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Abstract

We present stochastic particle approximations for the normalized Ricci flow on surfaces
and for the non-normalized Yamabe flow on manifolds of arbitrary dimension.
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1 Ricci and Yamabe flow

Thanks to Perelman’s seminal work on the geometrization and hence the Poincaré conjecture
[19, 20, 21] the Ricci flow has attracted worldwide attention and led to many new developments
(see e.g. [17]). The importance of this subject has been underlined by the award of the Fields
medal to Perelman. There is now a strong interest in understanding the microscopic structure
of the Ricci flow.

The evolution of a Riemannian metric ¢ = ¢g; on a connected d-dimensional closed manifold
M under the (normalized) Ricci flow is described by the partial differential equation

g‘zzzRg—2Ric. (1)

Here Ric is the Ricci curvature and R the average scalar curvature of M, i.e. R := W | u B
where R is the scalar curvature (all quantities taken with respect to g;).

In dimension d = 2 we have Ric = Ry, so that in this case (1) is equivalent to the Yamabe
flow

dg

2 —(R-R)g. )

While in dimension d > 3 the Ricci flow does not usually admit global solutions (singularities
can develop, see e.g. [17]), Hamilton [12] and Chow [5] (see also Theorem 5.1 in [6]) proved the
following theorem concerning the 2-dimensional case:

Proposition 1. Let gg be any Riemannian metric on M.
1. The Ricci flow equation has a unique solution (g¢)t>0 with initial data go.
2. Ast — 00, gt converges in any Ck-norm to a smooth metric Joo Of constant curvature.

For the Yamabe flow in dimension d > 3 Ye [26] proved global existence and uniqueness
for arbitrary initial metrics. Convergence theorems under various assumptions were proved by
Ye [26], Schwetlick and Struwe [23] and Brendle [2, 3].
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2 Stochastic particle approximation for the Ricci flow on sur-
faces

Since by (2) the conformal class of g is conserved under the two-dimensional Ricci flow it is
possible to represent g; in the form

gt = U(t, )g vt > 07

where g is a fixed reference metric on M and u a smooth function on Ry x M (one can for
instance take g = go, so that in this case ug := u(0,-) = 1). This approach has the advantage
that now the unknown is no longer a family of metrics, but just a function. In order to derive the
partial differential equation satisfied by u we need the following lemma (for a proof see e.g. [6],
Lemma 5.3).

Lemma 1. Let g = ug. Then there is the following relation between the scalar curvatures with
respect to g and §:

1
Ry = — (-Ag(logu) + Ry).
Since moreover by the Gauss-Bonnet theorem R, = 4w (M)/voly(M), it follows that

ou _
ot

Amx (M)
Az(logu) — Ry + ————=u. 3
Remark 1. As a consequence of the convergence of g; to g (Proposition 1) and the compactness
of M, u is uniformly smooth, i.e. u and all its derivatives are uniformly bounded in ¢ € R, and
x € M. Moreover, since u(t,z) > 0 for allt € Ry and all x € M (because each g; is a Riemannian
metric), Proposition 1 implies that ., := inf{u(t,x) | t > 0, =z € M} is strictly positive.

For the stochastic particle approximation it is essential that the metric § has non-positive
curvature.

Assumption 1. Rz < 0 everywhere on M.
For simplicity we assume:

Assumption 2. voly(M) = volg(M) = 1 (voly(M) is conserved under the Ricci flow, see
e.g. [12], Section 2).

From now on all geometric and analytic quantities on M are taken with respect to the
reference metric g.

The particle system lives on a set Sy of k points of M which is supposed to be approximately
uniform in M in the sense that the discrete measure py := % Yoz S 0, converges weakly to the
Riemannian volume measure on M as k — oco. By Theorem 11.3.3 in [8] this is equivalent to
the property that

Dpi= swp |~ 3 f@)— [ fwdy| =0 ask— o, (4)
K y

renta |k o5,

where BL; is the set of all Lipschitz continuous functions on M with || f|| gz := | flup+|| fllec < 1.

