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» focus on main domain + TLD
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» extract features from blacklisted phishing domain
names

» deduce a generation model for domain names
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Natural language model-

» focus on main domain + TLD
ex: www.login.myphishingdomain.com /index.php

» extract features from blacklisted phishing domain
names

» deduce a generation model for domain names

—> Build a blacklist of potential phishing domains even
before they are registered
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number extraction
word segmentation
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> distlen = {(8,1)}
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> distlen = {(8,1)}
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» calculate a similarity score (semantic relatedness)
between 2 words

Semantic extension

» give the n most related words to w
» based on dictionary (Wikipedia, BNC, PubMed, etc.)

» applied to each state of
the Markov Chain

= expand the discovery
http://www.linguatools.de/disco

DISCO authentication
passwords
~ vne
D obtain ssh
DISCO securing
gain
secured
ensure
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» extract features from known phishing domains
» generate domain names = potentially phishing
» domain names automatically checked further

— Blacklist

Feature extraction Model
B - \ /@ Potential Malicious
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» DNS-Black-Hole (01/2009 — 03/2012)
> PhishTank (07/2007 — 03/2012)
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- . 38 600
5 tests of 1 million domain . PN
. BN
generations g w <
£ Y
. § 300 ~ %9’%)
» learning set 30% g V. D —
(15,000 domains) S S
() tests
» testing set 70% = 0

%

!
\ % % % o
00000 0000 %% 00000 %

# of generated domain names

(35,000 domains)




Motivation

ST

Predictability

» learning: the 10%
oldest

Phishing domains modelling  Expe

Offline testing

» testing: 90% remaining

25

# of malicious domain names




ST

Motivation

Phishing domains modelling

Predictability

# of malicious domain names

» learning: the 10%
oldest

» testing: 90% remaining

25

nents

Strategy

# of malicious domain names

Offline testing

(

AA
D G

» learning set 30%
» testing set 70%

400
350
300
250
200
150
100

50

L
’j/_{‘—i'f
Ay mC |
£ R MC + 5 Disco_|

%

MC + 5/20 Disco
MC + 5/50 Disco—|

/

.

Skl

AT

o 2 %
T M M %

# of generated domain names

A

e,

14 %18



Phishing domains modelling  Experiments

Online testing

Motivation

ST

DNS request for 1 million domains generated
~ 100,000 domains match an QIP:

» ~ 80,000 wildcardings domains

» ~ 5 000 domains for sale

» ~ 15,000 remaining domains:
» ~ 500 actually malicious and blacklisted
» ~ 200 legitimate domains




Phishing domains modelling  Experiments a id Results  Conclusior

Online testing.

Motivation

ST
DNS request for 1 million domains generated
~ 100,000 domains match an QIP:

» ~ 80,000 wildcardings domains

» ~ 5 000 domains for sale

» ~ 15,000 remaining domains:
» ~ 500 actually malicious and blacklisted
» ~ 200 legitimate domains

Discriminate phishing from legitimate generated domains:
MCscore
— Eliminate 93 % of legitimate domains...
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Motivation

SIT
DNS request for 1 million domains generated
~ 100,000 domains match an @IP:

» ~ 80,000 wildcardings domains

» ~ 5 000 domains for sale

» ~ 15,000 remaining domains:
» ~ 500 actually malicious and blacklisted
» ~ 200 legitimate domains

Discriminate phishing from legitimate generated domains:
MCscore
— Eliminate 93 % of legitimate domains...
...while keeping 57 % of phishing domains (285)
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Motivation

SIT Conclusion

Generation of domain names likely to be malicious
» features extracted from existing domain names
» Markov chain model
» semantic relatedness techniques
—> Proactively build a phishing blacklist
Results:
» able to generate phishing domains...
» ... still with false positives
—> Domain scoring based on Markov chain model
Future works:

Phishing domains modelling

» remaining part of architecture: domain checker
» reinforcement learning
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