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Abstract

We study the problem of non-explosion of diffusion processes on a manifold with time-
dependent Riemannian metric. In particular we obtain that Brownian motion cannot explode
in finite time if the metric evolves under backwards Ricci flow. Our result makes it possible
to remove the assumption of non-explosion in the pathwise contraction result established by
Arnaudon, Coulibaly and Thalmaier (arXiv:0904.2762, to appear in Sém. Prob.).

As an important tool which is of independent interest we derive an Itô formula for the
distance from a fixed reference point, generalizing a result of Kendall (Ann. Prob. 15 (1987),
1491–1500).
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1 Brownian motion with respect to time-changing Riemannian
metrics

Let M be a d-dimensional differentiable manifold, π : F(M) → M the frame bundle and
(g(t))t∈[0,T ] a family of Riemannian metrics on M depending smoothly on t such that (M, g(t))
is geodesically complete for all t ∈ [0, T ]. Let (ei)di=1 be the standard basis of Rd. For each
t ∈ [0, T ] let (Hi(t))di=1 be the associated g(t)-horizontal vector fields on F(M) (i.e. Hi(t, u) is
the g(t)-horizontal lift of uei), and let (Vα,β)dα,β=1 be the canonical vertical vector fields. Let
(Wt)t≥0 be a standard Rd-valued Brownian motion. In this situation Arnaudon, Coulibaly and
Thalmaier [1, 5] defined horizontal Brownian motion on F(M) as the solution of the following
Stratonovich SDE:

dUt =
d∑
i=1

Hi(t, Ut) ◦ dW i
t −

1
2

d∑
α,β=1

∂g

∂t
(t, Uteα, Uteβ)Vαβ(Ut)dt.

They showed that if U0 ∈ Og(0)(M), then Ut ∈ Og(t)(M) for all t ∈ [0, T ]. g(t)-Brownian motion
on M is then defined as Xt := πUt. We denote the law of g(t)-Brownian motion on M started
at x by P x, and expectation with respect to that measure by Ex.

2 Main result

The main result of this paper is the following theorem:
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Theorem 1. If the family of metrics evolves under backwards super Ricci flow, i.e.

∂g

∂t
≤ Ric, (1)

then Brownian motion on M cannot explode up to time T . In particular this result holds for
backwards Ricci flow ∂g

∂t = Ric.

By recent work (see section 3), it has turned out that backwards Ricci flow tends to com-
pensate the effects of Ricci curvature on the behaviour of heat flow and Brownian motion. Thus
our result is quite natural because a lower bound of Ricci curvature yields the non-explosion
property in the fixed metric case.

Remark 1.

1. In Section 6 we will give an extension of Theorem 1 including the case of non-symmetric
diffusion processes.

2. For the question of explosion or non-explosion of Brownian motion on a manifold equipped
with a fixed Riemannian metric see e.g. [6], [8, Section 7.8] or [9, Section 4.2].

As an important tool we prove the following Itô formula for the radial process ρ(t,Xt), where
ρ(t, x) denotes the distance with respect to g(t) between x and a fixed reference point o:

Theorem 2. There exists a nondecreasing continuous process L which increases only when
Xt ∈ Cutg(t)(o) such that

ρ(t,Xt) = ρ(0, X0) +
∫ t

0

[
1
2

∆g(s)ρ+
∂ρ

∂s

]
(s,Xs)ds+

d∑
i=1

∫ t

0
(Usei)ρ(s,Xs)dW i

s − Lt. (2)

Remark 2.

1. The usual Itô formula fails to apply because the distance function is not smooth at the
cut-locus. A priori it is even not clear that ρ(t,Xt) is a semimartingale.

2. In the case of a fixed Riemannian metric Theorem 2 was proved by Kendall [11] (see also
[8, Theorem 7.254] or [9, Theorem 3.5.1]). The idea of our proof is based on Kendall’s
original one.

3. For Theorem 2 we do not require any additional assumption on g(t) such as (1).

3 Remarks concerning related work

McCann and Topping [13] (see also Topping [14] and Lott [12]) showed contraction in the
Wasserstein metric for the heat equation under backwards Ricci flow on a compact manifold.
More precisely, they showed that the following are equivalent:

1. g evolves under backwards super Ricci flow, i.e. ∂g
∂t ≤ Ric.

