
Advanced Detection Tool for PDF Threats

Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

SnT - University of Luxembourg
4 rue Alphonse Weicker

L-2721 Luxembourg, Luxembourg
{quentin.jerome,samuel.marchal,radu.state,thomas.engel}@uni.lu

http://wwwen.uni.lu/snt

Abstract. In this paper we introduce an efficient application for ma-
licious PDF detection: ADEPT. With targeted attacks rising over the
recent past, exploring a new detection and mitigation paradigm becomes
mandatory. The use of malicious PDF files that exploit vulnerabilities in
well-known PDF readers has become a popular vector for targeted at-
tacks, for which few efficient approaches exist. Although simple in theory,
parsing followed by analysis of such files is resource-intensive and may
even be impossible due to several obfuscation and reader-specific arti-
facts. Our paper describes a new approach for detecting such malicious
payloads that leverages machine learning techniques and an efficient fea-
ture selection mechanism for rapidly detecting anomalies. We assess our
approach on a large selection of malicious files and report the experi-
mental performance results for the developed prototype.

Keywords: PDF files, malware detection, machine learning

1 Introduction

Targeted attacks remain among the highly relevant persistent threat vectors.
The past year has seen a dramatic rise in targeted attacks using PDF files as
propagation vector12. Exploiting several zero-day vulnerabilities against popular
readers (primarily from Adobe)3, these attacks are difficult to mitigate for two
main reasons. The first is related to users not perceiving the opening of PDF files
as dangerous. Browsers plugins that automatically render PDF files make drive-
by contamination even easier, since the user merely needs to visit a malicious
site in order to get compromised. The second reason is the complex structure of
PDF files, which makes their parsing quite challenging. Obfuscation techniques
can thwart most of the available PDF parsing libraries, while still allowing error-
tolerant readers to parse the file and thus compromise the system. Sometimes,

1 http://thehackernews.com/2013/02/chinese-malware-campaign-beebus-target.

html
2 http://www.securelist.com/en/blog/774/A_Targeted_Attack_Against_The_

Syrian_Ministry_of_Foreign_Affairs
3 http://www.securelist.com/en/analysis/204792255/Kaspersky_Security_

Bulletin_2012_The_overall_statistics_for_2012



2 Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

even a slight change in a PDF file can make it unreadable to most libraries and
still produce a working exploit for proprietary readers.

In this paper, we consider the mitigation of this attack, which has as major
contributions, the followings:

– We propose an n-gram-based application to detect and mitigate attacks
leveraging PDF vulnerabilities;

– This method does not rely on semantic parsing and thus is not prone to
vulnerability exploitation found in PDF parsing libraries;

– We evaluate the performance of our system on a comprehensive dataset and
report very good results for performance, speed and accuracy;

– We compare our tool with academic work;
– We provide a web service implementation of our approach.

Our paper is structured as follows: we start out in section 2 with an overview
of malicious PDF files and highlight some of the recent vulnerabilities exploited
by this threat. Section 3 details the overall architecture of our system. Section
4 presents the dataset used for the tuning of our approach. We describe the
experiments performed and validation in section 5. In section 6, we compare our
tool to previous work and we introduce our web service implementation. Section
7 discusses relationships with prior work and we conclude the paper and discuss
future work in the section 8.

2 Malicious PDF

In this section, we introduce some lesser-known facts about the PDF language.
We first present the basis of the PDF language. We next show some general ways
used by rogue authors to craft malicious files. Finally we justify the challenges
that our work must address by pointing out the analysis difficulties concerning
PDF files.

2.1 PDF, a Programming Language

The PDF language is a PDL (Page Description Language). This type of lan-
guage was created to avoid dependencies between documents and hardware.
Thus, when someone wants to open a PDF document, it has only to own an
application known as a Reader in order to interpret and understand the PDF
language. This feature provides high portability because the resultant document
is not hardware or OS dependant. This interesting property has made PDF an
attractive alternative to platform-specific documents like Microsoft Word files.
PDF files are now widely used on the Web and unfortunately have also become
an attractive vector for malware propagation. Before showing how malicious
PDF documents are crafted, we explain the basis of this uncommon language.

We can consider PDF as a collection of various types of object. According to the
PDF reference [1], we can enumerate these different types:



Advanced Detection Tool for PDF Threats 3

– Boolean: Number (integer or real) and String values
– Names
– Array: collection of objects
– Dictionary: collection of objects indexed by their names (type Name)
– Streams: contain encoded data as text or images of the document
– Null objects

To be correctly interpreted and displayed, a PDF must contain some basic parts,
ordered as follows.

