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Preface

These lecture notes correspond to the course Local Fields from the Master in Mathematics of the Uni-
versity of Luxembourg, taught in the Winter Term 2015. It consists of 14 lectures of 90 minutes each.
This lecture belongs to the fourth semester of the Master, and it builds on the lectures Commutative
Algebra, belonging to the first semester.

The aim of the lecture is to explain the basic theory of local fields, and apply this theory to obtain
information about number fields. It is mainly based on Chapter II of [4]. Other fundamental sources
we have used to prepare the lecture are [5], [3], [2].

Luxembourg, December 2015.
Sara Arias-de-Reyna,
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1 p-adic numbers

The first example of local field that one naturally comes up with is the field of p-adic numbers. In this
section we will introduce p-adic numbers as formal power series; later we will see how they arise as
the completion of Q with respect to the p-adic absolute value.

As a motivation to introduce p-adic numbers, consider the ring of integers, Z, and the ring of
polynomials in one variable with complex coefficients, C[z]. Both are Euclidean domains, hence share
many properties. Note, however, that the elements of C[z] can be considered as analytic functions,
thus opening the way to complex analysis methods. In particular, one can study the behaviour of
analytic functions locally at a point by considering their power series expansion. Let α ∈ C be a
point, and f(z) ∈ C[z]. One can write the power series expansion of f(z) around α as

f(z) = a0 + a1(z − α) + a2(z − α)2 + · · ·+ an(z − α)n, (1.1)

where n is the degree of f(z) and a0, . . . , an ∈ C. This power series development yields information
about the behaviour of the function f(z) at α; namely, a0 = 0 if and only if f vanishes at α; more
generally the order of vanishing of f(z) at α is given as min{i : ai 6= 0}. Now, can we emulate this
process if we replace C[z] by Z?

Let us take a closer look at the way the element f(z) ∈ C[z] defines a function f : C → C. Let
α ∈ C. Then f(α) is evaluated by substituting z by α; in other words, we want to identify z and α.
This can be interpreted as taking the class of f(z) in the ring C[z]/(z − α) ' C[α] = C.

Note now that the elements z − α, for α running through the complex numbers, correspond pre-
cisely to the nonzero prime ideals of C[z]. This insight allows us to jump from C[z] to Z.

Namely, if we now consider an element a ∈ Z, and fix a prime number p > 0, we can “evaluate”
the element a at p by considering the class of a in Z/(p). We can say that the element a ∈ Z defines
a function (which we still denote a)

a : {p > 0 prime number} →
⋃
p>0

prime number

Z/(p).

This function maps a prime number p > 0 to the residue class of a modulo p. So far, this does not
seem very useful...

But, let p > 0 be a prime number. What we certainly can do is to expand our a ∈ Z as a power
series in p with coefficients in Z in analogy to (1.1), namely, to write

a = a0 + a1p+ · · ·+ anp
n.

Of course there are many ways to write such an expansion! For instance, take a = 12, p = 5.
Then a = 2 + 2 · 5 = 7 + 1 · 5.

Remark 1.1. Let p > 0 be a prime number. Then any a ∈ N can be uniquely written as

a = a0 + a1p+ · · ·+ anp
n, (1.2)

with 0 ≤ ai < p for all i = 0, . . . , n. We call the equation (1.2) the p-adic expansion of a.
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Indeed, we perform the following divisions

a = pq0 + a0

q0 = pq1 + a1

· · ·
qn−1 = pqn + an

qn = an,

(1.3)

and then we write a = a0 + a1p+ · · ·+ anp
n. The process terminates when qn < p, so that when we

divide it by p we get it back. This proves the existence of the expansion.
Assume now we have two different expansions

a = a0 + a1p+ · · ·+ anp
n = b0 + b1p+ · · ·+ bmp

m

with 0 ≤ ai < p for all i = 0, . . . n; 0 ≤ bj < p for all j = 0, . . . ,m. Let k be the first index such that
ak 6= bk (there must be one such index because the two expansions are different). Then, subtracting
a0 + · · ·+ ak−1p

k−1 from both sides, we get

pk(ak + · · ·+ anp
n−k) = pk(bk + · · ·+ bmp

m−k)

Dividing out pk from both sides, we get that ak − bk must be divisible by p. But |ak − bk| < p, hence
ak = bk, contradicting the choice of k.

By the previous remark, we can expand any natural number as a finite sum of powers of p in an
unique way. And this expansion yields information on a “locally at p”; namely a0 = 0 if and only
if p|a, and more generally the power of p dividing a is given by min{i : ai 6= 0}. But what about
negative numbers? Obviously all numbers of the form

∑n
i=0 aip

i with 0 ≤ ai < p are positive, so
negative numbers cannot be represented in this way.

What happens if we try to apply Algorithm (1.3) to −1 ∈ Z?

−1 = p · (−1) + (p− 1)

−1 = p · (−1) + (p− 1)

· · ·
−1 = p · (−1) + (p− 1)

· · ·

We get the same equation all the time, hence the process does not terminate! If we put these equations
together, formally, we get −1 = (p− 1) + (p− 1)p+ (p− 1)p2 + . . . While this expression has no
meaning in Z, it can be interpreted as a formal power series.

Definition 1.2. Let p > 0 be a prime number. A p-adic integer will be a formal power series

a0 + a1p+ a2p
2 + · · · ,

where 0 ≤ ai < p for all i ∈ N. The set of all p-adic integers will be denoted by Zp.
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Remark 1.3. Note that, in the previous definition, we have defined a set. We still do not have an addi-
tion or a multiplication; the symbols “+” and “pi” that appear in the formal power series expansions
are just symbols, separating the different digits. In other words, if we write Ap = {0, 1, . . . , p − 1},
we can identify the set of p-adic integers Zp with the set Ap × Ap × · · · of infinite tuples of elements
of Ap: an element

∑∞
i=0 aip

i ∈ Zp corresponds to the tuple (a0, a1, . . . ) ∈ Ap ×Ap × · · · .

As we have seen, we have a set-theoretic inclusion N ↪→ Zp, that to each natural number a
associates the (finite) formal power series

∑n
i=0 aip

i obtained in (1.3). Now we want to define an
addition and a multiplication in Zp, extending the usual addition and multiplication in N, in such a
way that Zp becomes a ring. Of course, we want our ring structure to emulate that of Z[[X]]. But
here the restriction that the coefficients be between 0 and p − 1 gets in the way. Namely, if we have
two power series

∑∞
i=0 aiX

i,
∑∞

i=0 biX
i and they happen to satisfy that 0 ≤ ai, bi < p for all i, it

does not follow that their sum in Z[[X]], say
∑∞

i=0 ciX
i =

∑∞
i=0 aiX

i +
∑∞

i=0 biX
i satisfies that

0 ≤ ci < p. We have to consider the usual process of “carrying-over” the digits.

Definition 1.4. Consider the maps

P1 : Zp → Z[[X]]
∞∑
i=0

aip
i 7→

∞∑
i=0

aiX
i,

and
P2 : Z[[X]]→ Zp
∞∑
i=0

aiX
i 7→

∞∑
i=0

bip
i,

where the digits bi are obtained recursively as follows:

• i = 0: write a0 = q0p+ b0, with 0 ≤ b0 < p.

• i = 1: write a1 + q0 = q1p+ b1 with 0 ≤ b1 < p.

• i = 2: write a2 + q1 = q2p+ b2 with 0 ≤ b2 < p.

• · · ·

Remark 1.5. 1. What the map P2 is doing is to “redistribute” the sum, so that all digits lie
between 0 and p− 1. In particular, with the notations above, it holds that

n∑
i=0

aip
i ≡

n∑
i=0

bip
i (mod pn+1) for all n ∈ N.

2. Let a =
∑n

i=0 aiX
i ∈ Z[[X]]. Note that the image P2(a) is uniquely characterised as the

element b =
∑∞

i=0 bip
i ∈ Zp, where the sequence (bi)i satisfies the following two properties:

• For all i, bi ∈ {0, . . . , p− 1}.

• For all n ∈ N,
∑n

i=0 aip
i ≡

∑n
i=0 bip

i (mod pn+1).
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3. Note that P2 ◦ P1 is the identity in Zp, whereas P1 ◦ P2 is not the identity on Z[[X]].

Now we can define the addition and multiplication in Zp from those in Z[[X]], in the following
way.

Definition 1.6. We define the maps

+ : Zp × Zp → Zp
(a, b) 7→ P2(P1(a) + P1(b)).

· : Zp × Zp → Zp
(a, b) 7→ P2(P1(a) · P1(b)).

Proposition 1.7. With the applications defined above, Zp is a ring.

One can of course prove this proposition by hand, but it becomes tedious. Instead, what we will
do is to identify Zp with a certain inverse limit, and check that the addition and multiplication induced
on Zp via this identification coincide with those defined above. The proof of Proposition 1.7 will be
given in Remark 1.16.

Remark 1.8. Let a =
∑∞

i=0 aip
i. For each n ∈ N, let us take the partial sum

∑n
i=0 aip

i ∈ Z. We
can consider this partial sum as the “value of a up to multiples of pn+1”. Note that the element a is
uniquely determined by the infinite sequence of all partial sums (

∑n
i=0 aip

i)∞n=0.
Since each partial sum

∑n
i=0 aip

i provides information modulo pn+1, instead of considering it as
an element of Z we might as well consider its projection modulo the ideal (pn+1), thus obtaining an
element of Z/pn+1Z. In this way we can attach for each a ∈ Zp an infinite sequence

(An (mod pn+1))n ∈
∞∏
n=0

Z/pn+1Z.

However, this map from Zp to
∏∞
n=0 Z/pn+1Z is not surjective. Take for instance p = 5, and the

sequence

(3 (mod 5), 7 (mod 52), 7 (mod 53), . . . ) ∈
∞∏
n=0

Z/5n+1Z.

If there is an a =
∑∞

i=0 ai5
i ∈ Z5 corresponding to that sequence, we would have that

3 ≡ a0 (mod 5)

7 ≡ a0 + 5a1 (mod 52)

But then a0 = 3, and therefore 3 + 5a1 ≡ 7 (mod 25), which is not possible since 3 6≡ 7 (mod 5).
To sum up, there must be some compatibility: If the sequence (An (mod pn+1))n comes from an

element of Zp, we must have that, for all n ∈ N,

An+1 ≡ An (mod pn+1). (1.4)

This leads us to the notion of inverse limit.
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Remark 1.9. • Let (Rn)∞n=0 be a family of rings. Recall that the product
∏∞
n=0Rn is a ring with

the sum and the multiplication defined component-wise, that is to say,

(An)n + (Bn)n = (An +Bn)n

(An)n · (Bn)n = (An ·Bn)n

Moreover, the neutral element for the addition is (0R0 , 0R1 , . . . ) (where 0Ri denotes the neutral
element for the addition in Ri) and the neutral element for the multiplication is (1R0 , 1R1 , . . . )

(where 1Ri denotes the neutral element for the multiplication in Ri).

• Let f : R → R′ be a map. We say that f is a morphism of rings if f(1R) = 1R′ and, for all
a, b ∈ R, f(a+ b) = f(a) + f(b), f(a · b) = f(a) · f(b).

Definition 1.10. Let (Rn)∞n=0 be a family of rings, and assume we have a family of surjective ring
homomorphisms (fn : Rn → Rn−1)∞n=1. We define the inverse limit of (Rn)∞n=0 with respect to the
morphisms (fn)∞n=1, denoted lim←−nRn, as

lim←−
n

Rn := {(An)n ∈
∞∏
n=0

Rn : fn(An) = An−1 for all n = 1, . . . }.

The elements of lim←−nRn are called coherent sequences.

Lemma 1.11. The set lim←−nRn, endowed with the addition and multiplication inherited from the
product ring

∏∞
n=0Rn, is a subring.

Proof. One just has to check that the inverse limit is closed under addition and multiplication, and the
neutral element for the multiplication (1, 1, . . . ) belong to the inverse limit, and that the set is closed
by taking additive inverses.

Example 1.12. Let p > 0 be a prime number. For each n ∈ N, let Rn = Z/pn+1Z. Now we define
some morphisms connecting these rings: for each n ≥ 1, let

fn : Z/pn+1Z→ Z/pnZ
x (mod pn+1) 7→ x (mod pn)

Note that the maps fn are well defined and surjective. We can thus consider the inverse limit of the
family (Rn)∞n=0 with respect to the morphisms {fn : Rn → Rn−1}; we will denote it by

lim←−
n

Z/pn+1Z.

Next, we will identify the p-adic integers with the projective limit lim←−n Z/p
n+1Z. We start with

the following lemma:

Lemma 1.13. Let (An (mod pn+1))n ∈ lim←−n Z/p
n+1Z. Then there exists a unique sequence (ai)i

such that the following two properties hold:

• For all i, ai ∈ {0, . . . , p− 1}.
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• For all n, An ≡
∑n

i=1 aip
i (mod pn+1).

Proof. We start showing the uniqueness of the sequence (ai)i. Assume that there exists another
sequence (bi)i satisfying the two properties of the statement. Then by the characterisation of the
map P2 given in Remark 1.5, it holds that

∑∞
i=0 aip

i = P2(
∑∞

i=0 aiX
i) =

∑∞
i=0 bip

i, so the two
sequences (ai)i and (bi)i coincide.

Now we prove the existence of the sequence (ai)i, by giving a recursive definition:

• n = 0: Let a0 be the only integer in {0, . . . , p− 1} satisfying that a0 ≡ A0 (mod p).

• n = 1: Since A1 ≡ A0 (mod p), we have that p|A1 − a0. Set

b1 =
A1 − a0

p
∈ Z.

Let a1 be the only integer in {0, . . . , p − 1} satisfying that a1 ≡ b1 (mod p). Note that a0 +

pa1 ≡ A1 (mod p2).

• n = 2: Since A2 ≡ A1 (mod p2), we have that p2|A2 − (a0 + pa1). Set

b2 =
A2 − (a0 + a1p)

p2
∈ Z.

Let a2 be the only integer in {0, . . . , p − 1} satisfying that a2 ≡ b2 (mod p). Note that a0 +

a1p+ a2p
2 ≡ A2 (mod p3).

• . . . .

• n − 1 → n: By construction, we have that a0 + a1p + · · · + an−1p
n−1 ≡ An−1 (mod pn).

Since An ≡ An−1 (mod pn), we have that pn|An − (a0 + pa1 + · · ·+ an−1p
n−1). Set

bn =
An − (a0 + pa1 + · · ·+ an−1p

n−1)

pn
∈ Z.

