obtain that Brownian motion cannot explode
in finite time if the metric evolves under backwards Ricci flow. Our result makes it possible
to remove the assumption of non-explosion in the pathwise contraction result established by
Arnaudon, Coulibaly and Thalmaier (arXiv:0904.2762, to appear in Sém. Prob.).

As an important tool which is of independent interest we derive an It6 formula for the
distance from a fixed reference point, generalizing a result of Kendall (Ann. Prob. 15 (1987),
1491-1500).
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1 Brownian motion with respect to time-changing Riemannian
metrics

Let M be a d-dimensional differentiable manifold, 7 : F(M) — M the frame bundle and
(9(t))tepo,7) @ family of Riemannian metrics on M depending smoothly on ¢ such that (M, g(t))
is geodesically complete for all t € [0,T]. Let (e;)%_; be the standard basis of R%. For each
t €[0,T] let (H;(t))%, be the associated g(t)-horizontal vector fields on F(M) (i.e. H;(t,u) is
the g(t)-horizontal lift of we;), and let (Va,@)i’ 5—1 be the canonical vertical vector fields. Let
(Wi)i>0 be a standard R%valued Brownian motion. In this situation Arnaudon, Coulibaly and
Thalmaier [1, 5] defined horizontal Brownian motion on F(M) as the solution of the following
Stratonovich SDE:

d d
1 )
AU = 3" Hilt, Up) o dW = 5 > a%(t, Utea, Use)Vap(Up)dt.
i=1 a,f=1

They showed that if Uy € Oyg)(M), then Uy € Oy (M) for all t € [0, T]. g(t)-Brownian motion
on M is then defined as X; := wU;. We denote the law of g(¢)-Brownian motion on M started
at x by P*, and expectation with respect to that measure by E<.

2 Main result

The main result of this paper is the following theorem:
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Theorem 1. If the family of metrics evolves under backwards super Ricci flow, i.e.

% < Ric, (1)

then Brownian motion on M cannot explode up to time T. In particular this result holds for
backwards Ricci flow % = Ric.

By recent work (see section 3), it has turned out that backwards Ricci flow tends to com-
pensate the effects of Ricci curvature on the behaviour of heat flow and Brownian motion. Thus
our result is quite natural because a lower bound of Ricci curvature yields the non-explosion
property in the fixed metric case.

Remark 1.

1. In Section 6 we will give an extension of Theorem 1 including the case of non-symmetric
diffusion processes.

2. For the question of explosion or non-explosion of Brownian motion on a manifold equipped
with a fixed Riemannian metric see e.g. [6], [8, Section 7.8] or [9, Section 4.2].

As an important tool we prove the following It6 formula for the radial process p(t, X;), where
p(t, z) denotes the distance with respect to g(t) between = and a fixed reference point o:

Theorem 2. There exists a nondecreasing continuous process L which increases only when
X € Cutyq (o) such that

o 0

t d -t
p(t, X3) = p(0, Xo) +/0 {2Ag(s)p + 85} (s, Xs)ds + Z/O (Usei)p(s, Xs)dWe — L. (2)
=1

Remark 2.

1. The usual It6 formula fails to apply because the distance function is not smooth at the
cut-locus. A priori it is even not clear that p(¢, X;) is a semimartingale.

2. In the case of a fixed Riemannian metric Theorem 2 was proved by Kendall [11] (see also
[8, Theorem 7.254] or [9, Theorem 3.5.1]). The idea of our proof is based on Kendall’s
original one.

3. For Theorem 2 we do not require any additional assumption on g(¢) such as (1).

3 Remarks concerning related work

McCann and Topping [13] (see also Topping [14] and Lott [12]) showed contraction in the
Wasserstein metric for the heat equation under backwards Ricci flow on a compact manifold.
More precisely, they showed that the following are equivalent:

1. g evolves under backwards super Ricci flow, i.e. % < Ric.

2. Whenever u and v are two non-negative unit-mass solutions of the heat equation

ou 1 1 0Og
E = §Ag(t)u — (2 tr &f) u



(the term (% tr %) u comes from the change in time of the volume element), the function

t = Wa(t, u(t, ) voly), v(t, ) volg()) is non-increasing. Here

™

1/2
Wattn)i= (inf [ dyoePntan,an)
MxM

is the L2-Wasserstein distance of two probability measures 4 and v on M. (The infimum
is over all probability measures m on M x M whose marginals are p and v.)