1. A header, which contains the PDF language version number
2. The document body, which contains all objects
3. A cross-reference table containing offsets of all objects (whether currently

in use or deleted by an incremental update) and version number of those
objects

4. A trailer containing the cross-reference table offset.

The purpose of the cross-reference table is to retrieve objects efficiently. As men-
tioned above, it contains versions of objects which can be modified by updates.
Once an object is deleted, its current version in the cross-reference table is mod-
ified to become the next generation number (version) of this object. Updated
objects are appended to the end of the file with a corresponding cross-reference
table modification.

Here we enumerate some existing ways to craft malicious documents. Indeed,
by design PDF provides a large range of possibilities to create malicious docu-
ments. The most-abused features are, for instance, additional features such as
JavaScript. Other features proper to a rich language can be used by rogue au-
thors as well. Indeed, because of its popularity, PDF embeds an increasing num-
ber of features which offer new possibilities and flaws within the source code.
We notice two large categories of attacks relying on PDF language: feature-based
and exploit-based attacks. Feature-based attacks leverage only language features
such as \OpenAction, which allows a task to be executed when someone opens
the document. In [2] the authors illustrate this by crafting phishing attacks re-
lying on such features. Exploit based attacks are more nasty since those rely
on vulnerability exploitation. If such an attack succeed, the victim’s machine
becomes compromised and the attacker can control it remotely. This kind of at-
tacks is even more critical for companies when a workstation becomes infected.
We distinguish three families of attacks exploiting vulnerabilities in common
PDF readers:

1. Attacks based only on JavaScript, which rely on a flaw in the JavaScript
API and need JavaScript to be exploited;

2. Attacks relying on JavaScript only for payload delivery. For instance, before
exploitation, a former step of heap spraying [3] can be performed. This tech-
nique aims at preparing the heap to control memory allocation and increase
the success rate of jumping into the landing zone that the attacker wants;



4 Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

3. Attacks that do not need JavaScript at all. For instance classical stack based
buffer overflow flaws could directly allow arbitrary code execution without
a previous heap preparation and thus do not need JavaScript.

Adobe Reader version(s) Target Flaws CVE-ID

9.1, 8.1.4, 7.1.1 and
earlier

JavaScript API
getAnnots()

Resource Management Errors
(CWE-399)

CVE-2009-1492

8.1.2 and earlier JavaScript
API util.printf()

Stack-based buffer overflow
(CWE-119)

CVE-2008-2992

8.1.1 and earlier JavaScript
method
in EScript.api

Code Injection (CWE-94) CVE-2007-5663

10.1.1 and earlier on
Windows and Mac
OS, 9.x through 9.4.6
on UNIX

U3D Unknown (probably heap
overflow)

CVE-2011-2462

9.x through 9.1.2 authplay.dll Code injection (CWE-94) CVE-2009-1862
9.0 and earlier J2BIG Heap pointer corruption

(CWE-119)
CVE-2009-0658

8.x before 8.3.1, 9.x
before 9.4.6, 10.x be-
fore 10.1.1

CoolType.dll Stack-based buffer overflow
(CWE-119)

CVE-2011-2441

8.x before 8.2.5 and
9.x before 9.4

ActiveX Input validation (CWE-20) CVE-2010-2888

9.x before 9.3.2, and
8.x before 8.2.2

Unspecified Buffer overflow (CWE-119) CVE-2010-0198

Table 1. Vulnerabilities

In Table 1, we illustrate some real examples of the vulnerabilities cited previ-
ously. The information was gathered from the Metasploit4 database and from the
NIST National Vulnerability Database5. The CWE – Common Weakness Enu-
meration – references were retrieved from the MITRE6 database. We can see in
this table that several Reader versions and OSs can be targeted, increasing the
attractiveness of such attacks.

2.2 Challenges

As shown in table 1, several Readers are vulnerable to exploitation. Hence it is
very difficult to perform classical dynamic analysis. All the vulnerable software
should be grouped in a common monitoring environment in order to cover the
whole range of threats. Whence choosing a static detection approach is sound

4 http://www.metasploit.com/
5 http://nvd.nist.gov/
6 http://cwe.mitre.org/data/slices/2000.html



Advanced Detection Tool for PDF Threats 5

in that particular case. However we must face other problems, specific to static
analysis.