Let an be the only integer in {0, . . . , p − 1} satisfying that an ≡ bn (mod p). Note that
a0 + a1p+ · · ·+ anp

n ≡ An (mod pn+1).

Proposition 1.14. The map

Φ : Zp → lim←−
n

Z/pn+1Z

∞∑
i=0

aip
i 7→ (

n∑
i=0

aip
i (mod pn+1))n

is bijective.
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Proof. First of all, note that the image of Φ lies in lim←−n Z/p
n+1Z because the sequences

(
∑n

i=0 aip
i (mod pn+1))n are coherent (cf. Equation (1.4)).

Consider the map
Ψ : lim←−

n

Z/pn+1Z→ Zp

(An (mod pn+1)) 7→
∞∑
i=0

aip
i,

where the sequence (ai)i is given by Lemma 1.13. Let us check that Ψ and Φ are inverses of each
other:

• Ψ ◦ Φ = idZp : Take any a =
∑∞

i=0 aip
i. We have that Φ(a) = (An (mod pn+1))n, where

An =
∑n

i=0 aip
i. The sequence (ai)i satisfies (trivially) the two conditions in Lemma 1.13, so

we get that Ψ(An (mod pn+1)) =
∑∞

i=0 aip
i = a.

• Φ ◦ Ψ = idlim←−n
Z/pn+1Z: Take any element (An (mod pn+1))n ∈ lim←−n Z/p

n+1Z, and let

a =
∑∞

i=0 aip
i = Ψ((An (mod pn+1))n). Note that, by the definition of Ψ, for each n ∈ N,

we have that An ≡ a0 + a1p + · · · + anp
n (mod pn+1). Therefore, when we take Φ(a), we

obtain the sequence (
∑n

i=0 aip
i (mod pn+1))n = (An (mod pn+1))n.

Lemma 1.15. The addition and multiplication induced by the identification Φ : Zp → lim←−n Z/p
n+1Z

coincide with those in Definition 1.6.

Proof. We will only consider the addition map, since the multiplication map is analogous. To prove
that the addition induced on Zp by that of lim←−n Z/p

n+1Z coincides with the one of Definition 1.6, we
have to prove that the following diagram commutes

Zp × Zp
+ //

Φ×Φ
��

Zp

Φ
��(

lim←−n Z/p
n+1Z

)
×
(

lim←−n Z/p
n+1Z

)
+ //

(
lim←−n Z/p

n+1Z
)

Let us consider two elements a =
∑∞

i=0 aip
i, b =

∑∞
i=0 bip

i ∈ Zp. Then if we apply Φ×Φ, followed
by +, we obtain

Φ(a) + Φ(b) = (

n∑
i=0

aip
i (mod pn+1))n +

n∑
i=0

bip
i (mod pn+1))n

= (

n∑
i=0

(ai + bi)p
i (mod pn+1))n
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On the other hand, if we first apply + and then Φ, we obtain

Φ(a+ b) = Φ(P2(P1(
∞∑
i=0

aip
i) + P1(

∞∑
i=0

bip
i)))

= Φ(P2(
∞∑
i=0

aiX
i +

∞∑
i=0

biX
i)) = Φ ◦ P2(

∞∑
i=0

(ai + bi)X
i).

Recall that P2 consists in substitutingX by p, and then rearranging the sum so that the coefficients
belong to {1, . . . , p− 1}. Denote

∞∑
i=0

cip
i = P2(

∞∑
i=0

(ai + bi)X
i).

Then by Remark 1.5 we have that
∑n

i=0 cip
i ≡

∑n
i=0(ai + bi)p

i (mod pn+1). Hence

Φ(a+ b) = Φ(
∞∑
i=0

cip
i) = (

n∑
i=0

cip
i (mod pn+1))n

= (
n∑
i=0

(ai + bi)p
i (mod pn+1))n = Φ(a) + Φ(b).

This proves the assertion.

Remark 1.16. 1. Since lim←−n Z/p
n+1Z is a ring, we obtain a proof of Proposition 1.7 as a corol-

lary of Lemma 1.15 (See Exercise sheet 2).

2. From now on, we will identify Zp and lim←−n Z/p
n+1Z, and consider the elements of Zp either as

infinite formal power series in pn, or as coherent sequences in
∏∞
i=1 Z/pn+1Z, at our conveni-

ence.

3. There is a natural injective map

Z→ lim←−
n

Z/pn+1Z

a 7→ (a (mod pn+1))n.

When restricted to the natural numbers, this inclusion coincides, via the identification of Zp
with lim←−n Z/p

n+1Z, with the inclusion N ↪→ Zp that to each natural number attaches its p-adic
expansion (see Remark 1.1).

4. Under the natural embedding N ↪→ Zp, we have that the element p ∈ N corresponds to the
element

∑∞
i=0 aip

i ∈ Zp, (which we will also denote by p) where a0 = 0, a1 = 1, ai = 0 for
all i ≥ 2. Note that, for all b =

∑∞
i=0 bip

i, multiplication by p yields

b · p =
∞∑
i=0

bip
i+1;

that is to say, the digits of b “shift” one place to the right.
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Now we want to introduce the field of p-adic numbers. In order to do this, we first need to prove
the following lemma.

Lemma 1.17. Let a =
∑∞

i=0 ∈ Zp be such that a0 6= 0. Then a ∈ Z×p .

Proof. We will construct an element b =
∑∞

i=0 bip
i ∈ Zp such that a · b = 1. In other words, we need

to construct b satisfying that, for all n ∈ N,(
n∑
i=0

aip
i

)
·

(
n∑
i=0

bip
i

)
≡ 1 (mod pn+1). (1.5)

We will construct b recursively:

• n = 0: Since a0 6= 0 and a0 ∈ {0, . . . , p − 1}, in particular p - a0, and therefore there exist
r, s ∈ Z such that ra0 + sp = 1. Let b0 be the unique element of {0, . . . , p − 1} such that
r ≡ b0 (mod p). Note that, with this choice of b0, Equation (1.5) is satisfied for n = 0.

• n = 1: We are looking for b1 ∈ {0, . . . , p− 1} such that

(a0 + a1p) · (b0 + b1p) ≡ 1 (mod p2).

That is to say,
a0b0 + p(a0b1 + a1b0) ≡ 1 (mod p2).

Since a0b0 ≡ 1 (mod p), we can write a0b0 = 1+pd1; replacing this in the previous equation,
we get

p(d1 + a0b1 + a1b0) ≡ 0 (mod p2),

or equivalently
d1 + a0b1 + a1b0 ≡ 0 (mod p).

Now we can solve for b1 (using again that a0b0 ≡ 1 (mod p)), and we get

b1 ≡ −b0(d1 + a1b0) (mod p).

Thus it suffices to set b1 as the unique element in {0, . . . , p−1}which is congruent to−b0(d1 +

a1b0) (mod p).

• . . .

• n − 1 → n: We are looking for bn ∈ {0, . . . , p − 1} such that Equation (1.5) holds. By
construction, we know that(

n−1∑
i=0

aip
i

)
·

(
n−1∑
i=0

bip
i

)
≡ 1 (mod pn).

Thus we can write (
n−1∑
i=0

aip
i

)
·

(
n−1∑
i=0

bip
i

)
= 1 + dnp

n for some dn ∈ Z,
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and we obtain(
n∑
i=0

aip
i

)
·

(
n∑
i=0

bip
i

)
− 1 ≡

((
n−1∑
i=0

aip
i

)
+ anp

n

)
·

((
n−1∑
i=0

bip
i

)
+ bnp

n

)
− 1

= (1 + dnp
n) + pn(a0bn + anb0)− 1 (mod pn+1);

and Equation (1.5) is equivalent to

dn + (a0bn + anb0) ≡ 0 (mod p).

Solving for bn, we obtain

bn ≡ −b0(dn + anb0) (mod p).

Therefore it suffices to take bn as the unique element in {0, . . . , p− 1} congruent to −b0(dn +

anb0) (mod p).

Remark 1.18. Reciprocally, if a =
∑∞

i=0 aip
i ∈ Zp satisfies that a0 = 0, then a is not invertible in

Zp. Indeed, assume that there exists b =
∑∞

i=0 bip
i with a · b = 1. Then, in particular, a0 · b0 ≡ 1

(mod p), and this cannot happen.

Corollary 1.19. 1. Zp is a local ring with maximal ideal pZp.

2. Every nonzero element a ∈ Zp can be written as a = pm · u for some integer m ≥ 0 and some
invertible element u ∈ Zp.

3. Zp is an integral domain.

Proof. 1. It suffices to note that pZp = {
∑∞

i=0 aip
i : a0 = 0}. Therefore, by Remark 1.18, the

ideal pZp consist precisely of the non-invertible elements of Zp. The assertion now follows.

2. Let a =
∑∞

i=0 aip
i ∈ Zp, and let m ∈ Z be the first index such that am 6= 0 (this index must

exist because a is nonzero). For all i ≥ 0, let us define ui = ai+m, and let u =
∑∞

i=0 uip
i. By

Lemma 1.17, u ∈ Z×p , and

pm · u = pm

( ∞∑
i=0

uip
i

)
=
∞∑
i=0

uip
i+m =

∞∑
i=0

ai+mp
i+m = a.

3. To prove that Zp is an integral domain, let us take two nonzero elements a =
∑∞

i=0 aip
i and

b =
∑∞

i=0 bip
i in Zp; we want to show that a · b 6= 0. We can write a = pmu, b = pkv with

m, k ≥ 0 integers and u, v ∈ Z×p . Then

a · b = pm+k(u · v).

Since u · v is invertible, we obtain that a · b = 0 if and only if pm+k = 0, which is not the case.



2 ABSOLUTE VALUES AND VALUATIONS 14

Definition 1.20. We denote by Qp the field of fractions of Zp. The elements of Qp are called p-adic
numbers.

Lemma 1.21. Every nonzero element in Qp can be written in an unique way as pmu for some m ∈ Z
and some u ∈ Z×p .

Proof. Let a, b ∈ Zp be nonzero elements; we know they can be written as a = pk1v1, b = pk2v2 for
some integers k1, k2 and some v1, v2 ∈ (Zp)×. Therefore

ab−1 = pk1v1(pk2)−1v−1
2 = pk1−k2v1v

−1
2 .

Since v2 ∈ Z×p , v−1
2 ∈ Z×p . This proves the existence of the representation. Uniqueness is clear.

Remark 1.22. By the previous lemma, one can identify Qp with the formal finite-tailed Laurent series

∞∑
i=m

aip
i,

where m ∈ Z (maybe negative) and 0 ≤ ai < p for all i ∈ {m,m+ 1, . . . }.
Namely, we write the p-adic number pmu, with u =

∑∞
i=0 aip

i ∈ Z×p , as
∑∞

i=m ai−mp
i.

2 Absolute values and valuations

Let (ai)i be a sequence of real numbers, and consider the series
∑∞

i=1 ai. In analysis, one is often
interested in the case when this series converges, that is, when the sequence of partial sums

∑n
i=1 ai

tends to a limit in the standard Euclidean metric of R. In the previous section we dealt with infinite
series

∑∞
i=0 aip

i. These series do not converge in R unless all coefficients vanish from one point
on. Therefore we defined the p-adic integers Zp as the set of formal power series

∑∞
i=0 aip

i, and
introduced a ring structure on it. In this section we will see that one can actually define a metric on
Q such that, the more powers of p appear in the factorisation of an integer a ∈ Z, the smaller this
integer a is. With respect to this metric, the sequence of partial sums (

∑n−1
i=0 aip

i)n will actually be a
Cauchy sequence, and we will recover the p-adic numbers Qp as the completion of Q with respect to
this metric, in analogy with the construction of R as the completion of Q with respect to the Euclidean
metric.

Definition 2.1. Let X be a set. A distance on X is a map

d : X ×X → R≥0

(x, y) 7→ d(x, y)

satisfying that, for all x, y, z ∈ X ,

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x),

• d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality).
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The pair (X,d) is called a metric space.

Example 2.2. The pair (Q, d) is a metric space, where d : Q × Q → R≥0 is defined as d(x, y) =

|x− y|. Here | · | denotes the standard absolute value in Q.

The example above constitutes one instance of metric space that is defined through an absolute
value.

Definition 2.3. Let K be a field. An absolute value is a map

| · | : K → R≥0

x 7→ |x|

satisfying that, for all x, y ∈ K,

(1) |x| = 0 if and only if x = 0,

(2) |x · y| = |x| · |y|,

(3) |x+ y| ≤ |x|+ |y| (Triangle inequality).

Remark 2.4. Since we will consider several absolute values, we will denote the standard absolute
value on Q as | · |∞ to avoid confusion (some motivation for this notation can be found in Exercise
sheet 3).

Remark 2.5. Let K be a field, and | · | an absolute value. Define

d : K ×K → R≥0

(x, y) 7→ |x− y|.

Then (K,d) is a metric space.

Example 2.6. Let K be any field, and define for each x ∈ K

|x| =

{
1 if x 6= 0

0 if x = 0.

This is the trivial absolute value, which trivially satisfies all three properties from Definition 2.3.

Let p > 0 be a prime number. In order to define the p-adic absolute value, we first introduce an
auxiliary function, that measures “how divisible by p” is a rational number.

Definition 2.7. We define a map vp : Q → Z ∪ {∞} as follows: Let x ∈ Q be a nonzero rational
number, and write it as x = pma

b , with a, b integers such that p - a, p - b. Then we define vp(x) = m.
Furthermore we define vp(0) = ∞. Here we are using the convention that∞ is a symbol satisfying
∞ > a for all a ∈ Z,∞+ a = ∞ for all a ∈ Z and a−∞ = 0 for all integers a > 1. The map vp is
called the p-adic valuation.

Remark 2.8. • Note that the p-adic valuation of a nonzero x ∈ Q does not depend on the rep-
resentation of x in the form pma

b , as long as p does not divide ab.



2 ABSOLUTE VALUES AND VALUATIONS 16

• By definition of the p-adic valuation, we have that for any nonzero x ∈ Q, x = pvp(x) a
b for

some a, b ∈ Z with p - a, p - b.

Definition 2.9. Let p > 0 be a prime number. We define the p-adic absolute value as

| · | : Q→ Q≥0

x 7→ p−vp(x).

Lemma 2.10. The p-adic absolute value is an absolute value, that is to say, satisfies the three prop-
erties of Definition 2.3

Proof. • (1) For each nonzero x ∈ Q, |x|p = p−vp(x) 6= 0. On the other hand, |0| = p−∞ = 0.