2. Whenever u and v are two non-negative unit-mass solutions of the heat equation

∂u

∂t
=

1
2

∆g(t)u−
(

1
2

tr
∂g

∂t

)
u
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(the term
(

1
2 tr ∂g∂t

)
u comes from the change in time of the volume element), the function

t 7→W2(t, u(t, ·) volg(t), v(t, ·) volg(t)) is non-increasing. Here

W2(t, µ, ν) :=
(

inf
π

∫
M×M

dg(t)(x, y)2π(dx, dy)
)1/2

is the L2-Wasserstein distance of two probability measures µ and ν on M . (The infimum
is over all probability measures π on M ×M whose marginals are µ and ν.)

This means that backwards super Ricci flow is characterized by the contractivity property for
solutions of the heat equation. Moreover, in recent work by Topping [14] and Lott [12] (see also
Brendle [3]) the heat equation and the theory of optimal transport are efficiently used to derive
several monotonicity results including a new proof for the monotonicity of Perelman’s reduced
volume. These facts indicate that it would be effective for deeper understanding of Ricci flow
to study the heat equation in conjunction with backwards Ricci flow and the theory of optimal
transport.

The non-explosion property of the Brownian motion is one of the first problems we face
when we begin to consider the heat equation on a noncompact manifold. Our result tells us
that it is always satisfied as far as we consider the heat equation under backwards Ricci flow.
It will be quite helpful for the study of Ricci flow on a noncompact manifold by means of the
heat equation. In fact, our result enables us to remove the assumption on the non-explosion in
recent work by Arnaudon, Coulibaly and Thalmaier [2, Section 4]. They extend McCann and
Topping’s implication 1 ⇒ 2 in the case on a noncompact manifold. In addition, they sharpen
the monotonicity of L2-Wasserstein distance to a pathwise contraction in the following sense:
There is a coupling (X̄(1)

t , X̄
(2)
t )t≥0 of two Brownian motions starting from x, y ∈ X respectively

such that t 7→ dg(t)(X̄
(1)
t , X̄

(2)
t ) is non-increasing almost surely. By taking expectation we can

derive the monotonicity of the L2-Wasserstein distance from it. The sharpness of their pathwise
contraction looks useful for the study of the optimal transport associated with a more general
cost function than the squared distance, e.g. L-optimal transportation studied in the above
mentioned papers [14, 12, 3]. As a consequence of our result, we can consider such a problem
without assuming the compactness of the underlying space.

4 Proof of Theorem 2: Itô’s formula for the radial process

Note that we only need to prove Theorem 2 until the exit time of X from an arbitrary large
relatively compact open subset M0 of M . Thus, by modifying M and g(t) outside of a neigh-
bourhood of M0, we can reduce the proof to the case of compact M (recall Remark 2.3; as we
will see, such a modification is harmless for proving Theorem 2). By the compactness of M , the
injectivity radius

iM := inf{dg(t)(x, y) | t ∈ [0, T ], y ∈ Cutg(t)(x)}
is strictly positive and that we have a uniform bound for the sectional curvature Sectg(t):

| Sectg(t) | ≤ K2 for all t ∈ [0, T ].

We first state Itô’s formula for smooth functions:

Lemma 1. Let f be a smooth function on [0, T ]×M . Then

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

1
2

∆g(t)f(t,Xt)dt+
d∑
i=1

(Utei)f(t,Xt)dW i
t .
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Proof. Itô’s formula applied to a smooth function f̃ on [0, T ]×F(M) gives

df̃(t, Ut) =
∂f̃

∂t
(t, Ut)dt+

d∑
i=1

Hi(t)f̃(t, Ut)dW i
t +

1
2

d∑
i=1

Hi(t)2f̃(t, Ut)dt

− 1
2

d∑
α,β=1

∂g

∂t
(t, Uteα, Uteβ)Vαβ f̃(t, Ut)dt. (3)

Now let f̃(t, u) := f(t, πu). By definition of Hi(t), Hi(t)f̃(t, u) = (uei)f(t, πu). Moreover, it
is well known (see e.g. [9, Proposition 3.1.2]) that

∑d
i=1Hi(t)2f̃(t, u) = ∆g(t)f(t, πu). Finally,

since f̃ is constant in the vertical direction, the last term in (3) vanishes, so that the claim
follows.