The PDF language offers its own obfuscation facilities like representing Name
or String objects in hexadecimal form. In addition, another way to obfuscate
PDF documents is to use cascade filters to encode Streams objects. In this
fashion, the attacker is able to encode the same stream twice or even more with
different algorithms. This technique is straightforward to use for an attacker
and difficult to reverse engineer. For instance, according to the version 1.7 of the
PDF documentation [1], the PDF language provides about 10 filters, including
one to encrypt streams.

Object reference can be used to increase the obfuscation level as well. This
allows calling an object which is defined elsewhere in the document. It is worth
noting that the physical representation of the file does not matter, only the
logical structure is important for the Reader.

Another technique often used in malicious files is JavaScript string obfus-
cation, which has been heavily abused in the past in web based attacks. For
instance, using the eval() function on an encoded part of the script complicates
static analysis.

These aforementioned obfuscation methods are massively used within mali-
cious documents and makes the reverse engineer of files harder. A comprehensive
study is performed in [4] and is a relevant example of analysis issues. To avoid
time consuming and prone to error desobfuscation, we were motivated to use n-
grams as features to represent documents. In addition, extracting n-grams does
not require semantic parsing as done in previous works [5,6]. Since the Pop-
pler library used in these approaches can be vulnerable7, using it for detecting
malicious documents is not relevant.

3 Tool Description and Architecture

The ADEPT architecture, presented in this section, is designed to provide both
accuracy and performance. A well-known technique for automated detection is
machine learning-based classification. This method leverages features associated
with malware and benign files and uses them to build a model. The latter is used
to classify files depending on their features. Figure 1 shows the architecture of
the tool.

3.1 Feature Selection

The first step is to choose relevant features representing both regular and mali-
cious PDF. We choose n-gram to achieve this. N-grams are substrings of length
n extracted by sliding over the input character by character. Formally, a n-gram
sequence denoted E by :

7 http://www.securityfocus.com/archive/1/526364/30/0/threaded



6 Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

Fig. 1. System architecture

∀s ∈ S∗, where S∗ is the word set of a given alphabet S, ∀n ∈ N∗, where n
is the n-gram length :

E = {s[i; i+ n], i ∈ [0, L− n] ∩ N}

where s[i; j] denotes the substring extracted from s containing characters be-
tween indexes i and j. L denotes the length of the string s.

For example, in the string malicious and for n = 3 we extract the following
n-grams set {′mal′;′ ali′;′ lic′;′ ici′;′ cio′;′ iou′;′ ous′}. The number of n-grams is
N = L− (n− 1) ≈ L and constitutes an upper bound to the number of distinct
n-grams that we could extract from a given file.

3.2 Model Building Block

This module extracts relevant features to build the final model used for malware
detection. This task is time consuming due to the intensive process of n-grams
extraction. However, as the model is built only once, its processing time is not
an issue.

N-grams Extractor. This entity parse PDF documents and extracts all n-
grams from them. It also permits to gather n-grams for collection of documents.

N-grams Selector. The selector identifies the most relevant n-grams (or fea-
tures) to include in the model. While, in theory, all features can be used, fast
processing of PDF files is possible only when a subset of all possible n-grams is
used. Thereby, only the most frequent n-grams are selected among our document
corpus. During a preliminary study of our dataset, we noticed that malicious doc-
uments are shorter than benign files. To make our approach size independent,



Advanced Detection Tool for PDF Threats 7

we opted for a binary count of n-grams. Hence, each document is represented
by a binary vector where each component stands for a n-gram, set to one if the
n-gram appears in the document, zero otherwise.

Once features are selected, we need to retrieve the binary occurrence of these
features in the initial dataset (step 3 in figure 1). In the end of step 3 we get
a matrix where each line corresponds to a file and each column to one selected
n-gram. This data is ready to train a machine learning algorithm in step 4. We
discuss the learning algorithm embedded in our tool in section 5.2.

3.3 Detection Block

Model. This entity results from the machine learning algorithm which builds
a model based on data gathered in the preceding block. This model is used
now as a classifier input. In order to find the best classifier, we performed the
experiments detailed in section 5.

Classifier. Classifier is strongly related to the learning algorithm because it
takes a model previously learned as an input parameter for further comparison
(step 5). At the same time, it takes a feature vector extracted from a file that we
want to classify (step 7). The classifier determines if the feature vector extracted
from a file fits a benign or a malicious profile, according to the model that has
been learned previously.