• (2), (3) Let x, y ∈ Q. If one of them is zero, then the equalities (2) and (3) are trivially satisfied,
so we may assume they are both nonzero. Write x = pvp(x) a

b and y = pvp(y) c
d with p - a, b, c,

d.
x · y = pvp(x)+vp(y)ac

bd
.

Since p - ac, p - bd, we obtain that vp(x · y) = vp(x) + vp(y), hence

|x · y|p = p−vp(x·y) = p−vp(x)−vp(y) = p−vp(x)p−vp(y) = |x|p · |y|p.

To prove the triangle inequality, we distinguish two cases.

– vp(x) = vp(y). Then

x+ y = pvp(x)a

b
+ pvp(y) c

d
= pvp(x)

(
ad+ cb

bd

)
.

Let us write ad+ bc = pks with p - s. Then

x+ y = pvp(x)+k
( s
bd

)
,

and thus
vp(x+ y) = vp(x) + k ≥ vp(x).

Therefore
|x+ y|p = p−vp(x+y) ≤ p−vp(x) = |x|p ≤ |x|p + |y|p.

– vp(x) 6= vp(y). Let us assume that vp(x) > vp(y). Then

x+ y = pvp(x)a

b
+ pvp(y) c

d
= pvp(y)

(
pvp(x)−vp(y)ad+ bc

bd

)
.

But, since p - bc, we conclude that p - pvp(x)−vp(y)ad + bc, and as a consequence vp(x +

y) = vp(y). Therefore

|x+ y|p = p−vp(x+y) = p−vp(y) = |y|p ≤ |x|p + |y|p.
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Remark 2.11. 1. In the proof of Lemma 2.10, we have seen that the p-adic valuation vp satisfies
three properties: for all x, y ∈ Q,

(1) vp(x) =∞ if and only if x = 0,

(2) vp(x · y) = vp(x) + vp(y),

(3) vp(x+ y) ≥ min{vp(x), vp(y)}.

It will turn out to be useful to generalise the notion of p-adic valuation to arbitrary fields (cf.
Definition 2.12)

2. The third property of vp above actually implies something stronger than the triangle inequality,
namely, for all x, y ∈ Q,

|x+ y|p ≤ max{|x|p, |y|p} (Strong triangle inequality).

Now we have many examples of absolute values on Q (namely, one for each different prime
number p > 0, plus the standard absolute value | · |∞).

Definition 2.12. Let K be a field. A valuation is a map

v : K → R ∪ {∞}

satisfying that, for all x, y ∈ K,

(1) v(x) =∞ if and only if x = 0,

(2) v(x · y) = v(x) + v(y),

(3) v(x+ y) ≥ min{v(x), v(y)},

with the convention that∞ is a symbol satisfying∞+r =∞ and r <∞ for all r ∈ R, and r−∞ = 0

for all r ∈ R>1.

Proposition 2.13. Let K be a field, r ∈ R>1 and v : K → R ∪ {∞} a valuation. Then the map

| · | : K → R≥0

x 7→ r−v(x)

is an absolute value, which satisfies the strong triangle inequality

|x+ y| ≤ max{|x|, |y|}.

Proof. See Exercise Sheet 3.

Remark 2.14. Since | · |p is an absolute value, by Remark 2.5 it defines a distance on Q, namely the
p-adic distance, given as

dp(x, y) = |x− y|p for all x, y ∈ Q.
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The p-adic distance has some properties that clash with our intuition. For example, the following
lemma shows that every triangle is isosceles!

Lemma 2.15. Let q1, q2, q3 ∈ Q. Then two of the three numbers dp(q1, q2), dp(q1, q3), dp(q2, q3)

coincide.

Proof. Since dp(x, y) = dp(x−q3, y−q3) for all x, y ∈ Q, we can assume, without loss of generality,
that q3 = 0. Call q1 = pv1a1/b1, q2 = pv2a2/b2 (p - a1, b1, a2, b2). We claim that two of the three
numbers dp(0, q1), dp(0, q2), dp(q1, q2) are equal. Indeed, assume the three of them are different.
Since dp(0, q1) = |q1|p = p−v1 and dp(0, q2) = |q2|p = p−v2 , we obtain that v1 6= v2. Assume
v1 > v2. Then

dp(q1, q2) = |q1 − q2|p = |pv2 p
v1−v2a1b2 − a2b1

b1b2
|p = p−v2 = dp(0, q2),

which is a contradiction.

These remarkable properties of the p-adic distance that separate it from the standard one stem
from the fact that the p-adic absolute value satisfies the strong triangle inequality. This leads to the
following definition.

Definition 2.16. Let K be a field and let | · | be an absolute value on K. We will say that | · | is
nonarchimedean (or ultrametric) if it satisfies the following: for all x, y ∈ K,

|x+ y| ≤ max{|x|, |y|} (Strong triangle inequality).

Otherwise | · | is called an archimedean absolute value.

Nonarchimedean absolute values can be characterised in the following way.

Lemma 2.17. Let K be a field and | · | an absolute value on K. Then the following are equivalent:

(i) | · | is nonarchimedean.

(ii) For all n ∈ N, |n · 1K | ≤ 1.

(iii) {|n · 1K | : n ∈ N} ⊂ R is bounded (with respect to the standard absolute value | · |∞).

Proof. • (i)⇒ (ii) If | · | satisfies the strong triangle inequality, we have that

|n · 1K | = |1K +
n· · ·+ 1K | ≤ {max |1K |} = |1K | = 1.

• (ii)⇒ (iii) By (ii), 1 is an upper bound on the set {|n ·1K | : n ∈ N} ⊂ R. A trivial lower bound
is 0.

• (iii)⇒ (i) Let x, y ∈ K; we will prove the strong triangle inequality for x, y. Let B ∈ N be
such that, for all n ∈ N, |n · 1K | ≤ B. Let us assume that |x| ≥ |y|. Then for all n ∈ N

|x+ y|n ≤
n∑
i=0

∣∣∣∣(ni
)
· 1K

∣∣∣∣ · |x|i · |y|n−i ≤ n∑
i=0

∣∣∣∣(ni
)
· 1K

∣∣∣∣ · |x|i · |x|n−i =(
n∑
i=0

∣∣∣∣(ni
)
· 1K

∣∣∣∣
)
· |x|n ≤ B(n+ 1) · |x|n.
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Taking n-th roots, we obtain
|x+ y| ≤ B

1
n (1 + n)

1
n |x|.

We can now take limit as n→∞, and we get |x+ y| ≤ |x| = max{|x|, |y|}.

Remark 2.18. Let K be a field.

1. To shorten notation, we will write n · 1K ∈ K as n ∈ K, whenever there is no possibility of
confusion. Recall that, when the characteristic ofK is not zero, the map N→ K sending 1 into
1K is not injective.

2. Let | · |, | · |′ be two different absolute values. It does not hold, in general, that |n| and |n|′

coincide for every n ∈ N. For instance, take K = Q, and let p > 0 be a prime number. Then
|p|p = p−1 6= p = |p|∞.

Definition 2.19. Let K be a field, and | · | an absolute value. We will say that a sequence (xn)n of
elements of K converges to zero with respect to | · | if and only if (|xn|)n converges to zero in R with
respect to the standard absolute value | · |∞.

Definition 2.20. Let K be a field. We will say that two absolute values | · |, | · |′ are equivalent if, for
all sequence (xn)n of elements of K, the sequence (xn)n converges to zero with respect to | · | if and
only if it converges to zero with respect to | · |′.

We will now give a very strong characterisation of equivalence of absolute values.

Proposition 2.21. Let K be a field, and let | · |, | · |′ be two nontrivial absolute values on K. The
following conditions are equivalent:

(i) | · | and | · |′ are equivalent.

(ii) For all x ∈ K, |x| < 1⇒ |x|′ < 1.

(iii) There exists a real number s > 0 such that, for all x ∈ K,

|x| = (|x|′)s.

Proof. • (i)⇒ (ii) Assume that there exists x ∈ K such that |x| < 1 but |x|′ ≥ 1. Then the
sequence (|xn|)n converges to zero, but the sequence (|xn|′)n does not converge to zero since
all the terms satisfy |xn|′ ≥ 1.

• (ii)⇒ (iii) Since | · | is a nontrivial absolute value, there exists y ∈ K× such that |y| 6= 1. Let
us fix such an element. The equality |y| · |y−1| = |1| = 1 shows that, from the two quantities
|y| and |y−1|, one is greater than one and the other is smaller than one. Replacing y by y−1 if
necessary, we can assume that |y| > 1.

Therefore, we have |y−1| < 1 and, by (ii), we obtain that |y−1|′ < 1, and the equality |y|′ ·
|y−1|′ = 1 implies that |y|′ > 1.
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Now let x ∈ K be a nonzero element. Let α = log(|x|)/ log(|y|); we have the equality

|x| = |y|α.

Let us consider a strictly decreasing sequence of rational numbers (mk/nk)k that approximates
α from above; we have that

|x| = |y|α < |y|
mk
nk ,

so that ∣∣∣∣ xnk

ymk

∣∣∣∣ < 1.

By (ii), this implies that ∣∣∣∣ xnk

ymk

∣∣∣∣′ < 1,

thus
|x|′ < (|y|′)

mk
nk ,

and passing to the limit as k → ∞, we obtain that |x|′ ≤ (|y|′)α. We can repeat the same
proceeding with a strictly increasing sequence of rational numbers (mk/nk)k approximating α
from below; namely,

|x| = |y|α ≥ |y|
mk
nk ,

hence ∣∣∣∣ymk

xnk

∣∣∣∣ < 1

and therefore by (ii) ∣∣∣∣ymk

xnk

∣∣∣∣′ < 1,

thus
(|y|′)

mk
nk < |x|′,

and passing to the limit when k →∞ we obtain that (|y|′)α ≤ |x|′. Hence we have equality

|x|′ = (|y|′)α

and in particular α = log(|x|′)/ log(|y|′) (note that |y|′ > 1, hence log(|y|′) 6= 0). Therefore
we see that, for all nonzero x ∈ K, we have the equality

log(|x|)/ log(|y|) = log(|x|′)/ log(|y|′). (2.6)

Let s := log(|y|)/ log(|y|′). Note that s > 0 because both |y| and |y|′ are greater than 1.
Equation 2.6 shows that log(|x|) = s log(|x|′), hence |x| = (|x|′)s, and this equality holds for
all x ∈ K×.

• (iii)⇒ (i) This follows from the fact that, for all s > 0 and all sequence of positive real numbers
(rn)n, we have that rn → 0 if and only if rsn → 0.
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Remark 2.22. On Q, we have defined the following absolute values, with are pairwise non-equivalent
(Exercise 3 of Sheet 5):

• The trivial absolute value.

• The standard absolute value | · |∞.

• For all prime number p > 0, the p-adic absolute value | · |p.

We will now see that they are essentially (that is, up to equivalence) the only ones.

Theorem 2.23. Every nontrivial absolute value on Q is equivalent to either | · |∞ or | · |p for some
prime number p > 0.

Proof. Let | · | be an absolute value on Q. We will distinguish two cases.

• Case 1: | · | is nonarchimedean. By Lemma 2.17, this means that, for all n ∈ N, |n| ≤ 1. Since
| − 1| = 1, we have that, for all a ∈ Z, |a| ≤ 1. Consider the set

p := {a ∈ Z : |a| < 1} ⊂ Z.

It is an ideal of Z. Moreover, for all a, b ∈ Z, if ab ∈ p, then either a ∈ p or b ∈ p. That
is to say, p is a prime ideal of Z. And since | · | is not trivial, then p is not the zero ideal (0).
Therefore, there exists a prime number p > 0 such that

p = pZ.

In particular, p ∈ p, hence |p| < 1. Let us call C = 1
|p| .

Let now u = a
b with a, b ∈ Z, b 6= 0, p - ab. Then |a| = |b| = 1 (because they do not belong to

p), hence |u| = 1.

Consider now any x ∈ Q×, and write it as x = upm for some u as above and m ∈ Z. Then

|x| = |upm| = |u| · |p|m = |p|m = C−m = C−vp(x).

By Exercise 2 of Sheet 4, we get that | · | is equivalent to | · |p.

• Case 2: | · | is archimedean. By Lemma 2.17 there exists an n0 ∈ N such that |n0| > 1. We are
going to see that, for all n > 1, |n| > 1. Namely, pick n > 1. For all integers m > 1, for all
k ∈ N, we can write mk in base n as follows:

mk =

s∑
i=0

ain
i, (2.7)

where 0 ≤ ai < n, and as 6= 0. Note that, in Equation (2.7), mk ≥ ns, thus k logm ≥ s log n.
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Taking | · | in Equation (2.7), we obtain

|mk| =

∣∣∣∣∣
s∑
i=0

ain
i

∣∣∣∣∣ ≤
s∑
i=0

|ai||n|i ≤

(
s∑
i=0

|ai|

)
max{|n|i : i = 0, . . . , s} ≤(

s∑
i=0

|ai|

)
max{|n|s, 1} ≤ (s+ 1)(n− 1) max{|n|s, 1}

≤ (k
logm

log n
+ 1)(n− 1) max{|nk

logm
logn |, 1}.

Taking k-th roots of unity, we obtain

|m| ≤
((

k
logm

log n
+ 1

)
(n− 1)

) 1
k

max{|n|
logm
logn , 1}.

Letting now k tend to infinity, we obtain that

|m| ≤ max{|n
logm
logn |, 1} = max{|n|, 1}

logm
logn . (2.8)

This is valid for all m ∈ N; in particular it holds for n0. That is to say,

1 < |n0| ≤ max{|n|, 1}
logn0
logn . (2.9)

Thus the maximum max{|n|, 1} cannot be 1, and therefore |n| > 1.

In particular, going back to Equation (2.8), we obtain that, for all integers m,n ≥ 1

|m|
1

logm ≤ |n|
1

logn .

Interchanging the roles of m and n, we obtain

|m|
1

logm = |n|
1

logn .

Call α = |m|
1

logm , and note that α > 1, thus logα > 0. We have that, for all n ∈ N

|n| = αlogn = e(logα)(logn) = nlogα = |n|logα
∞ .

Taking into account that | − 1| = 1 = | − 1|∞, we can extend the equation above to n ∈ Z as

|n|logα
∞ = |n|.

Finally, for all x ∈ Q, write x = a/b with a, b ∈ Z, b 6= 0. Then

|x| =
∣∣∣a
b

∣∣∣ =
|a|
|b|

=
|a|logα
∞

|b|logα
∞

=
∣∣∣a
b

∣∣∣logα

∞
= |x|logα

∞ .