This means that backwards super Ricci flow is characterized by the contractivity property for
solutions of the heat equation. Moreover, in recent work by Topping [14] and Lott [12] (see also
Brendle [3]) the heat equation and the theory of optimal transport are efficiently used to derive
several monotonicity results including a new proof for the monotonicity of Perelman’s reduced
volume. These facts indicate that it would be effective for deeper understanding of Ricci flow
to study the heat equation in conjunction with backwards Ricci flow and the theory of optimal
transport.

The non-explosion property of the Brownian motion is one of the first problems we face
when we begin to consider the heat equation on a noncompact manifold. Our result tells us
that it is always satisfied as far as we consider the heat equation under backwards Ricci flow.
It will be quite helpful for the study of Ricci flow on a noncompact manifold by means of the
heat equation. In fact, our result enables us to remove the assumption on the non-explosion in
recent work by Arnaudon, Coulibaly and Thalmaier [2, Section 4]. They extend McCann and
Topping’s implication 1 = 2 in the case on a noncompact manifold. In addition, they sharpen
the monotonicity of L?-Wasserstein distance to a pathwise contraction in the following sense:

There is a coupling ()_(t(l), Xt(Z))tzo of two Brownian motions starting from x,y € X respectively

such that t — dy (Xt(l), X't(2)) is non-increasing almost surely. By taking expectation we can
derive the monotonicity of the L?-Wasserstein distance from it. The sharpness of their pathwise
contraction looks useful for the study of the optimal transport associated with a more general
cost function than the squared distance, e.g. L-optimal transportation studied in the above
mentioned papers [14, 12, 3]. As a consequence of our result, we can consider such a problem
without assuming the compactness of the underlying space.

4 Proof of Theorem 2: Itd’s formula for the radial process

Note that we only need to prove Theorem 2 until the exit time of X from an arbitrary large
relatively compact open subset My of M. Thus, by modifying M and ¢(t) outside of a neigh-
bourhood of My, we can reduce the proof to the case of compact M (recall Remark 2.3; as we
will see, such a modification is harmless for proving Theorem 2). By the compactness of M, the
injectivity radius

iV = inf{dg(t) (:c, y) |t € [0, T], RS Cutg(t)(:c)}
is strictly positive and that we have a uniform bound for the sectional curvature Sectys:
| Sect,y | < K* for all t € [0,T].
We first state It6’s formula for smooth functions:

Lemma 1. Let f be a smooth function on [0,T] x M. Then

d
df(t, Xt) = %(t, Xt)dt + %Ag(t)f(t, Xt)dt + Z(Utei)f(t, Xt)thZ
=1



Proof. 1t&’s formula applied to a smooth function f on [0,T] x F(M) gives

df(t,U;) = g{(t, Up)dt + Y Hi(t)f(t, Up)dW] + ZH f(t,Uydt
=1
1 <& dg =
_ 2(1%:1 8t (t Utea,Uteg) aﬁf(t, Ut)dt (3)

Now let f(t,u) := f(t,mu). By definition of H;(t), H;(t)f(t, u) = (ue;) f(t,mu). Moreover, it
is well known (see e.g. [9, Proposition 3.1.2]) that Zl VHi()2f(t,u) = Ay f(t, mu). Finally,

since f is constant in the vertical direction, the last term in (3) vanishes, so that the claim
follows. -

Lemma 2. Let G(:U Ty, t) (xr,y € M, 0 <t <7 <T) be the fundamental solution of the
equation %—;‘ = 584wu (see [7] for existence). Then for all T € (0,T] and all x € M the law of
X, under P* is absolutely continuous with respect to the volume measure (note that this property
does not depend on the choice of the Riemannian metric), and its density with respect to the
9(0)-volume measure is given by y — G(x,7,y,0).

Proof. Fix ¢ € C2(M), and let u be the solution of the initial value problem

ou
{ o = 3Dynu
U(Oa') = .

Then by Corollary 2.2 in [7],

u(T, ) /GxTy, ()dvol()()

Now apply It6’s formula to X and the function (¢,z) — u(7 — t, z) to obtain
u(0,X;) = wu(r,Xo) — /T %(T —t, Xy)dt + % /T Agpyu(t — 7, Xy)dt + martingale
= wu(r, Xo) + H?artingale, '
so that

E* [p(X7)] = E [u(0, X7)] = E* [u(7, Xo)] = u(7, z) = /M G(x,7,y,0)p(y)dvoly()(y)-

Since ¢ is arbitrary the claim is proved. O
Lemma 3. {t € [0,T]| X; € Cuty)(0)} has Lebesgue measure zero almost surely.