4 Dataset Introduction

This section presents the preliminary study made on the dataset detailed in table
2. In order to compare our findings and benchmark our approach with respect
to previous studies we use the datasets introduced in [5]: D1,D2 and D3. The
dataset D4 is used further in this paper to evaluate our approach.

Our whole dataset was provided by VirusTotal8. For each dataset we have a
set of detected files and a set of undetected ones. Files were labelled as detected
by Virustotal if at least one anti-virus package among 42 reported an alert.
In contrast, all files labelled as undetected passed through anti-virus packages
without raising any alert.

While we analyzed some PDF documents manually – with the PDFTool9

toolkit – we observed that many files had the same structure and almost the
same size, but a different hash code. The physical and logical structure of these
files were indeed very similar. We assumed that many malicious documents have
been generated by exploit kit like BlackHole10 or Metasploit11. Indeed, two hash-
ing values calculated can be very different if only one byte differs between the two

8 https://www.virustotal.com/
9 http://blog.didierstevens.com/programs/pdf-tools/

10 http://en.wikipedia.org/wiki/Blackhole_exploit_kit
11 http://www.metasploit.com/



8 Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

D1 D2 D3 D4

det. undet. det. undet. det. undet. det. undet.

Date of collection 2010-11-03 2011-01-19 2011-02-17 2012-12-21
Number of files 7,592 7,768 6,465 9,993 11,634 22,490 3892 3474
Dataset size 873MB 13GB 429MB 13GB 1.5GB 29GB 223MB 3.5GB

Average file size 118KB 1.8MB 67KB 1.4MB 129KB 1.4MB 57KB 1MB
Number of different files 476 unknown 367 unknown 822 unknown 173 unknown

Table 2. Datasets introduction

files. However this high degree of similarity produces misleading results during
the calibration phase of the tool. The reason is that if we have different files with
small dissimilarities, the likelihood of taking into account these dissimilarities is
low. As a consequence, if we want to evaluate our tool with common machine
learning assessment techniques, we would probably test our tool on previously
seen instances. Moreover, similarities do not contribute to model building. There-
fore we assume that files are different on the PDFID output basis. PDFID is part
of the PDFTool toolkit and reflects the internal structure of a given file.

5 Experiments

Here, we present the methodology we follow to find the best classification al-
gorithm for our feature set. To achieve this, we used Weka [7], a well-known
machine learning toolkit.

5.1 Experimental Description

In order to find out the best combination of n-gram/classifier, we ran a ten-fold
cross-validation test on a labelled – benign or malign – document corpus. We
chose to experiment with several well-known classification methods that range
from tree and rule based classifiers to Support Vector Machine (SVM). To make
an n-fold cross-validation, we firstly partition our dataset into n subsets. We then
take (n−1) subsets to train a machine learning algorithm and the remaining one
for testing. In order to test each instance available in the dataset we do this n
times. Ten folds are most frequently used to obtain significant results[8]. What
we want is a classifier that gives the best prediction capabilities. To reach this
goal, we must deal with the file similarity problem that we mentioned in section
4. To overcome this issue, we use only different files on the PDFID output basis.
By doing this, we provide a worst case scenario that gives us a lower bound on
detection capability for our tool.

Following we enumerate the settings used for those experiments:

– 843 malicious files gathered from datasets D1 and D2. This is the sum of
different files in each dataset;

– 843 regular files randomly chosen in D1 and D2;



Advanced Detection Tool for PDF Threats 9

Fig. 2. Classification results for several classifiers

– We selected the 10,000 most frequent features in order to build the model.
We determined that n-grams occurring less did not contribute to the model
significantly.

We use a balanced dataset, as recommended by the machine-learning com-
munity [9] to avoid over-fitting and under-fitting issues.

Figure 2 depicts classification performances for each combination of n-gram/classifier
that we experimented. On the y axis, we plot the F-Measure also known as F-1
score. The F-Measure is defined as follows:

F-measure = 2(Recall·Precision)
Recall+Precision

where Recall = Instances in class i classified as belonging to class i
Instances in class i

and Precision = Instances in class i classified as belonging to class i
Instances classified as belonging to class i

We used this metric to assess our tool since it evaluates both the retrieving
capability of the tool through the Recall metric as well as the prediction capa-
bility through the Precision. Based on the results depicted in figure 2, we choose
LibLINEAR as classification algorithm coupled with 4-grams to build our de-
tection mechanism since this combination of feature bring the best results with
F-Measure = 92.50%.