Remark 2. One possible choice is Sy := {&1,...,&} with independent and uniformly (with
respect to the Riemannian volume measure) distributed M-valued random variables &1, .. ., &.
In this case the weak convergence of y; to the Riemannian volume measure and hence (4) holds
almost surely (Theorem 11.4.1 in [8]).



The particle system consists of N particles moving as follows in discrete time steps of length
7 > 0 on Sk: Suppose that at time n7 (i.e. after n time steps) there are exactly m > 1 particles
at a site € Si. Then each of these particles, independently of the past and of the behaviour
of all other particles, behaves as follows: With probability
T
i [r(@ y)p(km/N) /1 — R(y)] (5)
it jumps to a point y # x, otherwise it stays at x. Here r > 0 is a parameter and p,(x,y) is
the heat kernel on M at time r, i.e. the fundamental solution of the heat equation % = Ap.
Moreover

7T(IE,:(/) =

logu—log umin )
ol = { T Uz
0 if u < Umin.

(Recall that wpip := inf{u(t,z) |t >0, v € M} > 0, see Remark 1). Note that 7(x,y) is always
nonnegative because of our assumption R < 0. In order to ensure that - , w(z,y) <1 (so
that the jump rule (5) is well-defined), we will assume that

—1
1 1
< | - _ -
TS| e max Y. pley) =1 D R | (6)
yESK\{z} yESK

where e is Euler’s number (note that ¢ is bounded by euiin

of the particle system we introduce the following notation:

). In order to give a formal definition

1. The particle configuration at time nr (i.e. after n time steps) is denoted by
X,=(x}...,xN)esy.
This means that after n time steps the i-th particle is located at X .

2. For x = (z1,...,2y) € SY and y € Sy we define

1 N
X(y) = N Z 1, (y)-
i=1

In particular X, (z) is the total mass at x after n time steps if we define the mass of each
particle to be 1/N.

Using this notation the stochastic dynamics can be exactly described as follows:
1. The particle system is a time-discrete Markov process (X, )nen, With state space S ,]CV .
2. The transition probabilities are as follows:

(a) Independence of the jumps of different particles:
N .
P Xp1 =y|Xn=x] =[] P [Xi11 = vil X0 = x]
i=1

for x = (), y = (1), € 5.
(b) Jump probability of each single particle:

i _ 1 gl y)e(RX (i) /1 — R(y)] if y # x;
P[Xp1 =yl Xy =x] = { f_ %Zzesk\{xi} (i, 2)p(kX(x;)) /r — R(2)] ify =

for y € Sg.



In order to study the macroscopic behaviour of the particle system we consider the empirical
measure defined as

XY t2) = Koy @0+ (£ = | 1] ) [Riop) = X )

-
(Here we interpolate piecewise linearly in time).

Theorem 1. There are constants Ay, Az, A3 < oo (depending on (M, g) and ug) such that for
allT >0, all N, k€N, allr € (0,1] and all 7 > 0 satisfying (6):

E| sup sup /f Ju(t,y)dy — > f(x)X X, (t )

0<t<T feBL, 2C5,

k
27‘\/]V

This means that the empirical measure of the particle system converges locally uniformly in
time to the measure with density v as N and k tend to co and 7 and r tend to 0, provided that
the initial configuration is chosen appropriately and the constraints r—5/2Dj, — 0, —%— — 0 and

™N

1 _
< E Z Z lup(x) — kXo(x)|| +T |:A1’T + Agr + Asr /2Dy, +
€Sk

(6) are respected.

3 Remarks concerning related work

Particle approximations to nonlinear diffusion equations have been studied for a long time (see
the books by Kipnis and Landim [15] and Spohn [24] for overviews). However, to the author’s
knowledge, no particle approximation for the Ricci flow has been proposed yet.

Written in the form (3), the Ricci flow equation on a surface is a logarithmic diffusion equation
with source term and hence belongs to the class of filtration or generalized porous medium
equations (see the book by Vazquez [25] for the analytical theory of this type of equations).
For the porous medium equation particle approximations have been constructed by Ekhaus
and Seppéldinen [9], Feng, Iscoe and Seppéldinen [10], Figalli and the author [11], Inoue [13],
Jourdain [14], Oelschléger [18] and the author [22]. However, in all these papers the particle
system and the limit equation are defined on a flat space (R? or the flat torus 7% := R?/Z%).
It seems that in the present paper for the first time a particle approximation for a nonlinear
diffusion equation on a non-flat Riemannian manifold is given.