Lemma 2. Let G(x, τ, y, t) (x, y ∈ M , 0 ≤ t < τ ≤ T ) be the fundamental solution of the
equation ∂u

∂t = 1
2∆g(t)u (see [7] for existence). Then for all τ ∈ (0, T ] and all x ∈ M the law of

Xτ under P x is absolutely continuous with respect to the volume measure (note that this property
does not depend on the choice of the Riemannian metric), and its density with respect to the
g(0)-volume measure is given by y 7→ G(x, τ, y, 0).

Proof. Fix ϕ ∈ C2(M), and let u be the solution of the initial value problem{
∂u
∂t = 1

2∆g(t)u

u(0, ·) = ϕ.

Then by Corollary 2.2 in [7],

u(τ, x) =
∫
M
G(x, τ, y, 0)ϕ(y)dvolg(0)(y).

Now apply Itô’s formula to X and the function (t, x) 7→ u(τ − t, x) to obtain

u(0, Xτ ) = u(τ,X0)−
∫ τ

0

∂u

∂t
(τ − t,Xt)dt+

1
2

∫ τ

0
∆g(t)u(t− τ,Xt)dt+ martingale

= u(τ,X0) + martingale,

so that

Ex [ϕ(Xτ )] = Ex [u(0, Xτ )] = Ex [u(τ,X0)] = u(τ, x) =
∫
M
G(x, τ, y, 0)ϕ(y)dvolg(0)(y).

Since ϕ is arbitrary the claim is proved.

Lemma 3. {t ∈ [0, T ] |Xt ∈ Cutg(t)(o)} has Lebesgue measure zero almost surely.

Proof. Since by Lemma 2 for each t ∈ (0, T ] and any starting point x ∈ M , the law of Xt

under P x is absolutely continuous with respect to the g(t)-Riemannian volume measure, and
since moreover the cut-locus Cutg(t)(o) has g(t)-volume zero (see e.g. [8, Theorem 7.253] or [4,
Proposition 3.1]), we have

Ex
[∫ T

0
1{Xt∈Cutg(t)(o)}dt

]
=
∫ T

0
P x
[
Xt ∈ Cutg(t)(o)

]
dt = 0,

so that almost surely
∫ T
0 1{Xt∈Cutg(t)(o)}dt = 0.

4



We now apply Lemma 1 to the process ρ(t,Xt) up to singularity. As long as Xt stays away
from o and the g(t)-cut-locus of o,

dρ(t,Xt) = dβt +
1
2

[
∆g(t)ρ+ 2

∂ρ

∂t

]
(t,Xt)dt, (4)

where βt is the martingale term given by

βt :=
d∑
i=1

∫ t

0
Hi(s)ρ̃(s, Us)dW i

s .

As we will observe in Lemma 5, the singularity of ρ(t, x) at o is negligible. The quadratic
variation 〈β〉t of βt is computed as follows:

〈β〉t =
d∑
i=1

∫ t

0
[Hi(s)ρ̃(s, Us)]

2 ds

=
d∑
i=1

∫ t

0
[(Usei)ρ(s,Xs)]

2 ds

=
∫ t

0
|∇g(s)ρ(s,Xs)|2ds

= t.

Thus βt is a standard one-dimensional Brownian motion.

Lemma 4 (Lemma 5 and Remark 6 in [13]). The function (t, x) 7→ ρ(t, x) is smooth whenever
x /∈ {o} ∪ Cutg(t)(o), and

∂ρ

∂t
(t, x) =

1
2

∫ ρ(t,x)

0

∂g

∂t
(γ̇(s), γ̇(s))ds,

where γ : [0, ρ(t, x)]→M is the unique minimizing unit-speed g(t)-geodesic joining o to x.

Let CutST be the space-time cut-locus defined by

CutST := {(t, x, y) ∈ [0, T ]×M ×M | (x, y) ∈ Cutg(t)}.