5.2 Classifiers Details

This section describes how LibLINEAR [10] works in details. It is an implemen-
tation of a support vector machine (SVM) classifier. The aim of SVM classifi-
cation is to calculate the equation of the boundary between two sets of labelled



10 Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

instances (PDF files in our case) characterized by n features. In this n dimen-
sional problem, it must find the equation of an hyperplane. The shape of the
hyperplane can be linear, polynomial, radial or sigmoidal and is determined by a
kernel function. The kernel maps data into a space, in which it can be separated
by an hyperplane. LibLINEAR is faster than LibSVM because it does not map
instances into higher dimensional space, but instead it tries directly to separate
instances in the initial vector space [10]. Thus, the computational complexity of
the algorithm grows linearly with the number of instances.

More formally, by doing a LibLINEAR classification, the learning algorithm
solves the following optimization problem:

minw,b{ 1
2 ‖ w ‖

2 +C
∑n

i=1 ξ(w;xi, yi)}
subject to yi(w · xi − b) ≥ 1 ∀ 0 ≤ i ≤ n

where yi is the class of instance i
where xi represents an instance i
and w is the normal to the hyperplane

The C parameter represents margin rigidity: the higher it is, the softer are
margins. This means that we allow misclassified instances to contribute to the
model. In contrast, when margins are more rigid, we do not allow those instances
to be part of the model. We have to be careful in choosing this parameter because
it can lead to under-fitting or over-fitting problems. While the former would
represent more our training sample rather than the instance population, the
latter would be too general. To find the good value for C, a grid search is
usually performed. This consists in varying the parameter and doing a cross
validation for each variation. Parameter offering the best cross-validation result
is adopted. After a grid search we were able to determine that C = 0.03125 is the
optimum value. The ξ(w;xi, yi) term is the loss function, which approximates
the misclassification degree of instance i.

6 Evaluation and Use-case

We present in this section a real-life use-case for such a detection tool. We firstly
define what we mean by such a scenario and then we evaluate our tool. Lastly, we
compare our approach with PJScan, another tool aiming at detecting malicious
PDF files.

6.1 Real-life Use-case

Before going further into this evaluation, we propose to define what we mean by
a real-life use-case. Following we point out two points of interest for running our
experiments:

1. We must use a training set older than the files we want to detect;
2. We must assess our tool on a realistic dataset of malicious files.



Advanced Detection Tool for PDF Threats 11

In order to satisfy the first condition, we use the three older datasets introduced
in section 4 to train the tool. As a result, we do the training with 24,327 files in
both classes extracted from D1,D2 and D3. For the evaluation set, we use the
most recent dataset, namely D4. In using these settings for the experiments, we
also assess the viability of our approach regarding the threat evolution since the
training set contains files two years older than files used for testing. Concern-
ing the second requirement, we do not pay attention to the similarity problem
between learning and testing. This makes sense since the tool must be able to
find threats present in its knowledge base. Moreover, it is possible that some
files in the testing set share similarities between them. To quantify the similarity
between learning and testing, we found that 50 have the same hashing signa-
ture and 416 have a similar PDFID fingerprint. For this experiment we use the
settings defined in the previous section.

class. as mal. class. as .reg Recall Precision F-Measure

Malicious 3667 224
97.00% 96.85% 96.92%

Undetected 8 3466

Table 3. Realistic scenario evaluation

We can see immediately in table 3 that the results are better than for the
previous experiments. This can be partly explained by the fact that we used
many more files than for our evaluation with Weka. Another reason is that in
this test case, we did not filter the initial dataset as we did in our first experiment.
This allows us to assess the real capabilities of the tool in terms of prediction
and identifying known threats. We can also note the low false positive rate –
benign files incorrectly classified as malicious – of 0.23% as well as a very good
classification accuracy of 96.85%. This is a valuable attribute in a detection tool
since only few false alarms are raised. Furthermore, we point out that files having
the same hashing signature or similar PDFID fingerprint that files in the model
were all well classified.

To have a better idea of which files remain undetected by the tool we ex-
tracted some pertinent information from misclassified files. The first point of
interest is that among these 224 files there are 67 different PDFID outputs. We
verified that no file with any of these outputs was in our training data. We can
assume that these files are new attacks that our tool did not have in its training
set. We also found that 399 files in our evaluation set had one of these PDFID
signature. This means that we correctly identified 175 of these files while 224
were misclassified. If these 399 files are really totally new threat, relatively to
the tool knowledge, we can not hope detecting new threats with 100% accuracy.