Proof. Since by Lemma 2 for each ¢t € (0,7] and any starting point z € M, the law of X;
under P* is absolutely continuous with respect to the g(¢)-Riemannian volume measure, and
since moreover the cut-locus Cutg)(0) has g(t)-volume zero (see e.g. [8, Theorem 7.253] or [4,
Proposition 3.1]), we have

T T
E* |:/0 1{Xt€Cutg(t>(o)}dt] = /0 pP* [Xt € Cutg(t)(o)] dt = 0,

so that almost surely fo Lix,eCuty ()34t = 0. O



We now apply Lemma 1 to the process p(t, X;) up to singularity. As long as X; stays away
from o and the g(t)-cut-locus of o,

1 0

where (; is the martingale term given by

@—Z/H p(s, Ug)dW?.

As we will observe in Lemma 5, the singularity of p(t,z) at o is negligible. The quadratic
variation (f3); of f; is computed as follows:

d t )
B — Ezj /0 [Hi(s)5(s, Us))? ds
d ot
= e;)p(s, X 2ds
- g/o (Usei)o(s, X)2 d

t
= [ 19t X P
= t.
Thus (3, is a standard one-dimensional Brownian motion.

Lemma 4 (Lemma 5 and Remark 6 in [13]). The function (t,z) — p(t,x) is smooth whenever
x ¢ {o} UCutgyy)(0), and

op 1 [P2) g )
it =5 [ ) i(e)as

where 7y : [0, p(t,x)] — M is the unique minimizing unit-speed g(t)-geodesic joining o to x.
Let Cutst be the space-time cut-locus defined by
Cutst := {(t,2,y) € [0,T] x M x M |(z,y) € Cutyy}-

It is shown in [13] that Cutgr is a closed subset in [0,7] x M x M. Though they assumed M
to be compact, extension to the noncompact case is straightforward. Since [0,7] x {0} x {0} is
a compact subset in [0, 7] x M x M and it is away from Cutgr, we can take r; > 0 so that

dg(t)(o, Cutg(t)(o)) > r (5)

holds for all ¢ € [0,7]. Thus we can use (4)) when X is in a small neighbourhood of o until X}
hits o. Since g(t) is smooth, Lemma 4 and (4) together with the Laplacian comparison theorem
imply the following by a standard argument:

Lemma 5. With probability one, X; never hits o.
For z,y € M, let

8(1}, y) ‘= sup dg(t) (.13, y)
te(0,7



We consider [0,7] x M x M equipped with the distance function ci((s,xl,xg), (t,y1,y2)) =

max{[t — s|, d(x1,y1), d(x2, y2)}.
By Lemma 4 and the compactness of M, there exists a constant C; > 0 such that

gy (2,y) = dgny (2, y)| < Chlt — '] (6)

holds for any ¢,t' € [0,7] and x,y € M. We now define a set A by
> 9; _
A= {(t, I,y) c [O,T] <« M x M dg(t)(ou 1") = 27JM/37 dg(t)(ovy) ZM/S and } '

dgt) (@, y) = dg(y (0, 2) — dyry(0, )

Note that A is closed and hence compact since dy(7,y) is continuous as a function of (¢,z,y).
Note that, for (t,z,y) € A, y is on a minimal g(¢)-geodesic joining o and x. In particular,
symmetry of the cutlocus implies that A N Cutgy = (). Thus we have

A~ iM
01 :=d(A t _— .
1 ( ,CuST)A3(01+1)>0

We define the function V' : Ry — R, by

d—1 ;
V(r):= 7Kcoth <K A Zg/[) + 2C1.

The Laplacian comparison theorem implies that, for all (¢, z,y) ¢ Cutsr, [(Ay4)dgw (¥, ) (7)] <
(d — 1)K coth(Kdy (7, y)) and hence Lemma 4 implies
1 0
i(Ag(t)dg(t) (y7 ))(l’) + adg(t)(yv .%') < V<dg(t) (.%', y)) (7)

Lemma 6. Let (to,r0) € Cutyy)(0) and § € (0,01). Let X be a g(t)-Brownian motion starting
at zo at time to. Let T =T A (to + 0) A inf{t > tg | dgty (w0, Xt) = 6}. Then

E

to

~ tAT
p(t NT, X, 7) — p(to, zo) — / V(p(s, XS))ds] <0.