Another related work is the construction of a combinatorial (i.e. discrete) variant of the Ricci
flow by Chow and Luo [7] (see also [16]). In their paper the surface is triangulated, and the
metric is given as a function which assigns to each vertex v; (i = 1,...,N) of the triangulation
a positive number r; called radius. The distance between two adjacent vertices is defined as
the sum of the two radii, and the triangles are realized geometrically as Euclidean (or even
hyperbolic or spherical) triangles. In this case the curvature is concentrated at the vertices, and
at the vertex v; it is given as the angle defect K; := 27w — a;, where a; is the sum of all angles
adjacent to v;. The (normalized) combinatorial Ricci flow is then given by the following system
of ordinary differential equations:

dr;
ditl — _(K'L - Ka'u)rh (7)
where Kg, = 1/N Zf\i 1 K is the average curvature. The main theorem in [7] is as follows:

Under an approriate condition on the triangulation the solution of (7) exists for all time and
converges exponentially fast to a metric of constant curvature.



4 Proof of Theorem 1

A crucial role in the proof is played by the discrete Laplacian, defined by
1
Aif(@) = = S prlay) [F0) — ().
yESk

The discrete Laplacian is the link between the Laplace-Beltrami operator appearing in equa-
tion (3) and the jump probabilities of the particles.

Lemma 2. There is a constant C(M) < oo such that for all f € C*(M), allz € M, allr € (0,1]
and all k € N

1 _
[Arpf(2) = Af(2)] < SIIAAflloor + COM)| fller (anyr (2 Dy

Proof. As an intermediate step we define the operator A, by

Af() = LU(PA) - f(@)

[ | pele i@y - fa)

S| 3

Here (P;)r>0 is the heat semigroup on M. A Taylor expansion at r = 0 yields

(Pef)(x) = () + Af()r + S AP ()

for a certain s € [0, r], hence

[(Brf)(@) — f(z) — Af(2)r| < %HAAfHooTQ,
and therefore )
1Arf(2) = Af(@)] < SIAAflloor

In order to estimate the difference between A, and A, ; we need the following heat kernel
estimate (Theorems 4 and 6 in [4]): There is a constant C'(M) < oo such that for all r € (0, 1]
and all z € M

o (2, Yt ary < CM)r= D72,

Using this estimate we obtain

‘Ar,kf(x) - Arf(x” =

S|

5 2 p @) ) - @) - [ peleliw) - f@)dy

yESk M

IN

;Hpr(x, Meranlf lleran Dr
< 20(M)r~ 2| flleran Di
and the claim follows with C(M) = 2C/(M). O

We will use the following discrete version of the Euler characteristic of M (motivated by the
Gauss-Bonnet theorem):

Xe(M) = ﬁ Z R(z).

TESK

Of course, |xi(M) = X(M)| = | Tses, R@) = [y B)dy| < 11 Rllesap D

5



Proposition 2. Let ®(u) := p(u)u. For f: S — R let
K(f)(x) = f(2) + 7 [Ark(®()(2) = R(x) + 4mxe (M) f(2)] -

Let t, :=nr,
en(2) := u(tnir, 2) — K(u(ty,-))(z)
and
on(x) == kX pi1(x) — K(kX,) ().
Then there are constants Cq,Ca,Cs < oo (depending on (M,§), R and ug) such that for all
n € Ny

len(z)] < 7 [ClT + Cor + C37‘75/2Dk}

and

Proof. Clearly,

w(tnsr, ) = u(tn, ) + / " [AQog u)(s,2) — R(z) + dmx(M)u(s, 2)] ds,
so that

len ()| < /t " |A(logu)(s, ) — Ay k(logu)(tn, z)| ds

+dn /t " (M)u(s, 2) — xu(M)u(tn, )| ds.