For sake of space, we do not present the detailed throughput assessment of
this detection mechanism. However, it is worth noting that we can process around
hundred regular documents per minute on a desktop computer with an Intel Core
I5 processor and 8GB of RAM. We mean by regular documents documents that



12 Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

we are used to deal with on a daily basis. Since malicious files are lightweight,
the tool performs faster detection on these but a scenario containing only rogue
files seems to be unlikely.

6.2 Comparisons

In this section we compare our approach with previous academic work in this
area. Therefore, we compare our results against the detection capabilities of
PJScan [5]. To make the comparison as fair as possible we use exactly the same
scenario we defined in the previous section .

Comparison with Academic Work. Here we summarize the experiments
that we ran in order to compare our tool to PJScan. We chose to compare our
tool to PJScan because it is well documented and its source code is open12.
We do not present a run-time performance comparison with PJScan because
we ran it on a virtual machine due to compatibility issues. Before use, PJScan
needs to be trained on a malicious training sample. As PJScan uses One Class
SVM classification, the model has to be built using only one class. To satisfy
this requirement we fed the model with the malicious files that we used in our
training set. We expected very different results from our own because PJScan
deals only with documents containing JavaScript.

class. as mal. class. as .reg Recall Precision F-Measure

Malicious 209 49
88.89 68.67 77.48

Undetected 3 31

Table 4. PJScan evaluation

Table 4 summarizes the results provided by PJScan. The tool was only able
to process 3.9% of the test set. According to the output of the tool, the remaining
files were skipped because no information was found in them. In this situation,
the tool is unable to classify files and thus does not take any decision. However, in
reality we need to take decisions regarding unknown files. Thus, we can conclude
that this tool does not fit well with a real-life scenario. To be fair we compare
both approaches according to the file that PJScan is able to process. From this
comparison, we can conclude that our approach outperforms PJScan since it has
a better accuracy, 96.85% for ADEPT against 82.19% for PJScan.

6.3 Web Service Implementation

We briefly present here a web interface implementation of our tool. We devel-
oped a front end that makes the tool more user-friendly than the command line

12 http://sourceforge.net/p/pjscan/home/Home/



Advanced Detection Tool for PDF Threats 13

version. The service is hosted at http://www.secan-lab.uni.lu/pdfchecker

and provides a VirusTotal-like graphical interface. The user can choose either
to scan a file or try to retrieve a scan result for a previously scanned file by
providing its SHA-256 signature. The result provides useful information to the
user by showing the first and the last submission date. In addition, we also pro-
vide a PDFID-like output from another tool that we have developed. This tool
actually extends the work done for PDFID and does it faster, up to 30 times
for big files (>25.0MB). This tool also warns the user when the file he scanned
contains dangerous features. This extra-feature is particularly useful when the
tool misclassified a document.

7 Related Work

In this section we present the related work concerning PDF analysis and auto-
mated PDF detection. We also mention some relevant papers about the general
topic of malware detection that drove us to build such a detection mechanism.

7.1 PDF Analysis

Several approaches exist for PDF analysis. We can find both static and dynamic,
or even hybrid methods. While our tool addresses the problem of malicious file
detection we cite here some analysis tools, helpful when we must deal with
unknown threats. Outputs from analysis tools are often used as input for a
detection mechanism.

PdfTools13, developed by Didier Stevens, is an analysis toolkit consisting of
PDFID and PDF-PARSER. The former gives statistics about potentially mali-
cious features which are embedded in a PDF while the second is a parser that
displays the PDF code in a readable format. Another static tool, PDF Struc-
tazer, is presented in [2]. It can be used to analyse, create or modify PDF files.
In the same paper, the authors show the power of the PDF language by imple-
menting phishing attacks using only language features. Itext14 is an open source
and free library providing ways of automating PDF creation and modification.
Almost all features provided by the PDF language are supported; [11] provides
an introduction and practical guide.