It is shown in [13] that CutST is a closed subset in [0, T ] ×M ×M . Though they assumed M
to be compact, extension to the noncompact case is straightforward. Since [0, T ]× {o} × {o} is
a compact subset in [0, T ]×M ×M and it is away from CutST, we can take r1 > 0 so that

dg(t)(o,Cutg(t)(o)) > r1 (5)

holds for all t ∈ [0, T ]. Thus we can use (4)) when Xt is in a small neighbourhood of o until Xt

hits o. Since g(t) is smooth, Lemma 4 and (4) together with the Laplacian comparison theorem
imply the following by a standard argument:

Lemma 5. With probability one, Xt never hits o.

For x, y ∈M , let
d(x, y) := sup

t∈[0,T ]
dg(t)(x, y).
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We consider [0, T ] × M × M equipped with the distance function d̂((s, x1, x2), (t, y1, y2)) :=
max{|t− s|, d(x1, y1), d(x2, y2)}.

By Lemma 4 and the compactness of M , there exists a constant C1 > 0 such that

|dg(t)(x, y)− dg(t′)(x, y)| ≤ C1|t− t′| (6)

holds for any t, t′ ∈ [0, T ] and x, y ∈M . We now define a set A by

A :=
{

(t, x, y) ∈ [0, T ]×M ×M
∣∣∣∣ dg(t)(o, x) ≥ 2iM/3, dg(t)(o, y) = iM/3 and
dg(t)(x, y) = dg(t)(o, x)− dg(t)(o, y)

}
.

Note that A is closed and hence compact since dg(t)(x, y) is continuous as a function of (t, x, y).
Note that, for (t, x, y) ∈ A, y is on a minimal g(t)-geodesic joining o and x. In particular,
symmetry of the cutlocus implies that A ∩ CutST = ∅. Thus we have

δ1 := d̂(A,CutST ) ∧ iM
3(C1 + 1)

> 0.

We define the function V : R+ → R+ by

V (r) :=
d− 1

2
K coth

(
K · r ∧ iM

3

)
+ 2C1.

The Laplacian comparison theorem implies that, for all (t, x, y) /∈ CutST, |(∆g(t)dg(t)(y, ·))(x)| ≤
(d− 1)K coth(Kdg(t)(x, y)) and hence Lemma 4 implies∣∣∣∣12(∆g(t)dg(t)(y, ·))(x) +

∂

∂t
dg(t)(y, x)

∣∣∣∣ ≤ V (dg(t)(x, y)). (7)

Lemma 6. Let (t0, x0) ∈ Cutg(t0)(o) and δ ∈ (0, δ1). Let X be a g(t)-Brownian motion starting
at x0 at time t0. Let T̃ := T ∧ (t0 + δ) ∧ inf{t ≥ t0 | dg(t)(x0, Xt) = δ}. Then

E

[
ρ(t ∧ T̃ ,Xt∧T̃ )− ρ(t0, x0)−

∫ t∧T̃

t0

V (ρ(s,Xs))ds

]
≤ 0.

Proof. We construct a point õ ∈M as follows: we choose a minimizing unit-speed g(t0)-geodesic
γ from o to x0 and define õ := γ(iM/3). Then by construction (t0, x0, õ) ∈ A. Moreover for all
t ∈ [t0, T̃ ] we have d̂((t0, x0, õ), (t,Xt, õ)) < δ1 and therefore Xt /∈ Cutg(t)(õ). Let

ρ+(t, x) := dg(t)(o, õ) + dg(t)(õ, x).

Since õ lies on a minimizing g(t0)-geodesic from o to x0, we have ρ+(t0, x0) = ρ(t0, x0). Moreover,
by the triangle inequality, ρ+(t, x) ≥ ρ(t, x) for all (t, x). On [t0, T̃ ],

dg(t)(õ, Xt) ≥ dg(t)(õ, x0)− dg(t)(x0, Xt)
≥ dg(t0)(õ, x0)− (1 + C1)δ

≥ iM
3

(8)

holds. By (7) and Lemma 4,(
1
2

∆g(t)ρ
+ +

∂ρ+

∂t

)
(t, x) ≤ V (ρ+(t, x))
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holds if (t, x, õ) /∈ CutST. Note that V (ρ+(t,Xt)) = V (ρ(t,Xt)) holds for all t ∈ [t0, T̃ ] since we
can show ρ(t,Xt) ≥ iM/3 in a similar way as in (8). Therefore

