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Key idea: generate domain names similar to those
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=⇒ relying on natural language
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ex: www.login.myphishingdomain.com/index.php

I extract features from blacklisted phishing domain
names

I deduce a generation model for domain names

=⇒ Build a blacklist of potential phishing domains even
before they are registered
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Semantic extension
Disco:

I calculate a similarity score (semantic relatedness)
between 2 words

I give the n most related words to w

I based on dictionary (Wikipedia, BNC, PubMed, etc.)

I applied to each state of
the Markov Chain

⇒ expand the discovery
http://www.linguatools.de/disco
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Generator global overview

I extract features from known phishing domains

I generate domain names ⇒ potentially phishing

I domain names automatically checked further
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Offline testing
Phishing domain set from blacklists (∼ 50,000):

I Malware Domain List (01/2009 → 03/2012)

I DNS-Black-Hole (01/2009 → 03/2012)
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generations
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Predictability
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Online testing
DNS request for 1 million domains generated
∼ 100,000 domains match an @IP:

I ∼ 80,000 wildcardings domains

I ∼ 5,000 domains for sale
I ∼ 15,000 remaining domains:

I ∼ 500 actually malicious and blacklisted
I ∼ 200 legitimate domains

Discriminate phishing from legitimate generated domains:
MCscore

=⇒ Eliminate 93 % of legitimate domains...
...while keeping 57 % of phishing domains (285)
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Conclusion
Generation of domain names likely to be malicious

I features extracted from existing domain names
I Markov chain model
I semantic relatedness techniques

=⇒ Proactively build a phishing blacklist
Results:

I able to generate phishing domains...
I ... still with false positives

=⇒ Domain scoring based on Markov chain model
Future works:

I remaining part of architecture: domain checker
I reinforcement learning
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