A dynamic approach is implemented in CWSandbox[12], an application which
monitors malware execution in a sandboxed environment. Its dynamic analysis
monitors features such as file modification, changes made to the Windows reg-
istry and processes created. Post execution, the application provides a detailed
report directly readable by analysts who can take a decision concerning the file.
This tool has been adapted for malicious PDF15, which is certainly its main
problem concerning PDF detection. However, as noted previously, some exploits
run only on particular Adobe Reader version. Thus before running a malicious

13 http://blog.didierstevens.com/programs/pdf-tools/
14 http://itextpdf.com/itext.php
15 http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html



14 Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

file in a sandboxed environment, we need to know which version is targeted.
In [13] the authors introduce MIST, means of interpreting output from online
platforms such as CWSandbox. The resulting instruction can subsequently be
used for a machine learning based classification.

7.2 Malicious PDF Detection

A combination of both types of analysis is implemented in MDScan [14] in order
to detect malicious PDF files. MDScan first detects malicious code by parsing the
document. The extracted code is then monitored in an emulator emulating pro-
viding a subset of the functionalities available in the Adobe API. Because some
API functions have not yet been implemented; the detection can be defeated if
malicious file exploit an unimplemented function. Schmitt et al. present PDF
Scrutinizer in [15]. The approach combines both static and dynamic analysis to
detect malicious PDF files containing JavaScript.

In [5], Laskov et al. describe PJScan, a static detection based on machine
learning. They focus on malicious PDFs containing JavaScript. They use a
JavaScript extractor and then treat extracted code to transform it in a stan-
dard token representation. A learning algorithm is then applied to the tokenized
sequence in order to detect malicious patterns. The authors leveraged approaches
introduced in [16], where lexical analysis associated with a learning method is
applied to detect drive-by download attacks.

A recent tool is proposed in [17] where the authors leverage several meta-
data extraction combined with machine learning in order to determine whether
a file is likely to be malicious or not. Another approach, based on the hierar-
chical structure of PDF documents combined with machine learning has been
presented in [6]. Although this approach seems to have good performances, it is
still vulnerable to parser vulnerabilities since it uses the libpoppler library.

7.3 Malware Analysis

We have done previous work in machine learning techniques for security in
[18,19,20], but focussed more on the network traffic monitoring and not the
system level defines.

In [21] the authors present a detection solution that, like ours, is based on
n-gram associated with learning techniques. Their experiments tested different
classifiers and different values of n. They address malicious Windows binary (PE
files) detection. While their approach targets malicious code in binary format,
ours approach deals with ASCII encoded files. Additionally, while their approach
leverages information gain in feature selection, ours uses most frequent features.

N-gram analysis is used in [22] in order to detect file types. This type of
analysis can be used to tag unknown files or to detect files which try to disquise
their content. To reach their goal, the authors firstly obtain n-gram distributions
for various file types. Secondly, they compare n-gram distribution of a file under
test with known values to determine its real type. Similar work appears in [23],
where the authors present a way of detecting embedded files within documents.



Advanced Detection Tool for PDF Threats 15

This method consists in observing variation of n-gram distribution compared to
the expected distribution for a given file format. This method can also be used
to detect embedded files within PDF files.

Wei-Jen Li et al. [24] present a way to analyse malicious Word documents.
Their method is based on static analysis coupled with a dynamic element. Byte
distribution is analysed in an initial static analysis step. They further monitor
malware behaviour using API hooking techniques. The file is ultimately classified
as a result of these two steps.

In term of full dynamic analysis, TTAnalyze, presented in [25] aims to quickly
identify malicious PE files. To achieve this, the tool monitors both the Windows
API and native API hooks to catch even the stealthiest malware. It evades detec-
tion by the rogue program in avoiding both classic API hooking and breakpoint
setting.

8 Conclusion

This paper describes an accurate detection tool for malicious payload detection.
Our work was motivated by the lack of efficient approaches to mitigate an ad-
vanced persistent threat that has had significant impact recently. We proposed
a method that leverages machine learning and sequence based features in order
to detect malicious PDF files. We have assessed our approach on a very large set
of data that was obtained through the courtesy of VirusTotal. The performance
in both speed and accuracy are very good since it is able to process hundred
files per minutes with 0.23% of false positives. We plan to extend this work by
integrating additional pieces of information, such as entropy and multiple align-
ment scores. We are also considering to generalize this approach to a larger class
of payload types, but obtaining ground truth datasets for each is a particularly
challenging.

Acknowledgment

The authors would like to thank Prof. Dr. Pavel Laskov for the support and
dataset provided for our experiments. Special thanks also go to the VirusTotal
team for giving us access to several datasets.