ρ(t ∧ T̃ ,Xt∧T̃ )− ρ(t0, Xt0)−
∫ t∧T̃

t0

V (ρ(s,Xs))ds

= ρ(t ∧ T̃ ,Xt∧T̃ )− ρ+(t0, Xt0)−
∫ t∧T̃

t0

V (ρ+(s,Xs))ds

≤ ρ+(t ∧ T̃ ,Xt∧T̃ )− ρ+(t0, Xt0)−
∫ t∧T̃

t0

(
1
2

∆g(s)ρ
+ +

∂ρ+

∂s

)
(s,Xs)ds.

Since ρ+ is smooth at (t,Xt) for t ∈ [t0, T̃ ], the last term is a martingale. Hence the claim
follows.

For δ ∈ (0, δ1), we define a sequence of stopping times (Sδn)n∈N and (T δn)n∈N0 by

T δ0 := 0,
Sδn := T ∧ inf{t ≥ T δn−1 |Xt ∈ Cutg(t)(o)},
T δn := T ∧ (Sδn + δ) ∧ inf{t ≥ Sδn | dg(t)(XSδn

, Xt) = δ}.

Note that these are well-defined because CutST and {(t, x) | dg(t)(y, x) = δ}, where y ∈ M , are
closed.

Proposition 1. The process

ρ(t,Xt)− ρ(0, X0)−
∫ t

0
V (s,Xs)ds

is a supermartingale.

Corollary 1. The process ρ(t,Xt) is a semimartingale.

Proof of Proposition 1. Thanks to the strong Markov property of Brownian motion it suffices
to show that for all deterministic starting points (t0, x0) ∈ [0, T ]×M and all t ∈ [t0, T ]

E

[
ρ(t,Xt)− ρ(t0, Xt0)−

∫ t

t0

V (ρ(s,Xs))ds
]
≤ 0.

To show this we first observe that thanks to Lemma 1, (7) and Lemma 6 for all n ∈ N

E

[
ρ(t ∧ Sδn, Xt∧Sδn)− ρ(t ∧ T δn−1, Xt∧T δn−1

)−
∫ t∧Sδn

t∧T δn−1

V (ρ(s,Xs))ds
∣∣∣FT δn−1

]
≤ 0

and

E

[
ρ(t ∧ T δn , Xt∧T δn)− ρ(t ∧ Sδn, Xt∧Sδn)−

∫ t∧T δn

t∧Sδn
V (ρ(s,Xs))ds

∣∣∣FSδn
]
≤ 0.

It remains to show that Tn → T as n → ∞. If limn→∞ Tn =: T∞ < T occurs, then T δn − Sδn
converges to 0 as n → ∞. In addition, dg(t)(XSδn

, XT δn
) = δ must hold for infinitely many

n ∈ N. Take N ∈ N so large that C1(T∞ − Tn) < δ/2 for all n ≥ N . Then (6) yields
dg(T∞)(XSδn

, XT δn
) ≥ δ/2 for infinitely many n ≥ N . But it contradicts with the fact that Xt is

uniformly continuous on [0, T ]. Hence Tn → T as n→∞.

7



Lemma 7. limδ→0
∑∞

n=1 |T δn − Sδn| = 0 almost surely.

Proof. For δ > 0, let us define a random subset Eδ and E in [0, T ] by

Eδ := {t ∈ [0, T ] | there exists t′ ∈ [0, T ] satisfying |t− t′| ≤ δ and (t′, Xt′ , o) ∈ CutST},
E := {t ∈ [0, T ] | (t,Xt, o) ∈ CutST}.

Since the map t 7→ (t,Xt, o) is continuous and CutST is closed, E is closed and hence E = ∩δ>0Eδ
holds. By the definition of Sδn and T δn , we have

E ⊂
∞⋃
n=1

[Sδn, T
δ
n ] ⊂ Eδ

and hence the monotone convergence theorem implies

lim
δ→0

∞∑
n=1

|T δn − Sδn| ≤ lim
δ→0

∫ T

0
1Eδ(t)dt =

∫ T

0
1E(t)dt = 0

almost surely, where the last equality follows from Lemma 3.