By Proposition 2.21, we obtain that | · | and | · |∞ are equivalent.
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Theorem 2.24 (Weak approximation theorem). Let K be a field, and let | · |1, . . . , | · |n be pairwise
non-equivalent nontrivial absolute values. For each a1, . . . , an ∈ K, and for each ε > 0, there exists
x ∈ K such that

|x− ai|i < ε

for all i = 1, . . . , n.

Remark 2.25. This statement is reminiscent of the classical Chinese remainder theorem, which claims
the following: Let m1, . . . ,mn positive integers which are pairwise coprime. Then, for any integers
a1, . . . , an, there exists a positive integers x such that

x ≡ ai (mod mi).

for all i = 1, . . . n. Decomposing each mi into prime powers, one might reduce this statement to the
case where each mi is of the form prii , for some prime number pi and some exponent ri. Now note
that each of the congruences

x ≡ ai (mod prii )

is equivalent to the condition
|x− ai|pi ≤ p

−ri
i . (2.10)

Note that the weak approximation theorem produces an element x ∈ Q satisfying the conditions
(2.10), but it may not be an integer.

Proof of Theorem 2.24. First of all, note that it suffices to show that, for all δ > 0, we can find a
collection of elements z1, . . . , zn ∈ K such that{

|zi|j < δ for i 6= j

|zi − 1|i < δ.
(2.11)

Indeed, given any set of elements a1, . . . , an ∈ K and any ε > 0, set B := max{|ai|j : 1 ≤
i, j ≤ n}, and produce a collection of elements z1, . . . , zn ∈ K as above with some δ < ε

nB . Then
the element x =

∑n
j=1 ajzj satisfies that, for all i = 1, . . . , n,

|x− ai|i =

∣∣∣∣∣∣
∑
j 6=i

ajzj + ai(zi − 1)

∣∣∣∣∣∣
i

≤
∑
j 6=i
|aj |i|zj |i + |ai|i|zi − 1|i ≤ nBδ < ε.

Thus it suffices to find z1 satisfying Equations (2.11) with i = 1 (for other values of i it is
analogous). Next we observe that it suffices to find z such that{

|z|1 > 1

|z|j < 1 for j = 2, . . . , n

Namely, if we have such a z, then for all m ∈ N, it holds that

|1 + zm|1 ≥ ||1|1 − |z|
m
1 |∞ = |z|m1 − 1

m→∞
−−−−−−→∞.
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Thus ∣∣∣∣ zm

1 + zm
− 1

∣∣∣∣
1

=

∣∣∣∣ −1

1 + zm

∣∣∣∣
1

m→∞
−−−−−−→ 0.

On the other hand, for all j 6= 1, it holds that

|1 + zm|j ≥ ||1|j − |z|mj |∞ = 1− |z|mj ≥
1

2
for all m sufficiently large,

hence, for m large enough, ∣∣∣∣ zm

1 + zm

∣∣∣∣
j

≤ 2|z|m
m→∞
−−−−−−→ 0.

This shows that given any δ > 0 we can produce z1 = zm

1+zm as in Equation (2.11) by choosing m
large enough. Therefore, the proof of the theorem boils down to the following claim:

Fact 2.26. There exists z ∈ K such that{
|z|1 > 1

|z|j < 1 for all j = 2, . . . , n.

We will prove this fact this by induction on n.

• n = 2: Since | · |1 and | · |2 are not equivalent (and | · |1 is nontrivial), there exists some x ∈ K
with |x|1 < 1 but |x|2 ≥ 1. Similarly there exists some y ∈ K with |y|2 < 1 but |y|1 ≥ 1. Thus∣∣∣y

x

∣∣∣
1
≥ 1

|x|1
> 1

and ∣∣∣y
x

∣∣∣
2
≤ |y|2

1
< 1.

• n ⇒ n + 1: Assume we have z ∈ K with |z|1 > 1, |z|j < 1 for all j = 2, . . . , n. Since we
already know the result for just two absolute values, we can apply it to | · |1 and | · |n+1 to obtain
some y ∈ K such that |y|1 > 1, |y|n+1 < 1. We distinguish now three cases, according to the
value of |z|n+1:

– Case 1: |z|n+1 < 1. Then z already satisfies the required condition.

– Case 2: |z|n+1 = 1. Then for all m ∈ N we have that
|y · zm|1 > 1

|y · zm|n+1 = |y|n+1 < 1

|y · zm|j = |y|j · |z|mj
m→∞
−−−−−−→ 0 < 1 for j = 2, . . . , n.

Thus it suffices to choose m large enough to ensure that |y · zm|j < 1 for all j = 2, . . . , n.
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– Case 3: |z|n+1 > 1. Then for all m ∈ N we have that|y · zm

1+zm |1
m→∞
−−−−−−→ |y|1 > 1

|y · zm

1+zm |n+1

m→∞
−−−−−−→ |y|n+1 < 1

Finally, for m big enough, we have that |1 + zm|j ≥ 1/2 for all j = 2, . . . n. Then, for
big enough m, we have∣∣∣∣y · zm

1 + zm

∣∣∣∣
j

≤ |y|j
|z|mj
1/2

m→∞
−−−−−−→ 0 < 1 for all j = 2, . . . , n.

Again, it suffices to choose an integer m which is big enough to ensure that the desired
inequalities hold.

Now we will take a closer look at nonarchimedean absolute values, and the filtration they induce
on a field.

Proposition 2.27. Let K be a field and let | · | be a nonarchimedean absolute value. Then the map

v : K → R ∪ {∞}

defined as

v(x) =

{
− log |x| if x 6= 0

∞ if x = 0

is a valuation on K, and
|x| = e−v(x).

Proof. Exercise 1 in Sheet 7.

Remark 2.28. Let | · |, | · |′ be two equivalent nonarchimedean absolute values on a field K. Let v
and v′ be the valuations attached to | · | and | · |′ as above. By Proposition 2.21, there exists a real
number s > 0 such that

| · |′ = | · |s.

We obtain thus that v′ = s · v.

Definition 2.29. We will say that two valuations v, v′ : K → R ∪ {∞} are equivalent if there exists
some real number s > 0 such that v′ = s · v.

By Proposition 2.27, the study of nonarchimedean absolute values on a field K is equivalent to
the study of valuations v : K → R ∪ {∞}.
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Proposition 2.30. Let K be a field and v : K → R ∪ {∞} a valuation. The set

O := {x ∈ K : v(x) ≥ 0}

is a local ring with maximal ideal

m := {x ∈ K : v(x) > 0}.

Furthermore the invertible elements of O are

O× = {x ∈ K : v(x) = 0}.

Proof. • First we will see that O is a subring of K. We have to check the following conditions:

1. Closed under addition: Let a, b ∈ O. Then

v(a+ b) ≥ min{v(a), v(b)} ≥ 0,

thus a+ b ∈ O.

2. Closed under multiplication: Let a, b ∈ O. Then

v(a · b) = v(a) + v(b) ≥ 0,

thus a · b ∈ O.

3. Neutral element for multiplication: Since v(1) = 0, 1 ∈ O.

4. Closed under additive inverse: Let a ∈ O, then

v(−a) = v((−1) · a) = v(−1) + v(a) = v(a) ≥ 0,

thus −a ∈ O.

• Let us now check that m is an ideal of O:

1. Closed under addition: Let a, b ∈ m. Then

v(a+ b) ≥ min{v(a), v(b)} > 0,

thus a+ b ∈ m.

2. Closed under multiplication by elements of O: Let a ∈ O, b ∈ m. Then

v(a · b) = v(a) + v(b) > 0,

thus a · b ∈ m.

• The invertible elements in O are those x ∈ O such that x−1 ∈ O. Since v(x−1) = −v(x), we
obtain that x is invertible if and only if v(x) ≥ 0 and −v(x) ≥ 0, in other words, if and only if
v(x) = 0.

In particular, this shows that the elements of O which are not invertible are precisely the ele-
ments of m, which is an ideal. Thus we can conclude that m is a maximal ideal, and moreover
that it is the unique maximal ideal of O.
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Definition 2.31. LetK be a field and v a valuation onK. We will call the ringO = {x ∈ K : v(x) ≥
0} the valuation ring of v.

Remark 2.32. Let K be a field, v a valuation on K and O the valuation ring.

• For every nonzero element in K, either x ∈ O or x−1 ∈ O (of course, elements in O× satisfy
both).

• Let v be a valuation on K andO the valuation ring of v. We can recover K as the fraction field
of O (this follows easily from the first part of the remark).

• Let v′ be another valuation on K which is equivalent to v. Then the valuation ring of v′

coincides with O.

Example 2.33. Let p > 0 be a prime number, and consider the p-adic valuation vp in Q. Then the
valuation ring is

O = {q ∈ Q : vp(q) ≥ 0} = Z(p),

the localisation of the ring Z at the prime ideal (p). This is a local ring, with maximal ideal pZ(p).
Note that

Z ( Z(p) ( Q.

Proposition 2.34. Let K be a field, v a valuation. Then the valuation ringO of v is integrally closed.

Proof. Let x ∈ K be an element which is integral over O; we have to prove that x ∈ O. We can
assume x 6= 0. Assume moreover that x 6∈ O. Then v(x) < 0. Therefore v(x−1) > 0, thus x−1 ∈ O.

On the other hand, the condition that x is integral over O means that there exists n ∈ N and
a0, . . . , an−1 ∈ O such that

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

Dividing by xn−1 in the equation above, we get that

x = −an−1 − · · · − a1x
−(n−2) − a0x

−(n−1) = −an−1 − · · · − a1(x−1)n−2 − a0(x−1)n−1 ∈ O,

contradicting the assumption that x 6∈ O.

Now we focus on a special kind of valuations.

Definition 2.35. LetK be a field and let v : K → R∪{∞} be a valuation. We say that v is a discrete
valuation if the set

{v(x) : x ∈ K× satisfies v(x) > 0}

has a minimum (that is to say, if the infimum of the set is an element of the set).

Example 2.36. The p-adic valuation on Q is a discrete valuation; namely, we have

{x ∈ Q× with vp(x) > 0} =
{a
b

: p|a and p - b
}

and
{vp(x) : x ∈ Q× with vp(x) > 0} = {1, 2, 3, . . . }

has a minimal value, namely 1 = vp(p).
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Remark 2.37. Not all valuations need to be discrete. We will see examples of non-discrete valuations
later in the lecture.

Lemma 2.38. Let K be a field and v a discrete valuation on K. Let

s = min{v(x) : x ∈ K× satisfies v(x) > 0}.

Then
v(K×) = sZ.

Proof. Let x ∈ K× be such that v(x) = s. Then, for all m ∈ Z,

v(xm) = m · s,

thus v(K×) ⊃ sZ.
Reciprocally, let us take y ∈ K×.

v(y) ∈ R =
⊔
m∈Z

[ms, (m+ 1)s)

Thus v(y) belongs to one of the intervals in the above union, say [ms, (m + 1)s), for some m ∈ Z.
Therefore

v(yx−m) ∈ [0, s).

But by the definition of s, we cannot have that 0 < v(yx−m) < s, thus v(yx−m) = 0. Therefore
v(y) = v(xm) = ms ∈ sZ, as we wanted to prove.

Remark 2.39. Recall that, if R is an integral domain, an element r ∈ R is called a prime element if
r is a nonzero, nonunit element such that, for all s, t ∈ R, it holds:

r|(s · t) if and only if r|s or r|t.

Let K be a field and let v a discrete valuation on K. Then the valuation ring O of v is an integral
domain, and π is a prime element if and only if

v(π) = min{v(x) : x ∈ K× satisfies v(x) > 0}

(see Exercise 2 of Sheet 9). In other words, π is a prime element if and only if v(K×) = v(π)Z.

Definition 2.40. We will say that v is normalised if v(K×) = Z.

Remark 2.41. • Every discrete valuation is equivalent to a normalised discrete valuation.

• Let v, v′ be equivalent valuations on a field K. We know that their valuation rings coincide; let
us call it O. Then π is a prime element of v if and only if π is a prime element of v′.

• LetK be a field, v a normalised discrete valuation ofK,O the valuation ring of v, and π ∈ K×.
Then π is a prime element of O if and only if the ideal πO is a prime ideal of O (see Exercise
1 of Sheet 9).
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Corollary 2.42. Let K be a field, v a discrete valuation on K and O the valuation ring of v. Fix a
prime element π ∈ O. Then every element x ∈ K× can be uniquely written as

x = u · πm

for some m ∈ Z and some u ∈ O×.

Proof. We may assume without loss of generality that v is normalised. Let x ∈ K×, and call m =

v(x). Then v(xπ−m) = 0, thus u = xπ−m ∈ O×, and x = uπm.
As for the uniqueness, if we had

uπm = u′πm
′

(2.12)

for some u, u′ ∈ O× and m,m′ ∈ Z, then

m = v(uπm) = v(u′πm
′
) = m′;

and the equality (2.12) boils down to uπm = u′πm, whence u = u′.

Proposition 2.43. Let K be a field and let v be a discrete valuation on K. Fix a prime element π.
Then the proper nonzero ideals of O are precisely those of the form

(πn) : n ∈ N.

In particular, if v is normalised, the proper ideals of O are precisely those of the form

{x ∈ O : v(x) ≥ n} : n ∈ N ∪ {∞}.

Proof. We may assume, without loss of generality, that v is normalised. Since v(K×) = Z and
O = {x ∈ K : v(x) ≥ 0}, we obtain that

v(O) = {0, 1, 2, . . . } ∪ {∞} = Z≥0 ∪ {∞}.

Let a be a proper nonzero ideal of O. The properness of a implies that there is no unit of O
contained in a; thus we have the inclusion of sets

{v(x) : x ∈ a} ⊆ Z>0 ∪ {∞}.

Hence the set {v(x) : x ∈ a} has a minimum (which is not ∞), say n0 ≥ 1. Let x ∈ a be such
that v(x) = n0. We can write x as x = u0 · πn0 for some u0 with v(u0) = 0. Thus u0 ∈ O×, and
πn0 ∈ a, whence (πn0) ⊂ a. We will now show that a = (πn0). Namely, let a ∈ a. We can write
a = uπm for some m ∈ Z≥0. But then by definition of n0, we have m ≥ n0, so that πm−n0 ∈ O and
a = uπm−n0 · πn0 ∈ (πn0).