References

1. Adobe: PDF reference sixth edition, adobe portable document format, version 1.7
(2006)

2. Filiol, E., Blonce, A., Frayssignes, L.: Portable document format (PDF) security
analysis and malware threats. Journal in Computer Virology (2007) 75–86

3. Daniel, M., Honoroff, J., Miller, C.: Engineering heap overflow exploits with
JavaScript. In: Proceedings of the 2nd conference on USENIX Workshop on of-
fensive technologies. WOOT’08, Berkeley, CA, USA, USENIX Association (2008)
1:1–1:6



16 Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

4. Rahman, M.A.: Getting owned by malicious PDF - analysis. Global Information
Assurance Certification Paper (2010)

5. Laskov, P., Šrndić, N.: Static detection of malicious JavaScript-bearing PDF doc-
uments. In: Proceedings of the 27th Annual Computer Security Applications Con-
ference. ACSAC ’11, New York, NY, USA, ACM (2011) 373–382

6. Šrndic, N., Laskov, P.: Detection of malicious pdf files based on hierarchical docu-
ment structure. In: Proceedings of the 20th Annual Network & Distributed System
Security Symposium. (2013)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter
(1) (2009) 10–18

8. Witten, I., Frank, E., Hall, M.: Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann (2011)

9. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbal-
anced datasets. Machine Learning: ECML 2004 (2004) 39–50

10. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large
linear classification. The Journal of Machine Learning Research (2008) 1871–1874

11. Lowagie, B.: iText in action: Creating and manipulating PDF. Dreamtech Press
(2006)

12. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using CWSandbox. IEEE Security & Privacy (2007) 32–39

13. Trinius, P., Willems, C., Holz, T., Rieck, K.: A malware instruction set for
behavior-based analysis. Proc of Conference Sicherheit Schutz und Zuverlssigkeit
SICHERHEIT (TR-2009-07) (2011) 1–11

14. Tzermias, Z., Sykiotakis, G., Polychronakis, M., Markatos, E.P.: Combining static
and dynamic analysis for the detection of malicious documents. In: Proceedings
of the Fourth European Workshop on System Security. EUROSEC ’11, New York,
NY, USA, ACM (2011) 4:1–4:6

15. Schmitt, F., Gassen, J., Gerhards-Padilla, E.: Pdf scrutinizer: Detecting javascript-
based attacks in pdf documents. In: Privacy, Security and Trust (PST), 2012 Tenth
Annual International Conference on, IEEE (2012) 104–111

16. Rieck, K., Krueger, T., Dewald, A.: Cujo: Efficient detection and prevention of
drive-by-download attacks. In: Proceedings of the 26th Annual Computer Security
Applications Conference, ACM (2010) 31–39

17. Smutz, C., Stavrou, A.: Malicious PDF detection using metadata and structural
features. In: Proceedings of the 28th Annual Computer Security Applications
Conference, ACM (2012) 239–248

18. François, J., Wang, S., State, R., Engel, T.: Bottrack: tracking botnets using
netflow and pagerank. In: NETWORKING 2011. Springer Berlin Heidelberg (2011)
1–14

19. Wagner, C., Wagener, G., State, R., Engel, T.: Malware analysis with graph kernels
and support vector machines. In: Malicious and Unwanted Software (MALWARE),
2009 4th International Conference on, IEEE (2009) 63–68

20. Abdelnur, H.J., State, R., Festor, O.: Advanced network fingerprinting. In: Recent
Advances in Intrusion Detection. Springer Berlin Heidelberg (2008) 372–389

21. Kolter, J., Maloof, M.: Learning to detect and classify malicious executables in
the wild. The Journal of Machine Learning Research (2006) 2721–2744

22. Li, W., Wang, K., Stolfo, S., Herzog, B.: Fileprints: Identifying file types by n-gram
analysis. In: Information Assurance Workshop, 2005. IAW’05. Proceedings from
the Sixth Annual IEEE SMC, Ieee (2005) 64–71



Advanced Detection Tool for PDF Threats 17

23. Stolfo, S.J., Wang, K., Li, W.J.: Fileprint analysis for malware detection. ACM
CCS WORM (2005)

24. Li, W., Stolfo, S., Stavrou, A., Androulaki, E., Keromytis, A.: A study of malcode-
bearing documents. Detection of Intrusions and Malware, and Vulnerability As-
sessment (2007) 231–250

25. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code.
Journal in Computer Virology (1) (2006) 67–77