Lemma 8. The martingale part of ρ(t,Xt) is

d∑
i=1

∫ t

0
(Usei)ρ(s,Xs)dW i

s .

Proof. By the martingale representation theorem there exists an Rd-valued process η such that
the martingale part of ρ(t,Xt) equals

∫ t
0 ηsdWs. Let

Nt :=
∫ t

0
ηsdWs −

d∑
i=1

∫ t

0
(Usei)ρ(s,Xs)dW i

s .

Using the stopping times Sδn and T δn , the quadratic variation 〈N〉T of N is expressed as follows;

〈N〉T =
d∑
i=1

∞∑
n=1

(∫ Sδn∧T

T δn−1∧T
|ηit − (Utei)ρ(t,Xt)|2dt+

∫ T δn∧T

Sδn∧T
|ηit − (Utei)ρ(t,Xt)|2dt

)
. (9)

Since Xt /∈ Cutg(t)(o) if t ∈ (T δn−1, S
δ
n), Itô’s formula (4) yields∫ Sδn∧T

T δn−1∧T
|ηit − (Utei)ρ(t,Xt)|2dt = 0

for n ∈ N and i = 1, · · · , d. For the second term in the right-hand side of (9) we have

∞∑
n=1

∫ T δn∧T

Sδn∧T
|ηit − (Utei)ρ(t,Xt)|2dt ≤ 2

∫
S∞
n=1[Sδn,T

δ
n]

(
|ηt|2 + 1

)
dt.

Since ηt is locally square-integrable on [0, T ] almost surely, Lemma 7 yields 〈N〉T = 0 and the
conclusion follows.
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We can now conclude the proof of Theorem 2: Set Iδ :=
⋃∞
n=1[Sδn, T

δ
n ]. Set Lδt by

Lδt := −ρ(t,Xt) + ρ(0, X0) +
d∑
i=1

∫ t

0
(Usei)ρ(s,Xs)dW i

s

+
∫

[0,t]\Iδ

[
1
2

∆g(t)ρ+
∂ρ

∂s

]
(s,Xs)ds+

∫
[0,t]∩Iδ

V (ρ(s,Xs))ds.

By Proposition 1, Lemma 8 and Itô’s formula (4) on [0, T ] \ Iδ, Lδt is non-decreasing in t. In
particular, Lδt can increase only when t ∈ Iδ. Then we have

ρ(t,Xt)− ρ(0, X0)−
d∑
i=1

∫ t

0
(Usei)ρ(s,Xs)dW i

s −
∫ t

0

[
1
2

∆g(s)ρ+
∂ρ

∂s

]
(s,Xs)ds+ Lδt

= −
∫

[0,t]∩Iδ

[
1
2

∆g(t)ρ+
∂ρ

∂s

]
(s,Xs)ds−

∫
[0,t]∩Iδ

V (ρ(s,Xs))ds. (10)

Since (7) yields∣∣∣∣∣
∫

[0,t]∩Iδ

[
1
2

∆g(t)ρ+
∂ρ

∂s

]
(s,Xs)ds+

∫
[0,t]∩Iδ

V (ρ(s,Xs))ds

∣∣∣∣∣ ≤ 2
∫
Iδ

V (ρ(s,Xs))ds

and V (ρ(s,Xs)) is bounded on Iδ, Lemma 7 yields that the right-hand side of (10) converges to
0 as δ → 0. Thus Lt := limδ↓0 L

δ
t exists for all t ∈ [0, T ] almost surely and hence (2) holds. We

can easily deduce the fact that Lt can increase only when t ∈ Cutg(t)(o) from the corresponding
property for Lδt . �

5 Proof of Theorem 1: Non-explosion of Brownian motion

We define k1 ≥ 1 and F̄ : [0,∞)→ R by

k1 := inf
{
k ≥ 1 | |Ricg(t)(x)| ≤ −(d− 1)k2 for t ∈ [0, T ] and x ∈M with d(o, x) ≤ r1

}
,

F̄ (s) := (d− 1)(k1 coth(k1 · s ∧ r1) + k2
1 · s ∧ r1),

where r1 is defined in (5).
Theorem 1 follows immediately from the following estimate of the drift part of (2):

Proposition 2. Suppose (1). Then, for all (t, x) ∈ [0, T ]×M with (t, x, o) /∈ CutST ,

∆g(t)ρ(t, x) + 2
∂ρ

∂t
(t, x) ≤ F̄ (ρ(t, x)).