Proof. We construct a point 6 € M as follows: we choose a minimizing unit-speed g(t¢)-geodesic
7 from o to xo and define 6 := v(irr/3). Then by construction (Zo, zo,0) € A. Moreover for all
t € [to, T] we have d((to, z0,0), (t, X¢,0)) < 61 and therefore X; ¢ Cuty(0). Let

pT(t, @) := dyy(0,0) + dyr) (0, ).

Since 6 lies on a minimizing g(tg)-geodesic from o to zg, we have p* (to, z0) = p(to, xo). Moreover,

by the triangle inequality, p™ (¢,x) > p(t, x) for all (¢,z). On [ty, T,

dg(t)(0, Xt) = dy(1y(0,20) — dyry (20, Xt)
> dg(to)(67 ZCO) - (1 + Cl)(s
iM
> M
z2 3 (8)

holds. By (7) and Lemma 4,

1 opt
(38000" + %) (60) < Vo' ()

6



holds if (t,z,6) ¢ Cutgr. Note that V(pt(t, X;)) = V(p(t, X;)) holds for all t € [ty, T] since we
can show p(t, X;) > ip//3 in a similar way as in (8). Therefore

tAT
pE AT X,) = plto. Xiy) = [ Vipls, X)ds

to
_ tAT
=p(t NT, X, 7) — p" (to, Xey) — t V(pt(s, Xs))ds
0
B tA\T 1 8p+
<pTEAT, X 7)) = pF (Lo, X)) — /t <2Ag(s)/)+ + 85> (s, Xs)ds.
0

Since pt is smooth at (t,X;) for t € [to,T], the last term is a martingale. Hence the claim
follows. O]

For § € (0,81), we define a sequence of stopping times (S%)nen and (T2)nen, by

T[‘)S = 0,
S) = T Ainf{t > TP || X € Cuty (o)},
Ty = T A(S)+08) Ainf{t > S5 | dyuy(Xgs, Xi) = 6}

Note that these are well-defined because Cutgr and {(t,z) |dyu (y,z) = &}, where y € M, are
closed.

Proposition 1. The process
t
p(t, 1) = (0. X0) ~ [ V(5. X.)ds
0

is a supermartingale.
Corollary 1. The process p(t, X;) is a semimartingale.

Proof of Proposition 1. Thanks to the strong Markov property of Brownian motion it suffices
to show that for all deterministic starting points (to,zo) € [0, 7] x M and all ¢t € [to,T]

E [pu,xt) = plty, Xiy) V<p<s,Xs>>ds] <.

to
To show this we first observe that thanks to Lemma 1, (7) and Lemma 6 for all n € N

tASS
E

p(t A ngXt/\S;i) —p(t NTS_,, Xt/\Tn‘;,l) - / i Vip(s, Xs))ds ‘ ]:T&l] <0
in n—1

and
tATS

E

Pt ATS, Xypgs) — plt A 52, Xynss) — /

V(p(s,Xs))ds‘fs[s] <0.
tASS "

It remains to show that T,, — T as n — oo. If lim, . T, =: T < T occurs, then T5 55
converges to 0 as n — oo. In addition, dy4)(Xgs,Xps) = ¢ must hold for infinitely many

n € N. Take N € N so large that C1(Tw — n) < 5/2 for all n > N. Then (6) yields
dg(1,0)(Xgs, Xps) > /2 for infinitely many n > N. But it contradicts with the fact that X is
uniformly continuous on [0, 7). Hence T;, — T as n — oc. O



Lemma 7. lims_o > o0, TS — S5| = 0 almost surely.
Proof. For 6 > 0, let us define a random subset Es and F in [0,7] by

Es:={t € [0,T]] there exists ¢ € [0,T] satisfying |t — /| < § and (¢, Xy, 0) € Cutgr},
E:={te[0,T]|(t, X¢,0) € Cutgr}.

Since the map t — (t, Xy, 0) is continuous and Cutgr is closed, E is closed and hence E = Ng~oEs
holds. By the definition of S° and T2, we have

EcU55 T°] C E;s

no n
and hence the monotone convergence theorem implies

hmZmS 55\<hm/ g, (t)dt = /1E(t)dt:0

almost surely, where the last equality follows from Lemma 3. ]

Lemma 8. The martingale part of p(t, Xy) is

d
Z/ (Used)p(s, Xs)dWL.
i=1"0

Proof. By the martingale representation theorem there exists an R%valued process 7 such that
the martingale part of p(¢, X;) equals fot nsdWs. Let

t d  rt
Ny = / nsdWs — Z/ (Usei)p(s, Xs)dWs.
Using the stopping times S° and T2, the quadratic variation (N)z of N is expressed as follows;
d oo
|