For the first term we obtain using Lemma 2:
tn+1
/ |A(logu)(s,x) — Ay g (logu)(t,, x)| ds
tn

tn+1
< / |A(logu)(s,z) — A(log u)(tn, z)| ds + 7 |A(log u) (tn, ) — Ay g (log u)(t, z)|
ln
< 6172 + 7 [027“ + 037'75/21)4 ,

where C := %sup{gt logu)(t z)|t € Ry,z € M}, Cy = 3sup {AA(logu)(t,z)|t € Ry, z € M}
and Cs := C(M) sup;> || log u(t, -)[lc1(ar)- Note that these constants are finite thanks to the uni-
form smoothness of u (see Remark 1). For the second term we obtain

tn+1
4 / (M)u(s, ) — xu(M)ultn, 2)| ds
tn
tn+l
< any D) [ Juls,2) = u(tn, 2)] ds + 4l (M) — xx (M) |ultn, 2)
tn
< C~'4T2 + C5TDk,

where Cy := 2|y (M sup{ (t,z)|t € Ry,z € M} and Cs := [ Rller (anyllull oo my xary- (These
constants are finite as well by Remark 1). The claim concerning e, (z) follows with Cy := C1+Cy
and C3 := 03 + 05

We now estimate 0y, (z):

E[6,(x)?] = E[Xn(z)— K(kX,)(2)]?
= E[FX,11(2)?] = 2B [kX 1 (2) K (kX,) ()] + B [K(kX,)(2)?] .

The claim concerning 4, (x) now follows from the following lemma. O



Lemma 3. We have
E [kX 1 (2)K(EX ) (2)] = E [K(kX,)(2)?]
and
|E [k*X pi1(2)?] — B [K(kX,)(2)?]] < .
For the proof we need the following key lemma:

Lemma 4.

ko .
¥ 2 P [X =X = x] = K(k%)(y).
=1

Proof. We first compute P [Xi+1 =y|X, = X]. In the case y = x; we obtain

n

P[Xp=ylXn=x] = 14784 (%) 1) () + 7671 D R(z) — 7k ' R(y)
z€Sk

= 1+ 70k (¢ (k%) 12,) (y) + TdmxR(M) — TE™ R(y),
and in the case y # x;
P[X}1 =yl Xn =x] = 74,4 (0 (kR) 1,) (y) — k" R(y),
so that in both cases we obtain
P X1 = ylXn = x] = Lyympy + 7 [Ark (9 (k%) 1o,) (y) + X (M) Lgy=sy — k7 R(y)] -
The claim now follows by summing over . O

Proof of Lemma 3. The first claim is proven as follows:

E [kXn1(2)K(kX,)(2)] = Y ky(2)K(kX)(2)P [Xn41 =y and X, =]

xyesy

- 2 { Y k()P [Xop = y| Xy = x]} K(k%)(2)P [X, = x] .

xeSY \yesy
Moreover,
N
D EOPKnp =ylXa=x] = 5> > Ly P K = y|Xn =x]
yesy i=1yesN
N
= NZ Z P[Xni1 =y|Xn =x]
=1 yesN
Yi=z

ko .
= N2 P[Xh =X =x]
=1

= K(kx)(2),

and the first claim follows.



The second claim is proven as follows:

- ) 2 Y ‘ .
B [k2Xn+1(y) ] = N2 P [X%H =yand X}, =y
2,7=1
B A ,
= 5> P =y and X =yl X, = x| P[X, =x]
i,j=1xesN
B . ,
= =2 2 P[Xin =yl =x] P[X],, = ylX = x| P[X, =]
1,7=1 xec SN
k2 7 2
M {P [Xpi1=y] = P [Xoi1 =] }
=1
N 2
k
-2 [NZP [(Xn1 =ylXa=x]| P[X,=x]
XES{CV i=1
KO . , )
T N2 {P (X =y] = P[X 0 =] }
=1
[l . . )
= > KGR P Xa =X+ 55 > [P [Xi = 9] = P[Xir = v)°]
xeSy i=1

9 N
= F[K(kXn)(y)*] + % > [P [(Xi =y -P[Xl, = yﬂ .
=1

The second claim now follows from the fact that P(A) — P(A4)? < % for any event A. O]