To prove this proposition it suffices to show the following lemma:

Lemma 9. Suppose (1). Fix t ∈ [0, T ] and a minimizing unit-speed g(t)-geodesic γ : [0, b]→M
with γ(0) = o. Then there exists a non-increasing function F : (0, b)→ R satisfying F (s) ≤ F̄ (s)
and

∆g(t)ρ(t, γ(s)) + 2
∂ρ

∂t
(t, γ(s)) ≤ F (s)

for all s ∈ (0, b).
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Proof. Let (Xi)di=1 be orthonormal parallel fields along γ with X1 = γ̇. Fix r ∈ (0, b), and let Ji
be the Jacobi field along γ|[0,r] with Ji(0) = 0 and Ji(r) = Xi(r). Then it is well known (see [4]
for example) that

(∆g(t)dg(t)(γ(0), ·))(γ(r)) =
d∑
i=2

I(Ji, Ji),

where the index form I for smooth vector fields Y, Z along γ|[0,r] is defined by

I(Y, Z) :=
∫ r

0

(
〈Ẏ (s), Ż(s)〉g(t) − 〈Rg(t)(Y (s), γ̇(s))γ̇(s), Z(s)〉g(t)

)
ds.

Let G : [0, b]→ R be the solution to the initial value problemG′′(s) = −
Ricg(t)(γ̇(s), γ̇(s))

d− 1
G(s),

G(0) = 0, G′(0) = 1.

Then we have

d∑
i=2

I(GXi, GXi) =
d∑
i=2

∫ r

0

[∣∣G′(s)Xi(s)
∣∣2 − 〈R(G(s)Xi(s), γ̇(s))γ̇(s), G(s)Xi(s)〉

]
ds

=
∫ r

0

[
(d− 1)G′(s)2 −G(s)2 Ric(γ̇(s), γ̇(s))

]
ds

= (d− 1)
∫ r

0

[
G′(s)2 +G(s)G′′(s)

]
ds

= (d− 1)G(r)G′(r). (11)

Since γ(0) has no conjugate point along γ on [0, r], the left-hand side of (11) must be strictly
positive (see Theorem 2.10 in [4]). It follows that G(r) > 0 for all r ∈ (0, b). Now let Yi(s) :=
G(s)
G(r)Xi(s). Note that Yi has the same boundary values as Ji. Therefore, by the index lemma,

(∆g(t)dg(t)(γ(0), ·))(γ(r)) ≤
d∑
i=2

I(Yi, Yi) =
(d− 1)G′(r)

G(r)
.

Hence Lemma 4 and (1) yield

(∆ρ+ 2
∂ρ

∂t
)(t, γ(r)) ≤ (d− 1)G′(r)

G(r)
+
∫ r

0
Ric(γ̇(s), γ̇(s))ds

=: F (r).

By the definition of G we have

F ′(r) = (d− 1)
[
G(r)G′′(r)−G′(r)2

G(r)2
+ Ric(γ̇(r), γ̇(r))

]
= −(d− 1)G′(r)2

G(r)2
< 0

and hence F is decreasing. In particular, we have F (r) ≤ F (r ∧ r1). A usual comparison
argument implies that G′(r ∧ r1)/G(r ∧ r1) ≤ k1 coth(k1 · r ∧ r1), and hence the conclusion
follows from the definitions of F and k1.
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6 Generalization to non-symmetric diffusion

We generalize the previous results on more general setting including the case for nonsymmetric
diffusions. Let Xt be time-dependent diffusion whose generator is ∆g(t)/2 + Z(t), where Z(t) is
a time-dependent vector field on M which is smooth on [0, T ]×M .