Lemma 2.44. Let K be a field, v a discrete valuation on K, O the valuation ring of v, π a prime
element of O and m = (π) the maximal ideal of O, k = O/m. Then for all n ∈ N, we have an
isomorphism

mn/mn+1 ' O/m

as k-vector spaces.
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Proof. Clearly O/m = k is a 1-dimensional k-vector space.
On the other hand, mn, as an ideal ofO, is an commutative group with the addition, and mn+1 is a

subgroup of mn. Hence the quotient mn/mn+1 has a structure of commutative group. One can define
a map

O/m×mn/mn+1 → mn/mn+1

(a+ m, α+ mn+1) 7→ aα+ mn+1.

This is well defined map, and endows mn/mn+1 with a structure of O/m-module, that is to say, of
k-vector space.

Consider the map
ϕ : O/m→ mn/mn+1

a+ m 7→ aπn + mn+1.

This map is a morphism of k-vector spaces, and one easily sees that it is bijective.

Remark 2.45. Let K be a field, v a normalised discrete valuation and O the valuation ring. Propos-
ition 2.43 shows in particular that O is a principal ideal domain, and Proposition 2.30 shows that O
is a local ring. From Proposition 2.43 one can also deduce that O is a Noetherian ring. We can also
read the Krull dimension of O from Proposition 2.43; namely, the zero ideal is prime (because O is
an integral domain), and of all the proper nonzero ideals, only (π) is prime. Thus the Krull dimension
of O is 1. Finally, Lemma 2.44 shows that dimO/mm/m

2 = 1 = dimKrullO; in other words, O is
regular.

Recall that a discrete valuation ring is a regular local ring of Krull dimension 1. We just saw that
the valuation ring of a discrete valuation is a discrete valuation ring. The reciprocal is also true, and
will be proven in Exercise 1 of Sheet 8.

Definition 2.46. Let K be a field, v a discrete valuation on K, O the valuation ring of v and m the
maximal ideal ofO . For each n ∈ N, we define the n-th higher unit group as the multiplicative group

U (n) := 1 + mn.

Furthermore we call U (1) the group of principal units.

Remark 2.47. 1. For all n ∈ N, we have the inclusionU (n) ⊂ O×. Namely, let u = 1+x ∈ U (n).
Then x ∈ mn ⊂ m, thus v(x) > 0. Therefore v(x) 6= v(1) and we obtain that v(1 + x) =

min{v(1), v(x)} = 0. Thus u ∈ O×.

2. U (n) is a subgroup of O×. Namely, it is clearly closed under multiplication, and the neutral
element of O×, which is 1, belongs to U (n). Let us see that it is closed under taking inverses.
Let u = 1 + x ∈ U (n). To prove that u−1 ∈ U (n), we have to show that u−1 − 1 ∈ mn. But

u−1 − 1 = (1 + x)−1 − 1 = (1 + x)−1(1− (1 + x)) = (1 + x)−1(−x) ∈ mn.

As a conclusion, we have the following decreasing sequence of multiplicative groups

O× ⊃ U (1) ⊃ U (2) ⊃ · · · ⊃ U (n) ⊃ · · ·
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Proposition 2.48. For each n ≥ 1, we have the group isomorphisms

O×/U (n) ' (O/mn)×

Proof. Consider the projection pn : O → O/mn, which is a ring morphism. If x ∈ O×, then it
follows that pn(x) ∈ (O/mn)× (namely, the inverse of pn(x) in O/mn is x−1 + mn). Therefore we
can restrict pn to O× and obtain a map (which we still call pn)

pn : O× → (O/mn)×.

This map is still a group morphism with respect to the multiplication. Moreover, it is surjective.
Namely, for any x+ mn ∈ (O/mn)×, let y + mn ∈ O/mn be such that

(x+ mn)(y + mn) = 1 + mn

In particular, we obtain that xy − 1 ∈ mn; in particular, xy is a unit in O. Thus x ∈ O×, and
pn(x) = x+ mm.

Finally, we need to compute the kernel of pn: if x ∈ O× is such that pn(x) = 1 + mm, then
x− 1 ∈ mn, that is to say, x ∈ U (n).

3 Completions

Our aim in this section is to generalise the construction of the real numbers from the rational numbers.
Recall briefly that one defines R as the set of all Cauchy sequences of elements of Q, modulo the subset
of sequences that converge to zero, and endows this with the natural addition and multiplication (one
defines the addition and multiplication of two sequences component-wise). Of course, here the notion
of Cauchy sequence is defined with respect to the standard absolute value | · |∞. But nothing prevents
us from repeating this process using a different absolute value!

Definition 3.1. Let K be a field and let | · | be an absolute value. We say that a sequence (an)n∈N of
elements of K is a Cauchy sequence if, for all ε > 0 there exists an N ∈ N such that

|an − am| < ε for all m,n ∈ N such that m,n ≥ N.

Definition 3.2. Let K be a field and let | · | be an absolute value on K. We say that K is complete
with respect to | · | if every Cauchy sequence (an)n of element of K converges to an element of K. In
other words, if there exists a ∈ K such that

lim
n→∞

|an − a| = 0.

Example 3.3. Q is not a complete field with respect to the standard absolute value | · |∞, whereas R
and C are complete with respect to the standard absolute value | · |∞.

Definition 3.4. Let K be a field and let | · | be an absolute value on K. A completion of (K, | · |) is a
field K̂, endowed with an absolute value | · |′, such that
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• K is a subfield of K̂, and the restriction of | · |′ to K coincides with | · |.

• K is dense in K̂, that is to say, for each ε > 0 and each y ∈ K̂ there exists an x ∈ K such that
|y − x|′ < ε.

• K̂ is complete with respect to | · |′.

Remark 3.5. A field K endowed with an absolute value | · | has at most one completion up to iso-
morphism. That is to say, if (K̂1, | · |1) and (K̂2, | · |2) are two completions of K, then there exists a
field isomorphism ϕ : K̂1 → K̂2 such that for all x ∈ K̂1, |x|1 = |ϕ(x)|2 (see Exercise 1 of Sheet 9).
Thus by abuse of notation we will speak about the completion of a field

Example 3.6. (R, | · |∞) is the completion of Q with respect to the standard absolute value.

Our aim now is to prove that every field endowed with an absolute value has a completion. We
start with a simple lemma.

Lemma 3.7. Let K be a field and let | · | be an absolute value. The set R of all Cauchy sequences of
elements of K is a ring with the addition and multiplication defined as:

+ : R×R→ R

(an)n, (bn)n 7→ (an + bn)n

· : R×R→ R

(an)n, (bn)n 7→ (an · bn)n.

The set
m := {(an)n : an

n→∞
−−−−−−→ 0}

is an ideal of R.

Proof. Exercise 2 of Sheet 9.

Proposition 3.8. The quotient ring R/m is a field.

Proof. Let (an)n be a Cauchy sequence which does not belong to m. We have to prove that its class
in R/m, which we denote by [(an)n], is invertible in R/m.

First of all, (an)n does not tend to zero as n tends to∞. That is to say, there exists some ε0 > 0

such that, for all M ∈ N there exists some m > M satisfying

|am| ≥ ε0. (3.13)

On the other hand, since (an)n is a Cauchy sequence, given the positive number ε0/2, there exists
some N0 ∈ N such that, for all n, n′ ≥ N0,

|an − an′ | < ε0/2.

In particular, by Equation (3.13) there exists an m0 ∈ N, m0 ≥ N0 satisfying that |am0 | ≥ ε0.
Therefore, for all n ≥ N0, we have that

|an| = |an − am0 + am0 | ≥ ||an − am0 | − |am0 || > ε0/2.

In particular, |an| 6= 0, thus an 6= 0 and we may consider a−1
n .
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Define the sequence (bn)n as

bn =

{
1 if n ≤ N0

a−1
n if n > N0.

Let us see that (bn)n is a Cauchy sequence. Let ε > 0. Since (an)n is a Cauchy sequence, we
know that there exists some N1 ∈ N such that, for all n, n′ ≥ N1,

|an − an′ | < 1

4
ε · ε2

0.

We may assume, without loss of generality, that N1 ≥ N0. Then

|bn − bn′ | =
∣∣∣∣ 1

an
− 1

an′

∣∣∣∣ =
|an − a′n|
|ana′n|

≤ |an − a
′
n|

(ε0/2)2
< ε.

On the other hand, we have that

anbn − 1 =

{
an − 1 if n ≤ N0

0 if n > N0.

In other words, if we denote by 1 the sequence which is constantly 1, we have that (an)n ·(bn)n−1
is a sequence which is constantly equal to zero from one point onwards, and thus lies in m. That is to
say,

[(an)n] · [(bn)n] = [1],

thus [(an)n] is invertible in R/m.

Let us denote
K̂ = R/m.

Remark 3.9. The map
i : K → K̂

a 7→ (a)n

is an injective ring morphism.

Remark 3.10. Let K be a field, let | · | be an absolute value, and (an)n a Cauchy sequence. Then we
can consider the sequence (|an|)n of real numbers. This is a Cauchy sequence in R (with respect to
the standard absolute value | · |∞), because of the inequality

||an| − |am||∞ < |an − am|.

Since in R all Cauchy sequences have a limit, we can consider the real number

a := lim
n→∞

|an|.
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Lemma 3.11. Let K be a field, | · | an absolute value, K̂ its completion. Then the map

| · |
K̂

: K̂ → R≥0

[(an)n] 7→ lim
n→∞

|an|

is an absolute value on K̂. Moreover | · |
K̂

is nonarchimedean if and only if the absolute value | · | on
K is nonarchimedean.

Proof. Exercise 3 of Sheet 9.

Remark 3.12. The image of the map i : K → K̂ defined in Remark 3.9 is dense in K̂ with respect to
the absolute value | · |

K̂
. In other words, every element of K̂ can be approximated by elements of K

(viewed inside K̂ via i) with respect to the absolute value | · |
K̂

.

Lemma 3.13. Let K be a field, | · | an absolute value on K. Then the field K̂ is complete with respect
to | · |

K̂
.

Proof. Consider a Cauchy sequence (Cm)m in K̂. Namely, for each m ∈ N, Cm is the class of a
sequence (a

(m)
n )n, such that the corresponding sequence of classes (Cm)m is a Cauchy sequence in

K̂. We define an element C = [(cn)n] ∈ K̂ as follows. Since the image of K inside K̂ via the map i
defined in Remark 3.9 is dense, we can choose, for each n ∈ N, an element cn ∈ K such that

|Cn − i(cn)|
K̂
<

1

n

We claim that the sequence (cn)n is a Cauchy sequence in K. Indeed, fix ε > 0. Since (Cm)m is a
Cauchy sequence, there exist M > 0 such that, for all m1,m2 > M , |Cm1 − Cm2 |K̂ < ε/2. Then
for all n1, n2 > max{4/ε,M} it holds that

|cn1 − cn2 | = |i(cn1)− i(cn2)|
K̂
≤ |i(cn1)− Cn1 |K̂ + |Cn1 − Cn2 |K̂ + |Cn2 − i(cn2)|

K̂

<
1

n1
+ ε/2 +

1

n2
< ε/4 + ε/2 + ε/4 = ε.

Hence, we may consider the class C = [(cn)n)] ∈ K̂. It remains to prove that the sequence
(Cm)m converges to C with respect to | · |

K̂
. Fix ε > 0. We have just proved that (cn)n is a Cauchy

sequence; hence there exists N > 0 such that, for all n1, n2 > N , |cn1 − cn2 | < ε/2. Then it follows
that, for all m > max{2/ε,N} it holds that

|Cm − C|K̂ ≤ |Cm − i(cm)|
K̂

+ |i(cm)− C|
K̂
<

1

m
+ lim
n→∞

|cm − cn| <
ε

2
+
ε

2
= ε.

We have thus proven the following proposition.

Proposition 3.14. Let K be a field, | · | an absolute value. Then the field K̂ := R/m, together with
| · |

K̂
, is a completion of (K, | · |).

We state and prove a lemma about fields of positive characteristic. This lemma could have been
proven immediately after the characterisation of nonarchimedean absolute values (Lemma 2.17).
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Lemma 3.15. Let K be a field of positive characteristic, and | · | an absolute value. Then | · | is
nonarchimedean.

Proof. Since the characteristic of K is positive, there exists some prime number p > 0 such that
p · 1K = 0. Therefore

{|n · 1K | : n ∈ N} = {|1K |, |2 · 1K |, . . . , |(p− 1) · 1K |, |0|}

is a finite subset of R. But a finite subset of R is always bounded. Therefore by Lemma 2.17, we
conclude that | · | is nonarchimedean.

Our aim now is to study complete fields. First we will consider the case of complete fields with
respect to an archimedean absolute value. We have two very familiar examples, namely (R, | · |∞),
(C, | · |∞).

Theorem 3.16 (Ostrowski). Let K be a complete field with respect to an archimedean valuation | · |.
Then K is isomorphic to R or C, and | · | is equivalent to the standard absolute value | · |∞.

Proof. Since | · | is archimedean, the characteristic of K is zero (cf. Lemma 3.15). Therefore we have
an inclusion Q ⊂ K. The restriction of | · | to Q is an achimedean absolute value on Q, hence by
Theorem 2.23 it is equivalent to the standard absolute value | · |∞. That is to say, there is an s > 0

such that, for all x ∈ Q, |x|s = |x|∞. Without loss of generality, we may replace | · | by | · |s, and thus
assume that | · | and | · |∞ coincide on Q.

Since K is complete, every Cauchy sequence in Q (with respect to | · |) converges in K. In this
way we can construct an injective ring morphism R→ K; namely, for each r ∈ R, choose a sequence
of rational numbers (an)n such the limit of (an)n in R, with respect to the standard absolute value,
coincides with r. Then we can define

ϕ(r) := lim
n→∞

an,

where this limit is taken in K, with respect to | · |.
We have thus

R ' ϕ(R) ⊂ K.

We will identify R with ϕ(R), and say that R ⊂ K (via ϕ). Moreover, by the definition of ϕ, the
restriction of | · | to R coincides with the standard absolute value on R.

If K = R, then we are done. We will therefore assume the inclusion R ⊂ K is strict.
We will reduce the proof of the theorem to the following fact.

Fact 3.17. Every element of K satisfies a quadratic equation with coefficients in R.

Let us assume Fact 3.17. Take an element α ∈ K \R. By the fact above, there exist some a, b ∈ R
such that α2 + aα+ β = 0. Thus [R(α) : R] = 2, and we have the inclusions

R ⊂ R(α) ⊂ K.