Proposition 3. For all n € Ny,

1 — 1 _
7 D lultn,2) = kXn(z)] < % > |uo(z) — kXo(x)| + nr [017 + Cor + Csr~ 52Dy,

€Sk €Sk
n—1 1
S T
=0 TES)

Proof. We write
en(t) = u(tn,z) — kX, (1)

and

() = P (u(tn, x)) — @Qcmn
" w(tn, ) — kX p ()

(with the convention 3 := 0), so that ®(u(tn,z)) — ®(kXn(2)) = an(z)en(x). Note that 0 <



an(x) < 1/Upmin. Proposition 2 implies that

ent1(T)
= u(tn+1, ) kX n+1(T)
= K( (tn,- - K (kX ) )+ en(z) — 0n () B
= )+ TA, (@(u(tn, ( )) (x) + 47TTXk(M) [u(tn, x) — an(x)] +en(z) — dpn(x)
= (1 + 47TTXk( ))en(m) + A Z pr x y) [(I)( tm - (kyn(y)) - (@(u(tn,x)) + @ (kyn(l‘))]

yESk
+ en(x) — dp(z)

= (L drra(M))en(@) + 2 > pr(ay) lan(®)en(y) — an(@)en(@)] + en(x) — b (@)
YESk

= |L+amma(M) - = Y pila, y)ano:)] en(@) + > pol@,y)an(y)en(y) +enl@) = ().

YESk y€ESk

Since by (6) T[4n|x(M)|+ 7= X e, Pr(@, y)an(x)] < 1, it follows that

Z ‘€n+1(fl))| < Z |:1 _7_47T‘X |_7_ Z pr x y an |€n( )|

€S TES) yESK
3 T3 pwpanlenm)] + 3 len(e) — bal)
xGSk yESk $€Sk
= (L—7dx[x(M)]) D len(@)| + D len(x) = dn(2)].
TES) €Sk
The claim follows by induction over n. O

Proof of Theorem 1. FixT > 0,t € [0,T] and f € BLy. Let n := [t/7] and \ := [t/7]+1—t/T,
so that . B B
X‘r,r,k(tvx) = AX”(:B) + (1 - A)Xn-f-l(w)

We have

/f Jult,y)dy — > f(@)Xpy4(t, )

TESK

1 N
+z 3 ’u(t,x) - k:Xka(t,x)‘ .

€Sk

< /f tydy—%Zf

€Sk

The first term is bounded by ||u(%, -)[|c1(ar)Dk- For the second term let us note that
[u(t,2) = kX2, 4(t2)| < Jult,@) = Aulnr,2) = (1= Nu((n + )7, )]
Xn-ﬁ-l(x)‘

) —
and that |u(t,z) — Mu(n7,z) — (1 — Nu((n + 1)7,7)| < C572, where C5 := %sup{ S ()|t >
0,z € M}. Using Proposition 3 it follows that

DS Julta) kXN (0] < O+ 1 S fuola) — KXox)

€Sk €Sk

—f—)\’u(tn,x ) — kX, (z) ‘—f— 1-X) |u tni1, T

"1
+ (n+1)7 [ClT + Cor + 037“_5/2Dk} + Z Z Z |0 ()
=0 €Sy



Altogether we have

sup sup /Mf<y>u<t,y>dy—Zﬂx)Xiﬂ,k(t,x)

fEBLy 0<t<T et

1 _
< sup |lu(t,")lleranDr + Cs7° + % Z \ug(z) — kXo(z)|
O0st<T TESK
[T/7] 1
+ T [017' + Cor + 03’1"_5/2ij| —+ Z % Z |5n($)|,
i=0 €Sy
and the claim follows from Proposition 2. O

5 Particle approximation for Yamabe flow

Our method can also be applied to the non-normalized Yamabe flow

9y
9 __R
ot g
on a closed manifold M of arbitrary dimension. The conformal class of g is still conserved so
that for all £ > 0 g; can be written in the form g; = u(t,)* (2§ with a fixed reference metric
g. In dimension d > 3 the analogue of Lemma 1 is
4(d — 1)
Ry=——7"7——
g d—2

(see e.g. [1], Corollary 1.161). This implies that
Qu _ [ DD A5 ) - H2Ru T ird > 3 8)
Ag(logu) — Ry if d =2.