Since X; ¢ Cuty (o) if t € (T°_,,88

n

TS_ AT SIAT

SOAT TSAT
/ ini — (Usei)p(t, Xo)2dt + / i — Uees)plt, X)2dt ) . (9)

), Itd’s formula (4) yields
SIAT
[ i et xoPde =0
T3 AT
forneNandi=1,---,d. For the second term in the right-hand side of (9) we have

0 TIAT
Z/ It — (Ures)p(t, X,)Pdt < 2/ (Ime? + 1) dt.

n=1+"SAAT UnZa S5 73]

Since 7 is locally square-integrable on [0, 7] almost surely, Lemma 7 yields (N)7r = 0 and the
conclusion follows. O



We can now conclude the proof of Theorem 2: Set I5 := [J°°,[S2,T3]. Set L? by

n)—Tn

d t
L i= (6, X))+ 0(0.X0) + Y [ (Uuci)pls, X)W
i=1 70

1 op
+/ [A +] 5, X, ds+/ V(p(s, X.))ds.
oas 12 a0)P 5 ( ) . (p( )

By Proposition 1, Lemma 8 and Ité’s formula (4) on [0,7] \ Is, L? is non-decreasing in t. In
particular, L? can increase only when ¢ € I5. Then we have

d ot t
, 1 0
o0, = (0.%0) =3 [ ot X = [ [0+ 52 (5. X0 + 1
i=1 70 0 5

1 dp
- —/ [2Ag(t)p+ s ] (s, Xs)ds —/ V(p(s, Xs))ds. (10)
[O,t}ﬂfg S [O,t]ﬂ[g

Since (7) yields

<2 [ Vip(s, X,)ds
Is

2000+ g (X |
“A,np+ =1 (s, Xs)ds + Vi(p(s, Xs))ds
/[o,tm [2 0P+ g () paras | %)

and V' (p(s, X;)) is bounded on I5, Lemma 7 yields that the right-hand side of (10) converges to
0 as § — 0. Thus L; := limg|o L{ exists for all ¢ € [0, 7] almost surely and hence (2) holds. We
can easily deduce the fact that L; can increase only when ¢ € Cutg(t)(o) from the corresponding
property for Lf. O

5 Proof of Theorem 1: Non-explosion of Brownian motion
We define k; > 1 and F : [0,00) — R by

k1 :=inf {k > 1||Ricy( ()| < —(d — 1)k for t € [0,T] and x € M with d(o,z) <1},
F(s):=(d—1)(kycoth(ky -s Ar) + k3 - s A7),

where r; is defined in (5).
Theorem 1 follows immediately from the following estimate of the drift part of (2):

Proposition 2. Suppose (1). Then, for all (t,z) € [0,T] x M with (t,z,0) ¢ Cutgr,

b _
gt x) + 235 (t,x) < Flp(t, ).

To prove this proposition it suffices to show the following lemma:

Lemma 9. Suppose (1). Fixt € [0,T] and a minimizing unit-speed g(t)-geodesic v : [0, ] — M
with v(0) = o. Then there exists a non-increasing function F' : (0,b) — R satisfying F(s) < F(s)

and

dp

Ag(t)p(tupy(s)) + 25@77(8)) < F(S)

for all s € (0,0).



Proof. Let (X;)%_, be orthonormal parallel fields along v with X; = 4. Fix r € (0,b), and let J;
be the Jacobi field along 7|y, with J;(0) = 0 and J;(r) = X;(r). Then it is well known (see [4]
for example) that

d

(Ag(eydg(ey(1(0), ) (3(r)) = Y I(Ji, i),

=2

where the index form I for smooth vector fields Y, Z along 7l[o, is defined by

100.2) = [ (070 2600 = Ry (94 D30). Z0) ) s
Let G : [0,b] — R be the solution to the initial value problem

{G”(s) _ Ricy W(s)ﬁ(s))(}(s),

d—1
G(0) =0, G'(0) = 1.