Even in this case, Theorem 2 still holds by replacing ∆g(t)/2 with ∆g(t)/2 + Z(t). In what
follows, we briefly mention the proof. Except for Lemma 2 and Lemma 3, an extension of
each assertion is straightforward. For Lemma 3, some difficulties come from the fact that the
result corresponding to Lemma 2, especially the existence of a fundamental solution, is not yet
known at this moment for non-symmetric diffusions. But, for our purpose, it suffices to show
the following:

Lemma 10. Suppose that M is compact. Then P x[Xt ∈ Cutg(t)(o)] = 0.

Proof. Let Ẑ(t) be a differential 1-form corresponding to Z(t) by duality with respect to g(t).
Let MZ

t be the martingale part of the stochastic line integral of Ẑ(t) along Xt. Note that there
is a constant c > 0 such that 〈MZ〉t ≤ ct holds since M is compact. Let us define a probability
measure P̃ x on the same probability space as P x by P̃ x[A] := Ex[exp(−MZ −〈MZ〉t/2)1A]. By
the Girsanov formula, the law of Xt under P̃ x coincides with that of g(t)-Brownian motion at
time t. The Schwarz inequality yields

P x[Xt ∈ Cutg(t)(o)] ≤ Ex
[
e−M

Z
t −〈MZ〉t/21{Xt∈Cutg(t)(o)}

]1/2
Ex
[
eM

Z
t +〈MZ〉t/2

]1/2
≤ P̃ x

[
Xt ∈ Cutg(t)(o)

]1/2 ect/2.

Hence the conclusion follows from Lemma 2.

To state an extension of Theorem 1, define a tensor field (∇Z(t))[ by

(∇Z(t))[(X,Y ) :=
1
2
(
〈∇XZ(t), Y 〉g(t) + 〈∇Y Z(t), X〉g(t)

)
,

where ∇ is the Levi-Civita connection with respect to g(t).

Assumption 1. There exists a locally bounded measurable function b on [0,∞) so that

1. (∇Z(t, x))[ + ∂tg(t, x) ≤ Ricg(t)(x) + b(ρ(t, x))g(t, x) for all t ∈ (0, T ) and all x ∈M .

2. The 1-dimensional diffusion process yt given by dyt = dβt +
(
F̄ (yt) +

∫ yt
0 b(s)ds

)
dt does

not explode. (This is the case if and only if∫ ∞
1

exp
[
−2
∫ y

1
b̂(z)dz

]{∫ y

1
exp

[
2
∫ z

1
b̂(ξ)dξ

]
dz

}
dy =∞,

where b̂(y) := F̄ (y) +
∫ y
0 b(s)ds, see e.g. [8, Theorem 6.50] or [10, Theorem VI.3.2].)

Once we obtain the following, non-explosion of Xt follows in the same way as above by the
comparison argument.

Lemma 11. Suppose that Assumption 1 holds. Fix t ∈ [0, T ] and a minimizing unit-speed g(t)-
geodesic γ : [0, b] → M with γ(0) = 0. Then there exists a constant CZ > 0 depending only on
{Z(t)}t∈[0,T ] and γ(0) such that

((∆g(t) +Z(t))dg(t)(γ(0), ·))(γ(s)) + 2
∂

∂t
dg(t)(γ(0), γ(s)) ≤ CZ +F (s) +

∫ s

0
b(dg(t)(γ(0), γ(u)))du

for all s ∈ (0, b), where F is the same function as in Lemma 9.
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Proof. By a direct calculation, (∇Z(t))[(γ̇(s), γ̇(s)) = ∂s〈Z(t), γ̇(s)〉g(t)(γ(s)). Hence we obtain

(Z(t)dg(t)(γ(0), ·))(γ(r)) = 〈Z(t), γ̇(r)〉g(t)(γ(r))

= 〈Z(t), γ̇(0)〉g(t)(γ(0)) +
∫ t

0
(∇Z(t))[(γ̇(s), γ̇(s))ds.

Then, by setting CZ := sups∈[0,T ] sup{〈Z(s), X〉g(s)(γ(0)) |X ∈ Tγ(0)M, ‖X‖g(s) = 1}, the con-
clusion follows in a similar way as we did in the proof of Lemma 9.
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