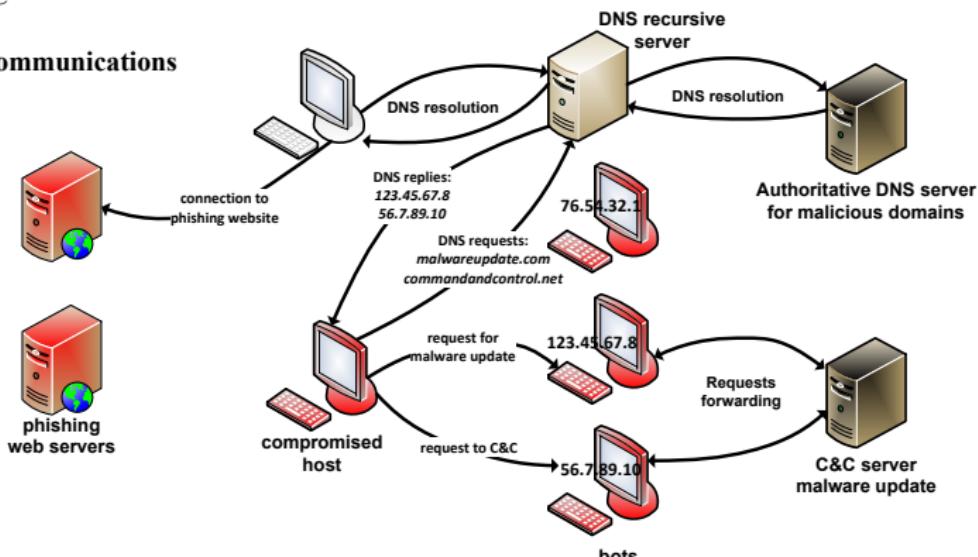
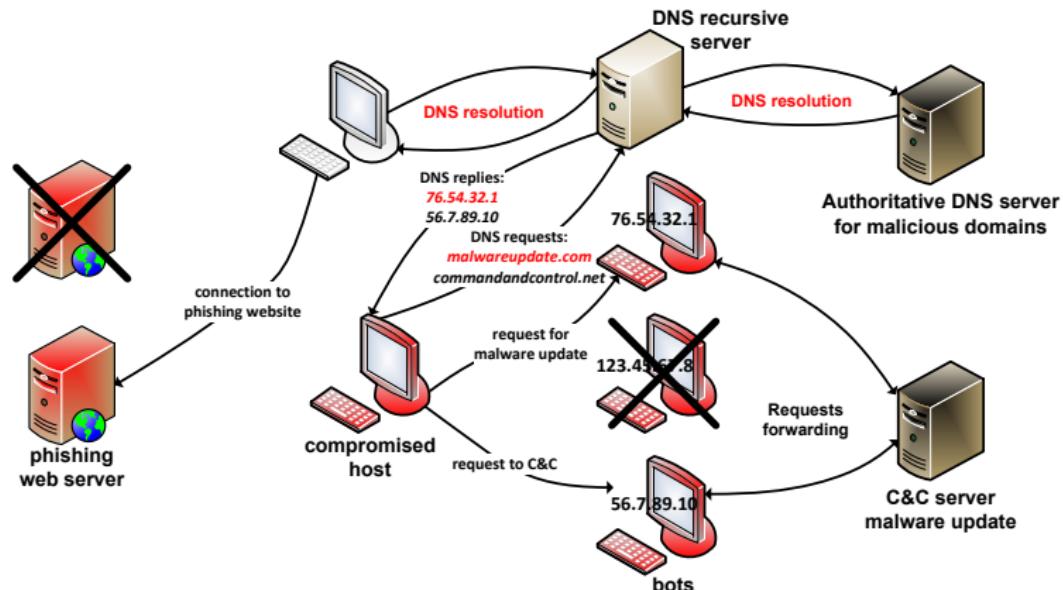


Semantic based DNS Forensics

*Samuel Marchal, Jérôme François, Radu State and
Thomas Engel*



- 1 Motivations
- 2 Semantic analysis
- 3 Experiments and Results
- 4 Conclusion


- 1 Motivations
- 2 Semantic analysis
- 3 Experiments and Results
- 4 Conclusion

DNS: Domain Name System is the support of many malicious activities

- malware updates
- botnet C&C
- phishing
- backdoor communications
- etc.