Then we have

d d r
> IGX,GX) =) /0 [yG’<s)Xi(s>}2—<R<G(s)Xi(s>,v<s)w(s>,G(s)Xz-(s>> ds
2 =2

1=

— [ [la= 0692 - 6o Ricti(5),4(5)] s

(1) /0 "6 (5)” + G(s)G"(s)] ds
(A= 1)) (). (11)

Since (0) has no conjugate point along v on [0, r], the left-hand side of (11) must be strictly
positive (see Theorem 2.10 in [4]). It follows that G(r) > 0 for all r € (0,b). Now let Y;(s) :=

ggf; Xi(s). Note that Y; has the same boundary values as J;. Therefore, by the index lemma,

Hence Lemma 4 and (1) yield

@p+ 2800 = D MRt a0

By the definition of G we have

G(r)G"(r) — G'(r)?
G(r)?

o /7‘2
FRicG0),30)| = - G <o

F'(r)=(d—1) G(r)?

and hence F' is decreasing. In particular, we have F(r) < F(r A r1). A usual comparison
argument implies that G'(r A r1)/G(r A1) < kjcoth(ki -7 A7), and hence the conclusion
follows from the definitions of F' and k;. O

10



6 Generalization to non-symmetric diffusion

We generalize the previous results on more general setting including the case for nonsymmetric
diffusions. Let X; be time-dependent diffusion whose generator is Ay /2 + Z(t), where Z(t) is
a time-dependent vector field on M which is smooth on [0, 7] x M.

Even in this case, Theorem 2 still holds by replacing Ay /2 with Ay /2 + Z(t). In what
follows, we briefly mention the proof. FExcept for Lemma 2 and Lemma 3, an extension of
each assertion is straightforward. For Lemma 3, some difficulties come from the fact that the
result corresponding to Lemma 2, especially the existence of a fundamental solution, is not yet
known at this moment for non-symmetric diffusions. But, for our purpose, it suffices to show
the following:

Lemma 10. Suppose that M is compact. Then P*[X; € Cutyy)(0)] = 0.

Proof. Let Z(t) be a differential 1-form corresponding to Z(t) by duality with respect to g(t).
Let M7 be the martingale part of the stochastic line integral of Z (t) along X;. Note that there
is a constant ¢ > 0 such that (M?# )t < ct holds since M is compact. Let us define a probability
measure P on the same probability space as P* by P*[A] := E%[exp(—M?% — (M?);/2)14]. By
the Girsanov formula, the law of X; under P coincides with that of g(¢)-Brownian motion at
time t. The Schwarz inequality yields

1/2 1/2

T T _MZ_ zZ T zZ A
P*[X; € Cutyy(0)] < E [e M= (M )e/2 {Xtecutm(o)}} E [eMt +H(MZ), /2
< P® [Xt S Cutg(t) (0)] 1/2 /2,
Hence the conclusion follows from Lemma 2. O

To state an extension of Theorem 1, define a tensor field (VZ(t))? by
1
(VZ(t))b(X, Y) = 5 ((vXZ(t)v Y>g(t) + <VYZ(t)7 X>g(t)) )

where V is the Levi-Civita connection with respect to g(t).
Assumption 1. There exists a locally bounded measurable function b on [0, c0) so that
1. (VZ(t,x)) + dig(t,z) < Ricy(z) + b(p(t, ))g(t, ) for all t € (0,T) and all z € M.

2. The 1-dimensional diffusion process y; given by dy, = dB; + (F(y) + [, b(s)ds) dt does
not explode. (This is the case if and only if

/100 exp [—2 /ly E(Z)dz} {/ly exp {2 /1 E(g)dg] dz} dy = oo,

where b(y) := F(y) + J5 b(s)ds, see e.g. [8, Theorem 6.50] or [10, Theorem VI1.3.2].)

Once we obtain the following, non-explosion of X; follows in the same way as above by the
comparison argument.

Lemma 11. Suppose that Assumption 1 holds. Fizt € [0,T] and a minimizing unit-speed g(t)-
geodesic vy : [0,b] — M with v(0) = 0. Then there exists a constant C'z > 0 depending only on
{Z(t)}ieo,r) and (0) such that

((Agy + Z(1))dg(t)(7(0),-)) ((s)) +2%dg(t)(7(0),’7($)) < Cz+F(s) +/OS b(dg(r) (7(0), 7(u)))du

for all s € (0,b), where F' is the same function as in Lemma 9.
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Proof. By a direct calculation, (VZ(t))’(5(s),4(s)) = 0s(Z(t),7(8))g(t)(7(s)). Hence we obtain
(Z()dgr) (v(0), ) (v(r)) = (Z(8), (1)) g1y (7 (7))

= (Z(1),7(0))g(1) (+(0)) +/0 (VZ(2))"(3(s), 4 (s))ds.

Then, by setting Cz := sup,cp 71 8up{(Z(s), X)4(s)(7(0)) | X € Ty0)M, || X||g(s) = 1}, the con-
clusion follows in a similar way as we did in the proof of Lemma 9. O
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