There is an isomorphism

ψ : R[X]/〈X2 + aX +B〉 → R[α].
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Since C is algebraically closed, there exists an element z ∈ C satisfying that z2 + az + b = 0.
This allows us to define an injective map

ϕ : R[X]/〈X2 + aX + b〉 → C

such that ϕ acts as the identity on R, and maps X to z.
The composition ϕ ◦ ψ−1 gives us an injective ring morphism R[α]→ C, which can be extended

to an injective ring morphism
Φ : R(α)→ C.

Thus we have the inclusions
R ⊂ R(α) ⊂ C,

where [C : R] = 2 = [R : R(α)], thus R(α) = C.
In other words, we have proven that C ⊂ K. Reciprocally, let β ∈ K. Then, by the Fact above, β

satisfies a quadratic equation with coefficients in R, say f(β) = 0 for f(X) = Z2 + cX + d ∈ R[X].
The polynomial f(X) has at most two roots in K. But since C is algebraically closed, f(X) has
two roots (counting multiplicities) in C, thus β must belong to C. Finally, note that there is a unique
extension of the standard absolute value | · |∞ on R to C, namely the standard absolute value on C
(Exercise on some future Sheet).

Therefore the proof of the theorem boils down to Fact 3.17.

Proof of Fact. Let α ∈ K. Consider the function

f : C→ R
z 7→ |α2 − (z + z)α+ zz|

where z denotes the complex conjugate of z ∈ C.
We have that

|f(z1)− f(z2)|∞ = ||α2 − (z1 + z1)α+ z1z1| − |α2 − (z2 + z2)α+ z2z2||∞
≤ |(α2 − (z1 + z1)α+ z1z1)− (α2 − (z2 + z2)α+ z2z2)| = |(z2 − z1 + z2 − z1)α+ z1z1 − z2z2|
≤ (|z2 + z2 − (z1 + z1)|)|α|+ |z1z1 − z2z2| = (|z2 + z2 − (z1 + z1)|∞)|α|+ |z1z1 − z2z2|∞.

Since both functions f1(z) = z + z and f2(z) = zz are continuous with respect to | · |∞, we obtain
that the function f is a continuous function (with respect to the standard absolute value on both sides).

Clearly the limit of |f(z)|∞ is ∞ when |z|∞ → ∞. Therefore it has a minimum value, say
|f(z0)|∞ = m. If we prove that m = 0, then we are done, because we would have the equality
α2 − (z0 + z0)α+ z0z0 = 0, and the numbers z0 + z0, z0z0 belong to R.

Consider the set
S = {z ∈ C : f(z) = m}.

Note that this set is nonempty, closed and different from C (since |f(z)|∞ goes to∞ as |z|∞ grows).
We will prove that, if m > 0, it is also open, which is a contradiction because C is a connected space
with respect to the topology induced by | · |∞.
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Let us assume that m > 0, and fix z0 ∈ S. Consider the function

h : C→ C
z 7→ z2 − (z0 + z0)z + z0z0.

Note that h(z0) = 0. Moreover, h is clearly a continuous function (since it is a polynomial), thus
there is a δ > 0 such that, if |z1 − z0|∞ < δ, then |h(z1) − h(z0)|∞ < m. We will prove that the
whole open ball B with centre z0 and radius δ is contained in S.

Fix some z1 ∈ B. Then
|h(z1)|∞ = |h(z1)− h(z0)|∞ = ε

for some positive number ε < m. Call ξ := h(z1).
For each n ∈ N, consider the following polynomial of degree 2n with complex coefficients:

G(X) = (X2 − (z0 + z0)X + z0z0)n − ξn

By the definition of ξ, we have that G(z1) = 0 Let us name the roots of G(X) as β1 :=

z1, β2, β3, . . . , β2n (since C is algebraically closed, all βi belong to C). Thus we have

G(X) = (X − z1)
2n∏
k=2

(X − βk).

Consider now G(X) = (X2 − (z0 + z0)X + z0z0)n − ξn obtained from G(X) by applying the
complex conjugation to all its coefficients; note that z0 + z0 and z0z0 are real numbers. We have
G(z1) = 0 and G(βi) = 0 for all i = 2, . . . , 2n. Hence

G(X)G(X) = ((X − z1)(X − z1))
2n∏
k=2

(X − βk)(X − βk)

=
(
X2 − (z1 + z1)X + z1z1

) 2n∏
k=2

(X2 − (βk + βk)X + βkβk).

Replacing X by α and computing the absolute value in K, we obtain

|G(α)G(α)| =

∣∣∣∣∣(α2 − (z1 + z1)α+ z1z1)

2n∏
k=2

(α2 − (βk + βk)α+ βkβk)

∣∣∣∣∣
= |f(z1)| ·

2n∏
k=2

|f(βk)| ≥ |f(z1)|m2n−1.

Thus we obtain the bound
|G(α)G(α)| ≥ |f(z1)|m2n−1.

Going back to the definition of G(X) and replacing X by α, we have that

|G(α)| = |(α2 − (z0 + z0)α+ z0z0)n − ξn| ≤ |f(z0)|n + |ξ|n = |f(z0)|n + εn = mn + εn.
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Similarly, |G(α)| ≤ m+ εn, thus

|G(α)G(α)| ≤ (mn + εn)2.

Combining the two inequalities, we get

|f(z1)|m2n−1 ≤ (mn + εn)2.

Thus ∣∣∣∣f(z1)

m

∣∣∣∣ ≤ (1 +
( ε
m

)n)2
.

Letting n → ∞, we obtain that f(z1) ≤ m. Thus f(z1) = m, and z1 ∈ S, as we wanted to
prove.

Now that we know what complete fields with respect to an archimedean valuation look like, we
consider the fields which are complete with respect to a nonarchimedean absolute value.

Example 3.18. Let p > 0 be a prime number. Then Q is not complete with respect to the p-adic
absolute value.

Assume first that p > 2 is a prime number. Let m ∈ N be such that p - m, m is not a square in
Q, but m is a square modulo p. We will construct a sequence (ai)i such that the limit A =

∑∞
i=0 aip

i

in Qp satisfies that A2 − m = 0. Since we chose m such that m is not a square, it follows that
A 6∈ Q. More precisely, we construct a sequence (ai)i such that: ai ∈ {0, . . . , p − 1} for all i, and
(
∑n

i=0 aip
i)2 ≡ m (mod pn+1).

We construct the sequence by induction:

• n = 0: Choose a0 ∈ {0, . . . , p− 1} such that a2
0 ≡ m (mod p) (it exists because we chose m

to be a square mod p).

• n⇒ n+1: Assume we have a0, . . . , an ∈ {0, . . . , p−1} such that the sumAn := (
∑n

i=0 aip
i)

satisfies A2
n ≡ m (mod pn+1). Thus the difference A2

n −m is divisible by pn+1; call dn the
integer such that A2

n −m = dnp
n+1. Then define an+1 as the only element in {0, . . . , p − 1}

such that an+1 ≡ −dn(2An+1)−1 (mod p) (Note that An+1 is invertible modulo p because its
square is congruent to m modulo p, and p - m; 2 is invertible modulo p because p > 2).

The relation an+1 ≡ −dn(2An+1)−1 (mod p) ensures that the partial sum An+1 :=
∑n+1

i=0 aip
i

satisfies that A2
n+1 ≡ m (mod pn+2); so the sequence above satisfies our claim.

For p = 2, we could have done something similar with the equation x3 + 2x+ 1 = 0.

Example 3.19. Let p > 0 be a prime number. Then Qp is complete with respect to the p-adic absolute
value (Exercise 2 of Sheet 10).
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Remark 3.20. We have already seen that, if K is a field and | · | a nonarchimedean absolute value,
then the absolute value | · |

K̂
is also nonarchimedean. We can explicitly describe the corresponding

valuation.
Namely, let v be valuation on a field K, and let K̂ its completion with respect to the absolute

value | · | attached to v according to Proposition 2.27, that is to say,

v(x) =

{
− log |x| if x 6= 0

∞ if x = 0.

For each nonzero class [(an)n] ∈ K̂, we can choose a representative, say (bn)n, such that for
all n ∈ N, bn 6= 0. Indeed, since [(an)n] is nonzero, the sequence (an)n does not converge to zero.
Hence only finitely many terms are zero, say ai1 , . . . , air = 0. Then the sequence (cn)n defined as

cn =

{
1 if i = ij for some j = 1, . . . , r

0 otherwise

belongs to m, and thus the sequence (bn)n defined as bn = an − cn for all n ∈ N satisfies the
conditions above.

Let us then assume that, for all n ∈ N, an 6= 0. We have that

lim
n→∞

v(an) = lim
n→∞

− log |an| = − log lim
n→∞

(|an|) = − log |[(an)n]|
K̂
.

Therefore the valuation v̂ attached to | · |
K̂

satisfies that

v([(an)n]) = lim
n→∞

v(an). (3.14)

Assume now that v is a discrete valuation, say v(K×) = sZ for some s > 0. Let [(an)n] ∈ K̂×,
where we assume that all elements an ∈ K are nonzero as above. Then the sequence (v(an))n
becomes constant from some point onwards. Namely, if we take some ε ∈ (0, s), then there exists an
N0 ∈ N such that, for all n, n′ ≥ N0,

|v(an)− v(an′)| < ε < s.

Since both v(an) and v(an′) belong to sZ, we conclude that they coincide. Therefore v̂([(an)n]) =

v(aN0) ∈ sZ.
As a consequence, we obtain that

v̂(K̂×) = v(K×) = sZ.

In particular, the valuation v̂ on K̂ is also discrete.

One very useful property of fields which are complete with respect to a nonarchimedean absolute
value is that, if a the reduction of a polynomial f(x) with coefficients in the valuation ring has a root
in the residue field, then this root can be “lifted” to a root of f(x) in K. This is a consequence of the
general result, known as Hensel’s lemma. Before stating and proving it, we need some notations and
definitions.
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Notation 3.21. In the rest of the section we will use the following notation:

• K is a field, endowed a nonarchimedean absolute value | · |.

• O denotes the valuation ring of K, m the maximal ideal of O, and κ = O/m is the residue
field.

Lemma 3.22. Let K be a local field and v a valuation on K. Let (an)n be a sequence of elements
of K that converges to a with respect to v. Assume that there exist B > 0, N0 ∈ N such that, for all
n ≥ N0, v(an) ≥ B. Then v(a) ≥ B.

Proof. Since the sequence a − an converges to zero, we know that there exists N1 ∈ N such that,
for all n ≥ N1, v(a − an) ≥ B + 1. Hence if we choose n > max{N0, N1}, we have that v(a) ≥
min{v(a− an), v(an)} ≥ min{B + 1, B} = B.

Corollary 3.23. Let K be a local field and v a valuation on K, π ∈ K with v(π) > 0. Let (an)n be
a sequence of elements of O that converges to a with respect to v. Assume that there exist m ∈ N,
N0 ∈ N such that, for all n ≥ N0, an ∈ (πm). Then a ∈ (πm).

Proof. Let M = v(πm). Then for any b ∈ O, the condition b ∈ (πm) is equivalent to the condition
v(b) ≥M . Indeed, b ∈ (πm) if and only if there exists c ∈ O with b = cπm, which holds if and only
if the element bπ−m belongs to O. This condition is equivalent to v(bπ−m) ≥ 0, or, equivalently,
v(b) ≥ v(πm) = M . The corollary then follows rewriting the lemma in terms of this condition.

Remark 3.24. Assume the setting in Notation 3.21. In what follows, we will often consider polyno-
mials f(x) ∈ O[x], and reduce them modulo an ideal a of O. Formally, there are two ways to define
the process of reduction mod a.

• We can consider the ideal A generated by a in the ring O[x], namely, the smallest ideal of O[x]

containing the all elements in a. Then, by abuse of notation, we will say that two polynomials
f(x), g(x) ∈ O[x] are congruent modulo a if

f(x) ≡ g(x) (mod A).

• On the other hand, given two polynomials f(x), g(x) ∈ O[x], we can say that they are congru-
ent modulo a if all the coefficients of f(x)− g(x) lie in a.

These two definitions are equivalent. Indeed, note first that

A = {
r∑
i=1

aihi(x) for some r ∈ N, and for some hi(x) ∈ O[x], ai ∈ a; i ∈ {0, . . . , r}} =

= {
s∑
i=1

bix
i for some s ∈ N, and for some bi ∈ a; i ∈ {0, . . . , s}};

in other words, we can write all the elements of A as a polynomial with coefficients in a.
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Let f(x), g(x) ∈ O[x]. Then

f(x) ≡ g(x) (mod A)⇔ f(x)− g(x) ∈ A

⇔ ∃s ∈ N, bi ∈ a : f(x)− g(x) =

s∑
i=1

bix
i

⇔ all coefficients of f(x)− g(x) lie in a.

In particular, we can consider the case where a = (πn) for some element π with valuation v(π) >

0. Then for every element a ∈ O, a ∈ (πn) if and only if v(a) ≥ nv(π). Thus f(x) is congruent
to g(x) (mod (πn)) if and only if all the coefficients of f(x) − g(x) have valuation greater than or
equal to nv(π).

Definition 3.25. A polynomial f(x) = anx
n + · · ·+ a1x+ a0 ∈ O[x] is called primitive if f(x) 6≡ 0

(mod m), that is to say, if
max{|a0|, |a1|, . . . , |an|} = 1.

Lemma 3.26 (Hensel’s Lemma). LetK be complete with respect to a nonarchimedean absolute value
| · |. Let f(x) ∈ O[x] be a primitive polynomial whose reduction mod m admits a factorisation

f(x) ≡ g(x) · h(x) (mod m)

for some g(x), h(x) ∈ κ[x] which are coprime.
Then there exist g(x), h(x) ∈ O[x] with deg(g) = deg(g) such that{

g(x) ≡ g(x) (mod m)

h(x) ≡ h(x) (mod m)

and
f(x) = g(x)h(x).

An immediate application of this result concerns the lifting of roots of a polynomial:

Corollary 3.27. Let K be complete with respect to a nonarchimedean absolute value | · |. Let f(x) ∈
O[x] be a primitive polynomial, let α in k such that

f(α) ≡ 0 (mod m)

Assume that α is not a root of the reduction of the formal derivative of f(x).
Then there exists α ∈ O with α ≡ α (mod m) and f(α) = 0.

Proof of the Corollary. Since f(α) = 0, we have that x− α divides f(x). Let f0(x) be such that

f(x) = (x− α)f0(x).

Take g(x) = x− α, h(x) = f0(x). The condition on the reduction of the derivative of f(x) ensures
that g(x), h(x) are coprime. Now we can apply Hensel’s Lemma and obtain a polynomial of degree 1,
g(x) = ax− b for some a, b ∈ K with a ≡ 1 (mod m), b ≡ α (mod m), and f(x) = (ax− b)h(x)

for some h(x) ∈ O[x]. Since a ≡ 1 (mod m), we have that a ∈ O×, thus we can write

f(x) = a(x− b/a)h(x).