DNS: Domain Name System is the support of many malicious activities

Why proceed DNS analysis for forensic purposes ?

- ▶ find proof of **infection** (malicious domains requests)
- ▶ reduced **amount of data** to analyse: DNS is a meager subset of network traffic
- ▶ DNS analysis keeps users' **anonymity**

⇒ *useful as a first step before in-depth analysis*

Why proceed DNS analysis for forensic purposes ?

- ▶ find proof of **infection** (malicious domains requests)
- ▶ reduced **amount of data** to analyse: DNS is a meager subset of network traffic
- ▶ DNS analysis keeps users' **anonymity**

\implies *useful as a first step before in-depth analysis*

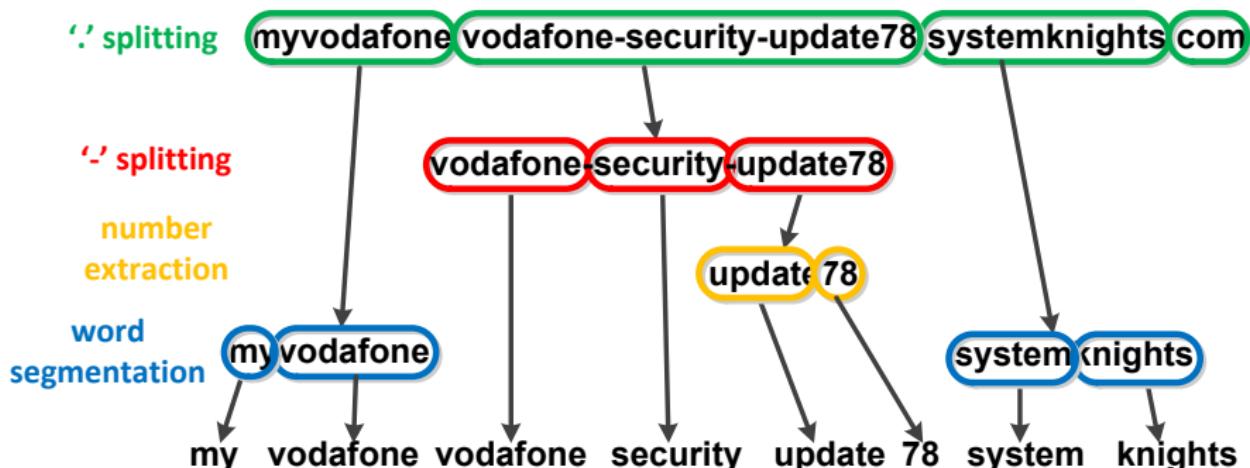
Issue: How do we know if a domain is malicious ?

Identification of malicious domains:

- ▶ User reports + **manual checking**
- ▶ DNS packet fields analysis + classification via **machine learning** algorithm:
 - ▶ domain records removed: data is no longer available
 ⇒ problematic for forensic analysis
- ▶ Domain name based analysis:
 - ▶ number of domain levels
 - ▶ relative position of labels
 - ▶ domain length
 - ▶ etc.

- 1 Motivations
- 2 Semantic analysis
- 3 Experiments and Results
- 4 Conclusion

Analyse domain semantic


- ▶ Domain names are meant to be **meaningful**
- ▶ Observations: malicious domains often use words from the **same semantic fields**:
 - ▶ www.visa-sweden.mastercard.forever4c.com
 - ▶ myvodafone.vodafone-security-update78.systemknight.com
 - ▶ paypal.com-us.webscr.cmd-homeelocale.gumuspena.com
- ▶ Issue: single domains are not significant enough
- ▶ ⇒ Group domains according to **common features** (IP address, etc.)
- ▶ Knowing group of malicious and legitimate domains

⇒ **deduce if an unknown group is malicious or not**

Features extraction

Splitting of domain name:

myvodafone.vodafone-security-update78.systemknights.com

- ▶ $distword = \{(my, 0.125), (vodafone, 0.25), (security, 0.125), \dots\}$

Semantic relatedness evaluation

How to evaluate semantic similarity between two sets of domain names ?