In contrast to (3) the total mass of solutions of (8) is not conserved. Therefore this equation
cannot be approximated by a particle system with a fixed number of particles, but one has to
allow for creation or destruction of particles. In order to prevent the manifold from shrinking
in a finite time, we restrict ourselves to the case Rz < 0. In this case, thanks to the maximum
principle, u is bounded away from 0. We can therefore write (8) in the form

O Aglplupu)  Byb(u).
with a smooth function ¢ and a smooth, non-decreasing and concave function ).

We now consider a system consisting of a finite number of particles of mass % defined on
a set Sp of k points of M satisfying (4). The particle dynamics takes place in discrete time
steps of length 7 > 0 and consists of two effects: particles can jump from one site to another,
and independently of these jumps, new particles can be created. The jumps and the creation
of particles happen in the following way: suppose that at time n7 (i.e. after n time steps) there
are exactly m > 1 particles at a site € Si. Then each of these particles, independently of the
past and of the behaviour of all other particles, behaves as follows: With probability

w(.y) = Lpr(@.y)e(km/N)/r (9)

10



it jumps to a point y # x, otherwise it stays at x. Moreover, independently of that and the
past, new particles are created at x; their number is Poisson-distributed with expectation

N km
T?|R($)|¢(W)-

As in Section 2 pr(z,y) is the heat kernel on M at time r. In order to ensure that } -, m(z,y) <
1 (so that the jump rule (9) is well-defined), and for some technical reasons we will assume that

-1

1
< |y max(lelloo, [@hip) max > pe(zy) | (10)
yeSi\{=}

where ®(u) := p(u)u.
~ We denote the number of particles at site x € Sy at time n7 by Xp(z), and we define
Xp(z) = %Xn(:p)

In order to study the macroscopic behaviour of the particle system we consider the empirical
measure defined as
Xorp(t @) =X 17 (@) + ( - {J) [XWTJH(H?) = X/ (@)| -

T T
(Here we interpolate piecewise linearly in time). Then we have the following result:

Theorem 2. For all T > 0 there are constants Ay, A9, A, Ay, A5 < oo (depending on (M, g),
ug and T) such that for all N,k € N, all r € (0,1] and all 7 > 0 satisfying (10):

E| swp sup /Mf<y>u<t,y>dy—Zﬂx)XiYT,k(t,x)

0<t<T feBLy 2C5,

1 — k
< AF |- Z |u0(1‘) — k‘Xo(ZL‘)| + Ao + Azr + A4’l“_(d+3)/2Dk + As .
k TN
€Sk
This means that the empirical measure of the particle system converges locally uniformly in
time to the measure with density v as N and k tend to co and 7 and r tend to 0, provided that
the initial configuration is chosen appropriately and the constraints rp=d+3)/2p, 0, % — 0
and (10) are respected.
The proof of Theorem 2 is quite similar to the one of Theorem 1. We start with an analogue

of Lemma 2:

Proposition 4. Let ®(u) := p(u)u. For f: S — R let
K(f)(x) := f(x) + 7 [Arp(R()) (@) — R(x)y(f (2))] -

Let t,, .= nr,

en(@) = ultn+1, ) — K(u(tn,-))(2)
and

On(2) == kX pi1(z) — K(EX,)(2).

Then for all T > 0 there are constants Cy,Co,C3,Cy < 0o (depending on (M, g), R, uyp and T')
such that for allm < T/7:

|€n(x)] <rT [017' + Cor + Cgrf(d+3)/2Dk
and
kQ

11



Proof. The claim concerning e, (x) is proven as the corresponding claim in Proposition 2.
In order to estimate d,(z) let us observe that the particles which are at = after n + 1 time
steps belong to three different classes:

1. those which were at another site z # x at time nr,
2. those which were at z at time n7, and
3. those which were created in the last time step.