Take α = b/a; clearly α ≡ α (mod m) and f(α) = 0.
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Proof of Hensel’s Lemma. Let us denote by df = degK f and dg = degκ g. Choose polynomials
g0(x), h0(x) ∈ O[x] such that{

g0(x) ≡ g(x) (mod m) and degK g0 = dg

h0(x) ≡ h(x) (mod m) and degK h0 ≤ df − dg.

Moreover we choose a(x), b(x) ∈ O[x] such that

a(x)g0(x) + b(x)h0(x) ≡ 1 (mod m).

Note that we can make this choice because the greatest common divisor of g(x), h(x) ∈ κ[x] is 1.
Once we make all these choices, we can consider the minimum of the valuations of the coefficients

of the polynomials f(x)−g0(x)h0(x) and a(x)g0(x)+b(x)h0(x)−1 (which is necessarily positive).
Let us pick some π ∈ K such that v(π) equals this minimum (for instance, we can take π to be one
of the coefficients where the minimum is achieved).

Note that, with this choice of π, we have the following congruences modulo (π):{
f(x)− g0(x)h0(x) ≡ 0 (mod (π))

a(x)g0(x) + b(x)h0(x) ≡ 0 (mod (π)),

and not just modulo m. This will play an important role later in the proof.
Our aim is to construct, for each n ∈ N≥0, polynomials gn(x), hn(x) ∈ O[x] satisfying

(1) degK gn = dg and degK hn ≤ df − dg.

(2)

{
gn(x) ≡ gn−1(x), hn(x) ≡ hn−1(x) (mod (πn)) for n ≥ 1,

g0(x) ≡ g(x), h0(x) ≡ h(x) (mod m)

(3)f(x)− gn(x)hn(x) ≡ 0 (mod (πn+1))

(3.15)

Assume we have such a sequence. Then, if we write gn(x) = c
(n)
dg
xdg + · · · + c

(n)
1 x + c

(n)
0 , then

for each i = 0, . . . , dg, the sequence (c
(n)
i )n is a Cauchy sequence, and hence converges in K. Call

ci := lim
n→∞

c
(n)
i ∈ K.

For all n ∈ N, c(n)
i ∈ O, that is to say, v(c

(n)
i ) ≥ 0. Hence

v(ci) = lim
n→∞

v(c
(n)
i ) ≥ 0,

that is to say, ci ∈ O.
Define

g(x) := cdgx
dg + · · ·+ c1x+ c0.

It clearly satisfies that g(x) ∈ O[x] and degK g ≤ dg (it will be an equality if cdg 6= 0). Moreover
g(x) ≡ g(x) (mod m). Indeed, there exists some N such that, for all i ≥ N , g(x) − gi(x) ≡ 0

(mod π). Thus

g(x)− g0(x) = g(x)− gN (x) + gN (x)− gN−1(X) + gN−1(X)− · · · − g1(x) + g1(x)− g0(x);



3 COMPLETIONS 43

the first difference g(x) − gN (x) ∈ (π), and for each n, gn(x) − gn−1(x) ∈ (πn) ⊆ (π). Now it
suffices to recall that g0(x) (mod m) ≡ g(x).

The equality g(x) ≡ g(x) (mod m) implies that the leading coefficient cdg (mod m) equals the
leading coefficient of g(x), which is nonzero because the degree of g(x) is dg. Thus degK g = dg.

Analogously one defines h(x) ∈ O[x] such that degK(h) ≤ df − dg and h(x) ≡ h(x) (mod m).

Moreover f(x) − g(x)h(x) ∈ (πn) for all n ∈ N. Since v(π) > 0, for any given constant M ,
there exists some n ∈ N such that v(π)n > M , and thus all the coefficients of f(x)− g(x)h(x) have
valuation greater M . In other words, the valuation of the coefficients of f(x) − g(x)h(x) is∞, that
is, f(x) = g(x)h(x).

Therefore the proof boils down to constructing sequences of polynomials (gn(x))n, (hn(x))n
satisfying (3.15).

• n = 0: g0(x), h0(x) already satisfy (3.15). Note that here we are using f(x)− g0(x)h0(x) ≡ 0

(mod (π)) and not just (mod m).

• n→ n+1: We will define gn+1(x) = gn(x)+πn+1pn(x), hn+1(x) = hn(x)+πn+1qn(x) for
some polynomials pn(x), qn(x) ∈ O[x], so that the second condition of (3.15) will be trivially
satisfied.

The third condition of (3.15) reads

f(x)− gn+1(x)hn+1(x) ≡ 0 (mod (πn+2)).

We know that
f(x)− gn(x)hn(x) ≡ 0 (mod (πn+1)),

say f(x)− gn(x)hn(x) = πn+1An(x) for some An(x) ∈ O[x]. Note that degK An ≤ df .

We obtain

f(x)− gn+1(x)hn+1(x) = f(x)− (gn(x) + πn+1pn(x))(hn(x) + πn+1qn(x)) =

f(x)− hn(x)gn(x)− πn+1(gn(x)qn(x) + pn(x)hn(x) + π2(n+1)pn(x)qn(x) =

πn+1(An(x)− (gn(x)qn(x) + pn(x)hn(x))) + π2(n+1)pn(x)qn(x).

Therefore

f(x)− gn+1(x)hn+1(x) ≡ πn+1(An(x)− (gn(x)qn(x) + pn(x)hn(x))) (mod (πn+2)),

and condition 3 of (3.15) is equivalent to

An(x)− (gn(x)qn(x) + pn(x)hn(x)) ≡ 0 (mod (π)). (3.16)

The second condition of (3.15) implies that gn(x) ≡ g0(x), hn(x) ≡ h0(x) (mod (π)). There-
fore Equation (3.16) reads

An(x) ≡ g0(x)qn(x) + pn(x)h0(x) (mod (π)). (3.17)
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Recall now that we had polynomials a(x), b(x) ∈ O[x] such that a(x)g0(x) + b(x)h0(x) ≡ 1

(mod (π)). Therefore the polynomials q∗n(x) = An(x)a(x) and p∗n(x) = An(x)b(x) satisfy
the desired congruence, namely

An(x) ≡ An(x)(a(x)g0(x) + b(x)h0(x)) (mod (π))

≡ g0(x)(An(x)a(x)) + h0(x)(An(x)b(x)) (mod (π))

≡ g0(x)q∗n(x) + h0(x)p∗n(x) (mod (π))

(3.18)

Note that here, again, we make use of the fact that a(x)g0(x) + b(x)h0(x) ≡ 1 mod (π) and
not just mod m.

But, with this choice, g∗n+1(x) = gn(x) + πn+1p∗(x) and h∗n+1(x) = hn(x) + πn+1q∗(x) may
fail to satisfy the first condition of (3.15), namely, that degK g

∗
n+1 = dg and degK h

∗
n+1 ≤

df − dg.

To overcome this problem, we divide p∗n(x) by g0(x) (whose degree coincides with dg), and
obtain

p∗n(x) = g0(x)Qn(x) + rn(x),

where Qn(x) ∈ K[x] and rn(x) ∈ K[x] has degree smaller than dg. We wanted polynomials
with coefficients in O[x]. But note that, since g0(x) ≡ g(x) (mod m) and both have the same
degree, then the leading coefficient of g0(x) must be a unit. Therefore the division actually
yields polynomials with coefficients in O.

Replacing p∗n(x) in Equation (3.18) by the expression obtained in the division, we obtain

An(x) ≡ g0(x)q∗n(x) + h0(x)(g0(x)Qn(x) + rn(x)) ≡
g0(x)(An(x)a(x) + h0(x)Qn(x)) + h0rn(x) (mod (π)). (3.19)

Set{
pn(x) := rn(x)

qn(x) := Sum of all terms of An(x)a(x) + h0(x)Qn(x) which do not belong to (π).

Note that qn(x) ≡ An(x)a(x)+h0(x)Qn(x) (mod (π)). We remove the coefficients divisible
by π to ensure that degK qn equals the degree of the reduction of qn(x) (mod (π)). With these
values of pn(x) and qn(x), condition 2 of (3.15) is trivially satisfied and condition 3 is satisfied
because Equation (3.19) ensures that the congruence (3.17).

Let us look at the different degrees that appear in the expression. We know that degK pn < dg,
thus gn+1(x) = gn(x) + πn+1pn(x) has degree exactly dg.

On the left hand side of Equation (3.19), we have the polynomial An(x) (mod (π)), which
has degree degκ(An (mod (π))) ≤ df and, on the right hand side, we know that degκ(h0rn
(mod (π))) < df − dg + dg = df . Thus degκ(g0(Ana + h0Qn)) (mod π)) ≤ df , and
since degκ(g0 (mod (π))) = dg, we conclude that degK qn(x) = degκ(qn (mod π)) =

degκ(Ana + h0Qn (mod (π))) ≤ df − dg. Therefore degK hn+1 = degK(hn + πn+1qn)

is less than or equal to df − dg.
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Remark 3.28. Note that, in the proof of Lemma 3.26, π is not a prime element of K; actually the
valuation on K need not be discrete, so the notion of “prime element of K” may not even make sense.
Nevertheless, this π plays the role of a prime element, in the sense that, in the proof, only the valuation
of finitely many elements of K will be involved, and, of those, v(π) is minimum positive value.

Our next aim is to prove that valuations behave “well” with respect to finite separable extensions.
We start with a lemma, which, in turn, is an application of Hensel’s Lemma.

Lemma 3.29. Let K be a complete field with respect to a nonarchimedean absolute value | · |. Let

f(x) = xn + an−1x
n−1 + · · ·+ a0

be an irreducible polynomial with n > 1 and such that a0 ∈ O. Then all coefficients an−1, . . . , a1

belong to O.

Proof. Set an := 1, and let
s = max{|ai| : i = 0, . . . , n};

say |ai0 | = s. If we define bi = ai ·a−1
i0

, then |bi| ≤ 1, and moreover |bi0 | = 1. Call f0(x) = a−1
i0
f(x).

Let us further define
r = min{i : |bi| = 1}.

We can consider this minimum because the set {i : |bi| = 1} is not empty. Then

f0(x) ≡ xr(br + · · ·+ bnx
r−n) (mod m).

We have a factorisation of the reduction of g(x) modulo m, and we are in the conditions to apply
Hensel’s Lemma. Thus we can lift this factorisation; there exist g(x), h(x) ∈ O[x] with

f0(x) = g(x)h(x),

where degK g = r. Since f(x) is by hypothesis irreducible, this cannot be a factorisation in K[x];
thus either degK g = 0 or degK g = n.

• degK g = 0: Then min{i : |bi| = 1} = 0. In particular, |b0| = 1, that is to say, |a0| =

|ai0 | = max{|ai| : i = 0, . . . , n}. But |a0| ≤ 1 because, by hypothesis, a0 ∈ O. Hence, for all
i = 0, . . . , n− 1, |ai| ≤ 1.

• degK g = n: Then min{i : |bi| = 1} = n. Then |bn| = 1 ; that is to say, |ai0 | = 1. Thus for all
i = 1, . . . , n− 1, |ai| ≤ 1.

In the following remark recall some notions from Chapter 2 of [1].
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Remark 3.30. 1. Let L/K be an extension of fields of degree n < ∞. Then L has a natural
K-vector space structure (for all a ∈ K, for all α ∈ L, a · α is defined as the product of a and
α inside L). The dimension of L as a K-vector space coincides with n. For each α in L, we
can consider the map

Tα : L→ L

β 7→ αβ.

Since it is a morphism of K-vector spaces, it can be represented by a n × n matrix Tα with
entries in K with respect to some prefixed K-basis of L. Then we define the norm of α in the
extension L/K as

NormL/K(α) := detTα.

When L/K is separable, we have an equivalent definition of NormL/K(α). Namely, fix an
algebraic closure K/K containing L. Let

S := {σ : L→ K ring morphism such that σ|K = idK}.

Then it holds that
NormL/K(α) =

∏
σ∈S

σ(α).

The norm of α is related to the product of the roots of the minimal polynomial of α over K.
Namely, let α = α1, . . . , αr be the roots of the minimal polynomial of α over K, and let
e = [L : K(α)]. Then n = er, and

NormL/K(α) =

(
r∏
i=1

αi

)e
. (3.20)

2. Let L/K be a field extension, A ⊂ K a subring. Then the integral closure of A in L is defined
as the ring B consisting of the elements of L that are integral over A; in other words,

B = {α ∈ L : ∃n ∈ N,∃a0, . . . , an−1 ∈ A such that αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0}.

Theorem 3.31. Let K be a complete field with respect to a nonarchimedean absolute value | · |K .
Let L/K be a finite separable extension of degree n. Then there is a unique extension of | · |K to an
absolute value on L, which can be defined as follows: for all α ∈ L,

|α|L := n

√
|NormL/K(α)|K . (3.21)

Moreover the valuation ring of | · |L is the integral closure in L of the valuation ring of | · |K .

Proof. • First of all, we will prove that the map

| · |L : L→ R≥0

α 7→ n

√
|NormL/K(α)|K

is a nonarchimedean absolute value on L. We have to check three conditions, namely:
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1. For all α ∈ L, |α|L = 0 if and only if α = 0.

2. For all α, β ∈ L, |α · β|L = |α|L · |β|L.

3. For all α, β ∈ L, |α+ β|L ≤ max{|α|L, |β|L}.

The first two conditions are clear by the definition of | · |L. To see the third condition, let us
take α, β ∈ L. We can assume, without loss of generality, that they are both different from
zero. Let us assume that |α|L ≥ |β|L (otherwise, we interchange α and β). Then the condition
|α + β|L ≤ max{|α|L, |β|L} is equivalent to |1 + β/α|L ≤ 1. We will see that, for all β ∈ L
satisfying that |β|L ≤ 1, then |β + 1|L ≤ 1.

This will follow from the more general fact:

Fact 3.32. Let OK be the valuation ring of | · |K , and let A the integral closure of OK in L.
Then

A = {α ∈ L : |α|L ≤ 1}.

Proof of Fact. First of all, note that, for all α ∈ L,

|α|L ≤ 1⇔ n

√
|NormL/K(α)|K ≤ 1⇔ |NormL/K(α)|K ≤ 1⇔ NormL/K(α) ∈ OK .

Thus we have to prove
A = {α ∈ L : NormL/K(α) ∈ OK}.