⇒ between two words: Wordnet, Disco:

- ▶ calculate a **similarity score** (semantic relatedness) between 2 words
- ▶ give the n **most related** words to w
- ▶ based on dictionary (Wikipedia, BNC, PubMed, etc.)

$$sim(w_1, w_2) = \frac{\sum_{(r,w) \in T(w_1) \cap T(w_2)} I(w_1, r, w) + I(w_2, r, w)}{\sum_{(r,w) \in T(w_1)} I(w_1, r, w) + \sum_{(r,w) \in T(w_2)} I(w_2, r, w)}$$

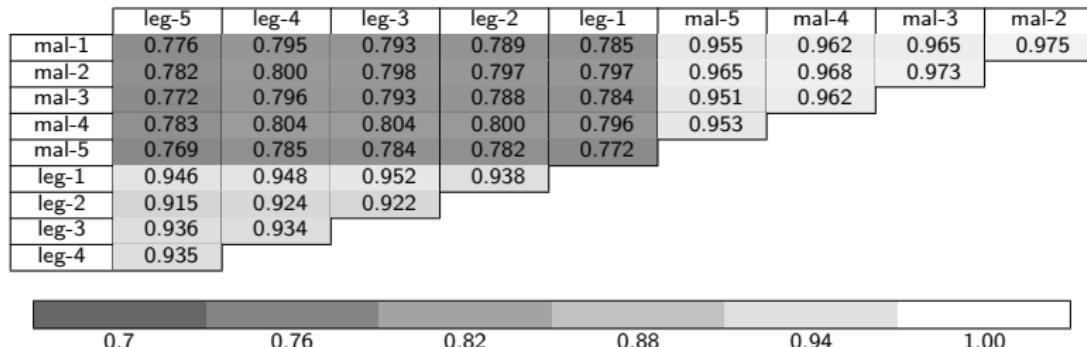
⇒ **use this metric in new ones**

3 metrics defined to compare two sets of domains:

Assuming **two domain sets** A and B and the associated extracted word sets W_A and W_B with the occurrence frequencies *distword* we have:

$$Sim_1(A, B) = \sum_{w_A \in W_A} \sum_{w_B \in W_B} sim(w_A, w_B)$$

$$Sim_2(A, B) = \sum_{w_A \in W_A} \sum_{w_B \in W_B} sim(w_A, w_B) \times distword_{w_A, W_A} \times distword_{w_B, W_B}$$


$$\begin{aligned} Sim'_3(A, B) &= \sum_{w \in W_A} \sum_{w' \in Disco(w, n)} sim(w, w') \times distword_{w', W_B} \\ \implies Sim_3(A, B) &= Sim'_3(A, B) + Sim'_3(B, A) \end{aligned}$$

- 1 Motivations
- 2 Semantic analysis
- 3 Experiments and Results
- 4 Conclusion

Similarity metrics efficiency

Comparison pair-wise of domains sets ($Sim_3(A, B)$)


- ▶ 10 sets of around 13,000 domains each
- ▶ 5 **legitimate** (Alexa + passive DNS)
- ▶ 5 **malicious** (PhishTank, DNS-BH, MDL)

Size of domains sets

Similarity metrics able to distinguish legitimate from malicious sets of domains:

- ▶ for big set (13,000 domains): ok !!
- ▶ **minimum number** of domains in a set to evaluate it ?

- 1 Motivations
- 2 Semantic analysis
- 3 Experiments and Results
- 4 Conclusion

Technique for domains sets comparison:

- ▶ semantic similarity scoring
- ▶ apply to identification of malicious domain set
- ▶ useful for first step of forensic analysis

Results:

- ▶ able to distinguish malicious from legitimate domains...
- ▶ ... for sets of at least 10 domains

Future works:

- ▶ improve similarity metrics
- ▶ correlate with IP Flow records

Semantic based DNS Forensics

*Samuel Marchal, Jérôme François, Radu State and
Thomas Engel*