We denote their respective numbers by Xifl(a:), X2 ,(z) and X2, (z). By definition of the

particle system, conditioned on X,, = X, these quantities are independent and distributed as
follows:

XM (@) ~ B(X(z),TpT(]:;x)go(kX(z)O,

Here B(n,p) and w(\) denote the binomial and the Poisson distribution, respectively.
It follows that

E [kX p1(2)| Xn = X]

= % ;E [lezil(w)’Xn = X} +E (X700 Xy = X] + E [X 4 (2)| X, = X]
— % Y X(2) p?"(l:f) (kX (2)) + X () 1—prr(lf7jz) (kX () —T%R(m)lb(kX(a:))

_z;éa: z#T

k | pr(, 2) N

= & |X@+r S I X)X () - X (@)e(kX (2))] - 7 R)S(X (@)

L z#T
= kX () + 7 Y0 P X)X (2)) — kX (@)X (2))] — TR0 ()

zF#x

= kX(@) + 7 [Ark(@(kX))(2) — R(x)¢ (kX (x))]
= K(kX)(x

12



Moreover, using Bienaymé’s equality and the fact that p(1 — p) < 1/4 for every p € [0, 1],

Var (kX 11(2)| X = X)

l{?2
= W2 Var (X, 41(2)| X, = X)

2
_ % S Var [ X0, (@)| X0 = X + Var [X2,, () [ X, = X] + Var [X24, () X, = X]
_z;éx
T
< LT x@h + %@k - @)X @)
| zFT
2 k
Y () -t R (K (@)
z€Sk
It follows that
E [6n(ﬂs)2]

= B [(#Xun(@) - KX, ()]

- Y E [(kynﬂ(;p) — K(kX o (2))) | X, = X} P[X, = X]

XeNy*
= ) Var(kXn1(2)| X, = X) P[X, = X]

XeNy*
< > Lid > X(2) - TER(x)w(kX(x)) P[X, = X]
= AN N

XeNgk 2€Sk
= B S R - L R@eiFa @)

N 2 n(2 TN x nlx

Since by the following lemma E [ersk X, (IL‘):| < C(T) the claim follows.

Lemma 5. Let

Then

13



€Sk €Sk
= %ZE[K(kYn)(:c)}
€Sk
= LS B RX () + A k(@K ) () - TR (K ()]
TESK
= B> Xu(@)| +1 Y [R@IE [p(Xa(@)] .
zE€Sy €Sk

Since 1 is concave it follows that

E|> Xnﬂ(x)] —E| ) Xux)

TESk €Sk

< Rleory 3 B (X n(@))]

TESk

| R]|ooTt) Z E [kXn(
CEESk

IN

Moreover, since @/ = % and because v is nondecreasing,
)| E P | E| Y Xnalz)
€S

x€S,
1 J—
(G (E [ZIESk Ynil(x)]) [E L;k Xnp(z)| —

1 _
=3 1<x)]) | R|looTt) (Z E [anm])

(G (E [ersk X TES)
= [IRl[ecT.

€Sy

IN

]

€S

IA

The claim now follows by induction.

Proposition 5. For alln <T/:

1 —
% Y lultn, @) = kXn(@)] < (14 7| Rlloo|9]isp)" Z |uo(z) — kXo(x)|

TESK Z‘Gsk
n—1
+ > (L4 7] Rlloo|t i)™~ =i ] Z lei(x
=0 .Z’ESk

Proof. As in the proof of Proposition 3 we write

en(1) == u(ty,z) — kX, (),

14



and

(with the convention 3 := 0) and obtain

en+1(a;) = 1-— TR( -7 Z pr(w y an(z €n<1')
yGSk
+ = 3 pe(@ yanenly) + enl) - 5 ().
yESk

Since by (10) 7 >_,cs, Pr(z,y)an(x) < 1, it follows that

3 lenri(@)] < 3 |1-rR(x) Z pr(,y)an(@) | |en(@)]
€Sy xE€S) yESk
T
+ D D pr@p)an®len(®)l + D len(x) = n(w)]
xESk yESk $€Sk
= > 1= 7R@)ba(@)] len(z)| + Y len(®) — dn()]
€Sk €Sk
< [+ 7 Rlol®lip] Y len(@)] + Y len(z) = da(2)]
zE€Sk zESk
The claim follows by induction over n. O

The proof of Theorem 2 can now be concluded in a similar way as the proof of Theorem 1.
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