Take α ∈ L be integral over OK . If we fix a separable closure K of K, then all the conjugates
σ(α) of α in K are also integral over OK . Therefore NormL/K(α) is integral over OK . But,
on the other hand, it is also an element of K. Since OK is integrally closed (cf. Proposition
2.34) we obtain NormL/K(α) ∈ OK .

Reciprocally, let α ∈ L be such that NormL/K(α) ∈ OK . Consider the minimal polynomial
f(x) ∈ K[x] of α over K, say

f(x) = xd + ad−1x
d−1 + · · ·+ a1x+ a0.

This polynomial is irreducible, and NormL/K(α) = ±am0 for some positive integer m (this
follows from Equation (3.20)). From the condition NormL/K(α) ∈ OK it follows that a0 ∈
OK . We can apply Lemma 3.29 to conclude that all coefficients of f(x) belong to OK , thus α
is integral over OK .

Now it is easy to show that | · |L satisfies the strong triangle inequality. Namely, denote by
OL = {α ∈ L : |α|L ≤ 1} and let β ∈ OL. Since OL is a ring (because it is the integral
closure of OK in L), we conclude that β + 1 also belongs to OL, that is to say, |β + 1|L ≤ 1.
Thus Equation (3.21) defines a nonarchimedean absolute value on L. Note that, by the Fact
above, the valuation ring of | · |L is the integral closure OL of OK in L.

• Now we want to prove uniqueness of the extension of | · |K to L. Assume that we have some
other absolute value | · |′ on L such that, for all a ∈ K, |a|′ = |a|L.
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Fact 3.33. For all β ∈ L, |β|L ≤ 1 implies that |β|′ ≤ 1.

Proof of Fact. Let β ∈ L with |β|L ≤ 1, and let

f(x) = xd + ad−1x
d−1 + · · ·+ a1x+ a0.

the minimal polynomial of β overK. Like in the proof of Fact 3.32, we have that all coefficients
ad−1, . . . , a0 ∈ OK . Assume |β|′ > 1. Then

1 = |1|′ = | − ad−1β
−1 − ad−2β

−2 · · · − a1β
−(d−1) − a0β

−d|′ ≤

max{|ad−1|K(|β|′)−1, |a2|K(|β|′)−2, . . . , |a1|K(|β|′)−(d−1), |a0|K(|β|′)−d} ≤

max{(|β|′)−1, (|β|′)−2, . . . , (|β|′)−(d−1), (|β|′)−d} < 1,

where the last inequality follows from the fact that we are assuming |β|′ > 1.

Assume now that | · |′ and | · |L are not equivalent. We now distinguish two possibilities

– | · |K is not the trivial absolute value. Then there exist some a ∈ K with |a|K > 2. By the
Weak Approximation Theorem 2.24, there exists β ∈ L with |β|L < 1, |β − a|′ < 1. In
particular, |β|′ > 1, and this contradicts the implication

|β|L ≤ 1⇒ |β|′ ≤ 1.

– | · |K is the trivial absolute value. Then | · |L is also the trivial absolute value, and since
| · |L and | · |′ are not equivalent, then | · |′ is not the trivial absolute value. Hence there
exists some α ∈ L with |α|′ > 1. This contradicts the implication

|β|L ≤ 1⇒ |β|′ ≤ 1.

Thus they are equivalent and, since they coincide on K, they must actually coincide on L.

Proposition 3.34. Let L/K be a field extension of finite degree, and let | · | be an absolute value on
L. Assume that K is complete with respect to the restriction of | · |. Then L is complete with respect
to | · |.

The proof follows easily from the following lemma:

Lemma 3.35. Let L/K be a field extension of finite degree n, and let | · | be an absolute value on L.
Assume that K is complete with respect to the restriction of | · |. Fix a basis {x1, . . . , xn} of L as a
K-vector space, and define, for all x ∈ L,

‖x‖ := max{|ai| : x =

n∑
i=1

aixi}.

Then there exist positive constants C1, C2 ∈ R such that, for all x ∈ L,

C1‖x‖ ≤ |x| ≤ C2‖x‖.
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Proof. Let C2 =
∑n

i=1 |xi|. Then, for all x =
∑n

i=1 aixi ∈ L, we have that

|x| =

∣∣∣∣∣
n∑
i=1

aixi

∣∣∣∣∣ ≤
n∑
i=1

|ai| · |xi| ≤ max
i
{|ai|}

(
n∑
i=1

|xi|

)
= ‖x‖C2.

To prove the existence of C1, we will proceed by induction on the dimension n of the K-vector
space L. For n = 1 the result is clear. Assume now we know the result whenever L is a finite
extension of K of dimension n− 1.

Let L be an extension of K of dimension n, together with a fixed basis {x1, . . . , xn}. Assume
that there is no constant C1 such that, for all x ∈ L, C1‖x‖ ≤ |x|. Namely, assume that, for all ε > 0

there exists some x ∈ L with
ε‖x‖ > |x|.

For each m ∈ N, take ε = 1
m , and let ym =

∑n
i=1 a

(m)
i xi be such that |ym| < 1

m‖ym‖. Clearly
‖ym‖ 6= 0 (otherwise the inequality cannot possibly hold!). Define

zm :=
1

‖ym‖
ym. (3.22)

The sequence (zm)m satisfies that, for all m ∈ N,

|zm| <
1

m
,

hence it converges to zero with respect to | · |. Moreover

zm =
1

‖ym‖
ym =

1

maxi{|a(m)
i |}

(
n∑
i=1

a
(m)
i xi

)
.

There is at least one i0 ∈ {1, . . . , n} such that the equality maxi{|a(m)
i |} = a

(m)
i0

occurs infinitely
often. Thus we have an infinite subsequence of (zm)m, which by abuse of notation we call again
(zm)m, satisfying that, for all m ∈ N, if we write zm =

∑n
i=1 b

(m)
i xi, then

|bi0 | = ‖zm‖ = 1

Call wn =
∑

i 6=i0 b
(m)
i . Equation (3.22) implies that the sequence (wn)n converges to vi0 in L.

Hence the sequence (wn)n is a Cauchy sequence, contained in the sub-K-vector space L′ spanned by
{xi : i 6= i0}. By the induction hypothesis, there exists C1 such that, for all x ∈ L′, C1‖x‖ ≤ |x|.
Hence, the fact that (wn)n is a Cauchy sequence implies that for each i 6= i0, the sequence (b

(m)
i )m is

a Cauchy sequence in K. Since K is complete, it has a limit bi ∈ K. Let w =
∑

i 6=i0 bix
i ∈ L′. We

have (for a certain constant C2, as proven above) that

|wn − w| ≤ C2‖wn − w‖ = C2 max{|w(n)
i − wi|} −→ 0 as n→ +∞.

Hence (wn) converges to w in L′ and a fortiori also in L. Since (wn)n also converges to vi0 in L, and
the limit of a sequence (if it exists) is unique, we have that w = vi0 . But w ∈ L′ and vi0 6∈ L′, which
is a contradiction.
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4 Local fields and number fields

In this last section we will define local fields, and explore -briefly- the relationship between number
fields and local fields, and offer a glimpse of why local fields play a central role in the study of number
fields.

Definition 4.1. A field L, together with a valuation v, is called a local field if it satisfies the following
conditions:

• v is a discrete valuation.

• L is complete with respect to the absolute value attached to v.

• The residue field O/m is finite, where as usual O = {x ∈ L : v(x) ≥ 0} and m = {x ∈ L :

v(x) > 0}.

Remark 4.2. By abuse of notation, one usually says that L is a local field without mentioning the
valuation if it is clear from the context.

Example 4.3. 1. Let p > 0 be a prime number. (Qp, vp) is a local field. Let us check the three
conditions of the definition.

• vp(Q×p ) = Z, hence vp is discrete.

• Qp is complete with respect to | · |p.

• κ = Zp/pZp ' Z/pZ = Fp.

2. Let L/Qp be a finite extension, and let v be the valuation attached to the unique extension | · |L
of | · |p to L (cf. Theorem 3.31). We claim that L is a local field. Let us check that the conditions
in the definition hold. Call n = [L : Qp]. Let α ∈ L×. Then

|α|L = n

√
|NormL/Qp

(α)|p =
n

√
p−vp(NormL/Qp (α)) = p−

1
n
vp(NormL/Qp (α)).

If we choose the constant p > 1 to define the valuation vL attached to | · |L, we obtain that

vL(α) =
1

n
vp(NormL/Qp

(α)).

Note that if α ∈ Qp, then

NormL/Qp
(α) =

∏
σ:L↪→Qp

σ(α) =
∏

σ:L↪→Qp

α = αn,

thus
v(α) =

1

n
vp(NormL/Qp

(α)) =
1

n
vp(α

n) = vp(α).

Hence vL|Qp coincides with vp.
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• For all α ∈ L×, we have that vL(α) ⊆ 1
nZ. Therefore there exists d|n such that

vL(L×) ⊆ 1

d
Z,

hence vL is a discrete valuation.

• L is complete with respect to v (cf. Proposition 3.34).

• Define a map
ϕ : Fp = Zp/pZp −→ κ = OL/mL

a+ pZp 7→ a+ mL.

ϕ is a well-defined ring morphism, which is injective. Via ϕ we have an inclusion Fp ↪→ κ.
To prove that κ is finite, it suffices to see that [κ : Fp] is finite. Actually, we will show that
[κ : Fp] ≤ [L : Qp].

Let x1 +mL, . . . , xn+1 +mL ∈ κ. We want to show that they are linearly dependent over
Fp. Since [L : Qp] = n, we have that x1, . . . , xn+1 are not linearly independent over Qp,
so there exist a1, . . . , an+1 ∈ Qp, not all zero, such that

n+1∑
i=1

aixi = 0.

Let i0 ∈ {1, . . . , n+ 1} be such that vp(ai0) ≤ vp(ai) for all i = 0, . . . , n+ 1. Note that,
since not all the ai are zero, then v(ai0) 6= +∞, thus ai0 6= 0. Let bi = ai

ai0
. Then we have

that vp(bi) ≥ 0 for all i = 1, . . . , n+ 1 and v(bi0) = 0. Moreover

n+1∑
i=1

bixi =
1

ai0

n+1∑
i=1

aixi = 0.

Reducing this equation mod mL, we obtain that

n+1∑
i=1

(bi + mL)(xi + mL) = 0 + mL

is a linear combination of x1+mL, . . . , xn+1+mL with coefficients in Fp, and bi0 +mL 6=
0 + mL. Thus x1 + mL, . . . , xn+1 + mL are linearly dependent over Fp.

Proposition 4.4. Let L be a field of characteristic zero endowed with a valuation v. The following
are equivalent:

(i) L, together with v, is a local field.

(ii) L is a finite field extension of Qp for some prime number p and v|Qp is equivalent to vp.

Proof. We have already seen (ii) ⇒ (i). For the other implication, see Chapter II of [4], Prop.
(5.2).

Let K be a number field, i.e., a finite degree extension of Q. Let us denote by ZK be the ring of
integers of K.
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Proposition 4.5. Let I ⊂ ZK be an ideal. Then I can be written uniquely as a product

I =
r∏
i=1

peii

for some r ∈ N, pi different prime ideals for all i = 1, . . . , r, ei ∈ N≥1.

Fix a prime ideal p of ZK . Proposition 4.5 allows us to define a valuation v on K in the following
way: for all a ∈ ZK , write

(a) = pe ·
∏
q6=p

qeq

and define
vp(a) := e.

We extend this definition in the natural way to K, namely

vp

(a
b

)
= vp(a)− vp(b).

In this way we obtain a map

Φ : {prime ideals of ZK} → {valuations on K}/ equivalence of valuations

p 7→ class of vp.

Lemma 4.6. The map Φ is a bijection.

Proof. Let us consider the map

Ψ : {valuations on K}/ equivalence of valuations → {prime ideals of ZK}
class of v 7→ mv := {α ∈ K× : v(α) > 0} ∪ {0}.

One can check that mv is a prime ideal of ZK , and furthermore Φ ◦Ψ = id and Ψ ◦ Φ = id.

Let now consider a finite extension of number fields M/K, and fix a prime ideal p in the ring of
integers ZK of K. We can consider the ideal pZM of ZM , and write its factorisation as a product of
prime ideals in ZM , say

pZM =

r∏
i=1

Pei
i .

The prime ideal p of ZK induces a valuation on K, and, for all i = 1, . . . , r, the prime ideal Pi

induces a valuation on L.

Lemma 4.7. With the notations as above, for all i = 1, . . . , r, the restriction of vPi toK is equivalent
to the valuation vp.

Proof. Fix some i = 1, . . . , r, and let α ∈ ZK . We have the following factorisations into prime
ideals: {

αZK = pẽ
∏s
j=2 p

ẽj
j

αZM = Pci
i · (product of some prime ideals of ZM ),
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yielding vp(α) = ẽ, vPi(α) = ci. But we also have the factorisation

pZM =

r∏
h=1

Peh
h .

Therefore

αZM =

pẽ
s∏
j=2

p
ẽj
j

ZM = (pZM )ẽ
s∏
j=2

(pjZM )ẽj =

(
r∏

h=1

Peh
h

)ẽ s∏
j=2

(pjZM )ẽj =

(
r∏

h=1

Pẽeh
h

)
s∏
j=2

(pjZM )ẽj = Pẽei
i · (product of some prime ideals of ZM ).

By the uniqueness of the factorisation in prime ideals of ZM , we obtain that ci = ẽei, that is to say,

vPi(α) = eivp(α).

Let us denote by L̂Pi the completion of L with respect to vPi , and by K̂p the completion of K
with respect to vp.

By Proposition 3.34, L̂Pi is a complete field, which contains K; thus it contains the completion
of K with respect to the restriction of vPi to K, that is, the completion of K with respect to vp.

We thus have a diagram

L̂Pi

L

K̂p

K

Let us assume that L/K is a Galois extension. A fundamental question in algebraic number theory
is the study of the Galois group Gal(L/K). The main idea in this part is that Galois groups of local
fields are much simpler than Galois groups of number fields.

Let p be a prime ideal of ZK and let P be a prime ideal of ZM dividing pZM .
We have a natural map

ϕ : Gal(M̂P/K̂p)→ Gal(M/K),

that maps an automorphism σ ∈ Gal(M̂Pi/K̂p) to its restriction to M . It can be proved that ϕ is an
injective group morphism, hence a description of Gal(M̂P/K̂p) provides information on Gal(M/K)

concerning the primes P and p, or, as it is usually written in the literature, “locally at the prime P

lying above p”.
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